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Motivation: Materials Modeling with Chemical 
Accuracy

2

ReaxFF:  Impact of water in 
fracture of silica glass

ReaxFF:  Permeation of AO and 
O2 gas in MoS2 solid lubricant

Images courtesy of Mark Wilson

• Reactive potentials are at the scientific cutting edge for atomistic 
modeling

• Lack of physical connections between atoms
• Charge equilibration- partial charges
• Estimates of bond orders – allows for modeling of chemical reactions



Length/Time Scales 3

Atomistic 
molecular 
dynamics

Coarse-grained 
molecular dynamics

Ab initio 
quantum 
mechanics

Kinetic Monte Carlo
Phase field

Finite element analysis
Continuum mechanics

Challenges with atomistic MD modeling: 
• Length and time scales 
• Rates at typically *fast*

Benefits in atomistic MD modeling: 
• Chemical specificity and microstructural 

content typically unavailable to other scales
• Non-bonded reactive potentials offer the 

ability to explore chemistry
Modeling length scale 
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PICO
10-12~10-10m

10-13s

NANO
10-10~10-6m
10-9-10-6s

MESO
10-8~10-6m

10-6s

MICRO
10-5~10-3m

10-3s

PART
10-2~101m

100s +

Material performance is often 
observed and quantified at the 
continuum scale.  However, the 
mechanisms start at the finest 
scales: electronic, chemical, 
microstructural, etc.  



What are Reactive Potentials?4

Incorporate physics not typically accounted for in 
classical MD

• As a consequence are more computationally      
expensive

• ReaxFF treats bond order as a 
continuous function of interatomic 
distance

• BOND ORDER is the number of 
covalent bonds between two atoms



General Goals of the Project5

Adri C T van Duin, npj Computational Materials,  (2015)

Challenge: As a user of reactive 
potentials, we are often limited by 
the available elemental 
constituents within a given 
potential

Goal:  Develop the framework 
necessary to modify, create, and 
expand either existing or novel 
reactive potentials
Specific:  Add BaSiO glasses 
potential

Approach: Utilize Dakota as an 
optimization engine to run 
multiple, small MD simulations 
designed to extract a single 
quantity of interest



Why BaSiO Glasses?6

• Brittle materials are used throughout the 
stockpile. Examples include all headers, 
electronic connectors, and strong links 

• Challenge: Make 30 year lifespan 
reliability predictions for components 
containing brittle materials. This requires 
predictive modeling

Glass to metal seals  

Glass-ceramics 

Images courtesy of Kevin Strong and Steve Dai



The Training Data7



What is a parameterization?
8

• Parameterization is a 
way of expressing a model 
as a function of some 
number of independent 
parameters

• Currently only looking at 
parameters related to 
atoms and bonds

• 60+ parameters per 
element, not including the 
cross interactions

• It’s complicated!

• The parameters 
incorporate physics

𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = −𝐷𝐷𝑒𝑒𝜎𝜎𝐵𝐵𝑂𝑂𝑖𝑖𝑖𝑖𝜎𝜎 ∗ exp[𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏 ∗ 1 − 𝐵𝐵𝑂𝑂𝑖𝑖𝑖𝑖𝜎𝜎 )𝑝𝑝𝑏𝑏𝑏𝑏𝑏 ]

𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜=
∑𝑗𝑗=1
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜∗𝐷𝐷𝑒𝑒𝜎𝜎∗𝐵𝐵𝑂𝑂𝑖𝑖𝑖𝑖

∆𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙+𝑉𝑉𝑉𝑉𝑙𝑙𝑖𝑖

∗ ∆𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∗ [ 1

1+exp 𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜∗∆𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ]

𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝑓𝑓9 ∆𝑗𝑗 ∗ exp[−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ B𝑂𝑂𝑖𝑖𝑖𝑖 − 2)2 ∗ exp[−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝐵𝐵𝑂𝑂𝑖𝑖𝑖𝑖 − 2 2]

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ exp[−𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝐵𝐵𝑂𝑂𝑖𝑖𝑖𝑖 − 2.5)2 ∗
exp[−𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ (∑𝑘𝑘=1

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑖𝑖)𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖 − 𝐵𝐵𝑂𝑂𝑖𝑖𝑖𝑖)] + exp[−𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ (∑𝑘𝑘=1
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑖𝑖)𝐵𝐵𝑂𝑂𝑗𝑗𝑗𝑗 − 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖)]

1 + 25 ∗ exp[𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ ∆𝑖𝑖 + ∆𝑗𝑗 ]

𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗
1

1+exp 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐∗∆𝑗𝑗
𝑣𝑣𝑣𝑣𝑣𝑣 ∗ exp[−𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ (−𝐵𝐵𝑂𝑂𝑖𝑖𝑖𝑖 − ∑𝑛𝑛=1

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖 𝐵𝐵𝑂𝑂𝑖𝑖𝑖𝑖)2] ∗

exp[−𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ (−𝐵𝐵𝑂𝑂𝑗𝑗𝑗𝑗 + �
𝑛𝑛=1

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑖𝑖)

𝐵𝐵𝑂𝑂𝑘𝑘𝑘𝑘)2] ∗ exp[−𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ (𝐵𝐵𝑂𝑂𝑖𝑖𝑖𝑖 − 1.5)2 ∗ exp[−𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ (𝐵𝐵𝑂𝑂𝑗𝑗𝑗𝑗 − 1.5)2]

𝐸𝐸𝑙𝑙𝑙𝑙 =
𝑝𝑝𝑙𝑙𝑙𝑙𝑙 ∗ ∆𝑖𝑖

𝑙𝑙𝑙𝑙

1 + exp[−75 ∗ ∆𝑖𝑖
𝑙𝑙𝑙𝑙]

𝐸𝐸𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = −𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ∗
1 − exp 𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ∗ ∆𝑖𝑖

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

1 + exp −𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ∗ ∆𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∗ 𝑓𝑓6(𝐵𝐵𝑂𝑂𝑖𝑖𝑖𝑖,𝜋𝜋,∆𝑗𝑗)

𝐸𝐸𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑓𝑓7 𝐵𝐵𝑂𝑂𝑖𝑖𝑖𝑖 ∗ 𝑓𝑓7 𝐵𝐵𝑂𝑂𝑗𝑗𝑗𝑗 ∗ 𝑓𝑓8 ∆𝑗𝑗 ∗ {𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣𝑣 − 𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣 ∗ exp[ Θ0 − Θ𝑖𝑖𝑖𝑖𝑖𝑖)2 }

𝐸𝐸𝑐𝑐𝑐 = �𝑘𝑘𝑐𝑐𝑐 ∗ (𝐵𝐵𝑂𝑂𝑖𝑖𝑖𝑖 − ∆𝑖𝑖 − 0.04 ∗ ∆𝑖𝑖4 − 3)2 𝑖𝑖𝑖𝑖 𝐵𝐵𝑂𝑂𝑖𝑖𝑖𝑖 − ∆𝑖𝑖 − 0.04 ∗ ∆𝑖𝑖4> 0
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑓𝑓10(𝐵𝐵𝑂𝑂𝑖𝑖𝑖𝑖 ,𝐵𝐵𝑂𝑂𝑗𝑗𝑘𝑘, 𝐵𝐵𝑂𝑂𝑘𝑘𝑘𝑘) ∗ sinΘ𝑖𝑖𝑖𝑖𝑖𝑖 ∗ sinΘ𝑗𝑗𝑗𝑗𝑗𝑗 ∗

[
1
2
𝑉𝑉1 ∗ (1 + cos𝜔𝜔𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) +

1
2
𝑉𝑉2 ∗ exp 𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐵𝐵𝑂𝑂𝑗𝑗𝑗𝑗𝜋𝜋 − 1 + 𝑓𝑓11 ∆𝑗𝑗 ,∆𝑘𝑘)2 ∗ (1 − cos 2𝜔𝜔𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) +

1
2
𝑉𝑉3 + (1 + cos𝜔𝜔𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)]

𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑓𝑓12(𝐵𝐵𝑂𝑂𝑖𝑖𝑖𝑖 ,𝐵𝐵𝑂𝑂𝑗𝑗𝑗𝑗, 𝐵𝐵𝑂𝑂𝑘𝑘𝑘𝑘) ∗ 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ [1 + (cos𝜔𝜔𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 1) ∗ sinΘ𝑖𝑖𝑖𝑖𝑖𝑖 ∗ sinΘ𝑗𝑗𝑗𝑗𝑗𝑗]

𝐸𝐸𝐻𝐻−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑝𝑝ℎ𝑏𝑏𝑏 ∗ 1 − exp 𝑝𝑝ℎ𝑏𝑏𝑏 ∗ 𝐵𝐵𝑂𝑂𝑋𝑋𝑋𝑋 ∗ exp 𝑝𝑝ℎ𝑏𝑏𝑏 ∗
𝑟𝑟ℎ𝑏𝑏0

𝑟𝑟𝐻𝐻𝐻𝐻
+
𝑟𝑟𝐻𝐻𝐻𝐻
𝑟𝑟ℎ𝑏𝑏0

− 2 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠8(
Θ𝑋𝑋𝑋𝑋𝑋𝑋

2
)

𝐸𝐸𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑇𝑇𝑇𝑇𝑇𝑇 ∗ 𝐷𝐷𝑖𝑖𝑖𝑖 ∗ {exp 𝛼𝛼𝑖𝑖𝑖𝑖 ∗ 1 −
𝑓𝑓13 𝑟𝑟𝑖𝑖𝑖𝑖
𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣

− 2 ∗ exp
1
2
∗ 𝛼𝛼𝑖𝑖𝑖𝑖 ∗ 1 −

𝑓𝑓13 𝑟𝑟𝑖𝑖𝑖𝑖
𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣

}

𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑇𝑇𝑇𝑇𝑇𝑇 ∗ 𝐶𝐶 ∗
𝑞𝑞𝑖𝑖 ∗ 𝑞𝑞𝑗𝑗

[𝑟𝑟𝑖𝑖𝑖𝑖3 + ( �1 𝛾𝛾𝑖𝑖𝑖𝑖)3]1/3

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏+ 𝐸𝐸𝑙𝑙𝑙𝑙+ 𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜+ 𝐸𝐸𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢+ 𝐸𝐸𝑣𝑣𝑣𝑣𝑣𝑣 + 𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝+ 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐
+ 𝐸𝐸𝐶𝐶𝐶+ 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡+ 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡+ 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+ 𝐸𝐸𝐻𝐻−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏+ 𝐸𝐸𝑣𝑣𝑣𝑣𝑣𝑣+ 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐



Optimization Scheme9

Optimization 
Engine

• Sample parameter space
• Identify best 

representation of training 
data

Simulation
• Performs LAMMPS 
• unique force field 

parameterization
• Variety of modules: NEB, 

elastic properties, etc. 
• Designed to obtain 

comparison to training 
data

Training data set
Considered to be the “truth”

Originating from DFT

Originating from experiment

Python scripting
• File management
• Creation of force field based upon 

parameters provided by OE
• Extract QoI from MD result
• Perform comparison to training data

• Utilize Dakota and a 
genetic algorithm as an 
optimization engine to run 
multiple, small MD 
simulations to extract QoI

• Strong connection 
between training data, 
simulation module, and 
scripting



What is a Genetic Algorithm? 10

• A genetic algorithm or GA is an 
optimization technique that is inspired by the 
process of natural selection

New population

Check fitness

Selection
Reproduce

Mutate



Why so Complicated?
11

• You might say, “This sounds complicated. There are easier ways. 
Why would you want to do it this way?“

• Provides the opportunity to fit for a range of training data, not 
just DFT.  ANY quantity of interest that we can extract from 
an MD simulation, we can train our parameterization for it

• Pitfall: method is agnostic to 
analytical forms of potential 
energy interactions.  We must be 
cognizant of the physical 
meaning of each parameter

Calphad, “Thermodynamic evaluation and optimization of the BaO-SiO2 and 
BaO-CaO-SiO2 systems”. Adarsh Shukla, In-Ho Jung, Sergei A. Decterov, 
Arthur D. Pelton, 2018



Results
12

rms = 2.4053

rms = 2.486rms = 5.094

• Not fitting the well
• Fitting parameters one by one
• Looking into how order and 

parameter fit pairings effect 
our results



Validation of the Approach13

• Wrote a postprocessor that builds histograms of parameters swept by the GA
• GA isn’t getting stuck in local minima
• Parameter fitness curves vary wildly depending on order of fitted parameters



Planned Experimental Validation14

• Challenge: find a QoI that would varies enough with concentration of Ba

• Possibilities: Constant of
thermal expansion (CTE), Density as a function
of concentration

• Experiment: Either physically or computationally, steadily increase temperature 
and measure volume at regular intervals

*Handbook of Glass Properties, Narottam P. Bansal and Robert H. Doremus 1986



Accomplishments this Summer15

• Familiarized ourselves with Dakota and Lammps documentation

• Researched functional form of ReaxFF reactive Potentials

• Initialized and de-bugged python based Dakota-Lammps interface

• Began fitting Atom, Bond, and Off-diagonal parameter terms

• Wrote a script that will strip DFT/VASP data for fitting simulations

• Wrote post-processing scripts for validation and informing future fits



Future Directions16

• Angle / torsions / condensed phase

• How complicated is the next data set? 82,000 DFT 
simulations!!!  No one does that; it was a heroic 
simulation effort that Normand achieved while on 
vacation.  

• Experimental validation of our parameterization: a 
BaSiO glass.  CTE (coefficient of thermal expansion)

• Quantify the uncertainty in an MD result for a given 
parameterization

• Goal for time remaining: Fit crystal BaO and 
compare large radii behavior

• Stretch goal: add Barium to the ReaxFF reactive 
potential for SiO with confidence
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Thank you for listening
Comments? Questions? Concerns?
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