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their employees, makes any warranty, expressed or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or usefulness, of any 
information, apparatus, product, or process disclosed, or represents that its use would 
not infringe privately owned rights. References herein to any specific commercial 
product, process, or service by trade name, trade mark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring 
by the U.S. Government or any agency thereof. The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the U.S. Government or any 
agency thereof. 

DISCLAIMER 
This is a technical report that does not take into account contractual limitations or 
obligations under the Standard Contract for Disposal of Spent Nuclear Fuel and/or High-
Level Radioactive Waste (Standard Contract) (10 CFR Part 961). For example, under 
the provisions of the Standard Contract, spent nuclear fuel in multi-assembly canisters 
is not an acceptable waste form, absent a mutually agreed to contract amendment.  

To the extent discussions or recommendations in this report conflict with the provisions 
of the Standard Contract, the Standard Contract governs the obligations of the parties, 
and this report in no manner supersedes, overrides, or amends the Standard Contract. 

This report reflects technical work which could support future decision making by DOE.  
No inferences should be drawn from this report regarding future actions by DOE, which 
are limited both by the terms of the Standard Contract and Congressional appropriations 
for the Department to fulfill its obligations under the Nuclear Waste Policy Act including 
licensing and construction of a spent nuclear fuel repository. 
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EXECUTIVE SUMMARY 

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of 
Energy (DOE) Office of Nuclear Energy (NE), Office of Spent Fuel & Waste Disposition (SFWD) is 
conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high-
level nuclear waste (HLW). A high priority for SFWST disposal R&D is disposal system modeling 
(Sassani et al. 2021). The SFWST Geologic Disposal Safety Assessment (GDSA) work package is 
charged with developing a disposal system modeling and analysis capability for evaluating generic 
disposal system performance for nuclear waste in geologic media.  

Purpose: This report describes fiscal year (FY) 2022 advances of the Geologic Disposal Safety 
Assessment (GDSA) performance assessment (PA) development groups of the SFWST Campaign. The 
common mission of these groups is to develop a geologic disposal system modeling capability for nuclear 
waste that can be used to assess probabilistically the performance of generic disposal options and generic 
sites. The modeling capability under development is called GDSA Framework (pa.sandia.gov). GDSA 
Framework is a coordinated set of codes and databases designed for probabilistically simulating the 
release and transport of disposed radionuclides from a repository to the biosphere for post-closure 
performance assessment. Primary components of GDSA Framework include PFLOTRAN to simulate the 
major features, events, and processes (FEPs) over time, Dakota to propagate uncertainty and analyze 
sensitivities, meshing codes to define the domain, and various other software for rendering properties, 
processing data, and visualizing results.  

FY 2022 Accomplishments: The FY 2022 advances in GDSA Framework development include: 

• Software and hardware infrastructure. Completed second year of operational use of specialized 
software for managing, prioritizing, and tracking PFLOTRAN development requests (Section 
4.1.1.1); established 22 software requirements for RICHARDS (unsaturated) flow mode and 
related verification tests in the GDSA Quality Assurance (QA) test framework (Section 4.1.1.2) 

• PFLOTRAN performance improvements. Added a custom characteristic curve capability to 
mitigate PFLOTRAN convergence problems (Section 4.1.2.1); added the Newton Trust Region 
Dogleg Cauchy solver to the PETSc solver library with two demonstrations showing advantages 
of the solver (Section 4.1.2.2); implemented full implicit coupling of salt effects on liquid phase 
properties, salt transport, and flow (Section 4.1.2.3); implemented a stairstep correction in the 
mapdfn.py code for use in fracture path upscaling to a nonconforming equivalent continuous 
porous media mesh (Section 4.1.2.4) 

• PFLOTRAN model capability development. Sharpened strategies for prioritizing and 
implementing new model capabilities in PFLOTRAN (Section 4.1.3.1); completed a detailed 
implementation plan for a buffer erosion and waste package corrosion model for GDSA 
Framework (Section 4.1.3.2); completed 75% of a flexible, PFLOTRAN-compatible fuel matrix 
degradation (FMD) process model (Section 4.1.3.3; Appendix B); developed and tested a new 
second-generation FMD surrogate model approach (Section 4.1.3.3; Appendix C); improved the 
multi-continuum modeling of coupled fracture-matrix processes (Section 4.1.3.4); implemented a 
new material evolution process model (Section 4.1.3.5); implemented a new lookup table 
interpolation capability (Section 4.1.3.6); implemented salinity-dependent equations of state and 
an innovative reactive transport model for salt (Section 4.1.3.7); began developing a groundwater 
evolution model for the crystalline reference case (Section 4.1.3.8; Appendix D); completed a 
design document for a multifaceted biosphere model (Section 4.1.3.9) 
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• Other GDSA Framework development. Applied the recently developed GDSA Workflow 

graphical interface to the DECOVALEX crystalline repository reference case (Section 4.2.1); 
developed a Geologic Framework Model for the interface between crystalline rock and the 
biosphere (Section 4.2.2); created a new open-source version of the meshing code VoroCrust and 
used it in a shale repository demonstration (Section 4.2.3); developed and tested uncertainty and 
sensitivity analysis methods on applications involving discrete fracture networks and the new 
neural network FMD surrogate model (Section 4.2.4); developed and simulated new repository 
reference case models for Task F of the international DECOVALEX project (Section 4.2.5); 
improved generic reference case models for crystalline, salt, and unsaturated alluvium host rocks 
(Section 4.2.6); expanded documentation of GDSA calculations and GDSA Framework model 
capabilities (Section 4.2.7) 

• Outreach. Engaged internationally via leadership in DECOVALEX and geologic repository clubs 
and participation in conferences, papers, and external reviews (Section 4.3.1); developed and 
shared new versions and applications of open-source and freely available software used in GDSA 
Framework (Section 4.2.3); held a virtual PFLOTRAN short course (Nole et al. 2022, Section 
2.4.5); maintained an external GDSA Framework website (Section 4.3.3) 

• Integration and planning. Mapped FY 2022 GDSA activities to SFWST disposal near-term 
GDSA thrusts and showed that each near-term GDSA thrust is being addressed (Section 3) 

An important responsibility of the GDSA Framework development team is to integrate with disposal 
R&D activities across the SFWST Campaign to ensure that R&D activities support the development of 
GDSA Framework. In FY 2022, the team continued to participate with other scientists and engineers at 
LANL, LBNL, PNNL, ORNL, INL, ANL, DOE, and SNL in the development of fracture network 
models, Geologic Framework Models, FMD model integration, DECOVALEX-2023 Task F performance 
assessment, multi-continuum modeling, machine learning approaches, and advanced biosphere modeling.  

The ability to simulate increasingly complex repository reference cases continues to affirm that GDSA 
Framework can be used to simulate important multi-physics couplings directly in a total system safety 
assessment demonstration. Reference-case-repository applications show that GDSA Framework can 
simulate complex coupled processes in a multi-kilometer domain while simultaneously simulating sub-
meter-scale coupled behavior in the vicinity of each modeled waste package. Continued development will 
further enhance the preparedness of GDSA Framework for application in the future when transitioning to 
a program with potential sites.  

Future Work: The SFWST Disposal Research R&D 5-Year Plan will continue to guide GDSA work in 
the development of: 

• Advanced coupled process simulation capabilities, 

• State-of-the-art uncertainty and sensitivity analysis, 

• Traceable, user-friendly workflow for GDSA Framework, 

• Repository systems analysis for various disposal concepts and selected host rocks, and 

• Development of geologic models with interactive, web-based visualization. 

This report fulfills the GDSA Framework Development Work Package Level 2 Milestone – GDSA 
Framework Development and Process Model Integration, M2SF-22SN010304093. 
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1. INTRODUCTION 

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of 
Energy (DOE) Office of Nuclear Energy (NE), Office of Spent Fuel & Waste Disposition (SFWD) is 
conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high-
level nuclear waste (HLW). A high priority for SFWST disposal R&D is disposal system modeling 
(Sassani et al. 2021).  

The SFWST Geologic Disposal Safety Assessment (GDSA) Framework Development work package is 
charged with developing an open-source probabilistic modeling and analysis capability for 
evaluating/estimating generic disposal system post-closure performance for nuclear waste disposal 
concepts in a range of geologic media. The modeling capability under development is called GDSA 
Framework (pa.sandia.gov). GDSA Framework is a coordinated set of codes and databases designed for 
probabilistically simulating the release and transport of disposed radionuclides from a repository to the 
biosphere for post-closure performance assessment.  

The primary components of GDSA Framework include PFLOTRAN to simulate the major features, 
events, and processes (FEPs) over time, Dakota to propagate uncertainty and analyze sensitivities, 
meshing codes to define the domain, and various other software for rendering properties, processing data, 
and visualizing results. PFLOTRAN is a multi-physics thermal-hydrologic-chemical reaction and mass 
transport code (pflotran.org), and Dakota (dakota.sandia.gov) is used to propagate uncertainty and 
variability using multiple realizations and to quantify the effects of model parameters on model outputs 
(see Section 2.2 for details of both). These codes are designed for massively-parallel processing in a high-
performance computing (HPC) environment. 

Developing GDSA Framework in an open-source environment promotes collaboration with regulators, 
stakeholders, and the scientific community, facilitates development of the software, and enhances 
communication in a regulatory environment. GDSA Framework is being developed currently for generic 
disposal concepts so it is poised to be applied efficiently in future programs to specific disposal concepts 
being evaluated for comparison to regulatory safety criteria.  

GDSA Framework defines the state-of-the-art by evolving continuously with progress of the technology 
and science and provides a nimble tool for application in the full range of possible future systems for 
more specific evaluations once a program is reinstituted for performance assessment (PA) of any potential 
candidate sites within this century. Although the current focus is on incorporation of the most important 
technical processes for barrier capabilities/functions (e.g., radionuclide retention), advances in computing 
speed are expected to continue for ultimate application in any future program.  

For the near term, objectives are focused on including essential FEPs in GDSA Framework and on 
developing a suite of probabilistic generic repository reference case applications. In addition, the products 
of the near-term objectives are useful for evaluating the effects of FEPs and input parameters on 
repository performance, which is useful for R&D planning. 

For fiscal year (FY) 2022, six tasks were planned and addressed: 

• Use the 5-year Disposal Research R&D Plan (Sassani et al. 2021) to help identify additional 
capabilities needed in the short term and long term to advance GDSA Framework (e.g., 
multiphase processes, temperature dependencies, chemical processes, engineered barrier system 
(EBS) degradation processes, computational efficiency, gridding capability).  
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• Integrate subsystem models developed under this and other SFWST work packages into GDSA 

Framework software and safety assessments (e.g., waste form (WF) degradation, waste package 
(WP) degradation, EBS chemistry, EBS flow and transport, discrete fracture networks, thermal-
hydrologic-mechanical-chemical (THMC) processes, natural system flow and transport, geologic 
framework models). 

• Develop and implement methods for computationally efficient multi-scale, multi-physics 
modeling (e.g., surrogate models, reduced-order models, physics-based machine learning, nested 
models, Voronoi cell refinement). This task aims to improve integration of complicated processes 
in probabilistic safety assessments. 

• Document, test, and maintain model capabilities of GDSA Framework (e.g., conceptual and 
mathematical models, assumptions, ranges, limitations), expand regression testing as needed to 
demonstrate and assure continued quality, and work toward a GDSA Framework release package 
that enhances traceability, reproducibility, user-friendliness, and integration of components (e.g., 
dfnWorks, Online Waste Library). 

• Demonstrate components of GDSA Framework at national and international forums and support 
an international DECOVALEX activity for a multi-year PA modeling comparison of reference 
repository systems. Plan to conduct an international workshop to promote accelerated use of 
PFLOTRAN and other components of GDSA Framework worldwide to expand the user base, 
which creates additional testing of GDSA Framework components and further development by 
outside contributors. 

• Participate in technical training (e.g., classes/workshops in Python, simulation and analysis 
software, or computational and analysis methods), technical conferences, and international clubs 
and initiatives with direct benefit to GDSA. 

Section 2 of this report describes the conceptual model framework and the PFLOTRAN-based 
computational framework for GDSA Framework. Section 3 examines how the FY 2022 activities of the 
GDSA Framework development team are linked to the 5-Year Plan near-term GDSA thrusts. Section 4 
(and its supporting appendices) highlights the team’s major advances and activities in FY 2022. 
Conclusions are summarized in Section 5. 

This report fulfills the requirements of the GDSA Framework Development work package (SF- 
22SN01030409) Level 2 Milestone – GDSA Framework Development and Process Model Integration 
FY2022, M2SF- 22SN010304093. The work presented herein builds on previous reports, i.e., Freeze et 
al. (2013a); Sevougian et al. (2013); Sevougian et al. (2014); Mariner et al. (2015); Mariner et al. (2016); 
Mariner et al. (2017); Mariner et al. (2018); Mariner et al. (2019); Sevougian et al. (2019a); Sevougian et 
al. (2019b); Mariner et al. (2020a); Mariner et al. (2020b), and Mariner et al. (2021). 
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2. GDSA FRAMEWORK 

A safety case for a deep geologic disposal facility is a comprehensive set of bases and analyses designed, 
in part, to assess regulatory compliance with respect to safety standards. More specifically, it is a widely 
accepted approach for documenting the bases for the understanding of the disposal system, describing the 
key justifications for its safety, and acknowledging the unresolved uncertainties and their safety 
significance (OECD 2004; IAEA 2006; Freeze et al. 2013b). A full safety case may only be constructed 
for a specific site with an integrated design, but aspects of a safety case may also be developed for generic 
systems being evaluated in the SFWST Campaign.  

Building a generic safety case focuses on three primary components related most directly to post-closure 
safety assessments: 1) a safety strategy for the generic disposal concept, 2) technical bases for the natural 
and engineered barriers, and 3) a safety assessment of system performance.  

• The safety strategy provides direction and boundaries for the safety case. It guides the safety case 
by identifying requirements for site location, repository design, and safety objectives.  

• Technical bases are the laws of nature and the physical and chemical barriers that govern the 
system. They address each FEP that could potentially facilitate or inhibit the transport of 
radionuclides from the repository to the biosphere. Development of the technical bases involves 
site characterization (mainly as defined/constrained characteristics for generic sites), FEPs 
identification including waste inventory, barriers to radionuclide release and migration, 
radionuclide behavior, and using natural analogs, model validation, code verification, and 
uncertainty quantification.  

• Safety assessment involves the analysis of technical bases to evaluate whether the objectives of 
the safety strategy are met. In safety assessment, each FEP screened in the technical bases is 
either included/incorporated into the probabilistic performance assessment (PA) model or is 
excluded and addressed in separate analyses or process model simulations. In the PA model, 
regulatory metrics (e.g., annual dose rate) are estimated with probabilistic calculations to compare 
to regulatory limits. 

The goals and objectives of the GDSA Framework development team focus on safety assessment and, 
more specifically, on the development of the GDSA Framework modeling capability and the PA models 
of generic reference case applications simulated using GDSA Framework.  

Performance assessment for underground geologic disposal of nuclear waste is an iterative process for 
evaluating a comprehensive set of FEPs to determine the safety relevant FEPs to include in a PA model. 
Probabilistic PA model simulations are performed to estimate the full range of behavior of the system 
including the pertinent variability and uncertainty in the system, and results are evaluated against system 
performance metrics (e.g., for evaluating key sensitivities needing further constraint or for assessing 
performance against regulatory requirements). Uncertainty and sensitivity analyses may also be 
performed to inform prioritization of additional research and/or model development within a program.  

A PA model has a conceptual model framework and a computational framework. These frameworks are 
summarized in Sections 2.1 and 2.2, respectively. An overview of PA methodology and terminology is 
presented in Sevougian et al. (2014, Section 2.2), Meacham et al. (2011, Section 1) and elsewhere 
(Rechard 2002).  
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2.1 Conceptual Model Framework 
A conceptual model framework for a PA model requires a coherent representation of pertinent FEPs. 
Figure 2-1 schematically illustrates the conceptual model framework for a repository system. To calculate 
a dose to a receptor in the biosphere, radionuclides released from the waste form must pass through the 
repository EBS and the surrounding natural barrier system (NBS).  

A FEPs database like the one developed and described in Freeze et al. (2011) can be used to help identify 
a full set of potentially important FEPs for a specific conceptual repository model. Many of the FEPs in a 
FEPs database may be directly simulated in the PA model. In a comprehensive PA, excluded FEPs 
(i.e., FEPs not simulated in the PA model) must be addressed in separate analyses and arguments. 

 

Figure 2-1 Schematic diagram of the conceptual model framework of a generic geologic disposal system PA 
model 

2.2 Computational Framework 
Performance assessment of a geologic repository is aided by directly modeling the important coupled 
processes in the system and executing multiple probabilistic realizations. The approach of propagating 
uncertainty in computational PA models is a continuation of the successful modeling approaches adopted 
for the Waste Isolation Pilot Plant (WIPP) PAs (Rechard 1995; Rechard 2002; Rechard and Tierney 
2005) and for disposal of SNF and HLW in volcanic tuff (Rechard and Stockman 2014).  

GDSA Framework is used to execute the computational PA model. GDSA Framework consists of the 
following components: 

• Input parameter databases 

• Software for sampling, sensitivity analysis, uncertainty quantification (UQ), workflow, and 
traceability (Dakota) 

• Petascale multiphase flow and reactive transport code (PFLOTRAN), working in concert with 
coupled process model codes (e.g., Fuel Matrix Degradation (FMD) model) 

• Computational support software and scripts for meshing, stochastic preprocessing, output 
processing, and visualization of results (e.g., CUBIT, VoroCrust, dfnWorks, Python, ParaView). 

The two primary components of this computational framework are PFLOTRAN and Dakota. 
PFLOTRAN is a thermal-hydrologic-chemical multi-physics code used to simulate coupled multi-physics 
processes affecting waste isolation in a repository system and transport of released radionuclides to the 
biosphere over time. Simulated processes include heat flow, fluid flow, waste dissolution, radionuclide 
release, radionuclide decay and ingrowth, precipitation and dissolution of secondary phases, and 
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radionuclide transport. Dakota is an uncertainty sampling and propagation code. Dakota is used to 
propagate uncertainty in PFLOTRAN simulations and to analyze PFLOTRAN results to assess 
sensitivities of model processes and inputs. Dakota is also used to graphically run and document the entire 
workflow of probabilistic simulations. These two codes are described in more detail in Sections 2.2.1 and 
2.2.2. 

The flow of data and calculations through the components of GDSA Framework is illustrated in Figure 
2-2. In a probabilistic simulation, Dakota’s Next Gen Workflow manages the entire simulation from the 
generation of stochastic input for each PA realization to the execution of PFLOTRAN and production of 
custom output files via Python scripts. The sampled inputs are used by PFLOTRAN and its coupled 
process models to simulate source term release, EBS evolution, flow and transport through the EBS and 
NBS, and uptake in the biosphere. After the simulation, various software (e.g., Python, Matplotlib, 
ParaView) may be used to reduce and illustrate the output results of parameters and performance metrics. 
Dakota may also be used to evaluate the effects of parameter uncertainty on specific outputs.  

 

Figure 2-2 GDSA Framework structure 

2.2.1 PFLOTRAN 
PFLOTRAN (Hammond et al. 2011a; Lichtner and Hammond 2012) is an open source, reactive multi-
phase flow and transport simulator designed to leverage massively-parallel HPC to simulate subsurface 
earth system processes. PFLOTRAN has been employed on petascale leadership-class DOE computing 
resources (e.g., Jaguar [at Oak Ridge National Laboratory (ORNL)] and Franklin/Hopper [at Lawrence 
Berkeley National Laboratory (LBNL)]) to simulate THC processes at the Nevada Test Site (Mills et al. 
2007), multi-phase CO2-H2O for carbon sequestration (Lu and Lichtner 2007), CO2 leakage within 
shallow aquifers (Navarre-Sitchler et al. 2013), and uranium fate and transport at the Hanford 300 Area 
(Hammond et al. 2007; Hammond et al. 2008; Hammond and Lichtner 2010; Hammond et al. 2011b; 
Chen et al. 2012; Chen et al. 2013). PFLOTRAN is also under development for use in PA at the Waste 
Isolation Pilot Plant (WIPP). 
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PFLOTRAN solves the non-linear partial differential equations describing non-isothermal multi-phase 
flow, reactive transport, and geomechanics in porous media. Parallelization is achieved through domain 
decomposition using the Portable Extensible Toolkit for Scientific Computation (PETSc) (Balay et al. 
2013). PETSc provides a flexible interface to data structures and solvers that facilitate the use of parallel 
computing. PFLOTRAN is written in Fortran 2003/2008 and leverages state of the art Fortran 
programming (i.e. Fortran classes, pointers to procedures, etc.) to support its object-oriented design. The 
code provides “factories” within which the developer can integrate a custom set of process models and 
time integrators for simulating surface and subsurface multi-physics processes. PFLOTRAN employs a 
single, unified framework for simulating multi-physics processes on both structured and unstructured grid 
discretizations (i.e., there is no duplication of the code that calculates multi-physics process model 
functions in support of structured and unstructured discretizations). The code requires a small, select set 
of third-party libraries (e.g., MPI, PETSc, BLAS/LAPACK, HDF5, Metis/Parmetis). Both the unified 
structured/unstructured framework and the limited number of third-party libraries greatly facilitate 
usability for the end user. 

2.2.2 Dakota 
The Dakota software toolkit is open-source software developed and supported at Sandia National 
Laboratories (Adams et al. 2012; Adams et al. 2013). Dakota provides deterministic codes an extensible 
interface for propagating uncertainty into a set of realizations and for performing sensitivity analysis and 
optimization. GDSA Framework uses Dakota’s sampling schemes, principally Latin Hypercube Sampling 
(LHS), to propagate input value uncertainty into probabilistic PFLOTRAN simulations. Dakota is also 
used in sensitivity analyses to analyze the effects of input value uncertainty on probabilistic GDSA 
Framework results. In addition, Dakota’s Next Gen Workflow capability was recently incorporated to 
develop a graphical workflow interface to execute and manage probabilistic GDSA Framework 
applications. 
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3. GDSA FRAMEWORK DEVELOPMENT PLAN 

This section identifies high priorities for GDSA Framework development (Sections 3.1 and 3.2) and how 
those priorities are being addressed (Section 3.3). 

3.1 5-Year Plan 
The priorities of SFWST disposal research are documented in SFWST Disposal Research R&D 5-Year 
Plan – FY2021 Update (Sassani et al. 2021). In the plan, activities for each disposal research R&D 
technical area are evaluated and categorized in terms of near-term (1-2 years) and longer-term (3-5 years) 
thrusts. The objective of the GDSA technical area is “to develop and continuously maintain a state-of-the-
art software framework for probabilistic post-closure performance assessment analyses of facilities for 
deep geologic disposal of nuclear waste.” 

The near-term primary thrusts for the GDSA technical area are: 

• Advanced coupled process simulation capabilities (G01), 

• State-of-the-art uncertainty and sensitivity analysis (G02), 

• Traceable, user-friendly workflow for GDSA Framework (G03), 

• Repository systems analysis for various disposal concepts and selected host rocks (G04), and 

• Development of geologic models with interactive, web-based visualization (G05). 

The near-term GDSA thrusts are provided verbatim in Appendix A. Longer-term (3-5 years) thrusts 
include multi-fidelity modeling, in-package chemistry, gas flow in the EBS, cement seal evolution, new 
repository designs, and preparation for site applications. An additional GDSA focus area identified in 
Section 3 of the plan addresses in-drift coupled chemistry modeling and major chemical reactions with 
materials over appropriate temperature ranges.  

3.2 2019 Roadmap Update for GDSA 
Development of the 5-year plan was influenced by the 2019 Disposal Research R&D Roadmap Update 
(Sevougian et al. 2019a) and the 2012 Used Fuel Disposition (UFD) Campaign Roadmap (DOE 2012). 
The 2019 Roadmap Update highlighted progress, priorities, and remaining gaps in disposal research R&D 
activities.  

Activities defined and tracked in the 2019 Roadmap Database are a collection of specific disposal 
research objectives focused on improving knowledge of FEPs and how they affect repository 
performance. They include: 

• Collecting and measuring the properties of features (e.g., radionuclides, waste forms, waste 
packages, buffer, damaged rock zone, repository layout, host rock, etc.) and their associated 
uncertainties 

• Identifying and modeling important processes (e.g., flow of heat and groundwater, waste package 
degradation, waste form degradation, radionuclide adsorption, buffer evolution, etc.) at small 
scale and/or in repository simulations  

• Estimating the magnitudes, consequences, and probabilities of events that might affect repository 
performance (e.g., criticality, disruptive events) 
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• Developing tools and processes to propagate uncertainties in repository performance calculations 

and to enhance sensitivity analysis  

A total of 17 activities were defined for GDSA PA in the 2019 Roadmap Update (Sevougian et al. 2019a). 
They are listed in Table 3-1. The linkages between the GDSA thrusts and the GDSA Roadmap activities 
are evaluated in Mariner et al. (2021, Section 5.3).  

Table 3-1 GDSA PA activities in the Roadmap Database of the 2019 Disposal R&D Roadmap update 

 

3.3 Alignment of GDSA Framework Development Activities with 
Near-Term GDSA Thrusts and 2019 Roadmap 

GDSA Framework development activities undertaken in FY 2022 are listed in Table 3-2. They are linked 
in Table 3-2 to near-term GDSA thrusts (Section 3.1) and 2019 Roadmap activities (Section 3.2). As 
indicated, each GDSA near-term thrust was addressed to some degree in FY 2022.  

GDSA Framework development activities commonly involve careful integration between SNL GDSA 
work packages and other parties. The major parties involved in the FY 2022 GDSA Framework 
development activities are also identified in Table 3-2.   
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Table 3-2 FY 2022 GDSA Framework development activities mapped to GDSA Roadmap activities and 5-

Year Plan near-term GDSA thrusts 

FY 2022 GDSA Framework Development Activities 
FY 2022 

Participants 

Roadmap 
Database 

PA Activity 

Near-Term 
GDSA 

Thrusts 
Agile/Jira system operation (Section 4.1.1.1) SNL - G01, G03 
Biosphere modeling (Section 4.1.3.9) PNNL, SNL  P-08, P-09 G01, G04 
Buffer evolution (Section 4.1.3.2) SNL P-01, P-02, 

P-14 
G01 

DECOVALEX-2023 Task F: Performance assessment 
(Section 4.2.5) 

SNL, LBNL, 
LANL, 
International 

P-02, P-03, 
P-05, P-12 

G02, G04 

dfnWorks development and integration (Sections 4.2.5.1, 
4.2.6, and 4.2.7.1) 

LANL, SNL P-02, P-10, 
P-14 

G01, G02 

Fracture path upscaling (Section 4.1.2.4) SNL, LANL P-02 G01, G03 
Fuel matrix degradation (Section 4.1.3.3, Appendix B, and 
Appendix C) 

SNL, ANL, PNNL P-13, P-14 G01 

GDSA documentation (Section 4.2.7.1) SNL - G01, G03 
GDSA Workflow (Section 4.2.1) SNL - G02, G03 
Geologic Framework Model (Section 4.2.2) SNL, LANL, INL P-01, P-02, 

P-04, P-09 
G03, G04, 
G05 

Groundwater chemistry modeling (Section 4.1.3.7, Section 
4.1.3.8, and Appendix D) 

SNL P-11, P-13 G01 

Machine-learning surrogate models (Sections 4.1.3.3 and 
4.2.4) 

SNL, LBNL P-14 G01 

Material evolution (Section 4.1.3.5) SNL P-14 G01 
Multi-continuum transport development (Section 4.1.3.4) SNL, LANL P-02, P-14 G01 
Multifidelity uncertainty methods (Section 4.2.4.1) SNL P-10 G02 
PFLOTRAN convergence (Section 4.1.2) SNL P-01, P-02, 

P-03, P-04, 
P-17 

G01 

Process/surrogate model coupling (Sections 4.1.3.1 and 
4.1.3.6) 

SNL P-14 G01 

QA toolbox and test suite development (Section 4.1.1.2) SNL - G03 
Repository reference case development (Section 4.2.6) SNL P-01, P-02, 

P-03, P-04, 
P-10 

G02, G03, 
G04 

Re-saturation modeling (Sections 4.1.2.1 and 4.1.3.7) SNL P-14 G01, G04 
Uncertainty and sensitivity analysis (UQ/SA) (Section 4.2.4) SNL, International P-02, P-03, 

P-10 
G02, G04 

Voronoi meshing and simulation (Section 4.2.3) SNL, LANL P-01, P-02, 
P-03, P-04, 
P-09 

G01, G04, 
G05 

Waste package degradation (Section 4.1.3.2) SNL P-12, P-13 G01 

 



 GDSA Framework Development and Process Model Integration FY2022 
10                                                                        September 2022 

 
4. GDSA FRAMEWORK DEVELOPMENT 

GDSA Framework is maturing into a highly capable PA modeling tool for deep geologic disposal of 
nuclear waste. Since adoption of the PFLOTRAN-Dakota approach in 2013, many features and processes 
important to disposal PA have been added to the framework. In addition, generic reference cases have 
been developed for different host rocks and disposal concepts, and probabilistic and sensitivity analysis 
tools have been refined and demonstrated on a subset of those reference cases. Advances in the 
capabilities of the framework are aided by collaboration with other work packages of the SFWST 
Campaign (and the previous Used Fuel Disposition (UFD) Campaign) and by ongoing interaction with 
the international community. A historical summary of developments in GDSA Framework from 2010 to 
2019 is provided in Mariner et al. (2019). 

Guided by the SFWST Disposal Research R&D 5-Year Plan – FY2021 Update (Sassani et al. 2021), and 
more distantly by the Roadmap reevaluation exercise in FY 2019 (Sevougian et al. 2019a), the GDSA 
Framework development team continued to make advances in FY 2022. This section describes advances 
pertaining to general code development, meshing, uncertainty quantification, workflow, outreach, and 
international collaboration.  

PFLOTRAN advances in FY 2022 are summarized in Section 4.1. Much of this development is described 
in detail in the recent PFLOTRAN development report (Nole et al. 2022). More general GDSA 
Framework advances are described in Section 4.2, many of which are also covered in more detail in other 
reports (e.g., LaForce et al. 2022; Swiler et al. 2022). Section 4.3 addresses international and outreach 
activities. 

4.1 PFLOTRAN Development 
The development of PFLOTRAN for GDSA Framework continued at a strong pace in FY 2022. 
Important advances were made in PFLOTRAN infrastructure (Section 4.1.1), code performance (Section 
4.1.2), and process model development (Section 4.1.3).  

4.1.1 Software and Hardware Infrastructure 
4.1.1.1 Code Management System 
To help manage code development activities, the PFLOTRAN development team uses the Atlassian Jira 
issue and project tracking software. Jira issues range from major upgrades and additions to small tasks 
and bug corrections. Every two weeks, the team assesses progress made, categorizes newly submitted 
issues, re-prioritizes issues as needed, and confirms assignments for the next two weeks. 

Figure 4-1 shows a running tally of task statuses from May 2020 to June 2022. Details about the tracking 
software, how the team utilizes it, and specific issues addressed can be found in Section 2.1.1 of Nole et 
al. (2022). 
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Figure 4-1 Number and status of sprint issues over time (Nole et al. 2022) 

4.1.1.2 Quality Assurance 
The PFLOTRAN development team continued in FY 2022 to expand and upgrade the Quality Assurance 
(QA) test framework. This year’s work focused largely on the QA for RICHARDS mode of PFLOTRAN 
for simulating fluid flow. A total of 22 requirements for RICHARDS mode were defined to satisfy 
functionality needed for GDSA Framework. Tests were identified for each requirement, many of which 
came from the existing test suite. Several tests were added, including a test comparison against a different 
flow simulator, TOUGH3.  

The full test suite for RICHARDS mode was automated to run the tests and calculate error metrics. 
Currently, all error metrics are within tolerances and therefore all requirements are met. If a future change 
causes a test to fail, the software will notify the user. Further details of this work are presented in Section 
2.1.2 of Nole et al. (2022). 

4.1.2 Code Performance Improvements 
4.1.2.1 Characteristic Curve Enhancements 
In FY 2021, characteristic curves for media saturation in PFLOTRAN were smoothed so that 
PFLOTRAN solvers could handle transition to dry conditions (Nole et al. 2021). In FY 2022, the ability 
to use an experimentally measured characteristic curve, or other point-by-point characteristic curve, was 
added. This capability was needed because models for characteristic curves in PFLOTRAN are not 
always sufficient to capture some of the features of experimentally derived curves. Care must be taken, 
however, because values between points for these new curves are determined by linear interpolation. 
Linear interpolation can cause discontinuous or non-smooth derivatives if the capillary pressure and 
relative permeability datasets are not of sufficiently high resolution in regions of high curvature. Work is 
ongoing to study whether the use of splines can address that issue. More detailed information on this 
work is provided in Nole et al. (2022). 

4.1.2.2 Solvers 
Rapid solver convergence is a continuing challenge for increasingly complicated PFLOTRAN 
simulations. Flow and transport calculations rely heavily on solvers and preconditioners. In the past two 
years, significant advances have been made for both. 
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In FY 2022, the Newton Trust Region Dogleg Cauchy solver (NTRDC) was added as an option to 
PFLOTRAN and PETSc. NTRDC is a new trust region-based nonlinear solver developed by Heeho Park 
(Nole et al. 2021). PETSc is the solver library upon which PFLOTRAN is built. The NTRDC solver code 
was officially released March 30, 2022 in PETSc version 3.17.0 (Nole et al. 2022). 

The performance of the NTRDC solver was tested in FY 2022 on three unsaturated alluvium repository 
simulations with three different thermal loads due to emplacing three different waste package types: 12 
PWR (pressurized water reactor), 24 PWR, or 37 PWR. Higher thermal loads cause increased frequency 
of phase changes between liquid and gas. The NTRDC solver performed well while the default Newton 
Raphson nonlinear solver failed for all waste package types. Details of this study and another study (on 
grid convergence) using the NTRDC solver are presented in Nole et al. (2022). 

4.1.2.3 Full Coupling of Salt Effects, Salt Transport, and Flow 
Three major advances were made this year in PFLOTRAN flow and transport modeling in saline 
groundwater systems. Two advances are described in the process model development section (Section 
4.1.3) because they are process model developments: new salinity-dependent equations of state and 
expanded solute mass balance equations (Section 4.1.3.7). The advance qualifying as a code performance 
improvement (Section 4.1.2) is that these new equations are now fully coupled to the flow solution. 

Coupling these equations to the flow solution is a major advance over sequential coupling. With 
sequential coupling, salinity effects on flow properties and solute mass balances are updated during the 
transport solution time step and then handed to the flow solution as inputs. Sequentially coupled 
simulations can converge on an erroneous solution if the timestep is not sufficiently low for a given fluid 
velocity and grid meshing. Fully implicit coupling of the transport and flow equations provides a solution 
that is unconditionally stable and is not subject to the aforementioned timestep limitations. 

The fully implicit solute implementation was compared to the sequential implementation by running the 
classic Elder problem. In the Elder problem, saltwater intrudes into an underlying freshwater aquifer by 
density driven flow. The results of these simulations are shown in Figure 4-2. Those of the fully implicit 
simulation more closely resemble those of Voss and Souza (1987). A more detailed discussion of this 
study is provided in Section 2.2.9.1 of Nole et al. (2022). 
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Figure 4-2 Comparison of Elder problem results for fully implicit and sequentially coupled 
implementations. Voss and Souza (1987) concentration contours of 60% and 20% of the 
maximum concentration (black) are compared to the corresponding concentration contours 
(yellow and blue, respectively) of the PFLOTRAN simulations. 
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4.1.2.4 Stairstep Correction for Fracture Path Upscaling 
In the crystalline reference case and other GDSA simulations involving discrete fracture networks 
(DFNs), DFNs are upscaled to space-filling meshes. When DFNs are upscaled to hexagonal meshes, 
sloped fracture planes are converted into coarsely pixilated stairsteps. Stairsteps effectively result in 
longer path lengths and longer solute travel times. 

To counter the longer path lengths generated by upscaling, a stairstep correction was implemented in 
mapdfn.py. The correction is derived from Sweeney et al. (2020) where the amount of correction needed 
is determined by the dot product between each fracture in the grid cell and the normal vector to each 
coordinate axis. The factor is applied based on the fracture in the cell whose angle is closest to 45°. Initial 
testing indicates the implementation was successful, but additional verification is needed. 

4.1.3 Model Capability Development 
4.1.3.1 Strategy for Model Capability Development 
In FY 2020, a general strategy was developed to facilitate a streamlined quality-controlled process of 
integrating models into PFLOTRAN (Mariner et al. 2020a, Section 3.1.3). The approach uses the Jira 
issue and project tracking software discussed in Section 4.1.1.1. Requests for a code enhancement or a 
new process model implementation are submitted as Jira issues, along with details describing what is 
needed and the overall importance of the enhancements. In FY 2022, the approach was refined and used 
for the proposed development of the buffer erosion and waste package degradation model (Section 
4.1.3.2). A summary of the refined approach is provided here.  

1. To qualify for the attention of the PFLOTRAN developers, requestors must: 

a. Provide a summary of the model and general ideas for how it will be used 

b. Justify why the model is needed  

i. Is the model expected to have significant effects on important repository 
performance metrics or otherwise support GDSA Framework objectives? 

c. Identify all model input and output requirements including valid ranges of input values 
and valid combinations of input values (Detailed requirements on inputs and outputs are 
listed in Section 3.1.3 of Mariner et al. (2020a).) 

d. State relevant model assumptions and limitations 

e. Provide an example simulation/calculation of the model along with plots or tables of 
outputs 

f. Address the following questions 

i. Are all relevant model assumptions acceptable, and do the valid ranges of input 
values extend beyond the envelope of acceptable inputs for the intended use? If 
not, explain. 

ii. Are there other models or approaches with more defensible assumptions that 
could cover the same or larger range of applicability? 

iii. Does the standalone model converge and produce sensible results over the entire 
(potentially multi-dimensional) input sample space requested? 

2. The developers must then: 

a. Verify that the requestor has provided the necessary information and justification 
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b. Decide whether the model is ready for implementation 

c. Seek work package manager approval as needed to ensure support 

d. Accept or reject request, documenting reasons (and management approval as needed) 

Upon acceptance, the Jira issue is prioritized and, depending on whether it is high enough priority level, 
the Scrum Master designs a series of tasks and assigns them to the appropriate PFLOTRAN developer(s). 
Once assigned, the developer works with the requestor to identify the best implementation approach. 
Depending on the complexity of the model, the developer may establish regular meetings with the 
requestor during implementation. 

This general approach was followed for the buffer erosion and waste package corrosion model. The 
requestor prepared a Microsoft (MS) Word file that addressed in detail all the information listed above, 
including example simulations in Mathcad and results of the calculations. The PFLOTRAN developers 
were satisfied with the request and because it would involve a significant effort, they shared it with the 
work package manager to ensure support for the implementation. The implementation has since been 
assigned to a developer and has been scheduled to begin in late FY 2022. 

4.1.3.2 Buffer Erosion and Waste Package Degradation 
Copper, due to its high chemical stability under crystalline repository conditions, continues to be a prime 
candidate as a waste package outer barrier material in the U.S. repository program and in the programs of 
many countries. In FY 2021, a concerted planning effort was made to implement buffer erosion and 
copper corrosion models into PFLOTRAN. The models are based on the models developed and used by 
SKB and Posiva for the Forsmark and Olkiluoto repositories. Adding this type of modeling capability to 
PFLOTRAN is expected to be useful not only for simulating buffer erosion and waste package corrosion 
processes in the U.S. program but also potentially to facilitate adoption and testing of PFLOTRAN for 
repository applications outside the U.S. The basic models are summarized in Mariner et al. (2021) and 
Nole et al. (2022). The conceptual buffer erosion model is illustrated in Figure 4-3. 

 

Figure 4-3 Conceptual model of buffer erosion due to a flowing fracture (Fig 6-108, Posiva 2013) 

In FY 2022, with the general implementation conceptualized the year before, a MS Word file was 
prepared to accompany the Jira request. That file carefully described the conceptual model, inputs and 
outputs, the ranges of model validity for the inputs, assumptions, limitations, and the mathematical model. 
In addition, it provided a printout of a Mathcad model developed to show how the model worked, and it 
provided an application that verified that the model produced the expected results. Further, it addressed 
the various questions asked of a requestor when making a Jira request (Section 4.1.3.1).  
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The request was accepted, and the implementation is underway. A summary of the various model 
components and how they will be implemented is provided in Nole et al. (2022).  

4.1.3.3 Fuel Matrix Degradation (FMD) 
The FMD model is the uranium dioxide (UO2) matrix degradation process model of GDSA Framework. It 
was developed collaboratively at Argonne National Laboratory and Pacific Northwest National 
Laboratory (Jerden et al. 2015b). The model, coded in MATLAB, calculates spent fuel degradation rates 
as a function of radiolysis, electro-kinetic reactions, alteration layer growth, and diffusion of reactants 
through the alteration layer. In more recent versions of the model, steel corrosion is included to provide a 
source of hydrogen (Jerden et al. 2018). 

In FY 2015 a version of the FMD process model that excludes steel corrosion was coded in Fortran 
(Jerden et al. 2015a). That Fortran code was coupled to PFLOTRAN and was successfully demonstrated 
(Mariner et al. 2015). Apart from the computational results, the demonstration indicated that the coupled 
model was highly demanding computationally. Mechanistic simulation of the FMD model processes 
requires many calculations at each time step. For a probabilistic repository PA calculation with thousands 
of WPs and hundreds of realizations, the coupled Fortran code from 2015 is too expensive. Further, the is 
does not allow for dynamic time stepping and was not written for parallel computing. 

In FY 2019 and FY 2020, two approaches were undertaken to include the FMD process model in GDSA 
Framework. One approach, described in the first subsection below, was to develop a new Fortran code 
utilizing rapid solvers and flexible time steps for a more powerful standalone FMD process model that 
smoothly couples to PFLOTRAN. The other approach, summarized in the second subsection, was to use 
Machine Learning (ML) techniques to develop surrogate models of the FMD process model for accurate 
and rapid emulation in PFLOTRAN.  

Fortran Process Model 

In FY 2019, GDSA Framework developers began building a new Fortran code to simulate the FMD 
process model. The objectives of the new code are a faster design, HPC-compatible, improved 
convergence, and improved coupling with PFLOTRAN. Also, to make the new process model more 
flexible than the original MATLAB code, an additional objective is to add the capability of using 
dynamically changing chemical and temperature inputs over time. The code will be open source. 

Appendix B documents progress in FY 2022. Efforts this year concentrated on implementing the 
interfacial reactions of the MATLAB code. As discussed in Appendix B, interfacial reactions are 
implemented in a non-standard way in the MATLAB code. The MATLAB code is implemented 
recursively which makes reading the code more challenging. Appendix B outlines the algorithm in which 
the corrosion potentials are solved first and then the concentrations are updated. It also details the planned 
approach for improving the iterative process as the interfacial reactions are implemented.  

Radiolysis has been implemented in the Fortran code using a constant value for 𝐺𝐺𝐻𝐻2𝑂𝑂2, the primary alpha 
radiolysis yield of H2O2. For a constant value, the implementation is working as expected. A 
demonstration that includes diffusion is shown in Figure 4-4. A more complex model for 𝐺𝐺𝐻𝐻2𝑂𝑂2 is needed 
when concentrations of H2 are high and O2 low (Buck et al. 2013); that model will be implemented in the 
future. The initial focus, however, is on implementing the interfacial reactions to complete the first overall 
objective, which is to develop a flexible, efficient, HPC-compatible Fortran code that reproduces the 
processes implemented in the MATLAB code. 

A summary of recent work on this Fortran code development will appear in the proceedings of the 2022 
American Nuclear Society International High-Level Radioactive Waste Management Conference. The 
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title of the paper is, “Development of an Efficient Version of the Fuel Matrix Degradation Model” 
(Harvey et al. 2022).  

 

Figure 4-4 Concentration of H2O2 as a function of time for various distances from the fuel surface. 

FMD Surrogate Models 

In FY 2020, an Artificial Neural Network (ANN) surrogate model and a k-Nearest-Neighbors regression 
(kNNr) surrogate model were implemented in PFLOTRAN for the FMD process model (Mariner et al. 
2020b). The ANN surrogate is a parametric model that utilizes a network of artificial neurons with 
nonlinear activation functions. The kNNr surrogate is a nonparametric model that uses an advanced 
interpolation approach to approximate a model response using the set of closest neighboring training 
points in a multidimensional database of training points. 

In FY 2022, a major advance in the surrogate approach was developed and tested. The thickness of the 
corrosion layer on the fuel surface was built into a new version of the kNNr surrogate model. The 
corrosion layer thickness (CLT) – a valuable dynamic indicator of system state – grows as the fuel 
degrades. Importantly, CLT physically affects the fuel matrix degradation rate. Secondarily, it 
qualitatively indicates how long the fuel has been degrading.  

To test the idea, CLT was added as an input variable to a branch of the kNNr FMD surrogate model. A 
new machine-learned surrogate was developed to predict both the CLT and fuel degradation rate at the 
current time. It was trained on a) the inputs of the original kNNr surrogate model, b) the CLT from the 
previous time step, and c) the time step length. In a repository reference case simulation, the predicted 
current CLT provides the CLT input for the kNNr surrogate model at the next time step.  

Figure 4-5 and Figure 4-6 show preliminary kNNr surrogate predictions for 50 randomly sampled 
trajectories of the Matlab FMD process model. Aside from some deviations early in time, the CLT 
predictions are highly accurate, generally within 1-2% of the Matlab FMD process model “true” values. 
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The fuel degradation rate (UO2 flux) prediction is noisy as it is a local prediction, drawing information 
only from 10 nearest neighbors to each query point in the training sample space.  

 

Figure 4-5 Comparison of the True and kNNr prediction of the CLT for 50 randomly selected runs in the 
testing data. 

 

Figure 4-6 Comparison of the True and kNNr prediction of the UO2 flux for 50 randomly selected runs in 
the testing data. 

Overall, with this kNNr configuration and 23 million training samples, the prediction of the fuel 
degradation rate shows a normalized root mean squared error (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) of 0.11, and a mean absolute 
percentage error (𝑛𝑛𝑚𝑚𝑚𝑚𝑛𝑛) of 29%. Even without extensive tuning of the kNNr metaparameters, this is a 
significant improvement from the 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 error of 0.48 and 𝑛𝑛𝑚𝑚𝑚𝑚𝑛𝑛 error of 44% of a well-tuned kNNr 
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surrogate case where no CLT information was used. A detailed account of this work is provided in 
Appendix C. 

In addition to model development, two papers on FMD surrogate modeling were written this year. The 
first, “Machine Learning Surrogate Process Models for Efficient Performance Assessment of a Nuclear 
Waste Repository,” presents the model development summarized above and fully described in Appendix 
C (Debusschere et al. 2022). It will appear in the proceedings of the 2022 American Nuclear Society 
International High-Level Radioactive Waste Management Conference. The second, “Machine Learning 
Surrogates of a Fuel Matrix Degradation Process Model for Performance Assessment of a Nuclear Waste 
Repository,” describes the development and testing of the kNNr and ANN FMD surrogate models 
implemented in GDSA Framework. It was submitted to the Journal of Nuclear Technology in September 
of 2022. 

4.1.3.4 Multi-Continuum Transport 
PFLOTRAN’s multi-continuum model simulates disconnected secondary (matrix) continua connected to 
a primary (fracture) continuum. It is referred to as the DCDM (Dual Continuum Disconnected Matrix) 
model (Lichtner, 2000). Each primary cell hosts its own disconnected one-dimensional secondary 
continuum. 

There were several improvements and activities involving the DCDM capability in FY 2022: 

• Improvements were made to user friendliness including the addition of an extensive error 
messaging system (Nole et al. 2022, Section 2.2.3.1). 

• The ability to use log grid spacing was added for grid cells adjacent to the primary continuum 
(Nole et al. 2022, Section 2.2.3.2). 

• The model was exercised for 241Am decaying to 237Np using the UFD Decay Process Model of 
PFLOTRAN (Nole et al. 2022, Section 2.2.3.3). 

• Unsaturated applications that focused on gas transport and diffusion were successfully tested 
against two analytical solutions and an explicit unstructured grid solution (Nole et al. 2022, 
Section 2.2.6). 

4.1.3.5 Material Transform Process Model 
Events and processes such as a criticality event or high heat loads can cause material properties to 
suddenly or gradually change. In FY 2022, a material transform process model was developed for 
PFLOTRAN to effect these changes in a computationally efficient way.  

The material transform process model was refactored from the smectite-to-illite model (Nole et al. 2021) 
into a general-use module so that multiple processes could affect the material and transport properties of a 
cell. For example, the properties of buffer cells can be affected by smectite-to-illite transition processes as 
well as buffer erosion processes. This new model was set up such that it can make use of its own time-
stepper if iterations are needed for convergence. 

The new capability was tested on a 1D smectite-to-illite transition sample problem for two different 
transition models. In each case, calculation of smectite fraction, permeability, and sorption coefficients as 
a function of time matched the analytical solutions. Figure 4-7 compares the analytical solutions of the 
cesium sorption coefficient changes over time versus the two different models tested. A more detailed 
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discussion of the new materials transform process model and its verification are provided in Nole et al. 
(2022). 

 

Figure 4-7 Cesium sorption coefficient (KD) as a function of time using the Huang et al. (1993) model (1) 
and the Cuadros and Linares (1996) model (2). 

4.1.3.6 Lookup Table Interpolation 
Three-dimensional lookup table interpolation is another capability added to PFLOTRAN this year. This 
capability is useful for interpolating user-provided three-dimensional response surfaces having three 
independent variables. 

Two methods were implemented:  

• LookupTableInterpolate3DLP: Lagrange polynomials (the default) as applied to three axes, or  

• LookupTableInterpolate3DTrilinear: Trilinear method, an extension of linear interpolation in 
three dimensions.  

This new capability is demonstrated in Nole et al. (2022) for two criticality applications.  

4.1.3.7 Salt Effects and Salt Transport 
There were three major advances in PFLOTRAN’s ability to account for salt content in the calculation of 
flow and transport this year: 

• Salinity-dependent equations of state were implemented, as summarized in the first subsection 
below. These equations are used to calculate the density, viscosity, vapor pressure, and enthalpy 
of the liquid phase as a function of the amount of aqueous sodium chloride. 

• Solute mass balance equations that use the salinity-dependent equations of state were fully 
coupled with the flow solution (Section 4.1.2.3). 

• The ability to dissolve and precipitate the solid matrix based on solubility limits was added to the 
solute mass balance equations for the GENERAL mode of PFLOTRAN (two/three-component, 
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multi-phase air/water flow), as demonstrated in the second subsection below. This capability is 
useful when the rock matrix is salt. 

Salinity-Dependent Equations of State 

Sodium chloride is often the dominant salt in groundwater. In FY 2022, a new set of equations of state for 
sodium chloride solutions was built into PFLOTRAN. These equations of state improve the accuracy of 
PFLOTRAN calculations of the density, viscosity, saturation pressure, and enthalpy of sodium chloride 
solutions, especially for brines.  

The set of sodium-chloride-dependent equations of state includes formulations for: 

• Aqueous solubility of sodium chloride as a function of temperature (Sparrow 2003) 

• Fluid mass density as a function of temperature and sodium chloride mass fraction (Sparrow 
2003) or as a function of temperature, pressure, and salt concentration (Batzle and Wang 1992) 

• Vapor pressure as a function of temperature and sodium chloride mass fraction (Sparrow 2003) or 
as a function of pure water temperature at the same pressure and sodium chloride molality (Haas 
1976) 

• Liquid enthalpy as a function of temperature and sodium chloride mass fraction (Sparrow 2003) 

The response surface for the enthalpy relationship is shown in Figure 4-8. The full set of sodium-chloride-
dependent equations of state and their response surfaces are documented in Nole et al. (2022). 

 

Figure 4-8 Specific enthalpy as a function of salt concentration 

Implicitly-Solved Precipitation and Dissolution 

A solubility-controlled solid phase was included as an additional component in the solute mass balance 
equations of the GENERAL mode of PFLOTRAN. This solid phase can form in the pore space of an 
insoluble matrix (e.g., sandstone), or can form the solid rock matrix of a soluble material (e.g., salt). For a 
salt formation, if the groundwater in the salt becomes undersaturated with respect to the salt for any 
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reason (e.g., changes in temperature), a portion of the salt matrix will dissolve, raising the groundwater 
salinity and increasing porosity. By incorporating a solubility-controlled solid phase in the solute mass 
balance equations, GENERAL mode can now be used to adjust cell porosities as needed to maintain mass 
balance of salt in the domain while also maintaining chemical saturation with salt. The new solute mass 
balance equations are presented and described in Nole et al. (2022, Section 2.2.9). 

There are two major benefits of this new fully implicit solution. The first is that there are convergence 
issues when the flow problem and reactive transport problem are solved sequentially. For that type of 
problem, the Courant–Friedrichs–Lewy (CFL) condition must be met to prevent convergence on an 
oscillatory/improper solution. The CFL condition is based on the grid discretization, magnitude of the 
fluid velocity, and the timestep (CFL=dt*velocity/dx), so meeting this condition usually involves 
reducing the timestep. The fully implicit solution is unconditionally stable, so it does not require the CFL 
condition to be met and allows larger timesteps. The second major benefit is related to being able to 
entirely dissolve the rock matrix in a partially saturated system. Because the porosity becomes a primary 
variable, as porosity decreases, the gas phase is compressed and the gas pressure increases. 

To demonstrate this new capability, along with the other new salt-related capabilities implemented this 
year (see the beginning of Section 4.1.3.7), a common benchmark problem by Olivella et al. (1994) was 
simulated: a one-dimensional multi-phase fluid flow problem through salt. The initial porosity is 30%, 
and the initial water saturation is 30%. The temperature is held constant at 85 °C on the left and 5 °C on 
the right. During the simulation, the high temperature on the left causes water to evaporate, salt to 
precipitate, porosity to decrease, and water vapor to flow to the right. Toward the right, where 
temperatures are cooler, vapor condenses, a small portion of the salt matrix dissolves to maintain 
chemical saturation, and porosity increases.  

The calculated porosity profiles over time are shown in Figure 4-9. They successfully demonstrate the 
expected trends. Calculated profiles of gas velocities and liquid velocities are also calculated but not 
shown here. They are shown in Section 2.2.9.2 of Nole et al. (2022) where this demonstration is fully 
described.  

 

Figure 4-9 Porosity evolution in the Olivella et al. (2011) benchmark problem 
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4.1.3.8 Groundwater Evolution 
The concentrations of dissolved species in groundwater affect many processes important to repository 
performance. Affected processes include fuel matrix degradation, buffer erosion, canister corrosion, in-
package material degradation, alteration of smectite in buffer materials, multiphase flow, colloid stability, 
radionuclide solubility, and radionuclide sorption. The GDSA Framework salt reference case may soon 
begin to incorporate salt effects (Section 4.1.3.7), but otherwise, GDSA Framework reference cases have 
not yet included aqueous groundwater chemistry. 

This year, development of a hydrogeochemical reactive transport model was initiated for the crystalline 
reference case. Studies performed at the Onkalo spent nuclear fuel repository (Posiva 2021) are used to 
guide development. The Onkalo spent nuclear fuel repository is a mined repository located on the island 
of Olkiluoto in Eurajoki, Finland. The host rock is gneiss and granite.  

In the performance assessment for the Onkalo repository, groundwater salinity and concentrations of 
sulfide are important. A decrease in groundwater salinity, due to deep percolation from melting ice after a 
glacial period, could potentially cause significant erosion of buffer around a copper waste canister if there 
is a flowing fracture intersecting the emplacement borehole. If buffer erosion is extensive and exposes a 
canister to groundwater flow, sulfide in the groundwater could potentially corrode enough copper to 
breach it. 

Calculations were performed using PHREEQC to reproduce groundwater compositions at Olkiluoto by 
mixing and equilibrating four depth-dependent water endmembers. PHREEQC is an aqueous geochemical 
code developed by the U.S. Geological Survey (www.usgs.gov/software/phreeqc-version-3). In addition, 
a one-dimensional reactive transport model is being developed using PHREEQC to simulate the processes 
and chemical reactions hypothesized to produce the groundwater compositions observed with depth. A 
major reaction in the Posiva model is the reduction of sulfate by hydrogen gas diffusing from the matrix. 
The PHREEQC calculations, chemical reactions, and general chemical model are described in detail in 
Appendix D. Incorporation of chemistry into the GDSA Framework crystalline reference case is expected 
to begin next year. 

4.1.3.9 Biosphere 
The current biosphere model implemented in PFLOTRAN consists of an ingestion dose model from 
drinking contaminated well water (Mariner et al. 2017, Section 3.2.3). That model can be used to simulate 
Example Reference Biospheres 1A and 1B of the International Atomic Energy Agency (IAEA 2003) and 
can explicitly include the special enhancement effects of highly-mobile short-lived radionuclides like 
radon-222. 

In FY 2020, Pacific Northwest National Laboratory (PNNL) began developing a comprehensive 
biosphere model for GDSA Framework. The general requirements of the model are that it be generic, 
flexible, open source, compatible with PFLOTRAN, and consistent with international recommendations 
and guidance for such models built for deep geological repositories. Features and processes include 
multiple pathways, components, interactions, and radionuclide decay and ingrowth. Figure 4-10 shows a 
schematic diagram of the various pathways planned for inclusion. 

This fiscal year, a software design document was developed and finalized. In addition, twelve new 
exposure pathways were added for a human receptor. A detailed description of these accomplishments 
and planned next steps is provided in Ghosh et al. (2022).  
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Figure 4-10 Schematic diagram of potential pathways in new biosphere model being developed for GDSA 
Framework (graphic from Condon et al. 2020) 

4.2 Other GDSA Framework Development 
In addition to development of the PFLOTRAN code (Section 4.1), there were advances in other GDSA 
Framework codes. There were also advances in GDSA Framework reference cases and documentation of 
model capabilities and calculations. These advances include development of: 

• Next Generation Workflow graphical interface for GDSA Framework simulations (Section 4.2.1) 

• Geologic Framework Model application to crystalline rock (Section 4.2.2) 

• An open-source version of VoroCrust-Meshing and a simplified PA model using VoroCrust 
(Section 4.2.3) 

• Uncertainty and sensitivity analysis applications and methods (Section 4.2.4) 

• International generic performance assessment models (Section 4.2.5) 

• Improved generic reference case models (Section 4.2.6) 

• GDSA model and calculation documentation (Section 4.2.7) 

4.2.1 GDSA Workflow 
In FY 2020, the GDSA team began developing automated analysis workflows using the Next-Generation 
Workflow (NGW) capability of Dakota to improve automation, reproducibility, and traceability for 
GDSA Framework simulations. The NGW capability is a graphical, node-based interface that includes 
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many pre-programmed support functions. As part of the GDSA Framework, NGW is used to 
autonomously collect inputs from multiple sources, modify the PFLOTRAN input files based on the 
inputs collected, run the PFLOTRAN simulations, and run a post-processing script to collect and 
visualize results and calculate additional quantities of interest. NGW is available within the Dakota 
Graphical User Interface (GUI) (Ridgway 2020) and is thus available to the GDSA analysis community.  

Development of NGW workflows for GDSA Framework aims to: 

• Reduce the learning curve for new users to set up and run new simulations 

• Speed up analysis workflow execution time 

• Eliminate/reduce the need for manual intervention 

• Allow for automated monitoring 

• Reduce the potential for human errors 

• Increase traceability and reproducibility 

The eventual goal is to develop an analysis workflow library that can be made available to the GDSA 
analysis community. A full demonstration of a probabilistic GDSA Framework workflow is provided in 
Appendix C of Mariner et al. (2020a).   

In FY 2021, a “Crystalline Reference Case UA Nested Workflow” was developed and run to support 
uncertainty propagation and sensitivity analysis of the GDSA Framework crystalline reference case. The 
advantages and benefits were found to include:   

• Quicker turnaround enabling two full studies in one year 

• Easy handoff of workflows to new analysts  

• Increased development of scripts supporting final production runs  

• Increased robustness against HPC outages during production runs 

A notional view of the detailed structure of the crystalline reference case uncertainty analysis (UA) 
Nested Workflow is shown in Figure 4-11. A detailed description of each of the elements of this 
workflow along with an overall description of this structure is given in Swiler et al. (2021).  



 GDSA Framework Development and Process Model Integration FY2022 
26                                                                        September 2022 

 

 

Figure 4-11 Detailed notional view of the Crystalline Reference Case UA Nested Workflow structure 
showing the workflows along with important files, actions, and codes that are employed for 
each. 

In FY 2022, the NGW capability became referred to as GDSA Workflow. In addition to supporting two 
new probabilistic crystalline reference case simulations, it was extended to support the DECOVALEX 
Task F1 work discussed in Section 4.2.5.1 (Swiler et al. 2022).  

Adapting the GDSA Workflow to the DECOVALEX reference case required editing input files, updating 
run directories and job submission scripts, and updating selected outputs and post-processing scripts. To 
help with future conversions, analysts developed a checklist of steps to take when an established 
workflow is converted to a new reference case. 

4.2.2 Geologic Framework Model – Geology and Hydrology of Glacial Deposits 
to Support Biosphere Modeling in a Crystalline Rock Environment 

Host-rock models for the crystalline reference case have focused on a generic representation of the 
geosphere based partly on features of crystalline rock (e.g., fracture systems) that have been well 
documented at the Forsmark site in Sweden (Mariner et al. 2016). In FY 2021, we developed a conceptual 
model of the shallow geosphere (within ~100 meters of the surface) based on features of crystalline 
basement rocks and glacial deposits in the northeastern US (LaForce et al. 2021). Glacial deposits 
(“overburden”) represented in the conceptual model are glacial till, glaciofluvial (“outwash”) sand and 
gravel deposits and glaciomarine silts and clays. In FY 2022, we use this information and data obtained 
from an example watershed in New England to begin development of a test case for biosphere modeling 
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that focuses on the groundwater contribution to streams and the irrigation needs and water sources for 
crops. This effort is summarized here and described in detail in LaForce et al. (2022).   

Pacific Northwest National Laboratory (PNNL) is developing a biosphere model to evaluate dose to 
human receptors as part of GDSA disposal system modeling (Condon et al. 2020). The biosphere model 
will be broadly applicable to geologic media and environments being considered in the GDSA generic 
reference cases (Mariner et al. 2021, Section 3.2.6). Unconsolidated glacial deposits overlie crystalline 
basement rocks in many areas of the northern US that were glaciated during the Quaternary Period. This 
geologic environment is therefore of interest when evaluating geosphere-biosphere interactions as part of 
development of the biosphere model. 

Common pathways for movement of radionuclides into the biosphere are through extraction of 
groundwater from wells and groundwater discharge to surface water features (Condon et al. 2020). In the 
case of groundwater discharge, radionuclide concentrations in surface waters depend partly on the 
properties of the near-surface geosphere features (e.g., permeability of glacial deposits) and the degree of 
mixing that occurs between radionuclide-contaminated groundwater and surface streams or lakes.  

In this section we summarize data from a representative watershed in New England that is intended to 
provide a basis for development of initial biosphere test case scenarios in a crystalline environment. The 
watershed used as an example for this study was chosen based on geology that is representative of the 
region. The geology and hydrology of the glacial deposits within the watershed are intended to represent a 
simplified and generalized (“generic”) example of a geologic features that can be found in other areas of 
the northern US. 

4.2.2.1 Description of the Example Watershed 
The example watershed is located within a few kilometers of the coast of Maine. The lower portion of the 
watershed nearest the coast lies on a flat coastal plain (Figure 3-1A). Further inland, the watershed 
transitions to a broadly sloping plateau that is incised by the primary stream and its tributaries (Nielsen 
and Locke 2015; Figure 3-1A). The elevation difference from the top to the bottom of the watershed is 
about 110 meters. Total length of the watershed is about 15 km with an approximate width that is between 
2 and 3 km, for a total area of approximately 40 km2. 
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Figure 4-12 Shaded relief map showing the boundary of the watershed and the incision of the glacial 
deposits by the main stream and its tributaries (streams shown in blue). B. Simplified geologic 
map of glacial deposits within the region of the watershed and distribution of water wells within 
the watershed 

Glacial deposits that overlie the crystalline basement rocks can be divided into three major units (Figures 
3-1B and 3-2). The lowermost unit, directly draping crystalline bedrock, is glacial till with a thickness of 
up to 7 meters. Clay and silt deposits of the glaciomarine Presumpscot Formation overlie glacial till with 
a typical thickness of 5-20 meters. The Presumpscot Formation is the most extensive glacial deposit in the 
area of the watershed. Due to its low permeability, it is a regional aquitard that limits groundwater flow to 
overlying and underlying units. The youngest glacial deposits within the watershed are sand and gravel 
glacial outwash deposits that form the shallow aquifer of the area. Sand and gravel deposits have typical 
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thicknesses of 5-20 meters. In most areas of the watershed, the main stream has incised through the sand 
and gravel deposits into the underlying Presumpscot Formation. Tributaries of the stream are generally 
less incised and only incise the overlying sand and gravel deposits. Because to their high permeability, 
sand and gravel deposits are the main pathway for groundwater discharge to the tributaries that supply 
water to the main stream (Nielsen and Locke 2015).  

Groundwater flow within the watershed is from west to east and follows the topographic gradient 
(Nielsen and Locke 2015). Groundwater flows from local topographic highs within sand and gravel units 
to the nearest discharge points at streams. Participation in the region of the watershed averages between 
115-140 cm (45-55 inches) per year (National Weather Service 2022; Nielsen and Locke 2015). Rainfall 
amounts in the region are fairly consistent from month to month ranging from about 9 to 13 cm. For the 
May-September growing season, average precipitation is about 10 cm per month with a range in the 
average of 9.7 to 11.6 cm.  

Recharge to the uppermost permeable sand and gravel deposits in the watershed is approximately 50-60% 
of total precipitation (Nielson and Locke 2015). For use in biosphere models, we assign a recharge rate of 
70 cm per year to the sand and gravel deposits and the overlying soils. The underlying Presumpscot 
Formation, which is a regional confining unit, has a recharge rate estimated at 1 to 5 cm per year (Nielsen 
and Locke 2015). We assign the Presumpscot Formation a recharge rate of 2 cm per year. We assign a 
recharge rate of 12 cm per year for both till and underlying fractured bedrock, based on values reported in 
Nielsen and Locke (2015).  

4.2.2.2 Water Well Characteristics 
A total of 126 water wells are located within the watershed (Figure 3-1B). A large majority of these wells 
(116) are within the crystalline bedrock and ten are shallow wells within gravel deposits. All of the 
bedrock wells are for domestic use, and most have yields of less than 20 gallons per minute (GPM). Nine 
of the ten gravel wells are also for domestic use with the highest yielding well (150 GPM) for municipal 
use. The average depth of bedrock wells is 91 meters with an average yield of 18 GPM. The average 
depth of bedrock wells falls within the depth range of high-permeability horizontal fracture zones typical 
of crystalline rock environments (LaForce et al. 2021). Based on a much smaller sample size, sand and 
gravel wells have an average depth of 15 meters and an average yield of 27 GPM. 

4.2.2.3 Groundwater Contribution to Streams 
The groundwater contribution to streams is controlled largely by the permeability of underlying geologic 
units. Groundwater contributions are highest where streams are in contact with high-permeability units 
(Winter et al. 1998; Figure 3-2). Nielsen and Locke (2015) modeled groundwater and surface water flow 
to understand potential streamflow depletion from well withdrawals. Our interest is in how base flow 
values for the main stream (representing groundwater contribution to stream flow) compare to the overall 
stream flow. Stream flow is at its lowest in the summer when calculated streamflow values overlap 
calculated base flow values of 15-20 ft3/s (Nielson and Locke 2015), indicating that a high percentage of 
the summer streamflow between precipitation events is due to base flow. Based on these estimates, we 
assign a groundwater contribution of 90% (by volume) to total stream flow during the growing season 
with the groundwater derived dominantly from the sand and gravel deposits (Figure 3-2). This estimate is 
consistent with results presented by Winter et al. (1998) showing groundwater contribution to streams is 
controlled by the permeability of underlying geologic formations with the highest contributions from 
unconsolidated sand and gravel deposits.  

Although we can estimate the contribution of groundwater as a percentage of stream flow, radionuclide 
concentrations in the groundwater that contributes to streamflow will require PFLOTRAN modeling. 
Modeling will allow estimates of radionuclide concentrations in surface waters when combined with 
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estimates of groundwater contributions to streams. Given the high amount of surface recharge into the 
shallow aquifer and the possibility of limited flow from below due to the presence of the clay and silt 
confining unit, it is likely that radionuclides in the sand and gravel aquifer will have significantly lower 
radionuclide concentrations compared to water flowing through bedrock fractures. 

  

 
 

Figure 4-13 Schematic representation of stratigraphy and groundwater flow in a watershed with three types 
of glacial deposits (not to scale). Groundwater flow from the upper sand and gravel aquifer 
contributes approximately 90% of the water to the total streamflow. Arrows are general 
indicators of flow velocities based on differences in permeability. Question marks indicate 
uncertainty in flow and transport in glacial deposits.  

4.2.2.4 Agricultural Framework 
The climate and soils of southern Maine support a variety of crops including leafy vegetables, root 
vegetables, fruit trees and berries (Central Aroostook Soil and Water Conservation District 2005). The 
growing season is from May through September and can be extended by the use of greenhouses and other 
enclosed growing facilities. Average rainfall during the growing season (10 cm per month) typically 
supplies at least half the water needs for most crops with irrigation supplying the rest.  

Water Sources 

Water sources for agriculture are described in Central Aroostook Soil and Water Conservation District 
(2005). Water sources in southern Maine include streams, lakes, man-made impoundments (ponds), 
springs and wells (Central Aroostook Soil and Water Conservation District 2005). The sources considered 
for input to the biosphere model in this test case scenario are wells and streams. Water from wells in 
crystalline bedrock, sand and gravel aquifers and surface streams would be expected to have decreasing 
concentrations of radionuclides. In general, streams are not a reliable water source for irrigation because 
irrigation demands are greatest in August and September when stream levels are at their lowest (Central 
Aroostook Soil and Water Conservation District 2005). It is important to be able to estimate radionuclide 
concentration in streams however due to their potential use for irrigation and impact on downstream 
natural habitats or other users. 
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Water Requirements 

Most crops in the region require about 2.5 cm of water per week and possibly more during critical 
growing periods. Precipitation during the growing season is approximately equal to the water needs of 
crops but water needs may not be reliably met on a week-by-week basis or during drier years. Because of 
high precipitation rates in Maine, irrigation is not employed on all farms or for all crops grown on a farm. 
In order to include an irrigation component in scenarios for the biosphere model, we assume the upper 
range of water needs and calculate the possible shortfall based on monthly average precipitation rates. 
Based on these assumptions, irrigation is needed to supply up to an additional 2.5 cm of water per week 
consistently across most crops. For sandy soils of the watershed, irrigation would be applied at a rate of 
between 1-2 cm per hour (intake rate of the soil) to prevent ponding and runoff (Central Aroostook Soil 
and Water Conservation District 2005). In general, the total amount of water available for crops 
(precipitation plus irrigation) would be sufficient to maintain a soil moisture content of 50-100% (Central 
Aroostook Soil and Water Conservation District 2005). Concentrations of radionuclides in irrigation 
water will be based on PFLOTRAN modeling of radionuclide concentrations in well water from either 
crystalline basement or the sand and gravel aquifers, along with estimates of groundwater contributions to 
streams that possibly supply irrigation water. 

4.2.3 Voronoi Meshing and Simulation  
Two significant developments have been achieved in the Voronoi meshing and simulation this year:  

• Creation and release of an open-source version of VoroCrust (Abdelkader et al. 2020) called 
“VoroCrust-Meshing” that contains the capability necessary for simulation in PFLOTRAN 
(Lichtner et al. 2020) and visualization of the results in ParaView 5.9 (Ahrens et al. 2005). 

• Development of a simplified shale performance assessment (PA) case using PFLOTRAN 
simulations on VoroCrust meshes that includes an uncertain geological structure. 

4.2.3.1 Improvements to VoroCrust  
In FY 2022 the VoroCrust team will release the meshing part of the software as an open-source code on 
GitHub. This effort required completely redesigning the architecture of the VoroCrust framework to strip 
out prototype and patented code. An open-source license had to be applied for and awarded.  Prior to 
release it was also necessary to develop a GitHub repository, conduct extensive code testing on Linux, 
Windows, and macOS operating systems, and recruit a small group of experienced and inexperienced 
users to beta-test the release version of the code. 

4.2.3.2 Shale Performance Assessment 
LaForce et al. (2022) Section 7.2 presents a detailed discussion of a simplified shale PA case utilizing 
VoroCrust-Meshing to include geological uncertainty in a prototype analysis. The shale geological 
framework model (GFM) from Sevougian et al. (2019c) is used as the basis for development of the 
uncertain models. This work represents the first time a GFM has been directly used in a GDSA 
Framework simulation and is a critical first step towards incorporating geological realism into PA 
calculations.   

The geological models for simulating the shale repository are clipped out of the GFM and deterministic 
and uncertain parameters consistent with previous shale cases (Mariner et al. 2017; Sevougian et al. 
2019c; Swiler et al. 2019). The example PA case is simplified significantly from the previous shale PA 
cases in three ways: first the entire repository and surrounding disturbed rock zone are represented as a 
single, rectangular source term having the material properties of bentonite buffer; second, the system is 
assumed to be isothermal; and third, the source term is represented by two tracers with properties 
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representative of 129I released at the beginning of the simulation. The simplicity of the prototype model 
allowed for generation of ten realizations in Dakota and simulation in PFLOTRAN.  

Development of the simulation model is discussed in detail in LaForce et al. (2022) Section 7.2.  Figure 
4-14 shows a single realization of the PA-scale model, while Figure 4-15 shows Tracer 1 in the reservoir 
for this model at several snapshots in time. Flow is from left to right, and tracer concentration is 
monitored in the repository and at three observation points 5 km downstream of the repository in 
geological strata that represent potential flow paths to the biosphere. Figure 4-15 shows that transport of 
Tracer 1 in the host shale is largely diffusive and that transport in the Overburden and Limestone Aquifer 
is advective, which is consistent with the current understanding of the geological system and previous 
simulation results (Sevougian et al. 2019c; Swiler et al. 2019).  

Figure 4-16 shows the tracer breakthrough curves for all ten realizations at the three downstream 
observation points. Ten realizations is not a large enough sample to perform a quantitative statistical 
analysis; however, the spread and magnitude of the Tracer 1 breakthrough curves appear to be 
qualitatively consistent with previous shale PA cases (Mariner et al. 2017; Swiler et al. 2019). Proposed 
future work is to fully-automate the model building and simulation process using the Sandia next 
generation workflow (NGW) (Mariner et al. 2021) and run a sufficiently large number of simulations to 
perform a quantitative statistical analysis on the results. 

 

 

Figure 4-14 Sideview of one realization of the PA-scale simulation showing the realized variation in 
thickness of each layer in space. Observation points are denoted by blue circles.  Blue arrows 
indicate that the flow direction is from left to right. 
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Figure 4-15 Tracer concentrations above 1×10-11 M for a central slice of the domain for one realization at a) 
1 year; b) 100,000 years; c) 500,000 years; d) 1,000,000 years. 

 
 

 

 

Figure 4-16 Concentration of Tracer 1 for all ten realizations over time at the observation points in a) the 
overburden, b) silty shale, and c) limestone aquifer. 

 

a) b) 

c) 

a) 
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4.2.4 Uncertainty and Sensitivity Analysis 
The report Uncertainty and Sensitivity Analysis Methods and Applications in GDSA Framework 
(FY2022) (Swiler et al. 2022) describes the work done on uncertainty quantification and sensitivity 
analysis (UQ/SA) in detail. This section provides a summary of that work.  

This year, the GDSA UQ/SA team focused on four areas: multifidelity UQ methods, surrogate accuracy 
and its effect on sensitivity indices, discrete fracture network analysis, and sensitivity analysis case 
studies involving a generic crystalline reference case and the DECOVALEX crystalline reference case. 
These are summarized in the sections below.  

4.2.4.1 Multifidelity UQ methods  
The main idea in multifidelity UQ is to extract information from a limited number of high-fidelity model 
evaluations and complement them with a much larger number of a set of lower fidelity evaluations. The 
final result is an estimator of the mean response with a lower variance: a more accurate and reliable 
estimator can be obtained at lower computational cost. We demonstrated the use of multifidelity (MF) 
methods to explore how much variance reduction can be achieved by using MF UQ methods on a 
representative problem for GDSA Framework. Section 2 of Swiler et al. (2022) presents MF results 
involving models at multiple levels of fidelity applied to a simplified version of the crystalline reference 
case. This simplified reference case retains many of the key qualities of the full reference case. The 
multifidelity analysis showed that the variance in a key quantity of interest (QoI), peak 129I concentration, 
could be reduced by almost an order of magnitude using a set of runs at different fidelities which had the 
same cost as 500 high fidelity runs.  

4.2.4.2 Surrogate accuracy and effect on Sensitivity Indices  
A major challenge in the Sobol’ sensitivity index calculation is computational cost of calculating the 
sensitivity indices. Surrogate models are often used to overcome this, but surrogates have not captured the 
effect of spatial heterogeneity very well. To investigate these issues, we structured an analysis to compare 
Sobol’ indices calculated by directly sampling the model and Sobol’ indices estimated using surrogate 
modeling. This analysis was performed on a simplified version of the crystalline reference case so we 
could generate thousands of samples required for this investigation.  

Section 3 of Swiler et al. (2022) presents this comparison using the simplified crystalline reference case. 
A Sobol’ index calculation was performed for 7 variables involving 9000 sample runs, where each run 
involved a DFN generated by dfnWorks and PFLOTRAN. This entire workflow was repeated five times 
to generate five entire replicate sets. This allowed detailed comparison of surrogate models within and 
across replicates. It also allowed comparison of the sensitivity indices using only the samples and using 
surrogates based on the samples. We take the “samples only” case as the better estimate because the direct 
effect of DFNs can be obtained. Surrogates required a proxy metric for the DFN spatial heterogeneity to 
be calculated and used as an independent predictor in the surrogate.  

We found that surrogate choice has some effect on the sensitivity analysis results, but it is minimal for 
most QoI. All surrogate models included in these studies demonstrated overfitting behavior. A significant 
finding was that the calculation of the Sobol’ indices based on samples only vs. using the surrogates 
resulted in significant difference in the actual sensitivity index values and in their ranking. Typically, the 
sample-only calculation of the sensitivity indices ranked the effect of spatial heterogeneity much higher 
than the surrogate-based calculations. This is likely due to proxies or metrics for the DFNs that do not 
completely capture their spatial heterogeneity. We considered the following proxies: y-location of peak 
129I, number of intersections between the repository and aquifer, shortest travel time, and number of 
intersections in the entire discrete fracture network. The graph metrics proved to be our best tool to date 
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for improving surrogate model performance but are demonstrably incomplete tools. These studies showed 
that improvement in our treatment of spatial heterogeneity is the most promising avenue for 
accomplishing better surrogate models.  

4.2.4.3 Discrete Fracture Network (DFN) analysis  
We continue to study various aspects of the Discrete Fracture Networks (Swiler et al. 2022, Section 4). 
This year, we performed a detailed study involving 100 DFNs each modeling two transmissivity 
relationships: correlated constant vs. correlated depth-dependent transmissivity. The purpose was to 
determine if a correlated depth-dependent transmissivity relationship produces a significant change in the 
performance quantities for the flow and transport simulations of nuclear repositories in subsurface rock as 
compared to a correlated constant transmissivity. The findings showed that the main QoI, the maximum 
129I concentration in the aquifer at 1 Ma, was not significantly different but the timing of the peak 129I 
concentration did differ. Other QoI such as median residence time and mass fluxes did show statistically 
significant differences between the two transmissivities. We also observed that the maximum 129I in the 
aquifer showed no real correlation with any graph metric for either relationship.  

The study highlighted differences with respect to the mass flow rates (specifically the rock to east 
boundary flow rate) as shown in Figure 4-17. Figure 4-17 displays the time-histories of the rock to east 
boundary mass flow rate based on the 100 DFNs used for each transmissivity relationship. Figure 4-17 
indicates that there is a significant difference in the means from each transmissivity: the mean mass flow 
rate for the correlated constant relationship is a little less than 90,000 kg/yr and the mean mass flow rate 
for the correlated depth-dependent relationships is around 1,000,000 kg/yr. This information indicates an 
increase in downstream flow towards the east boundary for the correlated depth-dependent transmissivity 
relationship. The increased flushing behavior for the correlated depth-dependent relationship is worth 
investigating further.  

 

Figure 4-17 Mass flow rate (kg/yr) from the rock to east boundary over time: red is correlated depth-
dependent and blue is correlated constant transmissivity 

4.2.4.4 Sensitivity analysis of reference cases 
This year, we extended the sensitivity analysis of the generic GDSA crystalline reference case performed 
in FY 2021 (Swiler et al. 2021). The FY 2022 analysis uses the FY 2021 crystalline case and adds another 
dimension to the sensitivity analysis: that of model form. The FY 2022 analysis addresses uncertainty 
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from spatial heterogeneity represented by DFNs, epistemic parameter uncertainty, and model form 
uncertainty in the treatment of fuel matrix degradation (FMD). Two alternatives for FMD are 
investigated: a fractional dissolution rate (FDR) model and an Artificial Neural Network (ANN) surrogate 
model of the FMD model.  

Comparison between the sensitivity analyses for the crystalline reference case simulations with either the 
FDR alternative model or the ANN alternative model for FMD showed that the choice of FMD model 
alternative has a minimal effect on most QoI (Swiler et al. 2022, Section 5). An example is shown in 
Figure 4-18, where the maximum 129I concentration in the aquifer is plotted over time for simulations with 
the FDR model (black) and with the ANN surrogate (pink). The concentrations are very similar between 
the simulations with the two alternatives to the FMD model, but some differences are apparent towards 
the end of the simulation where there is more variability in concentrations for the FDR model simulations. 
The mean and standard deviation of the concentrations at 1 million years are 3.66 × 10−9 M and 
6.74 × 10−9 M respectively for the FDR simulations and 3.41 × 10−9 M and 5.00 × 10−9 M 
respectively for the ANN simulations.  

 

Figure 4-18 Maximum 129I concentrations [M] comparison between the simulations with the ANN and FDR 
model 

The increased variation of the maximum 129I concentrations at late times with the FDR model is likely due 
to the incorporation of uncertainty in the FDR model via the rateUNF parameter; no comparable 
parametric uncertainty is currently included in the ANN model. The effect of FMD model choice was also 
small because of the significance of the instantaneous release fraction (IRF) up until around 200,000 
years. Time-dependent sensitivity analysis showed that, among the parametric uncertainties, the mean 
waste package degradation rate (meanWPrate) dominates early, then IRF and kGlacial become 
significant, and rateUNF only gains importance after most waste packages have breached. Future analysis 
may incorporate additional uncertainty into the ANN surrogate model so that it is more directly 
comparable to the FDR model. Additionally, the IRF uncertainty is fairly high, so reductions in that 
uncertainty could also influence how early the FMD model alternative becomes important. 

Fract Diss Rate
ANN Surrogate
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The sensitivity analyses of the FY 2022 crystalline reference case again highlighted the important effect 
that spatial heterogeneity has on the QoI, including on the behavior of 129I. This spatial heterogeneity also 
interacts significantly with the parameter uncertainties. Again, we saw that spatial heterogeneity presents 
the most significant challenge for our use of surrogate modeling SA. This conclusion motivates further 
advancement to our treatment of spatial heterogeneity to improve SA accuracy in performance assessment 
with the GDSA Framework.  

Also this year, in addition to the GDSA Framework crystalline reference case, we utilized the GDSA 
Workflow (Section 4.2.1) to perform a sensitivity analysis on the DECOVALEX crystalline reference 
case (Section 4.2.5.1). Preliminary results are discussed in Section 6 of Swiler et al. (2022). We note that 
these results need further investigation, but it was interesting to see that the permeabilities and porosities 
of both the buffer and the backfill had very little influence on the QoI which were water fluxes at different 
surface locations and tracer concentrations. Only the rateUNF dissolution rate parameter had a significant 
effect on the Tracer2 concentrations: the uncertainty in most of the QoI was entirely due to spatial 
heterogeneity as seen by the effect of the DFNs. We plan to extend this analysis as the DECOVALEX 
case develops further.   

4.2.5 DECOVALEX-2023 Task F 
The DECOVALEX project is an international research and model comparison collaboration for 
advancing the understanding and modeling of coupled THMC processes in geological systems 
(decovalex.org). Task F of DECOVALEX-2023 is a task that focuses on comparison of models and 
methods used for post-closure PA. Members of the GDSA Framework development team at SNL are 
leading this effort. The goal of this work is to test and build confidence in the models, methods, and 
software used for post-closure PA and to identify additional research and development needed to improve 
PA methodologies. 

In Task F, two hypothetical repositories are being developed, one in crystalline rock and the other in salt. 
In 2020, the first year of the four-year task, nine teams from six countries participated in the crystalline 
repository and benchmarking exercises, and three teams from three countries defined a generic salt 
repository reference case. In the second year, each focus group gained one additional team. 

To date, Task F has provided and will continue to provide numerous opportunities for learning new 
modeling approaches, developing new models for use in PA simulations, testing uncertainty and 
sensitivity analysis methods, comparing PA methods, and exchanging ideas with modelers in other 
programs. Several accomplishments in the past year are highlighted below.  

4.2.5.1 Crystalline 
The primary focus of the crystalline group of Task F in the first two years (2020 and 2021) was the testing 
and comparison of codes used to simulate flow and transport through fractured rock. Several benchmark 
cases, detailed in LaForce et al. (2021, Section 2.1), were simulated by participating teams. The exercise 
allowed participants to examine differences in model implementation, types of model outputs, and the 
influence of modeling choices. Benchmark problems included analytical solutions for single fracture 
problems and a 4-fracture discrete network fracture (DFN) problem with and without stochastic fractures. 
Several teams modeled the 4-fracture problem as an equivalent continuous porous medium (ECPM), 
some teams applied multiple models, and two teams applied particle tracking. Work on the benchmark 
problems is ongoing as the teams work to ensure initial conditions, boundary conditions, and tracer 
introduction methods are interpreted consistently and implemented accordingly. 

This year the primary focus was on the development of a generic crystalline repository reference case. 
Task participants chose a fractured rock domain 5 km in length, 2 km in width, and 1 km in depth. A 
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vertical profile is shown in Figure 4-19. All sides of the domain are flat except the top, which has a flat 
section on the west (x < 1700 m), a flat section on the east (x > 3700 m) 20 m lower than the west section, 
and a gradual hillslope connecting the two. The pressure head boundary at the surface tracks the surface 
elevation. With no-flow boundaries assigned to the other five sides of the domain, the pressure head 
distribution at the top surface causes downward groundwater flow in the west and upward flow in the 
east. Conceptually, the east surface is a wetland such that all mass flowing out of the top layer no longer 
interacts with the system. 

 

Figure 4-19 Elevation and pressure head profiles at the surface of the domain in the x direction (top) and a 
vertical slice of the domain showing depth zones and the repository location (bottom) 

The reference case utilizes the KBS-3V repository concept. Waste package canisters are copper and are 
individually placed, surrounded with bentonite, in deposition holes drilled 6 m apart center-to-center into 
the drift floors. The repository, located at a depth of 450 m, has 50 deposition drifts of length 306 m 
spaced 40 m apart center-to-center. In total, the layout accommodates 2500 waste packages. Further 
details and figures of the repository layout and engineered barrier system are provided in LaForce et al. 
(2022b, Section 3). 

The rock domain hosts six deformation zones (Figure 4-20). Additionally, three depth zones have unique 
fracture families for three primary orientations, each defined statistically in terms of trend, plunge, size, 
and intensity. Fracture density decreases with depth as does fracture transmissivity. A realization of the 
fracture families is shown in Figure 4-21. 

Five teams are implementing the reference case. All five are upscaling stochastically generated fracture 
networks to ECPM. Three are conforming their meshes to the deterministic deformation zones and two 
(including SNL) are including the properties of the deformation zones when upscaling to meshes 
composed primarily of hexahedrons. 
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Figure 4-20 Deterministic fractures in the model domain. 

 

 

Figure 4-21 One realization of the stochastic fractures, colored by fracture family. Depth zones correspond 
to different colors. 

For the initial reference case simulations, two tracers were chosen. Both are conservative and placed at 
the locations of the waste packages at the beginning of the simulations. Tracer 1 is 10% of the total tracer 
mass and is released completely at the beginning of the simulation. Tracer 2 is released slowly over time 
at a fractional rate of 10-7/yr. With these properties, Tracer 1 acts like an instant release fraction compared 
to Tracer 2, which is modeled as if it is being released from a slowly degrading UO2 waste form. For 
these simulations, there is no cladding and no waste package barriers. 

The Tracer 1 plume is shown in Figure 4-22 for a SNL simulation at 100 years. Tracer is initially 
transported downward and eastward from the repository primarily through fractures. The plume surfaces 
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at the base of the hill and farther to the east, spreading laterally with increasing distance from the 
repository. Tracer 2 shows similar trends but at much lower concentrations due to its slow release. 

 

Figure 4-22 Tracer 1 plume at 100 years along the central vertical west-east plane and the north half of the 
surface boundary for Realization 1. 

At 100,000 yr, the SNL model calculates that approximately 95% of Tracer 1 remains in the repository 
region. Hydraulic containment of conservative solutes in the repository region is aided by low fracture 
intensities, low fracture transmissivities, low pressure gradients, and low buffer permeability. Additional 
preliminary results and details are documented in LaForce et al. (2022, Section 2.1). 

4.2.5.2 Salt 
In FY 2022, the salt group of DECOVALEX-2023 Task F developed additional scenarios for the salt 
repository reference case. The general setting is a generic salt dome as shown in Figure 4-23. The 
repository is located at a depth of 850 m and is accessed by two vertical shafts. The spacing of waste was 
chosen to ensure that temperatures on the waste package surface will not exceed 100°C. Detailed 
information on the repository design and natural barrier system is presented in LaForce et al. (2022). One 
important change was that a new layered shaft seal option was added. 

The SNL team developed a model of a large block of the salt dome near the repository (2000 m × 2000 m 
× 2000 m) using Voronoi meshing and half symmetry. Voronoi elements are optimal for finite volume 
simulators like PFLOTRAN. Drifts are meshed but not individual waste packages. In the simulations, 
pressure and liquid saturation in the repository and shaft slowly increase over time, as shown in Figure 
4-24. Additional results and more detailed discussion are provided in LaForce et al. (2022). 
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Figure 4-23 Geologic cross-section of salt reference case for Task F 
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Figure 4-24 Overhead view of DECOVALEX salt reference case simulation results at the repository level 
showing pressure (left) and liquid saturation (right) at 10,000, 20,000, and 30,000 years  
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4.2.6 Repository Reference Cases 
Over the past decade, generic repository reference cases have been simulated using GDSA Framework for 
many host rocks and repository designs. Table 4-1 identifies the core reference cases, their conceptual 
models, and their recent applications. Two more conceptual models, one in crystalline rock and one in 
salt, were included in the table this year to reflect the reference cases developed for Task F of 
DECOVALEX-2023 (Section 4.2.5). 

Table 4-1 Repository concepts and generic (inventory) reference cases implemented with GDSA 
Framework 

Repository Concepts and Inventory(s) Conceptual Models Model Application 
Reports 

Argillite/shale repository 
SNF ranging from 4-PWR waste packages to 37-
PWR dual purpose canisters (DPCs) 
High-temperature shale repository 

Jové Colón et al. (2014); 
Zheng et al. (2014) 
Stein et al. (2020) 

Mariner et al. (2017); 
Sevougian et al. (2019) 
Stein et al. (2020) 

Crystalline repository 
Commercial SNF 
 
DOE managed waste (cancelled by DOE in 2017) 

Wang et al. (2014); 
LaForce et al. (2022b) 

Mariner et al. (2016); Swiler et 
al. (2019, 2020, 2021, 2022) 
Sevougian et al. (2016) 

Salt repository 
Commercial SNF 
 
 
DOE managed waste (cancelled by DOE in 2017) 

Sevougian et al. (2012); 
Freeze et al. (2013); 
LaForce et al. (2022b) 

Sevougian et al. (2016); 
LaForce et al. (2020, 2022) 
 
Sevougian et al. (2019) 

Alluvium repository, unsaturated conditions 
SNF ranging from 12-PWR waste packages to 37-
PWR DPCs 

Mariner et al. (2018) Mariner et al. (2018); 
Sevougian et al. (2019); 
LaForce et al. (2021, 2022) 

Dual purpose canister (DPC) 

24- to 37-PWR DPCs and 68- to 80-BWR DPCs Price et al. (2019a) Price et al. (2019b) 

Deep borehole disposal  
Various waste types, including Cs/Sr capsules Brady et al. (2009) Freeze et al. (2016, 2019) 

4.2.7 GDSA Framework Documentation 
4.2.7.1 Model Information Database 
GDSA Framework is a framework of conceptual models, mathematical models, and coded model 
capabilities constructed to produce applied system models. Coded model capabilities include coded 
models like buffer erosion, fuel degradation, temperature-dependent solubility, etc. Applied system 
models include repository reference case models and specific models for subdomains of those systems.  

Each year GDSA developers build or improve conceptual and mathematical models and implement 
mathematical models in PFLOTRAN or elsewhere in GDSA Framework. While such accomplishments 
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get summarized in annual reports, they generally do not get documented in model-specific living 
documents or in a centralized model information database. Annual progress reports include calculations 
produced from new or revised coded model capabilities and applied system models. Selected information 
on evolving models is provided in annual reports, and certain user information is added to online 
PFLOTRAN documentation. However, individual model products (with model version numbers) are not 
produced. 

In a regulatory environment, applied model calculations require a qualified model as input. The SFWST 
campaign does not operate in a regulatory environment, so GDSA Framework developers currently do not 
have NQA-1 documentation obligations. The R&D environment has allowed GDSA Framework 
developers to be quite prolific in producing model capabilities and systems models. 

GDSA Framework is adding model capabilities at a rapid rate. An important part of the framework is 
supporting code and model documentation. Therefore, in FY 2022, a centralized GDSA model 
information database was initiated. 

The model information database is currently in the form of a SharePoint site with a separate Word file for 
each model capability. Each Word file is a template in which descriptions or lists of specific information 
are requested. Requested information includes: model name, model version, model purpose, conceptual 
model, FEPs included, mathematical model, alternative models, software, input/output parameters, 
assumptions, limitations, input ranges of validity, model verification/demonstration, model validation, 
ideas for future improvement, references, developer(s), and reviewer(s). With this information in the 
database, a user will be able to quickly learn about the model capability and decide whether it is 
appropriate for the intended use or what improvements are needed. Also, with versioning it will be easier 
to determine the capabilities of a model for an application produced using a specific PFLOTRAN build. 

Developing the database will take time. Table 4-2 lists the first ten model capabilities in the database. 
Two have been fully entered and reviewed (MDL-101 and MDL-110) and two others are currently 
underway (MDL-104 and MDL-107). A potential eventual format for this database is wiki or HTML. In 
the meantime, data entry into Word files will proceed. 

Table 4-2 Model capabilities defined in the GDSA Framework model information database 

Model ID Model Capability 
MDL-101 Buffer erosion canister corrosion 

MDL-102 Waste package general corrosion 

MDL-103 Fuel matrix degradation (FMD) 

MDL-104 HLW glass degradation 

MDL-105 Fuel matrix fractional degradation rate 

MDL-106 Radioactive decay and ingrowth 

MDL-107 FMD surrogate - kNNr 

MDL-108 FMD surrogate - neural network 

MDL-109 Isotope partitioning 

MDL-110 Fracture network modeling in a space-filling mesh 
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4.2.7.2 Calculation Archive 
In FY 2021, the GDSA Framework development team established a GDSA calculation archive, a 
centralized (gitlab) repository of GDSA calculations. The archive targets all GDSA milestone calculations 
and their supporting input files, codes, and workflow.  

The main purpose of the archive is for improved internal communication and knowledge capture. The 
primary goals are: 

• To document and archive GDSA calculations in a secure, centralized location 

• To allow autonomous sharing of these calculations among GDSA team members 

• To provide R&A technical reviewers easy access to supporting materials and calculations 

• To provide a springboard for new calculations 

In FY 2022, complications caused by large binary files prompted a new approach to the archive. 
Calculations that involve large binary files were relegated to a special hard drive on a common GDSA 
server. Calculations that do not contain large binary files remain in the gitlab repository.  

4.2.7.3 SFWST Document Archive 
The GDSA team continues to support the SFWST Document Archive (SDA), a document repository 
available to all SFWD participants. The SDA is a restricted-access SharePoint website that serves as an 
online library for reports generated in: 

• NE 81, Office of SFWST 

o Disposal Research (DR) 

o Storage and Transportation (S&T) 

• NE 82, Office of Integrated Waste Management (IWM) 

Additionally, it contains presentations from past SFWD Annual Meetings. 

4.3 Outreach 
This section reviews important outreach activities supported by the GDSA Framework development work 
package and how they benefit nuclear waste repository performance assessment. 

4.3.1 International Involvement 
Much can be learned from the research and accomplishments of nuclear waste programs around the 
world. Interaction and collaboration with scientists involved in these programs is beneficial to the US 
program.  

Opportunities for SFWST participants to interact and collaborate directly arise from participation in: 

• International research projects, e.g., DECOVALEX and underground research facility studies 

• International clubs, e.g., clay, salt, and crystalline clubs of the Nuclear Energy Agency (NEA) 

• International conferences and journals 
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• International PFLOTRAN short courses (Nole et al. 2022, Section 2.4.5) 

A detailed account of SFWST involvement in international research projects is presented in Birkholzer et 
al. (2020).  

Like other SFWST work packages, GDSA work packages are deeply committed to international 
participation. For example, in FY 2022, participants in the GDSA Framework development work package 
(SF-22SN01030409) 1) took the lead of Task F of DECOVALEX-2023, 2) presented research at the 5th 
NEA Crystalline Club meeting in Dresden, Germany, 3) proposed a 2023-2024 program-of-work for the 
Crystalline Club, 4) wrote several papers (three for the 2022 International High Level Radioactive Waste 
Management Conference, one for the Journal of Nuclear Technology (Section 4.1.3.3)), and 5) reviewed a 
paper on fracture flow modeling for the Journal of Nuclear Technology. Many other international 
research activities, club meetings, conferences, and papers were supported by other GDSA work 
packages. 

4.3.2 Open-Source Software 
GDSA Framework is being developed for DOE and its subcontractors. Most of the software components 
of GDSA Framework are open source, including PFLOTRAN, Dakota, and dfnWorks. These codes are 
utilized by a community of users from around the world for work related to, and unrelated to, repository 
performance assessment (e.g., Hammond and Lichtner 2010; Chen et al. 2013; de Vries et al. 2013; Karra 
et al. 2014; Gardner et al. 2015; Kumar et al. 2016; Zachara et al. 2016; Avasarala et al. 2017; Trinchero 
et al. 2017; Shuai et al. 2019). 

Open-source software licensing governs the free distribution of source code and/or binaries among a 
group of software developers and users. PFLOTRAN utilizes the GNU LGPL (lesser general public 
license) which states that the code may be distributed and modified as desired, but any changes to the 
original source code must be free and publicly available. LGPL also allows anyone to link a proprietary 
third-party library to the code or develop a graphical user interface on top of the code for profit. Further 
details are provided in Mariner et al. (2019, Section 2.3.4.1). 

There are many benefits to open-source collaboration, especially when taxpayer funds support much of 
the code development. First, it encourages collaboration among a diverse team of developers. This 
collaboration pushes the code to the users who can help test and debug the code while providing feedback 
regarding user interaction. Open source provides transparency that exposes implementation details that 
are often critical for scientific reproducibility and quality assurance. These details are often deliberately or 
unintentionally omitted from user documentation, journal publications and reports. From a financial 
standpoint, open source allows developers to pool funds across a diverse set of projects funded in 
academia, government laboratories or the private sector. In addition, funding that would be spent on 
licensing fees can be redirected towards development. Finally, although the most fit codes can survive 
under any licensing option, open source may provide a more level playing field for natural selection to 
run its course.  

PFLOTRAN’s open-source licensing and accessible distribution facilitate collaboration amongst a 
broader U.S. and international community. This broad user community enhances the development of 
PFLOTRAN by sharing conceptual models, incorporating novel physicochemical algorithms, optimizing 
code performance, debugging problematic issues, and generating grass-roots publicity, all of which 
benefit DOE in return. 
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The PFLOTRAN website at www.pflotran.org directs interested parties to the online documentation and 
the Bitbucket repository (including source code and documentation build status and code coverage). 
Developer and user mailing lists are managed through Google Groups.  

Estimating the size and extent of the PFLOTRAN user community is relatively difficult due to the 
inability to track downloads on Bitbucket. However, through Google Analytics, the hits on the 
PFLOTRAN website are tracked which provides a qualitative estimate (Figure 4-25) and demonstrates 
that the PFLOTRAN user base is multi-national.  

 

Figure 4-25 Total global hits to the PFLOTRAN website from individual users between May 1, 2021 to April 
30, 2022 (Nole et al. 2022) 

4.3.3 GDSA Framework Website 
The GDSA team continues to support and develop the public GDSA Framework website at 
http://pa.sandia.gov/. The home page is shown in Figure 4-26.  

The purpose of the website is to: 

• Describe GDSA Framework, its capabilities, and the objectives behind its development 

• Provide related reports for downloading 

• Provide links to software used in GDSA Framework (e.g., PFLOTRAN, Dakota, dfnWorks) 

• Identify collaborators involved in GDSA Framework development 

• Announce upcoming events (e.g., PFLOTRAN short courses) 
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• Provide contact information 

 

 

Figure 4-26 GDSA Framework website (http://pa.sandia.gov/) 
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5. CONCLUSIONS 

This report describes FY 2022 advances of the Geologic Disposal Safety Assessment (GDSA) 
performance assessment (PA) development groups of the SFWST Campaign. The common mission of 
these groups is to develop a geologic disposal system modeling capability for nuclear waste that can be 
used to assess probabilistically the performance of generic disposal options and generic sites. The 
developing capability, called GDSA Framework, employs high-performance computing capable codes 
PFLOTRAN and Dakota.  

The advances in GDSA Framework modeling capabilities in FY 2022 allow for improved fluid transport 
under saline conditions, improved emulation of fuel matrix degradation in repository simulations, 
automated material property changes to porous media over time, improved PFLOTRAN convergence for 
multiphase systems and dry out, and more detailed sensitivity analysis of system performance. New 
innovative methods implemented in PFLOTRAN allow for direct reactive transport of soluble porous 
media (salt) and improved simulation of the interactions of fractures and the matrix. A new correction 
factor implemented in mapdfn.py allows for improved upscaling of fracture properties to reference case 
meshes. New modeling approaches include the development and use of Voronoi meshing, advanced plans 
for simulating buffer erosion, and a finalized software design document for a comprehensive biosphere 
model. Continued advances in simulation workflow, quality assurance workflow, process model coupling 
workflow, and other forms of supporting infrastructure are expected to further facilitate future model 
development and user adoption.  

An important responsibility of the GDSA Framework development team is to integrate with disposal 
R&D activities across the SFWST Campaign to ensure that R&D activities support the parts of the 
generic safety cases being developed. In FY 2022, the team continued to participate with other scientists 
and engineers at LANL, LBNL, PNNL, ORNL, INL, ANL, DOE, and SNL in the development of 
discrete fracture network modeling, multi-continuum modeling, Geologic Framework Models, fuel matrix 
degradation process modeling, machine-learning surrogate models, DECOVALEX-2023 Task F 
performance assessment, and advanced biosphere modeling.  

Each year, GDSA Framework improves as additional modelers and programmers from around the world 
use, apply, and contribute to its development. GDSA Framework can be shared because the primary 
codes, PFLOTRAN and Dakota, are open source, available for free download, and have supporting 
documentation online. Outreach and collaborations support a primary objective of the GDSA Framework 
Development work package by facilitating testing of, and feedback on, PFLOTRAN and GDSA 
Framework and by increasing the likelihood outside users will contribute directly to code development in 
the future. 

The ability to simulate increasingly complex repository reference cases continues to affirm that HPC-
capable codes can be used to simulate important multi-physics couplings directly in a total system safety 
assessment demonstration. Reference-case-repository applications show that PFLOTRAN and its coupled 
codes can simulate complex coupled processes in a multi-kilometer domain while simultaneously 
simulating sub-meter-scale coupled behavior in the vicinity of each modeled waste package. Continued 
development will further enhance the preparedness of GDSA Framework for application in the future 
when transitioning to a program with potential sites. 
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INTRODUCTION 

Modeling the degradation of stored spent nuclear fuel (UO2) in a breached waste package is useful for 
performance assessment (PA) simulations. Currently, the Fuel Matrix Degradation (FMD) model is the 
capability under development by the Spent Fuel and Waste Science and Technology (SFWST) campaign 
of the U.S. Department of Energy (DOE). Recent results have indicated that machine learned surrogate 
models could be used as accurate replacements for full process models. The surrogate models provide a 
significant speed up in computational time and are much better suited to handle the large number of 
simulations that are routinely performed in PA activities. Surrogate models are currently trained on data 
generated from the full process model, therefore the need for an accurate process model still exists such 
that new surrogate models can be developed in the event of new processes or new machine learning 
techniques are deployed. The current version of the FMD process model exists as a suite of MATLAB 
functions and subroutines which can be challenging to update and modify. Herein we describe the current 
and on-going efforts to develop a working Fortran model that reproduces the MATLAB version. We 
provide a brief overview of the FMD process model with a focus on the radiolysis model for H2O2 
generation and interfacial reactions. Results to date are presented, and future directions are discussed. 

FMD PROCESS MODEL 

The broader FMD process model has been discussed in great length in several recent reports (Jerden, et 
al., 2012; Jerden, et al., 2018). The goal of the FMD model is to predict UO2 fuel dissolution rates in a 
breached waste package to help calculate radionuclide release rates for PA simulations. The original FMD 
process model was adapted from Canadian Mixed Potential Model of Shoesmith, King, and Kolar 
(Shoesmith, et al., 2003) which critically works on two assumptions: (1) electrochemical reactions can be 
broken into partial oxidation/reduction reactions, and (2) no net accumulation of charge is observed 
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(Wagner and Traud, 1938). Fuel dissolution occurs via a complex balance between oxidative and 
chemical processes; therefore the electrochemical reactions are the crux of the FMD model.  

While the FMD process model exists as a one-dimensional (1D) reactive-transport column, it should be 
noted that 2D models are the subject of active research (Liu, et al., 2018). In its current form, the column 
is broken into three regions depicted in Fig. B-1, namely the fuel region, aqueous region, and steel 
container region. The spatial region is broken up logarithmically with smaller grid cell spacings 
implemented near the surface interfacial regions.  

 

Fig. B-1 Physical depiction of the FMD model which exists as a 1D reactive-transport column. The 
column is broken into three distinct regions including the fuel surface (left), aqueous region 
(middle), and steel container surface (right). The spatial region is broken up using a logarithmic 
scaling with smaller grid cell spacings near the surface interfaces. 

The aqueous chemistry reactions included in the model are shown in Tab. B-1. The interfacial, 
electrochemical reactions are shown in Tab. B-2. The reaction rates and parameters are omitted here for 
clarity however they can be found in previous reports (Jerden, et al., 2012). In addition to the chemical 
reactions, the FMD model incorporates the following processes 

• Precipitation and dissolution of solid uranium phases at the interfaces which retard diffusion and 
limit access to the fuel surface 

• Alpha radiolysis for the generation of H2O2 which acts as the main oxidant of the UO2 fuel. 

• Arrhenius temperature dependences for reaction rates. 

• Noble metal particle phases on the fuel surface which catalyze the redox reactions. 
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Tab. B-1 List of aqueous chemistry reactions incorporated in the FMD model. 

Aqueous Chemistry Reactions 

𝑈𝑈𝑈𝑈22+ + 2𝑈𝑈𝑂𝑂− +𝑂𝑂2𝑈𝑈 → 𝑈𝑈𝑈𝑈3 ⋅ 2𝑂𝑂2𝑈𝑈 

𝑈𝑈𝑈𝑈22+ + 𝑂𝑂2𝑈𝑈2 + 4𝑂𝑂2𝑈𝑈 → 𝑈𝑈𝑈𝑈4 ⋅ 4𝑂𝑂2𝑈𝑈 + 2𝑂𝑂+ 

𝑈𝑈𝑈𝑈2(𝐶𝐶𝑈𝑈3)22− + 2𝑈𝑈𝑂𝑂− + 𝑂𝑂2𝑈𝑈 → 𝑈𝑈𝑈𝑈3 ⋅ 2𝑂𝑂2𝑈𝑈 + 2𝐶𝐶𝑈𝑈32− 

𝑈𝑈𝑈𝑈3 ⋅ 2𝑂𝑂2𝑈𝑈 + 2𝐶𝐶𝑈𝑈32− → 𝑈𝑈𝑈𝑈2(𝐶𝐶𝑈𝑈3)22− + 2𝑈𝑈𝑂𝑂− +𝑂𝑂2𝑈𝑈 

𝑂𝑂2𝑈𝑈2 + 2𝐹𝐹𝑛𝑛2+ + 4𝑈𝑈𝑂𝑂− → 3𝑂𝑂2𝑈𝑈 + 𝐹𝐹𝑛𝑛2𝑈𝑈3 

𝑈𝑈2 + 4𝐹𝐹𝑛𝑛2+ + 8𝑈𝑈𝑂𝑂− → 4𝑂𝑂2𝑈𝑈 + 2𝐹𝐹𝑛𝑛2𝑈𝑈3 

𝑈𝑈𝑈𝑈22+ + 2𝐹𝐹𝑛𝑛2+ + 6𝑈𝑈𝑂𝑂− → 𝑈𝑈𝑈𝑈2,(𝑎𝑎𝑎𝑎) + 3𝑂𝑂2𝑈𝑈 + 𝐹𝐹𝑛𝑛2𝑈𝑈3 

𝑈𝑈𝑈𝑈2(𝐶𝐶𝑈𝑈3)22− + 2𝐹𝐹𝑛𝑛2+ + 6𝑈𝑈𝑂𝑂− → 𝑈𝑈𝑈𝑈2,(𝑎𝑎𝑎𝑎) + 2𝐶𝐶𝑈𝑈32− + 3𝑂𝑂2𝑈𝑈 + 𝐹𝐹𝑛𝑛2𝑈𝑈3 

𝑂𝑂2𝑈𝑈2 → 𝑂𝑂2𝑈𝑈 +
1
2
𝑈𝑈2 

𝑈𝑈𝑈𝑈2,(𝑠𝑠) → 𝑈𝑈𝑈𝑈2,(𝑎𝑎𝑎𝑎) 

𝑈𝑈𝑈𝑈2,(𝑎𝑎𝑎𝑎) → 𝑈𝑈𝑈𝑈2,(𝑠𝑠) 

Tab. B-2 Electrochemical reactions incorporated into the FMD model at the fuel, fuel noble metal particle 
(NMP), and steel (canister) interface. 

Surface Reactions 

Fuel 

𝑈𝑈𝑈𝑈2 → 𝑈𝑈𝑈𝑈22+ + 2𝑛𝑛− 

𝑈𝑈𝑈𝑈2 + 2𝐶𝐶𝑈𝑈32− →  𝑈𝑈𝑈𝑈2𝐶𝐶𝑈𝑈32− + 2𝑛𝑛− 

𝑈𝑈𝑈𝑈2 → 𝑈𝑈𝑈𝑈2,(𝑎𝑎𝑎𝑎) 

𝑂𝑂2 + 2𝑈𝑈𝑂𝑂− → 2𝑂𝑂2𝑈𝑈 + 2𝑛𝑛− 
𝑂𝑂2𝑈𝑈2 + 2𝑈𝑈𝑂𝑂− → 𝑈𝑈2 + 2𝑂𝑂2𝑈𝑈 + 2𝑛𝑛− 

𝑂𝑂2𝑈𝑈2 + 2𝑛𝑛− → 2𝑈𝑈𝑂𝑂− 
𝑈𝑈2 + 2𝑂𝑂2𝑈𝑈 + 4𝑛𝑛− → 4𝑈𝑈𝑂𝑂− 

Fuel, 
NMP 

𝑂𝑂2 + 2𝑈𝑈𝑂𝑂− → 2𝑂𝑂2𝑈𝑈 + 2𝑛𝑛− 
𝑂𝑂2𝑈𝑈2 + 2𝑛𝑛− → 2𝑈𝑈𝑂𝑂− 

𝑂𝑂2𝑈𝑈2 + 2𝑈𝑈𝑂𝑂− → 𝑈𝑈2 + 2𝑂𝑂2𝑈𝑈 + 2𝑛𝑛− 
𝑈𝑈2 + 2𝑂𝑂2𝑈𝑈 + 4𝑛𝑛− → 4𝑈𝑈𝑂𝑂− 

Steel 
𝐹𝐹𝑛𝑛 → 𝐹𝐹𝑛𝑛2+ + 2𝑛𝑛− 

2𝑂𝑂2𝑈𝑈 + 2𝑛𝑛− → 𝑂𝑂2 + 2𝑈𝑈𝑂𝑂− 
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APPROACH TO IMPLEMENTING THE FMD MODEL IN FORTRAN 

Our previous progress has been outlined elsewhere (Harvey et al. 2022; Mariner et al. 2021). Our 
reactive-transport model is implemented using the standard residual approach, that is  

 𝑓𝑓�𝑐𝑐𝑘𝑘+1,𝑝𝑝� =  
𝑐𝑐𝑘𝑘+1,𝑝𝑝 − 𝑐𝑐𝑘𝑘

∆𝑡𝑡
+ 𝐿𝐿�𝑐𝑐𝑘𝑘+1,𝑝𝑝� − 𝑅𝑅(𝑐𝑐𝑘𝑘+1,𝑝𝑝) (B-1) 

where c is the concentration of a given species, 𝐿𝐿 is the diffusion operator, and 𝑅𝑅 is the kinetic rate 
expression. Diffusion is implemented by discretizing the system in space and time using a finite volume 
approach. Concentrations at each new timestep are updated by solving the non-linear system of equations 
using a Newton-Rhapson (NR) approach. 

 𝐽𝐽𝐽𝐽𝐶𝐶 =  − 𝑓𝑓(𝐶𝐶𝑘𝑘+1,𝑖𝑖)  (B-2) 

In the previous year we implemented all aqueous reactions and incorporated an adaptive time stepping 
routine. The code is currently stored and version controlled in a gitlab repository. 

INTERFACIAL REACTION REGION 

The reactions that occur at the interfacial region are integral to the FMD process model. These reactions 
are not implemented in the standard way that many reactions are implemented in reactive transport 
models. Instead, the redox reactions are broken into half reactions which contribute to an electrical 
current. Moreover, the current equations contain multiple unknowns including a new term called a 
“corrosion potential”. For example, reaction 1 in Tab. B-2 (𝑈𝑈𝑈𝑈2 → 𝑈𝑈𝑈𝑈22+ + 2𝑛𝑛−) is given by 

 𝑖𝑖𝑈𝑈𝑂𝑂2,1 = 𝑛𝑛𝐹𝐹𝑛𝑛𝑘𝑘𝑈𝑈𝑂𝑂2,1𝑛𝑛𝑒𝑒𝑚𝑚 �
𝛼𝛼𝑈𝑈𝑂𝑂2,1𝐹𝐹
𝑅𝑅𝑅𝑅 �𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑈𝑈𝑂𝑂2 − 𝐸𝐸𝑈𝑈𝑂𝑂2,1
0 ��  (B-3) 

where 𝑛𝑛 is the number of transferred electrons, 𝐹𝐹 is Faraday’s constant, 𝑛𝑛 is the porosity of fuel or steel 
corrosion layers,  𝑘𝑘𝑈𝑈𝑂𝑂2,1 is the reaction rate constant, 𝛼𝛼𝑈𝑈𝑂𝑂2,1 is the electrochemical transfer coefficient, 𝑅𝑅 
is the universal gas constant, 𝑅𝑅 is the temperature, 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑈𝑈𝑂𝑂2  is the corrosion potential of the fuel, and 𝐸𝐸𝑈𝑈𝑂𝑂2,1
0  

is the standard potential. The central premise of the FMD model is that there is no net accumulation of 
charge or current, therefore 

 𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎 −  𝑖𝑖𝑐𝑐𝑎𝑎𝑐𝑐ℎ𝑐𝑐𝑎𝑎𝑎𝑎 = 0.  (B-4) 

Considerable effort this FY was spent studying how these reactions are implemented within the 
MATLAB code. Solving for both the corrosion potentials and the concentrations for a given time step is 
complicated. The MATLAB code is written “recursively” such that the MATLAB function that solves for 
the corrosion potentials (AMP_reactFuel) calls itself. The code snippet shown in Fig. B-2 exists in the 
AMP_reactFuel.m file. What is being performed here is a NR solve for the corrosion potential where the 
AMP_reactFuel subroutine calls itself on line 65. This causes difficulties in reading the code and 
understanding the process. 
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Fig. B-2 Code snippet from the MATLAB subroutine that updates corrosion potentials. The recursive 
nature of the algorithm is shown on line 65 where AMP_reactFuel calls itself. 

In Jerden et al. (2015) the FMD model and its implementation is described in detail, specifically stating 
“For a given simulation, the FMDM solves a set of ordinary differential equations, where the dissolved 
concentrations are the state variables. Given initial concentrations at the interface with the fuel surface, 
(the corrosion potential) is calculated such that the total current flow at the fuel surface is zero. This value 
of (the corrosion potential) is used to determine current densities that represent the individual reaction 
rates.” This makes it clear that the overall process works as follows: (1) given the current concentrations 
of species that were updated from the previous step using a NR approach, the new corrosion potential is 
determined (also solved using a NR approach), (2) given the new corrosion potentials the new 
concentrations are solved for using another NR approach, and (3) for each NR iteration to solve for new 
concentrations, the corrosion potential is updated. This process is continued until the change in 
concentrations is below a user-defined threshold. This sequential solve leads to a significant number of 
NR being performed each time step (Harvey et al. 2022). The MATLAB code was dissected line by line 
in an effort to ensure we properly understand the interfacial reaction implementation. 

We hypothesize that this sequential iteration leads to significant code slowdowns as a typical simulation 
spends ~30% of the computational time in the AMP_reactFuel subroutine. Herein we suggest a new 
algorithm that solves for corrosion potentials and new concentrations simultaneously.  Imagine a 1D 
reactive transport system with 3 species (A + B  C) and 3 grid cells. Also assume that species A is 
accumulated via an electrochemical reaction with an associated corrosion potential (e.g., Eq. B-3). This 
electrochemical reaction only occurs in the left most grid cell (i.e., fuel surface). A typical matrix 
representation of the system solved via a finite volume method is shown in Fig. B-3. In the 2nd and 3rd grid 
cell you observe the standard penta-diagonal structure in which the derivative of the rate expression for A, 
B, and C is taken with respect to the given species in the center 3 diagonals (e.g., 𝑑𝑑𝑅𝑅(𝐴𝐴)

𝑑𝑑𝐴𝐴� ), and the 
derivative of the diffusion operator (e.g., 𝐿𝐿′(𝐴𝐴)) appears in the center and  two off diagonals. The 
derivative of the standard accumulation term appears in the center diagonal (e.g., 1 ∆𝑡𝑡� ). However, now 
given the need to solve for the corrosion potential and the concentration of A in the left most grid cell, the 
3x3 block is transformed to a 4x4 block in the upper right.  The 4th column represents the derivative of 
each reaction equation with respect to the corrosion potential. Note that this is 0 except for the 4th row in 
which the derivative of the corrosion potential equation is taken. The 4th row therefore has two entries, 
one in which the derivative of the fuel corrosion equation is taken with respect to the concentration of A 
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and another where it is taken with respect to the corrosion potential itself. Using this matrix form, the 
corrosion potential and concentrations can be solved for simultaneously; potentially limiting unnecessary 
non-linear solver iterations, improving the efficiency of the algorithm, and removing observed 
discontinuities in the results. Implementing the MATLAB algorithm, as is, is the current focus of our 
work; however, future efforts will focus on improving the algorithm as described here. 

 

 

Fig. B-3 Representative proposed matrix for solving for corrosion potentials and new concentrations 
simultaneously in the FMD model. Here the reaction expressions and their derivatives are given 
by 𝐑𝐑, the diffusion operator is given by 𝐋𝐋, the corrosion potential equation is given by 𝐟𝐟(𝐄𝐄𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟), 
and the standard accumulation term for each species is 𝐀𝐀−𝐀𝐀

𝐤𝐤

∆𝐭𝐭
. 

ALPHA RADIOLYSIS MODEL 

The last major component of the FMD model is the alpha radiolysis model which produces the main fuel 
oxidant (H2O2). We have fully implemented the model within the MATLAB code. Here, we will describe 
the process and show some of our results. Radiolysis is incorporated into the FMD model via a 
straightforward analytical function which describes the production of H2O2 as a function of space and 
time. It is given by 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚𝑛𝑛 𝑌𝑌𝑖𝑖𝑛𝑛𝑀𝑀𝑑𝑑 𝑀𝑀𝑓𝑓 𝑂𝑂2𝑈𝑈2(𝑒𝑒, 𝑡𝑡) = �𝐺𝐺𝐻𝐻2𝑂𝑂2� ∗ [𝐷𝐷𝑀𝑀𝑛𝑛𝑛𝑛 𝑅𝑅𝑚𝑚𝑡𝑡𝑛𝑛](𝑒𝑒, 𝑡𝑡) ∗ 𝑔𝑔(𝑒𝑒)  (B-5) 

where 𝑔𝑔(𝑒𝑒) is a geometrical factor that alters the diffusion of aqueous species through the tortuosity of 
precipitated UO2, and 𝐺𝐺𝐻𝐻2𝑂𝑂2 is the primary alpha radiolysis yield of H2O2. It should be noted that it is 
often reported that 𝐺𝐺𝐻𝐻2𝑂𝑂2 is given by the model produced by Buck et al. (2013), which depends on the 
concentration of H2 and O2. However, upon inspection of the MATLAB code a simple constant is used for 
𝐺𝐺𝐻𝐻2𝑂𝑂2instead. It has been shown that 𝐺𝐺𝐻𝐻2𝑂𝑂2 can be significantly smaller at high H2 and low O2 
concentrations. In these environments we are likely overestimating the fuel dissolution rate as we are 
overestimating the concentration of H2O2 in the system. While, in the future, we would like to implement 
the Buck et al. (2013) model we are currently focused on producing the MATLAB code as is and thus we 
have used a constant term for 𝐺𝐺𝐻𝐻2𝑂𝑂2 here. 

It should also be stated that several reports discuss three possible regions where radiolysis could occur 
(Fig. B-4). The assumption here is that radionuclides could be imbedded in the solid uranium phases that 
form and therefore produce H2O2. These regions are as follows, (1) a region where no solid uranium has 
formed, (2) a region where a solid uranium phase has formed but is less than the penetration depth of the 
alpha particles, and (3) a region where a solid uranium phase has formed but is longer than the alpha 
particle penetration depth. Upon inspection of the MATLAB code we discovered that this effect is not 
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activated and any particles that might be embedded in these solid regions do not contribute to the 
radiolysis (see Fig. B-5 for the code snippet). 

 

 

Fig. B-4 Depiction of 3 regions for radiolysis in which (1) no solid uranium has formed, (2) solid uranium 
has formed but is less than the length of the alpha particle penetration depth, and (3) solid 
uranium has formed and is longer than the alpha particle penetration depth. 
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Fig. B-5 Code snippet for the radiolysis model. Contributions to radiolysis from the corrosion layer is 
indicated in the red box on the left which is eventually multiplied by a factor called “cMult” 
which is set to 0.0. 

Our current working Fortran version has a full grid cell at the left and right boundary of the 1D cell. To 
implement the radiolysis process, we remove this full grid cell for H2O2 to transform it into a hard wall 
boundary. In simple terms, the radiolysis model acts as the source term for H2O2 into the system. The 
production of H2O2 decays exponentially as you move away from the fuel surface. To test our radiolysis 
implementation, we initially ran a simulation where radiolysis was turned on, but diffusion is turned off. 
In Fig. B-6 we show the concentration of H2O2 as a function of time at various distances from the fuel 
surface. We observe that past 80 𝜇𝜇m, H2O2 is not observed which agrees well with the known alpha dose 
as a function of distance from the fuel surface (Jerden, et al., 2014). 
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Fig. B-6 The concentration of H2O2 as a function of time for various distances from the fuel surface with 
diffusion turned off. Past 80 𝛍𝛍m, H2O2 is not observed. 

We performed two more tests, both with diffusion turned on (Fig. B-7). In one test we implement the 
model using the hard wall boundary as described above (lines), while in a second test we keep the full 
grid cell boundary; however, we turn the boundary concentration to 0 (points). Given the 0 concentration 
these results should agree exactly with the hard wall boundary, and that is indeed what we observe. Given 
these results we are confident that the radiolysis model has been implemented correctly.  
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Fig. B-7 Concentration of H2O2 as a function of time for various distances from the fuel surface with 
diffusion turned on 

CONCLUSIONS 

In this FY we concentrated on implementing the interfacial reactions of the MATLAB code in the Fortran 
code. As discussed in this report, these reactions are implemented in a non-standard way in the MATLAB 
code. Additionally, the MATLAB code is implemented recursively which makes reading the code more 
difficult. We have outlined here the algorithm we are currently working on implementing in which the 
corrosion potentials are solved first and then the concentrations are updated. We have also outlined in 
greater detail our hypothesis for improving this sequential iterative process. Currently, radiolysis has been 
implemented using the simple constant term for 𝐺𝐺𝐻𝐻2𝑂𝑂2, and our results indicate the process is working as 
expected. However, there is considerable interest in the FMD model user community to implement a more 
complex model for 𝐺𝐺𝐻𝐻2𝑂𝑂2 which has been shown to be important when concentrations of H2 are high and 
O2 low. We plan on implementing the advanced 𝐺𝐺𝐻𝐻2𝑂𝑂2 model in the future. Our current focus is on 
implementing the interfacial reactions so that we can achieve our initial goal, which is to reproduce the 
physical and chemical processes implemented in the MATLAB code. 
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 SURROGATE MODELING OF THE FUEL MATRIX 
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MATRIX DEGRADATION (FMD) PROCESS MODEL 
 

 

 
INTRODUCTION 

As discussed earlier in this report, the Geologic Disposal Safety Assessment (GDSA) Framework is an 
open source repository simulation software built around the massively-parallel multi-physics code 
PFLOTRAN. An important short-term goal of the development of the GDSA Framework (pa.sandia.gov) 
is to perform probabilistic repository simulations to identify sources of uncertainty to help prioritize 
future R&D. To achieve this short-term goal with current computer resources, developers must consider 
ways to include the effects of expensive process models in total system simulations.  

High fidelity prediction of waste package and waste form degradation processes for thousands of waste 
packages in a probabilistic repository performance assessment calculation is expensive. With thousands 
of waste packages, thousands of time steps, and hundreds of realizations in a simulation to allow for 
uncertainty quantification, these process models may need to be called a billion times per simulation.  

One way to reduce computational expense is to develop response surface surrogate models that can 
rapidly emulate the mechanistic process models. An ideal response surface surrogate model runs orders of 
magnitude faster than its parent mechanistic model and provides outputs identical to those of the 
mechanistic model within a specified range of the model inputs. 

Over the past few years, a team of modelers and mathematicians at Sandia National Laboratories has been 
developing surrogate models for the UO2 Flux that is predicted by the Fuel Matrix Degradation (FMD) 
process model (Jerden et al., 2015a). The FMD model has been coupled with PFLOTRAN (Mariner et al., 
2015), but the coupled model runs too slowly for a set of probabilistic repository-scale simulations. The 
surrogate modeling work has examined Machine Learning (ML) approaches such as tabulation with tree-
based lookup methods, and artificial neural networks. A key question for obtaining good accuracy with 
these surrogate models is what information should be used to train the surrogates on. This appendix 
describes advances made over the past year in incorporating information about the fuel corrosion layer 
thickness in surrogate model training. 
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We next describe the FMD process model used to generate results for this appendix followed by a 
discussion of our general approach for surrogate modeling and the process for generating training data. 
Next we review some prior results from surrogates that do not use detailed information about the internal 
state of the waste packages and waste form. After that, we explore the use of surrogate models that 
estimate, track, and use the growing thickness of the corrosion layer on the fuel surface to help define 
system state, along with preliminary results. 

FUEL DISSOLUTION PROCESS MODEL 

The FMD model used for the results in this appendix is a mechanistic spent fuel dissolution model coded 
in MATLAB and developed at Argonne National Laboratory and Pacific Northwest National Laboratory. 
The model calculates spent fuel dissolution rates as a function of radiolysis, alteration layer growth, 
diffusion of reactants through the alteration layer, temperature, and interfacial corrosion potential (Jerden 
et al., 2015b). It employs a one-dimensional (1D) reactive transport model to simulate diffusion and 
chemical reactions across this layer over time. The 1D domain, depicted in Fig. B-1, extends 0.05 m from 
the fuel surface to the bulk water. It is divided into as many as 100 cells with increasing length toward the 
bulk water boundary cell. 

To couple the FMD model with PFLOTRAN, a “coupled” FMD model was coded in Fortran (Mariner et 
al. 2015). At each time step, PFLOTRAN calls the coupled FMD model to obtain a new dissolution rate. 
Coupling required PFLOTRAN to keep track of the 1D chemical profiles across the domain from the 
previous time step. It also required relevant inputs from the main PFLOTRAN simulation, such as 
temperature, time, and environmental concentrations in the boundary cell. Dose rate is calculated in the 
coupled FMD model from time and burnup. A full list of FMD model inputs and outputs available for 
surrogate modeling is presented in Tab. B-1. 

 

Fig. B-1 FMD Model Domain 

Tab. B-1 Inputs/Outputs of Coupled FMD Model 

Available Inputs Outputs 
• Initial concentration profiles across 1D corrosion/water layer (UO2(s), 

UO3(s), UO4(s), H2O2, UO2
2+, UCO3

2-, UO2, CO3
2-, O2, Fe2+, and H2) 

• Initial corrosion layer thickness 
• Dose rate at fuel surface  (= f (time, burnup)) 
• Temperature 
• Time and time step length 
• Environmental concentrations (CO3

2-, O2, Fe2+, and H2) 

• Final concentration profiles across 
1D corrosion/water layer 

• Final corrosion layer thickness 
• Fuel dissolution rate (UO2 flux) 

 
The coupled Fortran FMD model was tested on a problem involving a two-dimensional flow field 
containing 4 rows of 13 breached spent fuel waste packages. The model successfully simulated fuel 
dissolution for each of the waste packages over 100 time steps (Mariner et al., 2015). Of the 45 minutes of 
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computational time required to run the simulation, 30 minutes were used calculating the fuel dissolution 
rates in the coupled FMD model. 

SURROGATE MODELING 

It is often useful to construct a surrogate model to use in uncertainty and sensitivity analysis of a 
computational physics model when it is computationally demanding. A surrogate model (sometimes 
called meta-model, emulator, or response surface model) is an inexpensive input-to-output mapping that 
replaces a process model. Once constructed, this meta-model is relatively inexpensive to evaluate so it is 
often used as a surrogate for the physics model in uncertainty propagation, sensitivity analysis, or 
optimization problems that may require thousands to millions of function evaluations (Simpson et al., 
2008).  

There are many different types of surrogate models, including neural networks (Pedregosa et al., 2011; 
Ben-David et al., 2014), k-Nearest Neighbor regression (Ben-David et al., 2014), and polynomial chaos 
expansions (Xiu, 2010; Ghanem & Spanos, 2002). Another popular approach in the literature is to 
develop an emulator that is a stationary smooth Gaussian process (Rasmussen & Williams, 2006; Santner 
et al., 2003). The popularity of Gaussian processes is due to their ability to model complicated functional 
forms and to provide an uncertainty estimate of their predicted response value at a new input point. There 
are many good overview articles that compare various meta-model strategies. Various smoothing 
predictors and nonparametric regression approaches are compared elsewhere (Simpson et al., 2008, 
Santner et al., 2003, Storlie et al., 2009). Simpson et al. provides an excellent overview not just of various 
statistical meta-model methods but also approaches that use low-fidelity models as surrogates for high-
fidelity models. Haftka and his students developed an approach that uses ensembles of emulators or 
hybrid emulators (Viana et al., 2009).  

Two ML surrogate modeling approaches are used in this work to predict the UO2 flux resulting from fuel 
degradation: A k-nearest-neighbors surrogate model and an Artificial Neural Network. The former 
interpolates between points in a high-dimensional lookup table generated by sampling the FMD model. 
The latter fits a nonlinear functional representation to the FMD model data. Both approaches require a 
sufficient amount of training data from the FMD model. 

Training Data 

We used a standalone MATLAB implementation of the FMD process model to generate training data by 
randomly sampling the inputs to the model. The training data itself can be very large. For example, we 
may have millions of samples of FMD, where each sample involves a multi-dimensional vector sample of 
inputs such as the environmental concentrations, temperature, burnup, etc. (the left-hand quantities in 
Tab. B-1). The output is also extensive, since each FMD run involves a hundred timesteps with lots of 
information about the fuel cask state reported at every time step (e.g., the right-hand quantities in Tab. 
B-1). Note that in this work, we focus on predicting the fuel dissolution rate (UO2 flux), although the 
other two output quantities could be treated with a surrogate in similar manner. 

A Latin hypercube sampling (LHS) study was performed to generate training and validation data for 
regression from the standalone FMD process model. LHS is a stratified sampling technique that generates 
“well-spaced” samples; it typically gives lower variance statistical estimators than plain Monte Carlo 
sampling (Helton & Davis, 2003). The six-dimensional sample space contained the parameters initial 
temperature, burnup, and the environmental concentrations of CO3

2-, O2, Fe2+, and H2. The probability 
distributions for each parameter are given in Tab. B-2. 
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Tab. B-2 Input Parameters and Their Distributions 

Parameter Distribution Min. Max. 
Init. Temp. (K) Uniform 300 400 
Burnup (Gwd/MTU) Uniform 40 65 
Env. CO3

2- (mol/m3) Log-uniform 10-3 2 × 10-2 

Env. O2 (mol/m3) Log-uniform 10-7 10-5 
Env. Fe2+ (mol/m3) Log-uniform 10-3 10-2 
Env. H2 (mol/m3) Log-uniform 10-5 2 × 10-2 

 
The temporal discretization in each problem consists of 101 logarithmically-spaced (base 10) points in 
time from 0 to 105 years. Some FMD runs need to be filtered out if they either get stuck in an infinite 
loops and never finish or if they show unphysical results, such as the UO2 surface flux stagnating after 104 
years, or the Corrosion Layer Thickness (CLT) growing beyond the computational domain of 0.05m.  

To assess the accuracy of the models for a specific training data size, we analyzed the normalized root 
mean squared error (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛), which is computed over the data set as:  

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
�1
𝑁𝑁∑ �𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖−𝑦𝑦𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝,𝑖𝑖�

2𝑁𝑁
𝑖𝑖=1
1
𝑁𝑁∑ 𝑦𝑦𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝,𝑖𝑖

𝑁𝑁
𝑖𝑖=1

          (B-1) 

where N is the total number of data points. In other words, the 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the root mean squared error 
normalized by the mean of the true data.  Another metric is the mean absolute percentage error (𝑛𝑛𝑚𝑚𝑚𝑚𝑛𝑛), 
which is computed as: 

𝑛𝑛𝑚𝑚𝑚𝑚𝑛𝑛 = 1
𝑁𝑁
∑ �𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖−𝑦𝑦𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝,𝑖𝑖

𝑦𝑦𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝,𝑖𝑖
�𝑁𝑁

𝑖𝑖=1 ×  100        (B-2) 

The 𝑛𝑛𝑚𝑚𝑚𝑚𝑛𝑛 error, due to its relative nature, does a good job of treating the approximations in all quantities, 
large or small, with equal importance. On the other hand, the 𝑛𝑛𝑚𝑚𝑚𝑚𝑛𝑛 can be sensitive to numerical noise, 
for example when reasonable errors get divided by very small quantities in absolute value.  Also, for 
some applications, the approximation of the larger values is the most important criterion. For these 
situations, the 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is a good overall measure of goodness. For a data set where the Quantity of Interest 
(QoI) spans many orders of magnitude, it is good to consider both metrics. 

k-Nearest Neighbor Regression 

The k-Nearest Neighbors regressor (kNNr) is a supervised, non-parametric machine learning method that 
tabulates data points inside of a domain X with labels Y. The label for a point within the domain but not 
in the “table” is obtained as a weighted average of the labels of the 𝑘𝑘 nearest neighbors of this new point, 
where 𝑘𝑘 ≥ 1 is fixed. The definition of nearest depends on the metric function one uses, though a typical 

choice is the Minkowski metric (∑ |𝑒𝑒𝑖𝑖 − 𝑦𝑦𝑖𝑖|𝑝𝑝𝑎𝑎
𝑖𝑖=1 ) 

1
𝑝𝑝  , with 𝑚𝑚 ≥ 1. The case of 𝑚𝑚 = 2 is the popular 

Euclidean metric, which is used in this work. For efficient look-up in high-dimensional data sets, a K-D 
Tree tabulation method is used (Pedregosa et al., 2011). The inverse distances from the nearest-neighbor 
table points to the query point are used as the weight in the interpolation, so that points further away from 
the query point have less influence than more nearby points. 
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One of the attractive aspects of kNNr is that it makes predictions based on local information only, and 
therefore does not require global smoothness over the input space.  As each prediction is a weighted 
average of known table points, the approach is also highly interpretable. On the other hand, the approach 
requires a sufficiently dense table to get good predictive accuracy, and the cost of table look-ups increases 
as the table density increases. 

For model development and metaparameter tuning, we employed the kNNr implementation from the 
Python Scikit-Learn module (Pedregosa et al., 2011). For coupling to PFLOTRAN reservoir simulations, 
we relied on the open source FORTRAN code KDTREE 2 (Kennel, 2004). 

Artificial Neural Network 

Artificial Neural Network (ANN) models are commonly employed by the machine learning community 
for regression and classification problems. They can be described as intricate networks of “artificial 
neurons” that are essentially weighted combinations of (usually simple) nonlinear functions. One 
motivation for the development of neural networks (Pedregosa et al., 2011; Ben-David et al., 2014; 
Rasmussen & Williams, 2006) was to create a regression approach for complex functions that avoids the 
combinatorial growth of the parameter space that occurs in polynomial regression models as more inputs 
are added. 

ANN can be more accurate than kNNr using fewer training data as its functional representation helps to 
interpolate in areas where fewer training data are available. However, ANN models are not as readily 
interpretable as kNNr models, and care must be taken to avoid overfitting. 

The ANN surrogate was developed in Python using the Tensorflow/Keras module (Abadi et al, 2016). A 
feed-forward neural network structure was selected with the popular rectified linear unit (ReLU) 
activation function. All training and metaparameter tuning were done in Python. For coupling to 
PFLOTRAN reservoir simulations, a Fortran ANN evaluator was written specifically for the selected 
network configuration. This evaluator reads in the ANN weights that were determined offline in the 
Python training and tuning scripts. 

Surrogates Not Relying on Detailed Internal State Information 

While the FMD model tracks detailed information about the internal state of the fuel cask over time, such 
as the information listed under Outputs in Tab. B-1, most of this information is not readily available when 
a surrogate model is called in a reservoir simulation. As such, our first approach to surrogate modeling 
considers only the following 6 inputs:  

• Dose rate at fuel surface (= f (time, burnup)) 

• Temperature 

• Environmental concentrations (CO3
2-, O2, Fe2+, and H2) 

These inputs are either set by the environment (temperature and environmental concentrations) or can be 
readily computed from global information (dose rate).  

As covered in detail in (Debusschere et al., 2022), surrogates using these inputs show a fair agreement 
with the process model predictions of the UO2 fluxes. Tab. B-3 shows the 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and 𝑛𝑛𝑚𝑚𝑚𝑚𝑛𝑛 errors on the 
UO2 fluxes predicted by the kNNr and ANN surrogates compared to FMD simulations on testing data. In 
this case, the surrogate models were trained based on 400,000 FMD Matlab runs. The kNNr model used 
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dose rate, temperature, and the concentrations of CO3

2- and H2 as inputs. The kNNr table contained 2.28 
million samples and 80 Nearest Neighbors were used for interpolation. The ANN model used two hidden 
layers with 64 nodes each for a total of 4673 parameters and was trained on the same data set using dose 
rate, temperature, and all 4 environmental concentrations CO3

2-, O2, Fe2+, and H2 as inputs. 

Tab. B-3 Error metrics for kNNr and ANN surrogates on testing data for the case where no detailed 
internal fuel cask information is used 

Surrogate nrmse mape 
kNNr 0.48 44% 
ANN 0.52 25% 

 
A demonstration on a full-scale shale repository reference case simulation showed that the ANN and 
kNNr surrogate models enable accounting for more detailed FMD dynamics than when a fractional 
dissolution rate approximation is used, while keeping the computational cost of reservoir simulations 
manageable (Debusschere et al., 2022). 

Surrogates Using Corrosion Layer Thickness as a System State 
Indicator 

Approach  

While the results in (Debusschere et al., 2022) are encouraging, the accuracy of the surrogates is not 
superb. In this section, we explore the potential of getting more accurate surrogate models by 
incorporating additional information about the internal fuel cask state. One variable that is a good 
indicator of the cumulative amount of waste form degradation that has occurred over time is the 
Corrosion Layer Thickness (CLT). Since this information is not readily available without running a 
detailed FMD process model, a dual surrogate model approach is followed.  

A first surrogate model predicts the CLT at the current time, using the CLT at the previous time step and 
the time step size as inputs, in addition to the inputs in Tab. B-2. A second surrogate predicts the UO2 
flux, using this same expanded input set. After advancing to the next time step, the CLT predicted by the 
surrogate in the previous time step becomes part of the inputs for the next time step. 

Preliminary Results 

This dual surrogate approach was implemented for the kNNr surrogate, using dose rate, temperature, and 
the concentrations of CO3

2- and H2 along with CLT at the previous time step and the time step size as 
inputs. The surrogate was trained using a data set of 1 million FMD Matlab runs sampled from the 
distributions listed in Table II. After removing unphysical runs, 15% of the data was split off as validation 
data and 10% was split off as testing data, resulting in about 9.4 million validation data points, 6.3 million 
testing data points, and 47 million training data points. Following (Debusschere et al., 2022), the training 
data was downsampled by randomly selecting a given number of samples from each FMD time trajectory. 

Fig. B-2 through Fig. B-5 show preliminary results that explore the choice of kNNr metaparameters 
(amount of training data and the number of Nearest Neighbors, NN) for the CLT and UO2 Flux 
predictions. In all of these experiments, the training data was subsampled to 50 time samples per run. The 
validation data was used for computing the error metrics. As the CLT is initialized at a very small value 
on the order of 10-19 micrometer, the presence of some very small CLT values makes the computation of 
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the regular 𝑛𝑛𝑚𝑚𝑚𝑚𝑛𝑛 error numerically unstable. To mitigate this effect, we defined a modified “floored” 
𝑛𝑛𝑚𝑚𝑚𝑚𝑛𝑛 error metric, which uses a value of 10-4 in the 𝑛𝑛𝑚𝑚𝑚𝑚𝑛𝑛 denominator if the CLT at that point is less 
than 10-4 µm. This effectively removes the impact of division by very small CLT values from the 
computation. This modified 𝑛𝑛𝑚𝑚𝑚𝑚𝑛𝑛 metric here is indicated as mape_f in the figures. 

 

 

Fig. B-2 The 𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐟𝐟 metric for prediction of the CLT as a function of the amount of training samples for 
different values of the number of Nearest Neighbors (NN) used. 

 

 

Fig. B-3 The mape_f metric for prediction of the CLT as a function of the amount of training samples 
for different values of the number of Nearest Neighbors (NN) used. Errors are on the order of 1 
– 2 %. 

Fig. B-2 and Fig. B-3 show that the incorporation of the CLT at the previous time step along with the 
time step size as inputs, allows a very accurate prediction of the CLT, with 𝑛𝑛𝑚𝑚𝑚𝑚𝑛𝑛 errors down to about 1 
– 2% on the validation data. 
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Fig. B-4 The nrmse metric for prediction of the UO2 flux as a function of the amount of training samples 
for different values of the number of Nearest Neighbors (NN) used.  

 

 

Fig. B-5 The 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 metric for prediction of the UO2 flux as a function of the amount of training samples 
for different values of the number of Nearest Neighbors (NN) used. Given enough data points, 
the 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 error is less than 30 %. 

Fig. B-4 and Fig. B-5 similarly show nice convergence of the kNNr surrogate approximation error in the 
UO2 flux as more training data are provided. 

Based on the trends in this preliminary tuning of the kNNr meta parameters, both the CLT and UO2 flux 
are best predicted using about 8 – 12 nearest neighbors with as much training data as possible. Note that 
the number of nearest neighbors used here is much lower than the 80 nearest neighbors used for the kNNr 
surrogates that did not include CLT information. As such, the addition of the CLT as an input allows for 
faster table lookups and may also be more robust as there is less danger of grabbing points that are too far 
away when fewer neighbors are used in the interpolation.  Based on these tuning results, a kNNr 
configuration of 10 nearest neighbors using all available training data (all 23 million samples from the 
data set that was downsampled to 50 samples per FMD process model run) was selected to predict the 
testing data. This testing data has not been used in any of the training and tuning of the kNNr surrogate.  

Fig. B-6 and Fig. B-7 below compare the kNNr predictions of the CLT and UO2 flux to the testing data 
for 50 randomly sampled trajectories of the FMD process model. Note that in this comparison, each data 
point in the time trajectories was predicted on its own, using the inputs provided by the testing data. In a 
practical PFLOTRAN repository simulation, the CLT value at the previous time step would not be readily 
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available as the PFLOTRAN model does not track CLT independently.  This CLT value would therefore 
need to be approximated by the same surrogate operating on the inputs from the prior time step. As such, 
if Fig. B-6 had been generated with a true time integration approach, where only the initial values of the 
CLT were specified, errors in the successive surrogate approximations for the CLT would have 
compounded over time, and might  have caused the trajectories to diverge from the MATLAB model 
predictions over time. The analysis shown here is still useful as it shows where such errors are most likely 
to originate. 

 

Fig. B-6  Comparison of the True and kNNr prediction of the CLT for 50 randomly selected runs in the 
testing data. 

 

Fig. B-7  Comparison of the True and kNNr prediction of the UO2 flux for 50 randomly selected runs in 
the testing data. 

Aside from some deviations early in time, the kNNr predictions of the CLT in Fig. B-6 are very close to 
the true values in the testing data. This graph also illustrates the very wide range in CLT values. It is 
believed that the errors in the CLT predictions at early time, when the CLT is often very small, are the 
ones that tend to inflate the 𝑛𝑛𝑚𝑚𝑚𝑚𝑛𝑛 error if no floor value is applied. 

The predictions of the UO2 fluxes in Fig. B-7 show good agreement with the test data, although the 
agreement is not as good as for the CLT predictions. As observed also in (Debusschere et al., 2022), the 
kNNr prediction is noisy as it is a local prediction, drawing information only from 10 nearest neighbors to 
each query point in the training sample space. 
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Overall, with this kNNr configuration of 10 nearest neighbors and 23 million training samples, the 
prediction of the UO2 flux in the testing data shows an 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 error of 0.11, and a 𝑛𝑛𝑚𝑚𝑚𝑚𝑛𝑛 error of 29%. 
Even without extensive tuning of the kNNr metaparameters, this is a significant improvement from the 
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 error of 0.48 and 𝑛𝑛𝑚𝑚𝑚𝑚𝑛𝑛 error of 44% reported in Tab. B-3 for the case where no CLT information 
was used. 

 
Ongoing Work 

We are continuing to tune the kNNr meta parameters to optimize both the accuracy and speed of the 
predictions. In this process, we are also investigating the cause of the large (in relative sense) deviations 
in the CLT predictions that show up at early times. Besides kNNr, we will also train Artificial Neural 
Networks (ANNs) using the same input set. As ANNs use a functional representation rather than local 
approximations, the predictions by the ANN surrogates are likely to be smoother than the kNNr 
predictions when looking at time trajectories. The resulting kNNr and ANN configurations will then be 
employed to full scale nuclear waste performance assessment simulations. 

CONCLUSIONS 

Two machine learning surrogate models are under development to rapidly emulate the effects of the Fuel 
Matrix Degradation (FMD) model in the GDSA Framework. One is a k-Nearest Neighbors regressor 
(kNNr) method that operates on a lookup table, and the other is an Artificial Neural Network. Both 
approaches have a high degree of accuracy, provided that enough training data is available with inputs 
that are informative of the UO2 flux that results from the fuel degradation. 

While earlier work (Debusschere et al., 2022) used only inputs that do not require detailed information 
about the internal state of the fuel cask, the current work explored the use of the Corrosion Layer 
Thickness (CLT). While this quantity of interest would need to be predicted along with the UO2 flux at 
every time step in a repository simulation, the preliminary results in this work with the kNNr surrogate 
show that the CLT is very informative of the UO2 flux. Including CLT as an input therefore results in 
dramatically better accuracy. Ongoing work is incorporating the CLT as an input in the ANN surrogate, 
and further refining the sampling schemes and meta-parameter tuning processes before employing this 
approach in realistic, full scale repository simulations. 

The aim of these surrogate models is to enable the GDSA Framework to simulate spent fuel dissolution 
for each individual breached spent fuel waste package in a probabilistic repository simulation. Having the 
ability to emulate spent fuel dissolution in probabilistic PA simulations will have the added capability of 
allowing uncertainties in spent fuel dissolution to be propagated and sensitivities in FMD inputs to be 
quantified and ranked against other inputs. 
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 GROUNDWATER CHEMISTRY MODELING FOR THE 
CRYSTALLINE REFERENCE CASE 

 
 
 

 

 
APPENDIX D. GROUNDWATER CHEMISTRY 

MODELING FOR THE CRYSTALLINE REFERENCE 
CASE 

 

 

 
INTRODUCTION 

The chemical composition of groundwater is important to consider in repository performance assessment 
because it affects the corrosion and performance of engineered barriers and waste forms and the mobility 
of radionuclides. To begin to incorporate groundwater chemistry processes in repository system models, 
development of a hydrogeochemical reactive transport model for the crystalline reference case was 
initiated. The studies performed at the Onkalo spent nuclear fuel repository (Posiva 2021) are used to 
guide development. The Onkalo spent nuclear fuel repository is a repository located on the island of 
Olkiluoto in Eurajoki, Finland, with disposal tunnels excavated in fractured gneiss and granite bedrock. 
Because crystalline bedrock is largely impermeable, the main conduit for water movement is through the 
fractures. Fractures exist naturally and from drilling disturbances. 

Four main water endmembers were identified by Posiva (2021): meteoric HCO3-type water, brackish 
SO4-type water, and two saline Cl-type waters. These endmember waters exist at progressively deeper 
depths and are mixed at certain intervals. The geochemistry of these endmembers and how they mix and 
interact with the rock determines the production of sulfides. Sulfides are of particular concern to the 
performance assessment of spent nuclear fuel repositories as sulfides can corrode the copper cannisters 
that seal and store the spent uranium fuel rods. 

Two cases of hydrogeochemical evolution are considered: the steady-state base case and the transient 
disturbed case. The base case considers diffusion and slow advection through fractures as the main mass 
transport mechanism for major ions, at near-thermodynamic equilibrium conditions. In the base case, 
elevated sulfide concentrations are found (HS-  concentrations up to approximately 3 mg/L) at the 
transition zone between the brackish SO4-type water and the saline Cl-type water. The disturbed case 
considers ion transport by advection promoted by drawdown caused by open tunnels and highly 
conductive fractures intersecting open drillholes. This causes rapid mixing of groundwaters, moving the 
system to thermodynamic disequilibrium. Microbial communities are then able to take advantage of the 
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newly-introduced electron donors and acceptors and promote redox reactions, resulting in elevated sulfide 
concentrations in the disturbed zones. 

The main chemical reactions surrounding the reduction of sulfate are described below by depth. Many 
reactions are common among different groundwater endmembers and are repeated within the relevant 
endmember sections for completeness. 

OLKILUOTO GEOCHEMISTRY BY DEPTH 

0-100 m: Meteoric HCO3 water (0-40 m), mixed meteoric HCO3 + 
brackish SO4 water (40-100 m) 

Fracture-lining minerals 

The meteoric HCO3 endmember water is characterized by a high concentration of dissolved carbonate. 
This endmember is considered in equilibrium with goethite, 

𝐹𝐹𝑛𝑛𝑈𝑈𝑈𝑈𝑂𝑂 + 3𝑂𝑂+ ⇋ 𝐹𝐹𝑛𝑛3+ + 2𝑂𝑂2𝑈𝑈, 

calcite, 

𝐶𝐶𝑚𝑚𝐶𝐶𝑈𝑈3 ⇋ 𝐶𝐶𝑈𝑈32− + 𝐶𝐶𝑚𝑚2+, 

kaolinite,  

𝐴𝐴𝑀𝑀2(𝑆𝑆𝑖𝑖2𝑈𝑈5)(𝑈𝑈𝑂𝑂)4 + 6𝑂𝑂+ ⇋ 2𝐴𝐴𝑀𝑀3+ + 2𝑂𝑂4𝑆𝑆𝑖𝑖𝑈𝑈4, 

and chalcedony, 

𝑆𝑆𝑖𝑖𝑈𝑈2 + 2𝑂𝑂2𝑈𝑈 ⇋ 𝑂𝑂4𝑆𝑆𝑖𝑖𝑈𝑈4. 

In this region and throughout the entire depth, fracture-lining calcite exhibits control on the pH and 
buffers it to slightly alkaline conditions (7 < pH < 8). Meteoric water that flows through acidic soil is 
neutralized by the weathering of silicate clays at  shallow depths (Lahdenpera et al., 2005), which is 
reflected in elevated dissolved silica values in shallow HCO3

- groundwaters. 

The minerals in equilibrium with the mixed meteoric + brackish region are largely the same as the pure 
meteoric water interval, but without goethite, and precipitating mackinawite: 

𝐹𝐹𝑛𝑛𝑆𝑆 + 𝑂𝑂+ ⇋ 𝐹𝐹𝑛𝑛2+ + 𝑂𝑂𝑆𝑆− 

Carbon 

Dissolved organic carbon, denoted as CH2O, is introduced to the system through infiltration of meteoric 
water. The flux of meteoric water flushes organic matter from the soil through the first ~10 m. The carbon 
content in the shallow groundwater is ~20 to 90 mg/L. Ferrous iron (Fe2+) is likely a result of the 
reduction of iron oxyhydroxides by anaerobic microbial organic carbon oxidation: 

𝐶𝐶𝑂𝑂2𝑈𝑈 + 4𝐹𝐹𝑛𝑛𝑈𝑈𝑈𝑈𝑂𝑂 + 7𝑂𝑂+ → 4𝐹𝐹𝑛𝑛2+ + 𝑂𝑂𝐶𝐶𝑈𝑈3 + 6𝑂𝑂2𝑈𝑈. 
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Sulfide production 

Baseline sulfide concentrations in this shallow interval are low, with concentrations in the range of 
approximately 0.01 to 0.1 mg/L. Possible mechanisms of sulfide production are through dissolved organic 
matter (CH2O) reacting with SO4

2- to produce sulfide: 

𝑆𝑆𝑈𝑈42− + 2𝐶𝐶𝑂𝑂2𝑈𝑈 + 𝑂𝑂+ → 𝑂𝑂𝑆𝑆− + 2𝐶𝐶𝑈𝑈2 + 2𝑂𝑂2𝑈𝑈. 
Alternatively, methane (CH4) can act as an electron donor for microbial reduction of sulfate: 

𝐶𝐶𝑂𝑂4 + 𝑆𝑆𝑈𝑈42− → 𝑂𝑂𝑆𝑆− + 𝑂𝑂2𝑈𝑈. 
While H2 is a common electron donor for the microbial reduction of sulfate, repeated intrusion of 
meteoric and marine water along with continuous microbial consumption of H2 likely causes low H2 
concentrations in fractures and the bedrock matrix. 

Sulfide attenuation 

Ferrous iron (Fe2+) reacts with HS- to precipitate mackinawite, and over a longer time period, pyrite. 
Meteoric water (<40 m) contains a low concentration of sulfides, which allows for higher accumulations 
of Fe2+ (up to 8 mg/L). The highest concentration of Fe2+ is found in this shallow (<40 m) interval. 
Ferrous iron concentration is governed by the weathering and dissolution of iron silicates and the 
reduction of iron oxyhydroxides by anaerobic microbial organic carbon oxidation:  

𝐶𝐶𝑂𝑂2𝑈𝑈 + 4𝐹𝐹𝑛𝑛𝑈𝑈𝑈𝑈𝑂𝑂 + 7𝑂𝑂+ → 4𝐹𝐹𝑛𝑛2+ + 𝑂𝑂𝐶𝐶𝑈𝑈3 + 6𝑂𝑂2𝑈𝑈. 
This reaction occurs under slightly acidic conditions (5 < pH < 7). As HS- is highly reactive with Fe2+, the 
presence of a high concentration of Fe2+ indicates low sulfide production in this depth interval. 

Brackish SO4-type water (100-260 m), mixed brackish SO4 + saline Cl-
type waters (260-400 m) 

Fracture-lining minerals 

The fracture-lining minerals in this interval are the same as in the mixed meteoric + brackish interval (40-
100 m). The reactions in this interval (100-400 m) include the precipitation of mackinawite, 

𝐹𝐹𝑛𝑛𝑆𝑆 + 𝑂𝑂+ ⇋ 𝐹𝐹𝑛𝑛2+ + 𝑂𝑂𝑆𝑆−, 
and the dissolution of calcite, 

𝐶𝐶𝑚𝑚𝐶𝐶𝑈𝑈3 ⇋ 𝐶𝐶𝑈𝑈32− + 𝐶𝐶𝑚𝑚2+, 
kaolinite, 

𝐴𝐴𝑀𝑀2(𝑆𝑆𝑖𝑖2𝑈𝑈5)(𝑈𝑈𝑂𝑂)4 + 6𝑂𝑂+ ⇋ 2𝐴𝐴𝑀𝑀3+ + 2𝑂𝑂4𝑆𝑆𝑖𝑖𝑈𝑈4, 
and chalcedony, 

𝑆𝑆𝑖𝑖𝑈𝑈2 + 2𝑂𝑂2𝑈𝑈 ⇋ 𝑂𝑂4𝑆𝑆𝑖𝑖𝑈𝑈4. 
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Carbon 

Dissolved organic carbon concentration in this interval is low, < 10 mg/L. Infiltration of DOC from 
meteoric water does not penetrate to this depth, and acetate concentrations are similarly low. Methane 
concentrations at 300 m are ~ 100 mL/L, increasing with depth to over 1200 mL/L at 1100 m. The source 
of this methane is likely to be microbial, due to the lack of longer-chain hydrocarbons (ethane, propane, 
etc.) and a highly negative δ13C signature.  

Sulfide production 

Elevated sulfide concentrations are found in this region, with concentrations as high as 17 mg/L around 
300 m depth, within the brackish-saline mixing region. The introduction of SO4-rich water to the Cl-type 
water presents the opportunity for microbial reduction of sulfate. Because the DOC is low, S(VI) becomes 
a major electron acceptor, resulting in elevated sulfide concentrations: 

𝑆𝑆𝑈𝑈42− + 4𝑂𝑂2 + 𝑂𝑂+ → 𝑂𝑂𝑆𝑆− + 4𝑂𝑂2𝑈𝑈. 
Hydrogen is the electron donor used by sulfate-reducing bacteria, which is introduced from two sources: 
diffusion out of the crystalline rock matrix. H2 concentrations in the crystalline rock matrix are higher 
than in the fractures. While the exact mechanism by which abiotic generation of H2 occurs is unknown, 
there are many ways that H2 can be generated, including graphitization, radiolysis of water, reaction of 
40Ca with water, serpentization, cataclasis, and reactions between dissolved magmatic gases (Gregory et 
al., 2019). The H2 concentration profile with depth spans several orders of magnitude (Fig. D-1), 
suggesting that the concentration gradient is a result of slow diffusion of H2 upwards from water-rock 
interactions in diabase dykes (Trinchero et al., 2014). 

 

Fig. D-1 Aqueous H2 concentrations within the fractured rock matrix. Adopted from Posiva (2021), Fig. 
3.1-8. 

Sulfide attenuation 

This depth interval hosts a low concentration of ferrous iron (< 0.5 mg/L). Ferric iron silicates have a low 
solubility at a neutral pH under anoxic conditions. Iron-reducing bacteria use iron minerals and silicates 
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as an electron acceptor and conserve energy from the reduction of Fe(III) in chlorite to dissolved Fe2+. 
Chamosite is an iron-rich chlorite: 

𝐹𝐹𝑛𝑛5𝐴𝐴𝑀𝑀2(𝐴𝐴𝑀𝑀𝑆𝑆𝑖𝑖3)𝑈𝑈10(𝑈𝑈𝑂𝑂)8 + 16𝑂𝑂+ → 5𝐹𝐹𝑛𝑛2+ + 2𝐴𝐴𝑀𝑀3+ + 3𝑂𝑂4(𝑆𝑆𝑖𝑖𝑈𝑈4) + 6𝑂𝑂2𝑈𝑈. 
Ferrous iron (Fe2+) reacts with HS-, precipitating iron sulfides (FeS): 

𝐹𝐹𝑛𝑛2+ + 𝑂𝑂𝑆𝑆− → 𝐹𝐹𝑛𝑛𝑆𝑆 + 𝑂𝑂+. 
The dissolved sulfides can reduce the solid Fe(III) silicate phase: 

2𝑂𝑂𝑆𝑆− + 2𝐹𝐹𝑛𝑛3+ → 𝐹𝐹𝑛𝑛2+ + 𝑆𝑆0 + 𝐹𝐹𝑛𝑛𝑆𝑆 + 2𝑂𝑂+ 
This FeS can either stay in solution as a colloid or attach to a mineral surface (Fe(II)(s) or (Fe(III)(s)).  
Pyrite is formed through an aging sequence, typically FeS(am) →Mackinawite →Pyrite (Schoonen & 
Barnes, 1991). The conversion of FeS(am) to mackinawite is a fast process, occurring on the timescale of 
minutes to weeks. Mackinawite solubility largely controls iron and sulfide concentrations in the short 
term. Pyrite grows much more slowly from solution. Pyrite is formed from FeS via the polysulfide 
pathway: 

𝐹𝐹𝑛𝑛𝑆𝑆 + 𝑆𝑆0 → 𝐹𝐹𝑛𝑛𝑆𝑆2, 
or the hydrogen sulfide pathway: 

𝐹𝐹𝑛𝑛𝑆𝑆 + 𝑂𝑂2𝑆𝑆 → 𝐹𝐹𝑛𝑛𝑆𝑆2 + 𝑂𝑂2. 
Pyrite is supersaturated (saturation index ~ 3 to 9) throughout the entire domain, suggesting that pyrite 
formation is kinetically limited. Over a longer timescale, pyrite, rather than mackinawite, controls the 
solubility of sulfide and iron.  

Saline 1 Cl-type water (350-400 m), mixed Saline 1 + Saline 2 Cl-type 
water (400-850 m), Saline 2 Cl-type water (850+ m) 

Fracture-lining minerals 

The minerals present here are the same as the minerals in the prior depth interval. The minerals in 
equilibrium with this interval (100-400 m) include mackinawite, 

𝐹𝐹𝑛𝑛𝑆𝑆 + 𝑂𝑂+ ⇋ 𝐹𝐹𝑛𝑛2+ + 𝑂𝑂𝑆𝑆−, 
calcite, 

𝐶𝐶𝑚𝑚𝐶𝐶𝑈𝑈3 ⇋ 𝐶𝐶𝑈𝑈32− + 𝐶𝐶𝑚𝑚2+, 
kaolinite, 

𝐴𝐴𝑀𝑀2(𝑆𝑆𝑖𝑖2𝑈𝑈5)(𝑈𝑈𝑂𝑂)4 + 6𝑂𝑂+ ⇋ 2𝐴𝐴𝑀𝑀3+ + 2𝑂𝑂4𝑆𝑆𝑖𝑖𝑈𝑈4, 
and chalcedony, 

𝑆𝑆𝑖𝑖𝑈𝑈2 + 2𝑂𝑂2𝑈𝑈 ⇋ 𝑂𝑂4𝑆𝑆𝑖𝑖𝑈𝑈4. 

Carbon 

Anomalously high concentrations of acetate at depths greater than 400 m have been found and are likely 
the result of microbial activity. The dissolved organic carbon concentration in these regions is ~ 200 



 GDSA Framework Development and Process Model Integration FY2022 
D-6                                                                        September 2022 

 
mg/L, mostly comprised of acetate (CH3COO-). One common feature of the regions containing the high 
acetate concentrations are regions with low transmissivity (5⋅10-11 to 5⋅10-9 m2/s). Acetate production 
occurs by microbial activity. Autotrophic acetogens use H2 and CO2 to form acetate: 

4𝑂𝑂2 + 2𝐶𝐶𝑈𝑈2 → 𝐶𝐶𝑂𝑂3𝐶𝐶𝑈𝑈𝑈𝑈− + 𝑂𝑂+ + 2𝑂𝑂2𝑈𝑈. 
Sulfate-reducing bacteria activity is high in the high acetate-containing regions, resulting in sulfide 
concentrations as high as 15 mg/L: 

𝑆𝑆𝑈𝑈42− + 𝐶𝐶𝑂𝑂3𝐶𝐶𝑈𝑈𝑈𝑈− → 𝑂𝑂𝑆𝑆− + 2𝑂𝑂𝐶𝐶𝑈𝑈3− 

Sulfide production 

Electron acceptors such as SO4
2- and Fe2+ are at low concentrations, so H2 and CH4 are able to accumulate 

in Cl-type groundwater. Abiotic H2 generation can occur through a number of different pathways, as 
described in the section on brackish SO4 sulfide production. However, the scarce quantity of electron 
acceptors in this region limit the production of sulfide. 

Sulfide attenuation 

Sulfide attenuation occurs via the same processes as in the brackish SO4
2--saline Cl water mixture region 

(Section 1.1.2.4).  

POSIVA PFLOTRAN MODELING 

Posiva used PFLOTRAN to model major ion reactive transport and sulfide fluxes in the subsurface at 
Onkalo (Posiva 2021). PFLOTRAN is a massively parallel subsurface flow and reactive transport 
simulator. The parallel capability of the code makes it suitable for modeling systems such as the Onkalo 
spent nuclear fuel repository, as it can reduce the simulation runtime of systems with millions of degrees 
of freedom by increasing the number of processors used (Hammond et al., 2014). PFLOTRAN 
sequentially couples flow and reactive transport, which is suitable for modeling systems with evolving 
pressure and flux conditions over long periods of time.   

The Posiva study modeled a 7700 x 5760 x 1980 m subsurface region surrounding the Onkalo spent 
nuclear fuel repository. The simulations were split into four time periods corresponding to the different 
repository conditions. First, a simulation was run for the 499.99 years prior to repository construction 
(1500-1999.99 AD) to provide the quasi-stationary flow and pressure conditions. A 0.01 yr simulation 
was then performed to define the geochemical equilibrium conditions prior to repository construction. 
Following the initial flow and geochemistry simulations, an operational phase simulation was run for 121 
yr (2000-2121 AD), during which various repository panels open and close. The final simulation is a 
47,000 yr post-closure period, after which global warming-induced sea level changes alter the flux 
conditions applied to the upper boundary.  

Several variant cases were additionally performed. The first considered Ripidolite-14A instead of 
Chamosite as a source of Fe2+. The second variant case increased the maximum H2 concentration reached 
in the fracture by four times. The third variant case increased the water extraction rates from 50 L/min to 
100 L/min. The final variant case added an additional sulfate source from within the rock matrix within 
the first 300 m of depth. 
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PHREEQC REACTIVE TRANSPORT MODELING 

To model and study the chemical processes and controlling phases of the Posiva study, PHREEQC was 
used in the current work to speciate the endmember waters described by Posiva (2021). PHREEQC was 
chosen for this initial scoping work because of its extensive toolbox and user interface. The 
Thermochimie v.9 database (Giffault, 2014) was used, following POSIVA (2021). Once the initial 
scoping work is complete, a PFLOTRAN reactive transport model will be developed. 

The four endmember waters are described in the geologic context in the following subsections. They 
include a meteoric HCO3

- water, a brackish SO4
2- water, and two saline Cl-type waters. In this study, the 

endmember waters were equilibrated with the fracture-lining minerals, then mixed proportionally as 
described in (Posiva, 2021). 

Endmember Speciation 

The chemical compositions of the endmember reference waters are presented in Tab. D-1. Those 
chemical compositions are equilibrated with the fracture-lining minerals present at the depths where the 
water resides, described earlier. 

 Tab. D-1 Endmember water compositions presented in (Posiva, 2021) 

 Meteoric Brackish Saline 1 Saline 2 
pH 7.26 7.50 7.40 7.80 
Cl (mg/L) 6.75 4600 6400 43000 
SO4 (mg/L) 44.95 523 1 1 
S2- (mg/L) 0.0 0.04 0.18 0.0 
HCO3 (mg/L) 323 67.1 15.3 5.0 
PO4 (mg/L) 0.15 0.1 0 0.04 
DIC1 (mg/L) 66 10.1 3.0 1.0 
DOC2 (mg/L) 11 2.8 3.3 31.4 
Al (μg/L) 0.0 38 12.5 3.0 
Ba (μg/L) 0.0 150 180 0.0 
B (mg/L) 0.0 1.1 1.3 0.9 
Br (mg/L) 0.15 18 44 348 
Ca (mg/L) 74.5 750 1300 15700 
F (mg/L) 0.7 0.69 1 1.6 
Fe2+ (mg/L) 2.25 0.5 0.13 2 
Mg (mg/L) 14.9 160 62 110 
Mn (mg/L) 0.0 0.79 0.32 2.2 
K (mg/L) 6.68 16 11 22 
Rb (μg/L) 0.0 12 13 120 
SiO2 (mg/L) 19.3 7.7 10 5.3 
Na (mg/L) 18 1900 2650 9750 
Sr (mg/L) 0.15 6.6 14 161.04 
1 DIC = dissolved inorganic carbon 
2 DOC = dissolved organic carbon 

 
The Meteoric water endmember is used below as a demonstration of how chemistry is entered in 
PHREEQC: 
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SOLUTION 1 Meteoric HCO3 water 
 pH 7.26 
 Temperature 20 
 units mg/L 
 Cl 6.75 
 S(6) 44.95 as SO4 
 S(-2) 0.0 
 C(4) 323 as HCO3 
 P 0.15 as PO4 
 Al 0.0 ug/L 
 Ba 0.0 ug/L 
 B 0.0 
 Br 0.15 
 Ca 74.5 
 F 0.7 
 Fe(2) 2.25 
 Mg 14.9 
 Mn 0.0 
 K 6.68 
 Rb 0.0 ug/L 
 Si 19.3 as SiO2 
 Na 18 
 Sr 0.15 
END 
 

The output displays a description of the solution, along with species concentrations: 

 
----------------------------Description of solution-------------------------- 
 
                                       pH  =   7.260     
                                       pe  =   4.000     
      Specific Conductance (µS/cm,  20°C)  = 480 
                          Density (g/cm³)  =   0.99860 
                               Volume (L)  =   1.00192 
                        Activity of water  =   1.000 
                 Ionic strength (mol/kgw)  =   8.406e-03 
                       Mass of water (kg)  =   1.000e+00 
                 Total alkalinity (eq/kg)  =   4.754e-03 
                       Total CO2 (mol/kg)  =   5.296e-03 
                         Temperature (°C)  =  20.00 
                  Electrical balance (eq)  =   6.342e-05 
 Percent error, 100*(Cat-|An|)/(Cat+|An|)  =   0.56 
                               Iterations  =  10 
                                  Total H  = 1.110184e+02 
                                  Total O  = 5.552471e+01 
 
----------------------------Distribution of species-------------------------- 
 
                                         Log       Log       Log     mole V 
   Species     Molality    Activity   Molality  Activity    Gamma    cm³/mol 
 
   OH-        1.372e-07   1.245e-07    -6.863    -6.905    -0.042     -4.27 
   H+         5.977e-08   5.495e-08    -7.223    -7.260    -0.037      0.00 
   H2O        5.551e+01   9.998e-01     1.744    -0.000     0.000     18.05 
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Br       1.878e-06 
   Br-        1.878e-06   1.703e-06    -5.726    -5.769    -0.043     24.36 
C(4)     5.296e-03 
   HCO3-      4.628e-03   4.222e-03    -2.335    -2.375    -0.040     24.35 
   CO2        5.579e-04   5.590e-04    -3.253    -3.253     0.001     34.19 
   CaHCO3+    6.498e-05   5.936e-05    -4.187    -4.227    -0.039      9.51 
   MgHCO3+    2.107e-05   1.915e-05    -4.676    -4.718    -0.041      5.37 
   FeHCO3+    9.226e-06   8.391e-06    -5.035    -5.076    -0.041     (0)   
   CaCO3      5.941e-06   5.953e-06    -5.226    -5.225     0.001    -14.62 
   CO3-2      4.672e-06   3.235e-06    -5.331    -5.490    -0.160     -5.52 
   NaHCO3     1.734e-06   1.737e-06    -5.761    -5.760     0.001      1.80 
   FeCO3      1.540e-06   1.543e-06    -5.813    -5.812     0.001     (0)   
   MgCO3      1.128e-06   1.130e-06    -5.948    -5.947     0.001    -17.08 
   SrHCO3+    6.578e-08   6.001e-08    -7.182    -7.222    -0.040     (0)   
   NaCO3-     3.643e-08   3.314e-08    -7.438    -7.480    -0.041     -1.45 
   (CO2)2     4.830e-09   4.840e-09    -8.316    -8.315     0.001     68.37 
   SrCO3      1.961e-09   1.965e-09    -8.708    -8.707     0.001    -14.15 
Ca       1.860e-03 
   Ca+2       1.734e-03   1.200e-03    -2.761    -2.921    -0.160    -18.02 
   CaHCO3+    6.498e-05   5.936e-05    -4.187    -4.227    -0.039      9.51 
   CaSO4      5.498e-05   5.509e-05    -4.260    -4.259     0.001      7.30 
   CaCO3      5.941e-06   5.953e-06    -5.226    -5.225     0.001    -14.62 
   CaHPO4     2.712e-07   2.717e-07    -6.567    -6.566     0.001     (0)   
   CaH2PO4+   1.262e-08   1.152e-08    -7.899    -7.939    -0.040     (0)   
   CaPO4-     1.165e-08   1.063e-08    -7.934    -7.973    -0.040     (0)   
   CaOH+      3.983e-09   3.622e-09    -8.400    -8.441    -0.041     (0)   
   CaHSO4+    2.043e-11   1.858e-11   -10.690   -10.731    -0.041     (0)   
Cl       1.905e-04 
   Cl-        1.905e-04   1.731e-04    -3.720    -3.762    -0.042     17.96 
   FeCl+      5.221e-09   4.748e-09    -8.282    -8.323    -0.041     (0)   
F        3.686e-05 
   F-         3.599e-05   3.267e-05    -4.444    -4.486    -0.042     -1.33 
   MgF+       8.551e-07   7.784e-07    -6.068    -6.109    -0.041    -10.52 
   NaF        1.334e-08   1.336e-08    -7.875    -7.874     0.001      7.06 
   FeF+       7.140e-09   6.494e-09    -8.146    -8.187    -0.041     (0)   
   HF         2.458e-09   2.463e-09    -8.609    -8.608     0.001     12.26 
   HF2-       3.256e-13   2.961e-13   -12.487   -12.529    -0.041     21.86 
   SiF6-2     1.249e-29   8.618e-30   -28.903   -29.065    -0.161     42.44 
Fe(2)    4.031e-05 
   Fe+2       2.854e-05   1.988e-05    -4.545    -4.702    -0.157    -22.29 
   FeHCO3+    9.226e-06   8.391e-06    -5.035    -5.076    -0.041     (0)   
   FeCO3      1.540e-06   1.543e-06    -5.813    -5.812     0.001     (0)   
   FeSO4      8.623e-07   8.640e-07    -6.064    -6.063     0.001     24.60 
   FeOH+      8.581e-08   7.821e-08    -7.066    -7.107    -0.040     (0)   
   FeHPO4     3.588e-08   3.595e-08    -7.445    -7.444     0.001     (0)   
   FeF+       7.140e-09   6.494e-09    -8.146    -8.187    -0.041     (0)   
   FeCl+      5.221e-09   4.748e-09    -8.282    -8.323    -0.041     (0)   
   FeH2PO4+   4.518e-09   4.122e-09    -8.345    -8.385    -0.040     (0)   
   Fe(OH)2    7.767e-12   7.782e-12   -11.110   -11.109     0.001     (0)   
   FeHSO4+    3.384e-13   3.078e-13   -12.471   -12.512    -0.041     (0)   
   Fe(OH)3-   5.491e-15   5.004e-15   -14.260   -14.301    -0.040     (0)   
H(0)     4.489e-26 
   H2         2.245e-26   2.249e-26   -25.649   -25.648     0.001     28.61 
K        1.709e-04 
   K+         1.706e-04   1.550e-04    -3.768    -3.810    -0.042      8.89 
   KSO4-      2.930e-07   2.673e-07    -6.533    -6.573    -0.040     34.02 
   KHPO4-     1.505e-10   1.373e-10    -9.823    -9.862    -0.040     38.55 
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Mg       6.132e-04 
   Mg+2       5.682e-04   3.954e-04    -3.245    -3.403    -0.157    -21.46 
   MgSO4      2.177e-05   2.181e-05    -4.662    -4.661     0.001      5.63 
   MgHCO3+    2.107e-05   1.915e-05    -4.676    -4.718    -0.041      5.37 
   MgCO3      1.128e-06   1.130e-06    -5.948    -5.947     0.001    -17.08 
   MgF+       8.551e-07   7.784e-07    -6.068    -6.109    -0.041    -10.52 
   MgHPO4     1.209e-07   1.211e-07    -6.918    -6.917     0.001     (0)   
   MgOH+      1.804e-08   1.650e-08    -7.744    -7.782    -0.039     (0)   
   MgH2PO4+   5.298e-09   4.833e-09    -8.276    -8.316    -0.040     (0)   
   MgPO4-     5.180e-09   4.726e-09    -8.286    -8.326    -0.040     (0)   
Na       7.834e-04 
   Na+        7.806e-04   7.109e-04    -3.108    -3.148    -0.041     -1.67 
   NaHCO3     1.734e-06   1.737e-06    -5.761    -5.760     0.001      1.80 
   NaSO4-     1.014e-06   9.254e-07    -5.994    -6.034    -0.040     14.37 
   NaCO3-     3.643e-08   3.314e-08    -7.438    -7.480    -0.041     -1.45 
   NaF        1.334e-08   1.336e-08    -7.875    -7.874     0.001      7.06 
   NaHPO4-    6.903e-10   6.297e-10    -9.161    -9.201    -0.040     34.16 
   NaOH       8.837e-21   8.854e-21   -20.054   -20.053     0.001     (0)   
O(0)     0.000e+00 
   O2         0.000e+00   0.000e+00   -42.726   -42.725     0.001     29.98 
P        1.580e-06 
   HPO4-2     6.586e-07   4.543e-07    -6.181    -6.343    -0.161      7.07 
   H2PO4-     4.535e-07   4.137e-07    -6.343    -6.383    -0.040     33.38 
   CaHPO4     2.712e-07   2.717e-07    -6.567    -6.566     0.001     (0)   
   MgHPO4     1.209e-07   1.211e-07    -6.918    -6.917     0.001     (0)   
   FeHPO4     3.588e-08   3.595e-08    -7.445    -7.444     0.001     (0)   
   CaH2PO4+   1.262e-08   1.152e-08    -7.899    -7.939    -0.040     (0)   
   CaPO4-     1.165e-08   1.063e-08    -7.934    -7.973    -0.040     (0)   
   MgH2PO4+   5.298e-09   4.833e-09    -8.276    -8.316    -0.040     (0)   
   MgPO4-     5.180e-09   4.726e-09    -8.286    -8.326    -0.040     (0)   
   FeH2PO4+   4.518e-09   4.122e-09    -8.345    -8.385    -0.040     (0)   
   NaHPO4-    6.903e-10   6.297e-10    -9.161    -9.201    -0.040     34.16 
   KHPO4-     1.505e-10   1.373e-10    -9.823    -9.862    -0.040     38.55 
   PO4-3      7.939e-12   3.367e-12   -11.100   -11.473    -0.373    -22.33 
   H3PO4      3.145e-12   3.151e-12   -11.502   -11.502     0.001     47.12 
S(6)     4.682e-04 
   SO4-2      3.892e-04   2.683e-04    -3.410    -3.571    -0.162     14.01 
   CaSO4      5.498e-05   5.509e-05    -4.260    -4.259     0.001      7.30 
   MgSO4      2.177e-05   2.181e-05    -4.662    -4.661     0.001      5.63 
   NaSO4-     1.014e-06   9.254e-07    -5.994    -6.034    -0.040     14.37 
   FeSO4      8.623e-07   8.640e-07    -6.064    -6.063     0.001     24.60 
   KSO4-      2.930e-07   2.673e-07    -6.533    -6.573    -0.040     34.02 
   SrSO4      5.422e-08   5.433e-08    -7.266    -7.265     0.001     24.04 
   HSO4-      1.416e-09   1.288e-09    -8.849    -8.890    -0.041     39.96 
   CaHSO4+    2.043e-11   1.858e-11   -10.690   -10.731    -0.041     (0)   
   FeHSO4+    3.384e-13   3.078e-13   -12.471   -12.512    -0.041     (0)   
Si       3.214e-04 
   H4SiO4     3.206e-04   3.212e-04    -3.494    -3.493     0.001     52.53 
   H3SiO4-    7.921e-07   7.201e-07    -6.101    -6.143    -0.041     27.89 
   H2SiO4-2   9.204e-13   6.373e-13   -12.036   -12.196    -0.160     (0)   
   SiF6-2     1.249e-29   8.618e-30   -28.903   -29.065    -0.161     42.44 
Sr       1.713e-06 
   Sr+2       1.591e-06   1.103e-06    -5.798    -5.958    -0.159    -17.50 
   SrHCO3+    6.578e-08   6.001e-08    -7.182    -7.222    -0.040     (0)   
   SrSO4      5.422e-08   5.433e-08    -7.266    -7.265     0.001     24.04 
   SrCO3      1.961e-09   1.965e-09    -8.708    -8.707     0.001    -14.15 
   SrOH+      1.129e-12   1.029e-12   -11.947   -11.988    -0.040     (0) 
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Next, SOLUTION 1 is equilibrated with the fracture-lining minerals. The first value following the phase 
(mineral) name is the saturation index, and the second value is the quantity in moles.  

 
USE SOLUTION 1 
EQUILIBRIUM_PHASES 1 
 GOETHITE 0.0 1E-4 
 CALCITE 0.0 1E-4 
 KAOLINITE 0.0 1E-4 
 CHALCEDONY 0.0 1E-4 
SAVE solution 1 
END 
 

The output displays the mineral dissolution and precipitation to reach the equilibrium state.  

 
-------------------------------Phase assemblage------------------------------ 
                                                 Moles in assemblage 
Phase         SI      log IAP log K(T, P) Initial      Final       Delta 
 
Calcite       0.00    -8.45     -8.45    1.000e-04   8.423e-05  -1.577e-05 
Chalcedony    0.00    -3.61     -3.61    1.000e-04   1.761e-04   7.613e-05 
Goethite     -0.00    -0.82     -0.82    1.000e-04   1.369e-04   3.686e-05 
Kaolinite     0.00     7.88      7.88    1.000e-04   1.000e-04  -2.201e-09 
 
Mixing 

Mixing fractions are defined by using two endmember solutions. The mixtures are assigned a number 
following the MIX keyword, and the solutions (1 and 2, below) are assigned the chosen mixing ratio. In 
this example, Solution 1 is 90% of the mixture and Solution 2 is 10% of the mixture. The mixed solution 
is then saved and assigned a value different from the initial solutions to prevent the accidental overwriting 
of the endmember solutions. 

MIX 100  
 1 0.90 
 2 0.10 
SAVE SOLUTION 100 
END 
 

The mixed solutions are then equilibrated with the fracture minerals present at the given depth.  

The conservative elements show good agreement with the PHREEQC calculations reported by Posiva 
(2021) (Fig. D-2). 
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Fig. D-2 Conservative elements following endmember mixing and equilibration with fracture-lining 
minerals. 

The reactive species show similar trends, but slightly different outputs at some depths compared to the 
reference case given by Posiva (2021) (Fig. D-3). These results are preliminary and may not fully 
represent Posiva’s modeling work. 

 

Fig. D-3 Reactive species with depth relevant to sulfide production and attenuation.  
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Transport  

One-dimensional transport of meteoric water infiltration into the fractured crystalline rock is a method by 
which mixing of groundwaters can occur. This behavior will be studied using the dual porosity advection 
functionality in PHREEQC, following the formulation of Lipson et al. (2007). The endmember waters 
and their mixing ratios are initialized with depth and are equilibrated with the fracture-lining minerals. 
The adjacent matrix cells are initialized with a higher concentration of aqueous hydrogen, which can 
diffuse into the fracture. A schematic of the fracture-matrix discretization is displayed in Fig. D-4. 

 

Fig. D-4 Schematic of the proposed fracture-matrix system. The fracture cells are initialized with the 
major ions and equilibrium mineral phases. The matrix cells are initialized with aqueous 
hydrogen at concentrations above those in the fracture to allow. 

NEXT STEPS 

The results from the PHREECQ mixing model will help guide the eventual inclusion of geochemical 
modeling in the crystalline reference case. Electrolytes such as Na and Cl will be added first, followed by 
other major ions and mineral phases.  

The results of the PHREEQC 1D advective transport will be used to benchmark a 1D advective transport 
simulation using the multiple continuum functionality in PFLOTRAN. PFLOTRAN handles primary 
(fracture) and secondary (crystalline rock matrix) continua with the Dual Continuum Disconnected Matrix 
(DCDM). DCDM permits advection through the primary continuum and diffusion in the secondary 
continuum. Aqueous hydrogen diffusion from the crystalline rock matrix is a theoretical method of 
sulfide production and can be modeled in PFLOTRAN using the multiple continuum model.  
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