Collette Gillaspie (TAMU) Mehmet Sirtalan (UW-Madison) Theresa Honein (UC-Berkeley)

August 2, 2022

SAND2022-10345 PE

Distortion Compensation for Metal Additive Manufacturing

Mentors

Kyle Johnson Carl Herriott Michael Stender Ellen Wagman Richard Deering (KCNSC)

Sandia

National

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of

Energy's National Nuclear Security Administration under contract DE-NA0003525.

Theresa Honein

3 Contents

- Background information: Distortion in metal additive manufacturing
 - Why distortion happens?
 - How do we quantify it?
- Distortion compensation optimization algorithm
- Results validation: It works!

BACKGROUND & MOTIVATION

⁵ Metal Additive Manufacturing: Selective Laser Sintering (SLS)

Fig. 1 Video on metal additive manufacturing. https://www.youtube.com/watch?v=yiUUZxp7bLQ

Metal Additive Manufacturing Problem Formulation

Deformation Prediction

ħ

6 Metal Additive Manufacturing: Selective Laser Sintering (SLS)

ħ

Fig. 2 Images of metal additive manufacturing.

Metal Additive
ManufacturingProblem
FormulationDeformation Prediction

8 **Problem:** Distortion

Get deformations

them to initial

geometry

geometry

Goal: Printed Geometry Distorts Into Desired Geometry

Metal Additive Manufacturing Problem Formulation Deformation Prediction

9 Deformation Prediction

- Modeling Approaches
 - Thermomechanical simulations
 - Inherent strain method: mechanical simulations
 - Modified inherent strain methods

Fig. 4 Element birth simulation using Abaqus. https://www.youtube.com/watch?v=FqE3kj9ESVc Optical approaches

Fig. 5 ATOS Compact Scan: Blue Light 3D Scanner. https://www.youtube.com/watch?v=T-RkQioXHYg

Metal Additive Manufacturing Problem Formulation

Deformation Prediction

Deformation Prediction

• Modeling Approaches

10

- Thermomechanical simulations
- Inherent strain method: mechanical simulations
- Modified inherent strain methods

Fig. 6 Element birth simulation using

Metal Additive

Manufacturing

Abaqus. <u>https://www.youtube.com/watch?v=FqE3kj9ESVc</u>

Optical approaches

Fig. 7 ATOS Compact Scan – Blue Light 3D Scanner. <u>https://www.youtube.com/watch?v=T-RkQioXHYg</u>

Problem Formulation

Deformation Prediction

PROJECT WORKFLOW

12 Distortion Compensation Optimization Workflow

Distortion Compensation Algorithm Workflow

14 Distortion Compensation Algorithm Example

PROJECT RESULTS

16 Model & Mesh Overview

Ν

17 Material Models

• 300 series austenitic stainless steel (304L and 316L)

- Elastic model fit to widely established 304L data
 - Young's modulus: 200e9 Pa
 - Poisson's ratio: 0.25
- Elastic-Plastic model fit to 316L tensile data
 - Young's modulus: 200e9 Pa
 - Poisson's ratio: 0.3
 - Yield stress: 500e6 Pa
 - Hardening modulus: 500e6 Pa
 - Hardening exponent: 0.55

Fig. 8 Stress-strain curve for 316L stainless steel.

Model & Mesh
OverviewMaterial
ModelsElement
Birth SchemeDistortion
ResultsAlgorithm
StatisticsConclusions &
Future Work

18 Element Birth Scheme

- Layer-by-layer element
- Inactive elements accu

Distortion

Results

Element

Birth Scheme

Algorithm

Statistics

Conclusions &

Future Work

Material

Models

19 Distortion Results: Elastic-Plastic Model

Material

Models

Algorithm

Statistics

Distortion

Results

Element

Birth Scheme

Conclusions &

Future Work

- Number of Processor
- Inherent Strain Values
 - Strain in $x \approx -2\%$
 - Strain in y $\approx -2\%$
 - Strain in $z \approx 2\%$

Model & Mesh

Overview

²⁰ Distortion Results: As-Built Distortion Significantly Reduced

Distortion Results: Elastic Model

- Number of Processor
- Inherent Strain Values
 - Strain in x = -0.2%
 - Strain in y = -0.2%
 - Strain in z = 0.2%

Conclusions &

Future Work

Distortion Results: As-Built Distortion Significantly Reduced

23 Algorithm Statistics: Errors

Model & Mesh

Overview

Model	Iteration	Iteration Avg 2- Norm Error	Minimized Avg 2-Norm Error
Elastic- Plastic	1	2.45E-7	2.45E-7
	2	4.30E-8	4.17E-8
	3	3.32E-8	2.58E-8
	4	2.45E-8	2.58E-8
Elastic	1	1.70E-7	1.70E-7
	2	3.49E-8	3.39E-8
	3	2.46E-8	2.06E-8
	4	1.96E-8	1.65E-8

Material

Models

Element

Birth Scheme

Algorithm Statistics: Runtimes

24

Material

Models

Element

Birth Scheme

Results

Model & Mesh

Overview

Statistics

Conclusions & Future Work

Conclusions & Future Work

- The distortion of metal builds with SLS is an impediment to the reliability and widespread adoption of additive manufacturing.
- We developed an efficient numerical distortion compensation optimization workflow which outputs a CAD file that will distort into the desired geometry when printed.
- We developed a comprehensive tool to obtain a geometrically compensated stereolithography file from a mesh input
- We tested this algorithm on a thin house geometry, and it works!
- Future work:
 - Integrate coupled thermomechanical modeling techniques into the workflow
 - Validate the algorithm with a printed proof-of-concept

26 Acknowledgements

- The authors would like to acknowledge the support of our mentors, Kyle Johnson, Michael Stender, Carl Herriott, Richard Deering, and Ellen Wagman.
- Further appreciation is extended to the NOMAD team—Deborah Fowler, Robert Kuether, Joseph Bishop, Jill Blecke, and Brooke Allensworth—for their organization and guidance.
- Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

THANKYOU!

We will take your questions at this time.

28 References

X. Liang, Q. Chen, L. Cheng, Q. Yang, A. To, A modified inherent strain method for fast prediction of residual deformation in additive manufacturing of metal parts, in: 2017 International Solid Freeform Fabrication Symposium, University of Texas at Austin, 2017. doi: <u>http://dx.doi.org/10.26153/tsw/16972</u>.

BACKUP SLIDES

30 IS vs MIS methods

$$\begin{aligned} \epsilon_{to} &= \epsilon_e + \epsilon_p + \epsilon_{th} + \epsilon_{pt} + \epsilon_{cr} \\ \epsilon^* &= \epsilon_{to} - \epsilon_e = \epsilon_p + \epsilon_{th} + \epsilon_{pt} + \epsilon_{cr} \end{aligned}$$

Original inherent strain method

 $\epsilon^* = \epsilon_p$

Contribution of the plastic deformation to the IS of the AM process

$$\epsilon_p^* = \epsilon_p^I$$

Contribution to the IS in the AM process $\epsilon_{th} = \epsilon_e^I - \epsilon_e^S$

Modified inherent strain model

$$\epsilon^* = \epsilon_p^* + \epsilon_{th}^*$$

 ϵ_{to} total strain ϵ_e elastic strain ϵ_p plastic strain

 ϵ_{th} thermal strain

 ϵ_{pt} phase transformation

 ϵ_{cr} creep strain

 ϵ^* inherent strain

 ϵ_p^I largest compressive plastic strain at intermediate state

 ϵ_e^I elastic strain at the intermediate state

 ϵ_e^S elastic strain at the steady state

Compensated Geometry: Elastic-Plastic Model

Fig. 17 Simulated deformation without distortion compensation.

Fig. 18 Distortion compensated file (final geometry to be printed).

32 Compensated Geometry: Elastic Model

Fig. 19 Simulated deformation without distortion compensation.

Fig. 20 Distortion compensated file (final geometry to be printed).

Comparing Experimental Data vs Simulated Data for Uncompensated Build

