

Energy Storage Safety and Reliability

Thermal Runaway Database Development

- Hsin Wang¹, Lianshan Lin¹, Srikath Allu¹

Lorraine Torres-Castro², Yuliya Preger², Valerio De Angelis²

Development of Thermally Sensitive Paint

Hsin Wang¹, Beth Armstrong¹, Chanaka Gamalalalage¹ Michael Starke¹

¹Oak Ridge National Laboratory

²Sandia National Laboratories

Team Members - ORNL


Hsin Wang

Material Science and Technology Division
Material Scientist, Testing

Beth Armstrong

MSTD
Ceramist, Paint Development

Lianshan Lin

MSTD
Mechanical, Database

Chanaka Gamaralalage

MSTD
Chemist, Paint Development

Srikanth Allu

Computational Science & Engineering
Modeling & Simulation

Jianlin Li

Electrification & Energy Infrastructure
Battery Research

Michael Starke

Electrification & Energy Infrastructure
Battery Management System

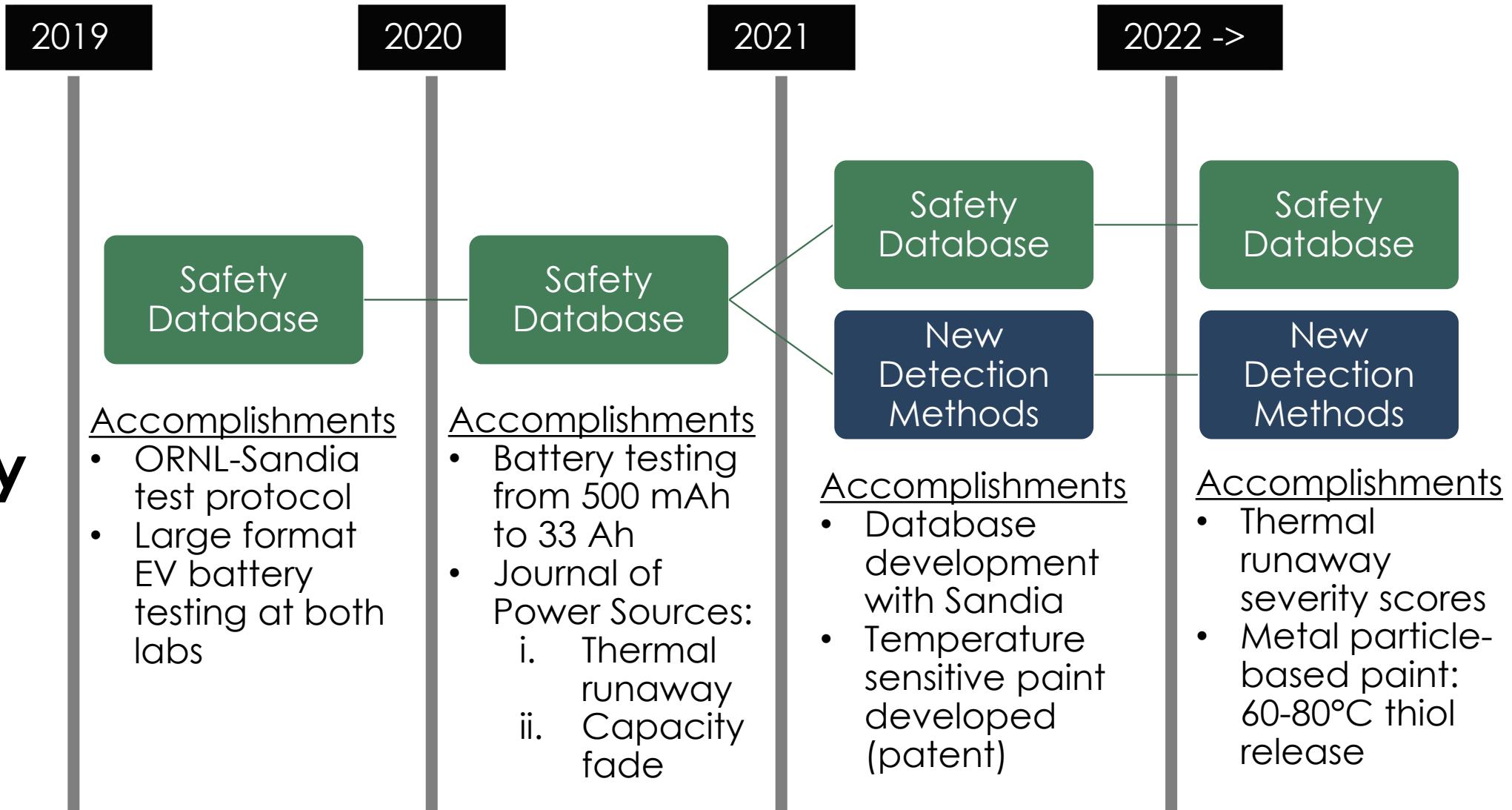
Isabella Fishman

Northwestern University
DOE SULI Student, Battery Testing

Collaboration: Sandia Laboratories and Others

Sandia Laboratories: Protocols development, parallel testing database development

Collaborators: Loraine Torres-Castro, Josh Lamb, Yuliya Preger and Valerio De Angelis


University of Tennessee: Accelerating Rate Calorimetry (ARC), thermal runaway reactions and propagation

Collaborator: Professor Peng Zhang @ UT Space Institute Tullahoma TN

LG&E KU: Technology Research and Analysis Department, Kentucky's first and largest utility-scale energy storage system. On-site lithium-ion battery temperature monitoring directly supports the E.W. Brown Solar facility

Project History and Progression

Energy Safety Reliability

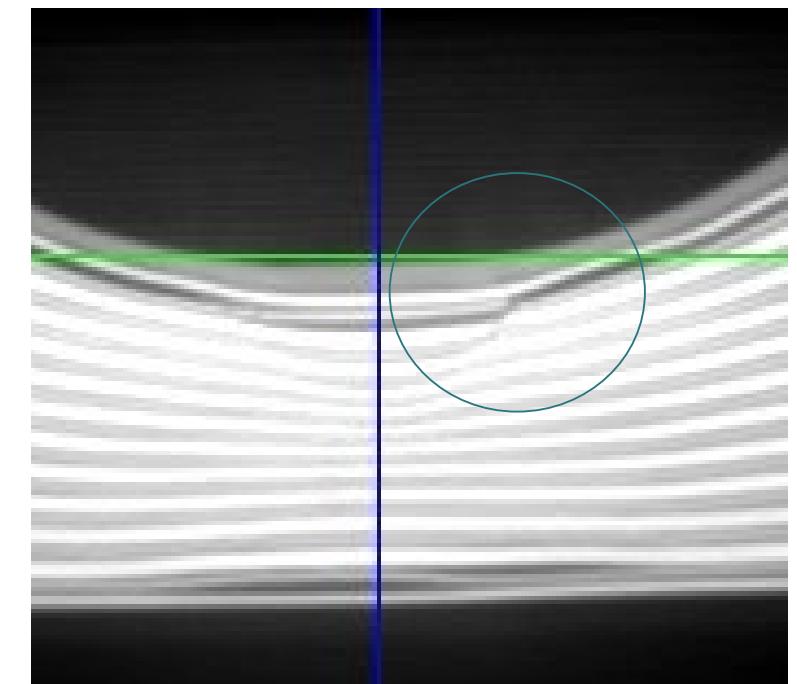
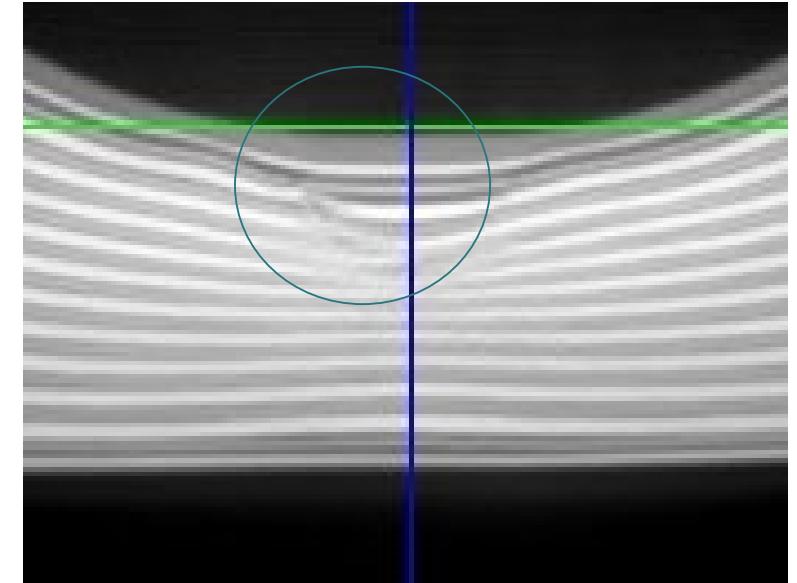
Safety Database

Thermal Runaway Severity

Project Goal: Develop a thermal runaway database to rank/predict hazard severity

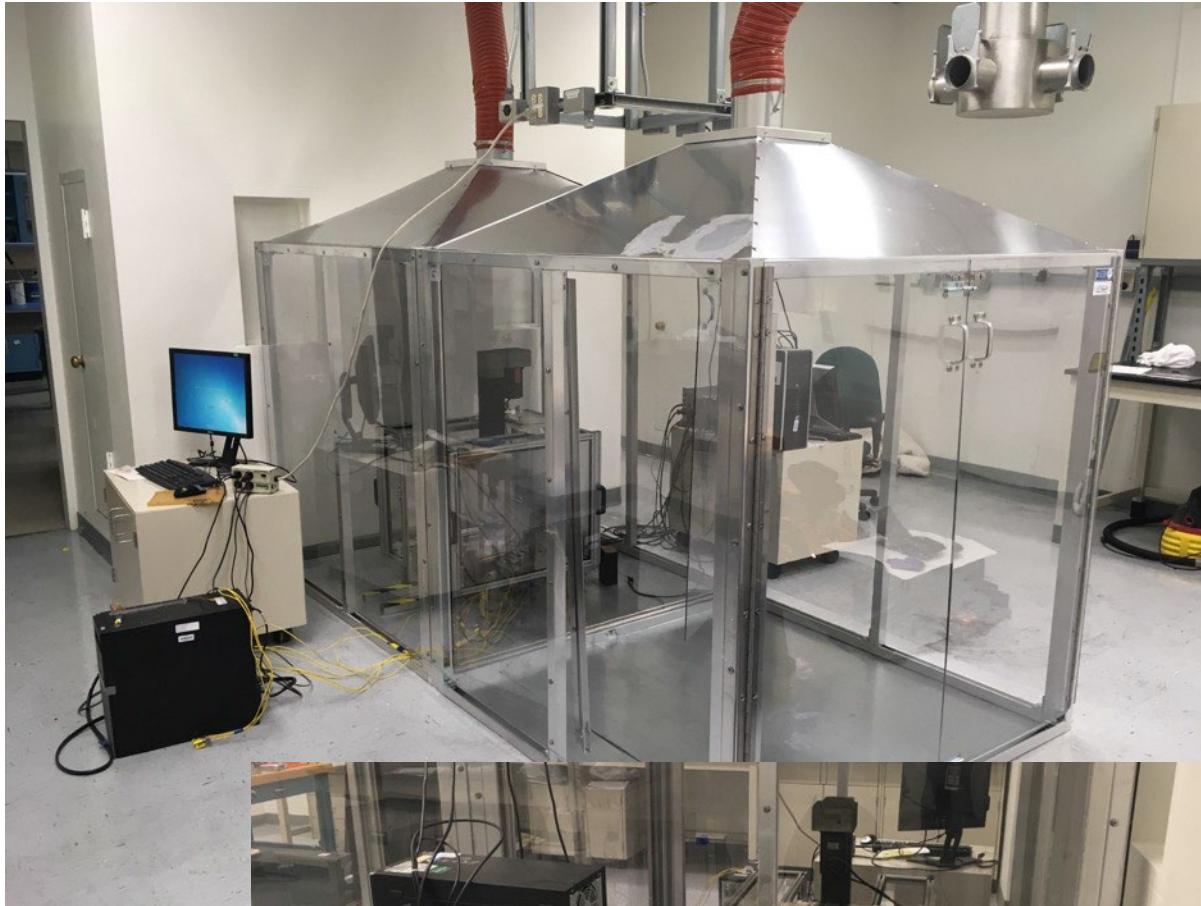
Mechanical Induced Short Circuit

- **Mechanically induced internal short circuit**



- Nail penetration
 - **Single-side indentation**
 - Pinch test (two indenters)
 - Pinch-torsion, indent-torsion

- **Real-time Monitoring:**

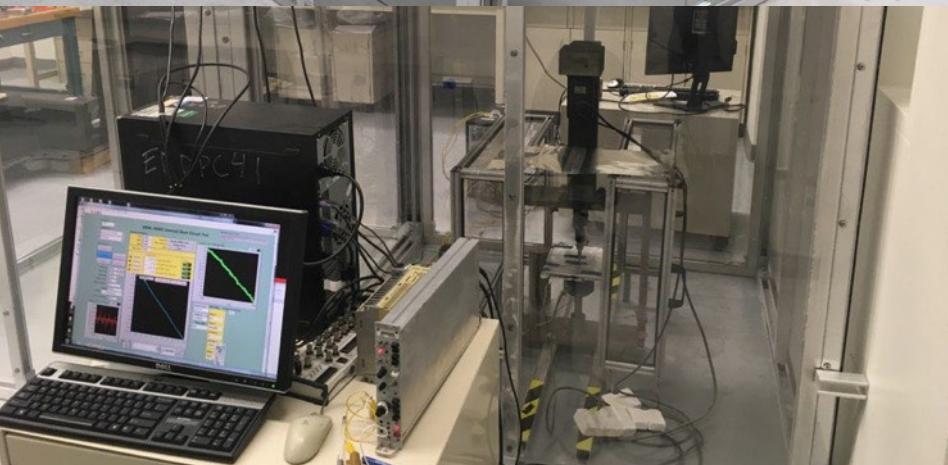
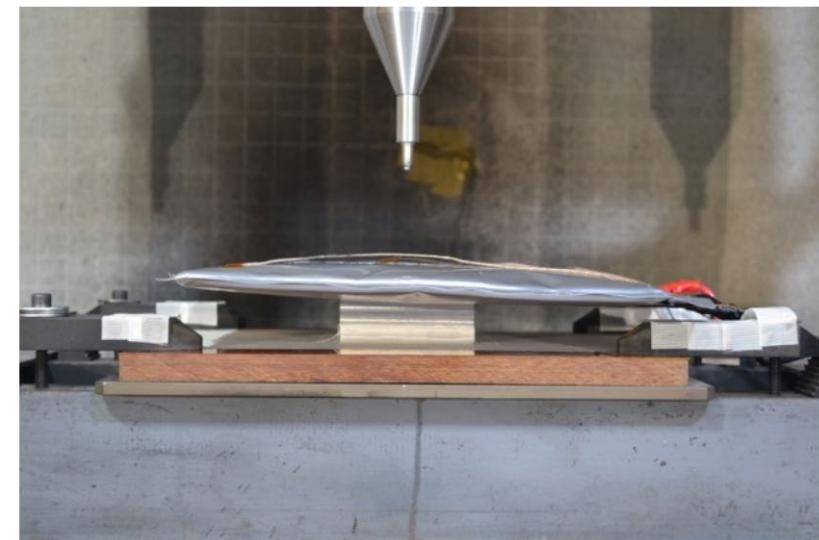
- Load, displacement, V_{OC} and temperature

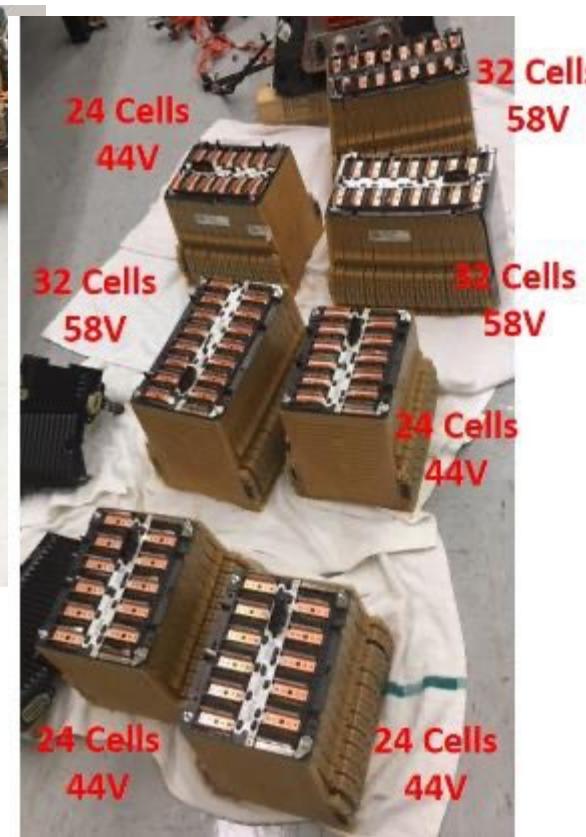

- **Post-mortem Examination:**

- X-ray computed tomography (XCT)
 - Open cell examination



ORNL and Sandia Testing Facility: Large Format Cells



Nissan Leaf Cell in Sandia Test Chamber


2014-2022
DOE
VTO/NHTSA
DOE OE

Nissan Leaf Cell After Indentation

Extracting Li-ion Cells from Electrical Vehicles at ORNL (Chevy VOLT, Nissan Leaf and FORD Focus EV)

Li-ion Cells: Disassembled EVs and Commercial Sources

Large-format Prismatic Cells Tested at ORNL and Sandia

2017 Chevy VOLT (26 Ah)

2013 Nissan Leaf (33 Ah)

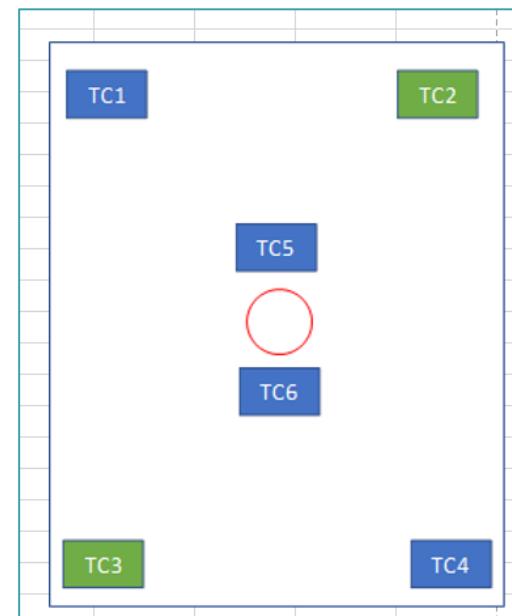
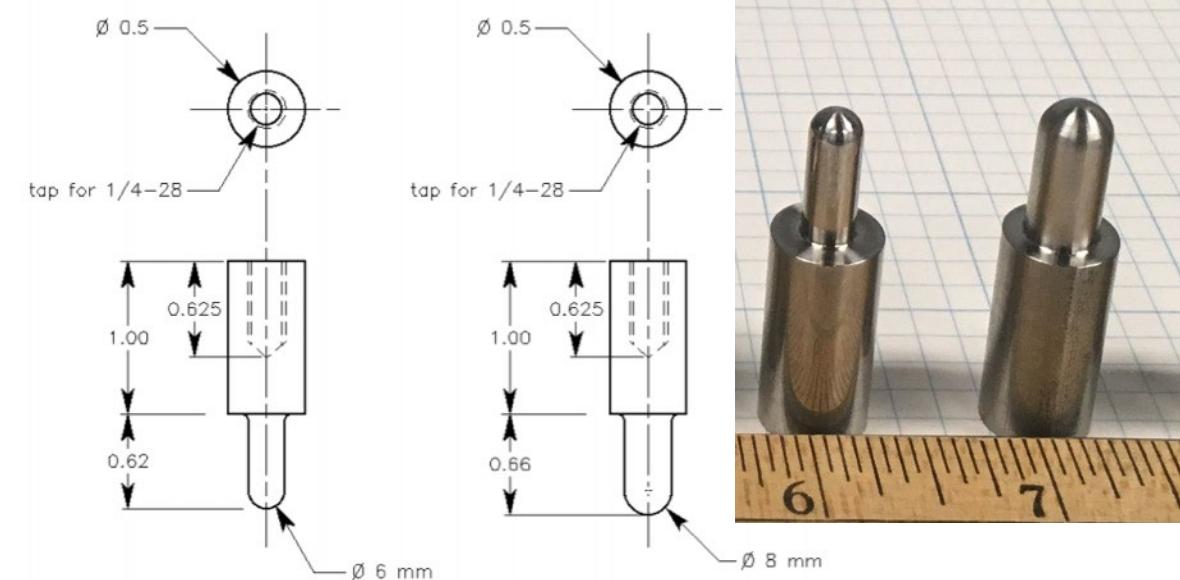
Commercial NMC Cells (10 Ah)

Commercial LFP Cells (10 Ah)

10 NMC Cells (5 SOC x 2) after Testing
Left to right: 0% SOC > 100% SOC

10 LFP Cells (5 SOC x 2) after Testing
Left to right: 0% SOC > 100% SOC

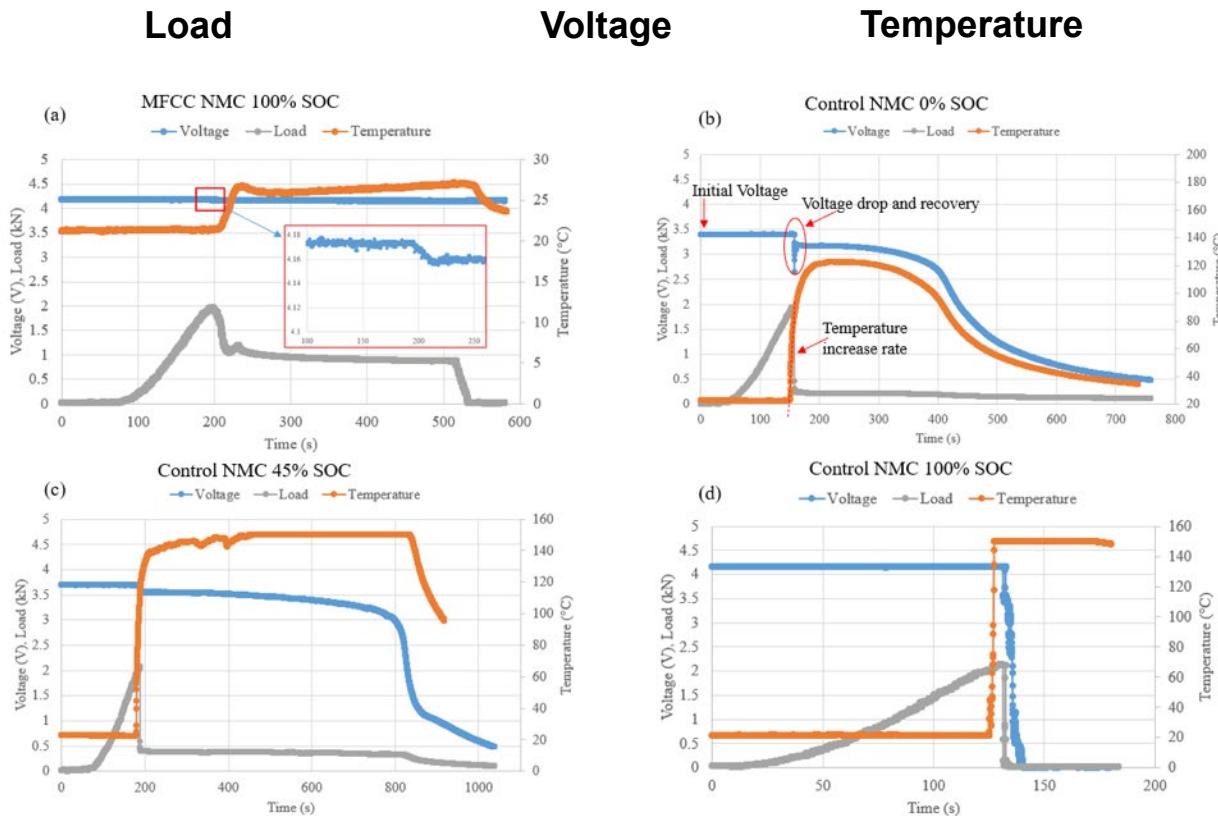
Updated ORNL-Sandia Test Procedures and Standards



Internal Short-circuit Induced Thermal Runaway

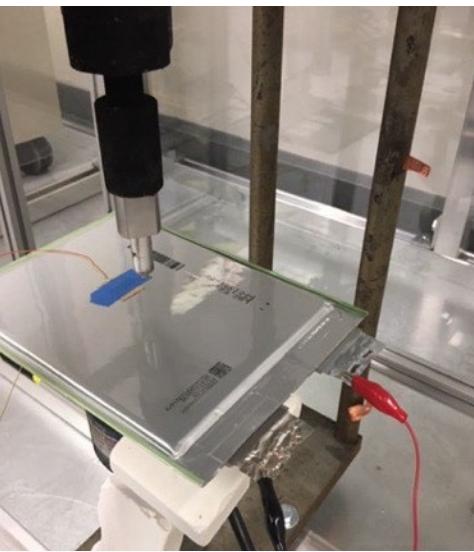
- **Mechanical abuse (indentation)**

Updated Test Protocols:

- Cycle cell 3-5 times at C/2 between 3.0-4.2V to determine SOC and discharge to test SOC
- Hydraulic or servo-motor driven load frame
- 6 mm punch (most sensitive, small contact)
- 0.05 inch per minute compressive loading
- 25 mV V_{oc} drop
- Hold the punch after short circuit
- Temperature measurement:
 - 5 mm from the indenter
 - At cell corners when possible


Thermocouple Locations on Large-format Cells

Punches for Battery Testing	
ELC-2019.03.001	Scale: 1.5:1
Dimensions: inches (unless otherwise specified)	Material: stainless steel
Make four (4) pieces of each	
Edgar Lara-Curzio	ORNL
March 2019	


Select the most sensitive test to allow safety risk ranking

Thermal Runaway Risks for Li-ion Batteries (ORNL-Sandia)

Small Cells Testing at ORNL:
 SOC: 20%, 40%, 60%, 80%, 100%
 Capacity at 500, 1500, 200 mAh
 Number of Cells: 4 cells/condition

ESS Batteries at Various SOCs:
 Sandia: 30%, 50%, 75%, 100%
 ORNL: 20%, 40%, 60%, 80%, 100%

Test Data and Cell Information:

- Cell Capacity
- Loading curve: before & after short
- Cell Voltage: drop and response
- Cell Temperature vs. Time
- Open cell voltage
- Anode thickness
- Cathode thickness
- Separator thickness
- C/2 Charge curve
- 1C discharge curve

Cell Name	Chemistry	Capacity (mAh)	Sample Number
Commercial LCO	LiCoO_2	500	15
Commercial LCO	LiCoO_2	1500	10
Commercial LCO	LiCoO_2	2000	15
Commercial LCO	LiCoO_2	6400	13
Control NMC	LiNiMnCoO_2 (811)	5200	12
Metallized Film Current Collector (MFCC) NMC	LiNiMnCoO_2 (811)	5200	10
Commercial LFP	LiFePO_4	10000	16
Commercial NMC	LiNiMnCoO_2	10000	14

Acronyms for cathode chemistry: lithium cobalt oxide (LCO); lithium nickel manganese cobalt oxide (NMC); lithium iron phosphate (LFP)

Thermal Runaway Severity: EUCAR vs Test Data-driven Severity Levels

EUCAR Severity Levels

Hazard Level	Description	Classification Criteria & Effect
0	No effect	No effect. No loss of functionality.
1	Passive protection activated	No defect; no leakage; no venting, fire, or flame; no rupture; no explosion; no exothermic reaction or thermal runaway. Cell reversibly damaged. Repair of protection device needed.
2	Defect/Damage	No leakage; no venting, fire or flame; no rupture; no explosion; no exothermic reaction or thermal runaway. Cell irreversibly damaged. Repair needed.
3	Leakage $\Delta\text{mass} < 50\%$	No venting, fire, or flame; no rupture; no explosion. Weight loss < 50% of electrolyte weight (electrolyte = solvent + salt).
4	Venting $\Delta\text{mass} \geq 50\%$	No fire or flame; no rupture; no explosion. Weight loss $\geq 50\%$ of electrolyte weight (electrolyte = solvent + salt).
5	Fire or Flame	No rupture; no explosion (i.e., no flying parts).
6	Rupture	No explosion, but flying parts of the active mass.
7	Explosion	Explosion (i.e., disintegration of the cell).

ORNL-Sandia Test Data Based Severity Levels

Hazard Severity Level	Description
1 (VL, 0-10)	Very low, instant local Joule heating, detectable voltage drops
2 (L, 10-25)	Low, localized heating, small voltage drops and recovery
3 (M, 25-75)	Moderate, localized heating spread, significant voltage drops, continued discharge after recovery
4 (H, 75-90)	High, heating due to chemical reactions, cell puff and gas release, voltage drop to close zero
5 (VH, 90-100)	Very high, heating spread to the cell, heavy smoke and possible fire, voltage drops to zero

Calculation of Thermal Runaway Severity Score

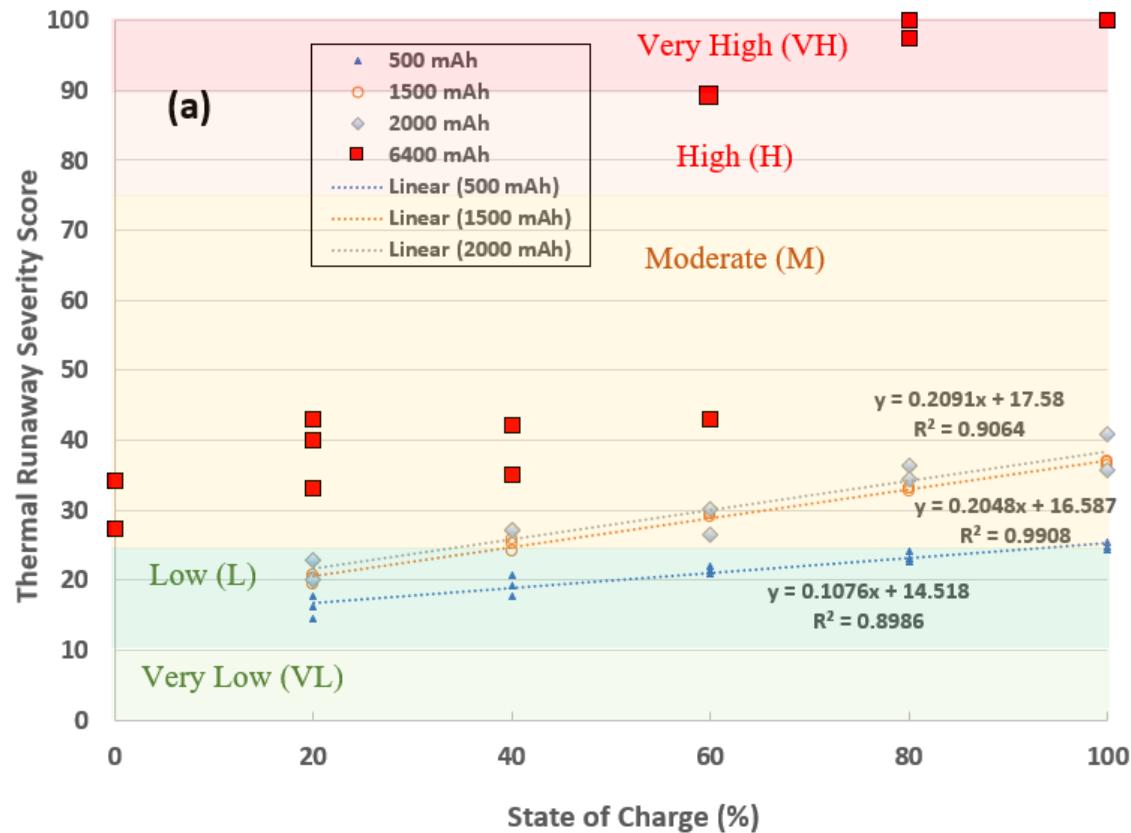
Severity Score Calculation Based on Temperature and Voltage

$$\left\{ \begin{array}{l}
 \begin{aligned}
 & 5, \text{ if Max Temperature} < 40^{\circ}\text{C} \\
 & wA * \left(\frac{\text{Max Temperature}}{160} \right)^{0.25} \\
 & \min \left\{ \begin{array}{l}
 +wB * \left(\frac{\text{Temperature Increase Rate}}{200} \right) \\
 +wC * wCap * wSOC * \text{Voltage Drop Score} \\
 +cOffset, 100
 \end{array} \right\} \\
 & 100, \text{ if Max Temperature} > 160^{\circ}\text{C}
 \end{aligned}
 \end{array} \right. \quad (1)$$

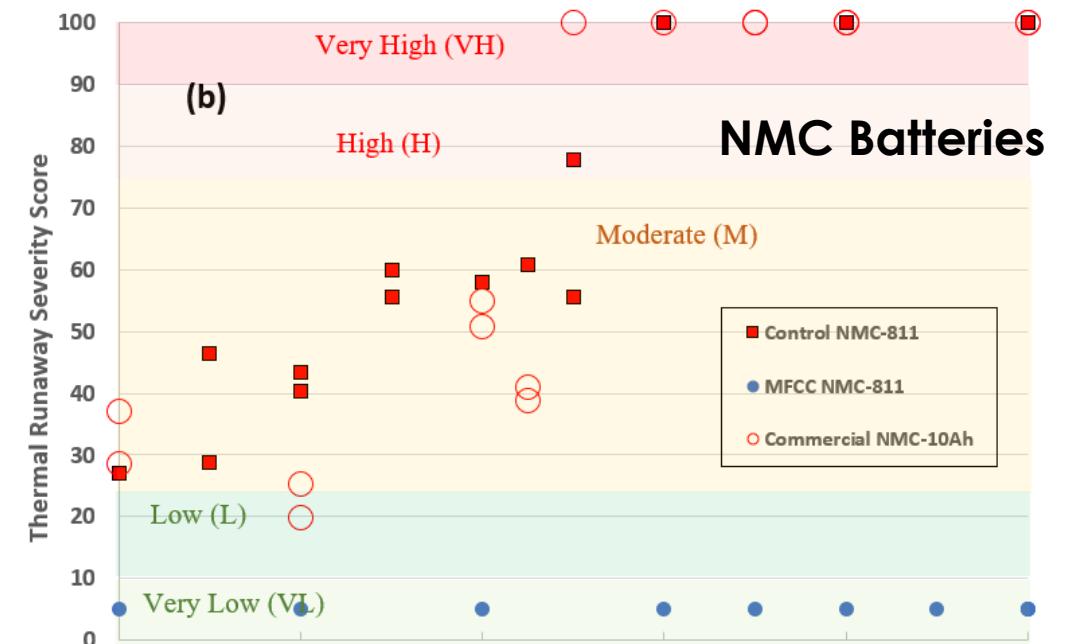
Voltage Drop Score =

$$\left\{ \begin{array}{l}
 \begin{aligned}
 & 1, \text{ if } (\text{Voltage Range})/(\text{Initial Voltage}) < 0.2 \\
 & 2, \text{ if } \frac{\text{Voltage Range}}{\text{Initial Voltage}} > 0.5 \text{ and } \frac{\text{Final Voltage Change}}{\text{Initial Voltage}} < 0.2 \\
 & 3, \text{ if } \frac{\text{Voltage Drop in 2 Seconds}}{\text{Initial Voltage}} < 0.4 \text{ and } \frac{\text{Final Voltage Change}}{\text{Initial Voltage}} > 0.7 \\
 & 4, \text{ if } \frac{\text{Voltage Drop in 2 Seconds}}{\text{Initial Voltage}} \geq 0.4 \text{ and } \frac{\text{Final Voltage Change}}{\text{Initial Voltage}} > 0.7 \\
 & 5, \text{ if } \frac{\text{Voltage Range}}{\text{Initial Voltage}} > 0.7 \text{ and } \frac{\text{Final Voltage Change}}{\text{Initial Voltage}} > 0.7 \text{ and } \frac{\text{Voltage Drop in 5 Seconds}}{\text{Initial Voltage}} > 0.7
 \end{aligned}
 \end{array} \right. \quad (2)$$

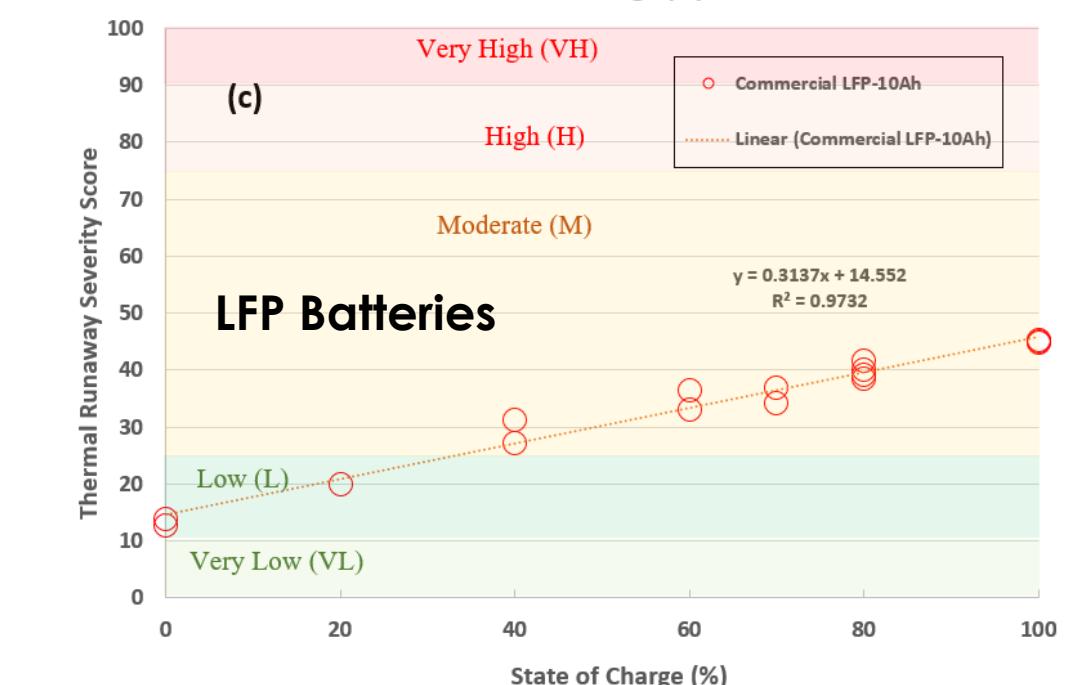
$$wA = 2.0 * cScale, wB = 3.0 * cScale, wC = 2.0 * cScale \quad (3)$$


$$wCap = \text{Battery Capacity}/10000 \quad (4)$$

$$wSOC = \text{Battery SOC}/100 \quad (5)$$


$$cScale = 95/6, cOffset = 5 - cScale \quad (6)$$

Test Name	Calculated Severity Level (CHS 5-100)	Battery Capacity (mAH)	SOC (%)	Observed Severity Level (OHS)
LCO 500mAh-20SOC	14.4	500	20	Low
LCO 500mAh-40SOC	17.6	500	40	Low
LCO 500mAh-60SOC	22.0	500	60	Low
LCO 500mAh-80SOC	24.2	500	80	Low
LCO 500mAh-100SOC	24.3	500	100	Low
LCO 1500mAh-20SOC	20.7	1500	20	Low
LCO 1500mAh-40SOC	25.2	1500	40	Moderate
LCO 1500mAh-60SOC	29.0	1500	60	Moderate
LCO 1500mAh-80SOC	32.8	1500	80	Moderate
LCO 1500mAh-100SOC	36.7	1500	100	Moderate
LCO 2000mAh-20SOC	22.8	2000	20	Low
LCO 2000mAh-40SOC	27.1	2000	40	Moderate
LCO 2000mAh-60SOC	26.6	2000	60	Moderate
LCO 2000mAh-80SOC	36.3	2000	80	Moderate
LCO 2000mAh-100SOC	35.7	2000	100	Moderate
Soteria-Control-100SOC	100.0	5190	100	Very High
Soteria-Control-80SOC	100.0	4960	80	Very High
Soteria-Control-60SOC	100.0	5190	60	Very High
Soteria-Control-40SOC	57.9	5190	40	Moderate
Soteria-Control-20SOC	40.3	5190	20	Moderate
Soteria-Control-10SOC	46.4	5190	10	Moderate
Soteria-Control-0SOC	27.1	5190	0	Moderate
Soteria-MFCC-100SOC	5.0	4960	100	Very Low
Soteria-MFCC-80SOC	5.0	5180	80	Very Low
Soteria-MFCC-60SOC	5.0	5180	60	Very Low
Soteria-MFCC-40SOC	5.0	4720	40	Very Low
Soteria-MFCC-20SOC	5.0	5180	20	Very Low
LCO-6400mAh-100SOC	100.0	6400	100	Very High
LCO-6400mAh-80SOC	100.0	6400	80	Very High
LCO-6470mAh-60SOC	89.1	6470	60	High
LCO-6270mAh-40SOC	35.1	6270	40	Moderate
LCO-6500mAh-20SOC	43.0	6500	20	Moderate
LCO-6560mAh-0SOC	34.3	6560	0	Moderate
LFP 10Ah-0SOC	13.8	10000	0	Low
LFP 10Ah-40SOC	27.1	10000	40	Moderate
LFP 10Ah-60SOC	33.2	10000	60	Moderate
LFP 10Ah-80SOC	39.2	10000	80	Moderate
LFP 10Ah-100SOC	44.8	10000	100	Moderate
NMC 10Ahr-0SOC	37.1	10000	0	Moderate
NMC 10Ahr-20SOC	25.3	10000	20	Moderate
NMC 10Ahr-40SOC	55.0	10000	40	Moderate


Results: Linear Change vs "Step Change"

LCO Batteries: 500 mAh to 6400 mAh

NMC Batteries

LFP Batteries

Thermal Runaway Severity Calculation Workflow

Formatted data file in 'excel' folder

Necessary columns

Time (sec)	Penetrator Force (N)	Cell Voltage (V)	Displacement (mm)	Time (sec)	TC1 (°C)	TC2 (°C)	TC3 (°C)	TC4 (°C)
0	-4.19911968	3.452			0	22.8256		
0.046	-4.17687858	3.448			0.099	22.82095		
0.103	-4.50159864	3.448			0.2	22.81805		
0.158	-4.37704848	3.448			0.299	22.77973		
0.219	-5.3823462	3.448			0.433	22.77625		
0.264	-4.09681062	3.448			0.499	22.77102		
0.31	-4.47490932	3.448			0.598	22.76464		
0.355	-4.07456952	3.449			0.7	22.79483		
0.4	-4.17687858	3.45			0.799	22.78554		
0.446	-4.26139476	3.449			0.899	22.78264		
0.503	-3.77653878	3.448			1	22.75069		
0.55	-3.73205658	3.448			1.1	22.77116		
0.66	-2.31752262	3.448			1.2	22.78147		
0.744	-3.4251294	3.448			1.299	22.82618		
0.84	-3.30947568	3.448			1.4	22.84184		
1.017	-4.50604686	3.448			1.499	22.83546		
1.063	-4.4704611	3.448			1.599	22.82211		
1.121	-4.05232842	3.448			1.699	22.80528		
1.167	-4.37260026	3.449			1.798	22.83256		
1.214	-3.37175076	3.447			1.899	22.85287		
1.259	-4.19911968	3.452			1.999	22.86563		
1.304	-4.17687858	3.448			2.132	22.80817		

Code behind the worksheet

```

Private Sub CommandButton3_Click()
Dim fSO As Object
Dim oFolder As Object
Dim oFile As Object
Dim i As Integer

'Physical effect, rupture of pouch, smoke, gas release, fire - 7
'Physical effect (pouch swelling), rupture of pouch, smoke release - 6
'Physical effect (pouch swelling), extended Joule heating, local reactions - 3
'Moderate effect, extended Joule heating, local reactions (no spread) - 10
'Moderate effect, extended Joule heating, local reactions (no spread) - 3
'No effect, local heating, internal discharge - 2
'No effect, instant local Joule heating, no internal discharge - 1

'clear all existing content
sheetname = "Sheet1"
strPath = Application.ActiveWorkbook.Path
Set oFSO = CreateObject("Scripting.FileSystemObject")
Set oFolder = oFSO.GetFolder(strPath)
i = 0
strFolderExists = Dir(strPath + "\excel\", vbDirectory)
If strFolderExists = "" Then
    MsgBox "data file doesn't exist!"
    Exit Sub
    'MkDir strPath + "\excel"
End If

Dim strFileName As String
'n = oFolder.Files.Count
n = Cells(Rows.Count, 1).End(xlUp).Row + 10 'rows of first column

For i = 1 To n
    For i = 13 To 25
        strFileName = Cells(i, 1)
        If strFileName = "" Then
            addTemperature
            strExcelFile = strPath + "\excel\" + strFileName + ".xlsx"
            strState = Cells(i, 3)
            If Dir(strExcelFile) <> "" And Dir(strTempFile) <> "" Then
                If Dir(strExcelFile) <> "" And strState = "Processing" Then
                    Dim app As New Excel.Application
                    app.Visible = False 'Visible is False by default, so this isn't necessary
                    Dim book As Excel.Workbook
                    Set book = app.Workbooks.Open(strExcelFile)
                    Set worksheet = book.Worksheets(sheetname)
                    'calculate risk score
                    iRow = worksheet.Cells(Rows.Count, 6).End(xlUp).Row 'upbound of voltage column

```

Calculation file

CapacitySOC

1	Sorteria-100SOC-cell1	Processing	No effect, instant local Joule heating, no internal discharge - 1	4960	100				
2	Sorteria-100SOC-cell2	Processing	No effect, instant local Joule heating, no internal discharge - 1	4960	100				
3	Sorteria-Control-100SOC-cell1	Processing	Physical effect, rupture of pouch, smoke, gas release, fire - 7	5190	100				
4	Sorteria-Control-100SOC-cell2	Processing	Physical effect, rupture of pouch, smoke, gas release, fire - 7	5190	100				
5	LCO-LP-6400mAh-100SOC-cell1	Processing	Physical effect, rupture of pouch, smoke, gas release, fire - 7	6400	100				
6	LCO-LP-6400mAh-100SOC-cell2	Processing	Physical effect, rupture of pouch, smoke, gas release, fire - 7	6400	100				
7	LCO-LP-6400mAh-80SOC-cell3	Processing	Physical effect, rupture of pouch, smoke, gas release, fire - 7	6400	80				
8	LCO-LP6400mAh-80SOC-cell4	Processing	Physical effect, rupture of pouch, smoke, gas release, fire - 7	6400	80				
9	Sorteria-80SOC-cell3	Processing	Physical effect, rupture of pouch, smoke, gas release, fire - 7	4960	80				
10	Sorteria-Control-60SOC-cell1	Processing	Physical effect, rupture of pouch, smoke, gas release, fire - 7	5190	60				
11	Sorteria-Control-45SOC-cell1	Processing	Physical effect (pouch swelling), rupture of pouch, gas release - 6	5190	45				
12	Sorteria-control-40SOC-cell2	Processing	Physical effect (pouch swelling), rupture of pouch, gas release - 6	5190	40				
13	Sorteria-control-20SOC-cell1	Processing	Physical effect (pouch swelling), extended Joule heating, local reactions - 20	5190	20				
14	Sorteria-control-30SOC-cell2	Processing	Physical effect (pouch swelling), extended Joule heating, local reactions - 30	5190	30				
15	Sorteria-control-30SOC-cell1	Processing	Physical effect (pouch swelling), extended Joule heating, local reactions - 30	5190	30				
16	Sorteria-control-10SOC-cell1	Moderate effect	extended Joule heating, local reactions (limited spread) - 10	5190	10				
17	Sorteria-control-10SOC-cell2	Moderate effect	extended Joule heating, local reactions (no spread) - 3	5190	0				
18	Sorteria-SCC-90SOC-cell1	Processing	No effect, instant local Joule heating, no internal discharge - 1	5180	90				
19	Sorteria-SCC-80SOC-cell1	Processing	No effect, instant local Joule heating, no internal discharge - 1	5180	80				
20	Sorteria-SCC-60SOC-cell1	Processing	No effect, instant local Joule heating, no internal discharge - 1	5180	60				
21	Sorteria-SCC-20SOC-5180mAh	Processing	No effect, instant local Joule heating, no internal discharge - 1	5180	20				
22	OE-LCO-6470mAh-60SOC	Moderate effect	extended Joule heating, local reactions (limited spread) - 60	6400	60				

Run code

Result worksheet

Severity score

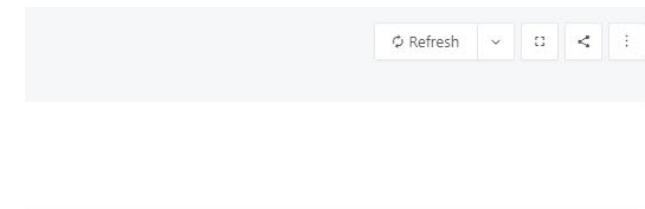
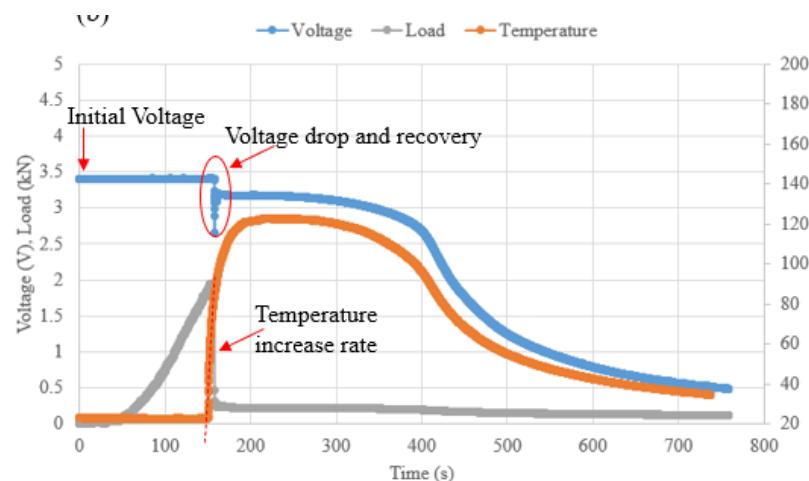
1	FileName	Observed Score							
2	Sorteria-100SOC-cell1	No effect, instant local Joule heating, no internal discharge - 1	1.00	5.00	4960	100	20.3214	0.22156	15.7067
3	Sorteria-100SOC-cell2	No effect, instant local Joule heating, no internal discharge - 1	1.00	5.00	4960	100	20.1898	0.18107	15.7067
4	Sorteria-Control-100SOC-cell1	Physical effect, rupture of pouch, smoke, gas release, fire - 7	7.00	100.00	5190	100	31.1724	37.6766	49.305
5	Sorteria-Control-100SOC-cell2	Physical effect, rupture of pouch, smoke, gas release, fire - 7	7.00	100.00	5190	100	31.1724	40.3477	49.305
6	LCO-LP-6400mAh-100SOC-cell1	Physical effect, rupture of pouch, smoke, gas release, fire - 7	7.00	100.00	6400	100	31.1724	53.6488	101.333
7	LCO-LP-6400mAh-100SOC-cell2	Physical effect, rupture of pouch, smoke, gas release, fire - 7	7.00	100.00	6400	100	31.1724	29.8941	101.333
8	LCO-LP-6400mAh-80SOC-Cell3	Physical effect, rupture of pouch, smoke, gas release, fire - 7	7.00	100.00	6400	80	31.1724	29.5352	81.0657
9	LCO-LP6400mAh-80SOC-cell4	Physical effect, rupture of pouch, smoke, gas release, fire - 7	7.00	97.48	6400	80	31.1724	28.5057	48.64
10	Sorteria-80SOC-cell1	Physical effect, rupture of pouch, smoke, gas release, fire - 7	7.00	100.00	4960	80	31.1724	29.5128	62.8267
11	Sorteria-Control-60SOC-cell1	Physical effect, rupture of pouch, smoke, gas release, fire - 7	7.00	100.00	5190	60	31.1724	30.7138	49.305
12	Sorteria-Control-45SOC-cell1	Physical effect (pouch swelling), rupture of pouch, gas release - 6	6.00	60.73	5190	45	31.1724	18.1999	22.1873
13	Sorteria-control-40SOC-cell2	Physical effect (pouch swelling), rupture of pouch, gas release - 6	6.00	57.93	5190	40	31.1724	17.8647	19.722
14	Sorteria-control-20SOC-cell1	Physical effect (pouch swelling), extended Joule heating, local reactions	5.00	40.28	5190	20	30.8922	10.359	9.861
15	Sorteria-control-30SOC-cell2	Physical effect (pouch swelling), extended Joule heating, local reactions	5.00	55.53	5190	30	30.2916	21.2789	14.7915
16	Sorteria-control-30SOC-cell1	Physical effect (pouch swelling), extended Joule heating, local reactions	5.00	59.89	5190	30	30.96	24.971	14.7915
17	Sorteria-control-10SOC-cell1	Moderate effect, extended Joule heating, local reactions (limited spread)	4.00	46.36	5190	10	30.345	21.9142	4.9305
18	Sorteria-Control-05SOC-cell1	Moderate effect, extended Joule heating, local reactions (no spread) - 3	3.00	27.10	5190	0	29.6537	7.78384	0.49305
19	Sorteria-SCC-90SOC-cell1	No effect, instant local Joule heating, no internal discharge - 1	1.00	5.00	5180	90	20.9707	0.28818	14.763
20	Sorteria-SCC-80SOC-cell1	No effect, instant local Joule heating, no internal discharge - 1	1.00	5.00	5180	80	20.8322	0.21012	13.1227
21	Sorteria-SCC-60SOC-cell1	No effect, instant local Joule heating, no internal discharge - 1	1.00	5.00	5180	60	20.5409	0.22226	9.842
22	Sorteria-SCC-20SOC-5180mAh	No effect, instant local Joule heating, no internal discharge - 1	1.00	5.00	5180	20	19.9489	0.14925	3.28067
23	OE-LCO-6470mAh-60SOC	Physical effect (pouch swelling), rupture of pouch, gas release - 6	6.00	89.10	6470	60	31.1724	31.8859	36.879

Search Database by Battery and Abuse Test Metadata (Host: Sandia Labs)

- Indicators
- Dashboards
- Queries
- Alerts
- Create
- Help

Abuse Test Cells List

Indentor Nail Speed

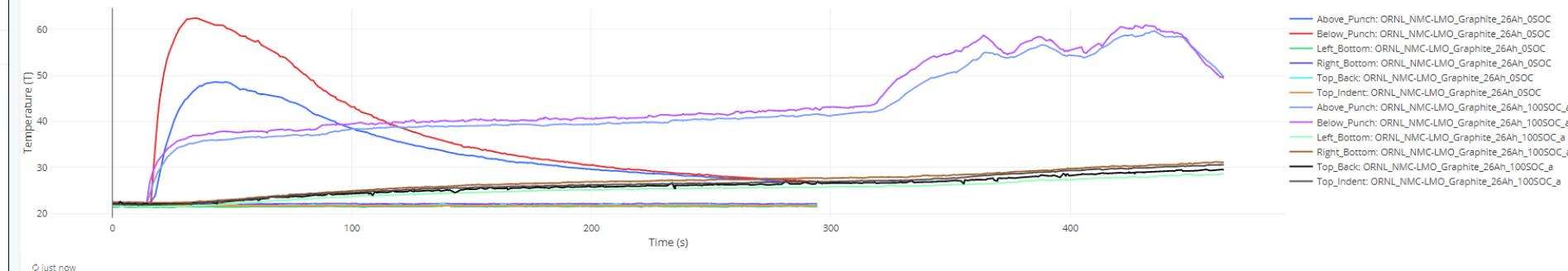


6 x 0.05 x

Abuse Test Cell List

SOC

0 x 30 x 50 x +5 more

Cell ID	Anode	Cathode	Source	Ah	Form Factor	SOC	Initial V	Indentor	Nail Speed
ORNL_NMC-LMO_Graphite_26Ah_0SOC	Graphite	NMC-LMO	Chevy Volt	26.00	Pouch	0.00	3.07	6.00	0.05
ORNL_NMC-LMO_Graphite_26Ah_100SOC_a	Graphite	NMC-LMO	Chevy Volt	26.00	Pouch	100.00	4.17	6.00	0.05
ORNL_NMC-LMO_Graphite_26Ah_100SOC_b	Graphite	NMC-LMO	Chevy Volt	26.00	Pouch	100.00	4.16	6.00	0.05
ORNL_NMC-LMO_Graphite_26Ah_100SOC_c	Graphite	NMC-LMO	Chevy Volt	26.00	Pouch	100.00	4.12	6.00	0.05
ORNL_NMC-LMO_Graphite_26Ah_100SOC_d	Graphite	NMC-LMO	Chevy Volt	26.00	Pouch	100.00	4.12	6.00	0.05



Abuse Test Data

Sample Cell List

10 ORNL_NMC-L... ORNL_NMC-L...

Abuse Test Temperatures

New Detection Methods

Thermally Sensitive Paint Development (Seedling)

Project Goal:

Thermal runaway avoidance. Early detection of thermal runaway on every cell and large surface area

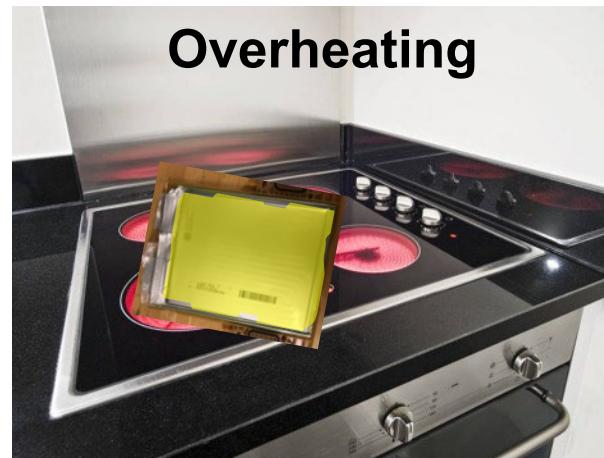
Indirect Large Area Temperature Monitoring

Temperature-Sensitive Paint for $T_{\text{Threshold}}$ Monitoring

Carriers for paint need to have the following features:

- ✓ Stay normal within battery operation temperature
- ✓ Release chemical/gas $T > T_{\text{Threshold}}$
- ✓ Non-line-of-sight (change of color is not an option)
- ✓ Detection via “smell” and gas detector

Li-ion
Battery



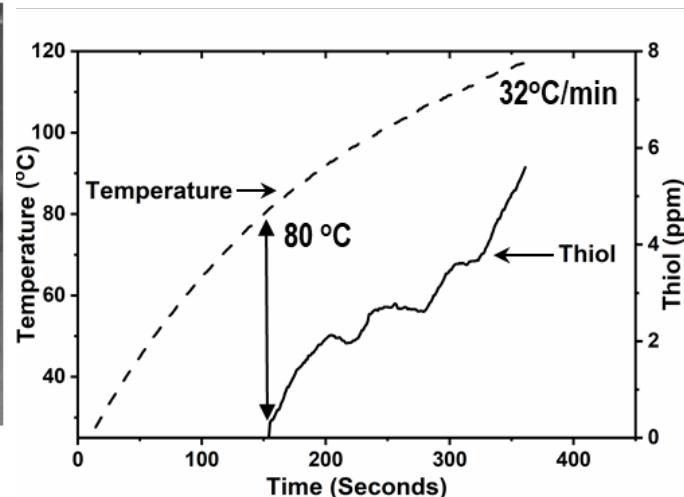
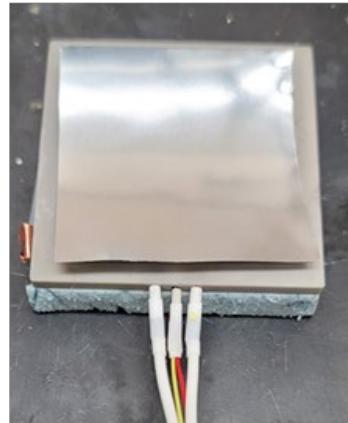
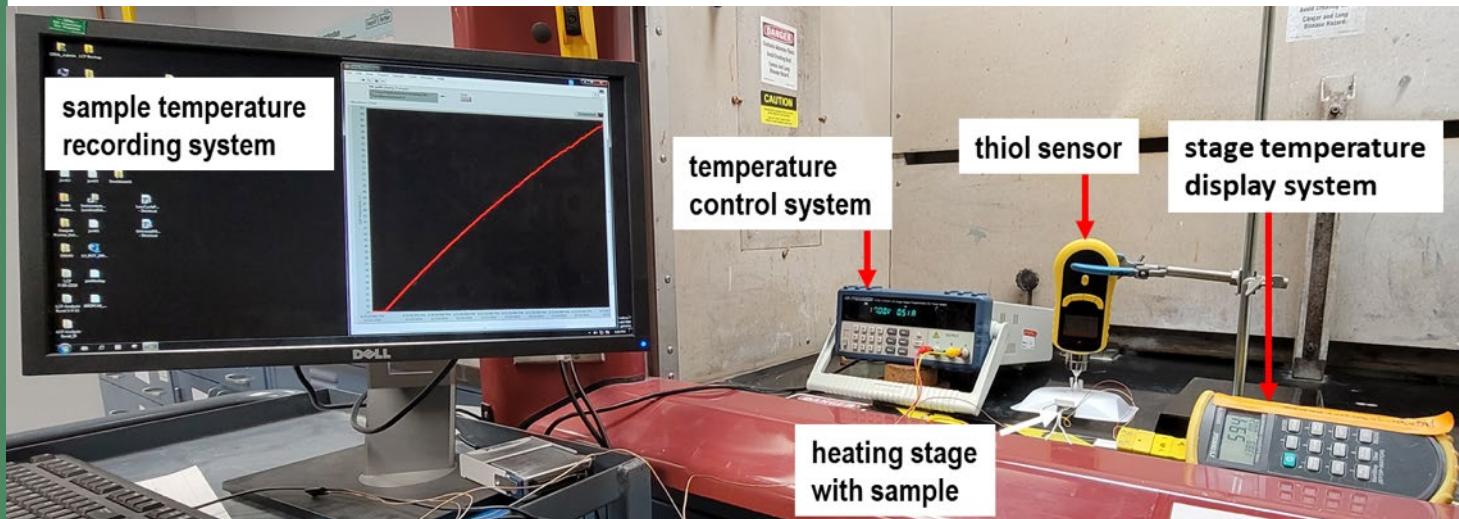
Brush or Spray
Paint

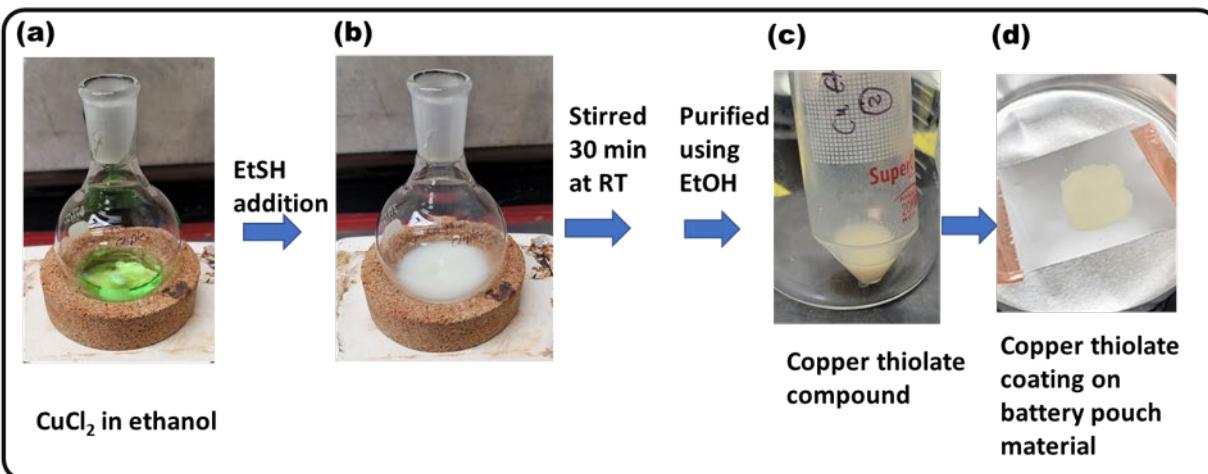
Smoke Alarm

Overheating

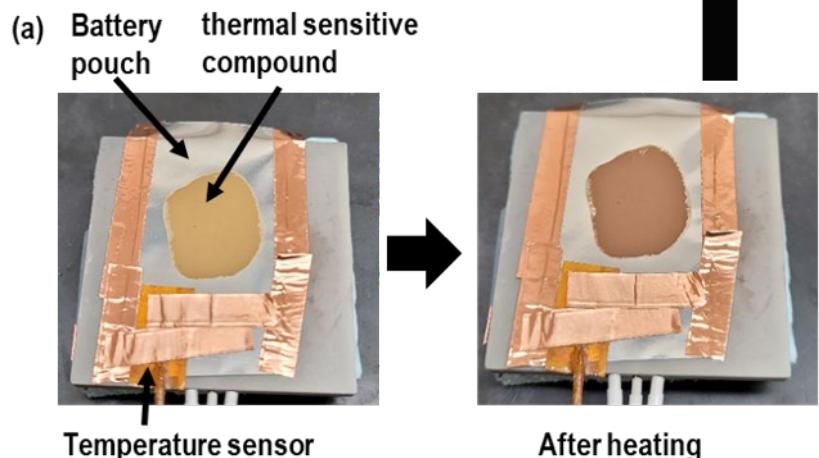
Thermal Runaway

Heating




Special Gas Release for Overheating


shutterstock.com · 677922763

(Web image)


Experimental Setup and Demonstration of Thiol Release

Over-temperature Detection

Paint Development

Coated Pouch on Hot Plate

Future Plan: ESS Reliability Safety Testing and Analysis Facility

Single Cells Database (ORNL-Sandia):

- UL Standard, end-user upload
- Machine learning, prediction of hazard severity

NHTSA Electrical Vehicles -> battery Packs, module and cell:

- Thermal runaway testing
- Thermal runaway propagation studies
- Modeling and Simulations of battery failure

Battery Safety Technology Development and Demonstration:

- Thermal runaway warning system (paint development)
- Gas detection, BMS/TMS control, prevention mechanisms (isolation, lowering SOC, discharge)

Acknowledgements and Outputs

Project Supported by DOE EERE Office of Electricity (OE) (Dr. Imre Gyuk)

Publications, Patent, Presentation:

1. Tongxin Shan, Zhenpo Wang, Xiaoqing Zhu, Hsin Wang, Yangjie Zhou, Yituo Wang, Jinghan Zhang and Zhiwei Sun, "Explosion behavior investigation and safety assessment of large-format lithium-ion pouch cells", *Journal of Energy Chemistry*, doi.org/10.1016/j.jecchem.2022.04.018, April 19, 2022 **Impact factor =11.62**
2. Wei Li, Bobing Xin, Thomas R. Watkins, Yong Xia, Hsin Wang, Juner Zhu, "Mechanical damage of prismatic Lithium-ion cells subject to bending: tests, model, and detection", *EcoMat*, revised, doi.org/10.1002/eom2.12257, pp1-16, 2022 **Impact factor =12.213**
3. Srikanth Allu, Jean-Luc Fattebert, Hsin Wang, Srdjan Simunovic, Sreekanth Pannala, and John Turner, **Book Chapter**: "Accelerating Battery Simulations by using High Performance Computing and Opportunities with Machine Learning", in *Modern Aspects in Electrochemistry Book Series*, Editor: Shriram Santhanagopalan, Springer, UK (2022)
4. L.S. Lin, J.L. Li, I. Fishman L. Torres-Castro, Y. Preger, V. De Angelis, J. Lamb, X.Q. Zhu, S. Allu and H. Wang, "Mechanically Induced Thermal Runaway Severity Analysis for Li-ion Batteries", *Journal of Energy Storage*, Submitted September 2022
5. Joshua Lamb, Sergiy Kalnaus and Hsin Wang, **Book Chapter**: "Experimental Simulations of Field Induced Mechanical Abuse Conditions", in *Modern Aspects in Electrochemistry Book Series*, Editor: Shriram Santhanagopalan, Springer, UK (2022)

One Provisional Patent Filed: ID 4373 "Temperature sensitive paint with gas and chemical release functions" by, BL Armstrong, CI Gamalarage, K. Buddett-Trofimov, GM Veith, H Wang

Invited talk: Battery & EV Congress 2022 (June 8-9, 2022 at the MSU Management Education Center, Troy, Michigan), Title: Thermal Runaway Risk of Li-ion Batteries Used in Electric Vehicles: Testing and Analysis by Hsin Wang et al