Meet Jeff Harrell

Priority one for Jeff Harrell, recently named manager of NNSA’s Sandia Field Office, is “to make sure we put national security at the forefront of everything we do. That is our core mission and it’s incredibly important for our nation.” See page 9.

Animal planet

A veterinarian at a national lab might sound odd, but Sandia’s Melissa Finley helps make the world safer through livestock health and biosecurity. To work effectively in rural Afghanistan, Melissa had to earn the trust of villagers. See page 12.

Testing heats up at Sandia’s Solar Tower with high-temperature falling particle receiver

By Rebecca Brock

Sandia researchers are working to lower the cost of solar energy systems and improve efficiencies in a big way, thanks to a system of small particles. In June, engineers lifted Sandia’s continuously recirculating falling particle receiver to the top of the tower at the National Solar Thermal Test Facility, marking the start of first-of-its-kind testing that will continue through 2015. The Sandia-developed falling particle receiver works by dropping sand-like ceramic particles through a beam of concentrated sunlight, capturing and storing the heated particles in an insulated tank. The technology can capture and store heat at high temperatures without breaking down, unlike conventional molten salt systems.

Conventional central receiver technologies are limited to temperatures close to 600 degrees Celsius (1,112 degrees Fahrenheit), while operating temperatures for the falling particle receiver could exceed 1,000 degrees Celsius. Higher temperatures mean more available energy and cheaper storage costs because less material

(Continued on page 4)

DOE deputy secretary says Sandia helps make America great

By Nancy Salem

The work being done at Sandia is vital to the strategic goals of the DOE and is helping define what the United States can become in the future, says the deputy US secretary of Energy. “Your efforts help expand our knowledge of the world and the stuff of which it is made,” Elizabeth Sherwood-Randall told a packed house July 1 in the Steve Schiff Auditorium. “Your research helps lay the foundation for more resilient and sustainable energy systems and you make our nation stronger and safer against threats. I look forward to working closely with Jill. “How exciting to have you become the next director,” she said. (Photo by Randy Montoya)
That's that

The announcement on June 22 by Sandia Corp. Board of Directors Chair Rick Ambrose that Jill Hruby will be Sandia’s new Labs director was greeted with an astonishing wave of media interest from across the country and even beyond. Ambrose that Jill Hruby will be Sandia’s new Labs director was greeted with an astonishing wave of media interest from across the country and even beyond.

In the hours and days immediately following the announcement, news outlets large and small, from the New York Times to the Hilton Head Island Packet, and everywhere in between, jumped into the fray. With more than 30 pages of links to the story online, in looking at the incredible diversity of newspapers, professional and trade publications, television newsmagazines, television newsrooms, and websites that carried the item, it’s hard to say who wasn’t interested in this story.

The fact that Jill was selected to lead the nation’s largest national security laboratory in what we all know has been a male-dominated world is the very definition of news. But this wasn’t just any news. It was the kind of news that signals a fundamental shift in how we think about our world, an expansion of our idea of what’s not just possible but routine. I don’t think I’m overstating the case here.

On any given day, particularly in the information-saturated environment we live in, news editors are barraged with choices: Should we report this story? Will our readers be interested? In the case of the story about Jill’s new job, editors across the country (and at least one news site in the UK) determined that this was information that needed to be published. Savvy editors knew there was a huge amount of interest “out there” in encouraging women to embark on STEM careers. For editors not to share this news with their readers is like choosing not to deliver the mail.

Jill has been a role model for women at Sandia for some time; now that the word is out about her consequential accomplishments, Jill is a role model for girls and women everywhere.

In Sandia’s own news release, Jill recognized the significance of her appointment: “I’m proud to be the first woman to lead an NNSA laboratory,” she said, “and for me, this job is the highlight of my career.”

I think there are about 10,000 people who are proud right now, too.

The Trinity test, which occurred just 70 years ago this month near Alamogordo, New Mexico, is one of those historical touchstones that perfectly expresses the urgency with which this nation fought World War II.

Consider the challenges: The Manhattan Project’s roots date to 1918, but the project as we know it only got started in June 1942. Within three years and at an expense of $2 billion in 1940s dollars (probably the equivalent of more than $30 billion today), the nation had recruited the top scientists and engineers on the planet to solve problems no one had ever dealt with before. A massive industrial infrastructure was created to produce materials that had never existed as more than benchtop-sized samples. A workforce of some 130,000 people spread across sites around the country was assembled, the vast majority of whom had no idea what they were really working on. That incredible effort culminated in the Trinity test and the subsequent deployment of atomic bombs that destroyed the Japanese cities of Hiroshima and Nagasaki and abruptly ended the war in the Pacific.

In the horrible calculus of war, I believe the use of the weapons ended up saving lives, both Japanese and American. I know that sounds like a gratuitous assessment when made from the safe and comfortable distance of 70 years and written from the victor’s perspective. But I do believe there are millions of people spread across the globe on both sides of the Pacific who have died in an all-out assault on the Japanese home islands—who are alive today because President Truman made a very difficult decision in the summer of 1945.

— Bill Murphy (MS 1468, 505-845-0845, wtmurph@sandia.gov)
An Eye on the Unseen
Sandia’s BioWatch Indoor Reachback Center

By Holly Larsen

In the event of a biological incident that threatens human health and property, public health officials nationwide will turn to the recently released Indoor Program Guidance Document to craft their response. Created through a collaboration among Sandia researchers, public health officials, and instructional handbook distills experience gained at Sandia by operating the BioWatch Indoor Reachback Center (BIRC) for more than a decade.

Through BIRC, Sandia has been a key part of the US response to a potential bioterrorism or biohazard incident. For any indoor release detected by BioWatch — a system of early warning biological-agent detectors placed across the US — BIRC is poised to provide analyses that can rapidly help inform response decisions.

The role of BioWatch is particularly important because most biohazard releases can’t be detected otherwise. Without it, a release will only be suspected when people become symptomatic — possibly days or even weeks after exposure.

Fortunately, the BioWatch system can detect and characterize what’s happening early and accurately, providing information that can help first responders and public health officials determine how to handle a biohazard incident. The BioWatch program, initiated by the Department of Homeland Security (DHS) in 2003, is an essential way of putting technology to work for the safety of the American public.

Rapid response is key

Donna Edwards (8114), the leader of BIRC since August 2014, says that the BioWatch network of biode-tectors has been strategically placed in urban areas and transportation centers around the country to continu-ally monitor the air for biohazard releases.

“When the system detects something, an alarm goes off, and the system initiates a BioWatch Actionable Report, or a BAR,” says Donna. “If the alarm comes from an indoor detector, the BAR activates BIRC and notifies the jurisdictional coordinator. That’s the liaison between the BioWatch Program Office and the local government officials.”

In a key development, local public health officials are now authorized to contact BIRC directly in the event of a BAR, whereas previously federal approval was required. This change saves time, allowing the BIRC to immediately begin collecting data for decision-critical modeling and analysis support.

As soon as a BAR comes in, Donna and her team spring into action, aware that speed is of the essence. “Limiting the number of people exposed is absolutely critical to saving lives and ensuring that the local health system isn’t overwhelmed,” says Donna. Also crucial is reducing the size of the area that might require decontamination — a lengthy and costly process.

“We are on call 24/7, 365 days a year, and we assemble immediately in our facility at Sandia to analyze data. If members of the team are not all physically at the BIRC, we can still work together to develop maps and reports through conference calls and online collaboration.”

Thousands of airflow scenarios guide data interpretation

In rapid response to a BAR’s declaration, BIRC must provide a preliminary report during a conference call to key response staff, including the jurisdictional coordina- tor, and DHS personnel. A center at Los Alamos National Laboratory provides a similar service for outdoor incidents. The report BIRC provides is based on a sophisticated computer model and a library of simulations.

“We have a computer model of airflow in each building or transportation system, and tens of thou-sands of scenarios of how the bioagent might spread through each,” says Donna. “We can look at our sce-

narios and determine which ones best match the pat-tern seen by the detectors.” She adds that these same scenarios helped Sandia recommend optimal place-ment of the interior detectors.

Members of the BIRC team collectively analyze the likely scenarios and then apply their expertise to advise the responders using charts, maps, and clear communica-tions. To help ensure that the report is accurate and comprehensive, the BIRC team is diverse, including specialists in public health, systems analysis, emergency response and bioterrorism, indoor airflow, transporta-tion systems, and software development. A dozen team members are located throughout the country, at both the California and New Mexico locations of Sandia; at Argonne National Laboratory in Chicago; and in other urban locations.

Improving preparedness

With this combined expertise, the team works to thoroughly understand the data so it can provide local responders information on where the biohazard release might have originated, where it’s spreading, the amount of agent released, and the potential level of human exposure. Team members also focus on how best to present the findings.

“Our goal is to make the information as usable as possible. We want the local responders to be able to clearly decide where to direct their efforts and how best to stem the spread of the particular type of agent they are facing,” says Donna.

Since 2004, the BIRC team has achieved a number of milestones to help the BioWatch program become bet-ter prepared. The newly prepared Indoor Program Guidance Document is one example. The team also developed a BIRC Overview Video, part of an ongoing effort to develop training materials for the jurisdic-tional coordinators.

For Donna, being the leader of BioWatch Reachback team is an immense responsibility. However, she is sure she and her team can make a significant difference in mitigating an actual biohazard incident. “We rehearse for biohazard release incidents regularly through con-trolled exercises, and we’ll continue to do so into the future,” she says. “We are confident we can respond quickly in an emergency.”
Tracing the evolution of a drug-resistant pathogen

By Sue Major Holmes

To fight a pathogen that’s highly resistant to antibiotics, first understand how it gets that way: how do bacteria that carry a particular enzyme are known for “their ability to survive any antibiotics you throw at them,” says Corey Hudson (8613) of Sandia National Laboratories. Using Sandia’s genome sequencing capabilities, Corey and colleagues Robert Meagher (8621) and Kelly Williams (8613), along with former postdoctoral employee Zach Bent, identified several mechanisms that bacteria use to share genes and expand their antibiotic resistance.

Identifying how genomic islands move and their effect on bacterial physiology could lead to new approaches to bypass bacterial defenses, Corey says. Eventually, the effort might lead to a way to predict new pathogens before they emerge as public health threats.

“We’re just starting on this path,” Kelly says. “It’s a harder problem to predict emerging pathogens, rather than just observe them. Determining what is pathogenic in the first place and how it might become more pathogenic is a research challenge.”

Bacteria share genetic material with other bacteria

Bacteria share genetic material through free virus particles or plasmids — called genomic islands — that exchange genetic material between bacteria.

“A hypothetical example of sharing: A local water supply is contaminated with a pathogenic E. coli strain that is not antibiotic-resistant. Klebsiella pneumoniae enters the water, comes into contact with the E. coli, and donates genes. Now a pathogenic E. coli has acquired resistance, making it harder to eradicate. The great challenge is that bacteria can easily share their defenses,” Kelly says.

Over the two decades that various bacterial genomes have been sequenced, researchers have found rampant gene sharing. “They are not so much generating new genes all the time — that does happen slowly — but what they do is move whole clusters of genes all at once between species.”

Identifying how genomic islands move and their effect on bacterial physiology could lead to new approaches to bypass bacterial defenses, Corey says. Eventually, the effort might lead to a way to predict new pathogens before they emerge as public health threats.

“We’re just starting on this path,” Kelly says. “It’s a harder problem to predict emerging pathogens, rather than just observe them. Determining what is pathogenic in the first place and how it might become more pathogenic is a research challenge.”

Bacteria share genetic material with other bacteria

Bacteria share genetic material through free virus particles or plasmids — called genomic islands — that exchange genetic material between bacteria.

“A hypothetical example of sharing: A local water supply is contaminated with a pathogenic E. coli strain that is not antibiotic-resistant. Klebsiella pneumoniae enters the water, comes into contact with the E. coli, and donates genes. Now a pathogenic E. coli has acquired resistance, making it harder to eradicate. The great challenge is that bacteria can easily share their defenses,” Kelly says.

Over the two decades that various bacterial genomes have been sequenced, researchers have found rampant gene sharing. “They are not so much generating new genes all the time — that does happen slowly — but what they do is move whole clusters of genes all at once between species.”

Identifying how genomic islands move and their effect on bacterial physiology could lead to new approaches to bypass bacterial defenses, Corey says. Eventually, the effort might lead to a way to predict new pathogens before they emerge as public health threats.

“We’re just starting on this path,” Kelly says. “It’s a harder problem to predict emerging pathogens, rather than just observe them. Determining what is pathogenic in the first place and how it might become more pathogenic is a research challenge.”

Falling particle

(Continued from page 1)

is needed to transfer heat. Sandia engineer Cliff Ho (6123), the project’s principal investigator, says the goal of the testing is to develop a prototype, cost-competitive falling particle receiver that demonstrates the potential for thermal efficiency greater than 90 percent, while achieving particle temperatures of at least 700 degrees Celsius.

“This technology will enable higher temperatures and higher-efficiency power cycles that will bring down the cost of electricity produced from concentrating solar power,” Cliff says. “In addition, the ability to cheaply and efficiently store thermal energy directly in the heated particles will enable power production at night and on cloudy days.”

Falling particle receiver technology is expected to further advance the state-of-the-art in concentrating solar power tower systems capable of generating up to 100 megawatts of electricity.

Sandia’s partners in the DOE project are the Georgia Institute of Technology, Bucknell University, King Saud University in Saudi Arabia, and the German Aerospace Center. The project is funded by DOE’s SunShot Initiative, which aims to reduce solar energy costs and expand the use of solar energy technologies throughout the United States.

Sandia design engineer Josh Christian (6123) says the on-sun testing at the solar tower will occur in two phases. First, researchers will test an insert designed by Georgia Tech that slows falling particles inside the receiver like a Pachinko board to increase the temperatures of the particles as they fall through.

Later this summer, Sandia engineers will remove the Georgia Tech insert from the receiver and evaluate free-falling curtain configurations. Wind and other factors will affect the pace of the testing.

“New Mexico is great for this project because our state has pretty consistent solar insolation throughout the year,” Josh explained. “However the biggest thing we need is to have enough high power going is to make the falling particle receiver work. So a cloudy or hazy day is a big challenge for us. An ideal day for testing is a clear day with no clouds and no wind.”

This summer at Sandia’s National Solar Thermal Test Facility stands 200 feet tall and is the only testing facility of its kind in the United States.

SANDIA LAB NEWS • July 10, 2015 • Page 4
Deputy Energy Secretary Elizabeth Sherwood-Randall visits Sandia

"Starting with fundamental research, going to new discoveries, then piloting those technologies and bringing them to widespread deployment in the marketplace, Sandia has been a leader. In the 1960s, Sandia's invention of the cleanroom led to modern electronics. Today you are laying the groundwork for quantum computing and advancing US cybersecurity."

She said Moniz and Under Secretary for Nuclear Security and NNSA Administrator Frank Klotz are pursuing several initiatives to strengthen strategic partnerships and enhance the benefits of the management and operating, or M&O, contracting model. "Of course, in any contracting arrangement the federal government will retain responsibility for adherence to federal laws as well as ultimate responsibility for spending taxpayer dollars," she said. "We think we are making progress in two key areas: first, by reviewing the overall governance model and looking for ways to be innovative; and, second, examining the NNSA M&O contract incentives and evaluation process. The simple focus is on desired outcomes versus burdensome processes. This is something we will have an opportunity to interact with Jill about in the weeks ahead."

Making safety a top priority

She said DOE also wants decision-making that is as close to the work as possible and focuses on high-quality mission performance. Corrective actions are being tracked and managed by a joint DOE/NNSA governance and management performance steering committee, she said.

Sherwood-Randall closed by asking Sandians to continue to make safety a top priority and do work that benefits the American people. She quoted researcher Dahlen Chu (5020) as describing an innovation he was developing as the Sandia "secret sauce."

"The truth is all of you are the secret sauce," she said. "Thank you for what you do every day to make our nation what it is and enable us to be what we can be in the future."
Sandia's special appointments represent employees from all areas of the Labs' operations. According to Corporate Policy System documentation, placement in the distinguished level signifies a promotion to the fourth level of the job. This level is populated with a few exceptional employees who have distinguished themselves in their careers while at Sandia. It is different from the other levels in that it is subject to a 10 percent population limit to preserve the distinction of the level.

Divisions are not obligated to fill all their distinguished "slots."

Employees selected for the new levels have been recognized with a special plaque and a nonbase salary award, in addition to this special mention in the Lab News.

Also pictured here are individuals appointed to the very select title of senior scientist/engineer or senior administrator, a unique recognition of professional accomplishment.

68 Sandians move into Distinguished ranks

Photos by Lloyd Wilson and Stephanie Blackwell (New Mexico) and Randy Wong (California)

Senior Scientists/Engineers

- Susan Esfahani 2600 Electronics Engineering
- Tina Nierhoff 1100 Materials Science
- Gary Pelnisky 5400 Systems Engineering
- Patrick Sera 2200 Mechanical Engineering
- Scott Scoah 400 Systems Engineering
- Hy Tian 2500 Mechanical Engineering

Organizations 90, 100, 400

Division 1000

- Howard Anderson 1833 Laboratory Support Technologist
- Todd Bauer 1746 Electronics Engineering
- Hongyou Fan 1815 Promoted to Manager
- Brian Frankie 1341 Computer Science
- Kathryn Hanawil 1932 Technical Business Development
- Randy Harrison 1532 Mechanical Engineering

Division 2000

- Gary Ashcraft 2662 Computer Science
- Leonard Buchholz 2521 Solutions Architect
- Jeffery Cherry 2159 Mechanical Engineering
- Thomas Denman 2242 Electronics Engineering
- Randy Harrison 2137 Systems Engineering

Division 3000

- Ian Thomas Kehl 2554 Laser/Optical Technologist
- Arlene Lucero 2913 Publications Support
- Adrian Mura 2982 Solutions Architect
- David Van Orum 2732 Engineering Support Technologist
- Michael Partridge 2627 Electronics Engineering
- Daniel Petersen 2613 Mechanical Engineering
- Jason Podsedrik 2244 Engineering Support Technologist
68 Sandians move into Distinguished ranks

Division 2000

- Steven Shewalter, Chemical Engineering 2547
- Danielle Tanner, Electrical Engineering 2632
- Michael Tritt, Electromechanical Technologist 2615

Division 3000

- Philip Rosaci, Materials Science 2555

Division 4000

- Richard Dramer, Facilities Technologist 4824
- Andrew Zollier, Safety Engineering 4122

Division 5000

- James Felix, Cybersecurity 5645
- Thomas Loughry, Computer Science 5321

Division 6000

- Robert Copeland, Laboratory Support Technologist 6122
- Abraham Ellis, Nuclear Engineering 6112
- Ernest Hardin, Nuclear Engineering 6224
- Samuel Leininger, Engineering Support Technologist 6813
- Winanel Carter, Classification Technical Reviewer 8511
- Michelle Kahn, LAN/WAN Support Technologist 8949
- Albert Talin, Materials Science 8342

Division 7000

Photos unavailable

- Thomas Hafengrichter, Mechanical Engineering 5943
- Terrence Kraus, Nuclear Engineering 6631
- Deborah Espinosa, Performance Assurance Analyst 10223

Division 8000

- MaryAnn Prieto, Administrative Support 10675

Division 9000

- Roger Adams, Computer Systems 9338
- Joseph Brenkeith, Computer Systems 9338
- Leland Clise, Solutions Architect 9542
- Timothy Meeks, Solutions Architect 9513
- Alex Quintana, Cybersecurity 9317

Division 10000

- Steven Showalter, Business Management Professional 10665
- Connie Lucenas, Administrative Support 10675
- MaryAnn Prieto, Administrative Support 10598
- Niki Lobato, Business Management Professional 10665
How does Saturn hide its age?

Sandia’s Z machine helps solve Saturn’s 2-billion-year age problem

Research supports 80-year-old prediction regarding molecular hydrogen under pressure

By Neal Singer

Planets tend to cool as they get older, but Saturn is hotter than astrophysicists say it should be without some additional energy source.

The unexplained heat has caused a 2-billion-year discrepancy for computer models estimating Saturn’s age. “Models that correctly predict Jupiter to be 4.5 billion years old find Saturn to be only 2.5 billion years old,” says Thomas Mattsson, high-energy-density physics theory group manager (1641).

Experiments at Sandia’s Z machine may have helped solve that problem when they verified an 80-year-old prediction that molecular hydrogen — at relatively low temperatures. Previous experiments elsewhere used gas guns to shock the gas, but Saturn is hotter than astrophysicists say it should be without some additional energy source.

The results need to be plugged into astrophysical models to see whether the now-confirmed transition to metallic shocklessly, which kept it right above the liquid-solid line at about 1,000 degrees K.”

The Sandia work shows that dense hydrogen can be metallic, which in turn changes the coexistence of hydrogen and helium in the planet,” says Thomas. “The mechanism of helium rain that has been proposed is therefore very plausible, given our results, but the scientific discussion will continue over the next few years in establishing a new consensus.”

Interestingly, the determination that a metallic phase was reached was made optically. “There’s too much electrical noise in Z to make an electrical test, though we plan to directly measure current down the road,” Marcus says.

Optical tests rely on the transition from zero reflectivity (insulators) to the reflectivity achieved by metals. “The only way you get reflectivity is when a material is metallic,” Marcus says. Reflectivity was tested across the visible spectrum because the experiment itself produced light. “We collected it, put it through a spectrometer to dispense it, and passed it into a camera to observe it.”

When the hydrogen insulator reached enough pressure to become metallized, the researchers observed 45 percent reflectivity, an excellent agreement with theoretical calculations, says Mike. “This is a very nice merging of theory and experiment,” he says. “We threw all our computational tools — which are significant — at providing verification and interpretation of the complex experimental observations at Z.”

The work was done in collaboration with professor Ronald Redmer’s research group at University of Rostock in Germany and is a part of the Z Fundamental Science Program at Sandia. The multidisciplinary team included researchers with expertise in innovative experimental design, diagnostics, and pulse-shaping capabilities, matched with theoretical analysis using methods based on quantum mechanics.

Other authors besides Marcus, Mike, and Thomas include Redmer and Andreas Becker at University of Rostock, Kay Lemke and Kyle Cochrane (both 1641), Mark Savage (1651), and Dave Bliss (1675).

The Z machine is a National High Energy Density Science Facility supported by the NNSA.

RESULTS FROM SANDIA’S Z MACHINE provide hard data for an 80-year-old theory that could correct mistaken estimates of the planet Saturn’s age. In this false-color image made from data taken in 2008 by Cassini’s visual and infrared mapping spectrometer, heat emitted from the interior of Saturn shows up as red.

(Image credit: NASA/PLANS/University of Arizona)
Jeff Harrell is clear about the priorities that will drive his leadership as the new manager of NNSA’s Sandia Field Office.

“Priority one is what we’ve had for a long time: to make sure we put national security at the forefront of everything we do,” Harrell says. “That is our core mission and it’s incredibly important for our nation—especially right now.”

Harrell, who since 2009 had served as assistant deputy administrator for NNSA’s Office of Secure Transportation, assumed his role as SFO manager in April.

Related to keeping the focus on the national security mission, Harrell adds, “We are here to accept the work we’re given and make sure we get it done and get it done right. And when I say ‘we’ I mean Sandia and the Field Office.”

Harrell notes that he stepped into a position in which the relationship between Sandia and the Field Office was already “on a good footing.” He says he wants to ensure that the “very positive” relationship continues to mature. “We want to build on that,” he says.

A graduate of the US Air Force Academy, Harrell served in the USAF for 25 years, logging 3,300 flying hours, including more than 100 combat hours in the F-16. Serving in roles of increasingly leadership responsibility in the Air Force, Harrell’s last assignment before retiring was as vice commander of the 27th Fighter Wing, Cannon Air Force Base, New Mexico.

After leaving the Air Force in 2006, he continued to work for the federal government, joining the Senior Executive Service and heading up DOE’s National Training Center in Albuquerque.

New NNSA Sandia Field Office Manager

Jeff Harrell emphasizes shared mission

By Bill Murphy

Jeff Harrell is clear about the priorities that will drive his leadership as the new manager of NNSA’s Sandia Field Office.

“Our job is to see the success of the Labs and we’re successful in the Field Office when Sandia is successful. I really do believe it’s a partner relationship. In the Field Office, we have responsibilities to ensure that things are done right, are done in a safe and secure manner, that we’re doing everything legally, but right along with that we want to make sure that we’re helping you get the work done, that we provide assistance when needed. It’s working hand in hand, it really is.”

— Jeff Harrell, NNSA Sandia Field Office Manager

Jeff Harrell is clear about the priorities that will drive his leadership as the new manager of NNSA’s Sandia Field Office.

“Priority one is what we’ve had for a long time: to make sure we put national security at the forefront of everything we do,” Harrell says. “That is our core mission and it’s incredibly important for our nation—especially right now.”

Harrell, who since 2009 had served as assistant deputy administrator for NNSA’s Office of Secure Transportation, assumed his role as SFO manager in April.

Related to keeping the focus on the national security mission, Harrell adds, “We are here to accept the work we’re given and make sure we get it done and get it done right. And when I say ‘we’ I mean Sandia and the Field Office.”

Harrell notes that he stepped into a position in which the relationship between Sandia and the Field Office was already “on a good footing.” He says he wants to ensure that the “very positive” relationship continues to mature. “We want to build on that,” he says.

A graduate of the US Air Force Academy, Harrell served in the USAF for 25 years, logging 3,300 flying hours, including more than 100 combat hours in the F-16. Serving in roles of increasingly leadership responsibility in the Air Force, Harrell’s last assignment before retiring was as vice commander of the 27th Fighter Wing, Cannon Air Force Base, New Mexico.

After leaving the Air Force in 2006, he continued to work for the federal government, joining the Senior Executive Service and heading up DOE’s National Training Center in Albuquerque.

New NNSA Sandia Field Office Manager

Jeff Harrell emphasizes shared mission

By Bill Murphy

Jeff Harrell is clear about the priorities that will drive his leadership as the new manager of NNSA’s Sandia Field Office.

“Our job is to see the success of the Labs and we’re successful in the Field Office when Sandia is successful. I really do believe it’s a partner relationship. In the Field Office, we have responsibilities to ensure that things are done right, are done in a safe and secure manner, that we’re doing everything legally, but right along with that we want to make sure that we’re helping you get the work done, that we provide assistance when needed. It’s working hand in hand, it really is.”

— Jeff Harrell, NNSA Sandia Field Office Manager

Jeff Harrell is clear about the priorities that will drive his leadership as the new manager of NNSA’s Sandia Field Office.

“Our job is to see the success of the Labs and we’re successful in the Field Office when Sandia is successful. I really do believe it’s a partner relationship. In the Field Office, we have responsibilities to ensure that things are done right, are done in a safe and secure manner, that we’re doing everything legally, but right along with that we want to make sure that we’re helping you get the work done, that we provide assistance when needed. It’s working hand in hand, it really is.”

— Jeff Harrell, NNSA Sandia Field Office Manager

Jeff Harrell is clear about the priorities that will drive his leadership as the new manager of NNSA’s Sandia Field Office.

“Our job is to see the success of the Labs and we’re successful in the Field Office when Sandia is successful. I really do believe it’s a partner relationship. In the Field Office, we have responsibilities to ensure that things are done right, are done in a safe and secure manner, that we’re doing everything legally, but right along with that we want to make sure that we’re helping you get the work done, that we provide assistance when needed. It’s working hand in hand, it really is.”

— Jeff Harrell, NNSA Sandia Field Office Manager

Jeff Harrell is clear about the priorities that will drive his leadership as the new manager of NNSA’s Sandia Field Office.

“Our job is to see the success of the Labs and we’re successful in the Field Office when Sandia is successful. I really do believe it’s a partner relationship. In the Field Office, we have responsibilities to ensure that things are done right, are done in a safe and secure manner, that we’re doing everything legally, but right along with that we want to make sure that we’re helping you get the work done, that we provide assistance when needed. It’s working hand in hand, it really is.”

— Jeff Harrell, NNSA Sandia Field Office Manager

Jeff Harrell is clear about the priorities that will drive his leadership as the new manager of NNSA’s Sandia Field Office.

“Our job is to see the success of the Labs and we’re successful in the Field Office when Sandia is successful. I really do believe it’s a partner relationship. In the Field Office, we have responsibilities to ensure that things are done right, are done in a safe and secure manner, that we’re doing everything legally, but right along with that we want to make sure that we’re helping you get the work done, that we provide assistance when needed. It’s working hand in hand, it really is.”

— Jeff Harrell, NNSA Sandia Field Office Manager

Jeff Harrell is clear about the priorities that will drive his leadership as the new manager of NNSA’s Sandia Field Office.

“Our job is to see the success of the Labs and we’re successful in the Field Office when Sandia is successful. I really do believe it’s a partner relationship. In the Field Office, we have responsibilities to ensure that things are done right, are done in a safe and secure manner, that we’re doing everything legally, but right along with that we want to make sure that we’re helping you get the work done, that we provide assistance when needed. It’s working hand in hand, it really is.”

— Jeff Harrell, NNSA Sandia Field Office Manager

Jeff Harrell is clear about the priorities that will drive his leadership as the new manager of NNSA’s Sandia Field Office.

“Our job is to see the success of the Labs and we’re successful in the Field Office when Sandia is successful. I really do believe it’s a partner relationship. In the Field Office, we have responsibilities to ensure that things are done right, are done in a safe and secure manner, that we’re doing everything legally, but right along with that we want to make sure that we’re helping you get the work done, that we provide assistance when needed. It’s working hand in hand, it really is.”

— Jeff Harrell, NNSA Sandia Field Office Manager

Jeff Harrell is clear about the priorities that will drive his leadership as the new manager of NNSA’s Sandia Field Office.

“Our job is to see the success of the Labs and we’re successful in the Field Office when Sandia is successful. I really do believe it’s a partner relationship. In the Field Office, we have responsibilities to ensure that things are done right, are done in a safe and secure manner, that we’re doing everything legally, but right along with that we want to make sure that we’re helping you get the work done, that we provide assistance when needed. It’s working hand in hand, it really is.”

— Jeff Harrell, NNSA Sandia Field Office Manager