

Ambient Temperature Polysulfide-Based Redox Flow Batteries and Membrane Development

Guang Yang

Presentation #602 DOE OE Energy Storage Peer Review October 11-13, 2022

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Project Team

Guang Yang

Michelle Lehmann

Tomonori Saito

Thomas Zawodzinski

David Mitlin (UT-Austin)

Recent ORNL Team Members

Jagjit Nanda (SLAC-Stanford)

Frank Delnick Landon Tyler (Retired 6/22) (Graduated 6/22)

Core Expertise and Focus Areas

- High energy flow battery chemistries based on earth-abundant active materials
- Ion-selective polymer electrolytes with high ionic conductivity for Na-based batteries
- Advanced characterization and device integration

Acknowledgment

This work is supported by Dr. Imre Gyuk, Manager, Energy Storage Program, Office of Electricity, Department of Energy.

Thanks to Michael Starke, program manager, ORNL.

Long-duration energy storage (LDES) systems will play an integral role in achieving clean electricity from renewables to meet decarbonization goals.

DOE Energy Earthshots 2030 Goals

- Long duration energy storage > 10 hrs
- Reducing energy storage cost by 90%

Dunn et al. Science 2011, 334, 928.

Metric	Target Value
Installed Capital Cost	\$40/kWh (for 10 h storage)
Lifetime	20+ years
Storage Duration	10+ hours
Albertus et al. <i>Joule</i> 2020 , 4, 21.	

ORNL R&D focuses on next-generation redox flow batteries (RFBs) based on earth-abundant active materials and advanced polymer electrolytes.

FY22 Technical Achievements

- Developed liquid electrolyte to stabilize Na metal anode
- Identified novel additives to increase solubility of low-order Na polysulfides
- Fabricated mechanically robust single-ion conducting membranes for Na-Na₂S_x RFBs

Timeline of ORNL Research on Nonaqueous Redox Flow Batteries

5

 Na_2S_x is promising catholyte for nonaqueous flow batteries due to low cost and outstanding cycling stability Na₂S_x in Diglyme (2EGDME) Na₂S₈ Na₂S₇ Na₂S₆ Na₂S₅ Na₂S₄ NaS₈ 125 mAh/g_s 313 m Na₂S₄ Precipitate NaS₈ Precipitate S₈ JCPDS 08-2047 Na_2S_4 JCPDS 25-1112 * Impurities * Impurities

30

70

60

50

 $2\theta_{CuK\alpha}$ / deg.

40

60

70

Intensity (A.U.

6

30

50

 $2\theta_{CuK\alpha}$ / deg.

40

Na₂S_x|BASE|Na₂S_x Symmetric Flow Cell

Overview of Na₂S_x Catholytes

- ✓ Low cost, earth-abundant active material
- Outstanding reversibility and cycling stability
- Low solubility (<<0.1m) when x<5</p>
- Low sulfur utilization (125 mAh/g) when only soluble Na₂S_x species are cycled.
- Cycling insoluble species (e.g., Na₂S₄, S) is only viable for small lab-scale prototypes.

E. C. Self et al. J. Electrochem. Soc. 2021, 168, 080540.

* Assumes 2 electrons transferred per sulfur

ORNL Invention Disclosure 81939560 (Submitted Sept. 13, 2022)

22

Nat

NaPF₆-based glyme electrolytes enable highly reversible Na metal anodes which opens vast opportunities for Na metal hybrid flow batteries

Next-Generation Membranes: ORNL's single-ion conducting polymers have outstanding properties compared to conventional polymers (e.g., PEO)

20-30 µm

>1 GPa modulus

Advantages of ORNL's single-ion conducting membranes
✓ Low cost (prepared from commercial polymer precursor)
✓ High Na⁺ selectivity in concentrated electrolytes
✓ High Na⁺ conductivity (~0.1 mS/cm at RT)
✓ Compatible with wide range of supporting electrolytes

9 M. L. Lehmann et al. *Macromolecules* 2022, 55, 7740.

The performance of hybrid flow batteries containing Na metal anode and Na₂S₈ catholyte were benchmarked using commercial membranes.

The chemical stability and Na_2S_8 crossover rates of commercial membranes were evaluated. A bilayer membrane (Celgard|Na⁺ Nafion) will be tested in FY23 to improve cycling stability of Na metal/Na₂S_x hybrid flow cells. Na₂S₈ Crossover Evaluation

Ongoing and Future Work

Nonaqueous Catholytes from Earth Abundant Materials

- Na₂S_x has outstanding cycling stability but limited practical capacity due to poor solubility when x≤4
- New class of Na-P-S catholytes prepared by formation of solvated Na₂S_x-P₂S₅ complexes

Na Metal Hybrid Flow Batteries

- NaPF₆/2EGDME electrolyte enables outstanding reversibility of Na metal anode
- Requires membrane with excellent reductive stability and low Na₂S_x crossover

Ion selective membranes for Na-based flow batteries

- Crosslinked polymers, single ion conductors, composites
- Benchmark performance of emerging polymers from startup companies (e.g., Bettergy Corp.)
- Investigate transport using *operando* FT-IR and UV-vis
- **Targets**: ASR < 50 Ω cm², no crossover

Na Metal Hybrid Flow Batteries

FY22 Manuscripts

- [1] J. L. Tyler, R. L. Sacci, M. L. Lehmann, G. Yang, T. A. Zawodzinski, J. Nanda "Nafion inhibits polysulfide crossover in hybrid nonaqueous redox flow batteries" **2022** (Under Review)
- [2] M. L. Lehmann, L. Tyler, E. C. Self, G. Yang, J. Nanda, T. Saito "Membrane design for non-aqueous redox flow batteries: current status and path forward" *Chem* **2022**, 8, 1611.
- [3] M. L. Lehmann, G. Yang, J. Nanda, T. Saito, "Unraveling ion transport in trifluoromethanesulfonimide pentablock copolymer membranes in nonaqueous electrolytes" *Macromolecules* **2022**, *55*, 7740.
- [4] H. Hao, Y. Wang, N. Katyal, G. Yang, H. Dong, P. Liu, S. Hwang, J. Mantha, G. Henkelman, Y. Xu, J. A. Boscoboinik, J. Nanda, D. Mitlin "Molybdenum carbide electrocatalyst in situ embedded in porous nitrogenrich carbon nanotubes promote rapid kinetics in sodium-metal-sulfur batteries" *Advanced Materials* **2022**, *34*, 2106572.
- Y. Zhang, G. Yang, M. L. Lehmann, C. Wu, L. Zhao, T. Saito, Y. Liang, J. Nanda, Y. Yao, "Separator effect on zinc electrodeposition behavior and its implication for zinc battery lifetime" *Nano Letters* 2021, 21, 10446.
 FY22 Intellectual Property
- [1] E. C. Self, M. L. Lehmann, G. Yang, J. Nanda, "Na-P-S Catholytes for Nonaqueous Flow Batteries" ORNL Invention Disclosure 81939560 (submitted September 13, 2022).
- [2] T. Saito, M. Lehmann, J. Nanda, "High Ionic Conductivity Polymer Electrolyte Compositions for Alkali and Beyond Alkali Metal Batteries", U.S. Patent Application 17/703,371 (filed March 25, 2022).
- [3] J. Nanda, G. Yang, T. Saito, F. M. Delnick, "Mechanically robust solid electrolyte compositions for alkali and beyond alkali metal batteries" U.S. Patent Application 17/397,233 (filed February 10, 2022).
- [4] F. M. Delnick, J. Nanda, E. C. Self "High capacity organic radical mediated phosphorus anode for redox flow batteries" US Patent No. US 11,145,885 B2 (published October 12, 2021)

Questions?

Backup Slides

ORNL R&D: Next-Generation Flow Battery Materials for Low-Cost Grid Storage

III. Advanced Characterization to Optimize Device Performance

- <u>Spectroscopy</u>: Identify polymer structure/transport correlations
- **Electrochemistry**: Probe parasitic reactions, assess long-term stability
- **<u>AC Impedance</u>**: Quantify energy loss mechanisms

Next-Generation Membranes: Address major bottlenecks of existing membranes which lack the necessary conductivity, selectivity, and mechanical properties.

Ceramic Separators ORNL's Next-Generation Polymer Membranes $(e.g., Na^+ \beta"-Al_2O_3)$ 2018 **Gen I** Polymer/Ceramic Filler Composites ACS Energy Letters, 3(7), pp.1640-1647 **Gen II** Crosslinked Polymers Energy Storage Materials, 21, pp.85-96. Journal of The Electrochemical 20-30 µm Thickness >0.5mm Society, 167(7), p.070539. Brittle **Gen III** Polymer/Inorganic Scaffold Composites High manufacturing cost Energy Storage Materials, 35, pp.431-442. U.S. Patent Application 17/397,233, filed February 10, 2022 2022 **Gen IV** Single ion Conducting Polymers 5 Chem 2022, 8(6), 1-22; Macromolecules, 2022 (accepted) U.S. Patent Application 63/165,865, filed March 24, 2022 **ORNL Membrane Technology** Membrane for Non-Aqueous Flow Compatible with R2R processing (<50 μ m) Batterv High mechanical strength (GPa)

High Na⁺ conductivity (>0.1 mS/cm at 25°)

Catholyte and Device Prototypes: ORNL developed custom hardware for nonaqueous biphenyl/sodium polysulfide flow batteries which operate at 25°C.

Outer: Na-Biphenyl (Na⁺ß⁻) Anolyte

Full Cell: Na₂S₈ + 2 Na⁺ β ⁻ \leftrightarrow 2 Na₂S₄ + 2 β ⁰ E_{cell} = 2.1 V

Flow Cell Configuration

E. C. Self et al. J. Electrochem. Soc. 2021, 168, 080540.

18

FY21 Recap: Biphenyl/Na₂S_x flow cells containing ceramic exhibit outstanding cycling stability (several months continuous testing).

19