laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Mentors:

Brendan Donohoe

Students:

Christopher Leonard, Joseph Redmond, & Leah Brinkman

Mark Merewether, Edmundo Corona, Peter Grimmer, &





Sandia

Vationa

ahoratories



Sandia National Laboratories is a multimission

NIS



#### 2 Motivation

Using a low fidelity model, can one predict failure seen in higher fidelity models?

Lower Fidelity

shell element models element death failure models Higher Fidelity



hexahedral element models XFEM failure models

## 3 Outline

- Introduction
- Material Models
- Hexahedral (Hex) Model
- Shell Model
- Comparison of Hexahedral and Shell Models

- Neural Network
- Conclusions

## <sup>4</sup> Problem Setup





#### Ball

- 5" diameter
- Made up of solid tetrahedral elements
- Mesh size of 0.5"
- 0.2" from plate in z-direction
- Initial velocity
- Plate
  - 25" x 25" x 0.12" square plate
  - Made up of either hexahedral (hex) or shell elements
  - Varying mesh sizes
  - Similar hex and shell models developed for comparison
  - Fixed on edges

Hexahedral and shell models developed at different levels of fidelity for comparison.

Neural Network -

**Conclusions** 

Introduction → Material Models

Hex Model





## Relating Hexahedral & Shell Elements

Relating hexahedral and shell elements will be achieved by comparing the following:

- Breakthrough velocity magnitude
  - How fast must the ball travel to break through the plate?
- Kinetic energy change
  - What is the change in energy of the projectile from the beginning time step to the end?

Shell Model

- Size of hole at ball speed of 5000 in/s
  - How much destruction is measured for each case?



Conclusions

Neural Network 🔶

## Material Models

#### Plate: 6061-T651 Aluminum Alloy

Hex-Based Setup

J<sub>2</sub> Plasticity Model

Shell-Based Setup

Modular Plane Stress Plasticity Model

Ball: 304L Stainless Steel Alloy

<u>All Setups</u>

J<sub>2</sub> Plasticity Model

All components are set up with ductile failure models: J<sub>2</sub> plasticity for solid elements and modular plane stress plasticity for shell elements.

Neural Network -

Conclusions

#### Fixed Parameters

#### Aluminum

| Parameter | ρ<br>(blob/in³)         | E<br>(psi)           | ν    | c <sub>p</sub><br>(in-lb/(blob °C)) |
|-----------|-------------------------|----------------------|------|-------------------------------------|
| Value     | 2.5 x 10 <sup>-4</sup>  | $10.4 \times 10^{6}$ | 0.33 | 1.36 x 10 <sup>6</sup>              |
| Steel     |                         |                      |      |                                     |
| Parameter | ρ<br>(blob/in³)         | E<br>(psi)           | ν    | c <sub>p</sub><br>(in-lb/(blob °C)) |
| Value     | 7.49 x 10 <sup>-4</sup> | 28 x 10 <sup>6</sup> | 0.27 | 0.776 x 10 <sup>6</sup>             |

Fixed parameters do not vary with plastic deformation.

Hex Model

Shell Model



#### 9 Modular Plane Stress Plasticity

- A J<sub>2</sub> plane-stress model with modified forms for hardening
- Uses the same values from the J<sub>2</sub> plasticity model
- Developed for use with shell elements

Only the plane stress state is allowed in shell elements.

Hex Model



Shell Model → Comparisons



(**h** 

#### <sup>10</sup> Death Criterion in Ductile Failure

Element death will be defined using the damage variable D

Factors of the damage variable

Material Models

• Calculated such that material failure occurs when damage  $\geq 1$ 

Hex Model

- Accumulates with plastic deformation
- Functional dependency chosen to be on the stress, equivalent plastic strain rate, and temperature histories

$$D = \frac{1}{d_{crit}} \int_{0}^{\epsilon^{p}} f(\sigma, T, \dot{\epsilon^{p}}) d\epsilon^{p}$$

Element death occurs when the variable damage  $\geq$  1, which accumulates with plastic deformation.

Shell Model

Comparisons

Neural Network -

Conclusions

Introduction -

#### 11 Hexahedral Model Development

#### **Plate Mesh Sizes Considered**

| Case<br>Number | Element Side<br>Length Across Face<br>(in) | Number of Elements<br>Through Thickness | Total Number of<br>Nodes | Aspect<br>Ratio | Varied number of elements through |
|----------------|--------------------------------------------|-----------------------------------------|--------------------------|-----------------|-----------------------------------|
| 1              | 0.12                                       | 3                                       | 175,848                  | 3               | the thickness and                 |
| 2              | 0.04                                       | 3                                       | 1,568,268                | 1               | across faces of                   |
| 3              | 0.02                                       | 6                                       | 10,956,131               | 1               | place.                            |



12 Hexahedral Fidelity Comparisons

#### Case 3 - Most Refined

#### Case 1 - Least Refined



## 13 Hexahedral Velocity Threshold

| Case<br>Number | Breakthrough Velocity<br>(in/s) |
|----------------|---------------------------------|
| 1              | 1388                            |
| 2              | 1363                            |
| 3              | 1187-1250                       |

Hex Model

Shell Model

Breakthrough velocity decreases with mesh refinement.

Neural Network -

Conclusions

![](_page_13_Figure_0.jpeg)

#### 15 Shell Fidelity Comparisons

![](_page_14_Figure_1.jpeg)

![](_page_14_Picture_2.jpeg)

Hex Model 🔶

Shell Model ---- Comparisons -----

![](_page_14_Picture_5.jpeg)

![](_page_14_Picture_6.jpeg)

#### 16 Shell Velocity Threshold

| Mesh Size<br>(in) | Breakthrough Velocity<br>(in/s) |
|-------------------|---------------------------------|
| 1                 | 1083                            |
| .5                | 844                             |
| .25               | 795                             |
| .12               | 765                             |
| .04               | 516                             |

Hex Model

Breakthrough Velocity

Disparity in Velocity Threshold is greater relative to Hex models, but all thresholds are underestimated relative to hex models

Conclusions

Shell Model ---

Comparisons → Neural Network →

## 17 Comparison of Shell and Hex

|                                                | Hex Model<br>(.04) | Shell<br>(.04) | Shell<br>(0.5) |
|------------------------------------------------|--------------------|----------------|----------------|
| Computation Time<br>(hour : minutes : seconds) | 96:05:40           | 11:53:52       | 00:04:04       |
| Projectile Kinetic Energy Loss<br>(J)          | 7.02               | 7.80           | 12.67          |

![](_page_16_Picture_2.jpeg)

Hex Model (.04)

Introduction -

Material Models

![](_page_16_Picture_4.jpeg)

Shell Model (.04)

Shell Model

Hex Model

![](_page_16_Picture_6.jpeg)

Shell Model (0.5)

Neural Network 🔶

Conclusions

#### **18** Comparison of Shell and Hex

![](_page_17_Figure_1.jpeg)

Velocity of the ball vs. time for different levels of fidelity.

Introduction ->

Material Models → Hex Model

Shell Model --- Comp

![](_page_17_Picture_7.jpeg)

## <sup>19</sup> Shell – Varying Integration Point Thresholds

Number of Integration Points (IP) to Reach Death Criterion Before Element Killed

![](_page_18_Picture_2.jpeg)

![](_page_18_Picture_3.jpeg)

![](_page_18_Picture_4.jpeg)

Neural Network 🔶

ħ

Conclusions

![](_page_18_Picture_5.jpeg)

![](_page_18_Picture_6.jpeg)

![](_page_18_Picture_7.jpeg)

## Shell – Varying Integration Point Thresholds

![](_page_19_Picture_1.jpeg)

Introduction ->

![](_page_19_Figure_2.jpeg)

![](_page_19_Picture_3.jpeg)

Neural Network -

Conclusions

#### Comparison of Hexahedral Element Death vs Shell XFEM

#### <u>Mass Lost</u>

Introduction

21

- Shell with XFEM 0 lb
- Shell with Element Death 2.1x10<sup>-5</sup> lb
- Hex with Element Death 2.076x10<sup>-5</sup> lb (0.1% of starting mass)

Case 3 Hex Model (Most Refined)

![](_page_20_Picture_6.jpeg)

Material Models

![](_page_20_Picture_7.jpeg)

Shell Model

Hex Model

Case 2 Shell Model

Case 2 Shell Model XFEM

![](_page_20_Picture_9.jpeg)

Neural Network →

Conclusions

#### <sup>22</sup> Neural Network problem

- A fully connected neural network is used to determine if there is a break in a plate given the initial velocity of the projectile.
- To train the neural network, data was gathered from simulations where the initial velocities magnitude and directions varied. This simulation was then used to determine if there was a break in the plate or not.
- With this neural network, we can run lower fidelity simulations and predict if there was break in the plate or not.

![](_page_21_Picture_4.jpeg)

![](_page_21_Picture_5.jpeg)

Introduction -> Material Models -> Hex Model -> Shell Model -> Comparisons -> Neural Network -> Conclusions

## <sup>23</sup> Fully Connected Neural Network

•For a fully connected neural network each connection between layers can be represented as

# $\phi^i(A^ix^{i-1}+b^i)=x^i$

•Here **i=1,2,...,n**, where **n-1** is the number of hidden layers.

- The vectors **x**<sup>i-1</sup> are the inputs into the **i**th layer of the neural network.
- A<sup>i</sup> and b<sup>i</sup> are the weight matrix and bias vectors respectively..
- The function  $\phi^i$  is a an element wise function known as the activation function. This is used to add nonlinearity to the neural network.

![](_page_22_Figure_7.jpeg)

Neural Network

Conclusions

Shell Model 

Comparisons

## <sup>24</sup> Neural Network Training

- Trained the network using 30 epochs.
- Use the adam optimization algorithm.
- •Total training time approximately 20 secs.

Prediction Accuracy ≈ 99%

![](_page_23_Figure_5.jpeg)

Neural Network

**Conclusions** 

## <sup>25</sup> Impact Predictions

- Here, simulations are run to predict how large a tear there will be when there is element failure in the model.
- One fully connected neural network was used to make predictions on how wide the hole is and the total number of elements destroyed.

![](_page_24_Figure_3.jpeg)

Hex Model

Shell Model

Comparisons

![](_page_24_Picture_4.jpeg)

Neural Network

Conclusions

#### Impact Predictions on the Validation Set

![](_page_25_Figure_1.jpeg)

Developed quantitative and qualitative comparison of shell and hex models

 Looked at the usefulness of XFEM in coarse shell models for crack propagation compared to a refined hex model

Quantified disparity in model behavior dependent on mesh resolution

 Able to accurately predict if there will be a tear in the plate given the projectiles velocity and give an estimate on how large the tear will be.

![](_page_26_Picture_5.jpeg)

## <sup>28</sup> Looking into the Future

- Predict shape of the hole
- Train neural networks with other inputs, such as stress, strain, contact force, etc.
- Train neural network with higher fidelity model
- Study the differences in kinetic energy of the plate loss in element death vs. XFEM

![](_page_27_Picture_5.jpeg)

# 29 Acknowledgements

This research was conducted at the 2021 Nonlinear Mechanics and Dynamics Research Institute hosted by Sandia National Laboratories and the University of New Mexico.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.