Engineering Rechargeability in MnO$_2$ Cathodes for low-cost and safe batteries

Joshua W. Gallaway
DOE OE Peer Review, 26-28 October 2021
Zinc & Lead Session, ID #505
1. Project Background and Motivation
 ❖ List of technical Tasks

2. Task 2: Doped MnO$_2$ for low-cost Li-ion and Na-ion "beyond Li-ion" batteries

3. Task 3: Mechanistic studies of doped MnO$_2$ for low-cost Zn-MnO$_2$ systems

4. Task 4: Mechanistic collaboration with SNL: Zn-CuO
GOAL: Low-cost and safe Zn-MnO$_2$ grid batteries

Engineering a deep-cycled MnO$_2$ electrode
- Zinc depth of discharge (DOD)
- MnO$_2$ cathode mass loading

Our group's work is on improvement of the MnO$_2$ cathode.
Additives enable rechargeability

MDB: MnO\(_2\) + Bi\(_2\)O\(_3\)
Ford Motor Company, 1980s

MDBC: MnO\(_2\) + Bi\(_2\)O\(_3\) + Cu
City College of New York (CCNY), 2017

2010-2015, City College of New York, ARPA-E
"Low-Cost Grid-Scale Electrical Storage Using a Flow-Assisted Rechargeable Zinc-Manganese Dioxide Battery"

~617 mAh/g (100% DOD)

Additives enable rechargeability

- Bi\(_2\)O\(_3\) allows MnO\(_2\) to recharge
- Addition of Cu allows this to reach high cycle life at high mass loading.
However: Challenges remain for implementation

1. The mechanism of both Bi and Cu additives are unknown
 - Bi is sometimes hypothesized to stabilize the MnO$_2$ structure by acting as a "molecular pillar"

2. A single cathode active material is desired

3. The Bi and Cu-doped MnO$_2$ electrode undergoes voltage loss
 - Higher cathode voltage is desired for high energy density.

Our goal is to solve #1 in order to engineer a solution to #2 and #3
Proposed mechanism of MnO$_2$ cycling with Bi

\[\delta-(K_xBi_y)\text{MnO}_2 \cdot w\text{H}_2\text{O} \]

Bi cation pillars

Proton insertion stage

First electron

Conversion stage

Second electron

Equation:

\[\delta\text{-MnO}_2 + 2\text{H}_2\text{O} + 2e^- \rightleftharpoons \text{Mn(OH)}_2 + 2\text{OH}^- \]
Task 2: Reversible Intercalation in MnO$_2$ in non-aqueous systems

The effect of Bi pillaring on MnO$_2$ cathode used for non-aqueous intercalation batteries

- Li-ion
- Na-ion "beyond Li-ion"

The all-Mn layered oxide cathode can lower the cost of these batteries and make them appropriate for grid applications.

Nature of the Bi pillaring effect will be clarified through this study

Task 3: The effect of Bi in aqueous MnO$_2$ systems

Deep science on aqueous mechanism. Does Bi:

- Leave the MnO$_2$ structure as a hydrated $[\text{Bi(H}_2\text{O)}_n]^{3+}$ species
- Remain as a coordinated $[\text{BiO}_x]$ cluster

Identifying this intermediate will elucidate underlying mechanism in the MnO$_2$ system

Task 4: Structural effect of Bi doping in alkaline CuO batteries

Collaboration with Timothy Lambert's group at SNL on Bi doping in Zn-CuO batteries
Our 2021 and 2022 Tasks

Task 2: Reversible Intercalation in MnO_2 in non-aqueous systems

- **2.1**: Structural and Morphological Effect of Bi Doping
- **2.2**: Ion Exchange Methods
- **2.3**: Li-ion Battery Cycling
- **2.4**: Li-ion Battery Electrochemical Characterization
- **2.5**: Li-ion Battery Operando X-ray Diffraction
- **2.6**: Solid Electrolyte Li-ion Battery
- **2.7**: Beyond Li-ion Cycling

Complete in 2021

Task 3: The effect of Bi in aqueous MnO_2 systems

- **3.1**: Crystal structure changes during MnO_2 cycling in a wide range of d-spacings
- **3.2**: MnO_2 operando spectroscopy
- **3.3**: MnO_2 structure modeling

Complete in 2021

Task 4: Structural effect of Bi doping in alkaline CuO batteries

- **4.1**: Operando EDXRD
- **4.2**: Operando X-ray spectroscopy

Complete in 2021

Remaining Tasks are for 2022

Accomplishments
Task 2: Reversible intercalation in MnO_2 in non-aqueous systems
Spinel manganese oxide (LMO) has low capacity and poor stability.

Layered manganese oxide has high theoretical capacity comparable to cobalt oxide.

- Cost of Co is high. Replacement with Mn would dramatically lower cost.
- Co is regionally locked. Mn is extremely widely available.
- Mn is less environmentally hazardous and less toxic

Market Insider markets.businessinsider.com (accessed March 18, 2021)
Anderson, Don L.; “Chemical Composition of the Mantle”, Theory of the Earth, pp. 147-175
Doped δ-MnO$_2$ target material

δ-MnO$_2$ is a layered oxide where Mn is the primary transition metal. It is analogous to CoO$_2$, the most common Li-ion battery cathode.

δ-MnO$_2$ can be synthesized several ways

<table>
<thead>
<tr>
<th>Crystallinity</th>
<th>Interlayer Cations (A)</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disordered</td>
<td>K$^+$</td>
<td>Wet synthesis from Mn salts</td>
</tr>
<tr>
<td>Crystalline</td>
<td>Mg$^{2+}$</td>
<td>Autoclaved Mg(MnO$_2$)$_2$</td>
</tr>
<tr>
<td>Crystalline</td>
<td>K$^+$</td>
<td>Fine powder KMnO$_4$ heated</td>
</tr>
<tr>
<td>Crystalline</td>
<td>K$^+$ and Bi$^{3+}$</td>
<td>Fine powder KMnO$_4$ + Bi(NO$_3$)$_3$ heated</td>
</tr>
<tr>
<td>Disordered</td>
<td>K$^+$ and Cu$^{1+}$</td>
<td>Cation salt inserted in birnessite</td>
</tr>
<tr>
<td>Crystalline</td>
<td>K$^+$ and Mg$^{2+}$</td>
<td></td>
</tr>
<tr>
<td>Crystalline</td>
<td>K$^+$ and Bi$^{3+*}$</td>
<td></td>
</tr>
</tbody>
</table>

We tried many methods to produce δ-MnO$_2$ with cations inserted into the interlayer.

The indicated high temperature method produced crystalline material and enabled the amount of Bi$^{3+}$ to be tuned.

Cation pillar

Bi$^{3+}$ must help hold the layers together, without hindering Li$^+$ transport.
Doped δ-(K$_x$Bi$_y$)MnO$_2$ \cdot wH$_2$O

Chemical formula of (K$_x$Bi$_y$)MnO$_2$ \cdot wH$_2$O

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>w</th>
<th>Chemical formula</th>
<th>Molar mass (excluding H$_2$O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.377</td>
<td>0.156</td>
<td>0.56</td>
<td>K${0.377}$Bi${0.156}$MnO$_2$</td>
<td>134.18 g/mol</td>
</tr>
<tr>
<td>0.404</td>
<td>0.084</td>
<td>0.53</td>
<td>K${0.404}$Bi${0.084}$MnO$_2$</td>
<td>120.31 g/mol</td>
</tr>
<tr>
<td>0.384</td>
<td>0.043</td>
<td>0.52</td>
<td>K${0.384}$Bi${0.043}$MnO$_2$</td>
<td>110.87 g/mol</td>
</tr>
<tr>
<td>0.365</td>
<td>0.018</td>
<td>0.52</td>
<td>K${0.365}$Bi${0.018}$MnO$_2$</td>
<td>104.97 g/mol</td>
</tr>
<tr>
<td>0.332</td>
<td>0.013</td>
<td>0.40</td>
<td>K${0.332}$Bi${0.013}$MnO$_2$</td>
<td>102.63 g/mol</td>
</tr>
<tr>
<td>0.315</td>
<td>0.01</td>
<td>0.53</td>
<td>K${0.315}$Bi${0.010}$MnO$_2$</td>
<td>101.29 g/mol</td>
</tr>
<tr>
<td>0.315</td>
<td>0.006</td>
<td>0.46</td>
<td>K${0.315}$Bi${0.006}$MnO$_2$</td>
<td>100.58 g/mol</td>
</tr>
<tr>
<td>0.306</td>
<td>0.002</td>
<td>0.26</td>
<td>K${0.306}$Bi${0.002}$MnO$_2$</td>
<td>99.36 g/mol</td>
</tr>
<tr>
<td>0.308</td>
<td>0.0</td>
<td>0.26</td>
<td>K$_{0.308}$MnO$_2$</td>
<td>98.97 g/mol</td>
</tr>
</tbody>
</table>

Values for x and y from inductively coupled plasma (ICP). Values for w from thermogravimetric analysis (TGA).

We have produced a series of materials that vary in amount of Bi$^{3+}$, which is given by "y" in the chemical formula.

All materials are highly crystalline and therefore straightforward to characterize.

Higher y generally correlates to higher x and w.
Li-ion battery cycling with Bi-pillared MnO$_2$

Cycling results show that Bi$^{3+}$ successfully stabilizes the material.

It is possible that Bi$^{3+}$ stabilizes the material by preventing conversion to LiMn$_2$O$_4$ spinel.

This is the most favorable stabilization of layered MnO$_2$ reported, to our knowledge.
Material characterization of \((K_xBi_y)\text{-MnO}_2\)

XRD results of \((K_xBi_y)\text{-MnO}_2\) at various values of \(y\).

Data collected at NSLS-II, beamline 28-ID (XPD)

![XRD graphs showing intensity vs. 2θ for \((K_xBi_y)\text{-MnO}_2\) at various \(y\) values](image)

Raman results of \((K_xBi_y)\text{-MnO}_2\) at various values of \(y\)

![Raman spectra showing intensity vs. Raman shift for \((K_xBi_y)\text{-MnO}_2\) at various \(y\) values](image)

Morphology of \((K_xBi_y)\text{-MnO}_2\) at various values of \(y\)

![Morphology images showing particle width and morphological changes for \((K_xBi_y)\text{-MnO}_2\) at various \(y\) values](image)

EDS of \((K_xBi_y)\text{-MnO}_2\) at various values of \(y\)

![EDS images showing elemental distribution for \((K_xBi_y)\text{-MnO}_2\) at various \(y\) values](image)
Poster: Goulart J, Guida D, and Gallaway JW, "Operando characterization of rechargeable alkaline batteries for grid scale storage."

Task 3: The effect of Bi in aqueous MnO$_2$ systems
Bruck; Kim; Ma; Ehrlich; Okasinski; Gallaway, "Bismuth Enables the Formation of Disordered Birnessite in Rechargeable Alkaline Batteries." *Journal of The Electrochemical Society* **2020**, *167* (11), 110514.
Task 3.2 data collected at NSLS-II

- Operando Quick Extended X-ray absorption fine structure (QEXAFS)
- Atomic positions around Bi atoms
- Conducting data analysis currently
- Also operando Raman underway
Task 4: Structural effect of Bi doping in alkaline CuO batteries
Rechargeable Zn|(CuO–Bi₂O₃) batteries
2-electron cathode

Operando energy dispersive X-ray diffraction (EDXRD)

No Bi

The charged Cu(II) is a solution species or disordered

With Bi

Schorr; Arnot; Bruck; Duay; Kelly; Habling; Ricketts; Vigil; Gallaway; Lambert, "Rechargeable Alkaline Zinc/Copper Oxide Batteries." ACS Applied Energy Materials 2021, 4, 7073-7082.
Acknowledgements

Gallaway Lab, Northeastern University

Postdoctoral
- Dr. Andrea Bruck
- Dr. Bebi Patil

PhD
- Benjamin Howell
- Matthew Kim
- Alyssa Stavola
- Dominick Guida

MS
- James Goulart
- Maximilian Ulbert
- Tristan Owen
- Pushkar Gokhale
- Zhicheng Lu

Undergraduate
- Sydney Morris
- Josie Lee
- Erick Ruoff
- Kamila Wawer
- Claire Whitaker
- Kamnsi Arachie
- Ryan Stone
- Chris Owen

This work was supported by the U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability, Dr. Imre Gyuk, Energy Storage Program Manager.

This research used resources at beamline 28-ID (XPD) of the National Synchrotron Light Source II, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704.

This work used resources from the thermal analysis facility at Northeastern University Center for Renewable Energy Technology (NUCRET) and the TEM facility at The George J. Kostas Research Institute for Homeland Security (KRI).

Special thanks to those at SNL:
- Babu Chalamala
- Timothy Lambert
- Noah Schorr