Sodium based Solid Electrolytes and Na-Metal

David Mitlin et al.

Materials Science Program and Texas Materials Institute The University of Texas at Austin, Austin, Texas 78712-1591

COVER. Energy & Environmental Science, 2017, 10, 153.

Supported by Energy Storage Program, Office of Electricity (Grant Numbers: DE-AC05 00OR22725). CINT User proposal 2019AC0016 and IMS

Project Team

PI: David Mitlin UT-Austin

Jagjit Nanda SLAC National Lab Stanford University

John Watt LANL - CINT

Hongchang Hao UT-Austin

Yixian Wang UT-Austin

Ethan Self ORNL

Guang Yang ORNL

Thrust Area : Cost Competitive Materials and Systems for Enabling Long Duration Energy Storage (LDES)

- (i) Development and demonstration of high-performance electrochemical systems and components utilizing earth abundant materials
- (ii) Research on novel materials and system components to resolve key cost and performance challenges for electrochemical energy storage systems meeting demands for grid-scale energy storage

Potential Use Case – Long Duration Energy Storage (10-100 Hrs. at rated power)

Long Term Goals and Requirements

- Reduce the cost of energy storage systems by 90% by the decade for 10+ hours of storage as per the DOE's Long Duration Storage Earth Shot
- Levelized cost of electricity (LCOS) at 5 cents/KWhr for long duration storage.
- Energy round trip efficiency (RTE) > 50%
- Provide multiple value streams : Enable several applications with a single, long operating-life asset

Key Accomplishments

• New Na solid-state electrolytes (SSEs), $Na_{2.895}W_{0.3}Sb_{0.7}S_4$ and $Na_{2.7}W_{0.3}Sb_{0.7}S_4$. Both exhibit record low activation energy for Na⁺ diffusion and enhanced low (-20° C) and RT ionic conductivity; 0.09 eV, 24.2 mS/cm and 0.12 eV, 14.5 mS/cm. All-solid-state battery (ASSB) using $Na_{2.895}W_{0.3}Sb_{0.7}S_4$ and a sodium sulfide (Na₂S) cathode obtains reversible capacity of 400 mAh/g.

- New molybdenum carbide-based electrocatalyst for Sulfur-based SMBs. $MoC/Mo_2C@PCNT-S$ cathodes delivered exceptional charge/discharge performance, 987 mAh g⁻¹ at 1 A g⁻¹, 818 mAh g⁻¹ at 3 A g⁻¹, and 621 mAh g⁻¹ at 5 A g⁻¹. The SMBs retain 650 mAh g⁻¹ after 1000 cycles at 1.5 A g⁻¹, corresponding to 0.028% capacity decay per cycle.
- New multifunctional separator for potassium-metal batteries (KMBs) and (SMBs). Industrycompatible tape-cast AIF_3 coating on polypropylene (AIF3@PP) enhances cycling and rate capability. Symmetric cells are stable after 1,000 cycles (2000 hours) at 0.5 mA cm⁻² and 0.5 mAh cm⁻², with 0.042 V overpotential. Stability is maintained at 5.0 mA cm⁻² for 600 cycles (14,400 minutes), with 0.138 V overpotential. Post-cycled plated surface is dendrite-free, while stripped surface contains a smooth SEI.
- All three innovations may be low cost and ultimately industrially scalable.

New Materials for Low-Cost Sodium – Based Energy Storage

Source: US DoE Energy Storage Database, March 2019, https://www.energystorageexchange.org/

Based on Shell International Exploration & Production (US) Inc.; analysis presented by Shell 11 March 2019, ARPA-e DAYS

Sodium-ion batteries (SIBs) can dominate Long Duration applications. Far ahead of LIBs due to Lower Cost. Potassium and Zinc can be competitive too.

Metal batteries (MBs) with thin (< 20 micron) metal anode have up to 1.5X higher energy vs. state-of-the-art ion anode batteries (LIBs).

Heavily Tungsten Doped Sodium Thioantimonate Solid-State Electrolytes

Theory predicted high-ionic conductivity structure of $Na_{3-x}W_xSb_{1-x}S_4$ (shown $Na_{2.7}W_{0.3}Sb_{0.7}S_4$, with SbS_4^{3-} units purple, WS_4^{2-} units red and Na green) with synchrotron confirming the results.

Na_{2.7}W_{0.3}Sb_{0.7}S₄ High ionic conductivity down to -15° C, electrical insulator Theory: ionic conductivity is due to extra vacancies, weak Na-W bonds and strong Na-Na repulsions

Heavily Tungsten-Doped Sodium Thioantimonate Solid-State Electrolytes with Exceptionally Low Activation Energy for Ionic Diffusion. **Angewandte Chemie International Edition**. 2021 Dec 6;60(50):26158-66.

Heavily Tungsten Doped Sodium Thioantimonate Solid-State Electrolytes

 Table 1. Comparison of key properties of the known sulfide sodium solid electrolytes, showing that the heavily W-doped systems in this study exhibit the highest RT ionic conductivities and the lowest activation energies.

Solid state electrolyte	SSE preparation	Crystal system	σ at RT (mS/cm)	E. (eV)	Ref.
Na27W03Sb07S4	Cold pressed with 350 MPa	Orthorhombic	14.5	0.12	This work
$Na_{2.895}W_{0.3}Sb_{0.7}S_{4}$	Cold pressed with 350 MPa	Cubic	24.2	0.09	This work
Na ₃ PS ₄	Cold pressed and heated at 270 °C	Cubic	0.2	0.28	[52]
Na2.9375PS3.9375Cl0.0625	Spark plasma sintering, 100 MPa, 300 °C for 5 min	Tetragonal	1.14	0.25	[54]
Næ₃\$PS₃8Cl₀₂	Cold pressed, heated at 420 °C and then natural cooling to RT	Tetragonal	2	0.19	[42]

to -15° C (bulk 23 mS/cm total 5.5 mS/cm)

BUT The cyclability needs much improvement, requires stable lon Conducting Interphases (ICI) between metal or ion anode, SSE and S or Ceramic Cathode. Tuned Interlayers should help.

Heavily Tungsten-Doped Sodium Thioantimonate Solid-State Electrolytes with Exceptionally Low Activation Energy for Ionic Diffusion. **Angewandte Chemie International Edition**. 2021 Dec 6;60(50):26158-66.

MoC/Mo₂C Electrocatalyst Promotes Rapid Kinetics in Na-S Batteries

Schematic fabrication process and structure of MoC/Mo₂C@PCNT-S composite.

• New molybdenum carbidebased electrocatalyst for sulfurbased sodium metal batteries (SMBs/NMBs).

• MoC/Mo₂C is *in-situ* grown on nitrogen-doped carbon nanotubes in parallel with formation of extensive nanoporosity.

• Sulfur impregnation (50wt.% S) results in unique triphasic architecture termed MoC/Mo₂C@PCNT-S.

Molybdenum Carbide Electrocatalyst In Situ Embedded in Porous Nitrogen-Rich Carbon Nanotubes Promotes Rapid Kinetics in Sodium-Metal–Sulfur Batteries. **Advanced Materials**. 2022 Apr 21:2106572.

MoC/Mo₂C Electrocatalyst Promotes Rapid Kinetics in Na-S Batteries

Quasi-solid-state phase transformation to Na₂S is promoted in carbonate electrolyte, with *in-situ* Raman, XPS and optical analysis demonstrating minimal soluble polysulfides.
Among the most promising rate performance characteristics: 987 mAh g⁻¹ at 1 A g⁻¹, 818 mAh g⁻¹ at 3 A g⁻¹, and 621 mAh g⁻¹ at 5 A g⁻¹.

• Superior cycling stability, retaining 650 mAh g⁻¹ after 1000 cycles at 1.5 A g⁻¹, = 0.028% capacity decay per cycle.

• High mass loading cathodes (64wt.% S, 12.7 mg cm-2) have cycling stability, with anode degradation due to deep plating/stripping driving capacity decay.

All LIB and Beyond-Lithium Batteries Have "Issues"

Uncontrolled Oxygen Release from Cathode due to Overcharging, leading to self-sustaining fires.

Metal Dendrites (Li, Na, K, Zn), forming even in commercial LIBs at low T and at fast charge, leading to potentially catastrophic failures.

- Dendrites (sharp metal filaments) form and grow at the anode.
- Dendrites increase cell impedance, consuming electrolyte, and potentially shorting the two electrodes.
- Fires have been reported to be caused by such shorts.

Industrially Scalable Multifunctional Separator Allows Stable Cycling of Potassium Metal Anodes and of Potassium Metal Batteries

Multifunctional separator - polypropylene (PP) double coated with a reactive micro-scale AIF_3 layer: $AIF_3@PP$.

• AlF₃@PP promotes complete electrolyte wetting and enhances uptake, improves ion conductivity, and increases ion transference number.

• The ability of AlF₃ to enhance electrolyte wetting and battery performance is general, demonstrated with ester- and ether-based solvents, with K-, Na- or Li- salts, and with different commercial separators as substrates.

Multifunctional Separator Allows Stable Cycling of Potassium Metal Batteries

Role of $AlF_3@PP$ in stabilizing the plating and stripping reactions, preventing dendrite growth and dead metal. The $AlF_3@PP$ possesses improved electrolyte wetting and uptake, improved ion conductivity, and increased ion transference numbers. It also partially reacts to form an artificial SEI. Top and bottom, $AlF_3@PP$ versus baseline PP.

Multifunctional Separator Allows State-of-the-Art Cycling of Metal Anodes

Multifunctional Separator Allows Stable Cycling of Potassium Metal Anodes

Separator Allows State-of-the-Art Cycling of Potassium Metal Batteries (KIBs)

Full cells with KFe^{II}Fe^{III}(CN)₆ cathode using $AIF_3@PP$ vs. baseline PP separator. Comparison at the current density of 50 mA/g.

(a) cycling performance, (b) CE, and (c) chargingdischarging curve of 40th cycle. Comparison at the current density of 100 mA/g: (d) cycling performance, (e) CE, (f) comparison of whole charging-discharging profiles of AIF_3 @PP vs. baseline PP. Comparison of cycling (g) performance at a large current density of 500 mA/g. (h) Comparison of rate performance.

Ongoing and Future Work (FY23)

Stable sodium-based solid-state electrolytes (SSEs)

Benchmark the performance of various full SSE batteries with interlayers to enhance cycling stability.

- **Targets**: Achieve over 100 cycles at intermediate current density.
- Investigate the role of interlayer structure and chemistry on cycling performance
- Perform limited scaleup studies for target SSEs, focusing on producing gram-scale quantities

Economical Carbide electrocatalyzed sodium – sulfur batteries

- Develop economical high-performance carbide formulations that may be scaled
 - Target: Produce sulfur with carbide electrocatalysts architectures in gram quantities
- Investigate cycling of high-mass loading cathodes and high DOD metal anodes
- Inhibit Na dendrite growth and polysulfide dissolution

Functional separators for sodium ion, sodium sulfur, and sodium metal batteries

- **Targets**: Tunable solvent wetting and uptake, total thickness < 60 μ m, dendrite prevention.
- Investigate transport properties and cross-over using analytical methods
- Perform basic scaleup studies and technoeconimic analysis