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Motivation

Using a low fidelity model, can one predict failure seen in higher fidelity models?

Lower Fidelity Higher Fidelity

2

shell element models hexahedral element models

element death failure models XFEM failure models
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Problem Setup
 Ball

• 5” diameter
• Made up of solid tetrahedral elements
• Mesh size of 0.5”
• 0.2” from plate in - z-direction
• Initial velocity

 Plate
• 25” x 25” x 0.12” square plate
• Made up of either hexahedral (hex) or shell 

elements
• Varying mesh sizes
• Similar hex and shell models developed for 

comparison
• Fixed on edges

4

Hexahedral and shell models developed at 
different levels of fidelity for comparison.
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Hexahedral vs. Shell Elements5

Hexahedral Plate Shell Plate

thickness 
stored as 
parameter solid element
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Relating Hexahedral & Shell Elements

Relating hexahedral and shell elements will be achieved by comparing the following:

 Breakthrough velocity magnitude
• How fast must the ball travel to break through the plate?

 Kinetic energy change
• What is the change in energy of the projectile from the beginning time step to the end?

 Size of hole at ball speed of 5000 in/s
• How much destruction is measured for each case?
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Material Models

Plate: 6061-T651 Aluminum Alloy

Hex-Based Setup

J2 Plasticity Model 

Shell-Based Setup

Modular Plane Stress Plasticity Model

Ball: 304L Stainless Steel Alloy

All Setups

J2 Plasticity Model
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All components are set up with ductile failure 
models: J2 plasticity for solid elements and 

modular plane stress plasticity for shell elements.



J2 Plasticity

Fixed Parameters
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Aluminum

Steel

Parameter 𝝆𝝆
(blob/in3)

E
(psi)

𝝂𝝂 cp
(in-lb/(blob °C))

Value 2.5 x 10-4 10.4 x 106 0.33 1.36 x 106

Parameter 𝝆𝝆
(blob/in3)

E
(psi)

𝝂𝝂 cp
(in-lb/(blob °C))

Value 7.49 x 10-4 28 x 106 0.27 0.776 x 106

Fixed parameters do not vary with plastic deformation.



Modular Plane Stress Plasticity 

 A J2 plane-stress model with modified forms for hardening

 Uses the same values from the J2 plasticity model

 Developed for use with shell elements
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xz

y

Only the plane stress state is  
allowed in shell elements.



Death Criterion in Ductile Failure

 Element death will be defined using the damage variable D

 Factors of the damage variable
• Calculated such that material failure occurs when damage ≥ 1
• Accumulates with plastic deformation
• Functional dependency chosen to be on the stress, equivalent plastic strain rate, and 

temperature histories
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Element death occurs when the variable damage ≥ 1, which accumulates 
with plastic deformation. 
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Hexahedral Model Development
Plate Mesh Sizes Considered
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Case 
Number

Element Side 
Length Across Face 

(in)

Number of Elements 
Through Thickness

Total Number of 
Nodes

Aspect
Ratio

1 0.12 3 175,848 3

2 0.04 3 1,568,268 1

3 0.02 6 10,956,131 1

Varied number of 
elements through 
the thickness and 

across faces of 
plate.
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Case 3Case 2Case 1



Hexahedral Fidelity Comparisons12

Case 3 – Most Refined Case 1 – Least Refined
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Hexahedral Velocity Threshold13

Case
Number

Breakthrough Velocity
(in/s)

1 1388

2 1363

3 1187-1250
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Breakthrough velocity 
decreases with mesh 

refinement.



Shell Development14

Case Element 
Interval 

(in)

Outer 
Interval 
Pave (in)

Total 
Number 
of Nodes

1 1 1 1764

2 0.5 2 2,006

3 0.25 2 4,193

4 0.12 1 14,627

5 .04 1 110,920

6 .02 N/A 1,566,125

Shell Intervals Evaluated
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Case 1 Case 3

Case 5

Case 4

Shell Models have greater utility in lower 
fidelity schemes, as they can be localized, 
and do not have to adhere to aspect ratio 

limitations

Fine Interval 
Mesh Graded Pave 

Mesh



Shell Fidelity Comparisons15
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Case 6 – 0.02” MeshCase 4 – 0.04” MeshCase 1 – 1” Mesh












Shell Velocity Threshold16

Mesh Size
(in)

Breakthrough Velocity
(in/s)

1 1083

.5 844

.25 795

.12 765

.04 516
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Breakthrough Velocity

Disparity in Velocity Threshold is greater 
relative to Hex models, but all thresholds 
are underestimated relative to hex models



Comparison of Shell and Hex17
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Hex Model 
(.04)

Shell
(.04)

Shell
(0.5)

Computation Time 
(hour : minutes : seconds) 96:05:40 11:53:52 00:04:04

Projectile Kinetic Energy Loss 
(J) 7.02 7.80 12.67

Hex Model (.04) Shell Model (.04) Shell Model (0.5)



Comparison of Shell and Hex 18

Velocity of the ball vs. time for different levels of fidelity.
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Shell – Varying Integration Point Thresholds19

One 
IP

Two 
IP

Three 
IP

Four 
IP

Five 
IP

Number of Integration Points (IP) to Reach Death Criterion Before Element Killed
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Shell – Varying Integration Point Thresholds20

One 
IP

Three 
IP
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Number of Elements 
Killed

Number of Elements 
Killed

198 196

Ball Velocity vs. Time



Comparison of Hexahedral Element Death vs Shell XFEM

Mass Lost

 Shell with XFEM - 0 lb

 Shell with Element Death - 2.1x10-5 lb

 Hex with Element Death – 2.076x10-5  lb (0.1% of starting mass)
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Case 3 Hex Model 
(Most Refined)

Case 2 Shell Model Case 2 Shell Model
XFEM



Neural Network problem 

 A fully connected neural network is used to determine if  there is a break in a plate 
given the initial velocity of  the projectile.   

 To train the neural network, data was gathered from simulations where the initial 
velocities magnitude and directions varied. This simulation was then used to 
determine if  there was a break in the plate or not. 

With this neural network, we can run lower fidelity simulations and predict if  there 
was break in the plate or not.      
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45◦

45◦
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Left: Mesh size = .5
Runtime = 130 sec

Right: Mesh size = 2
Runtime = 21 sec









Fully Connected Neural Network 23
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For a fully connected neural network each 
connection between layers can be represented as

Here i=1,2,…,n, where n-1 is the number of  
hidden layers.

The vectors xi-1 are the inputs into the ith layer of  
the neural network.  

 Ai and bi are the weight matrix and bias vectors 
respectively.. 

The function φi is a an element wise function 
known as the activation function. This is used to 
add nonlinearity to the neural network.  

φi(Aixi-1+bi)=xi
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Neural Network Training

Trained the network using 30 epochs.

 Use the adam optimization algorithm.  

Total training time approximately 20 secs.
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Prediction Accuracy ≈ 99% 



Impact Predictions

 Here, simulations are run to predict how large a tear there
will be when there is element failure in the model. 

 One fully connected neural network was used to make 
predictions on how wide the hole is and the total number of  
elements destroyed. 
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Impact Predictions on the Validation Set26

62.59% of |y_true-y_pred|<5 elements lost
92.29% of |y_true-y_pred|<10 elements lost

77.44% of |y_true-y_pred|<1inch
94.92% of |y_true-y_pred|<2 inches
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Results

 Developed quantitative and qualitative comparison of shell and hex models

 Looked at the usefulness of XFEM in coarse shell models for crack propagation 
compared to a refined hex model

 Quantified disparity in model behavior dependent on mesh resolution

 Able to accurately predict if there will be a tear in the plate given the projectiles 
velocity and give an estimate on how large the tear will be.
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Looking into the Future

 Predict shape of the hole 

 Train neural networks with other inputs, such as stress, strain, contact force, etc. 

 Train neural network with higher fidelity model

 Study the differences in kinetic energy of the plate loss in element death vs. XFEM
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