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Program Objective and Approach3

We aim to develop enabling technologies for safe, low cost, molten sodium batteries

Anode
Na → Na+ + e-

E0
cell = 3.24 V

Cathode 
I3- + 2e-→ 3I-

Sodium batteries are attractive for resilient, reliable grid scale energy 
storage and are one of three key thrust areas in the OE Energy 
Storage materials portfolio.

• Utilize naturally abundant, energy-dense materials (Na, Al, Si)

• Minimize dendrite problems: molten sodium

• Prevent crossover due to NaSICON solid state separator

• Leverage inorganics to limit reactivity upon mechanical failure

• Enable applications for long duration energy storage



Why Low Temperature?4

Typical molten sodium batteries operate near 300 °C (Na-S and ZEBRA).  We are driving down battery 
operating temperature to near sodium’s melting point (98 °C) via innovative, low-temperature molten 
salt catholyte systems.  This change enables:

• Lower Cost
• Plastic seals: below 150 °C, rubber o-rings can be used (<$0.1/each) vs. glass or metal seals.
• Thinner and less expensive wiring materials
• Less insulation

• Reliability
• Lower temperatures → slower aging on all system components
• System level heat management not as extensive

• Compatibility with higher voltage (>3V) chemistries (e.g., Na-NaI versus Na-NiCl2)

However, battery chemistries from higher temperatures will not work at low temperatures; 
they need to be reengineered.

While low temperature (~100 °C) can improve cost and reliability, significant materials challenges arise.



Targeting Catholyte Materials to 
Control Costs
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• We are targeting a low cost, NaI-metal halide catholyte.

• Last year, we demonstrated it was possible to cycle a NaI-AlCl3
catholyte at 110 °C, using lessons learned previously from GaCl3 and 
AlBr3-based systems.1-4

• Sn-coated NaSICON enables stable anode performance

• Phase control/precipitation of solid species

• However, initial tests at 110 °C with low-cost NaI-AlCl3 were limited

• 5 mA cm-2

• 30% theoretical energy density (130 Wh L-1)

• unstable performance over long times

Cost of Binary Mixtures of NaI-MX3

GaCl3

AlBr3

AlCl3

25% depth of discharge
3.1-3.6 V cell voltage
85% energy efficiency
NaI = $1 kg-1

1. M.M. Gross, L.J. Small, A.S. Peretti, S.J. Percival, M. Rodriguez, E.D. Spoerke. J. Mater. Chem. A, 8 (2020) 17012. 3. R.Y. Lee, SJ. Percival, L.J. Small, J. Electrochem. Soc. 168 (2021) 126511.
2. 2. S.J. Percival, L.J. Small, E.D. Spoerke. J. Electrochem. Soc., 165 (2018) A3531-A3536. 4. M.M. Gross, et al, Cell Rep. Phys. Sci., 2 (2021) 100489.

Cycling with NaI-AlCl3 catholytes

35 mol%

45 mol%

50 mol%

NaI conc.



Targeting Catholyte Materials to 
Control Costs
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We are targeting a low cost, NaI-metal halide catholyte.

Goals this year (FY22): 

• Understand Catholyte-Current Collector Interfaces

• Understand NaSICON-Catholyte Interfaces

• Demonstrate Stable Cycling (over months)

• Increase Current Density 

• Increase Accessible Energy Density

1. M.M. Gross, L.J. Small, A.S. Peretti, S.J. Percival, M. Rodriguez, E.D. Spoerke. J. Mater. Chem. A, 8 (2020) 17012. 3. R.Y. Lee, SJ. Percival, L.J. Small, J. Electrochem. Soc. 168 (2021) 126511.
2. 2. S.J. Percival, L.J. Small, E.D. Spoerke. J. Electrochem. Soc., 165 (2018) A3531-A3536. 4. M.M. Gross, et al, Cell Rep. Phys. Sci., 2 (2021) 100489.

Cost of Binary Mixtures of NaI-MX3

GaCl3

AlBr3

AlCl3

25% depth of discharge
3.1-3.6 V cell voltage
85% energy efficiency
NaI = $1 kg-1

Cycling with NaI-AlCl3 catholytes

35 mol%

45 mol%

50 mol%

NaI conc.



Optimizing (Cathode) Current Collector Material7

Mo shows best discharge, while GC shows best charging performance. High available surface area 
overcomes small differences in electrocatalytic activity.

Disc Performance at -5 mA cm-2
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• Identified several candidate current collector materials – Mo, Ta,  W, glassy carbon (GC), and graphite felt (GFD)
• Evaluated as idealized discs and more realistic high surface area materials in a 3-electrode cell

• Ta passivated and was not reproducible
• Mo showed best discharge performance, while glassy carbon (GC) exhibited best charge performance.
• (For more details, please see Poster:  “Experimental and Modeling Studies of Metal Halide Catholyte and Cathode 

Materials to Enable Low-Temperature Molten Sodium Batteries”

best

worst
110 °C
7.5% SOC
45 mol% NaI-AlCl3

Rate Testing Meshes and Foams

Mo mesh
GC foam
GFD
GC foam + Mo mesh

A.M. Maraschky et al. Tailoring Electrode Materials for Iodide/Triiodide Redox in Low-Temperature Molten Sodium Batteries. (2022) In Preparation.



Isolated NaSICON-
catholyte interfacial 
resistance over time at 
open circuit

Na+ “Blockade” Identified at the NaSICON-Catholyte Interface

Observed Problem:  Steady increase in battery overpotentials observed 
during cycling.

Approach to Solution: Custom 3-electrode cell developed to isolate 
individual interfaces present in a sodium battery.

Discovery: Increase in impedance identified at the NaSICON-catholyte 
interface

8

0 50 100 150 200 250 300
2.5

3.0

3.5

4.0

Vo
lta

ge
 (V

)

Time (h)
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7.5-37.5% SOC
45 mol% NaI-AlCl3

A.M. Maraschky et al. Impact of Catholyte Lewis Acidity at the Molten Salt-NaSICON Interface in Low-Temperature Molten Sodium Batteries. (2022) J. Phys. Chem. C, In Review.

Extensive materials characterization of the NaSICON material and salt-exposed surface (XRD, SEM, EDS, XPS) 
revealed no significant changes, except for a decrease in Na+ content at the near surface (<10 nm).



“Blockade” Lifted by Controlling Salt Speciation9

A.M. Maraschky et al. Impact of Catholyte Lewis Acidity at the Molten Salt-NaSICON Interface in Low-Temperature Molten Sodium Batteries. (2022) J. Phys. Chem. C, In Review.

• Using Raman spectroscopy, Lewis acidic dimeric species, such as Al2Cl6I-, were identified in 45 mol% NaI-AlCl3.

• Lewis acidic dimeric species were not observed under Lewis basic conditions (>50 mol% NaI).

Raman Spectroscopy of NaI-AlCl3 Catholytes

Al2Cl6I-

35 mol% NaI
45 mol% NaI
55 mol% NaI



“Blockade” Lifted by Controlling Salt Speciation10

A.M. Maraschky et al. Impact of Catholyte Lewis Acidity at the Molten Salt-NaSICON Interface in Low-Temperature Molten Sodium Batteries. (2022) J. Phys. Chem. C, In Review.

Eliminate acidic dimeric 
salt species.

• Using Raman spectroscopy, Lewis acidic dimeric species, such as Al2Cl6I-, were identified in 45 mol% NaI-AlCl3.

• Lewis acidic dimeric species were not observed under Lewis basic conditions (>50 mol% NaI).

• Shifting to Lewis basic catholytes (>50mol% NaI) eliminated acidic dimeric species, stabilizing 
the NaSICON-catholyte interface and, in turn, battery performance.

Stabilize battery
Performance.

Raman Spectroscopy of NaI-AlCl3 Catholytes Battery Cycling Profiles

Al2Cl6I-

35 mol% NaI
45 mol% NaI
55 mol% NaI



Stable Cycling Performance Over 5 Months

Combining a Lewis basic molten salt catholyte with a high surface area graphite felt current collector yielded 
stable batteries cycling over >5 months at 110 °C.

• 3.1 V nominal voltage (50% SOC)

• 22% depth of discharge, 2.5 mA cm-2

• >93% energy efficiency

• polymer seals

11

Low cost, Lewis basic NaI-AlCl3 catholyte successfully cycled at 110 °C for >5 months.
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Higher Currents: Charging up to 50 mA cm-2 at 110 °C

• Cycling up to 25 mA cm-2 and charging up to 50 mA cm-2 are readily achieved.

• Cell impedance needs to be optimized to increase energy efficiency >80% at high current.
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Charging currents up to 50 mA cm-2 were achieved at 110 °C.
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Slightly Higher Temperature Enables Even Higher Currents

• Increasing temperature from 110 to 135 °C decreased cell impedance and increased rate capabilities.

• Further optimization needed to enable higher currents at >80% energy efficiency.

• In other tests, up to 47.5% theoretical capacity achieved at 50 mA cm-2 charging.

13

Charging currents of 100 mA cm-2 achieved at 135 °C. 
We are approaching performance levels of higher temperature, commercialized ZEBRA batteries!
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U. Kentucky: To 100 mA cm-2 and Beyond14

• As we push to 100 mA cm-2 and beyond, Na-induced NaSICON failure is of concern at low temperature (110 °C).

• We are working to understand, prevent, and non-destructively detect these failure mechanisms in symmetric 
Na-NaSICON-Na cells.

See poster by Ryan Hill for more details!

At high currents and low temperatures, interfacial engineering, such as our Sn coating, plays a key 
role in controlling Na-induced failure of NaSICON.

1-hour 100 mA cm-2

current pulses EIS 
between 
intervals

Post-mortem Imaging

Current 
Direction

NaSICON without Sn coating shows Na-induced failure at low temperature
100 mA cm-2 for 23 h



A Year of Progress: Science Enabling Performance15
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New 3-Electrode Interface Isolating Tester

We are targeting a low cost, NaI-metal halide catholyte.

Goals this year (FY22): 
• Understand Catholyte-Current Collector Interfaces

 Determined value of current collector composition and structure on battery 
performance. 

• Understand NaSICON-Catholyte Interfaces

 Developed new electrochemical tool to characterize interfaces in-situ. 

 Identified a Na+ “blockade” at the NaSICON-catholyte interface caused by 
salt species present only in Lewis-acidic catholytes.  

 Resolved this blockade through understanding of catholyte chemistry.

• Demonstrate Stable Cycling (over months)

 Enabled stable battery performance > 5 months at 110C. 

• Increase Current Density 

 Increased battery charging current densities 20X, from 5 to 100 mA cm-2

• Increase Accessible Energy Density

 Doubled accessible energy density from 130 to 254 Wh L-1



Path Forward: Science Enabling Performance16

Next year we will increase current density on discharge, targeting 
>80% energy efficiency at even higher energy densities.  We will 
achieve this by: 

• further improving ion-transport across the NaSICON-catholyte 
interface

• integrating cathode current collector materials to minimize 
overpotentials on discharge

• further understanding salt speciation under varying states of 
charge

In addition, we will work toward commercially-important 
materials optimization: 

• long-duration seals

• improved NaSICON performance/stability/manufacturability

• larger-format cells

0 1000 2000 3000
Time / h

2.5

3.0

3.5

C
el

l V
ol

ta
ge

 / 
V

110 °C
60 mol% NaI-AlCl3

>5 Months Stable Cycling

New 3-Electrode Interface Isolating Tester



Accomplishments – Publications and Patents17

Publications

• R. Hill, A.S. Peretti, L.J. Small, E.D. Spoerke, and Y.-T. Cheng.  Characterizing Mechanical and Microstructural Properties of Novel Montmorillonite-Rich 
Polyethylene Composites.  Journal of Materials Science, (2021). doi.org/10.1007/s10853-021-06562-1

• R.Y. Lee, S.J. Percival, and L.J. Small.  Electrochemical Modeling of Iodide Oxidation in Metal-Halide Molten Salts.  Journal of the Electrochemical Society 168 (2021) 
126511. Doi.org/10.1149/1945-7111/ac3e7a

• 2021 paper named one of most influential in Cell Reports Physical Science. M.M. Gross, S.J. Percival, R.Y. Lee, A.S. Peretti, E.D. Spoerke, and L.J. Small.  A High Voltage, 
Low Temperature Molten Sodium Battery Enabled by Metal Halide Catholyte Chemistry. Cell Reports Physical Science 2 (2021) 100489. 
Doi.org/10.1016/j.xcrp.2021.100489

• A.M. Maraschky, M.L. Meyerson, S.J. Percival, S. Meserole, J.N. Williard, A.S. Peretti, M.M. Gross, L.J. Small, E.D. Spoerke, Impact of Catholyte Lewis Acidity at the 
Molten Salt-NaSICON Interface in Low-Temperature Molten Sodium Batteries. (2022) J. Phys. Chem. C.  (Invited submission to Esther Sans Takeuchi Festschrift) In 
Review.

• A.M. Maraschky, M.L. Meyerson, S.J. Percival, A.S. Peretti, E.D. Spoerke, L.J. Small.  Tailoring Electrode Materials for Iodide/Triiodide Redox in Low-Temperature 
Molten Sodium Batteries. (2022) In Preparation.

Patents

• A.M. Maraschky,  M.L. Meyerson, S.J. Percival, E.D. Spoerke, L.J. Small.  Bi-material Electrode for Molten Sodium Battery.  Sandia Technical Advance.
• E.D. Spoerke, S.J. Percival, and L.J. Small. Molten Inorganic Electrolytes for Low Temperature Sodium Batteries.  US Patent No. 11,258,096 B2. Feb 22, 2022.

Awards and Symposium Chairs
• L.J. Small was recognized for “Excellence in Review” by the American Chemical Society’s journal Industrial and Engineering Chemistry (I&EC).
• L.J. Small was named an “Outstanding Reviewer” for the 5th year in a row by the Royal Society of Chemistry’s journal RSC Advances.
• S.J. Percival was nominated for the Sandia Postdoc Development Distinguished Mentorship Award.
• E.D.  Spoerke Co-Chair with Dr. Imre Gyuk: “Energy Storage Symposium” at TechConnect World Innovation Conference & Expo 2021, Washington, D.C., 

October 18-21, 2021.  
• E.D.  Spoerke Co-Chair with Dr. Imre Gyuk: “Energy Storage Symposium” at TechConnect World Innovation Conference & Expo 2022, Washington, D.C., June 

13-15, 2022.  
• E.D. Spoerke Co-organizer for “Large Scale Energy Storage” Symposium. 241st Electrochemical Society Meeting, Vancouver, BC, Canada. May 29-June 2, 2022
• E.D. Spoerke Co-organizer for “Ion-Conducting Ceramics” Symposium. Electronic Materials and Applications 2022, Orlando, FL. January 19-21, 2022.



Accomplishments – Presentations18

Invited Presentations
• E.D. Spoerke, M.M. Gross, A.S. Peretti, S.J. Percival, R. Lee, J. Lamb, M. Rodriguez, L.J. Small. “Developing ‘Really Cool’ Low Temperature Molten Sodium Batteries.” TechConnect World 

Innovation Conference & Expo. Washington, D.C., Oct. 18-20, 2021.
• E.D. Spoerke. “Long-Duration Energy Storage: Emerging Technologies and Applications.” 13th Annual IEEE Energy Conversion Congress & Expo. Virtual Meeting. Oct. 10-14, 2021.
• E.D. Spoerke, M.M. Gross, A.S. Peretti, S.J. Percival, R. Lee, J. Lamb, M. Rodriguez, L.J. Small. “Materials Chemistry in Battery Energy Storage: A Key to Unlocking Our “Potential” Energy 

Future.” Fall Chemical & Materials Engineering Department Seminar at University of Kentucky, Sept. 22, 2021. 
• M. M. Gross, S. J. Percival, R.Y. Lee, A.S. Peretti, M.A. Rodriguez, J. Lamb, E.D. Spoerke, and L.J. Small. “Development of a High-Voltage, Low Temperature Molten Sodium Battery.” Technical 

Presentation to Ambri Corp. Sept 20, 2021.
• E.D. Spoerke, M.M. Gross, A.S. Peretti, S.J. Percival, R. Lee, J. Lamb, M. Rodriguez, L.J. Small. “Advancing the Promise of Low-Temperature Molten Sodium Batteries.” 5th International 

Symposium on Materials for Energy Storage and Conversion. Virtual. Sept 15, 2021.
• E.D. Spoerke. Materials Chemistry in Large-Scale Energy Storage: A Key to Unlocking our “Potential” Energy Future.  Spring 2022 Department of Materials Science and Engineering Colloquium 

(Virtual) at The Ohio State University.  January 28, 2022.
• A.M. Maraschky, R.Y. Lee, M.L. Meyerson, M.M. Gross, S.J. Percival, A.S. Peretti, E.D. Spoerke, L.J. Small. “Low-Temperature Molten Sodium Batteries for Large-Scale Storage: Fundamental 

Studies of Metal Halide Catholyte and Cathode Materials.” 241st Electrochemical Society Meeting, Vancouver, CA, 5/29/2022.
• A.M. Maraschky, M.L. Meyerson, S.J. Percival, D. Lowry, A.M. Peretti, M.M. Gross, E.D. Spoerke, L.J. Small. “Impact of Current Collector Material and Catholyte Lewis Acidity in Low-

Temperature Molten Sodium Batteries.” Presentation to Akolkar Group at Case Western Reserve University, Cleveland, OH, 8/19/2022.

Contributed Presentations
• L.J. Small, R.Y. Lee, S.J. Percival, M.M. Gross, A.S. Peretti, M.L. Meyerson, E.D. Spoerke. “Understanding Electrochemical Processes in Molten Salt Catholytes for Low-Temperature Molten 

Sodium Batteries.” Fall 2021 Materials Research Society Meeting, Boston, MA/Virtual. December, 2021.
• E.D. Spoerke M.M. Gross, M. Meyerson, L.J. Small, S.J. Percival. “Low Temperature Molten Sodium Batteries for Long-Duration Energy Storage.” Fall 2021 Materials Research Society Meeting, 

Boston, MA/Virtual. December, 2021.
• M. M. Gross, S. J. Percival, R.Y. Lee, A.S. Peretti, E.D. Spoerke, and L.J. Small. “Lower Temperature, Lower Cost Molten Sodium Batteries.” Fall 2021 Materials Research Society Meeting, 

Boston, MA/Virtual. December, 2021.
• R. Hill, M.M. Gross, A.S. Peretti, L.J. Small, E.D. Spoerke, Y.T. Cheng. “Structural and Mechanical Characterization of NASICON Solid Electrolytes Upon Cycling in Molten Sodium.” Fall 2021 

Materials Research Society Meeting, Boston, MA/Virtual. December, 2021.
• S.J. Percival, R.Y. Lee, L.J. Small. ”Electrochemical Simulations of Molten Salt Catholytes Reveal Speciation can Surpass Kinetics for Iodide Oxidation Rates.” ACS 2022 Spring Meeting, San 

Diego, CA and Virtual March 2022.
• R. Hill, J. Hempel, A.S. Peretti, L.J. Small, E.D. Spoerke, Y.-T. Cheng.  “Electro-chemo-mechanical Behavior of NaSICON Solid Electrolytes in Molten Sodium Batteries.  University of Kentucky 

2022 Materials and Chemical Engineering Symposium in Lexington, KY.  May 5, 2022.
• A.M. Maraschky, R.Y. Lee, S.J. Percival, M.M. Gross, A.S. Peretti, E.D. Spoerke, L.J. Small.  “Experimental and Modeling Studies of Metal Halide Catholyte and Cathode Materials to Enable Low-

Temperature Molten Sodium Batteries.” 2022 Materials Research Society Spring Meeting, Honolulu, HI, May 2022.
• E.D. Spoerke, M.L. Meyerson, A.M. Maraschky, A.S. Peretti, S.J. Percival, M.M. Gross, R.Y. Lee, J. Lamb, L.J. Small, “Molten Salt-Based Batteries for Safe, Reliable, Long-Duration Energy Storage.” 

2022 Materials Research Society Spring Meeting, Honolulu, HI, May 2022.
• R. Hill, Y-T. Cheng, J. Hempel, E.D. Spoerke, L.J. Small, M.M. Gross, A.S. Peretti, “Characterization of NaSICON Solid Electrolyte Exposed to Thermal and Electrochemical Cycling in Molten 

Sodium Environment.” 2022 Materials Research Society Spring Meeting, Honolulu, HI, May 2022
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Mo shows best discharge, while GC shows best charging performance. 

Disc Performance at -5 mA cm-2
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• Identified several candidate current collector materials – Mo, Ta,  W, glassy carbon (GC), and graphite felt (GFD)

• Mo showed best discharge performance, while glassy carbon (GC) exhibited best charge performance.

• (For more details, please see Poster:  “Experimental and Modeling Studies of Metal Halide Catholyte and Cathode 
Materials to Enable Low-Temperature Molten Sodium Batteries”
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A.M. Maraschky et al. Tailoring Electrode Materials for Iodide/Triiodide Redox in Low-Temperature Molten Sodium Batteries. (2022) In Preparation.
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