Parameterized Friction Modeling With Optimized User Constructs

Robert Duong, Andrew Slezak, Chris Jawetz
August 8, 2023
Our Team

Robert Duong Andrew Slezak Chris Jawetz

THE UNIVERSITY OF NEW MEXICO TEXAS TECH UNIVERSITY Georgia Institute of Technology
Many systems hold components in place through clamping.

Friction is notoriously difficult to model.

Determining required clamping often takes many cycles of destructive testing.
Compliant Friction Modeling

➢ Micro scale surface features change friction coefficients

➢ True surface area increases as compression increases

➢ Compliant materials deform and “fill” voids from surface features

➢ FEA required for simulation

[1]
Our Project

Model
➢ Build a 3D model in SolidWorks
➢ Mesh using CUBIT
➢ Simulate in SIERRA under different conditions

Build design advisor
➢ Import user conditions
➢ Determine successes and failures
➢ Find regions of success, failure and uncertainty

Test and verify
➢ Test at simulated points
➢ Test at high preloads based on prediction function
➢ Input test data into design advisor for comparison
Simulation Parameters

➢ Efficiency of simulations were paramount

➢ Pad deformation is critical to the validity of the simulations

➢ Hundreds of simulations required
 ➢ Sweep over geometries, pad materials, and compressions
 ➢ Automated through Python scripts
Simplified Geometry

➢ Model on right was used for bulk simulations
➢ Verified against the exact model for stress distribution
➢ Allowed for 3x timestep size
Simulation Steps

Apply compression
- Uniform force across the top plate
- Force increases with cycloidal ramp
- Time to settle

Apply shock
- 2ms Haversine pulse
- Allow it to dissipate

Output data
- Position data
- Acceleration data
- Element death
Simulation Workflow

Inputs
- APREPRO
- SIERRA
- CUBIT mesh

Workflow
- Execute job on cluster

Outputs
- Heartbeat file
- Paraview simulation
Simulation Results
Design Advisor
Design Advisor Simplified Overview

Inputs
- Simulated data
- User input data
- User fail criteria
- Requested output graphs

Data processing
- Import principal simulation data
- Determine maximal successes & minimal fails from failure criteria

Optional data processing
- Check additional requested graphs
- Import secondary simulation data
- Apply failure criteria

Outputs
- Plot best fit success & failure functions
- Plot failure criteria against displacement
- Save all figures to host computer
Design Advisor Outputs

- Cork Max final displacement: 0.001(m), Max oscillation: 0.01(m)
- r^2 Min Fail = 0.9634
- r^2 Max Success = 0.8941

- Silicon70 qin Displacement over time preload (lbs): 2160, G-force: 2100
Displacement Over Time

Cork qin Displacement over time preload (lbs): 2160, G-force: 2400

Silicon70 qin Displacement over time preload (lbs): 2160, G-force: 2100

Silicon70 qin Displacement over time preload (lbs): 2160, G-force: 1800

Silicon70 qin Displacement over time preload (lbs): 2520, G-force: 2400
Design Advisor

cork Max final displacement: 0.001(m), Max oscillation: 0.01(m)
silicon70 Max final displacement: 0.001(m), Max oscillation: 0.01(m)
silicon30 Max final displacement: 0.001(m), Max oscillation: 0.01(m)
Verification & Testing
Test Methodology

1. Center pads in carriage
2. Bolt to preset preload using torque wrench
3. Bolt to drop table
4. Add padding to control shock duration
5. Add/Remove padding based on internal shock experienced
6. Take initial position of part at two points
7. Replace initial carriage with new carriage
 - Un-torque initial carriage
 - Recenter part
 - Re-torque initial carriage
8. Adjust height of drop given initial shock
Data Collection

- High speed video
 - Displacement over time
 - Pad deformation and slip
- Accelerometers
 - Part kinematics
 - Time dependent, quantitative data
- Digital Calipers
 - Precise final displacement
Test Results

Cork qin max final displacement: 1 (mm), max oscillation: 10 (mm)

Silicon70 qin max final displacement: 1 (mm), max oscillation: 10 (mm)

Silicon30 qin max final displacement: 1 (mm), max oscillation: 10 (mm)
Limitations & Future Research
Limitations

Simulation Limitations
- More rotation in plates than observed in testing
- μ_s changes based on compression
- Deterministic simulation of stochastic process

Advisor Limitations
- Maximum success point dependent on range swept
- Oscillations do not always terminate in time
- Cannot predict specific displacements

Test Limitations
- Pulsed shock duration is inconsistent
- Bolts lose compression after shock
- Shock amplitude is inconsistent and infeasible to predict a priori
Areas to explore & expand

Vibrations and modal effects

Temperature

Pad fatigue

Exotic pad materials

Test geometry

Controlled failure
Acknowledgments

➢ NOMAD team
 ➢ Debby Fowler
 ➢ Brooke Allensworth
 ➢ Jesse Powers

➢ Mentors
 ➢ Greg Neugebauer
 ➢ Wesley Greenwood
 ➢ Neal Hubbard
 ➢ Ramon Reyes

➢ Special thanks to John Mersch for his help with Dakota
References

Friction Modeling With Rigid Materials

- Dependent on micro and nano scale surface features

- True surface area changes friction coefficient

- Compression independent

- FEA often required for simulation

[2]
Simulation Acceleration VS Test Acceleration

sil30qin8th Acceleration over time preload (lbs): 1440.000000, G-force: 1500

Test 50 Acceleration over time
Design Considerations & Central Questions

➢ Will a shock displace a compressed part?
➢ What are the failure conditions?
➢ How much compression is there?
➢ How large is the shock?
➢ How long is the shock?
➢ What is the pad material?
➢ What is the pad geometry?