Pumped Hydroelectric Storage Systems

Presented by
Atri Bera
Sandia National Laboratories

DOE OE Peer Review 2022
Presentation # 505 10/12/2022
Current Status

• Pumped hydroelectric storage (PHS) — the only long duration energy storage in the market
• PHS — over 90% of the world’s grid-scale energy storage applications
• Current global installed capacity of PHS — 165 GW\(^1\)
• Capacity added in 2021 — 4.7 GW, mostly in China
• U.S. — 43 plants with total installed capacity of 22 GW\(^2\)

• Support thermal, nuclear
• Time-shift energy
• Economic growth

Environmental Impacts
Geographic Barriers
Capital intensive

Figure 1. Existing PHS facilities in the U.S\(^3\).
Figure 2. Rocky River pumped storage plant on the Housatonic river in Connecticut, operation started in 1929\(^4\)

Largest PHS facility in the world — Fengning Pumped Storage Power Station (3.6 GW) in China

3. Hydroelectric Pumped Storage for Enabling Variable Energy Resources within the Federal Columbia River Power System — Bonneville Power Administration
4. Rocky River Pumped Storage Hydraulic Plant | ASCE
Deployment

Fixed-speed PHS — Traditional

- Used in the U.S.
- Operates almost at a **fixed speed**
- Cannot perform frequency regulation

Adjustable-speed PHS — Flexible

- Used in Japan, China, Europe
- Uses **power electronic converters**
- Operates across greater generating and pumping power ranges
- Rapidly exchange energy with the bulk power system — fast frequency response services

FS can be upgraded to AS units

Yagisawa PHS plant (Japan) — 87 MW unit was converted from FS to AS in 1990

Figure 1. Ludington Pumped Storage facility in Michigan

Figure 2. Nant de Drance pumped storage facility in Switzerland

1. Pumped Storage Hydro Electricity | Consumers Energy
2. This giant ‘water battery’ under the Alps could be a game-changer for renewable energy in Europe | CNN
U.S. PHS — Pipeline (FERC)

- **40 GW** issued preliminary permits by FERC
- **36 GW** pending preliminary permits

- No new projects online since 2012 (Lake Hodges in San Diego, CA)
- No new project under construction
 - Eagle Mountain Hydroelectric Storage Project licensed since June 2014
 - Gordon Butte Pumped Storage Project licensed since December 2016

Challenges

Why aren’t there any new PHS projects in the U.S.?

- Cost — Large engineering projects, capital intensive, long construction duration
- Environmental impacts — Building dams, disruption of aquatic life, flooding
- Geographic barrier — Reservoirs separated by elevation, massive water requirement
- Regulatory issues — multiple licenses required, no investment tax credit
- Valuation — markets lack revenue streams for PHS
Recent Projects — Non-traditional Configurations

- Underground Reservoir PHS — Can use old mine shafts, depleted natural gas formations
- Can be installed in flat areas — eliminating typical geographical challenges
- Lower capital cost

Geomechanical Pumped Storage¹

- Being developed by Quidnet Energy and funded by the U.S. DOE
- 1 – 10 MW modules with 10+ hours of storage each

Gravity Power Plant²

- Being developed by Gravity Power
- Estimated Levelized Cost of Energy lowest among PHS, Hydrogen, Flow, and Li-ion³: $0.14/kWh for some long duration categories

¹. [Quidnet Energy – Technology](#)
². [Home - Gravity Power](#)
³. [Energy Storage Cost and Performance Database | PNNL](#)
Recent Projects — Non-traditional Configurations

- Aquifer pumped hydro (APH) — uses aquifers as lower reservoirs

 - California Energy Commission (CEC) funded project\(^1\)
 - Over 100,000 wells in Central Valley, CA
 - Existing wells retrofitted to generate power
 - Discharge duration depends on upper reservoir size
 - \textit{Goal}: 10 hour discharge at 200 kW
 - Backup hospitals, nursing homes, charging centers
 - Estimated installed cost: $380/kWh

1. Home (aquiferpumpedhydro.com)
Recent Projects — Non-traditional Configurations

- Ground-Level Integrated Diverse Energy Storage¹ (GLIDES)

- Modular design
- Combination of PHS and CAES technologies
- Stores energy by compression-expansion of air
- Cost depends on the material used: steel, carbon fiber vessel, pipe segments
- Round-trip efficiency (RTE) of prototypes low²
- Potential to reach RTE³ of 70 – 82%
- Estimated installed cost: $180 – 400/kWh

¹ Energy – High-efficiency storage | ORNL
² Experimental and analytical evaluation of a hydro-pneumatic compressed-air Ground-Level Integrated Diverse Energy Storage (GLIDES) system | Elsevier Enhanced Reader
³ Pub148157.pdf (ornl.gov)
Summary

• Traditional PHS — well-suited to provide long duration energy storage (LDES)

• Challenges: cost, geographic barriers, environmental concerns

• No projects under construction in the U.S.

• Non-traditional configurations: underground reservoir, aquifers, GLIDES

• Alternate configurations — currently in development, potential to serve as LDES
Funded by the U.S. Department of Energy, Office of Electricity, Energy Storage program. Dr. Imre Gyuk, Program Director.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

SANDIA NATIONAL LABORATORIES
• Babu Chalamala
• Andrew Benson

For questions about this presentation: abera@sandia.gov
BACKUP SLIDES
Working Principle

- PHS converts electrical energy to potential energy
- Two reservoirs connected with a head difference through a water conductor
- Two modes of operation: **pumping** and **generation**
 - **Pumping**: Motor/pump system moves water from lower to the upper reservoir
 - **Generation**: Generator/turbine system generates electricity from the stored water

Figure. Working principle of a PHS