Equity and Resilience in Storage Modeling & Planning

Dhruv Bhatnagar
Patrick Maloney
Xinda Ke
Abhinav Venkataraman
Saptarshi Bhattacharya

October 11, 2022 | 205 | PNNL-SA-178428

Pacific Northwest National Laboratory
DOE OE Energy Storage Peer Review

Supported by the DOE Office of Electricity
Energy Storage Program
Outline

• Motivation and Need
• Modeling Approach
• Equity and Resilience: Case Study and Considerations
• Overview of FY22 Research Activities
• Next Steps
Motivation and Need

1. How do we think about energy storage in the future? 2030, 2040, 2050?
 - How much storage will we need to ensure reliability as flexible generation retires and is replaced by intermittent renewables?
 - What capacity? What duration? What type of technology?
 - How do we deploy it (across time and space-where and when)?

2. What policies will this ensure optimal(?) deployment?
 - How do we incorporate equity in these policies?
 - How do we consider resilience?
Modeling Approach

Capacity expansion planning (CEP)
- Linear and mixed integer linear program
- Used to determining the optimal timing, size, and location of new investments (transmission and generation)
- Typical objective function: minimize capital and operational costs
- Standard DC power flow

<table>
<thead>
<tr>
<th>Technology</th>
<th>2018</th>
<th>2024</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributed PV</td>
<td>0.8</td>
<td>0.9</td>
<td>0.2</td>
</tr>
<tr>
<td>DR shift - New</td>
<td>0.0</td>
<td>0.0</td>
<td>1.5</td>
</tr>
<tr>
<td>EE - New</td>
<td>2.8</td>
<td>3.0</td>
<td>3.2</td>
</tr>
<tr>
<td>Gas CCGT - New</td>
<td>0.0</td>
<td>0.0</td>
<td>1.1</td>
</tr>
<tr>
<td>Gas CT - New</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Geothermal - New</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Solar PV-Distributed Utility-Fixed Tilt - New</td>
<td>3.7</td>
<td>9.5</td>
<td>43.1</td>
</tr>
<tr>
<td>Wind</td>
<td>18.6</td>
<td>9.4</td>
<td>6.2</td>
</tr>
<tr>
<td>Generation Total</td>
<td>25.9</td>
<td>22.9</td>
<td>55.3</td>
</tr>
<tr>
<td>Transmission</td>
<td>80.0</td>
<td>9.7</td>
<td>11.5</td>
</tr>
</tbody>
</table>

IA State Model: 2036 cumulative generation and transmission investments
• By its nature, CEP is a complex modeling effort that requires careful consideration of trade-offs between model details and solve times.

• Energy storage challenges the typical CEP formulation:
 ▪ Storage across multiple time slices (e.g. multi-day durations)
 ▪ Multiple services (generation and transmission)

<table>
<thead>
<tr>
<th>Model</th>
<th>Solve time</th>
<th>Storage representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra-year time slice representation (operational setpoints per year)</td>
<td>Renewable capacity value implementation</td>
<td>End effects</td>
</tr>
<tr>
<td>Unit retirements</td>
<td>Representation of uncertainty</td>
<td></td>
</tr>
</tbody>
</table>

Significant CEP model features that impact investment decision such as storage
Analysis Drivers

In addition to a consideration of cost and reliability inherent in expansion modeling, we consider:

- Equity considerations with resource deployment
- System Resilience

<table>
<thead>
<tr>
<th>Plan Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan meets performance requirements?</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CEP Formulation Scenario 1:</th>
<th>Low Hydro output Low Fuel Prices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (years)</td>
<td>Capacity (MW)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CEP Formulation Scenario 2:</th>
<th>Low Hydro output High Fuel Prices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (years)</td>
<td>Capacity (MW)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CEP Formulation Scenario 3:</th>
<th>High Hydro output Low Fuel Prices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (years)</td>
<td>Capacity (MW)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
The LA Basin has a unique opportunity for storage

- California has ambitious energy and environmental goals that will require reduced dependence on fossil infrastructure
- The Los Angeles Basin currently relies on 7.5 GW of low-capacity factor fossil peaking resources that could be replaced by storage
- Due to other emergent issues, the CPUC is not able to study this opportunity unless there is a credible case for fossil fuel plant replacement
Equity in Modeling

- Retiring low-capacity factor natural gas plants located in dense urbanized (disadvantaged) communities
- Maintain system reliability by replacing with energy storage
Equity in Modeling – Challenges

Where do the investments go?

LA Basin 3 bus system: West, East and El Nido

Disadvantaged and Low Income Communities California Air Resources Board

Population Characteristics (Sensitivities) CalEnviroScreen
Equity in Modeling – Challenges

1. We need 100GW+ of storage in LA Basin and CAISO. Where does it go?
 ▪ Build near load centers?
 ▪ Use new transmission?

2. Who pays for it? How do the cost of this deployment get distributed fairly?

3. How do we incorporate these elements into planning efforts?
 ▪ State integrated resource plans
 ▪ Transmission development
 ▪ Regional coordination?

4. What are the impacts we don’t foresee? Are there unintended consequences?

5. How does this get translated to system planners and policymakers?
Resilience in Modeling

• An approach to resilience: generate plan, expose plan to uncertainties to evaluate performance, evaluate plan, and re-plan with adjusted CEP formulation or adjusted baseline scenario.
Resilience in Modeling – Challenges

1. How do we sufficiently capture resiliency? That is, how do we capture all the possible permutations of events?
 a. Wildfires
 b. Heat waves
 c. Droughts
 d. Earthquakes
 e. Hurricanes

2. Local vs. system resiliency?
 a. Bulk system
 b. Distribution system

3. What is sufficient resiliency?

4. How do we incorporate the challenge of resilience with equity in planning? Again, how does this get shared with planners and policymakers?

Capturing Resilience

- Transmission outages
- Generation derates or shutdowns
- Limitations to the hydro system
- Increased storage parasitic load requirements
FY22 Research Activities

Capacity Expansion
• Built a detailed California system model within GridPath
• Modeling and analysis
 ▪ LA Basin natural gas peaker replacement in partnership with Strategen Consulting
 ▪ Initial steps on WECC system model for future analyses (e.g., Oregon and Washington long duration storage needs)

Energy Storage and Hydropower
• Built a model to evaluate the use of battery systems for
 ▪ Environmental considerations
 ▪ Equity considerations
 ▪ Economics: revenue, operations & maintenance (goal)
• In collaboration with multiple utilities (publish pending)
Continuing Work

• Continue to develop expansion planning capabilities for modeling the deployment of energy storage; incorporating
 ▪ **Equity and resilience**, with a focus on informing policy
 ▪ Inputs from Joint Global Climate Change Research Institute's GCAM (Global Climate Adaptation Model) multi-sectoral market equilibrium model
 ▪ Building on PNNL research in resilience, hydropower, transmission planning, offshore wind, electric vehicle integration, others

• Support system studies of storage deployment
• Evaluate alternative approaches to identifying future storage needs
• Refine model on storage and hydropower
Acknowledgments

We want to thank Dr. Imre Gyuk and the OE Energy Storage program and for their support

Mission – to ensure a resilient, reliable, and flexible electricity system through research, partnerships, facilitation, modeling and analytics, and emergency preparedness.

https://www.energy.gov/oe/activities/technology-development/energy-storage
Thank You

Dhruv Bhatnagar
dhruv.bhatnagar@pnnl.gov
Patrick Maloney
patrick.maloney@pnnl.gov

https://energystorage.pnnl.gov/