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• Background information: Distortion in metal additive manufacturing
◦ Why distortion happens?
◦ How do we quantify it?

• Distortion compensation optimization algorithm

• Results validation: It works!
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BACKGROUND & MOTIVATION
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Metal Additive Manufacturing: Selective Laser Sintering (SLS)5

Fig. 1 Video on metal additive manufacturing. https://www.youtube.com/watch?v=yiUUZxp7bLQ
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Metal Additive Manufacturing: Selective Laser Sintering (SLS)6

Fig. 2 Images of  metal additive manufacturing.
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Fig. 3 Distortion of  uncompensated 
printed part relative to CAD geometry.
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Problem: Distortion

High temperature 
gradients Residual stress Stress causes 

distortion
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Solution: Distortion Compensation

Get deformations
Back apply 

them to initial 
geometry

Print modified 
geometry

Goal: Printed Geometry Distorts Into Desired Geometry
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Deformation Prediction9

• Optical approaches

Fig. 4 Element birth simulation 
using Abaqus.
https://www.youtube.com/watch?v=FqE3kj9ESVc

Fig. 5 ATOS Compact Scan: Blue 
Light 3D Scanner.
https://www.youtube.com/watch?v=T-RkQioXHYg

• Modeling Approaches
• Thermomechanical simulations
• Inherent strain method: mechanical simulations
• Modified inherent strain methods
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Deformation Prediction10

• Modeling Approaches
• Thermomechanical simulations
• Inherent strain method: mechanical simulations
• Modified inherent strain methods

• Optical approaches

Fig. 6 Element birth simulation using 
Abaqus. https://www.youtube.com/watch?v=FqE3kj9ESVc

Fig. 7 ATOS Compact Scan – Blue Light 
3D Scanner. https://www.youtube.com/watch?v=T-RkQioXHYg
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PROJECT WORKFLOW
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Distortion Compensation Optimization Workflow12

Desired geometry

Mesh geometry

Calculate error metric

error < tol

Print geometry

Distortion compensation 
algorithm (next slide)
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no

Calculate node displacement 
from optimal location

scale[t-1] < 
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Apply initial distortion compensation (100%)

Distortion too high; same sign as initial distortion → 
increase scale to 125% for second iteration

0.5 1.51

1.51

1

1

1.0625 1.1251.09375

TargetStart

1.25

1.125

1.06 1.125

1.5

1.5

0.5

0.5

0.5

Distortion changed sign → overcompensated! Invert 
previous operation: reduce scale to 112.5%

Distortion has same sign, decreased in magnitude →
repeat previous operation: reduce scale to 106.25%

Distortion changed sign → overcompensated! Invert 
previous operation: increase scale to 109.375%

Distortion within tolerance after final iteration, print corresponding geometry.

Distortion Compensation Algorithm Example
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PROJECT RESULTS
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Model & Mesh Overview16

• Number of  Layers: 93

• Element Type: HEX8

• Element Size: 0.50 mm

• Number of  Elements: 257108

• Number of  Layers: 185

• Element Type: HEX8

• Element Size: 0.25 mm

• Number of  Elements: 1531176
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Material Models17
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• 300 series austenitic stainless steel (304L and 316L) 

• Elastic model fit to widely established 304L data
• Young’s modulus: 200e9 Pa
• Poisson’s ratio: 0.25

• Elastic-Plastic model fit to 316L tensile data
• Young’s modulus: 200e9 Pa
• Poisson’s ratio: 0.3
• Yield stress: 500e6 Pa
• Hardening modulus: 500e6 Pa
• Hardening exponent: 0.55

Fig. 8 Stress-strain curve for 316L stainless steel.



Element Birth Scheme18

• Layer-by-layer element activation

• Inactive elements accumulate no thermal strains
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19 Distortion Results: Elastic-Plastic Model

• Number of  Processors: 128

• Inherent Strain Values: 
• Strain in x ≈ -2%
• Strain in y ≈ -2%
• Strain in z ≈ 2%
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Distortion Results: As-Built Distortion Significantly Reduced20

Fig. 9 Simulated deformation of  elastic-plastic 
model without distortion compensation.

Fig. 10 Simulation deformation of  elastic-plastic 
model with optimized distortion compensation.
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21 Distortion Results: Elastic Model

• Number of  Processors: 128

• Inherent Strain Values: 
• Strain in x = -0.2%
• Strain in y = -0.2%
• Strain in z = 0.2%
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Distortion Results: As-Built Distortion Significantly Reduced22

Fig. 11 Simulated deformation of  elastic model 
without distortion compensation.

Fig. 12 Simulation deformation of  elastic model 
with optimized distortion compensation.
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Algorithm Statistics: Errors23

Model Iteration Iteration Avg 2-
Norm Error

Minimized Avg
2-Norm Error

Elastic-
Plastic

1 2.45E-7 2.45E-7

2 4.30E-8 4.17E-8

3 3.32E-8 2.58E-8

4 2.45E-8 2.58E-8

Elastic

1 1.70E-7 1.70E-7

2 3.49E-8 3.39E-8

3 2.46E-8 2.06E-8

4 1.96E-8 1.65E-8

Fig. 13 Elastic-plastic model error per iteration.

Fig. 14 Elastic model error per iteration.
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Algorithm Statistics: Runtimes24

Model
Average 

SIERRA Time 
per Iteration

Average 
EPU Time 

per Iteration

Average 
Algorithm Time 

per Iteration

Average Total 
Time per 
Iteration

Number 
of  

Iterations

Total Time 
for all 

Iterations

Elastic-Plastic 21.5 min 4.3 min 7.1 sec 25.9 min 4 1.73 hrs

Elastic 20.4 min 5.8 min 9.8 sec 26.9 min 4 1.76 hrs

Fig. 15 Elastic-plastic model runtime per iteration. Fig. 16 Elastic model runtime per iteration.
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Conclusions & Future Work

• Conclusions:
• The distortion of  metal builds with SLS is an impediment to the reliability and widespread 
adoption of  additive manufacturing.

• We developed an efficient numerical distortion compensation optimization workflow which 
outputs a CAD file that will distort into the desired geometry when printed.

• We developed a comprehensive tool to obtain a geometrically compensated stereolithography file 
from a mesh input

• We tested this algorithm on a thin house geometry, and it works!

• Future work:
• Integrate coupled thermomechanical modeling techniques into the workflow
• Validate the algorithm with a printed proof-of-concept
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THANK YOU!
We will take your questions at this time.
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IS vs MIS methods30



Compensated Geometry: Elastic-Plastic Model31

Fig. 17 Simulated deformation without 
distortion compensation.

Fig. 18 Distortion compensated file (final 
geometry to be printed).



Compensated Geometry: Elastic Model32

Fig. 19 Simulated deformation without 
distortion compensation.

Fig. 20 Distortion compensated file (final 
geometry to be printed).



Comparing Experimental Data vs Simulated Data 
for Uncompensated Build

33

Fig. 21 Elastic-plastic model. Fig. 22 Elastic model.
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