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2‘ Motivation: Materials Modeling with Chemical
Accuracy

ReaxFF: Permeation of AO and

0, gas in MoS, solid lubricant ReaxFF: Impact of water in
fracture of silica glass
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* Reactive potentials are at the scientific cutting edge for atomistic
modeling

» Lack of physical connections between atoms

» Charge equilibration- partial charges

« Estimates of bond orders — allows for modeling of chemical reactions




‘ Length/Time Scales

Material performance is often
observed and quantified at the
continuum scale. However, the
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AWhat are Reactive Potentials?

Incorporate physics not typically accounted for in
classical MD

 As aconsequence are more computationally '
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‘ General Goals of the Project
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Challenge: As a user of reactive
potentials, we are often limited by
the available elemental
constituents within a given
potential

Goal: Develop the framework
necessary to modify, create, and
expand either existing or novel
reactive potentials

Specific: Add BaSiO glasses
potential

Approach: Utilize Dakota as an
optimization engine to run
multiple, small MD simulations
designed to extract a single
quantity of interest




‘ Why BaSiO Glasses?

» Brittle materials are used throughout the
stockpile. Examples include all headers,
electronic connectors, and strong links

» Challenge: Make 30 year lifespan
reliability predictions for components
containing brittle materials. This requires
predictive modeling

Images courtesy of Kevin Strong and Steve Dai




‘ The Training Data
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‘What IS @ parameterization?’
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. Optimization Scheme

Training data set
Considered to be the “truth”

Optlm ization Originating from DFT
Engine

» Sample parameter space

* Identify best
representation of training
data

Originating from experiment

Python scripting » Utilize Dakota and a
File management genetic algorithm as an
» Creation of force field based upon L. ) .
parameters provided by OE optimization engine to run
¢ Extract Qol from MD result .
e Perform comparison to training data mU|t|P|e, Sma” MD
A\ .\ simulations to extract Qol
Simulation
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* unique force fie ..
parameterization between training data,
» Variety of modules: NEB, . | . d | d
elastic properties, etc. simulation moadu €, an
» Designed to obtain scripting

comparison to training
data




.1 What is a Genetic Algorithm?

A genetic algorithm or GA is an
optimization technique that is inspired by the
process of natural selection
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‘Why so Complicated?

* You might say, “This sounds complicated. There are easier ways.
Why would you want to do it this way?*

* Provides the opportunity to fit for a range of training data, not
just DFT. ANY quantity of interest that we can extract from I
an MD simulation, we can train our parameterization for it
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‘ Results
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‘ Validation of the Approach

rms error

fitting parameters alone: OD_3 9 cov.r
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Wrote a postprocessor that builds histograms of parameters swept by the GA
GA isn’t getting stuck in local minima
Parameter fithess curves vary wildly depending on order of fitted parameters




‘ Planned Experimental Validation

« Challenge: find a Qol that would varies enough with concentration of Ba

» Possihilities: Constant of
thermal expansion (CTE), Density as a function
of concentration |

« Experiment: Either physically or computationally, steadily increase temperature ]
and measure volume at regular intervals

TABLE 6.46

Thermal Expansion Coefficients of
Rb O - Ba0O S0, Glasses”

Composition (mole %)
o » 107 (°C—")

Rb,O BaO Si0O, 0—-300°C
13.1 >.3 51.6 139 I
19.3 5.8 749 110 I
9.4 17.3 73.3 100
21.2 12.9 659 135
156 19.2 65.2 123
10.3 25.3 644 116

* Data from Simpson (1959, 1961).

*Handbook of Glass Properties, Narottam P. Bansal and Robert H. Doremus 1986



.1 Accomplishments this Summer

« Familiarized ourselves with Dakota and Lammps documentation
 Researched functional form of ReaxFF reactive Potentials
 Initialized and de-bugged python based Dakota-Lammps interface
« Began fitting Atom, Bond, and Off-diagonal parameter terms

« Wrote a script that will strip DFT/VASP data for fitting simulations

« Wrote post-processing scripts for validation and informing future fits



| Future Directions

* Angle / torsions / condensed phase

* How complicated is the next data set? 82,000 DFT
simulations!!! No one does that; it was a heroic
simulation effort that Normand achieved while on
vacation.

e Experimental validation of our parameterization: a
BaSiO glass. CTE (coefficient of thermal expansion)

* Quantify the uncertainty in an MD result for a given
parameterization

e Goal for time remaining: Fit crystal BaO and
compare large radii behavior

e Stretch goal: add Barium to the ReaxFF reactive
potential for SiO with confidence




Acknowledgements

= This research was conducted at the 2019 Nonlinear
Mechanics and Dynamics Research Institute supported by

Sandia National Laboratories and hosted by the University of
New Mexico.

= Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security
Administration under contract DE-NA-0003525.




Thank you for listening
Comments? Questions? Concerns?




	Development of Reactive Potentials for Molecular Dynamics Simulations
	Motivation: Materials Modeling with Chemical Accuracy
	Length/Time Scales 
	What are Reactive Potentials?
	General Goals of the Project
	Why BaSiO Glasses?
	The Training Data
	What is a parameterization?
	Optimization Scheme
	What is a Genetic Algorithm? 
	Why so Complicated?
	Results
	Validation of the Approach
	Planned Experimental Validation
	Accomplishments this Summer
	Future Directions
	Acknowledgements
	Thank you for listening�Comments? Questions? Concerns?

