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Long-duration/seasonal energy storage task

FY22

Journal 
publications 
& Milestone

• “A freeze-thaw molten salt battery for seasonal storage” Cell Rep. Phys. Sci 3, 
100821 (2022).

IP& Invention 
Reports • Non-Provisional IP application filed (Freeze-thaw battery)

Collaboration
• DOE Energy I-Corps Program (>75 interviews)

• Media & Industry Exposure (news releases and information inquiries)

• Project Team: 
Dr. Minyuan Miller Li, Dr. Aaron Hollas, Dr. Qian Huang, Dr. David Reed, 
Dr. Vince Sprenkle, and Dr. Guosheng Li
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Energy Production and Energy Storage Systems

PNNL-SA-178002
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Energy storage is a necessity for renewables

• Renewable capacity fluctuates 

• Fossil fuels stabilize demand response 

• Decarbonization requires an energy bank

 Likely a requirement for Net-Zero

 More efficient production/distribution

 Stability and emergency reserve

• Long-term capacity shift
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Capacity shift by seasonal excess

• Require reliable strategies
 Pumped hydro
 Bio-fuels
 Hydrogen

• Challenges 
 Infrastructure needs large investment
 Take time to adapt new technologies

• Cheap battery for long shifts?
 Find alternatives to lithium
 Ways to stop self-discharge

PNNL-SA-178002
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Molten Salt:  a page from history

• Thermal batteries provide reliable activation from dormancy

• Reliable performance from molten sodium batteries (e.g. ZEBRA)
 M-MCl2 surface conversion (M = Ni, Fe)
 Ceramic β”-alumina key to stability, but problematic

• Taking the best from both
 Using Al-Ni couple without a ceramic separator

Anode: Al + NaCl + 3Cl−  NaAlCl4 + 3e−

Cathode: NiCl2 + 2e−  Ni + 2Cl−
Overall: 2Al + 2NaCl + 3NiCl2  2NaAlCl4 + 3Ni, E = 0.910V (180 °C)
Specific capacity:  287.3 mAh/g

Li et al. Cell Reports Physical Science 2022, 3 (4), 100821. PNNL-SA-178002
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Electrode surface dictates performance

• Al-Ni couples have compatible chemistry

 Ni-NiCl2 surface conversion 

• Increase performance by increasing 

surface area

 Granulated metal powder Pristine
Ni Foil

NiCl2
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Improve cycling via reductive activation 

• Increase performance by increasing 

surface activity

 Remove oxide passivation 

• Thermal treatment of Ni under H2

 Reduction of oxides

 Create conductivity network
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Conditioned cathode improves activation

• Cathodes from Na-NiCl2 batteries 
can be transplanted 
 Existing stable Ni-NiCl2 interfaces 

NiCl2
Ni
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Cathode activation via sulfur doping

• Mixing sulfur powder directly into the 

electrolyte also removes oxidation

 A simple procedure 

 Fewer cycles to full capacity 0 5 10
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Freeze-then-thaw to shift capacity

• Battery activity or transport 
is temperature-controlled
 High capacity retention 

after freezing
 Otherwise, fast capacity 

fades in the molten state 
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Energy in a time capsule 

• Preliminary results show high retention 
close to half a year
 12 weeks: 92.3% (from charged-state 

granules)
 24 weeks: 85.7% (from 5% sulfur doping)

Week 

Sintered  
(Discharged State) 

Charged-State Granules 
5% Sulfur Doping 

(Discharged State) 
Capacity 
(mAh/g) 

Retention 
Capacity 
(mAh/g) 

Retention 
Capacity 
(mAh/g) 

Retention 

1 84.8 89.4% 120 > 99.5% 172 88.8% 

2 72.5 89.6% 120 95.5% 180 95.1% 

4 60.9 88.6% 121 > 99.5% 158 98.3% 

8   93.6 98.5% 145.3 92.5% 
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Using Fe as an alternative cathode material

• Compatible electrochemistry on paper
Cathode: FeCl2 + 2e−  Fe + 2Cl−
Overall: 2Al + 2NaCl + 3FeCl2  2NaAlCl4 + 3Fe, E = 0.67V (180 °C)
Specific Capacity:  291.8 mAh/g

• Challenges
 FeCl2 has higher solubility than NiCl2 in NaAlCl4 (less stable charged species)
 Formation of Na6FeCl8 intermediate

Adv. Energy Mater. 2020, 10, 1903472-1903481. PNNL-SA-178002
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Future Works and Acknowledgement 

• Future works
 Techno-economic analysis and commercial transition (DOE Energy I-Corps)
 Expand feasibility of Fe-FeCl2 chemistry 
 Explore systems with a phase transition between 60 and 80 °C

• Many thanks to my co-authors and collaborators
 J. Mark Weller, Evgueni Polikarpov, Nathan L. Canfied, Mark H. Engelhard, David M. 

Reed, Vincent L. Sprenkle, and Guosheng Li

• This work is funded by
 Department of Energy, Office of Electricity (70247)
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