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Overview

• Background
• Application of amplified piezoelectric actuators (APAs)

• Motivation
• What behavior are we modeling?

• Experimental setup

• Model selection

• Parameter estimation/System ID

• Results
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Background

• Often times, device under test is exposed to 
inertial and dynamic loading simultaneously

• Combined loading environment required for 
qualification testing

• This is achieved through Sandia’s vibrafuge setup

•Vibrafuge exposes parts to inertial and 
dynamic loading

• Electromechanical shakers unable to perform 
under inertial environment

•APA converts an electrical field into 
mechanical strain through the inverse 
piezoelectric effect
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Motivation

• Input signal to actuator needs to be delivered to test unit 
without distortion

• Nonlinear motion observed in actuator as a result of hysteresis

• Hysteresis described as multiple stable equilibria of a given state

• Equilibrium point dependent on history of state

• Must model the nonlinear behavior to account for how motion 
in vibrafuge testing can be affected
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Experimental Setup

•Actuator considered:  APA95ML from Cedrat technologies

• Piezo stack extends/contracts within frame resulting in dynamic motion of the 
actuator head

• Input signal generated with waveform generator

• Signal passed through Cedrat RK42F4U-LC75C linear amplifier

• Response of piezo stack measured with strain gauge affixed to stack

• Cedrat SG-75 signal conditioner

• 10 Hz, 100 Hz, 1000 Hz and band limited (1-4000Hz) stationary random 
signal used during testing
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Hysteresis Model Selection

Classical Bouc-Wen model:

ሶℎ = 𝛼𝑑33 ሶ𝑢 − 𝛽 ሶ𝑢 ℎ − 𝛾 ሶ𝑢|ℎ|

• ℎ denotes hysteresis, 𝑢 denotes input voltage

• 𝑑33 is the piezoelectric constant, 𝛼, 𝛽, 𝛾 are the model parameters

Model drawbacks

• Model unable to produce asymmetric hysteresis curve for constant parameters

• Numerical instability, especially for large input values

• Parameters cannot be uniquely determined
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Hysteresis Model Selection

Classical Bouc-Wen model with asymmetry 

ሶℎ = 𝛼𝑑33 ሶ𝑢 − 𝛽 ሶ𝑢 ℎ − 𝛾 ሶ𝑢 ℎ − 𝛿 ሶ𝑢sgn(𝑢)

• Additional parameter 𝛿 accounts for asymmetry
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Model Drawbacks

• Model is unstable unless 𝛿 is very small

•After nondimensionalizing, the small magnitude of 𝛿
restricts the optimizer’s search-space

•When coupled with equation of motion, most non-
dimensional models are still numerically unstable



Hysteresis Model Selection

Generalized Bouc-Wen Model 

ሶℎ = 𝛼𝑑33 ሶ𝑢 − 𝛽1ℎ ሶ𝑢 − 𝛽2 ℎ ሶ𝑢 sgn 𝑢 − 𝛽3ℎ ሶ𝑢 sgn 𝑢 − 𝛽4 ℎ ሶ𝑢 − 𝛽5 ሶ𝑢ℎ − 𝛽6 ሶ𝑢 ℎ sgn 𝑢

• ℎ is hysteresis, 𝑢 is applied actuation voltage

• 𝛽1, 𝛽2, … , 𝛽6 are shape parameters for the hysteresis curve

• sgn 𝑤 = ቐ
1, 𝑤 > 0
−1, 𝑤 < 0
0, 𝑤 = 0

is the signum, or sign function

Model Drawbacks

• Larger dimensional search-space with more parameters
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Hysteresis Model Selection

Normalized Bouc-Wen

ሶ𝑤 𝑡 = 𝜌( ሶ𝑢 𝑡 − 𝜎 ሶ𝑢 𝑡 𝑤 𝑡 − 𝜎 − 1 ሶ𝑢 𝑡 𝑤 𝑡 )

• In this model, 𝑤 denotes normalized hysteresis (ℎ)

• 𝜌 and 𝜎 are model parameters of the hysteresis curve

•This normalization removes numerical instability issues 

Model Drawbacks

• Unable to produce asymmetric hysteresis curves with constant parameters
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Actuator Model

Equation of motion

𝑚 ሷ𝑥 𝑡 + 𝑐 ሶ𝑥 𝑡 + 𝑘𝑥 𝑡 = 𝑘𝑢𝑢 𝑡 + 𝑘ℎℎ 𝑡

Neglecting the dynamic effects of the actuator: ( ሷ𝑥 = ሶ𝑥 = 0)

𝑥 𝑡 = 𝑘𝑢𝑢 𝑡 + 𝑘ℎℎ(𝑡)

•With this assumption, the displacement of the actuator is expressed as a linear combination of 
the input voltage 𝑢(𝑡) and hysteresis h(𝑡)

10



Coupled Model Selection11

Hysteresis model Actuator model

Classical 

Bouc-Wen
ሶℎ = 𝛼𝑑33 ሶ𝑢 − 𝛽 ሶ𝑢 ℎ − 𝛾 ሶ𝑢|ℎ| Complete equation of motion

Asymmetric 

Bouc-Wen
ሶℎ = 𝛼𝑑33 ሶ𝑢 − 𝛽 ሶ𝑢 ℎ − 𝛾 ሶ𝑢 ℎ − 𝛿 ሶ𝑢sgn(𝑢)

𝑚 ሷ𝑥 𝑡 + 𝑐 ሶ𝑥 𝑡 + 𝑘𝑥 𝑡
= 𝑘𝑢𝑢 𝑡 + 𝑘ℎℎ 𝑡

Generalized 

Bouc-Wen

ሶℎ = 𝛼𝑑33 ሶ𝑢 − 𝛽1ℎ ሶ𝑢 − 𝛽2 ℎ ሶ𝑢 sgn 𝑢 −
− 𝛽3ℎ ሶ𝑢 sgn 𝑢 − 𝛽4 ℎ ሶ𝑢 − 𝛽5 ሶ𝑢ℎ − 𝛽6 ሶ𝑢 ℎ sgn 𝑢

Quasi-static equation of motion

Normalized 

Bouc-Wen

ሶ𝑤 𝑡 = 𝜌( ሶ𝑢 𝑡 − 𝜎 ሶ𝑢 𝑡 𝑤 𝑡 − 𝜎 − 1 ሶ𝑢 𝑡 𝑤 𝑡 ) 𝑥 𝑡 = 𝑘𝑢𝑢 𝑡 + 𝑘ℎℎ(𝑡)

Selected model:

ሶ𝑤 𝑡 = 𝜌(𝑡)( ሶ𝑢 𝑡 − 𝜎(𝑡) ሶ𝑢 𝑡 𝑤 𝑡 − 𝜎(𝑡) − 1 ሶ𝑢 𝑡 𝑤 𝑡 )
Selected model:

𝑥 𝑡 = 𝑘𝑢(𝑡)𝑢 𝑡 + 𝑘𝑤(𝑡)𝑤(𝑡)



Kalman Filter Parameter Estimation

•Consider the Bouc-Wen nonlinear dynamical system:

ሶ𝑥 𝑡 = 𝑓 𝑥 𝑡 , ሶ𝑢 𝑡

where,

𝑥 = 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 = 𝑤 𝑘𝑢 𝑘𝑤 𝜌 𝜎 .

• Goal: estimate 𝑥 𝑡 based on data 𝒴 𝑡 = Φ 𝑢 𝑠 ∶ 0 ≤ 𝑠 ≤ 𝑡

• Nonlinear sensor model: 𝑦 𝑡 = ℎ 𝑥 𝑡 , 𝑢 𝑡

where, 

ℎ 𝑥 𝑡 , 𝑢 𝑡 = 𝑥2 𝑡 𝑢 𝑡 + 𝑥3 𝑡 𝑥1 𝑡 = 𝑘𝑢 𝑡 𝑢 𝑡 + 𝑘𝑤 𝑡 𝑤 𝑡 .
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Discrete Equations

Model Equation: 𝑥𝑘 = 𝐹 𝑥𝑘−1, ሶ𝑢𝑘−1 +𝑊𝑘,    𝑥𝑜 ∈ ℝ5

Sensor Equation:   𝑦𝑘 = ℎ 𝑥𝑘 , 𝑢𝑘 + 𝑉𝑘 , 𝑦𝑜 ∈ ℝ

𝑊𝑘~𝒩 0, Σ𝑘 𝑉𝑘~ 𝒩 0, R𝑘

•Assumption: the data is normally distributed around the true value of the estimate.

• Define:

Prior: ො𝑥𝑘|𝑘−1 = 𝔼 𝑥𝑘|𝑦0:𝑘−1 𝑃𝑘|𝑘−1 = Cov 𝑥𝑘|𝑦0:𝑘−1

Posterior: ො𝑥𝑘|𝑘 = 𝔼 𝑥𝑘|𝑦0:𝑘 𝑃𝑘|𝑘 = Cov 𝑥𝑘|𝑦0:𝑘
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Extended Kalman Filter (EKF)

𝐴𝑘 =
𝜕𝐹

𝜕𝑥
| ො𝑥𝑘−1|𝑘−1, ሶ𝑢𝑘

𝐻𝑘 =
𝜕ℎ

𝜕𝑥
| ො𝑥𝑘|𝑘−1,𝑢𝑘

Prior: ൝
ො𝑥𝑘|𝑘−1 = 𝐹 ො𝑥𝑘−1|𝑘−1, ሶ𝑢𝑘

𝑃𝑘|𝑘−1 = 𝐴𝑘𝑃𝑘−1|𝑘−1𝐴𝑘
𝑇 + Σ𝑘

Posterior:  

ො𝑥𝑘|𝑘 = ො𝑥𝑘|𝑘−1 + 𝐾𝑘 𝑦𝑘 − ℎ ො𝑥𝑘|𝑘−1, 𝑢𝑘

𝑃𝑘|𝑘 = 𝐼 − 𝐾𝑘𝐻𝑘 𝑃𝑘|𝑘−1

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
𝑇 𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘

𝑇 + 𝑅𝑘
−1
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Constrained Extended Kalman Filter (CEKF)

• Kalman filter goal: minimize the error variance

• Formulate the Kalman gain equation as a constrained optimization problem

• Posterior error covariance:   𝑃𝑘|𝑘 = 𝐼 − 𝐾𝑘𝐻𝑘 𝑃𝑘|𝑘−1 𝐼 − 𝐾𝑘𝐻𝑘
𝑇 + 𝐾𝑘𝑅𝑘𝐾𝑘

𝑇

min
𝐾

trace(𝑃𝑘|𝑘)

subject to

−1 ≤ ො𝑥1𝑘|𝑘 ≤ 1

0 < ො𝑥2𝑘|𝑘
0 < ො𝑥3𝑘|𝑘
0 < ො𝑥4𝑘|𝑘
1

2
≤ ො𝑥5𝑘|𝑘
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Parameter Estimation Results: 10 Hz16



Parameter Estimation Results: 100 Hz17



Parameter Estimation Results: 1000 Hz18



Parameter Estimation Results: Random19



Kalman Filter Visualization20



Estimated Parameters21



Conclusions/Future Work

• Static parameter estimation:

• Implement a heuristic optimization algorithm to minimize objective functions of static parameter estimation, 
fitting the data to the generalized Bouc-Wen model.

• Hysteresis compensation:

• Use the output of the filter to design a feedback controller that stabilizes the hysteresis.

• Further Experimental Work:

• Expand this work to consider different actuators.  Additional data is to be collected at various frequencies. 
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