

FY22 DOE OE Energy Storage Program Annual Peer Review Meeting

October 11th-13th, 2022

Session 5: Medium and Long Duration Energy Storage

#503 Freeze-Thaw Battery Technology

Minyuan Miller Li

Battery Chem. & Electrochem. Battery Materials & Systems Pacific Northwest National Laboratory

PNNL-SA-178002

PNNL is operated by Battelle for the U.S. Department of Energy

Long-duration/seasonal energy storage task

• Project Team:

Dr. Minyuan Miller Li, Dr. Aaron Hollas, Dr. Qian Huang, Dr. David Reed, Dr. Vince Sprenkle, and Dr. Guosheng Li

FY22	
Journal publications & Milestone	 "A freeze-thaw molten salt battery for seasonal storage" Cel 100821 (2022).
IP& Invention Reports	Non-Provisional IP application filed (Freeze-thaw battery)
Collaboration	 DOE Energy I-Corps Program (>75 interviews) Media & Industry Exposure (news releases and information

ll Rep. Phys. Sci 3, inquiries)

Energy Production and Energy Storage Systems

Energy storage is a necessity for renewables

- Renewable capacity fluctuates
- Fossil fuels stabilize demand response
- Decarbonization requires an energy bank
 - Likely a requirement for Net-Zero
 - More efficient production/distribution
 - Stability and emergency reserve
- Long-term capacity shift

Data source: U.S. Energy Information Administration

Capacity shift by seasonal excess

- Require reliable strategies
 - Pumped hydro
 - Bio-fuels
 - Hydrogen
- Challenges
 - Infrastructure needs large investment
 - Take time to adapt new technologies
- Cheap battery for long shifts?
 - Find alternatives to lithium
 - Ways to stop self-discharge

Molten Salt: a page from history

- Thermal batteries provide reliable activation from dormancy
- Reliable performance from molten sodium batteries (e.g. ZEBRA)
 - M-MCl₂ surface conversion (M = Ni, Fe)
 - Ceramic β"-alumina key to stability, but problematic
- Taking the best from both
 - Using AI-Ni couple without a ceramic separator

NaAlCl₄ + 3e⁻ Anode: $AI + NaCI + 3CI^{-}$ \rightarrow \rightarrow Cathode: NiCl₂ + $2e^-$ Ni + 2Cl⁻ \rightarrow $2NaAICI_{4} + 3Ni, E = 0.910V (180 °C)$ $2AI + 2NaCI + 3NiCl_2$ Overall: Specific capacity: 287.3 mAh/g

Electrode surface dictates performance

- Al-Ni couples have compatible chemistry
 - Ni-NiCl₂ surface conversion
- Increase performance by increasing surface area

PNNL-SA-178002

Na/Na⁺

Improve cycling via reductive activation

- Increase performance by increasing surface activity
 - Remove oxide passivation
- Thermal treatment of Ni under H₂
 - Reduction of oxides
 - Create conductivity network

8

Conditioned cathode improves activation

- Cathodes from Na-NiCl₂ batteries can be transplanted
 - Existing stable Ni-NiCl₂ interfaces

PNNL-SA-178002

Cathode activation via sulfur doping

- Mixing sulfur powder directly into the electrolyte also removes oxidation
 - A simple procedure
 - Fewer cycles to full capacity

Freeze-then-thaw to shift capacity

Active for Charge/Discharge Molten Electrolyte

Long-Term Storage

- Battery activity or transport is temperature-controlled
 - High capacity retention after freezing
 - Otherwise, fast capacity fades in the molten state

Energy in a time capsule

- Preliminary results show high retention close to half a year
 - 12 weeks: 92.3% (from charged-state granules)
 - 24 weeks: 85.7% (from 5% sulfur doping)

Week	Sintered (Discharged State)		Charged-State Granules		5% Sulfur Doping (Discharged State)	
	Capacity (mAh/g)	Retention	Capacity (mAh/g)	Retention	Capacity (mAh/g)	Retention
1	84.8	89.4%	120	> 99.5%	172	88.8%
2	72.5	89.6%	120	95.5%	180	95.1%
4	60.9	88.6%	121	> 99.5%	158	98.3%
8			93.6	98.5%	145.3	92.5%

Store and **Re-distribute**

Using Fe as an alternative cathode material

- Compatible electrochemistry on paper
 - FeCl₂ + 2e⁻ \rightarrow Fe + 2Cl⁻ Cathode: Overall: $2AI + 2NaCI + 3FeCI_2 \rightarrow 2NaAICI_4 + 3Fe, E = 0.67V (180 °C)$ Specific Capacity: 291.8 mAh/g
- Challenges
 - FeCl₂ has higher solubility than NiCl₂ in NaAlCl₄ (less stable charged species)
 - Formation of Na₆FeCl₈ intermediate

Adv. Energy Mater. 2020, 10, 1903472-1903481.

PNNL-SA-178002

Future Works and Acknowledgement

- Future works
 - Techno-economic analysis and commercial transition (DOE Energy I-Corps)
 - Expand feasibility of Fe-FeCl₂ chemistry
 - Explore systems with a phase transition between 60 and 80 °C
- Many thanks to my co-authors and collaborators
 - J. Mark Weller, Evgueni Polikarpov, Nathan L. Canfied, Mark H. Engelhard, David M. Reed, Vincent L. Sprenkle, and Guosheng Li
- This work is funded by
 - Department of Energy, Office of Electricity (70247)

Thank you

