

GRID MODELING OF LONG-DURATION ENERGY STORAGE FOR DEEP DECARBONIZATION

AUDUN BOTTERUD

Energy Systems and Infrastructure Analysis Division Argonne National Laboratory, abotterud@anl.gov

> Presentation ID 501 2022 DOE OE Energy Storage Peer Review Albuquerque, NM, October 12, 2022

A POWER SYSTEM IN TRANSITION

- Ambitious decarbonization goals in the United States and globally
- Rapid increase in variable renewable energy (wind and solar)
- Increasing interest in energy storage to enable more renewable energy on the grid
- Extensive research on improving energy storage technologies
 - Research goals focus on technology cost

Long Duration Storage Shot

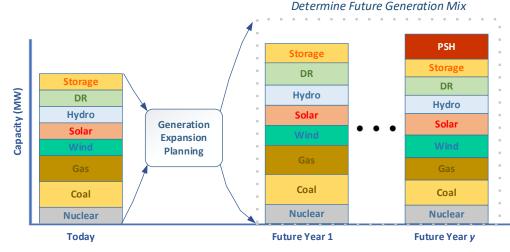
Clean power anytime, anywhere.

RESOURCES IN ZERO-CARBON ELECTRICITY SYSTEMS

	Zero Fuel Cost	Non-Zero Fuel Cost
Non-Zero Marginal Cost	<u>(Opportunity Cost)</u> Reservoir hydro Pumped storage hydro Batteries Other Storage Demand Response	(Variable Fuel Cost) Bioenergy Hydrogen Gas w/CCS Coal w/CCS
Zero Marginal Cost	<u>(No Opportunity Cost)</u> Wind Solar Run-of-river Hydro Geothermal	<u>(Fixed Fuel Cost)</u> Nuclear

Zhou, Botterud, Levin, ANL-22/31.

- What will planning, operations and market prices look like in a zero-carbon system?
- How will energy storage be operated? What is the role of long-duration energy storage?

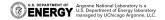

CAPACITY EXPANSION MODELING FOR ENERGY STORAGE AND DECARBONIZATION ANALYSIS

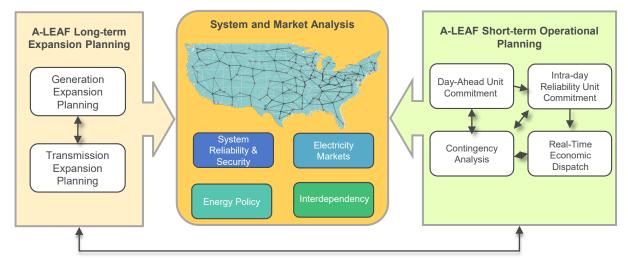
CAPACITY EXPANSION PLANNING

- For conducting long-term system studies
 - Generation capacity investments and retirements
 - The role of transmission and energy storage
 - Future load patters
- Minimize total expected supply cost
 - Determine the time, location, and size of new assets
 - Generation, transmission, storage, demand response
- Subject to
 - System reliability constraints
 - Technology constraints
 - Financial constraints
 - Environmental constraints

MODELING TOOLS USED IN THE RECENT DECARBONIZATION STUDIES

Classification of generation expansion planning (GEP) models


Category	Key Features	Modeling Options Increased robustness, increased complexity					
Planning	Planning Horizon	static	milestone-years	milestone-years rolling horizon		path optimization	
	Type of decisions	investment	+ retirement		+ transmission expansion		
Short-term	Temporal time resolution	hourly				sub-hourly	
System	Representative days	time slices	days	weeks	months	full	
Operations	Modeling detail	power balance	economic dispatch (ED)		unit commitment (UC)		
	Geographical Scope	regional				national	
Network	Spatial Resolution	single zone	multi zone	hybrid		nodal	
	Transmission constraints	none	inter-zona	l +selected intra-zo	onal	full	
	Power flow model	none	transport	DC		AC	


MODELING TOOLS USED IN THE RECENT DECARBONIZATION STUDIES

Comparison of modeling tools

Category	Key Features	Net Zero America (Princeton)	LA 100 (NREL)	openENTRANCE (Europe)	US Inter-Regional (MIT)
GEP Model		RIO	RPM	RPM GENESYS-MOD	
Planning	Planning Horizon	Milestone-years (2020-2050, every 5y)	Milestone-years (2020-2045, every 5y)	Milestone-years (2015-2050, every 5y)	Milestone year (2040)
	Type of decisions	Inv. + Ret. + <mark>Trans</mark> .	Inv. + Trans.	Inv. + Ret.	Inv. + Trans.
Short-term	Temporal time resolution	Hourly, 24hr per day	Hourly, 24hr per day	Hourly, time slices	Hourly
System	Representative days	41 days	5 days	4 days	Full
Operations	Modeling detail	ED	ED	ED	ED
	Geographical Scope	National (US)	WECC	EU	National (US)
Network	Spatial Resolution	Multi-zone (16 U.S. regions)	Hybrid (36 balancing areas, focus area)	Multi-zone (30 EU regions)	Multi-zone (11 planning areas)
	Transmission constraints	Inter-regional	Inter-regional	Inter-regional	Inter- & Intra-regional
	Power flow model		transport model	transport model	transport model

ARGONNE LOW-CARBON ELECTRICITY ANALYSIS FRAMEWORK (A-LEAF)

- Integrated *national-scale* power system simulation framework developed at ANL that has been applied to analyze different issues related to power system evolution.
- Suite of least-cost generation & transmission expansion, unit commitment, and economic dispatch models
- Determine system optimal generation portfolio and hourly or sub-hourly unit dispatch under a range of user-defined input assumptions for technology characteristics and system/market requirements

A-LEAF: KEY MODELING FEATURES

Policy / Market Design

- Carbon pricing
- Clean energy standards
- Production/investment tax credits
- Short-term markets for energy and ancillary services
- Capacity markets/payments, clean energy markets

Temporal Resolution

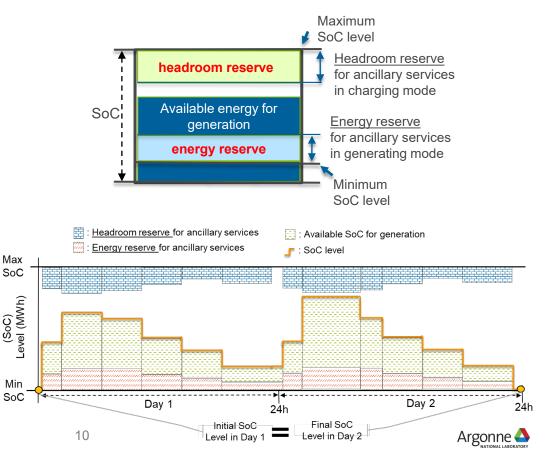
- Hourly or 5-minute dispatch
- Representative day groups
 - Using a backward scenario reduction algorithm
 - Multi-day optimization
 - Enforce inter-temporal constraints within day groups

Storage Representation

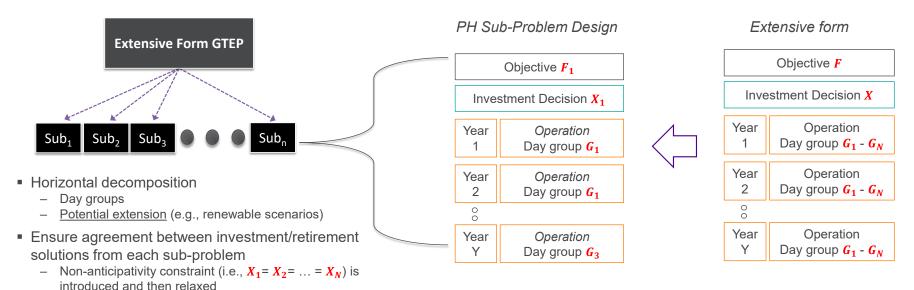
Spatial Resolution

- National-scale geographical scope
 - National dataset
 - Network data: NREL's ReEDS, EIA
 - Timeseries data: NREL's Cambium
- Configurable network representation
- Power flow / transmission expansion
 - Inter-tie lines
 - Transportation model with losses (0.01% per mile)

Material

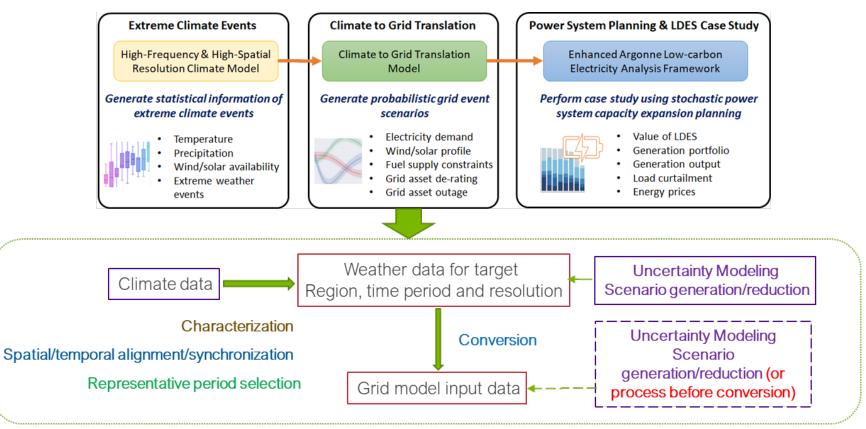

- Endogenous Investment Tracking of Energy Throughput **Grid Services** Decisions SOC Constraint Energy ·Limits annual use of Location, capacity, • Hourly storage duration •Reserves • Multiple consecutive Charging, discharging. Capacity Separate power and regulation deployment days energy costs
- Raw material consumption from assets in the power grid
- Ongoing collaboration with the GCMaT (Global critical materials agent-based model) team at ANL

A-LEAF: ENERGY STORAGE REPRESENTATION

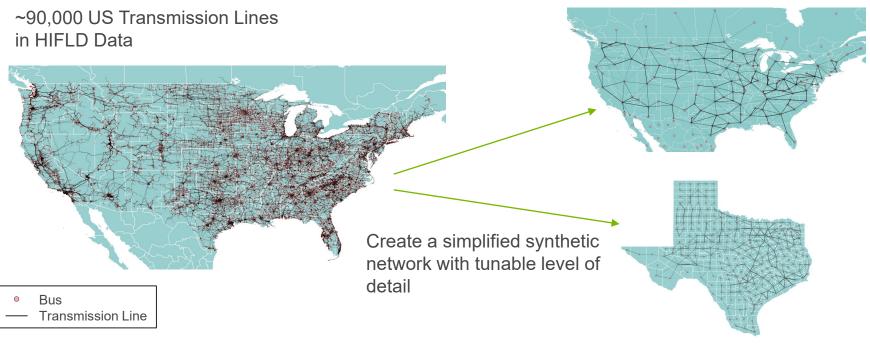

State of Charge

- Multiple energy storage technologies
 - Batteries, CAES, PSH
- Endogenous investment decisions
 - Location, capacity, duration
 - Separate power and energy costs
- Grid services
 - Energy, reserves, capacity
- Tracking of SOC level
 - Hourly
 - Multiple consecutive days
- Degradation
 - Energy throughput constraint
 - Limits annual use of storage (charging, discharging, reserve deployment)

A-LEAF: COMPUTATIONAL EFFICIENCY


Decomposition using Progressive Hedging (PH)

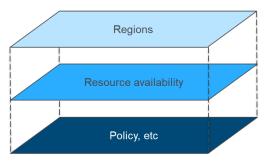
Parallel computing


Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

FROM CLIMATE SCIENCE TO CAPACITY EXPANSION

FLEXIBLE TRANSMISSION NETWORK REPRESENTATION

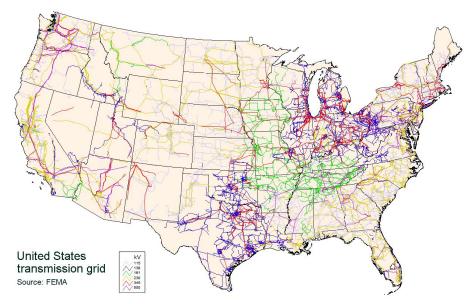
ILLUSTRATIVE EXAMPLES



14

NATIONAL DATASET

- US electric system representation
 - Multiple layers

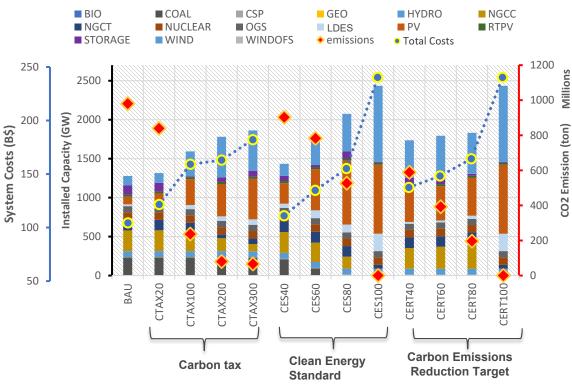


- Spatial resolution options (configurable)
 - 134 balancing authorities
 - 48 states

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

- 18 regional system operators
- 3 interconnections

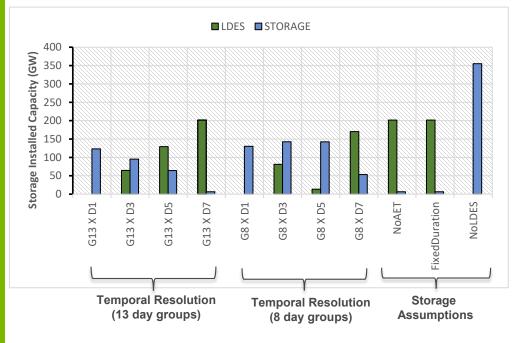
US electric system



http://www.geni.org/globalenergy/library/national_energy_grid/united-states-of-america/index.shtml

HOW DO POLICIES IMPACT FUTURE SYSTEM RESOURCE PORTFOLIOS AND EMISSION LEVELS?

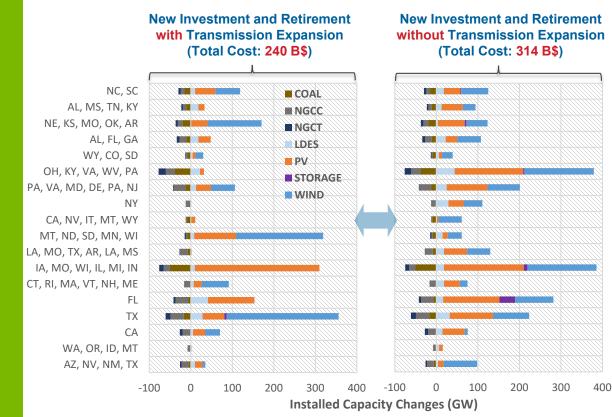
Generation Portfolio / System Cost/ Emissions


Policy Cases	Description				
CTAX 20-300	Carbon Tax (\$20-\$300/ton)				
CES 40-100	Clean energy standard (40-100%)				
CERT 40-100	Carbon emissions reduction target (40-100%)				

- Future low-carbon grid can be achieved through different policies and mechanisms
- Achieving a zero-carbon grid requires high investments in Wind, PV, and Storage at significant system costs
 - Higher capital costs, lower generation cost
- More investments in Storage (Li-ion battery parameters) and LDES (PSH parameters) with more Wind and PV resources

HOW DO MODELING ASSUMPTIONS IMPACT ENERGY STORAGE INVESTMENTS?

Energy Storage Investment (under CES 100%)


Cases	Description
Temporal Resolution	Varying the number of day groups and the number of days in each group
NoAET	Does not enforce the annual energy throughput cap
FixedDuration	Does not optimize storage duration
NoLDES	Dose not allow new investments of LDES (i.e., PSH)

- Temporal resolution and storage assumptions have substantial impacts on storage investment results
 - Optimizing across multiple consecutive days results in more LDES investments
- Substantial value of LDES
 - System needs higher Battery Storage investments to meet the clean energy target without LDES
- Relatively low impact of "NoAET" and "FixedDuration" cases due to the dominant LDES investments

U.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

HOW DOES TRANSMISSION EXPANSION IMPACT REGIONAL GENERATION PORTFOLIOS AND COSTS?

Common policy: CES 100%

- Transmission expansion assumptions
 - 765 kV, 1666 \$/MW-mile
- Higher Wind, PV, and Storage investments to meet the clean energy target without transmission expansion:
 - Wind: + 262 GW
 - PV: + 281 GW
 - Storage: + 49 GW
 - LDES: + 105 GW
- Coordinated transmission planning reduces cost of zero-carbon grid
 - 31% higher cost without transmission expansion

CONCLUSIONS AND NEXT STEPS

CONCLUSIONS AND NEXT STEPS

- Importance of electricity planning models to guide policy decisions, electricity market design, and technology development
 - Policy decisions have substantial impacts on zero-carbon technology pathways
 - Value of individual technologies depend on system portfolio
- Modeling details may have substantial impacts on expansion results
 - Temporal resolution of particular importance for energy storage
 - Trade-off between modeling detail and computational effort
 - Efforts on improved capacity expansion modeling with energy storage
- Next steps
 - Complete current scenario-based decarbonization analysis
 - Combine with related efforts on climate and e extreme weather effects, materials/manufacturing challenges, battery degradation and lifetime effects
 - Conduct more detailed study on the value of LDES under future climate scenarios (regional or national level)

SELECTED REFERENCES

- Z. Zhou, A. Botterud, T. Levin, "Price Formation in Zero-Carbon Electricity Markets: The Role of Hydropower," Report ANL 22/31, July 2022.
- T. Levin, A. Botterud, W. N. Mann, J. Kwon, and Z. Zhou, "Extreme weather and electricity markets: Key lessons from the February 2021 Texas crisis," *Joule*, vol. 6, no. 1, pp. 1–7, 2022.
- P. Brown, A. Botterud, "The value of interregional coordination and transmission in decarbonizing the US electricity system," Joule, Vol. 5, No. 1, pp. 115-134, 2021.
- Jafari M., Korpås M., Botterud A., "Power system decarbonization: Impacts of energy storage duration and interannual renewables variability," Renewable Energy, Vol. 156, pp. 1171-1185, 2020.
- T. Levin, J. Kwon, A. Botterud, "The long-term impacts of carbon and variable renewable energy policies on electricity markets," Energy Policy, Vol. 131, pp. 53-71, 2019.
- A. Botterud, T. Levin, and V. Koritarov, "Pumped Storage Hydropower: Benefits for Grid Reliability and Integration of Variable Renewable Energy," Technical Report ANL/DIS-14/10, Aug. 2014.

ACKNOWLEDGEMENTS

- Project team: Jonghwan Kwon, Neal Mann, Todd Levin, Zhi Zhou, Audun Botterud
- Argonne National Laboratory
- DOE OE Energy Storage Program

THANKS!

Project Team Jonghwan Kwon, Neal Mann, Todd Levin, Zhi Zhou, Audun Botterud

22

BACKUP SLIDES

KEY QUESTIONS

- What is the role of long-duration energy storage (LDES) in decarbonizing the electric power system (e.g. through integrating VRE)?
- How do climate change and changing weather patterns affect the value proposition for LDES?
- How can LDES address the challenge of maintaining cost efficiency and reliability with more frequent extreme weather events?

Commentary

Extreme weather and electricity markets: Key lessons from the February 2021 Texas crisis Todd Levin,^{1,*} Audun Botterud,^{1,2} W. Neal Mann,^{1,3}

Jonghwan Kwon,¹ and Zhi Zhou¹

Joule

Joule 6, 1–15, January 19, 2022 © 2021 Elsevier Inc.

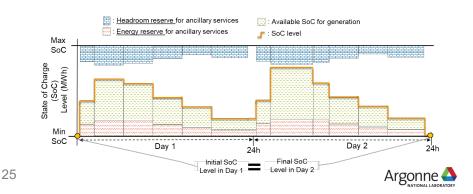
https://doi.org/10.1016/j.joule.2021.12.015

REPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

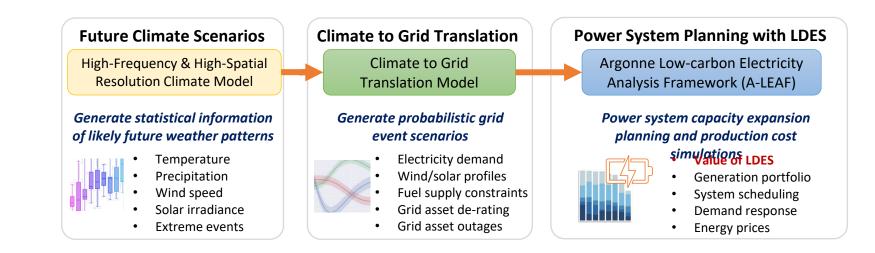
DECARBONIZATION AND ENERGY STORAGE ANALYSIS

Power System Planning and Operation Tools

- Multi-scale electric power systems modeling
 - Argonne Low-Carbon Electricity Analysis Framework (A-LEAF)
 - National, regional, and local electric power markets
 - Long-term generation and transmission planning
 - Short-term unit commitment and economic dispatch

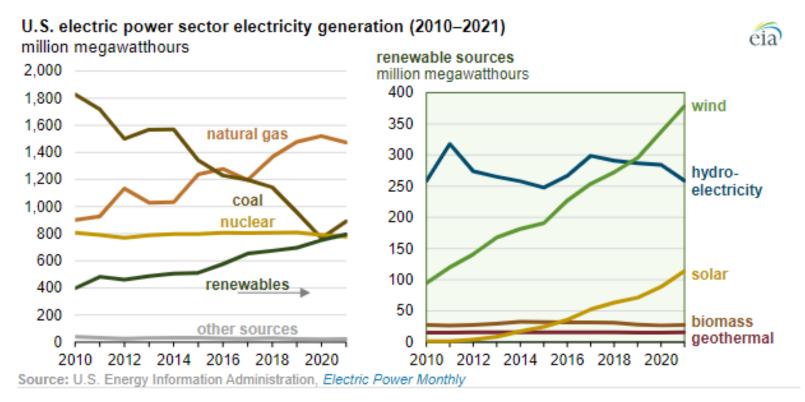

Suitable for large-scale energy storage analyses

- System level optimization model with chronological dispatch (energy storage is a price maker)
- Multi-day optimization steps (day groups)
- Custom, flexible model formulations including least-cost and game-theoretic objectives


Energy Storage Modeling

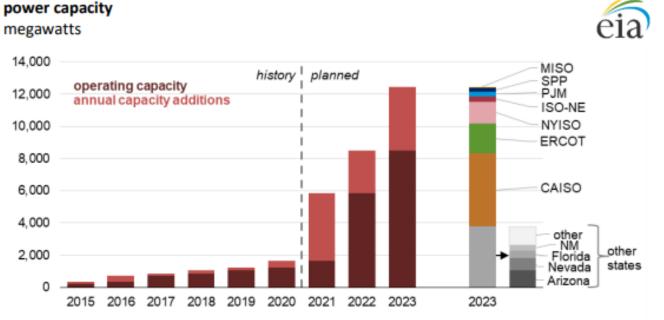
- Multiple energy storage technologies
 - E.g. various batteries, CAES, PSH
- Multiple grid services
 - Energy, reserves, capacity
- Tracking of SOC level
 - Hourly (or sub-hourly)
 - Multiple consecutive days
- Lifetime and capacity degradation
 - Calendar and cycle degradation
 - Limits on annual use of storage
- Manufacturing and materials constraints

PROPOSED RESEARCH



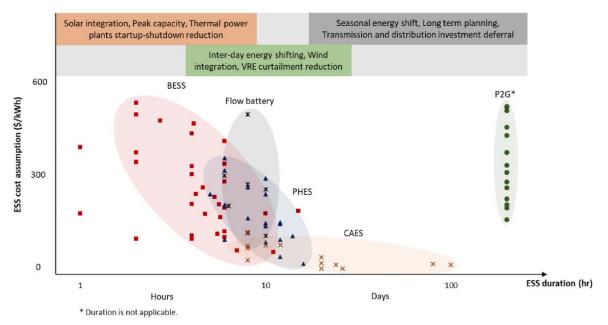
- Study: The value of LDES under future climate scenarios (national, regional, local)
- Deliverables: Enhanced model capabilities (future climate, degradation, LDES), comprehensive climate-LDES analysis for selected regions/locations, document results in report/journal paper
- **Team**: ANL Energy Systems Division, ANL Environmental Science Division, Form Energy

GROWTH IN RENEWABLE ELECTRICITY GENERATION


Ambitious U.S. decarbonization goals: Carbon-free electricity by 2035, net-zero economy by 2050

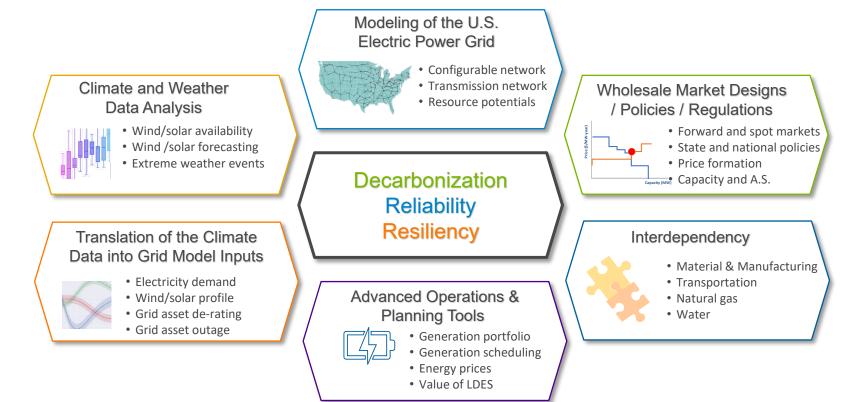
INCREASING INTEREST IN ENERGY STORAGE

Figure ES4. Large-scale battery storage cumulative power capacity, 2015–2023


Source: U.S. Energy Information Administration, Dec 2020 Form EIA-860M, Preliminary Monthly Electric Generator Inventory

ENERGY STORAGE TECHNOLOGIES AND APPLICATIONS

Technology		Efficiency (%)	Storage duration (hour)	Lifetime (year)	Cost (\$)	References
Electrochemical	Conventional battery	70–90	1–15	5–15	500-650/kW 175-200/kWh	[71–74]
	Flow battery	up to 85	4 and longer	15-20	700-2500/kWh	[44,75,76]
Mechanical	PHES	70–75	5–20	30-50	600-2000/kW	[7,77]
	CAES	85	up to 100	30	1000-2000/kW	[74,78,79]
Chemical	P2G	50-70 (one-way)	Not applicable	20	900-2200/kW	[80-82]



A-LEAF: KEY FEATURES

Category	Key Features	Modeling Options Increased robustness, increased complexit				
Diapping	Planning Horizon	static	milestone-years rolling hori		on	path optimization
Planning	Type of decisions	investment	+ retirement		+ transmission expansion	
Short-term	Temporal time resolution	hourly				sub-hourly
System	Representative days	time slices	days	weeks	months	full
Operations	Modeling detail	power balance	economic dispatch (ED)		unit commitment (UC)	
	Geographical Scope	regional				national
Network	Spatial Resolution	single zone	multi zone	hybrid		nodal
	Transmission constraints	none	inter-zonal	+selected intra-	zonal	full
	Power flow model	none	transport	DC		AC

ONGOING A-LEAF ENHANCEMENTS TO STUDY THE FUTURE OF THE U.S. ELECTRICITY SYSTEM

CONTACT INFORMATION

AUDUN BOTTERUD abotterud@anl.gov 630-234-8854

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

