
SANDIA REPORT
SAND2025-11082O
Printed October 14, 2025

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

Sierra/SolidMechanics 5.26
Theory Manual
Sierra Solid Mechanics Team
Computational Solid Mechanics and Structural Dynamics Department
Engineering Sciences Center

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology
& Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: https://classic.ntis.gov/help/order-methods

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

Abstract

Presented in this document are the theoretical aspects of capabilities contained in the Sierra/SM
code. This manuscript serves as an ideal starting point for understanding the theoretical
foundations of the code. For a comprehensive study of these capabilities, the reader is encouraged
to explore the many references to scientific articles and textbooks contained in this manual. It is
important to point out that some capabilities are still in development and may not be presented in
this document. Further updates to this manuscript will be made as these capabilities come closer
to production level.

3

Acknowledgements

This document is the result of the collective effort of many individuals. The current core
development team responsible for the Sierra/SM codes includes Frank N. Beckwith, Michael R.
Buche, Gabriel J. de Frias, Scott O. Gampert, Kevin L. Manktelow, Mark T. Merewether, Scott T.
Miller, Krishen J. Parmar, Matt G. Rand, Timothy R. Shelton, Jesse D. Thomas, Jeremy Trageser,
Benjamin C. Treweek, Michael G. Veilleux, and Ellen B. Wagman. This document is written and
maintained by this team.

Many others have contributed to this document, either directly or indirectly. These include, but
are not limited to Kenneth (Noel) Belcourt, Guy L. Bergel, Manoj K. Bhardwaj, Nicole L.
Breivik, Arthur Brown, James V. Cox, Nathan K. Crane, David M. Day, J. Franklin Dempsey,
James W. Foulk III, Brian D. Giffin, Steven P. Gomez, Jeffrey D. Gruda, Arne S. Gullerud, Jason
D. Hales, Daniel C. Hammerand, Martin W. Heinstein, David M. Hensinger, Michael C. Hillman,
Jason T. Ivey, Jacob Koester, Timothy D. Kostka, J. Richard Koteras, San Le, Brian T. Lester,
Alex J. Lindblad, David J. Littlewood, Chi S. (David) Lo, Kevin N. Long, Edward Love, Matt D.
Mosby, Kyran D. (Kim) Mish, Jakob T. Ostien, Kendall H. Pierson, Julia A. Plews, Vicki L.
Porter, Ramon Reyes, Rhonda K. Reinert, Nathaniel S. Roehrig, William M. Scherzinger, Gregory
D. Sjaardema, Benjamin W. Spencer, Brian L. Stevens, Michael R. Tupek, Julia R. Walker, Gerald
W. Wellman, Patrick G. Xavier, and Edouard Yreux.

4

Front Matter

Abstract . 3

Acknowledgements . 4

1. Nonlinear Behavior . 11
1.1. Introduction . 11
1.2. Linear Structural Component . 12
1.3. Material Nonlinearity . 15
1.4. Geometric Nonlinearity . 17
1.5. Contact Nonlinearity . 22

2. Linear Elastic Initial/Boundary Value Problem . 25
2.1. Basic Equations of Linear Elasticity . 25
2.2. Equations of Motion . 25
2.3. Boundary and Initial Conditions . 28
2.4. Problem Specification . 29
2.5. The Quasistatic Approximation . 30

3. Weak Forms . 31
3.1. Introduction . 31
3.2. Quasistatic Case . 31
3.3. Fully Dynamic Case . 35

4. Large Deformation Framework . 37
4.1. Introduction . 37
4.2. Notational Framework . 37
4.3. Lagrangian and Eulerian Descriptions . 39
4.4. Governing Equations in the Spatial Frame . 40

5. Deformation Measures . 43
5.1. Deformation Gradient . 43
5.2. Polar Decomposition . 46

6. Rates of Deformation . 49
6.1. Material and Spatial Velocity and Acceleration . 49
6.2. Rate of Deformation Tensors . 50

7. Stress Measures . 53
7.1. Cauchy Stress . 53
7.2. Nanson’s Formula . 53
7.3. First and Second Piola-Kirchhoff Stress . 55

5

8. Balance Laws. 57
8.1. Localization . 57
8.2. Conservation of Mass . 57
8.3. Conservation of Linear Momentum . 60
8.4. Conservation of Angular Momentum . 62
8.5. Stress Power . 63
8.6. Thermodynamics . 64

9. Frame Indifference . 67
9.1. Objective Strain and Strain Rate Measures . 67
9.2. Stress Rates . 68

10. Discretization . 71
10.1. Weak Form for Large Deformation Problems . 71
10.2. Finite Element Discretization . 73
10.3. Galerkin Finite Element Methods . 75
10.4. Discrete Equations . 77
10.5. Generation of Vector/Matrix Equations . 79
10.6. Localization and Assembly . 79

11. Quasistatics . 85
11.1. Quasistatic Assumption . 85
11.2. Internal Force Vector . 85
11.3. External Force Vector . 86
11.4. Incremental Load Approach . 86

12. Dynamics . 89
12.1. Semi-Discrete Approach . 89
12.2. Time-Stepping Procedures . 89
12.3. Explicit Finite Element Methods . 91

12.3.1. Element-based Critical Time Step Estimate . 94
12.3.2. Nodal-based Critical Time Step Estimate . 95
12.3.3. Lanczos-based Critical Time Step Estimate . 97

12.4. Implicit Finite Element Methods . 104

13. Nonlinear Equation Solving . 107
13.1. Introduction . 107
13.2. The Residual . 107
13.3. Gradient Property of the Residual . 110
13.4. Newton’s Method for Solving Nonlinear Equations . 113
13.5. Steepest Descent Method . 115
13.6. Method of Conjugate Gradients . 119

13.6.1. Linear CG . 119
13.6.2. Nonlinear CG . 120
13.6.3. Convergence Properties of CG . 124

6

13.6.4. Predictors . 124
13.6.5. Preconditioned CG . 125

13.7. Parallel Linear Equation Solving . 127
13.8. Enforcing Constraints within Solvers . 127
13.9. Multi-Level Iterative Solver . 132

14. Element Basics . 135
14.1. Properties of Shape Functions . 135

14.1.1. Element patch test . 136
14.2. Parameterization . 137

15. Element Formulations . 141
15.1. Uniform Gradient Hex8 Solid Element . 141

15.1.1. Kinematics . 142
15.1.2. Mean Quadrature . 143
15.1.3. Orthogonal Hourglass Control . 146
15.1.4. Linear Hyperelastic Hourglass Control . 148
15.1.5. Nonlinear Hyperelastic Hourglass Control . 149

15.2. Tet4 Solid Element . 151
15.3. Tet10 Solid Element . 151
15.4. Belytschko-Tsay Shell Element . 151
15.5. Key-Hoff Shell Element . 152
15.6. Belytschko-Leviathan Shell Element . 152
15.7. Shear Correction for Layered Shell Elements . 152
15.8. 3D Beam Element . 153

15.8.1. Kinematics . 154
15.8.2. Mean Quadrature . 157
15.8.3. Evaluation of Stress Resultants . 159
15.8.4. Bending Performance . 160

15.9. 3D Spring Element . 160
15.10.Superelement . 160

16. Contact . 161
16.1. Discretized forms of contact constraints . 162

16.1.1. Node-Face contact . 163
16.2. Contact Search . 167

16.2.1. Proximity search algorithms . 167
16.2.2. Parallel search algorithms . 168
16.2.3. Contact kinematics . 169

17. Boundary Conditions . 171
17.1. Distributed Force and Moment . 171

17.1.1. Boundary Condition Purpose . 171
17.1.2. Boundary Condition Implementation . 171
17.1.3. Limitations and Special Cases . 174

7

17.2. Inertia Relief . 174
17.3. Viscous Damping . 175

17.3.1. Rigid Body Invariant Damping . 175

A. Known Issues . 177

References . 179
Bibliography179

List of Tables
Table 15.1. Deformation modes of the eight-noded hex element . 142
Table 15.2. Permutation of Nodal Indices . 145
Table 15.3. Permutation of Nodal Coordinates . 145

List of Figures
Fig. 1.1. Axial model problem: schematic and local coordinate system. 12
Fig. 1.2. Schematic of a nonlinear one-dimensional stress-strain relation. 15
Fig. 1.3. Model problemwith infinitesimalmotions superposed on large rigid bodymotions. 19
Fig. 1.4. Schematic of the rigid obstacle problem. 22
Fig. 1.5. Plots of residuals verses displacement for the rigid obstacle problem: (a) the

case where 𝑑 < 𝑔0 (no contact); (b) the case where 𝑑 ≥ 𝑔0. 24
Fig. 2.1. Notation for the linear elastic initial/boundary value problem. 26
Fig. 4.1. Notation for large deformation initial/boundary value problems. 38
Fig. 5.1. Deformation of a volume element as described by the configuration mapping 𝜑𝑡 . 44
Fig. 5.2. Dotted outline indicates infinitesimal neighborhood of point 𝑋 .) 47
Fig. 7.1. Notation for derivation of Nanson’s formula. 54
Fig. 8.1. Notation for the localization concept. 58
Fig. 10.1. Large deformation initial/boundary value problem . 71
Fig. 10.2. General notation for finite element discretization of the reference domain. 74
Fig. 10.3. Local support of finite element interpolation functions. The region of support

for 𝑁𝐴 shown as shaded. 80
Fig. 10.4. Element (local) degrees of freedom for a sample finite element. 82
Fig. 11.1. Simple illustration of the incremental load approach to quasistatics problems . . . 87
Fig. 12.1. Simple illustration of approximation error in transient time integrators. 90
Fig. 12.2. Graphical construction of the central difference time integrator. 93
Fig. 12.3. Graphical representation of the central difference time integrator. 93
Fig. 13.1. Graphical depiction of nonlinear iterations. 109
Fig. 13.2. Energy error example: two beams with large and small 𝑥-sectional moments of

inertia. 111
Fig. 13.3. Energy error example: modes of deformation for two beams. 112
Fig. 13.4. Energy error example: energy error contours for two beams. 112

8

Fig. 13.5. Energy error example: Newton’s method applied to two beams. 114
Fig. 13.6. Energy error example: Steepest descent method applied to two beams. 116
Fig. 13.7. Energy error example: First two iterations of the steepest descent method ap-

plied to linearized version of the two beam problem. 117
Fig. 13.8. Energy error example: Steepest descent method applied to linearized version of

the two beam problem. 118
Fig. 13.9. A comparison of steepest descent and linear CG methods applied to the lin-

earized beam example. 121
Fig. 13.10. Nonlinear conjugate gradient method applied to the two beam problem. 123
Fig. 13.11. A linear predictor applied to the beam problem can produce a good starting point.126
Fig. 13.12. Simple beam example with constraints. 128
Fig. 13.13. Energy error contours for simple beam example with constraints. 129
Fig. 13.14. Energy error contours for simple beam example with constraints. 130
Fig. 13.15. Energy error contours for simple beam example with constraints. 131
Fig. 13.16. A schematic of a single-level multi-level solver. 132
Fig. 13.17. A schematic of a two-level multi-level solver. 133
Fig. 14.1. Element Patch test in 2D. 137
Fig. 14.2. Local parameterization and coordinate mappings in two and three dimensions. . 138
Fig. 15.1. Isoparametric coordinate representation of the eight-noded hex element. 141
Fig. 15.2. Deformation modes of the eight-noded hex element. 143
Fig. 15.3. Nonlinear hourglass force versus displacement. 150
Fig. 15.4. Isoparametric coordinate representation of the two-noded beam element. 154
Fig. 15.5. Deformation modes of a unit interval. 156
Fig. 16.1. Concerns in constraints choices for contact problems. 162
Fig. 16.2. A continuum beam subjected to pure bending. 164
Fig. 16.3. A continuum beam that includes mesh tying subjected to pure bending. 165
Fig. 16.4. Results for a continuum beam that includes mesh tying subjected to pure bending.166
Fig. 16.5. Simple illustration of the domain decomposition for contact problems. 168
Fig. 16.6. Simple illustration of the non-uniqueness in the closest point projection. 169

9

This page left blank

10

1 Nonlinear Behavior

1.1 Introduction

We begin our study of nonlinear computational solid mechanics in this chapter by surveying some
frequently encountered sources of nonlinearity in engineering mechanics. This will be done in a
rather elementary way, by discussing perhaps the simplest structural idealization, the truss
member, which is assumed to transmit loads in the axial direction only. By introducing various
nonlinearities into this system one at a time, we will motivate the more general discussion of
nonlinear continuum mechanics, constitutive modeling, and numerical treatments to follow. This
model system will serve as a template throughout the text as new continuum mechanical and
computational ideas are introduced.

Following this motivation will be an introduction to the prescription of initial/boundary value
problems in solid mechanics. This introduction will be provided by discussing a completely linear
system, namely linear elastic behavior in a continuum subject to infinitesimal displacements. This
treatment will include presentation of the relevant field equations, boundary conditions, and initial
conditions, encompassing both dynamic and quasistatic problems in the discussion. Also featured
is a brief discussion of the weak or integral form of the governing equations, providing a starting
point for application of the finite element method. Examination of these aspects of problem
formulation in the comparatively simple setting of linear elasticity allows one to concentrate on
the ideas and concepts involved in problem description without the need for an overly burdensome
notational structure.

In anticipation of nonlinear solid mechanics applications, however, we will find it necessary to
expand this notational framework so that large deformation of solids can be accommodated.
Fortunately, provided certain interpretations are kept in mind, the form of the governing equations
is largely unchanged by the generalization of the linear elastic system. This chapter therefore
provides an introduction to how this generalization can be made. However, it will be seen that the
continuum description and constitutive modeling of solids undergoing large deformations are
complex topics that should be understood in detail before formulating and implementing
numerical strategies. The closely related topics of nonlinear continuum mechanics and
constitutive modeling will therefore be the subjects of subsequent chapters, followed by
significant discussions of numerical strategies.

We conclude with a short list of references the reader may find useful as background material.
Throughout the text, we assume little or no familiarity with either the finite element method or
nonlinear solid mechanics, but we do assume a basic level of familiarity with the mechanics of
materials, linear continuum mechanics, and linear elasticity. The last section of this chapter
provides some basic references in these areas for those wishing to fill gaps in knowledge.

11

1.2 Linear Structural Component

We consider the simple axial (or in structural terms, truss) member shown schematically in Fig.
1.1. We can think of this member as a straight bar of material, whose transverse dimensions are
small compared to its overall length, and which can only transmit loads in the axial direction.
Real-world examples include taut cables in tension, truss members, and similar rod-like objects.

Fig. 1.1 Axial model problem: schematic and local coordinate system.

We index the material with coordinates x with values between 0 and 𝐿0. Assuming that all
displacement of the rod occurs in the axial direction, we write this displacement as 𝑢(x, 𝑡), with 𝑡
signifying time. The infinitesimal strain or engineering strain at any point x ∈ (0, 𝐿0) is given
by

𝜖𝐸 (x, 𝑡) =
𝜕

𝜕x
𝑢(x, 𝑡). (1.1)

The true stress 𝜎𝑇 at any point in the bar and at any instant is described via

𝜎𝑇 (x, 𝑡) =
𝑃(x, 𝑡)
𝐴(x, 𝑡) , (1.2)

12

where 𝑃 is the total axial force acting at location x and 𝐴 is the current cross-sectional area at that
location. If the cross-sectional area does not change very much as a result of the deformation, it is
appropriate to define the nominal stress or engineering stress as

𝜎𝐸 =
𝑃(x, 𝑡)
𝐴0(x)

, (1.3)

where 𝐴0(x) is the initial cross-sectional area at point x. If the material behaves in a linear elastic
manner then 𝜎𝐸 and 𝜖𝐸 are related via

𝜎𝐸 = 𝐸𝜖𝐸 , (1.4)

where 𝐸 is the elastic modulus, or Young’s modulus, for the material.

To begin we consider the case of static equilibrium where inertial effects are either negligible or
nonexistent and the response is therefore independent of time. One can in this case suppress the
time argument in (1.2) and (1.4). The balance of linear momentum for the static case is expressed
at each point x by

d
d𝑥

(𝐴0(x)𝜎𝐸 (x)) = 𝑓 (x), (1.5)

where 𝑓 is the applied external body loading, assumed to be axial, with units of force per unit
length. Substitution of (1.4) into (1.5) gives the following ordinary differential equation for 𝑢(x)
on the domain (0, 𝐿0):

d
d𝑥

(
𝐸𝐴0

d
d𝑥

(𝑢)
)
= 𝑓 (x). (1.6)

If we assume that the cross-section is uniform so that 𝐴0 does not vary with x, and that the
material is homogeneous so that 𝐸 does not vary throughout the rod, then

𝐸𝐴0
d2

d𝑥2𝑢(x) = 𝑓 (x), (1.7)

We note that (1.7) is a linear, second order differential equation for the unknown displacement
field 𝑢. In order to pose a mathematical problem that can be uniquely solved it is necessary to
pose two boundary conditions on the unknown 𝑢. We will be interested primarily in two types,
corresponding to prescribed displacement and prescribed force (or stress) boundary conditions.
An example of a displacement boundary condition would be

𝑢(0) = 𝑢̄, (1.8)

while an example of a force boundary condition is

𝜎𝐸 (𝐿0) = 𝐸
d𝑢
d𝑥

(𝐿0) = 𝜎̄, (1.9)

where 𝑢̄ and 𝜎̄ are prescribed values for the displacement and axial stress at the left and right bar
ends, respectively. In mathematics parlance, the boundary condition in (1.8) is called a Dirichlet

13

boundary condition while the boundary condition represented by (1.9) is a Neumann boundary
condition. Dirichlet boundary conditions involve the unknown independent variable itself, while
Neumann boundary conditions are expressed in terms of its derivatives.

Virtually any combination of such boundary conditions can be applied to our problem, but only
one boundary condition (either a Neumann or Dirichlet condition) can be applied at each
endpoint. In the case where Neumann (stress) conditions are applied at both ends of the bar, the
solution 𝑢(x) is only determinable up to an arbitrary constant (this fact can be verified by applying
separation of variables to (1.7)).

We now consider a particular case of this linear problem that will be useful in considering some
of the various nonlinearities to be discussed below. In particular, suppose 𝑓 = 0 on the domain
(0, 𝐿0), and furthermore consider the boundary conditions

𝑢 = 0 at 𝑥 = 0, (1.10)

and

𝜎𝐸 =
𝐹𝑒𝑥𝑡

𝐴0
at 𝑥 = 𝐿, (1.11)

where 𝐹𝑒𝑥𝑡 is an applied force on the right end of the rod.

In this case, examination of (1.5) yields

𝐴0
d
d𝑥

(𝜎𝐸 (x)) = 0, (1.12)

meaning that 𝜎𝐸 does not vary along the length of the rod. Since 𝜎𝐸 is proportional to 𝜖𝐸 (see
(1.4)), the strain must also be a constant value along the rod length.

Finally, in view of (1.1) we conclude that 𝑢(x) must vary linearly with x. In other words, we know
that the solution 𝑢(x) must take the form

𝑢(x) = 𝑢(0) + 𝛿
(𝑥
𝐿

)
= 𝛿

(𝑥
𝐿

)
, (1.13)

where 𝛿 is the elongation, or difference between the left and right end displacement. The problem
therefore reduces to finding the elongation produced by the applied force 𝐹𝑒𝑥𝑡 . This problem is
trivially solved and leads to the familiar linear relationship between 𝐹𝑒𝑥𝑡 and 𝛿:

𝐸𝐴0
𝐿0

𝛿 = 𝐹𝑒𝑥𝑡 ; (1.14)

in other words, we have a simple linear spring with stiffness 𝐸𝐴0/𝐿0. After solving for 𝛿 one may
merely substitute (1.13) to obtain the desired expression for 𝑢(x).

14

1.3 Material Nonlinearity

We examine the case of a material nonlinearity by replacing (1.4) with generic relationship
between 𝜎𝐸 and 𝜖𝐸 ,

𝜎𝐸 = 𝜎̂(𝜖𝐸), (1.15)

where 𝜎̂ is a smooth and generally nonlinear function, see Fig. 1.2.

Fig. 1.2 Schematic of a nonlinear one-dimensional stress-strain relation.

We make few restrictions on the specific form of 𝜎̂, other than to assume that d
d𝜖𝐸 𝜎̂ > 0 for all

values of 𝜖𝐸 . If we retain the assumption that 𝑓 = 0 and impose boundary conditions (1.10) and
(1.11) then (1.12) is still valid, i.e.,

𝜎𝐸 =
𝐹𝑒𝑥𝑡

𝐴0
(1.16)

throughout the rod. Furthermore, since we assume that a one-to-one relation exists between 𝜎𝐸
and 𝜖𝐸 , we conclude that, just as in the linear material case, the strain is a constant value in the rod

15

given by

𝜖𝐸 =
𝛿

𝐿0
. (1.17)

We can solve the problem by finding 𝛿 as before, but now we must solve the nonlinear equation

𝐴0𝜎̂

(
𝛿

𝐿0

)
= 𝐹𝑒𝑥𝑡 . (1.18)

We can express (1.18) as an equation for the displacement at the right end which we denote as
𝑑𝐿 = 𝑢(𝐿). We can write

𝑁 (𝑑0) = 𝐹𝑒𝑥𝑡 , (1.19)

where 𝑁 (𝑑0) is a nonlinear function of the unknown 𝑑𝐿 defined in this case as

𝑁 (𝑑0) = 𝐴0𝜎̂

(
𝑑𝐿
𝐿0

)
. (1.20)

In general, (1.20) will not have a closed-form solution and some sort of iterative procedure is
necessary. Nonlinear equation solving is discussed at length in Chapter Section 13. Here we resort
to one of the more recognized and widely-used procedures, Newton-Raphson iteration. In this
method one introduces a set of indices k corresponding to the iterations, and given a current iterate
𝑑𝑘𝐿 , a first-order Taylor series expansion of (1.20) is utilized to generate the next iterate 𝑑𝑘+1

𝐿 via

0 = 𝐹𝑒𝑥𝑡 − 𝑁
(
𝑑𝑘+1
𝐿

)
≈ 𝐹𝑒𝑥𝑡 −

(
𝑁

(
𝑑𝑘𝐿

)
+ d

d𝑑𝐿
𝑁

(
𝑑𝑘𝐿

)
Δ𝑑𝐿

)
, (1.21)

where

𝑑𝑘+1
𝐿 = 𝑑𝑘𝐿 + Δ𝑑𝐿 . (1.22)

(1.21) can be expressed more compactly as

𝐾
(
𝑑𝑘𝐿

)
Δ𝑑𝐿 = 𝑅

(
𝑑𝑘𝐿

)
, (1.23)

where 𝑅
(
𝑑𝑘𝐿

)
, the residual or out-of-balance force, is given by

𝑅
(
𝑑𝑘𝐿

)
:= 𝐹𝑒𝑥𝑡 − 𝑁

(
𝑑𝑘𝐿

)
, (1.24)

and 𝐾
(
𝑑𝑘𝐿

)
, the incremental or tangent stiffness, is written as

𝐾
(
𝑑𝑘𝐿

)
:=

d
d𝑑𝐿

𝑁
(
𝑑𝑘𝐿

)
. (1.25)

The Newton-Raphson procedure is then carried out by recursively solving (1.23) and (1.22).

16

1.4 Geometric Nonlinearity

Geometric nonlinearities are induced by nonlinearities in the kinematic description of the
system at hand. We will identify and work with several nonlinearities of this general type in great
detail in Section 4, Section 5, and Section 6, but to begin we consider two particular cases in the
context of our simple model problem.

The first type of nonlinearity we consider is introduced by the use of nonlinear strain and stress
measures in definition of the stress-strain relation. As an example, let us consider alternatives to
(1.1) and (1.3), which defined the engineering stain 𝜖𝐸 and engineering stress 𝜎𝐸 that we have
utilized to this point. When used in our model problem with 𝑓 = 0 and boundary conditions
(1.10) and (1.11), we have seen that the engineering strain does not vary over the rod’s length,
having a constant value 𝛿/𝐿0. For this strain measure to be appropriate, the deformation 𝛿 should
be infinitesimal. In the presence of larger deformations, the true strain or logarithmic strain is
often used,

𝜖𝑇 =
∫ 𝐿

𝐿0

d𝛾
𝛾

= log
(
𝐿

𝐿0

)
= log (1 + 𝜖𝐸) . (1.26)

Similarly, if the cross-sectional area 𝐴 changes appreciably during the process, it is likely that the
engineering stress 𝜎𝐸 should be replaced by the true stress 𝜎𝑇 defined in (1.2). In the case of our
model problem, this would imply

𝜎𝑇 =
𝐹𝑒𝑥𝑡

𝐴
, (1.27)

where 𝐴 is to be interpreted as the cross-sectional area in the final (deformed) configuration.

Relating this area to the elongation 𝛿 requires a constitutive assumption to be made. For example,
if we assume the rod consists of an elastic material, we could approximate this variation by
considering the area to vary according to Poisson’s effect. This would require that for each
differential increment d𝜖𝑇 in the axial true strain, each lateral dimension should change by a factor
of (1 − 𝜈d𝜖𝑇), where 𝜈 is Poisson’s ratio for the material.

At a given instant of the loading process, therefore, an incremental change in the area 𝐴 can be
approximated via

𝐴 + d𝐴 = (1 − 𝜈d𝜖𝑇)2 𝐴

≈ (1 − 2𝜈d𝜖𝑇) 𝐴.

(1.28) implies that

1
𝐴

d𝐴 = −2𝜈d𝜖𝑇

= −2𝜈
d𝜖𝑇
d𝐿

d𝐿

= −2𝜈
(

1
𝐿

)
d𝐿.

17

Integrating (1.28) between the initial and the final configurations gives

𝐴 = 𝐴0

(
𝐿0
𝐿

)2𝜈
= 𝐴0

(
𝐿0

𝐿0 + 𝛿

)2𝜈
. (1.28)

If we assume Hooke’s Law,

𝜎𝑇 = 𝐸𝜖𝑇 , (1.29)

we can use (1.26), (1.27), and (1.28) to conclude that

𝐸𝐴0 log
(
𝐿0 + 𝛿
𝐿0

) (
𝐿0

𝐿0 + 𝛿

)2𝜈
= 𝐹𝑒𝑥𝑡 , (1.30)

which is a nonlinear equation governing the elongation 𝛿. Note that this nonlinearity is not caused
by any sort of nonlinear stress-strain relation, but instead results from the observation that the
amount of deformation may not be small, necessitating more general representations of stress and
strain.

The second sort of nonlinearity we wish to consider is that caused by large superimposed rigid
body rotations and translations that introduce nonlinearities into many problems even when the
strains in the material are well-approximated by infinitesimal measures. Toward this end we refer
to Fig. 1.3, in which we embed our one-dimensional truss element in a two-dimensional frame.
We locate one end of the rod at the origin and consider this end to be pinned so that it is free to
rotate but not translate. The other end of the rod, initially located at coordinates 𝑥0

1, 𝑥
0
2, is

subjected to a (vector valued) force F𝑒𝑥𝑡 , which need not be directed along the axis of the rod.

We note that under the restriction of small motions this problem is ill-posed because the rod is
incapable of transmitting anything but axial force (F𝑒𝑥𝑡 would need to act in the axial direction).
However, in the current context we allow unlimited rotation with the result that the rod will rotate
until it aligns with F𝑒𝑥𝑡 in its equilibrium condition. In fact this observation allows us to guess the
solution to the problem. Since we assume that the axial response of the rod is completely linear,
we may deduce that the final elongation is given by

𝛿 =
𝐿0‖F𝑒𝑥𝑡 ‖
𝐸𝐴0

, (1.31)

where ‖F𝑒𝑥𝑡 ‖ denotes the Euclidean length of the vector F𝑒𝑥𝑡 . The final orientation of the rod must
coincide with the direction F𝑒𝑥𝑡 , so we can write the final position of the end of the rod, using the
coordinates

(
𝑥
𝑓
1 , 𝑥

𝑓
2

)
, as [

𝑥
𝑓
1
𝑥
𝑓
2

]
=

𝐿0
‖F𝑒𝑥𝑡 ‖

(
1 + ‖F𝑒𝑥𝑡 ‖

𝐸𝐴0

) [
𝐹𝑒𝑥𝑡1
𝐹𝑒𝑥𝑡2

]
, (1.32)

or, writing the solution in terms of the rod end displacements 𝑑1 and 𝑑2,[
𝑑1
𝑑2

]
=

𝐿0
‖F𝑒𝑥𝑡 ‖

(
1 + ‖F𝑒𝑥𝑡 ‖

𝐸𝐴0

) [
𝐹𝑒𝑥𝑡1
𝐹𝑒𝑥𝑡2

]
−

[
𝑥0

1
𝑥0

2

]
. (1.33)

18

Fig. 1.3 Model problem with infinitesimal motions superposed on large rigid body motions.

19

It is instructive to proceed as though we do not know the solution summarized in (1.33) and
formulate the equilibrium equations governing 𝑑1 and 𝑑2.

If we observe that the elongation 𝛿 of the rod can be written as

𝛿 =

√(
𝑑1 + 𝑥0

1

)2
+

(
𝑑2 + 𝑥0

2

)2
− 𝐿0, (1.34)

then (1.31) gives the relationship between ‖F𝑒𝑥𝑡 ‖ and the unknown displacements. Furthermore,
as noted above, the direction of F𝑒𝑥𝑡 is given by

F𝑒𝑥𝑡

‖F𝑒𝑥𝑡 ‖ =
1√(

𝑑1 + 𝑥0
1

)2
+

(
𝑑2 + 𝑥0

2

)2

[
𝑑1 + 𝑥0

1
𝑑2 + 𝑥0

2

]
.

(1.35)

Combining these facts gives the equation that governs 𝑑1 and 𝑑2,

[
𝐹𝑒𝑥𝑡1
𝐹𝑒𝑥𝑡2

]
= 𝐸𝐴0

√(
𝑑1 + 𝑥0

1

)2
+

(
𝑑2 + 𝑥0

2

)2
− 𝐿0

𝐿0

√(
𝑑1 + 𝑥0

1

)2
+

(
𝑑2 + 𝑥0

2

)2

[
𝑑1 + 𝑥0

1
𝑑2 + 𝑥0

2

]
. (1.36)

The reader may wish to verify this equation by substituting the solution (1.33) into (1.36).

(1.36) is a nonlinear, vector-valued equation for the unknowns 𝑑1 and 𝑑2. Recalling the generic
form for nonlinear equations we introduced in the one dimensional case in (1.19), we could write
this generically as

N(d) = F𝑒𝑥𝑡 , (1.37)

where

d =

[
𝑑1
𝑑2

]
(1.38)

and

N(d) := 𝐸𝐴0

√(
𝑑1 + 𝑥0

1

)2
+

(
𝑑2 + 𝑥0

2

)2
− 𝐿0

𝐿0

√(
𝑑1 + 𝑥0

1

)2
+

(
𝑑2 + 𝑥0

2

)2

[
𝑑1 + 𝑥0

1
𝑑2 + 𝑥0

2

]
. (1.39)

Just as was done in the last section for the one degree of freedom case, we could introduce a
Newton-Raphson strategy to solve (1.37) via

K(d𝑘)Δ𝑑 = ∗ ∗ 𝑅 ∗ ∗(d𝑘) = F𝑒𝑥𝑡 − N(d𝑘), (1.40)

and

d𝑘+1 = d𝑘 + Δd, (1.41)

20

where

K(d𝑘) :=
𝜕N
𝜕d

(d𝑘) =


𝜕𝑁1
𝜕𝑑1

𝜕𝑁1
𝜕𝑑2

𝜕𝑁2
𝜕𝑑1

𝜕𝑁2
𝜕𝑑2

d=d𝑘

(1.42)

Carrying out the calculation of K(d𝑘) for the specific N(d) at hand gives

K(d𝑘) = K𝑑𝑖𝑟𝑒𝑐𝑡 (d𝑘) + K𝑔𝑒𝑜𝑚 (d𝑘). (1.43)

K𝑑𝑖𝑟𝑒𝑐𝑡 (d𝑘) is given by

K𝑑𝑖𝑟𝑒𝑐𝑡 (d𝑘) :=
𝐸𝐴0√(

𝑑1 + 𝑥0
1

)2
+

(
𝑑2 + 𝑥0

2

)2


(
𝑑𝑘1 + 𝑥0

1

)2 (
𝑑𝑘1 + 𝑥0

1

) (
𝑑𝑘2 + 𝑥0

2

)(
𝑑𝑘1 + 𝑥0

1

) (
𝑑𝑘2 + 𝑥0

2

) (
𝑑𝑘2 + 𝑥0

2

)2

 (1.44)

and K𝑔𝑒𝑜𝑚 (d𝑘) by

K𝑔𝑒𝑜𝑚 (d𝑘) := 𝐸𝐴0

©­­­­«
1
𝐿0

− 1√(
𝑑1 + 𝑥0

1

)2
+

(
𝑑2 + 𝑥0

2

)2

ª®®®®¬
[
1 0
0 1

]
. (1.45)

As the notation suggests, K𝑑𝑖𝑟𝑒𝑐𝑡 is sometimes referred to as the direct stiffness, or that part of the
stiffness emanating directly from the material stiffness of the system at hand. K𝑔𝑒𝑜𝑚, on the other
hand, is sometimes called the geometric stiffness, and arises not from inherent stiffness of the
material but by virtue of the large motions in the problem.

To gain insight into these issues in the current context, consider the case where ‖d𝑘 ‖ � ‖x0‖, the
case where the motions are small in comparison to the rod’s length. In this case we find

K𝑔𝑒𝑜𝑚 (d𝑘) → 0, (1.46)

and

K𝑑𝑖𝑟𝑒𝑐𝑡 (d𝑘) →
𝐸𝐴0
𝐿0

[
cos 𝜃 cos 𝜃 cos 𝜃 sin 𝜃
cos 𝜃 sin 𝜃 cos 𝜃 cos 𝜃

]
, (1.47)

where 𝜃 = arctan
(
𝑥0

2
𝑥0

1

)
is the angle between the original axis of the rod and the positive 𝑥-axis. In

other words, when the motions become small, the geometric stiffness vanishes and the direct
stiffness reduces to the familiar stiffness matrix associated with a two-dimensional truss
member.

21

1.5 Contact Nonlinearity

A final type of nonlinearity we wish to consider is that created due to contact with another
deformable or rigid body. As a simple model problem for this case we refer to Fig. 1.4, where we
consider a prescribed motion 𝑑 of the left end of our one-dimensional rod and solve for the static
equilibrium of the unknown displacement 𝑑 of the right end, subject to the constraint

𝑔(𝑑) = 𝑑 − 𝑔0 ≤ 0, (1.48)

where 𝑔0 is the initial separation, or gap, between the right end of the rod and the rigid obstacle.

Fig. 1.4 Schematic of the rigid obstacle problem.

Even if we assume that the motions are small and the material response of the rod is elastic, the
equations governing the response of our rod are nonlinear. To see this, let us choose 𝑑 as our
unknown and construct the following residual 𝑅(𝑑) for our system:

𝑅(𝑑) = 𝐸𝐴0
𝐿0

(𝑑 − 𝑑) + 𝐹𝑐, (1.49)

22

Here 𝐹𝑐, the contact force between the obstacle and the rod (assumed positive in compression), is
subject to the constraints

𝐹𝑐 ≥ 0; 𝑔(𝑑) ≤ 0 and 𝐹𝑐𝑔(𝑑) = 0 . (1.50)

Equations (1.50) are called Kuhn-Tucker complementary conditions in mathematical parlance
and physically require that the contact force be compressive, that the rod end not penetrate the
obstacle, and that the contact force only be nonzero when 𝑔 = 0, i.e. when contact between the rod
and obstacle occurs. In fact 𝐹𝑐 is a Lagrange multiplier in this problem, enforcing the kinematic
constraint (1.48). We see that the condition operating on the right end of the bar is neither a
Dirichlet nor a Neumann boundary condition; in fact, both the stress and the displacement at this
point are unknown but are related to each other through the constraints expressed in Equations
(1.50).

Plots of the residual defined by Equations (1.49) and (1.50) are given in Fig. 1.5 for the two
distinct cases of interest: where contact does not occur (when 𝑑 < 𝑔0) and where contact does
occur (when 𝑑 ≥ 𝑔0). The solutions (i.e. the zeros of 𝑅) are readily apparent. When no contact
occurs 𝑑 = 𝑑, while in the case of contact 𝑑 = 𝑔0. The internal stresses generated in the bar are
then readily deduced.

One may note from Fig. 1.5 some important practical features of this problem. First, in both cases
the admissible region for 𝑑 is restricted to be less than 𝑔0. Second, at the value 𝑑 = 𝑔0, each
diagram shows the residual be multiple valued, which is a direct consequence of the fact that in
this condition (i.e., where 𝑔 = 0), 𝐹𝑐 can be any positive number.

Finally, although the solution to our simple model problem is readily guessed, we can see from
both cases that the plot of 𝑅 versus 𝑑 is only piecewise linear; the kink in each diagram indicates
the fact that a finite tangent stiffness operates when contact is not active, changing to an infinite
effective stiffness imposed by Equations (1.50) when contact between the rod and obstacle is
detected. This contact detection therefore becomes an important feature in general strategies for
contact problems, and introduces both nonlinearities and non smoothness into the global
equations as this rather simple example demonstrates.

The books [15], [16], [26], [34], [38], [45], [48] are suggested for those readers wishing to
reinforce their knowledge of linear elasticity, elementary continuum mechanics, and/or
fundamentals of solid mechanics. They are presented in alphabetical order, with no other
significance to be attached to the order of presentation.

23

Fig. 1.5 Plots of residuals verses displacement for the rigid obstacle problem: (a) the case where
𝑑 < 𝑔0 (no contact); (b) the case where 𝑑 ≥ 𝑔0.

24

2 Linear Elastic Initial/Boundary Value Problem

2.1 Basic Equations of Linear Elasticity

Having reviewed some relevant nonlinearities in the context of a simple structural element in
Chapter Section 1, let us begin to generalize our problem description to encompass a larger group
of continuous bodies. We begin this development by first reviewing the basic equations of linear
elasticity, where we assume small motions and linear material behavior. This discussion will
provide the basis for a more general notational framework in the next section, where we will
remove the kinematic restriction to small motions and also allow the material to behave in an
inelastic manner.

The notation we will use in this section is summarized in Fig. 2.1, where we have depicted a solid
body positioned in the three dimensional Euclidean space, or R3. The set of spatial points x
defining the body is denoted by Ω, and we consider the boundary 𝜕Ω to be subdivided into two
regions Γ𝑢 and Γ𝜎, where Dirichlet and Neumann boundary conditions will be specified as
discussed below. We assume that these regions obey the following:

Γ𝑢 ∪ Γ𝜎 = 𝜕Ω

Γ𝑢 ∩ Γ𝜎 = ∅. (2.1)

The unknown, or independent, variable in this problem is u, the vector-valued displacement which
in general depends upon x ∈ Ω and time 𝑡.

2.2 Equations of Motion

At any point Ω the following statement of local linear momentum balance must hold:

∇ · T + f = 𝜌
𝜕2u
𝜕𝑡2

. (2.2)

Note that ∇ · T denotes the divergence operator applied to T, the Cauchy stress tensor. The vector
f denotes the distributed body force in Ω, with units of force per volume, and 𝜌 denotes the mass
density, which need not be uniform. (2.2) represents the balance of linear momentum in direct
notation. Balance of angular momentum is enforced within the domain by requiring that the
Cauchy stress tensor is symmetric. We will frequently employ index notation in the work that
follows. Toward that end, (2.2) can be expressed as

𝑇𝑖 𝑗 , 𝑗 + 𝑓𝑖 = 𝜌
𝜕2𝑢𝑖
𝜕𝑡2

, (2.3)

where indices 𝑖 and 𝑗 run between 1 and 3 (the spatial directions), and unless otherwise indicated,
repeated indices within a term of an expression imply a summation over that index. For
example,

𝑇𝑖 𝑗 , 𝑗 =
3∑
𝑗=1

𝜕𝑇𝑖 𝑗

𝜕𝑥 𝑗
. (2.4)

25

Fig. 2.1 Notation for the linear elastic initial/boundary value problem.

26

The notation 𝛽, 𝑗 indicates partial differentiation with respect to 𝑥 𝑗 .

As indicated above the independent variables are 𝑢𝑖, so it is necessary to specify the relation
between the displacements and the Cauchy stress. In linear elasticity this is accomplished by two
additional equations. The first is the linear strain-displacement relation

𝜖𝑖 𝑗 = 𝑢(𝑖, 𝑗) =
1
2
(𝑢𝑖, 𝑗 + 𝑢 𝑗 ,𝑖), (2.5)

where 𝜖𝑖 𝑗 is the infinitesimal strain equal to the symmetric part of the displacement gradient
denoted by 𝑢(𝑖, 𝑗) . The second equation is the linear constitutive relation between 𝑇𝑖 𝑗 and 𝜖𝑖 𝑗 ,
which is normally written

𝑇𝑖 𝑗 = 𝐶𝑖 𝑗 𝑘𝑙𝜖𝑘𝑙 . (2.6)

Note that 𝐶𝑖 𝑗 𝑘𝑙 is the fourth-order elasticity tensor, to be discussed further below.

(2.5) and (2.6) can also be written in direct notation as

𝝐 = ∇𝑠u =
1
2

(
∇u + ∇u𝑇

)
, (2.7)

where ∇𝑠 denotes the symmetric gradient operator defined by ∇𝑠□ = 1/2
(
∇□ + ∇□𝑇

)
, and

T = C : 𝝐 , (2.8)

where the colon indicates double contraction of the fourth-order tensor C with the second-order
tensor 𝝐 .

The fourth-order elasticity tensor C is ordinarily assumed to possess a number of symmetries,
which greatly reduces the number of independent components that describe it. It possesses major
symmetry, which means 𝐶𝑖 𝑗 𝑘𝑙 = 𝐶𝑘𝑙𝑖 𝑗 , and it also possesses minor symmetries, meaning for
example that 𝐶𝑖 𝑗 𝑘𝑙 = 𝐶 𝑗𝑖𝑘𝑙 = 𝐶 𝑗𝑖𝑙𝑘 = 𝐶𝑖 𝑗 𝑙𝑘 . Another important property of the elasticity tensor is
positive definiteness, implying in this context that

𝐴𝑖 𝑗𝐶𝑖 𝑗 𝑘𝑙𝐴𝑘𝑙 > 0 for all symmetric tensors 𝐴 (2.9)

and 𝐴𝑖 𝑗𝐶𝑖 𝑗 𝑘𝑙𝐴𝑘𝑙 = 0 iff 𝐴 = 0. (2.10)

In the most general case, assuming the aforementioned symmetries and no others, the elasticity
tensor has 21 independent components. Various material symmetries reduce the number greatly,
the most specific case being an isotropic material possessing rotational symmetry in all
directions. In this case only two independent elastic constants are required to specify C, which
under these circumstances can be written as

𝐶𝑖 𝑗 𝑘𝑙 = 𝜆𝛿𝑖 𝑗𝛿𝑘𝑙 + 𝜇
[
𝛿𝑖𝑘𝛿 𝑗 𝑙 + 𝛿𝑖𝑙𝛿 𝑗 𝑘

]
, (2.11)

where 𝛿𝑖 𝑗 , the Kronecker delta, satisfies

𝛿𝑖 𝑗 =

{
1 if 𝑖 = 𝑗

0 otherwise,
(2.12)

27

and 𝜆 and 𝜇 denote the Lam’e parameters for the material. These can be written in terms of the
more familiar Young’s (i.e., elastic) modulus and Poisson’s ratio via

𝜆 =
𝐸𝜈

(1 + 𝜈)(1 − 2𝜈) (2.13)

𝜇 =
𝐸

2(1 + 𝜈) . (2.14)

The quantity 𝜇 is also known as the shear modulus for the material.

Substitution of (2.7) and (2.8) into (2.2) gives a partial differential equation for the vector-valued
unknown displacement field u. Full specification of the problem with suitable boundary and
initial conditions is discussed next.

2.3 Boundary and Initial Conditions

Paralleling earlier discussion of the one-dimensional example, we will consider the possibility of
two types of boundary conditions, Dirichlet and Neumann. Dirichlet boundary conditions will be
imposed on the region Γ𝑢 in Fig. 2.1 as

u(x, 𝑡) = ū(x, 𝑡) ∀x ∈ Γ𝑢, 𝑡 ∈ (0, 𝑇). (2.15)

Note that ū(x, 𝑡) denotes a prescribed displacement vector depending on spatial position and time.
The simplest and perhaps most common example of such a boundary condition would be a fixed
condition, which if imposed throughout the time interval of interest (0, 𝑇) and for all of Γ𝑢 would
imply ū(x, 𝑡) = 0.

The other type of boundary condition is a Neumann, or traction, boundary condition. To write
such a condition we must first define the concept of traction on a surface. If we use n to denote
the outward normal to the surface Γ𝜎 at a point x ∈ Γ𝜎, the traction vector t at x is defined via

t = T · n, (2.16)

or, in index notation,

𝑇𝑖 = 𝑇𝑖 𝑗𝑛 𝑗 . (2.17)

Physically this vector represents a force per unit area acting on the external surface at x. A
Neumann boundary condition is then written in the current notation as

T(x, 𝑡) · n(x) = t̄(x, 𝑡) ∀x ∈ Γ𝜎, 𝑡 ∈ (0, 𝑇). (2.18)

Note that t̄(x, 𝑡) is the prescribed traction vector field on Γ𝜎 throughout the time interval of
interest (0, 𝑇). One could identify several examples of such a boundary condition. An unfixed
surface free of any external force would be described by t̄ = 0. A surface subject to a uniform
pressure loading, 𝑝, on the other hand, could be described by setting t̄(x, 𝑡) = −𝑝n(x), where we
assume a compressive pressure to be positive.

28

With these definitions in hand, we recall the restrictions in (2.1) on Γ𝑢 and Γ𝜎 and physically
interpret them as follows: 1) one must specify either a traction or a displacement boundary
condition at every point of 𝜕Ω; and 2) at each point of 𝜕Ω one may not specify both the traction
and the displacement but must specify one or the other.

In fact these conditions are slightly more stringent than required. The problem remains well-posed
if, for each component direction 𝑖, we specify either the traction component 𝑡𝑖 or the displacement
component 𝑢̄𝑖 at each point x ∈ 𝜕Ω, as long as for a given spatial direction we do not attempt to
specify both. In other words, we may specify a displacement boundary condition in one direction
at a point while specifying a traction boundary condition in the other. An example of such a case
would be the common roller boundary condition, where a point is free to move in a traction-free
manner to an interface (i.e., a traction boundary condition) while being constrained from
movement in a direction normal to an interface (i.e., a displacement boundary condition). Of
course a multitude of other boundary condition permutations could be identified. Thus, while we
choose a rather simple boundary condition restriction (summarized by (2.1)) for notational
simplicity, it is important to realize that many other possibilities exist and require only minor
alterations of the methodology we will discuss.

The final important ingredient in our statement of the linear elastic problem is the specification of
initial conditions. One may note that our partial differential equation ((2.2)) is second order in
time; accordingly, two initial conditions are required. In the current context these are the initial
conditions on the displacement u and the velocity ¤u and can be rather straightforwardly specified
as

u(x, 0) = u0(x) on Ω (2.19)

𝜕u
𝜕𝑡

(x, 0) = v0(x) on Ω, (2.20)

where u0 and v0 are the prescribed initial displacement and velocity fields, respectively.

2.4 Problem Specification

We now collect the equations and conditions of the past two sections into a single problem
statement for the linear elastic system shown in Fig. 2.1. For the elastodynamic case, this problem
falls into the category of an initial/boundary value problem, since both types of conditions are
included in its definition. Our problem is formally stated as follows:

Given the boundary conditions ¯∗ ∗ 𝑡 ∗ ∗ on Γ𝜎 × (0, 𝑇) and ¯∗ ∗ 𝑢 ∗ ∗ on Γ𝑢 × (0, 𝑇), the initial
conditions u0 and v0 on Ω, and the distributed body force f on Ω × (0, 𝑇), find the displacement
field u on Ω × (0, 𝑇) such that

∇ · T + f = 𝜌
𝜕2u
𝜕𝑡2

on Ω × (0, 𝑇), (2.21)

u(x, 𝑡) = ū(x, 𝑡) on Γ𝑢 × (0, 𝑇), (2.22)

29

t(x, 𝑡) = t̄(x, 𝑡) on Γ𝜎 × (0, 𝑇), (2.23)

u(x, 0) = u0(x) on Ω, (2.24)

𝜕u
𝜕𝑡

(x, 0) = v0(x) on Ω, (2.25)

where the Cauchy stress, T, is given by

T = C : (∇𝑠u). (2.26)

Equations (2.21) through (2.26) constitute a linear hyperbolic initial/boundary value problem for
the independent variable u.

2.5 The Quasistatic Approximation

Before leaving the elastic problem, it is worthwhile to discuss how our problem specification will
change if inertial effects are negligible in the equilibrium equations. This special case is often
referred to as the quasistatic assumption and considerably simplifies specification of the
problem.

Simply stated, the quasistatic assumption removes the second temporal derivative of u, i.e.,
acceleration, from (2.21), thereby also eliminating the need for initial conditions (Equations (2.24)
and (2.25)). Such an approximation is appropriate when the loadings do not vary with time or
when they vary over time scales much longer than the periods associated with the fundamental
structural modes of Ω.

It is convenient, however, to maintain time in our description of the problem for two reasons: 1)
the loadings t̄ and f and the displacement condition ū may still vary with time; and 2) when we
consider more general classes of constitutive equations, we may wish to allow time dependence in
the stress/strain response, e.g., in creep plasticity. Accordingly, we state below a boundary value
problem appropriate for quasistatic response of a linear elastic system.

Given the boundary conditions t̄ on Γ𝜎 × (0, 𝑇), ū on Γ𝑢 × (0, 𝑇), and the distributed body force f
on Ω × (0, 𝑇), find the displacement field u on Ω × (0, 𝑇) such that

∇ · T + f = 0 on Ω × (0, 𝑇), (2.27)

u(x, 𝑡) = ū(x, 𝑡) on Γ𝑢 × (0, 𝑇), (2.28)

t(x, 𝑡) = t̄(x, 𝑡) on Γ𝜎 × (0, 𝑇), (2.29)

where the Cauchy stress, T, is given by

T = C : (∇𝑠u). (2.30)

We note in that given a time 𝑡 ∈ (0, 𝑇), Equations (2.27) through (2.30) constitute a linear elliptic
boundary value problem governing the independent variable u.

30

3 Weak Forms

3.1 Introduction

A key feature of the finite element method is the form of the boundary value problem (or
initial/boundary value problem in the case of dynamics) that is discretized. More specifically, the
finite element method is one of a large number of variational methods that rely on the
approximation of integral forms of the governing equations. In this chapter we briefly examine
how such integral (alternatively, weak or variational) forms are constructed for the linear elastic
system we introduced in Chapter Section 2.

3.2 Quasistatic Case

Consider the quasistatic case first, we recall (2.27) – (2.30) and explore an alternative manner in
which the conditions can be stated. We consider a collection of vector-valued functions w, which
we call weighting functions for reasons that will soon be clear. We require that these functions
w : Ω̄ → R3 satisfy

w = 0 on Γ𝑢 . (3.1)

Furthermore it is assumed that these functions are sufficiently smooth that all necessary partial
derivatives can be computed. Suppose we have the solution u of (2.27) and (2.28). We can then
take any smooth function w satisfying (3.1) and compute its dot product with (2.27), which must
produce

w · (∇ · T + f) = 0 on Ω (3.2)

at each time 𝑡 ∈ (0, 𝑇). We can then integrate (3.2) over Ω to obtain∫
Ω

w · (∇ · T + f)dΩ = 0. (3.3)

(3.3) can be manipulated further by noting that

w · (∇ · T) = ∇ · (Tw) − (∇w) : T (3.4)

(product rule of differentiation), and by also taking advantage of the divergence theorem from
multivariate calculus: ∫

Ω
∇ · (Tw) dΩ =

∫
𝜕Ω

(n · Tw) dΓ. (3.5)

Note that n is the outward normal directed normal on 𝜕Ω and dΓ is a differential area of this
surface. Use of (3.4) and (3.5) in (3.3) and rearranging gives∫

Ω
(∇w) : T dΩ =

∫
Ω

w · f dΩ +
∫
𝜕Ω

(n · Tw) dΓ. (3.6)

31

Now, taking advantage of the symmetry of T and noting, from (2.16), that the surface traction t
equals Tn, we can write∫

𝜕Ω
(n · Tw) dΓ =

∫
𝜕Ω

(w · Tn) dΓ =
∫
𝜕Ω

w · t dΓ. (3.7)

We now recall the restrictions in (2.1), which tell us that 𝜕Ω is the union of Γ𝑢 and Γ𝜎. Since by
definition w = 0 on Γ𝑢, we can write∫

𝜕Ω
w · t dΓ =

∫
Γ𝑢

w · t dΓ +
∫
Γ𝜎

w · t dΓ =
∫
Γ𝜎

w · t̄ dΓ (3.8)

where the last equality incorporates the boundary condition t = t̄ on Γ𝜎.

We collect these calculations to conclude that∫
Ω
(∇w) : T dΩ =

∫
Ω

w · f dΩ +
∫
Γ𝜎

w · t̄ dΓ, (3.9)

which must hold for the solution u of (2.27) – (2.30) for any w satisfying condition (3.1).

To complete our alternative statement of the boundary value problem, the concepts of solution and
variational spaces need to be introduced. We define the solution space S𝑡 corresponding to time 𝑡
via

S𝑡 = {u | u = ū(𝑡) on Γ𝑢, u is smooth} (3.10)

and the weighting spaceW as

W = {w | w = 0 on Γ𝑢, w is smooth} . (3.11)

With these two collections of functions in hand, we consider the following alternative statement of
the boundary value problem summarized by (2.27) – (2.30):

Given the boundary conditions t̄ on Γ𝜎 × (0, 𝑇), ¯∗ ∗ 𝑢 ∗ ∗ on Γ𝑢 × (0, 𝑇) and the distributed body
force f on Ω × (0, 𝑇), find the u ∈ S𝑡 for each time 𝑡 ∈ (0, 𝑇) such that∫

Ω
(∇w) : T dΩ =

∫
Ω

w · f dΩ +
∫
Γ𝜎

w · t̄ dΓ (3.12)

for all w ∈ W, where S𝑡 is as defined in (3.10),W is as defined in (3.11), and the Cauchy stress, T,
is given by

T = C : (∇𝑠u). (3.13)

This statement of the boundary value problem is often referred to as a weak formulation, since it
explicitly requires only a weighted integral of the governing partial differential equations to be
zero, rather than the differential equation itself.

It should be clear, based upon the above derivation of the weak form, that the solution u of (2.27)
– (2.30), sometimes referred to as the strong form, will satisfy our alternative statement

32

summarized by (3.12) and (3.13). Less clear is the fact that solutions of the weak form will satisfy
the strong form whenever this formulation admits a solution. Since the continuity requirements
for existence of a strong solution are more stringent than for the analogous weak formulation
(hence the adjective strong), equivalence between these two forms is restricted to the case when
both exist, i.e., whenever a solution of the strong form of the boundary value problem exists, then
a weak solution also exists, and these solutions are identical.

It is important to note that the existence of a solution to the weak form of the boundary value
problem does not necessarily imply existence of a solution to the strong form. The strong form’s
constraints upon solution smoothness imply that for some problems (e.g., point sources that
induce jumps in derivative terms), a weak form might exist, but no strong form can be constructed
without substantially revising some basic principles of differential calculus. So the existence of a
weak solution does not necessarily imply that an identical strong solution exists: only that if a
strong solution can be found, it will be identical to the weak solution.

In practice, the existence of a weak solution in these cases turns out to be one of the most
important advantages of finite element techniques, because the integral formulations that form the
mathematical foundation of finite element approximations permit accurate simulation of
important problems that are not readily solved via competing differential techniques derived from
strong formulations. Many of the most important problems of computational mechanics (e.g.,
contact, material discontinuity, structural failure) often admit only weak solutions, and that is one
of the main reasons why weak formulations are important in practice.

So the equivalence between strong and weak forms is restricted to those cases where strong
solutions exist, and in that case, the strong solution is identical to the analogous weak solution.
Although not shown here this equivalence can be rigorously established; the interested reader
should consult Reference [26] at the end of this chapter for details. We simply remark in the
present discussion that the equivalent argument depends crucially on the satisfaction of (3.12) for
all w ∈ W, with the arbitrariness of w rendering the two statements equivalent whenever the
strong solution exists.

Given the requirement of efficient numerical implementation, we can also remark that
approximate methods will in effect narrow our definitions of the solution and weighting spaces to
finite-dimensional subspaces. Simply stated, this means that rather than including an infinite
number of smooth u and w satisfying the requisite boundary conditions in our problem definition,
we will restrict our attention to some finite number of functions comprising subsets of S𝑡 andW.

In so doing we introduce a difference between the solution of our (now approximate) weak form
and the strong form, where the degree of approximation is directly related to the difference
between the full solution and weighting spaces and the subsets of them used in the numerical
procedure. In fact it is this difference that is at the heart of solution verification, an important
activity to ensure that an appropriate subset of spaces (i.e., discretization or mesh refinement) is
chosen. Solution verification as part of the broader question of verification is discussed in the
Solid Mechanics Verification Manual.

Finally, it is worthwhile at this point to make a connection to so-called virtual work methods
which may be more familiar to those versed in linear structural mechanics. In this derivation we
will work in index notation so that the meaning of the direction notation used above can be

33

reinforced. Accordingly, for a possible solution 𝑢𝑖 of the governing equations, we write the
expression for the total potential energy of the system,

𝑃(𝑢𝑖) =
1
2

∫
Ω
𝑢(𝑖, 𝑗)𝐶𝑖 𝑗 𝑘𝑙𝑢(𝑘,𝑙)dΩ −

[∫
Ω
𝑢𝑖 𝑓𝑖 dΩ −

∫
Γ𝜎

𝑢𝑖𝑡𝑖 dΓ
]
. (3.14)

Note that the first term on the right hand side represents the total strain energy associated with 𝑢𝑖
and the last two terms represent the potential energy of the applied loadings 𝑓𝑖 and 𝑡𝑖. A virtual
work principle for this system simply states that the potential energy defined in (3.14) should be
minimized by the equilibrium solution. Accordingly, let 𝑢𝑖 now represent the actual equilibrium
solution. We can represent any other kinematically admissible displacement field via 𝑢𝑖 + 𝜖𝑤𝑖,
where 𝜖 is a scalar parameter (not necessarily small) and 𝑤𝑖 is a so-called virtual displacement,
which we assume to obey the boundary conditions outlined in (3.1). This restriction on the 𝑤𝑖
causes 𝑢𝑖 + 𝜖𝑤𝑖 to satisfy the Dirichlet boundary conditions (hence the term kinematically
admissible) because the solution 𝑢𝑖 does. We can write the total energy associated with any of
these possible solutions via

𝑃(𝑢𝑖 + 𝜖𝑤𝑖) =
1
2

∫
Ω

(
𝑢(𝑖, 𝑗) + 𝜖𝑤 (𝑖, 𝑗)

)
𝐶𝑖 𝑗 𝑘𝑙

(
𝑢(𝑘,𝑙) + 𝜖𝑤 (𝑘,𝑙)

)
dΩ

−
∫
Ω
(𝑢𝑖 + 𝜖𝑤𝑖) 𝑓𝑖 dΩ −

∫
Γ𝜎

(𝑢𝑖 + 𝜖𝑤𝑖) 𝑡𝑖 dΓ.
(3.15)

Note that if the potential energy associated with 𝑢𝑖 is to be lower that that of any other possible
solution 𝑢𝑖 + 𝜖𝑤𝑖, then the derivative of 𝑃(𝑢𝑖 + 𝜖𝑤𝑖) with respect to 𝜖 at 𝜖 = 0 (i.e., at the solution
𝑢𝑖) should be zero for any 𝑤𝑖 satisfying the conditions in (3.1), since 𝑢𝑖 is an extremum point of
the function 𝑃. Computing this derivative of (3.15), and setting the result equal to zero, yields

𝑑

𝑑𝜖

����
𝜖=0

𝑃(𝑢𝑖 + 𝜖𝑤𝑖) =
∫
Ω
𝑤 (𝑖, 𝑗)𝐶𝑖 𝑗 𝑘𝑙𝑢(𝑘,𝑙)dΩ −

∫
Ω
𝑤𝑖 𝑓𝑖 dΩ −

∫
Γ𝜎

𝑤𝑖𝑡𝑖 dΓ = 0 (3.16)

which must hold for all 𝑤𝑖 satisfying the boundary condition on Γ𝑢. (3.16) can be manipulated
further by noting that

𝑤 (𝑖, 𝑗)𝐶𝑖 𝑗 𝑘𝑙𝑢(𝑘,𝑙) = 𝑤 (𝑖, 𝑗)𝐶𝑖 𝑗 𝑘𝑙𝐸𝑘𝑙 = 𝑤 (𝑖, 𝑗)𝑇𝑖 𝑗 = 𝑤𝑖, 𝑗𝑇𝑖 𝑗 . (3.17)

The last equality in (3.17), while perhaps not intuitively obvious, holds because of the symmetry
of 𝑇𝑖 𝑗 :

𝑤 (𝑖, 𝑗)𝑇𝑖 𝑗 =
1
2
(𝑤𝑖, 𝑗 + 𝑤 𝑗 ,𝑖)𝑇𝑖 𝑗 =

1
2
(𝑤𝑖, 𝑗𝑇𝑖 𝑗 + 𝑤 𝑗 ,𝑖𝑇𝑗𝑖) = 𝑤𝑖, 𝑗𝑇𝑖 𝑗 . (3.18)

Use of (3.17) in (3.16) yields∫
Ω
𝑤𝑖, 𝑗𝑇𝑖 𝑗dΩ −

∫
Ω
𝑤𝑖 𝑓𝑖 dΩ −

∫
Γ𝜎

𝑤𝑖𝑡𝑖 dΓ = 0, (3.19)

which is simply the index notation counterpart of (2.27). Summarizing, we see that the weak or
integral form of the governing equations developed previously can be interpreted as a statement of

34

the principle of minimum potential energy. This alternative viewpoint is the reason that the
weighting functions 𝑤𝑖 are sometimes called variations or virtual displacements, with the
terminology used often depending upon the mathematical and physical arguments used to develop
the weak form.

Despite the usefulness of this physical interpretation, it should be noted that the presence of an
energy principle is somewhat specific to the case at hand and may be difficult or impossible to
deduce for many of the nonlinear systems to be considered in our later study. For example, many
systems are not conservative, including those featuring inelasticity, so at best our thermodynamic
understanding must be expanded if we insist on formulating such problems in terms of energy
principles. Thus, while the energy interpretation is enlightening for many systems, including
those featuring elastic continuum and/or structural response, insistence on this approach for more
general applications of variational methods can be quite limiting. Conversely, the derivation given
in (3.2) – (3.9) does not depend on the system being conservative, nor even upon the form of the
constitutive equation used. We will exploit the generality of this weighted residual derivation as
we increase the level of nonlinearity and complexity in the chapters to come.

3.3 Fully Dynamic Case

Another advantage of the weighted residual approach is that it can be straightforwardly applied to
dynamic problems. Before examining the dynamic case in detail, whose development parallels
that of quasistatic problems, it is worthwhile to emphasize again the definitions of the weighting
and solution spaces and to highlight the differences between them. Examining the definition of S𝑡
in (3.10) and that ofW in (3.11), we see that S𝑡 depends on 𝑡 through the boundary conditions on
Γ𝑢, whileW is independent of time. We retain these definitions in the current case and pose the
following problem corresponding to the quasistatic system posed previously:

Given the boundary conditions t̄ on Γ𝜎 × (0, 𝑇) and ū on Γ𝑢 × (0, 𝑇), the initial conditions u0 and
v0 on Ω, and the distributed body force f on Ω × (0, 𝑇), find the u ∈ S𝑡 for each time 𝑡 ∈ (0, 𝑇)
such that ∫

Ω
𝜌w · 𝜕

2u
𝜕𝑡2

dΩ +
∫
Ω
(∇w) : T dΩ =

∫
Ω

w · f dΩ +
∫
Γ𝜎

w · t̄ dΓ (3.20)

for all w ∈ W, where S𝑡 is as defined in (3.10),W is as defined in (3.11), and the Cauchy stress, T,
is given by

T = C : (∇𝑠u). (3.21)

In addition, the solution u is subject to the following conditions at 𝑡 = 0:∫
Γ

w · (u(0) − u0) dΩ = 0 (3.22)

and ∫
Γ

w ·
(
𝜕u
𝜕𝑡

(0) − v0

)
dΩ = 0, (3.23)

35

both of which must hold for all w ∈ W.

The integral form of the dynamic equations given in (3.20) is obtained, just as in the quasistatic
case, by taking the dynamic governing partial differential equation, (2.21), multiplying it by a
weighting function, integrating over the body, and applying integration by parts to the stress
divergence term. The new ingredients in the current specification are the initial conditions
summarized by (3.22) and (3.23), which are simple weighted residual expressions of the strong
form of the initial conditions given in (2.25).

Before leaving this section, we reemphasize the fact that the weighting functions are time
independent while the solution spaces remain time dependent. This fact will have important
consequences later when numerical algorithms are discussed, because we wish to use the same
classes of functions in our discrete representations ofW and S𝑡 . These discretizations will involve
spatial approximation, which in the case of S𝑡 will leave the time variable continuous in the
discrete unknowns of the system to be solved.

This semi-discrete approach to transient problems is pervasive in computational mechanics and
has its origin in the difference between the weighting and solution spaces.

The reference for this chapter is [26].

36

4 Large Deformation Framework

4.1 Introduction

In this chapter and the next several chapters we extend our discussion of the linear elastic problem
to accommodate two categories of important nonlinearities: potentially large motions and
deformations, and nonlinear material response. We will do this by introducing a more general
notational framework. While the equations governing large deformation initial/boundary value
problems are similar in form to their counterparts from the small deformation theory just
discussed, a rigorous prescription and understanding of large deformation problems can only be
achieved through a careful examination of the concepts of nonlinear continuum mechanics, which
will be the concern of the next several chapters.

The organization of this material is as follows. This chapter establishes a notational framework for
the generic specification of a nonlinear solid mechanics problem. Section 5 and Section 6 discuss
large deformation kinematics in a general context. Section 7 will then discuss the various
measures of stress that are frequently encountered in large deformation analysis. Then, with these
preliminaries in hand, we will be in a position to state relevant balance laws in notation
appropriate for large deformation problems in Section 8. Finally, in Section 9, we will discuss the
important concept of material frame indifference, which demands that material laws be unaltered
by rigid body motions. We will see that this concept places important restrictions on the
kinematic and stress measures that are suitable for prescription of constitutive laws, providing
important background information for the chapter on material models.

4.2 Notational Framework

The system we wish to consider is depicted schematically in Fig. 4.1. We consider a body, initially
in a location denoted by Ω, undergoing a time dependent motion 𝜑 that describes its trajectory
through space (assumed here to be R3).

The set Ω is called the reference configuration and can be thought of as consisting of points X
that serve as labels for the material points existing at their respective locations. For this reason,
the coordinates X are often called reference or material coordinates.
We assume, as before, that the surface 𝜕Ω of Ω can be decomposed into subsets Γ𝜎 and Γ𝑢
obeying restrictions in (2.1). The general interpretation of these surfaces remains the same.
Traction boundary conditions will be imposed on Γ𝜎 and displacement boundary conditions will
be imposed on Γ𝑢. Full specification of these boundary conditions must be deferred, however,
until some continuum mechanical preliminaries are discussed.

We have mentioned that the motion 𝜑 is in general time dependent. In fact, we could write this
fact in mathematical terms as 𝜑 : Ω̄ × (0, 𝑇) → R3. If we fix the time argument of 𝜑, we obtain a
configuration mapping 𝜑𝑡 , summarized as 𝜑𝑡 : Ω̄ → R3, which gives us the location of the body

37

Fig. 4.1 Notation for large deformation initial/boundary value problems.

38

at time 𝑡 given the reference configuration Ω. Coordinates in the current location 𝜑(Ω) of the
body will be denoted by x.

The current location is often called the spatial configuration and the coordinates, x spatial
coordinates. Given a material point X ∈ Ω and a configuration mapping 𝜑𝑡 , we may write

x = 𝜑𝑡 (X). (4.1)

A key decision in writing the equations of motion for this system is whether to express the
equations in terms of X ∈ Ω or x ∈ 𝜑𝑡 (Ω).

4.3 Lagrangian and Eulerian Descriptions

The choice of whether to use the reference coordinates X or the spatial coordinates x in the
problem description is generally highly dependent on the physical system to be studied.

For example, suppose we wish to write the equations of motion for a gas flowing through a duct,
or for a fluid flowing through a nozzle. In these cases the physical region of interest (the control
volume bounded by the duct or nozzle) is fixed, and does not depend on the solution or time. It
could also be observed that identification of individual particle trajectories in such problems is
probably not of primary interest, with such quantities as pressure, velocity, and temperature at
particular locations in the flow field being more desirable. In such problems, it is generally most
appropriate to associate field variables and equations with spatial points, or in the current
notation, x. A system described in this manner is said to be utilizing the Eulerian description
and implicitly associates all field variables and equations with spatial points x without specific
regard for the material points X involved in the flow of the problem. Most fluid and gas dynamics
problems are written in this way, as are problems in hydrodynamics and some problems in solid
mechanics involving fully developed plastic flow.

When thinking of Eulerian coordinate systems, it is sometimes useful to invoke the analogy of
watching an event through a window; the window represents the Eulerian frame and has our
coordinate system attached to it. Particles pass through our field of view, thereby defining a flow,
but we describe this flow from the frame of reference of our window without specific reference to
the particles undergoing the motion we observe.

In most solid mechanics applications, by contrast, the identity of specific material particles is of
central interest in modeling a system. For example, the plastic response of metals is history
dependent, meaning that the current relationship between stress and strain (the material model)
at a point in the body depends on the deformation history associated with that material point. To
construct and use such models effectively requires knowledge of the history of individual
particles, or material points, throughout a deformation process. Furthermore, many physical
processes we wish to describe do not lend themselves to an invariant Eulerian frame. In a forging
process, for example, the metal at the end of the procedure occupies a very different region in
space than it did at the outset. In addition, there may be periods of time over which boundary
conditions are applied requiring precise knowledge of the boundary of the region of interest. For

39

these reasons, as well as others, the predominant approach to solid mechanics systems is to write
all equations in terms of the material coordinates, or to use the Lagrangian frame of reference.

Returning to the notation summarized in Fig. 4.1, for a Lagrangian description we associate all
field variables and equations with points X ∈ Ω, and keep track of these reference particles
throughout the process. One may note in the last subsection a bias toward this approach already.
We have written the primary unknown in the problem, 𝜑, as a function of X ∈ Ω and 𝑡 ∈ (0, 𝑇).
Sierra/SM uses the Lagrangian frame of reference though as we will see next, the spatial frame is
also of great interest to us.

4.4 Governing Equations in the Spatial Frame

We turn now to the equations governing the motion of a medium. If we adopt for the moment the
spatial frame as our frame of reference, the form of these equations is largely unchanged from the
linear elastic case presented previously (where we explicitly took advantage of the fact that for
linear problems there is no difference between material and spatial descriptions). We fix our
attention on some time 𝑡 ∈ (0, 𝑇) and consider the current (unknown) location of the body Ω.
Over this region 𝜑𝑡 (Ω), the following conditions must hold:

∇ · T + f = 𝜌a on 𝜑𝑡 (Ω), (4.2)

𝜑𝑡 = 𝜑𝑡 on 𝜑𝑡 (Ω𝑢), (4.3)

and

t = t̄ on 𝜑𝑡 (Ω𝜎), (4.4)

subject to initial conditions at 𝑡 = 0. Some explanation of these equations is necessary. The
operator ∇ in (4.2) is with respect to spatial coordinates x. The acceleration a is the acceleration
of the particle currently at x written with respect to spatial coordinates, and 𝜑𝑡 is the prescribed
location for the particles on the Dirichlet boundary. We leave the constitutive law governing T
unspecified at this point but remark that in general the stress must depend on 𝜑𝑡 through
appropriate strain/displacement and stress/strain relations.

We see from (4.2) through (4.4) that the equations of motion are easily written in the form
inherited from the kinematically linear case, but that the frame in which this is done, the spatial
frame, is not independent of the unknown field 𝜑𝑡 but relies upon it for its own definition. Thus,
although the equations we now consider are essentially identical in form to those from linear
elasticity, they posses a considerably more complex relationship to the dependent variable.
Rigorous specification of this general boundary value problem requires an in-depth treatment of
the continuum mechanics of large deformation, as will be provided in the next chapters.

Before leaving this topic, we address an item which frequently causes confusion. Although we
have written the governing equations in (4.2) through (4.4) in terms of the spatial domain, this
does not imply an Eulerian statement of the problem. In fact, if we choose (as we have done) to
consider our dependent variable (in this case 𝜑𝑡) to be a function of reference coordinates, the

40

framework we have chosen is inherently Lagrangian. Another way of saying this is that (4.2)
through (4.4) are the Lagrangian equations of motion which have been converted through a
change-of-variables so that they are written in terms of x. In the remainder of this text, the reader
should assume a Lagrangian framework unless otherwise noted.

41

This page left blank

42

5 Deformation Measures

5.1 Deformation Gradient

Furthering our discussion of large deformation solid mechanics, we continue to use the notation
presented in Fig. 4.1. We restrict our attention to some time 𝑡 ∈ (0, 𝑇), and consider the
corresponding configuration mapping 𝜑𝑡 , which can be mathematically represented via
𝜑𝑡 : Ω̄ → R3. The deformation gradient F is given by the gradient of this transformation,

F =
𝜕𝜑𝑡
𝜕X

, (5.1)

or in index notation,

𝐹𝑖𝐽 =
𝜕𝜑𝑡𝑖
𝜕𝑋𝐽

. (5.2)

In (5.2) and throughout this documented unless otherwise noted, lower case indices are associated
with coordinates in the spatial frame and upper case indices with material coordinates. Repeated
indices of either case imply summation.

The deformation gradient is the most basic object used to quantify the local deformation at a point
in a solid. Most kinematic measures and concepts we will discuss rely on it explicitly for their
definition. For example, elementary calculus provides a physical interpretation of the determinant
of F. Consider a cube of material in the reference configuration (see Fig. 5.1) whose sides are
assumed to be aligned with the coordinate axes 𝑋𝐼 , 𝐼 = 1, 2, 3. The initial differential volume d𝑉
of this cube is given by

d𝑉 = d𝑋1d𝑋2d𝑋3. (5.3)

If we now consider the condition of this cube of material after the deformation 𝜑𝑡 is applied, we
notice that its volume in the current configuration d𝑣 is that of the parallelepiped spanned by the
three vectors 𝜑𝑡 (

−−→
d𝑋𝐽), where the notation

−−→
d𝑋𝐽 is used to indicate a reference vector in coordinate

direction 𝐽 with magnitude d𝑋𝐽 . This volume can be written in terms of the vector triple
product,

d𝑣 = 𝜑𝑡 (
−−→
d𝑋1) · 𝜑𝑡 (

−−→
d𝑋2) · 𝜑𝑡 (

−−→
d𝑋3). (5.4)

If we consider any differential vector
−→
d𝑅 in the reference configuration, the calculus of

differentials tells us that application of the mapping 𝜑𝑡 will produce a differential vector
−→
d𝑟 = 𝜑𝑡 (

−→
d𝑅) whose coordinate are given by

(−→d𝑟)𝑖 =
𝜕𝜑𝑡𝑖
𝜕𝑋𝐾

(−→d𝑅)𝐾 . (5.5)

43

Fig. 5.1 Deformation of a volume element as described by the configuration mapping 𝜑𝑡 .

44

Application of this logic to the particular differential vectors
−−→
d𝑅𝐽 leads one to conclude that

(𝜑𝑡 (
−−→
d𝑋𝐽))𝑖 =


𝐹𝑖1d𝑋1, 𝐽 = 1,
𝐹𝑖2d𝑋2, 𝐽 = 2,
𝐹𝑖3d𝑋3, 𝐽 = 3.

(5.6)

We can write (5.4) in index notation by first noting that the cross product of two vectors a and b is
written as

(a × b)𝑖 = e𝑖 𝑗 𝑘𝑎 𝑗𝑏𝑘 , (5.7)

where e𝑖 𝑗 𝑘 , the permutation symbol, is defined as

e𝑖 𝑗 𝑘 =


1 if (𝑖, 𝑗 , 𝑘) = (1, 2, 3) or (2, 3, 1) or (3, 1, 2),
−1 if (𝑖, 𝑗 , 𝑘) = (3, 2, 1) or (2, 1, 3) or (1, 3, 2),
0 otherwise.

(5.8)

(5.4) can then expressed as

d𝑣 = 𝐹𝑖1d𝑋1(e𝑖 𝑗 𝑘𝐹𝑗2d𝑋2𝐹𝑘3d𝑋3)
= e𝑖 𝑗 𝑘𝐹𝑖1𝐹𝑗2𝐹𝑘3d𝑋1d𝑋2d𝑋3

= det(F)d𝑉,

where we have used (5.3) and the fact that det(F) = e𝑖 𝑗 𝑘𝐹𝑖1𝐹𝑗2𝐹𝑘3 (which can be verified through
trial). Introducing the notation 𝐽 = det(F), we conclude

d𝑣 = 𝐽d𝑉. (5.9)

(5.9) tells us that the deformation 𝜑𝑡 converts reference differential volumes d𝑉 to current
volumes d𝑣 according to the determinant of the deformation gradient. For this mapping to make
physical sense, the current volume d𝑣 should be positive which then places a physical restriction
upon the deformation gradient F that must be obeyed point wise throughout the domain,

𝐽 = det(F) = det
(
𝜕𝜑

𝜕X

)
> 0. (5.10)

This physical restriction has important mathematical consequences as well. According to the
inverse function theorem of multivariate calculus, a smooth function whose gradient has a
nonzero determinant possesses a smooth and differentiable inverse. Since we have assumed 𝜑𝑡 to
be smooth and physical restrictions demand that 𝐽 > 0, we can conclude that a function 𝜑−1

𝑡 exists
and is differentiable; in fact, the gradient of this function is given by

𝜕𝜑−1
𝑡

𝜕X
= F−1. (5.11)

We will assume throughout the remainder of our discussion that 𝐽 > 0, so that such an inverse is
guaranteed to exist.

45

5.2 Polar Decomposition

With the definition of F in hand, we turn our attention to the quantification of local deformation in
a body. For any matrix such as F, whose determinant is positive, the following decomposition can
always be made:

F = RU = VR. (5.12)

In (5.12), R is a proper orthogonal tensor (right-handed rotation), while U and V are
positive-definite, symmetric tensors. One can show that under the conditions stated, the
decompositions in (5.12) can always be made and that they are unique. The interested reader
should consult Reference [20] of Chapter 1 for details. The decompositions RU and VR in (5.12)
are called right and left polar decompositions of F, respectively. R is often called the rotation
tensor, while U and V are sometimes referred to as the right and left stretches.

The significance of the polar decomposition is made more clear in Fig. 5.2, where we consider the
deformation of a neighborhood of material surrounding a point X ∈ Ω. (5.5) shows that the full
deformation gradient maps arbitrary reference differentials into their current positions at time 𝑡.
By considering the polar decomposition, we see that the deformation of material neighborhoods
of infinitesimal extent can always be conceptualized in two ways. In the right polar
decomposition, U contains all information necessary to describe the distortion of a neighborhood
of material, while R then maps this distorted neighborhood into the current configuration through
pure (right-handed) rotation. On the other hand, in the left polar decomposition, the rotation R is
considered first followed by the distortion V. In developing measures of local deformation, we can
thus focus on either U or V. The choice of which decomposition to use is typically based on the
coordinates in which we wish to write the strains. The right stretch U most naturally takes
reference coordinates as arguments, while the left stretch V is ordinarily written in terms of spatial
coordinates. This can be expressed as

F(X) = R(X)U(X) = V(𝜑(X))R(X). (5.13)

In characterizing large deformations, it is also convenient to define the right and left
Cauchy-Green tensors via

C = F𝑇F (5.14)

and

B = FF𝑇 . (5.15)

The right Cauchy-Green tensor is ordinarily considered to be a material object C(X), while the
left Cauchy-Green tensor is a spatial object B(𝜑𝑡 (X)). Since R is orthogonal, one can write

R𝑇R = RR𝑇 = I, (5.16)

46

Fig. 5.2 Dotted outline indicates infinitesimal neighborhood of point 𝑋 .)

47

where I is the 3 × 3 identity tensor. Manipulating (5.13) through (5.15) reveals that

U = C
1
2 (5.17)

and

V = B
1
2 . (5.18)

One can see the connection with small strain theory by considering the Green strain tensor E
defined with respect to the reference configuration,

E =
1
2
(C − I). (5.19)

We define the reference configuration displacement field u, such that

u(X) = 𝜑(X) − X. (5.20)

Working in index notation, we write E in terms of u

𝐸𝐼𝐽 =
1
2
(𝐶𝐼𝐽 − 𝛿𝐼𝐽) =

1
2
(𝐹𝑖𝐼𝐹𝑖𝐽 − 𝛿𝐼𝐽)

=
1
2

(
𝜕

𝜕𝑋𝐼
(𝑢𝑖 + 𝑋𝑖)

𝜕

𝜕𝑋𝐽
(𝑢𝑖 + 𝑋𝑖) − 𝛿𝐼𝐽

)
=

1
2

((
𝜕𝑢𝑖
𝜕𝑋𝐼

+ 𝛿𝑖𝐼
) (

𝜕𝑢𝑖
𝜕𝑋𝐽

+ 𝛿𝑖𝐽
)
− 𝛿𝐼𝐽

)
=

1
2

(
𝛿𝑖𝐼

𝜕

𝜕𝑋𝐽
(𝑢𝑖) + 𝛿𝑖𝐽

𝜕

𝜕𝑋𝐼
(𝑢𝑖) +

𝜕𝑢𝑖
𝜕𝑋𝐼

𝜕𝑢 𝑗

𝜕𝑋𝐽

)
(5.21)

In the case where the displacement gradients are small, i.e., | 𝜕𝑈𝑖

𝜕𝑋𝐽
| � 1, the quadratic term in

(5.21) will be much smaller that the terms linear in the displacement gradients. If, in addition, the
displacement components 𝑢𝑖 are very small when compared with the size of the body, then the
distinction between reference and spatial coordinates becomes unnecessary and (5.21) simplifies
to

𝐸𝐼𝐽 ≈
1
2

(
𝜕𝑢𝐼
𝜕𝑋𝐽

+ 𝜕𝑢𝐽
𝜕𝑋𝐼

)
, (5.22)

which is identical to the infinitesimal case (cf. (2.5)).

The references for Chapter 5 are [15, 20, 39].

48

6 Rates of Deformation

The development of the last chapter fixed our attention on an instant 𝑡 ∈ (0, 𝑇), and proposed
some measurements of material deformation in terms of the configuration mapping 𝜑𝑡 . We now
allow time to vary and consider two questions:

• How are velocities and accelerations quantified in both the spatial and reference frames?

• How are time derivatives of deformation measures properly considered in a large
deformation framework?

The former topic is obviously crucial in the formulation of dynamics problems, while the latter is
necessary, for example, in rate-dependent materials where quantities such as strain rate must be
quantified.

6.1 Material and Spatial Velocity and Acceleration

One obtains the material velocity V and the material acceleration A by fixing attention on a
particular material particle (i.e., fixing the reference coordinate X), and then considering
successive (partial) time derivatives of the motion 𝜑(X, 𝑡). This can be written mathematically
as

V(X, 𝑡) = 𝜕

𝜕𝑡

(
𝜑(X, 𝑡)

)
(6.1)

and

A(X, 𝑡) = 𝜕

𝜕𝑡

(
V(X, 𝑡)

)
=
𝜕2

𝜕𝑡2
(
𝜑(X, 𝑡)

)
. (6.2)

Note in (6.1) and (6.2) that V and A take X as their first argument, hence their designation as
material quantities. A Lagrangian description of motion, in which reference coordinates are the
independent variables, would most naturally use these measures of velocity and acceleration.

An Eulerian description, on the other hand, generally requires measures written in terms of spatial
points x without requiring explicit knowledge of material points X. The spatial velocity v and the
spatial acceleration a are obtained from (6.1) and (6.2) through a change in variables:

v(x, 𝑡) = V
(
𝜑−1
𝑡 (x), 𝑡

)
= V𝑡 · 𝜑−1

𝑡 (x) (6.3)

and

a(x, 𝑡) = A
(
𝜑−1
𝑡 (x), 𝑡

)
= A𝑡 · 𝜑−1

𝑡 (x). (6.4)

The expression given in (6.4) for the spatial acceleration may be unfamiliar to those versed in fluid
mechanics who may be more accustomed to thinking of acceleration as the total time derivative
of the spatial velocity v. We reconcile these different viewpoints here through the introduction of

49

the equivalent concept of the material time derivative, defined, in general, as the time derivative
of any object, spatial or material, taken so that the identity of the material particle is held fixed.
Applying this concept to the spatial velocity gives

a(x, 𝑡) = ¤v(x, 𝑡) |x=𝜑(X,𝑡)

=
𝑑

𝑑𝑡

����
X fixed

v (𝜑(X, 𝑡), 𝑡)

=
𝜕v
𝜕x

(x, 𝑡) · 𝜕𝜑
𝜕𝑡

(
𝜑−1
𝑡 (x), 𝑡

)
+ 𝜕v
𝜕𝑡

(
𝜑−1
𝑡 (x), 𝑡

)
=
𝜕v
𝜕𝑡

+ ∇v · v.

(6.5)

This may be recognized as the so-called total time derivative of the spatial velocity v. Exercising
the concept of a material time derivative a little further, we can see from (6.1) that the material
velocity is the material time derivative of the motion, so that

V = ¤𝜑. (6.6)

Comparing (6.2) and (6.5), we conclude that A and a are, in fact, the same physical entity
expressed in different coordinates. The former is most naturally written in terms of V, while the
latter is conveniently expressed in terms of v.

(6.5) uses the superposed dot notation for the time derivative of v. Such superposed dots will
always imply a material time derivative in this document, whether applied to material or spatial
quantities. Furthermore, the gradient ∇v is taken with respect to spatial coordinates and is called
the spatial velocity gradient. It is used often enough to warrant the special symbol L:

L := ∇v. (6.7)

6.2 Rate of Deformation Tensors

From the spatial velocity gradient L defined in (6.7), we define two spatial tensors D and W,
known respectively as the spatial rate of deformation tensor and the spatial spin tensor:

D := ∇𝑠v =
1
2
[L + L𝑇], (6.8)

and

W := ∇𝑎v =
1
2
[L − L𝑇] . (6.9)

It is clear that D is merely the symmetric part of the velocity gradient, while W is the
antisymmetric, or skew, portion.

The quantities D and W are called spatial measures of deformation. D is effectively a measure of
strain rate suitable for large deformations, while W provides a local measure of the rate of rotation

50

of the material. In fact, in small deformations it is readily verified that (6.8) amounts to nothing
more than the time derivative of the infinitesimal strain tensor defined in (2.5). It is of interest at
this point to discuss whether appropriate material counterparts of these objects exist. Toward this
end, we calculate the material time derivative of the deformation gradient F. If F is an analytic
function, the order of partial differentiation can be reversed:

¤F =
𝜕

𝜕𝑡

[
𝜕

𝜕X
𝜑(X, 𝑡)

]
=

𝜕

𝜕X

[
𝜕

𝜕𝑡
𝜑(X, 𝑡)

]
=
𝜕V
𝜕X

. (6.10)

From (6.10), we conclude that the material time derivative ¤F is nothing more than the material
velocity gradient. Manipulating this quantity further gives

𝜕V
𝜕X

=
𝜕

𝜕X
(v ◦ 𝜑𝑡) = ∇v (𝜑𝑡 (X)) 𝜕

𝜕X
(𝜑𝑡 (X)) = L (𝜑𝑡 (X)) F(X). (6.11)

Examination of (6.10) and (6.11) reveals that

L =
(
¤F · 𝜑−1

𝑡

)
F−1. (6.12)

Recalling the definition for the right Cauchy-Green strain tensor C in (5.14) Section 5, we
compute its material time derivative via

¤C =
𝜕

𝜕𝑡
[F𝑇F] = ¤F𝑇F + F𝑇 ¤F = (LF)𝑇F + F𝑇 (LF) = F𝑇 (L + L𝑇)F. (6.13)

which, in view of (6.8), leads us to conclude

¤C(X, 𝑡) = 2F𝑇 (X, 𝑡)D(𝜑(X), 𝑡)F(X, 𝑡). (6.14)

(6.14) reveals why 1
2
¤C is sometimes called the material rate of deformation tensor. Noting that

F is the Jacobian of the transformation 𝜑𝑡 , readers with a background in differential geometry will
recognize 1

2
¤C as the pull-back of the spatial tensor field D defined on 𝜑𝑡 (Ω). Conversely, D is the

push-forward of the material tensor field 1
2
¤C defined on Ω. The concepts of pull-back and

push-forward are outside the scope of this document, but the physical principle they embody in
the current context is perhaps useful. Loosely speaking, the push forward (or pull-back) of a
tensor with respect to a given transformation produces a tensor in the new frame of reference that
we, as observers, would observe as identical to the original tensor if we were embedded in the
material during the transformation. Thus, the same physical principle is represented by both 1

2
¤C

and D, but they are very different objects mathematically since the transformation that interrelates
them is the deformation itself. Recalling the definition of Green’s strain E given in (5.19), we can
easily see that

¤E =
1
2
¤C = F𝑇DF. (6.15)

This further substantiates the interpretation of D as a strain rate.

We have thus far developed measures of strain and strain rate appropriate for both the spatial and
reference configurations. Now we consider appropriate definitions of these quantities for the

51

rotated configuration defined according to the polar decomposition and depicted schematically in
Fig. 4.1. This can be done by applying the linear transformation R relating the rotated
configuration to the spatial one.

The rotated rate of deformation tensor 𝐷𝐷𝐷 is thus defined via

𝐷𝐷𝐷 (X, 𝑡) = R𝑇 (X, 𝑡) · D(𝜑(X, 𝑡), 𝑡) · R(X, 𝑡)
= R𝑇 (D ◦ 𝜑)R.

(6.16)

Noting that

¤C = 2F𝑇 (D ◦ 𝜑)F = 2U𝑇R𝑇D ◦ 𝜑)RU = 2U𝑇𝐷𝐷𝐷U, (6.17)

we find

𝐷𝐷𝐷 =
1
2

U−1 ¤CU−1 =
1
2

C−1/2 ¤CC−1/2. (6.18)

In connection with the rotated reference, another tensor, LLL, is sometimes introduced:

𝐿𝐿𝐿 = ¤RR𝑇 . (6.19)

Note that LLL is skew:

𝐿𝐿𝐿 + 𝐿𝐿𝐿𝑇 = ¤RR𝑇 + R ¤R𝑇 =
𝜕

𝜕𝑡
(RR𝑇) = 𝜕I

𝜕𝑡
= 0. (6.20)

We will return later in this document to the various measures associated with the rotated
configuration. They have particular importance in the study of material frame indifference.

52

7 Stress Measures

7.1 Cauchy Stress

In this chapter we discuss the quantification of force intensity, or stress, within a body undergoing
potentially large amounts of deformation. We begin with the Cauchy stress tensor T and note
that, provided we associate this object with the spatial configuration, this object can be interpreted
exactly as in the infinitesimal case outlined in Section 2. In the current notational framework, we
interpret the components of T, denoted as 𝑇𝑖 𝑗 , which represent forces per unit areas in the spatial
configuration at a given spatial point x ∈ 𝜑𝑡 (Ω).

It will be necessary in our description to consider related measures of stress defined in terms the
reference and rotated configurations. To motivate this discussion, we reconsider the concept of
traction discussed previously in the context of the infinitesimal elastic system. Recall that given a
plane passing through the point of interest x, the traction, or force per unit area acting on this
plane, is given by the formula

𝑡𝑖 = 𝑇𝑖 𝑗𝑛 𝑗 , (7.1)

where 𝑛 𝑗 is the unit normal vector to the plane in question.

7.2 Nanson’s Formula

We consider two differential vectors, dr1 and dr2, as illustrated in Fig. 7.1. We assume that dr1
and dr2 are linearly independent and that both have spatial point x as their base point. We further
assume that their orientations are such that the following relation from basic geometry holds:

dr1 × dr2 = nd𝑎, (7.2)

where d𝑎 is the (differential) area of the parallelogram encompassed by dr1 and dr2.

As discussed in Section 5 (see (5.5)), we can think of the differential vectors dr1 and dr2 as the
current positions of reference differential vectors dR1 and dR2, which are based at X = 𝜑−1

𝑡 (x). In
index notation, we can relate these two sets of differential vectors using the deformation gradient
via

(dr1)𝑖 = 𝐹𝑖𝐼 (dR1)𝐼 , (7.3)

and

(dr2)𝑖 = 𝐹𝑖𝐼 (dR2)𝐼 . (7.4)

We now seek to re-express (7.2) in terms of reference quantities. Working in index notation, we
write

𝑛𝑖d𝑎 = 𝑒𝑖 𝑗 𝑘𝐹𝑗 𝐽 (dR1)𝐽𝐹𝑘𝐾 (dR2)𝐾
= 𝑒𝑙 𝑗 𝑘𝛿𝑙𝑖𝐹𝑗 𝐽 (dR1)𝐽𝐹𝑘𝐾 (dR2)𝐾
= 𝑒𝑙 𝑗 𝑘𝐹𝑙𝐿𝐹

−1
𝐿𝑖 𝐹𝑗 𝐽 (dR1)𝐽𝐹𝑘𝐾 (dR2)𝐾

(7.5)

53

Fig. 7.1 Notation for derivation of Nanson’s formula.

54

We extract and manipulate a particular product in the last line of (7.5), namely 𝑒𝑙 𝑗 𝑘𝐹𝑙𝐿𝐹𝑗 𝐽𝐹𝑘𝐾 .
One can show by a case-by-case examination that the following relation holds:

𝑒𝑙 𝑗 𝑘𝐹𝑙𝐿𝐹𝑗 𝐽𝐹𝑘𝐾 = 𝑒𝐿𝐽𝐾𝑒𝑙 𝑗 𝑘𝐹𝑙1𝐹𝑗2𝐹𝑘3. (7.6)

Recall from Section 5, (5.10) that 𝐽 = det(F) has the following representation in index notation:

𝐽 = det(F) = 𝑒𝑙 𝑗 𝑘𝐹𝑙1𝐹𝑗2𝐹𝑘3 (7.7)

Combination of (7.5), (7.6), and (7.7) yields the following result:

𝑛𝑖d𝑎 = 𝐽𝑒𝐿𝐽𝐾𝐹
−1
𝐿𝑖 (dR1)𝐽 (dR2)𝐾

= 𝐽𝐹−1
𝐿𝑖 𝑚𝐿d𝐴.

(7.8)

In (7.8), d𝐴 is the differential reference area spanned by dR1 and dR2, and m is the reference unit
normal to this area.

In direct notation, we express this result as

nd𝑎 = 𝐽F−𝑇md𝐴. (7.9)

(7.9) is referred to as Nanson’s formula and it is important, among other reasons, because it
provides the appropriate change-of-variables formula for surface integrals in the reference and
current configurations.

7.3 First and Second Piola-Kirchhoff Stress

We want to compute a differential force, which is the product of the traction acting on our plane at
x and the differential area under consideration. Denoting this differential force by df, we write

df = td𝑎 = Tnd𝑎 = 𝐽TF−𝑇md𝐴. (7.10)

In examining (7.10), we find that the following definition is useful:

P(X) = 𝐽 (X)T (𝜑𝑡 (X)) F−𝑇 (𝜑𝑡 (X)) . (7.11)

This allows us to write

df = Pmd𝐴. (7.12)

In (7.12), the product Pm represents a traction, the current force, df, divided by the reference area,
d𝐴. The tensor P is called the (First) Piola-Kirchhoff Stress and Pm is called the Piola Traction.
Similar to the Piola Traction, the First Piola-Kirchhoff Stress measures stress in terms of forces in
the current configuration and areas in the reference configuration. The one-dimensional
manifestation of this stress measure is the engineering stress, 𝜎𝐸 , originally defined in (1.3).

55

It is worthy to note that P is neither a pure spatial nor a pure reference object. A reference object
for stress can be constructed by performing a pull-back of the spatial Cauchy stress tensor T to the
reference configuration:

S(X) = 𝐽F−1 (𝜑𝑡 (X)) T (𝜑𝑡 (X)) F−𝑇 (𝜑𝑡 (X))
= F−1 (𝜑𝑡 (X)) P(X). (7.13)

S is called the Second Piola-Kirchhoff Stress and it is purely a reference object. We note, in
particular, that S is a symmetric tensor, while P is not symmetric in general.

This same concept of pull-back can be employed to define a stress tensor in the rotated
configuration, which we shall denote as TTT . This rotated tensor is defined as

TTT = R𝑇 (𝜑𝑡 (X)) T (𝜑𝑡 (X)) R (𝜑𝑡 (X)) . (7.14)

As was the case with the rotated configuration quantities introduced in Section 6, this definition
will be of particular importance in the later examination of frame indifference.

56

8 Balance Laws

In this chapter, we examine the local forms of the various conservation laws as expressed in the
various reference frames we have introduced (spatial, reference, and rotated). To expedite our
development, we first discuss how integral representations of balances can be converted to point
wise conservation principles, a process known as localization.

8.1 Localization

Suppose we consider an arbitrary volume of material in the reference configuration, 𝑉 ⊂ Ω, of a
solid body as depicted in Fig. 8.1. Suppose further that we can establish the following generic
integral relation over this volume: ∫

𝑉
𝑓 (X)d𝑉 = 0, (8.1)

where 𝑓 is some reference function, be it scalar-, vector-, or tensor-valued, defined over all of Ω. If
(8.1) holds true for each and every subvolume 𝑉 of Ω, then the localization theorem states that

𝑓 = 0 pointwise in Ω. (8.2)

The interested reader should consult reference [20] for elaboration on this principle.

It should be noted that the same procedure can be applied spatially. In other words, if we are
working with a spatial object, we might consider arbitrary volumes 𝑣 in the spatial domain, and if
the following holds for a spatial object 𝑔 for all 𝑣:∫

𝑣
𝑔(x)d𝑣 = 0, (8.3)

then 𝑔(x) = 0 throughout 𝜑𝑡 (Ω).

Our primary interest in these localization principles will be to take the well known conservation
laws for control volumes and convert them to their local counterparts valid point wise throughout
the domain.

8.2 Conservation of Mass

For conservation of mass, we consider a fixed control volume, 𝑣, in the spatial domain, completely
filled with our solid body at the instant in question as the body moves through it. We can write a
conservation of mass for this control volume via

−
∫
𝜕𝑣
𝜌v · nd𝑎 =

∫
𝑣

𝜕𝜌

𝜕𝑡
d𝑣, (8.4)

57

Fig. 8.1 Notation for the localization concept.

58

where the left-hand side can be interpreted as the net mass influx to the control volume, and the
right-hand side is the rate of mass accumulation inside the control volume. Applying the
divergence theorem to the left-hand side gives

−
∫
𝑣
∇ · (𝜌v) d𝑣 =

∫
𝑣

𝜕𝜌

𝜕𝑡
d𝑣. (8.5)

This can be further rearranged to yield∫
𝑣

(
𝜕𝜌

𝜕𝑡
+ ∇𝜌 · v + 𝜌(∇ · v)

)
d𝑣 = 0, (8.6)

which can be established for any arbitrary spatial volume 𝑣. Applying the localization theorem
gives the local expression of continuity, which may be familiar to those versed in fluid
mechanics:

𝜕𝜌

𝜕𝑡
+ ∇𝜌 · v + 𝜌(∇ · v) = ¤𝜌 + 𝜌(∇ · v) = 0, (8.7)

where the concept of the material time derivative has been employed (cf. (6.5)).

A reference configuration representation of continuity is desirable for the study of solid
mechanics. Therefore we convert (8.6) to a reference configuration integral to obtain:∫

𝑉=𝜑−1
𝑡 (𝑣)

(¤𝜌 + 𝜌 ¤F : F−𝑇)𝐽d𝑉 = 0, (8.8)

where the transformation between d𝑣 and d𝑉 is accomplished using (5.9) and the chain rule is
used to convert ∇ · v via

𝑣𝑖,𝑖 (x) =
𝜕

𝜕𝑥𝑖
𝑉𝑖

(
𝜑−1
𝑡 (x)

)
=

𝜕

𝜕𝑋𝐼
𝑉𝑖

(
𝜑−1
𝑡 (x)

) 𝜕𝑋𝐼
𝜕𝑥𝑖

(
𝜑−1
𝑡 (x)

)
= ¤𝐹𝑖𝐼

(
𝜑−1
𝑡 (x)

)
𝐹−1
𝐼𝑖

(
𝜑−1
𝑡 (x)

)
,

(8.9)

which is the index notation form of ¤F : F−𝑇 . Applying the localization theorem in the reference
configuration gives

¤𝜌𝐽 + 𝜌𝐽 ¤F : F−𝑇 = 0, (8.10)

which holds point wise in Ω.

Working in index notation, we can further simplify (8.10) by concentrating on the term 𝐽 ¤F : F−𝑇 .
We compute the material time derivative of 𝐽 as

¤𝐽 = 𝜕𝐽

𝜕𝐹𝑚𝑀
¤𝐹𝑚𝑀 , (8.11)

59

where

𝜕𝐽

𝜕𝐹𝑚𝑀
=

𝜕

𝜕𝐹𝑚𝑀
(𝑒𝑖 𝑗 𝑘𝐹𝑖1𝐹𝑗2𝐹𝑘3)

= 𝑒𝑖 𝑗 𝑘𝛿𝑖𝑚𝛿𝑀1𝐹𝑗2𝐹𝑘3 + 𝑒𝑖 𝑗 𝑘𝛿 𝑗𝑚𝛿𝑀2𝐹𝑖1𝐹𝑘3 + 𝑒𝑖 𝑗 𝑘𝛿𝑘𝑚𝛿𝑀3𝐹𝑖1𝐹𝑗2

= 𝑒𝑖 𝑗 𝑘𝐹𝑖𝑁𝐹
−1
𝑁𝑚𝛿𝑀1𝐹𝑗2𝐹𝑘3 + 𝑒𝑖 𝑗 𝑘𝐹𝑗𝑁𝐹−1

𝑁𝑚𝛿𝑀2𝐹𝑖1𝐹𝑘3 + 𝑒𝑖 𝑗 𝑘𝐹𝑘𝑁𝐹−1
𝑁𝑚𝛿𝑀3𝐹𝑖1𝐹𝑗2,

(8.12)

which simplifies to

𝜕𝐽

𝜕𝐹𝑚𝑀
= 𝐽𝐹−1

1𝑚𝛿𝑀1 + 𝐽𝐹−1
2𝑚𝛿𝑀2 + 𝐽𝐹−1

3𝑚𝛿𝑀3

= 𝐽𝐹−1
𝐼𝑚𝛿𝑀𝐼 = 𝐽𝐹

−1
𝑀𝑚 .

(8.13)

Substitution of (8.13) into (8.11) gives

¤𝐽 = 𝐽𝐹−1
𝑀𝑚

¤𝐹𝑚𝑀 , (8.14)

which is the index notation form of

¤𝐽 = 𝐽F−1 : ¤F. (8.15)

Finally, substitution of (8.15) into (8.10) gives

¤𝜌𝐽 + 𝜌 ¤𝐽 = d
d𝑡
(𝜌𝐽) = 0. (8.16)

(8.16) is the reference configuration version of the continuity equation, which tells us that the
product of the density and deformation gradient determinant must be invariant with time for all
material points. This is commonly enforced in practice by assigning a reference density 𝜌0 to all
material points. If the current density 𝜌 is computed via

𝜌 =
1
𝐽
𝜌0, (8.17)

then (8.16) is automatically satisfied (recall that the Jacobian is unity in the reference
configuration).

8.3 Conservation of Linear Momentum

Considering once more a fixed control volume 𝑣, the control volume balance of linear momentum
can be expressed as ∫

𝜕𝑣
(𝜌v)v · nd𝑎 +

∫
𝑣

𝜕

𝜕𝑡
(𝜌v)d𝑣 =

∫
𝑣

fd𝑣 +
∫
𝜕𝑣

td𝑎. (8.18)

On the left-hand side, the first term expresses the momentum out flux and the second term
represents the rate of accumulation inside the control volume. This net change of momentum is

60

produced by the total resultant force on the system, i.e., the right-hand side of the equation, which
is equal to the sum effect of the body forces f and the surface tractions t.

Applying the divergence theorem to both surface integrals, we find that∫
𝜕𝑣
(𝜌v)v · nd𝑎 =

∫
𝑣
[∇ · (𝜌v)v + 𝜌(∇v)v] d𝑣, (8.19)

and ∫
𝜕𝑣

td𝑎 =
∫
𝜕𝑣

Tnd𝑎 =
∫
𝑣
∇ · Td𝑣. (8.20)

Substituting (8.19) and (8.20) into (8.18), and rearranging, gives∫
𝑣

[
∇ · T + f − 𝜌 𝜕v

𝜕𝑡
− 𝜌(∇v)v − 𝜕𝜌

𝜕𝑡
v − (∇𝜌 · v)v − 𝜌(∇ · v)v

]
d𝑣 = 0. (8.21)

Employing the spatial form of the continuity (8.6) and recalling the formula for the material time
derivative (6.5) gives ∫

𝑣
[∇ · T + f − 𝜌 ¤v] d𝑣 = 0. (8.22)

The localization theorem then implies

∇ · T + f = 𝜌 ¤v (8.23)

point wise, which is recognized as the same statement of linear momentum balance utilized in our
earlier treatment of linear elasticity, (2.2).

In large deformation problems it is desirable to also have a reference configuration form of (8.23).
Converting (8.22) to its index form, we have∫

𝑣

[
𝑇𝑖 𝑗 , 𝑗 + 𝑓𝑖 − 𝜌 ¤𝑣𝑖

]
d𝑣 = 0. (8.24)

Working with the stress divergence term first, we write

𝑇𝑖 𝑗 , 𝑗 =
𝜕𝑇𝑖 𝑗

𝜕𝑋𝐽

𝜕𝑋𝐽
𝜕𝑥 𝑗

=
𝜕𝑇𝑖 𝑗

𝜕𝑋𝐽
𝐹−1
𝐽 𝑗 . (8.25)

Using (7.11), we can write

𝜕𝑇𝑖 𝑗

𝜕𝑋𝐽
=

𝜕

𝜕𝑋 𝑗

(
1
𝐽
𝑃𝑖𝐼𝐹𝑗 𝐼

)
=
−1
𝐽2

𝜕𝐽

𝜕𝐹𝑘𝐾

𝜕𝐹𝑘𝐾
𝜕𝑋 𝑗

𝑃𝑖𝐼𝐹𝑗 𝐼 +
1
𝐽

𝜕

𝜕𝑋𝐽
(𝑃𝑖𝐼𝐹𝑗 𝐼). (8.26)

Now using (8.13), we can simplify (8.26) and post multiply 𝐹−1
𝐽 𝑗 to obtain:

𝜕𝑇𝑖 𝑗

𝜕𝑋𝐽
𝐹−1
𝐽 𝑗 =

−1
𝐽
𝐹−1
𝐾𝑘

𝜕𝐹𝑘𝐾
𝜕𝑋𝐽

𝑃𝑖𝐽 +
1
𝐽

𝜕𝑃𝑖𝐼
𝜕𝑋𝐼

+ 1
𝐽
𝐹−1
𝐽 𝑗

𝜕𝐹𝑗 𝐼

𝜕𝑋𝐽
𝑃𝑖𝐼 (8.27)

61

The first and last terms on the right-hand side of (8.27) cancel each other due to the fact that
𝜕𝐹 𝑗 𝐼

𝜕𝑋𝐽
=

𝜕𝐹 𝑗 𝐽

𝜕𝑋𝐼
. Therefore we have

𝜕𝑇𝑖 𝑗

𝜕𝑋𝐽
𝐹−1
𝐽 𝑗 =

1
𝐽

𝜕𝑃𝑖𝐼
𝜕𝑋𝐼

. (8.28)

Combining this result with (8.25) and (8.24), and applying a change of variables, gives∫
𝑉
(𝑃𝑖𝐼,𝐼 + 𝑏𝑖 − 𝜌0 ¤𝑉𝑖)d𝑉 = 0, (8.29)

where 𝑏𝑖 = 𝐽 𝑓𝑖, the prescribed body force per unit reference volume. Employing the localization
theorem gives

∇0 · P + b = 𝜌0 ¤𝑉 (8.30)

point wise in Ω, which expresses the balance of linear momentum in terms of reference
coordinates. In (8.30), ∇0 is the gradient operator with respect to the reference configuration.

8.4 Conservation of Angular Momentum

Again considering an arbitrary control volume in the spatial frame, we write its balance of angular
momentum via∫

𝜕𝑣
(x × 𝜌v)v · nd𝑎 +

∫
𝑣

𝜕

𝜕𝑡
(x × 𝜌v)d𝑣 =

∫
𝑣
(x × f)d𝑣 +

∫
𝜕𝑣

x × td𝑎, (8.31)

where the terms on the left-hand side are the out flux and accumulations terms, and the terms on
the right-hand side represent the total resultant torque.

Working this time in index notation, we apply the divergence theorem to the surface integrals as
follows:∫

𝜕𝑣
𝑒𝑖 𝑗 𝑘𝜌𝑥 𝑗𝑣𝑘𝑣𝑙𝑛𝑙d𝑎 =

∫
𝑣

(
𝜌,𝑙𝑒𝑖 𝑗 𝑘𝑥 𝑗𝑣𝑘𝑣𝑙 + 𝑒𝑖 𝑗 𝑘 𝜌𝛿 𝑗 𝑙𝑣𝑘𝑣𝑙 + 𝑒𝑖 𝑗 𝑘 𝜌𝑥 𝑗𝑣𝑘,𝑙𝑣𝑙 + 𝑒𝑖 𝑗 𝑘𝜌𝑥 𝑗𝑣𝑘𝑣𝑙,𝑙

)
d𝑣,

(8.32)

and ∫
𝜕𝑣
𝑒𝑖 𝑗 𝑘𝑥 𝑗𝑇𝑘𝑙𝑛𝑙d𝑎 =

∫
𝑣

(
𝑒𝑖 𝑗 𝑘𝑥 𝑗𝑇𝑘𝑙,𝑙 + 𝑒𝑖 𝑗 𝑘𝑇𝑘 𝑗

)
d𝑣. (8.33)

Substituting (8.32) and (8.33) into (8.31), and rearranging terms, reveals that∫
𝑣

(
𝑒𝑖 𝑗 𝑘𝑥 𝑗

(
𝑇𝑘𝑙,𝑙 + 𝑓𝑘 − 𝜌

𝜕𝑣𝑘
𝜕𝑡

− 𝜌 𝜕𝑣𝑘
𝜕𝑥𝑙

𝑣𝑙

)
−𝑒𝑖 𝑗 𝑘𝑥 𝑗𝑣𝑘

(
𝜕𝜌

𝜕𝑡
+ 𝜕𝜌

𝜕𝑥𝑙
𝑣𝑙 + 𝜌𝑣𝑙,𝑙

)
+𝑒𝑖 𝑗 𝑘𝑇𝑘𝑙 − 𝜌𝑒𝑖 𝑗 𝑘 𝜌𝑣 𝑗𝑣𝑘

)
d𝑣 = 0.

(8.34)

62

Using (8.24) and (8.7), and noting that the cross product of a vector with itself is zero, we can
simplify (8.34) and apply the localization theorem to conclude

𝑒𝑖 𝑗 𝑘𝑇𝑘𝑙 = 0, (8.35)

which, in turn, implies the following three equations:

𝑇23 = 𝑇32, 𝑇13 = 𝑇31, 𝑇21 = 𝑇12. (8.36)

In other words, the symmetry of the Cauchy stress tensor is a direct consequence of the
conservation of angular momentum. Use of (7.13) and (7.14), respectively, reveals that the
Second Piola-Kirchhoff stress S and the rotated stress tensor TTT are likewise symmetric. The First
Piola-Kirchhoff stress is not symmetric and is not, in fact, a tensor in the purest sense because it
does not fully live in either the spatial or reference frame.

8.5 Stress Power

We examine the consequences of a control volume expression of energy balance. We assume
herein a purely mechanical description and, to begin, that there is no mechanical dissipation, so
that the system we consider conserves energy exactly. In other words, all work put into the system
through the applied loads goes either into stored internal elastic energy or into kinetic energy.

With this in mind, the conservation of energy for a spatial control volume is written as∫
𝜕𝑣

(
𝑒 + 1

2
𝜌v · v

)
v · nd𝑎 +

∫
𝑣

𝜕

𝜕𝑡

(
𝑒 + 1

2
𝜌v · v

)
d𝑣 =

∫
𝑣

f · vd𝑣 +
∫
𝜕𝑣

t · vd𝑎, (8.37)

where 𝑒 is the internal stored energy (i.e., elastic energy) per unit spatial volume.

As we have done previously, we apply the divergence theorem to the surface integrals:∫
𝜕𝑣

(
𝑒 + 1

2
𝜌v · v

)
v · nd𝑎 =

∫
𝑣

[
∇ · v

(
𝑒 + 1

2
𝜌v · v

)
+ ∇𝑒 · v

+ 1
2
∇𝜌 · v(v · v) + 𝜌v · (∇v)v

]
d𝑣,

(8.38)

and ∫
𝜕𝑣

t · vd𝑎 =
∫
𝑣
[T : ∇v + (∇ · T) · v] d𝑣. (8.39)

Substituting (8.38) and (8.39) into (8.37), and rearranging, gives

0 =
∫
𝑣

[(
∇ · T + f − 𝜌 𝜕v

𝜕𝑡
− (𝜌 ∇v) v

)
· v

− 1
2

v · v
(
𝜕𝜌

𝜕𝑡
+ (∇ · v)𝜌 + ∇𝜌 · v

)
+T : ∇v − (∇ · v)𝑒 − ¤𝑒] d𝑣.

(8.40)

63

Using (8.24) and (8.7), we find

0 =
∫
𝑣
[T : ∇v − (∇ · v)𝑒 − ¤𝑒] d𝑣. (8.41)

Splitting (8.41) into two integrals, we have

0 =
∫
𝑣

T : ∇vd𝑣 −
∫
𝑣
((∇ · v)𝑒 + ¤𝑒) d𝑣. (8.42)

We now convert (8.42) to the reference configuration and apply localizations. In so doing, we
recognize that the second integral in (8.42) can be treated directly analogous to that of (8.6), with
the density 𝜌 in (8.6) replaced by the energy 𝑒 in the current case. The result of this manipulation
will be analogous to (8.16) with 𝑒 substituted for 𝜌. In other words, we have∫

𝑣
((∇ · v)𝑒 + ¤𝑒) d𝑣 =

∫
𝑉

𝑑

𝑑𝑡
(𝑒𝐽)d𝑉. (8.43)

Concentrating on the first integral and using (6.12) and (8.11) to aid in the calculation, we find∫
𝑣

T : ∇vd𝑣 =
∫
𝑉
(T ◦ 𝜑−1) : (L ◦ 𝜑−1)𝐽d𝑉

=
∫
𝑉
(T ◦ 𝜑−1) : (¤FF−1)𝐽d𝑉 =

∫
𝑉

P : ¤Fd𝑉.
(8.44)

Plugging the results of (8.43) and (8.44) into (8.42) and employing the localization theorem, we
determine that

𝑑

𝑑𝑡
(𝑒𝐽) = ¤𝐸 = P : ¤F (8.45)

point wise in Ω, where 𝐸 is the stored elastic energy per unit reference volume. Therefore, P : ¤F
represents the rate of energy input into the material by the stress (per unit volume), commonly
known as the stress power. Taking into account the various measures of stress and deformation
rate we have considered, it can be shown that for a given material point, the stress power can be
written in the following alternative forms:

stress power = P : ¤F =
1
2

S ¤C = 𝐽T : D = 𝐽TTT : DDD. (8.46)

It should be noted that this definition can be used also for dissipative (i.e., non-conservative)
materials but the interpretation changes. The stress power in that case is the sum of the rate of
increase of stored energy and the rate of energy dissipated by the solid.

8.6 Thermodynamics

Finally we discuss the application of the laws of thermodynamics to large deformation Lagrangian
mechanics. Recalling the notation from Section 4, we consider the first and second laws applied to
a body Ω in the reference (i.e., material) configuration.

64

First Law
The first law states that the change in internal energy, change in kinetic energy, external power,
and heat flux over the body must be balanced:

¤E + ¤K = W + Q

where

• E, the total internal energy, is given by

E =
∫
Ω
𝜌0𝑤 𝑑𝑉,

where 𝑤 is the specific internal energy (both elastic and dissipated),

• K, the kinetic energy, is given by

K =
∫
Ω

1
2
𝜌0 |v|2 𝑑𝑉,

• W, the conventional external power, is given by

W =
∫
𝜕Ω

Tn · v 𝑑Γ +
∫
Ω

b 𝑑𝑉,

• Q, the heat flux, is given by

Q = −
∫
𝜕Ω

q · n 𝑑Γ +
∫
Ω
𝑞 𝑑𝑉,

where 𝑞 is the scalar heat supply, and q is the heat flux vector.

The corresponding local energy balance can be readily derived by applying the divergence
theorem and power balance on sub-regions:

𝜌0 ¤𝑤 = T : D − ∇0 · q + 𝑞, (8.47)

where ∇0· is the divergence operator in the reference configuration.

Second Law
The second law of thermodynamics states that the entropy of an isolated system can not decrease.
The global inequality over Ω corresponding to this statement is∫

Ω
𝜌0 ¤𝜂 𝑑𝑉 ≥ −

∫
𝜕Ω

q
𝜃
𝑑Γ +

∫
Ω

𝑞

𝜃
𝑑𝑉,

where 𝜂 is the specific entropy, 𝜃 is the absolute temperature, q
𝜃 is the entropy flux, and 𝑞

𝜃 is the
entropy supply. The corresponding local entropy imbalance can be derived using the divergence
theorem and localization to sub-regions:

𝜌0 ¤𝜂 ≥ −∇0 ·
(q
𝜃

)
+ 𝑞
𝜃
.

65

Using (8.47) and some manipulation this can be rewritten

T : D − 𝜌0
(
¤𝑒 + 𝜂 ¤𝜃

)
− 1
𝜃

q · ∇0𝜃 ≥ 0, (8.48)

where 𝑒, the specific free-energy (i.e., the elastic energy), is given by

𝑒 = 𝑤 − 𝜃𝜂.

In the absence of thermal effects, (8.48) reduces to

T : D ≥ 𝜌0 ¤𝑒,

which states that the internal power expenditure (stress power) must exceed the rate of increase of
stored energy. More simply put, the dissipated power in the body must always be positive.

The references for chapter 8 are [15, 20, 21, 39].

66

9 Frame Indifference

An important concept in the formulation of constitutive theories in large deformations is frame
indifference, alternatively referred to as objectivity. Although somewhat mathematically involved,
the concept of objectivity is fairly simple to understand physically.

When we write constitutive laws in their most general form, we seek to express tensorial
quantities, such as stress and stress rate, in terms of kinematic tensorial quantities, most
commonly strain and strain rate. The basic physical idea behind frame indifference is that this
constitutive relationship should be unaffected by any rigid body motions of the material.
Mathematically, we evaluate frame indifference by defining an alternative reference frame that is
rotating and translating with respect to the coordinate system in which we pose the problem. For
our constitutive description to make sense, the tensorial quantities we use (stress, stress rate,
strain, and strain rate) should transform according to the laws of tensor calculus when subjected to
a change in reference frame. If a given quantity does this, we say it is material frame indifferent,
and if it does not, we say it is not properly invariant.

9.1 Objective Strain and Strain Rate Measures

Consider a motion, 𝜑(X, 𝑡). We imagine ourselves to be viewing this motion from another
reference frame, denoted in the following by ∗, which is related to the original spatial frame via

x∗ = c(𝑡) + Q(𝑡)x, (9.1)

where x = 𝜑(X, 𝑡). In (9.1), c(𝑡) and Q(𝑡) are rigid body translation and rotation, respectively,
between the original frame and observer ∗. To observer ∗, the motion appears as defined by

x∗ = 𝜑∗(X, 𝑡) = c(𝑡) + Q(𝑡)𝜑(X, 𝑡). (9.2)

The time derivative of this motion equation gives the relationship between the deformation
gradients in the two frames:

F∗ =
𝜕

𝜕X
𝜑∗𝑡 = Q

𝜕

𝜕X
𝜑𝑡 (X) = QF. (9.3)

The spatial velocity gradient L∗ is then

L∗ = ∇∗v∗ = ¤F∗(F∗)−1 =
𝑑

𝑑𝑡
(QF)(QF)−1 =

(
Q ¤FF−1Q𝑇 + ¤QFF−1Q𝑇

)
, (9.4)

which simplifies to

L∗ = QLQ𝑇 + ¤QQ𝑇 . (9.5)

For L = ∇v to be objective, it would transform according to the laws of tensor transformation
between the two frames, i.e., only the first term on the right-hand side of (9.5) would be present.
Clearly, L = ∇v is not objective.

67

Examining the rate of deformation tensor D∗, on the other hand, one finds:

D∗ =
1
2

(
L∗ + (L∗)𝑇

)
=

1
2

[
QLQ𝑇 + ¤QQ𝑇 + QL𝑇Q𝑇 + Q ¤Q𝑇

]
, (9.6)

where

¤QQ𝑇 + Q ¤Q𝑇 =
𝑑

𝑑𝑡

[
QQ𝑇

]
=
𝑑

𝑑𝑡
[I] = 0. (9.7)

Hence, (9.6) simplifies to

D∗ =
1
2

Q
[
L + L𝑇

]
Q𝑇 = QDQ𝑇 , (9.8)

which shows us that D is objective.

Therefore we have a tensorial quantity for the spatial rate-of-strain that is objective. The question
arises whether corresponding reference measures of rate are objective. It turns out that such
material rates are automatically objective, since they do not change when superimposed rotations
occur spatially. Consider, for example, the right Cauchy-Green tensor C:

C∗ = (F∗)𝑇 (F∗) = F𝑇Q𝑇QF = C. (9.9)

Similarly, the time derivative of (9.9) simplifies to

¤C∗ = ¤C. (9.10)

9.2 Stress Rates

Turning our attention to stress rates, examine the material time derivative of the Cauchy stress
T:

¤T =

[
𝑑

𝑑𝑡
(T ◦ 𝜑𝑡)

]
• 𝜑−1

𝑡 =

(
𝜕T
𝜕𝑡

+ v · ∇T
)
. (9.11)

T is itself objective by its very definition as a tensorial quantity. Thus, we can write

T∗ = QTQ𝑇 . (9.12)

Computing the material time derivative of (9.12) gives

¤T∗ = ¤QTQ𝑇 + Q ¤TQ𝑇 + QT ¤Q𝑇 . (9.13)

Since the first and third terms on the right-hand side of (9.13) do not, in general, cancel, we see
that the material time derivative of the Cauchy stress T is not objective.

It therefore becomes critical to consider a frame indifferent measure of stress rate when
formulating a constitutive description that requires a stress rate. A multitude of such rates have

68

been contrived; the interested reader is encouraged to consult Reference [39] for a highly
theoretical treatment. For our discussion here, we consider two such rates especially prevalent in
the literature: the Jaumann rate and the Green-Naghdi rate. Both rates rely on roughly the same
physical idea. Rather than taking the derivative of the Cauchy stress itself, we rotate the object
from the spatial frame before taking the time derivative, so that the reference frame in which the
time derivative is taken is the same for all frames related by the transformation in (9.1).

For example, we consider the Jaumann rate of stress, which we denote here as T̂. Its definition is
given as

T̂ = ¤T − WT + TW, (9.14)

where W = L − D. We can verify that this rate of stress is truly objective by considering the
object as it would appear to observer ∗:

T̂∗ = ¤T∗ − W∗T∗ + T∗W∗. (9.15)

The quantity ¤T∗ is given by (9.13), T∗ is given by (9.12), and
W∗‘𝑖𝑠𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑𝑤𝑖𝑡ℎ𝑡ℎ𝑒𝑎𝑖𝑑𝑜 𝑓 : 𝑒𝑞 : ‘ 𝑓 𝑟𝑎𝑚𝑒𝑖𝑛𝑑𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 : 𝑒𝑞 : 05 and (9.8):

W∗ = L∗ − D∗ = QLQ𝑇 + ¤QQ𝑇 − QDQ𝑇 . (9.16)

Substituting these quantities into (9.15), we find

T̂∗ = ¤QTQ𝑇 + Q ¤TQ𝑇 − QT ¤Q𝑇

−
(
QLQ𝑇 + ¤QQ𝑇 − QDQ𝑇

)
QTQ𝑇

+ QTQ𝑇
(
QLQ𝑇 + ¤QQ𝑇 − QDQ𝑇

)
.

(9.17)

Canceling terms and using the fact that ¤QQ𝑇 = −Q ¤Q𝑇 , we can simplify (9.17) to

T̂∗ = Q
[¤T − WT + TW

]
Q𝑇 = QT̂Q𝑇 , (9.18)

which ensures us that, indeed, T̂ is objective.

By considering the Green-Naghdi rate we can gain more insight into how objective rates are
defined. The Green-Naghdi rate of Cauchy stress is defined via

T̃ = R ¤TTTR𝑇 , (9.19)

where R is the rotation tensor from the polar decomposition of F, and TTT is the rotated Cauchy
stress defined in (7.14).

We examine how the rotation tensor R transforms. Utilizing (9.3) and the polar decomposition,
we get

F∗ = R∗U∗ = QF = QRU. (9.20)

69

We now note two things: first, the product QR is itself a proper orthogonal tensor; and second, the
polar decomposition is unique for a given deformation gradient. Therefore, comparing the second
and fourth terms of (9.20), we must conclude

U∗ = U, (9.21)

and

R∗ = QR. (9.22)

Using (9.22) and (9.19), we can compute

T̃∗ = R∗ ¤TTT∗R∗𝑇 = QR ¤TTT∗R𝑇Q𝑇 . (9.23)

Returning to the definition of TTT in (7.14) and incorporating (9.12) and (9.22), we can write

TTT∗ = R∗𝑇T∗R∗ = R𝑇Q𝑇 (QTQ𝑇)QR = R𝑇TR = TTT . (9.24)

Therefore, the rotated stress tensor appears exactly the same in both frames of reference. It follows
that

¤TTT∗
= ¤TTT , (9.25)

which, when substituted into (9.23), gives

T̃∗ = QR ¤TTTR𝑇Q𝑇 = QT̃Q𝑇 . (9.26)

This is recognized as the properly objective transformation of T̃.

One may note that this result gives considerable insight into how objective rates can be
constructed. In the current case, we transform the stress into the rotated configuration before
computing its time derivative, and then we transform the result back to the spatial configuration.
Since the rotated stress is exactly the same for all reference frames, related by (7.1), taking the
time derivative of it and then transforming produces an objective tensor. This idea can be
generalized as follows: construction of an objective rate of stress is achieved by considering the
time derivative of a stress measure defined in a coordinate system that is rotating about some set
of axes. In fact, one can show that the Jaumann stress rate can be similarly interpreted.

Finally, the Green-Naghdi rate can be manipulated further to a form more closely resembling the
form for the Jaumann rate ((9.14)). That is, we can write

T̃ = R
𝑑

𝑑𝑡
(R𝑇TR)R𝑇

= R ¤R𝑇T + ¤T + T ¤RR𝑇

= ¤T + LLL𝑇T + TLLL
= ¤T + TLLL − LLLT,

(9.27)

where (6.19) is used to define LLL, recalling also that this object is skew.

The reference for Chapter 9 is [39]

70

10 Discretization

10.1 Weak Form for Large Deformation Problems

We begin by reviewing the field equations to be considered. The reference for this chapter is [39].
The problem to be solved is shown schematically in Fig. 10.1, in which we want to the compute
finite deformation response of a body Ω in its reference configuration.

Fig. 10.1 Large deformation initial/boundary value problem

Assuming that this time dependent configuration mapping is denoted by 𝜑𝑡 , the following problem
is solved for each time, 𝑡, in the time interval of interest:

∇ · T + f = 𝜌a on 𝜑𝑡 (Ω), (10.1)

𝜑𝑡 = 𝜑𝑡 on 𝜑𝑡 (Γ𝑢), (10.2)

and

t = t̄ on 𝜑𝑡 (Γ𝜎), (10.3)

71

where all notations are as discussed in Section 4. In particular, a is the material acceleration
expressed in spatial coordinates, f is the body force per unit (spatial) volume, and T is the Cauchy
stress tensor. The vector t is the Cauchy traction vector, obtained via t = Tn, where n is the
outward unit normal to the spatial surface 𝜑𝑡 (Γ𝜎).

The problem is also subject to initial conditions of the form

𝜑(X, 0) = 𝜑0(X) on Ω, (10.4)

and

𝜕𝜑

𝜕𝑡
(X, 0) = X0(X) on Ω. (10.5)

Recall that (10.1) through (10.3) are written in the so-called spatial configuration, but we still
consider ourselves working in a Lagrangian framework where all quantities are ultimately indexed
to material points through the mapping x = 𝜑𝑡 (X) (see Lagrangian and Eulerian Descriptions in
Section 4).

A prerequisite of the finite element method is that a weak, or variational, form of the above field
equations be available for discretization. This can be obtained following the general procedure
outlined for linear problems in Section 3 by considering weighting functions 𝜑∗ defined over Ω
which satisfy the following condition:

𝜑∗ = 0 on Γ𝑢, (10.6)

where we also assume that all 𝜑∗ are sufficiently smooth so that any desired partial derivatives can
be computed. In treating large deformation problems, it is useful to consider spatial forms of the
functions 𝜑∗ obtained by composition with the (unknown) mapping 𝜑−1

𝑡 . We denote these spatial
variations by w and note that they may be obtained via

w(x) = 𝜑∗
(
𝜑−1
𝑡 (x)

)
(10.7)

for any x ∈ 𝜑𝑡 (X). (10.6) means

w = 0 on 𝜑𝑡 (Γ𝑢). (10.8)

Assuming the configuration mapping 𝜑𝑡 is smooth, all required partial derivatives of w can be
computed.

With these definitions, the development in Section 3 can be reproduced in the current context to
provide the following spatial representation of the variational form for large deformations:

Given the boundary conditions t̄ on 𝜑𝑡 (Γ𝜎), 𝜑𝑡 on 𝜑𝑡 (Γ𝑢), the initial conditions 𝜑0 and V0 on Ω,
and the distributed body for f on 𝜑𝑡 (Ω), find 𝜑𝑡 ∈ 𝑆𝑡 for each time 𝑡 ∈ (0, 𝑇) such that:∫

𝜑𝑡 (Ω)
𝜌w · ad𝑣 +

∫
𝜑𝑡 (Ω)

∇w : Td𝑣 =
∫
𝜑𝑡 (Ω)

w · fd𝑣 +
∫
𝜑𝑡 (Γ𝜎)

w · t̄d𝑎 (10.9)

72

for all admissible w, where 𝑆𝑡 is defined as

𝑆𝑡 = {𝜑𝑡 |𝜑𝑡 = 𝜑̄(𝑡) on Γ𝑢 , 𝜑𝑡 is smooth} (10.10)

and where admissible w are related in a one-to-one manner via (10.7) to the material variations
𝜑∗ ∈ 𝑊 with the definition of𝑊 being

𝑊 = {𝜑∗ |𝜑∗ = 0 on Γ𝑢 , 𝜑∗ is smooth} . (10.11)

Note that in contrast to the previous development, the constitutive relation governing T is left
unspecified, but it can in general be subject to both geometric and material nonlinearities.
Furthermore, it should be implied that geometric nonlinearities include consideration of large
deformation kinematics discussed in Section 5, Section 6, and Section 9. The notation a for the
acceleration is to be understood as the material acceleration as defined by (6.4).

In addition, the solution 𝜑 is subject to the following conditions at 𝑡 = 0:∫
Ω
𝜑∗ · (𝜑 |𝑡=0 − 𝜑0)dΩ = 0 (10.12)

and ∫
Ω
𝜑∗ ·

(
𝜕𝜑

𝜕𝑡

����
𝑡=0

− V0

)
dΩ = 0, (10.13)

both of which must hold for all 𝜑∗ ∈ 𝑊 .

10.2 Finite Element Discretization

The process of numerically approximating a continuous problem is generically called
discretization. In the finite element method, the entity discretized is a weak form (alternatively,
variational equation). The variational form to be considered here is that just summarized in the
previous section. We now refer to Fig. 10.2 which gives the general notation to be used in the
description of the discretization process.

Referring to Fig. 10.2, the reference domain Ω is subdivided into a number of element
subdomains Ω𝑒. The superscript 𝑒 is an index to a specific element, running between 1 and the
total number of elements in the discretization, 𝑛𝑒𝑙 , of the domain Ω. We assume in the figure and
throughout the ensuing discussion that Ω is a subset of R3.

Note that a number of nodal points are indicated by the dots in Fig. 10.2. We assume that all
degrees of freedom in the discrete system to be proposed will be associated with these nodes.
These nodes may lay at corners, edges, and in interiors of the elements with which they are
associated. A key feature of the finite element method will be that a specific element can be
completely characterized by the coordinates and degrees-of-freedom associated with the nodes
attached to it. In the following we will index the nodes with uppercase letters 𝐴, 𝐵, etc. having
values running between 1 and 𝑛𝑛𝑝, the total number of nodal points in the problem
discretization.

73

Fig. 10.2 General notation for finite element discretization of the reference domain.

74

10.3 Galerkin Finite Element Methods

The essence of any finite element method lies in the discretization of the variational form. This
discretization process involves approximation of a typical member of both the solution space 𝑆𝑡
and the weighting space𝑊 . These approximations are typically expressed as an expansion in
terms of prescribed shape or interpolation functions, usually associated with specific nodal
points in the mesh. Since the number of nodal points is obviously finite, the expansion is likewise
finite, giving rise to the concept of a finite-dimensional approximation of the space.

Roughly speaking, the idea of discretization is as follows. We know from earlier chapters that if
the variational equation is enforced considering all 𝜑𝑡 ∈ 𝑆𝑡 and 𝜑∗ ∈ 𝑊 as mandated by its
definition, then the solution of the weak form is completely equivalent to that of the strong form
(i.e., the governing partial differential equation with boundary/initial conditions). This fact results
because of the arbitrary nature of 𝜑∗ and the very general definitions for 𝑆𝑡 and𝑊 . If we restrict
our attention only to some subset of the above spaces, we inherently incur some error with the
solution of our approximated weak form in that it no longer is identical to the solution of the
strong form. If our choice for the type of shape functions to be used is reasonable, however, we
can represent the full solution and weighting spaces with arbitrary closeness by increasing the
number of nodal points and/or the degree of polynomial approximation utilized in the
interpolation functions. In the limit of such refinement, we should expect recovery of the exact
solution (i.e., convergence).

We represent the shape function associated with node 𝐴 as 𝑁𝐴 and assume it to be as follows:

𝑁𝐴 : Ω̄ → R. (10.14)

Given a time, 𝑡, the finite dimensional counterpart of 𝜑𝑡 will be denoted as 𝜑ℎ𝑡 and is expressed in
terms of the shape functions as

𝜑ℎ𝑡 =
𝑛𝑛𝑝∑
𝐵=1

𝑁𝐵d𝐵 (𝑡), (10.15)

where d𝐵 (𝑡) is a 3-vector containing the unknown displacements of nodal point 𝐵 at time 𝑡.
Given a prescribed set of nodal shape functions 𝑁𝐵, 𝐵 = 1, . . . , 𝑛𝑛𝑝, the finite dimensional
solution space 𝑆ℎ𝑡 is defined as the collection of all such 𝜑ℎ𝑡 :

𝑆ℎ𝑡 =

{
𝜑ℎ𝑡 =

𝑛𝑛𝑝∑
𝐵=1

𝑁𝐵d𝐵 (𝑡)
�����𝜑ℎ𝑡 ≈ 𝜑̃𝑡 (X for all X ∈ Γ𝑢

}
. (10.16)

In other words, we require members of the discrete solution space to (approximately) satisfy the
displacement boundary condition on Γ𝑢. The approximation comes about because, in general, we
only force 𝜑ℎ𝑡 to interpolate the nodal values of 𝜑̄𝑡 on Γ𝑢 with the 𝑁𝐵 serving as the interpolation
functions. Note that Γ𝑢 itself is typically geometrically approximated by the finite element
discretization, also contributing to the approximation.

This notationally defines the discretization procedure for 𝜑ℎ𝑡 . It still remains, however, to
approximate the weighting space. The (Bubnov-) Galerkin finite element method is characterized

75

by utilizing the same shape functions to approximate𝑊 as were used to approximate 𝑆𝑡 .
Accordingly, we define a member of this space, (𝜑∗)ℎ, via

(𝜑∗)ℎ =
𝑛𝑛𝑝∑
𝐴=1

𝑁𝐴c𝐴, (10.17)

where c𝐴 are 3-vectors of nodal constants. We can then express the finite dimensional weighting
space𝑊 ℎ via

𝑊 ℎ =

{
(𝜑∗)ℎ =

𝑛𝑛𝑝∑
𝐴=1

𝑁𝐴c𝐴

�����(𝜑∗)ℎ = 0 for all X ∈ Γ𝑢

}
. (10.18)

Analogous to the situation for 𝑆ℎ𝑡 , (10.18) features a discrete version of the boundary condition on
Γ𝑢. In other words,𝑊 ℎ consists of all functions of the form (10.17) resulting in satisfaction of this
condition. Note that the only restriction on c𝐴 is that they result in satisfaction of the
homogeneous boundary condition on Γ𝑢.

With these ideas in hand, the approximate Galerkin solution to the initial/boundary value problem
takes the form described below.

Given the boundary conditions t̄ on 𝜑ℎ𝑡 (Γ𝜎), 𝜑̄𝑡 on 𝜑ℎ𝑡 (Γ𝑢), the initial conditions 𝜑0 and V0 on Ω,
and the distributed body force f on 𝜑ℎ𝑡 (Ω), find 𝜑ℎ𝑡 ∈ 𝑆ℎ𝑡 for each time 𝑡 ∈ (0, 𝑇) such that:∫

𝜑ℎ𝑡 (Ω)
𝜌wℎ · aℎd𝑣 +

∫
𝜑ℎ𝑡 (Ω)

∇wℎ : Tℎd𝑣 =
∫
𝜑ℎ𝑡 (Ω)

wℎ · fd𝑣 +
∫
𝜑ℎ𝑡 (Γ𝜎)

wℎ · t̄d𝑎 (10.19)

for all admissible wℎ, where 𝑆𝑡 is defined in (10.16) and where admissible wℎ are related to the
material variations (𝜑∗)ℎ ∈ 𝑊 ℎ via

wℎ (x) = (𝜑∗)ℎ ∈
(
𝜑ℎ𝑡

)−1
(x). (10.20)

In (10.19), Tℎ refers to the Cauchy stress field computed from the discrete mapping 𝜑ℎ𝑡 through
the constitutive relations, whereas aℎ is the discrete material acceleration.

The initial conditions are ordinarily simplified in the discrete case to read

d𝐵 (0) = 𝜑̄0(X𝐵) (10.21)

and

¤d𝐵 (0) = V0(X𝐵), (10.22)

both of which must hold for all nodes 𝐵 = 1, . . . , 𝑛𝑛𝑝, where X𝐵 are the reference coordinates of
the node in question.

section{Notation for Discrete Problem}

76

In preparation for generating vector/matrix equations for the discrete system, it will be helpful to
be explicit with our notation. We therefore express the nodal vectors c𝐴 and d𝐵 in terms of their
components via

c𝐴 = {𝑐𝑖𝐴} , 𝑖 = 1, 2, 3 (10.23)

and

d𝐵 =
{
𝑑 𝑗𝐵

}
, 𝑗 = 1, 2, 3. (10.24)

Note that indices 𝑖 and 𝑗 are spatial indices, in general. It is useful in generating matrix equations
to have indices referring not to nodes 𝐴 and 𝐵 or spatial directions 𝑖 and 𝑗 , but rather to degree of
freedom numbers in the problem. Thus, we define for notational convenience the concept of an
𝐼𝐷 array that is set up as follows:

𝐼𝐷 (𝑖, 𝐴) = 𝑃 (global degree of freedom number). (10.25)

In other words, the 𝐼𝐷 array takes the spatial direction index and nodal point number as
arguments and assigns a global degree of freedom number to the corresponding unknown. For
three-dimensional deformation problems, the number of degrees of freedom 𝑛𝑑𝑜 𝑓 is

𝑛𝑑𝑜 𝑓 = 3 × 𝑛𝑛𝑝 . (10.26)

With this notation, the equation numbers 𝑃 and 𝑄 corresponding to the degrees of freedom are
defined as

𝑃 = 𝐼𝐷 (𝑖, 𝐴) (10.27)

and

𝑄 = 𝐼𝐷 (𝑗 , 𝐵). (10.28)

10.4 Discrete Equations

We now generate the discrete equations by substitution of (10.15) and (10.17) into (10.19),
causing the variational equation to read∫

𝜑ℎ𝑡 (Ω)
𝜌

(𝑛𝑛𝑝∑
𝐴=1

𝑁𝐴

(
𝜑−1
𝑡 (x)

)
𝑐𝐴

)
·
(𝑛𝑛𝑝∑
𝐵=1

𝑁𝐵

(
𝜑−1
𝑡 (x)

)
¥d𝐵 (𝑡)

)
d𝑣

+
∫
𝜑ℎ𝑡 (Ω)

(𝑛𝑛𝑝∑
𝐴=1

∇𝑁𝐴
(
𝜑−1
𝑡 (x)

)
⊗ 𝑐𝐴

)
: Tℎd𝑣

+
∫
𝜑ℎ𝑡 (Ω)

(𝑛𝑛𝑝∑
𝐴=1

𝑁𝐴

(
𝜑−1
𝑡 (x)

)
𝑐𝐴

)
· fd𝑣 +

∫
𝜑ℎ𝑡 (Γ𝜎)

(𝑛𝑛𝑝∑
𝐴=1

𝑁𝐴

(
𝜑−1
𝑡 (x)

)
𝑐𝐴

)
· t̄d𝑎

(10.29)

77

where we note in particular that Tℎ is a function of $varphi^h_t = sum_{B=1}^{n_{np}} N_B
mathbf{d}_B (t)$ through the strain-displacement relations (nonlinear, in general) and the
constitutive law (as yet unspecified and perhaps likewise nonlinear).

The inertial term in (10.29) can be expanded as∫
𝜑ℎ𝑡 (Ω)

𝜌

(𝑛𝑛𝑝∑
𝐴=1

𝑁𝐴

(
𝜑−1
𝑡 (x)

)
𝑐𝐴

)
·
(𝑛𝑛𝑝∑
𝐵=1

𝑁𝐵

(
𝜑−1
𝑡 (x)

)
¥d𝐵 (𝑡)

)
d𝑣

=
𝑛𝑛𝑝∑
𝐴=1

3∑
𝑖=1

𝑐𝑖𝐴

∫
𝜑ℎ𝑡 (Ω)

(
𝜌𝑁𝐴

(
𝜑−1
𝑡 (x)

)
𝑐𝑖𝐴

(𝑛𝑛𝑝∑
𝐵=1

𝑁𝐵

(
𝜑−1
𝑡 (x)

)
¥𝑑𝑖𝐵

)
d𝑣

)
=
𝑛𝑛𝑝∑
𝐴=1

3∑
𝑖=1

𝑐𝑖𝐴

[𝑛𝑛𝑝∑
𝐵=1

3∑
𝑖=1

∫
𝜑ℎ𝑡 (Ω)

𝜌𝑁𝐴

(
𝜑−1
𝑡 (x)

)
𝛿𝑖 𝑗𝑁𝐵

(
𝜑−1
𝑡 (x)

)
d𝑣 ¥𝑑𝑖𝐵

]
=
𝑛𝑑𝑜 𝑓∑
𝑃=1

𝑐𝑃

(𝑛𝑑𝑜 𝑓∑
𝑄=1

𝑀𝑃𝑄
¥𝑑𝑄

)
(10.30)

where 𝑀𝑃𝑄 is defined as

𝑀𝑃𝑄 =
∫
𝜑ℎ𝑡 (Ω)

𝜌𝑁𝐴

(
𝜑−1
𝑡 (x)

)
𝛿𝑖 𝑗𝑁𝐵

(
𝜑−1
𝑡 (x)

)
d𝑣. (10.31)

The second term of (10.29) can be simplified via∫
𝜑ℎ (Ω)

(𝑛𝑛𝑝∑
𝐴=1

∇𝑁𝐴
(
𝜑−1
𝑡 (x)

)
⊗ c𝐴

)
: Tℎd𝑣

=
∫
𝜑ℎ (Ω)

©­«
𝑛𝑛𝑝∑
𝐴=1

3∑
𝑖=1

3∑
𝑗=1

𝑁𝐴, 𝑗

(
𝜑−1
𝑡 (x)

)
𝑐𝑖𝐴𝑇

ℎ
𝑖 𝑗
ª®¬ d𝑣 =

𝑛𝑑𝑜 𝑓∑
𝑃=1

𝑐𝑃𝐹
int
𝑃

(10.32)

where

𝐹 int
𝑃 =

∫
𝜑ℎ𝑡 (Ω)


3∑
𝑗=1

𝑁𝐴, 𝑗

(
𝜑−1
𝑡 (x)

)
𝑇𝑖 𝑗𝑁𝐵

 d𝑣 (10.33)

Finally, the last two terms of (10.29) can be treated as∫
𝜑ℎ𝑡 (Ω)

(𝑛𝑛𝑝∑
𝐴=1

𝑁𝐴

(
𝜑−1
𝑡 (x)

)
c𝐴

)
· fd𝑣 +

∫
𝜑ℎ𝑡 (Γ𝜎)

(𝑛𝑛𝑝∑
𝐴=1

𝑁𝐴

(
𝜑−1
𝑡 (x)

)
c𝐴

)
· t̄d𝑎 =

𝑛𝑑𝑜 𝑓∑
𝑃=1

𝑐𝑃𝐹
ext
𝑃 (10.34)

where

𝐹ext
𝑃 =

∫
𝜑ℎ𝑡 (Ω)

𝑁𝐴

(
𝜑−1
𝑡 (x)

)
𝑓𝑖d𝑣 +

∫
𝜑ℎ𝑡 (Γ𝜎)

𝑁𝐴

(
𝜑−1
𝑡 (x)

)
· 𝑡𝑖d𝑎. (10.35)

78

10.5 Generation of Vector/Matrix Equations

We now define the following vectors and matrices of global variables, all with dimension 𝑛𝑑𝑜 𝑓 :

c = {𝑐𝑃}
d(𝑡) =

{
𝑑𝑄 (𝑡)

}
Fint(d(𝑡)) =

{
𝐹 int
𝑃

}
Fext =

{
𝐹ext
𝑃

}
M =

[
𝑀𝑃𝑄

]
(10.36)

The results of (10.30)–(10.35) can now be summarized as

c𝑇
[
M¥d(𝑡) + Fint(d(𝑡)) − Fext] = 0, (10.37)

which must hold for all 𝑛𝑑𝑜 𝑓 -vectors c that result in satisfaction of the homogeneous boundary
condition imposed on𝑊 (i.e., (10.18)).

Finally we observe that not all of the members of d(𝑡) are unknown; for nodes lying on Γ𝑢, these
degrees of freedom are prescribed. Furthermore, the corresponding entries of c at these nodes are
typically taken to be zero, so that the aforementioned condition on𝑊 ℎ is obeyed. Since the
remainder of the vector c is arbitrary, it must be the case that the elements of the bracketed term in
(10.37) corresponding to free degrees of freedom must be identically zero, so that (10.37) will
hold for arbitrary combinations of the 𝑐𝑃. Thus we can write the nonlinear equation that expresses
the discrete equations of motion:

M¥d(𝑡) + Fint(d(𝑡)) = Fext. (10.38)

Here we employ a slight abuse of notation because we have asserted in (10.36) that all vectors and
matrices have dimension 𝑛𝑑𝑜 𝑓 , yet we only enforce (10.38) for free degrees of freedom. Denoting
the number of free degrees of freedom as 𝑛𝑒𝑞, on can account for this difference in practice by
calculating the vector and matrix entries for all degrees of freedom and then merely disregarding
the 𝑛𝑑𝑜 𝑓 − 𝑛𝑒𝑞 equations corresponding to the prescribed degrees of freedom. The members of
d(𝑡) that are prescribed do need to be retained in its definition, however, since they enter into both
terms on the left-hand side of (10.38). It should simply be remembered that only 𝑛𝑒𝑞 members of
d(𝑡) are, in fact, unknown. We will have an opportunity to visit the general topic of constraint
enforcement in greater detail when discussing solutions to these nonlinear equations (see Section
13).

10.6 Localization and Assembly

The description to this point is mostly a matter of mathematical manipulation with little insight
gained into the character of the interpolation functions, 𝑁𝐴. In fact, the basic nature of these
interpolation functions distinguishes the finite element method from other variational solution
techniques.

79

The detail of shape function construction will be discussed in Section 14 in the context of element
programming. However it is useful to discuss here the basic character of finite element
approximation functions to give general insight into the structure of the method. We refer to Fig.
10.3 which depicts a node 𝐴 in Ω, along with the elements attached to it. A basic starting point for
the development of a finite element method is as follows: the shape function associated with Node
𝐴, 𝑁𝐴, is only nonzero in that sub-portion of Ω encompassed by the elements associated with
Node 𝐴 and is zero everywhere else in Ω.

This property of the shape functions is crucial to the modular character of the finite element
method. Shape functions 𝑁𝐴 having this property are said to possess local support.

Fig. 10.3 Local support of finite element interpolation functions. The region of support for 𝑁𝐴 shown
as shaded.

To gain insight into the effect of this property, we examine the expression given in (10.31) for an
element of the mass matrix 𝑀𝑃𝑄 . We note in particular that the integrand of (10.31) will be
nonzero if both nodes 𝐴 and 𝐵 share a common element in the mesh. Otherwise 𝑀𝑃𝑄 must be
zero. If we fix our attention on a given Node 𝐴 in the mesh, we can conclude that very few Nodes
𝐵 will produce nonzero column entries in M. This matrix is therefore sparse, and it would be a
tremendous waste of time to compute M by looping over all the possible combinations of node
numbers and spatial indices without regard to elements and the node numbers attached to them.

80

Instead the global matrices and vectors needed in the solution of (10.38) are more typically
computed using two important concepts: localization and assembly. Still considering the matrix
M as an example, we note that by the elementary properties of integration, we can write

𝑀𝑃𝑄 =
∫
𝜑ℎ𝑡 (Ω)

𝜌𝑁𝐴

(
𝜑−1
𝑡 (x)

)
𝛿𝑖 𝑗𝑁𝐵

(
𝜑−1
𝑡 (x)

)
d𝑣

=
𝑛𝑒𝑙∑
𝑒=1

∫
𝜑ℎ𝑡 (Ω𝑒)

𝜌𝑁𝐴

(
𝜑−1
𝑡 (x)

)
𝛿𝑖 𝑗𝑁𝐵

(
𝜑−1
𝑡 (x)

)
d𝑣

=
𝑛𝑒𝑙∑
𝑒=1

𝑀𝑒
𝑃𝑄 ,

(10.39)

where

𝑀𝑒
𝑃𝑄 =

∫
𝜑ℎ𝑡 (Ω𝑒)

𝜌𝑁𝐴

(
𝜑−1
𝑡 (x)

)
𝛿𝑖 𝑗𝑁𝐵

(
𝜑−1
𝑡 (x)

)
d𝑣. (10.40)

Thus the global mass matrix can be computed as the sum of a number of element mass matrices.
This fact in itself is not especially useful because each of the M𝑒 is extremely sparse, even more
so than M. In fact, the only entries of M𝑒 that will be nonzero will be those for which both 𝑃 and
𝑄 are degrees of freedom associated with element 𝑒.

This fact can be exploited by defining another local element matrix m𝑒 containing only degrees of
freedom associated with that element. We introduce element degrees of freedom indices 𝑝 and 𝑞,
as indicated in Fig. 10.4. Assuming that 𝑝 and 𝑞 can take on values between 1 and 𝑛𝑒𝑑𝑜 𝑓 , where
𝑛𝑒𝑑𝑜 𝑓 is the number of degrees of freedom associated with the element, an 𝑛𝑒𝑑𝑜 𝑓 × 𝑛𝑒𝑑𝑜 𝑓 matrix m
is constructed as

m𝑒 =
[
𝑚𝑒𝑝𝑞

]
. (10.41)

The 𝑚𝑒𝑝𝑞 can be specified by introducing the concept of a local node number 𝑎 or 𝑏 as shown in
Fig. 10.4. With these definitions we can write

𝑚𝑒𝑝𝑞 =
∫
𝜑ℎ𝑡 (Ω𝑒)

𝜌𝑁𝑎

(
𝜑−1
𝑡 (x)

)
𝛿𝑖 𝑗𝑁𝑏

(
𝜑−1
𝑡 (x)

)
d𝑣 (10.42)

where a sample relationship between indices 𝑖, 𝑎, and 𝑝 appropriate for the element at hand might
be

𝑝 = (𝑎 − 1) × 2 + 𝑖 (10.43)

(similarly for 𝑗 , 𝑏, and 𝑞). The notation 𝑁𝑎 simply refers to the shape function associated with
local Node 𝑎. By definition it is the restriction of the global interpolation function 𝑁𝐴 to the
element domain.

Calculation of the local element entities, such as m𝑒, turns out to be highly modular procedure
whose form remains essentially unchanged for any element in a mesh. Detailed discussion of this
calculation is deferred until Section 14.

81

Fig. 10.4 Element (local) degrees of freedom for a sample finite element.

82

Let us suppose for a moment, however, that we have a procedure in hand for calculating this
matrix. We might then propose the following procedure for calculating the global mass matrix M
and internal force vector Fint:

• Zero out M, Fint.

• For each element 𝑒, 𝑒 = 1, . . . , 𝑛𝑒𝑙 :

– Prepare local data necessary for element calculations - e.g., X𝑒 (𝑛𝑒𝑑𝑜 𝑓 - vector of
element nodal coordinates), d𝑒 (𝑛𝑒𝑑𝑜 𝑓 -vector of element nodal configuration
mappings), etc.

– Calculate element internal force vector fint,𝑒 =
{
𝑓 int,𝑒
𝑝

}
and element mass matrix

m𝑒 =
[
𝑚𝑒𝑝𝑞

]
via

𝑓 int,𝑒
𝑝 =

∫
𝜑ℎ𝑡 (Ω𝑒)


3∑
𝑗=1

𝑁𝑎, 𝑗

(
𝜑−1
𝑡 (x)

)
𝑇 ℎ𝑖 𝑗

 d𝑣 (10.44)

and (10.42).

– Assemble the element internal force vector and element mass matrix into their global
counterparts by performing the following calculations for all local degrees of freedom
𝑝 and 𝑞:

𝑀𝑃𝑄 = 𝑀𝑃𝑄 + 𝑚𝑒𝑝𝑞 (10.45)

and

𝐹 int
𝑃 = 𝐹 int

𝑃 + 𝑓 int,𝑒
𝑝 , (10.46)

where local degrees of freedom are related to global degrees of freedom via the LM
array, defined so that

𝑃 = 𝐿𝑀 (𝑝, 𝑒) (10.47)

and

𝑄 = 𝐿𝑀 (𝑞, 𝑒). (10.48)

Step 2a) above is referred to as localization; given a particular element, 𝑒, it extracts the local
information from the global arrays necessary for element level calculations. Step 2b) consists of
element level calculations; these calculations will be discussed in detail in Section 14. Step 2c) is
the process known as assembly and takes the data produced by the element level calculations and
assembles them in the proper locations of the global arrays.

We can thus now summarize the effect of localization and assembly in a finite element
architecture. They act as pre- and post-processors to the element-level calculations, enabling the

83

entities needed for global equilibrium calculations to be computed in a modular manner as
summation of element contributions. Of course, the effectiveness of this procedure, as well as the
convergence behavior of the numerical method in general, depends crucially on the interpolation
functions chosen and their definitions in terms of elements. We defer this topic for now and
concentrate in the coming chapters on the classes of problems and global equation-solving
strategies to be utilized.

84

11 Quasistatics

11.1 Quasistatic Assumption

As discussed previously in the context of a Linear Elastic IBVP, the quasistatic approximation is
appropriate when inertial forces are negligible compared to the internal and applied forces in a
system. The question of what is negligible generally relies on intuition, and numerical
experimentation is one way to gain this intuition.

Omission of the inertial term in the discrete equations of motion, (10.38), yields a quasistatic
problem of the form

Fint(d(𝑡)) = Fext (11.1)

subject to only one initial condition of the form

d(0) = d0. (11.2)

Note that the time variable, 𝑡 may correspond to real time (e.g., if rate-dependent material
response is considered) but need not have physical meaning for rate independent behavior. For
example, it is common for 𝑡 to be taken as a generic parameterization for the applied loading on
the system as discussed below.

11.2 Internal Force Vector

The quantity Fint (d(𝑡)) is known as the internal force vector and consists of that set of forces that
are variationally consistent with the internal stresses in the body undergoing analysis. The generic
expression for an element in this vector is

𝐹 int
𝑃 =

∫
𝜑ℎ𝑡 (Ω)

©­«
3∑
𝑗=1

𝑁𝐴, 𝑗

(
𝜑−1
𝑡 (x)

)
𝑇 ℎ𝑖 𝑗

ª®¬ d𝑣. (11.3)

This vector-valued operator is generally a nonlinear function of the unknown solution vector d(𝑡)
due to the possible material nonlinearity and/or geometric nonlinearity inherent in the definition
of the Cauchy stress 𝑇 ℎ𝑖 𝑗 in (11.3). As implied by our notation, we assume the solution vector d to
be smoothly parameterized by 𝑡 which may represent time or some other loading parameter.

85

11.3 External Force Vector

The external load vector Fext(𝑡) must equilibrate the internal force vector, as is clear from (11.1).
As presented in the previous chapter, the expression of an element 𝐹ext

𝑃 of Fext(𝑡) is

𝐹ext
𝑃 =

∫
𝜑ℎ𝑡 (Ω)

𝑁𝐴

(
𝜑−1
𝑡 (x)

)
𝑓𝑖 (𝑡)d𝑣 +

∫
𝜑ℎ𝑡 (Γ𝜎)

𝑁𝐴

(
𝜑−1
𝑡 (x)

)
· 𝑡𝑖 (𝑡)d𝑎, (11.4)

where the explicit dependence of 𝑓𝑖 and 𝑡𝑖 upon 𝑡 has been indicated and where 𝑃 = 𝐼𝐷 (𝑖, 𝑎) as
given in (10.27). In other words, we assume that the prescribed external force loadings 𝑓𝑖 and
prescribed surface tractions 𝑡𝑖 are given functions of 𝑡.

(11.4) implies no dependence of either 𝑡𝑖 or 𝑓𝑖 upon 𝜑𝑡 (x) (and thus d). Provided no such
dependence exists, the external force is completely parameterized by 𝑡, and the sole dependence of
the equilibrium equations on d occurs through Fint. However , it is important to realize that some
important loading cases are precluded by this assumption. Perhaps the most important being the
case of pressure loading, where the direction of applied traction is opposite to the surface normal,
which in large deformation problems depends upon 𝜑𝑡 (x). Such a load is sometimes called a
follower force and will, in general, contribute additional nonlinearities. Such nonlinearities are
handled notationally, simply by recognizing that the traction 𝑡𝑖 now depends on 𝜑𝑡 (x), i.e.,

𝐹ext
𝑃 =

∫
𝜑ℎ𝑡 (Ω)

𝑁𝐴

(
𝜑−1
𝑡 (x)

)
𝑓𝑖d𝑣 +

∫
𝜑ℎ𝑡 (Γ𝜎)

𝑁𝐴

(
𝜑−1
𝑡 (x)

)
· 𝑡𝑖 (𝑡, 𝜑𝑡 (x))d𝑎. (11.5)

11.4 Incremental Load Approach

We may now summarize the global solution strategy applied to quasistatic nonlinear solid
mechanics applications. We assume that we are interested in the solution d(𝑡) over some time
interval of interest for 𝑡:

𝑡 ∈ [0,T] (11.6)

We subdivide this interval of interest into a set of sub-intervals via

[0,T] =
𝑁−1⋃
𝑛=0

[𝑡𝑛, 𝑡𝑛+1] , (11.7)

where 𝑛 is an index on the time steps or intervals, and 𝑁 is the total number of such increments.
We assume that 𝑡0 = 0 and that 𝑡𝑁 = T, but we do not, in general, assume that all time intervals
[𝑡𝑛, 𝑡𝑛+1] have the same width.

With this notation, the incremental load approach attempts to solve the following problem
successively in each time interval [𝑡𝑛, 𝑡𝑛+1]:

Given the solution d𝑛 corresponding to time level 𝑡𝑛, find d𝑛+1 corresponding to 𝑡𝑛+1 satisfying:

Fint (d𝑛+1) = Fext (d𝑛+1) . (11.8)

86

where we have included an assumed dependence of the external loading on deformation 𝜑𝑡 (x).

This governing equation is also often expressed by introducing the concept of a residual vector
r(d𝑛+1):

r (d𝑛+1) = Fext (d𝑛+1) − Fint (d𝑛+1) . (11.9)

Solution of (11.8), therefore, amounts to finding the root of the equation

r (d𝑛+1) = 0. (11.10)

The importance of stating equilibrium in this manner will be made much clearer in the Chapter
discussing nonlinear equation solving, (chapter Section 13). For the moment, the physical
meaning of this approach is depicted graphically in Fig. 11.1. Starting with an initial equilibrium
state 𝑡𝑛, so that r(d𝑛) = 0, we introduce an increment in the prescribed load and attempt to find
that displacement increment, d𝑛+1 − d𝑛, that will restore equilibrium (i.e., result in satisfaction of
(11.10)). This will require a nonlinear equation solving technique for determination of d𝑛+1, a
topic that will be discussed further in Section 13.

Fig. 11.1 Simple illustration of the incremental load approach to quasistatics problems

87

This page left blank

88

12 Dynamics

12.1 Semi-Discrete Approach

We now include the inertial terms in the discrete equation system and consider solving

M¥d(𝑡) + Fint(d(𝑡)) = Fext(d(𝑡)) (12.1)

for 𝑡 ∈ [0,T] subject to the initial conditions

d(0) = d0 (12.2)

and

¤d(0) = v0. (12.3)

Note that in (12.1) time remains continuous, whereas spatial discretization has already been
achieved by the finite element interpolations summarized in Section 10. This type of finite
element approach to transient problems is sometimes referred to as the semi-discrete finite
element method, since the approximation in space is performed first, leaving a set of equations
discrete in space but still continuous in time. To complete the approximation, a finite differencing
procedure is generally applied in time as discussed next.

12.2 Time-Stepping Procedures

As discussed in Section 11, we subdivide the time interval of interest [0,T] via

[0,T] =
𝑁−1⋃
𝑛=0

[𝑡𝑛, 𝑡𝑛+1] (12.4)

and consider the problem:

Given algorithmic approximations for the solution vector (d𝑛), velocity (v𝑛), and acceleration
(a𝑛) at time 𝑡𝑛, find approximations d𝑛+1, v𝑛+1, and a𝑛+1 for these quantities at time 𝑡𝑛+1. Note
that, in contrast to the quasistatic problem, the variable 𝑡 here does have the interpretation of
actual time.

A thoroughly studied topic in dynamics is the construction of effective time integrators for
application to the semi-discrete equations of motion. An ideal approach possesses minimal
dispersion and dissipation. As shown in Fig. 12.1, a measure of numerical dispersion is period
error (𝑇 − 𝑇), and a measure of numerical dissipation is amplitude decay (𝐴̄ − 𝐴). Fig. 12.1
depicts a single wave with amplitude and period 𝐴 and 𝑇 that generically is the exact solution to
the wave equation (subject to the proper initial conditions and/or external force). Numerical
dispersion by the time integrator causes a wave’s frequency to decrease, thus dispersing its energy

89

Fig. 12.1 Simple illustration of approximation error in transient time integrators.

90

to the lower frequencies. Numerical dissipation by the time integrator causes the wave’s energy to
decrease and therefore is said to dissipate its energy.

The time integrators we consider here can all be described by a 3-parameter method called the
𝛼-method of time integrators. It is also referred to as the Hilber-Hughes-Taylor Method, or HHT
method, as described in Reference [25]], which is a generalization of the well-known and
pervasive Newmark family of temporal integrators (Reference [[40]). The Newmark algorithm
can be summarized in a time step [𝑡𝑛, 𝑡𝑛+1] as follows:

Ma𝑛+1 + Fint(d𝑛+1) = Fext(d𝑛+1)

d𝑛+1 = d𝑛 + Δ𝑡v𝑛 +
Δ𝑡2

2
[(1 − 2𝛽)a𝑛 + 2𝛽a𝑛+1]

v𝑛+1 = v𝑛 + Δ𝑡 [(1 − 𝛾)a𝑛 + 𝛾a𝑛+1] ,

(12.5)

where 𝛽 and 𝛾 are algorithmic parameters that define the stability and accuracy characteristics of
the method.

The extension of the Newmark family of integrators to the 𝛼-method of integrators is
accomplished with the addition of the parameter, 𝛼:

Ma𝑛+1 + (1 + 𝛼)Fint(d𝑛+1) − 𝛼Fint(d𝑛) = (1 + 𝛼)Fext(d𝑛+1) − 𝛼Fext(d𝑛)

d𝑛+1 = d𝑛 + Δ𝑡v𝑛 +
Δ𝑡2

2
[(1 − 2𝛽)a𝑛 + 2𝛽a𝑛+1]

v𝑛+1 = v𝑛 + Δ𝑡 [(1 − 𝛾)a𝑛 + 𝛾a𝑛+1] ,

(12.6)

where, as expected, setting 𝛼 to zero reduces the HHT integrator to Newmark’s method. Although
a wide range of algorithms exist corresponding to the different available choices of 𝛽 and 𝛾, two
algorithms in particular are significant:

• Central Differences (𝛼 = 0, 𝛽 = 0, 𝛾 = 1/2). This integrator is second-order accurate in
time and only conditionally stable, meaning that the linearized stability is only retained
when Δ𝑡 is less than some critical value. This algorithm is an example of an explicit finite
element integrator discussed in Section 12.3.

• Trapezoid rule (𝛼 = 0, 𝛽 = 1/4, 𝛾 = 1/2). This integrator is also second-order accurate but
unconditionally stable for linear problems, meaning that the spectral radii of the integrator
remains less than one in modulus for any time step Δ𝑡 (in linear problems). This algorithm
is an example of an implicit finite element integrator discussed in Section 12.4

12.3 Explicit Finite Element Methods

Examining the central differences algorithm, we substitute 𝛽 = 0, 𝛾 = 1/2 into (12.6) to obtain

a𝑛+1 = M−1
(
Fext(d𝑛+1) − Fint(d𝑛+1)

)
d𝑛+1 = d𝑛 + Δ𝑡v𝑛 +

Δ𝑡2

2
a𝑛

v𝑛+1 = v𝑛 +
Δ𝑡
2

[a𝑛 + a𝑛+1] ,

(12.7)

91

where the first equation has been written as solved for a𝑛+1.

(12.7) can be used to explain why this formulation is termed explicit. Given the three vectors
{a𝑛, v𝑛, d𝑛}, the data at 𝑡𝑛+1, {a𝑛+1, v𝑛+1, d𝑛+1} can be computed explicitly, i.e., without the need
for solution of coupled equations provided the mass matrix M is a diagonal matrix.

It is important to note approximation properties of the explicit time integrator (see Reference
[33]). By itself, the explicit time integrator causes the period to be shortened. However, a lumped
or diagonalized mass matrix as opposed to a consistent mass matrix causes the period to be
elongated. For one-dimensional problems with uniform meshes the period error cancels exactly.
In the words of Reference [33], these compensating errors generally produce a matched approach.
Thus a lumped mass matrix gives rise to the fully explicit algorithm, requiring only an inverse of a
diagonal matrix.

Although this form of the central difference formulation ((12.7)) is readily obtained from the
Newmark formulas, it does not give insight into the source of the central difference terminology
and, in fact, does not represent the (historical) manner in which the integrator is ordinarily
developed or implemented. To see the usual form, one starts with the difference formulas for
acceleration and velocity (see e.g., The Difference Calculus, Chapter 9 in Reference [22]):

a𝑛 =
v𝑛+1/2 − v𝑛−1/2
𝑡𝑛+1/2 − 𝑡𝑛−1/2

, (12.8)

and

v𝑛+1/2 =
d𝑛+1 − d𝑛
𝑡𝑛+1 − 𝑡𝑛

, (12.9)

where, as shown in Fig. 12.2, the time axis is discretized with notions of whole step
configurations at times 𝑡𝑛−1, 𝑡𝑛, 𝑡𝑛+1 and half-step configurations at times 𝑡𝑛−1/2, 𝑡𝑛+1/2, . . .

Rearranging, these difference formulas ((12.8) and (12.9)) can be converted into integration
formulas:

v𝑛+1/2 = v𝑛−1/2 +
1
2

(
Δ𝑡𝑛−1/2 + Δ𝑡𝑛+1/2

)
a𝑛

d𝑛+1 = d𝑛 + Δ𝑡𝑛+1/2v𝑛+1/2

(12.10)

Combining these integration formulas with the equilibrium equation evaluated at 𝑡𝑛, we can
express the algorithm as

a𝑛 = M−1 [
Fext(d𝑛) − Fint(d𝑛)

]
v𝑛+1/2 = v𝑛−1/2 +

1
2

(
Δ𝑡𝑛−1/2 + Δ𝑡𝑛+1/2

)
a𝑛

d𝑛+1 = d𝑛 + Δ𝑡𝑛+1/2v𝑛+1/2

(12.11)

The velocity and displacement updates emanate from the central difference approximations to the
acceleration a𝑛 and velocity v𝑛+1/2, respectively, giving the algorithm its name. The velocity
measures that are utilized by the algorithm are shifted by a half step (said to be centered at the

92

Fig. 12.2 Graphical construction of the central difference time integrator.

Fig. 12.3 Graphical representation of the central difference time integrator.

93

half-step), whereas accelerations and displacements are centered at the whole step. Fig. 12.3
graphically reveals the simplicity of the explicit time integration scheme.

As already mentioned, explicit finite element schemes are only conditionally stable, meaning that
they only remain stable when the time increment Δ𝑡 is less than some critical limit. This limit,
sometimes called the Courant stability limit (see Reference [5]), can be shown to be as follows

Δ𝑡 ≤ 2
𝜔
, (12.12)

where 𝜔 is the highest natural frequency in the mesh. An important necessary step in the central
difference explicit time integrator is the estimation of this highest natural frequency in the
discretized problem. Explicit dynamics problems frequently involve large deformations with
potentially significant geometric, material, and contact nonlinearities, all of which can cause
significant changes in the critical time step. Therefore, estimation of the critical time step must be
made repeatedly throughout the problem simulation. It is thus important that the this calculation
be as accurate and efficient as possible to make the most of the explicit method.

12.3.1 Element-based Critical Time Step Estimate

Stable time step estimates for explicit finite element methods are traditionally based on the
conservative estimate of the frequency:

𝜔 = 2
(𝑐
ℎ

)
max

, (12.13)

where 𝑐 and ℎ are the sound speed and characteristic mesh size, respectively, associated with the
element in the mesh having the largest ratio of these two quantities. Combining (12.12) and
(12.13) we find that

Δ𝑡max =

(
ℎ

𝑐

)
min

. (12.14)

In other words, the time step may be no larger than the amount of time required for a sound wave
to traverse the element in the mesh having the smallest transit time. Such an estimation of the
critical time step is based solely on element level calculations and is, in fact, part of the element
internal force calculation. This is due in large part to the estimate of the sound speed of the
material, which is of a dilatational wave. The accuracy of directly applying this condition is
limited in practice due to the arbitrary finite element geometries in a typical mesh because the
definition of characteristic length is somewhat of an art for distorted elements. Alternatively, the
stability limit as reported in Reference [33] is related to the maximum global eigenvalue, 𝜆max:

Δ𝑡2 =
4

𝜆max
. (12.15)

Because the maximum element eigenvalue is an upper bound on the maximum global eigenvalue
(Reference [12]), we can compute an element-based stable time step estimate using

Δ𝑡𝐸 =
2

√
𝜆
���
max over 𝑒

. (12.16)

94

Details of how this element-based time step is calculated for different elements are covered in the
chapter on element formulations.

12.3.2 Nodal-based Critical Time Step Estimate

A method is now described in which the maximum element modal stiffness are used to estimate a
maximum nodal stiffness which, when combined with the lumped nodal mass, gives a sharper
upper bound on the maximum global eigenvalue.

Let 𝜆max denote the largest eigenvalue of the generalized problem

(K − 𝜆M) u = 0 (12.17)

and umax the eigenvalue corresponding to 𝜆max. In (12.17), K is the stiffness matrix and M the
diagonal, lumped mass matrix. The Rayleigh quotient for the maximum eigenvalue is

𝜆max =
u𝑇maxKumax

u𝑇maxMumax
. (12.18)

Noting that the numerator of (12.18) is twice the strain energy 𝑆 of the system when deformed
into the mode shape umax, we can write

2𝑆 = u𝑇maxKumax =
𝑛𝑒∑
𝑒=1

(
u𝑒max

)𝑇 K𝑒 (
u𝑒max

)
. (12.19)

We observe that the eigenvalue problem for the element stiffness matrix K𝑒 may be stated as

K𝑒𝜙𝑒 = 𝑘𝑒𝜙𝑒 . (12.20)

Consequently,

(u𝑒)𝑇K𝑒u𝑒 ≤ 𝑘𝑒max(u𝑒)𝑇u𝑒 (12.21)

for all u𝑒 where 𝑘𝑒max is the maximum eigenvalue (so called modal stiffness) of the element
stiffness matrix. From this result, we define a global stiffness matrix K̂ assembled from the
element stiffness matrices K̂𝑒 defined as

K̂𝑒 = 𝑘𝑒maxI𝑒 (12.22)

where I𝑒 is an ndofe by ndofe identity matrix (ndofe is the number of degrees of freedom in the
element). Based on (12.18), (12.20) and (12.21),

2𝑆 ≤
𝑛𝑒∑
𝑒=1

(
u𝑒max

)𝑇 K̂𝑒 (
u𝑒max

)
(12.23)

leading to

𝜆max =
u𝑇maxKumax

u𝑇maxMumax
≤ u𝑇maxK̂umax

u𝑇maxMumax
= 𝜆̂max. (12.24)

95

Given the mode shape umax, the expression for 𝜆̂max is easily evaluated since both K̂ and M are
diagonal. Methods for predicting this mode shape have been developed for specific ‘template’
geometries (Reference [17], but for general finite element geometries this remains impractical.

Rather than directly calculating 𝜆̂max, we seek an upper bound. To this end, we define the ratio for
every node 𝐼 as

𝜆̂𝐼 =
𝐾̂ 𝐼

𝑀 𝐼
, (12.25)

where 𝐾̂ 𝐼 and 𝑀 𝐼 are the diagonal elements in the 𝐼 th row of K̂ and M, respectively. Without loss
of generality, the ratios are ordered such that 𝜆̂𝑚 ≥ 𝜆̂𝑚−1 ≥ · · · ≥ 𝜆̂1, in which case (12.24) can be
written as

𝜆̂max =

∑
𝐼 u𝑇max𝐼 K̂

𝐼∑
𝐼 u𝑇max𝐼M

𝐼
= 𝜆̂𝑚


1 +

[(
(𝑢𝑚−1

max)2𝑀𝑚−1) /((𝑢𝑚max)2𝑀𝑚
)]

𝜆̂𝑚−1

𝜆̂𝑚
+ . . .

1 +
[(
(𝑢𝑚−1

max)2𝑀𝑚−1) /((𝑢𝑚max)2𝑀𝑚
)]

+ . . .

 (12.26)

Since all the ratios 𝜆̂𝑚−1/𝜆̂𝑚 are less than or equal to one, it follows immediately that

𝜆̂max ≤ 𝜆̂𝑚 =
𝐾̂ 𝐼

𝑀 𝐼

����
max over 𝐼

, (12.27)

in which 𝑀 𝐼 is the lumped mass at node 𝐼, and 𝐾̂ 𝐼 is the assembly of the maximum element
modal stiffness at node 𝐼, that is

𝐾̂ 𝐼 =
∑
𝑒∈𝑒𝐼

𝑘𝑒max, (12.28)

where 𝑒𝐼 is the set of elements that are connected to node 𝐼.

(12.15), (12.24), and (12.27) lead to a nodal-based stable time step estimate:

Δ𝑡𝑁 =
2√

𝐾̂ 𝐼

𝑀 𝐼

����
max over 𝑒

.
(12.29)

Now we show that the nodal-based stable time step estimate is always greater than or equal to the
element-based estimate. Following a similar procedure outlined in (12.26), we can write

𝜆̂𝐼 =
𝐾̂ 𝐼

𝑀 𝐼
=

∑
𝑒∈𝑒𝐼 𝑘

𝑒
max∑

𝑒∈𝑒𝐼 𝑚𝑒
=

𝑘1
max
𝑚1 + (𝑚2/𝑚1) 𝑘

2
max
𝑚2 + . . .

1 + (𝑚2/𝑚1) + . . .
≤ 𝑘1

max
𝑚1 ,

(12.30)

where the element eigenvalues 𝑘𝑒max/𝑚𝑒 are arranged in descending order,
𝑘1
max/𝑚1 ≥ 𝑘2

max/𝑚2 ≥ Thus the nodal-based estimate of the maximum eigenvalue at node 𝐼
is bounded by the largest of all element eigenvalues connected to node 𝐼. It follows from (12.30)
that

𝜆̂𝑚 =
𝐾̂ 𝐼

𝑀 𝐼

����
max over 𝐼

≤ 𝑘𝑒max
𝑚𝑒

����
max over 𝑒∈𝑒𝐼

���
max over 𝐼

=
𝑘𝑒max
𝑚𝑒

����
max over 𝑒

= 𝜆𝑒max
��
max over 𝑒 (12.31)

96

Since 𝜆̂𝑚 ≤ 𝜆𝑒max
��
max over 𝑒, it follows directly from (12.15) that the nodal-based estimate is always

greater than or equal to the element-based estimate.

The cost of the nodal-based estimate calculation includes the element eigenvalue analysis (which
must be done in the case of the element based calculation) plus the cost of an assembly procedure
every time step. (12.29) must be evaluated at each node as opposed to evaluating (12.16) for every
element.

12.3.3 Lanczos-based Critical Time Step Estimate

The paper [32], which is reproduced here, demonstrates the cost-effective use of the Lanczos
method for estimating the critical time step in an explicit, transient dynamics code. The Lanczos
method can give a significantly larger estimate for the critical time-step than an element-based
method (the typical scheme). However, the Lanczos method represents a more expensive method
for calculating a critical time-step than element-based methods. Our paper shows how the
additional cost of the Lanczos method can be amortized over a number of time steps and lead to
an overall decrease in run-time for an explicit, transient dynamics code. We present an adaptive
hybrid scheme that synthesizes the Lanczos-based and element-based estimates and allows us to
run near the critical time-step estimate provided by the Lanczos method.

12.3.3.1 Introduction

Codes using explicit time integration techniques are important for simulating transient dynamics
problems involving large deformation of solids with various nonlinear effects (contact, nonlinear
materials, element death, etc.). The second order central difference operator used in explicit codes
is stable if the time step is no larger than the critical time step. For most problems in solid
mechanics, the critical time step is extremely small and the number of time steps required for a
typical analysis is quite large. Therefore, the accurate, efficient, and reliable calculation of the
critical time step is of fundamental importance.

The element-based method [13] is an efficient method for producing a critical time step estimate
at every time step. However, it can produce a conservative estimate for the critical time step in
many cases. The Lanczos [35] method is a reliable procedure for producing a time step that is the
theoretical maximum value for a structure and is usually much better than the element-based
estimate. The cost of obtaining a Lanczos based estimate will not offset the cost benefit of the
increased value for the critical time step. Therefore, it is not feasible to call the Lanczos method at
every explicit dynamics time step. In this paper we outline a cost-effective method for utilizing the
Lanczos method (together with an element-based scheme) for the critical time step estimation.

Benson [4] investigates estimating the critical time step by using the power iteration. Parlett [44]
presents analysis comparing the Lanczos method and power iteration. The Lanczos method
provides a more rapid approximation, in terms of matrix-vector products, relative to the power
iteration for approximating the largest eigenvalue as the relative separation of the largest
eigenvalue decreases. Hence, we can expect the Lanczos method to require less matrix-vector

97

products to approximate the critical time step to a specified tolerance. We also remark that in
contrast to our paper, Benson [4] does not present a scheme that addresses two crucial issues
when using the power iteration (or Lanczos method) for estimating the critical time step.

Two crucial issues must be addressed when using the Lanczos method to estimate the critical time
step. First, the Lanczos-based time step estimate must be used for two to three times the number
of explicit time integration steps required to recover the cost of the Lanczos method if we are to
see a noticeable reduction in overall computation times for a problem. (We explore the cost of the
Lanczos method in terms of internal force calculations in later sections.) Second, the Lanczos
method provides an overestimate of the critical time step, and so we need an effective scheme to
scale back the Lanczos-based critical time step estimate. We address both these issues and present
an adaptive hybrid scheme that synthesizes the Lanczos-based and element-based estimates and
allows us to run near the critical time-step estimate provided by the Lanczos method.

We also remark that in addition to the increased efficiency that can be achieved with the
Lanczos-based time step, we also have the added benefit of increased accuracy. For explicit
transient dynamic codes, using a time step as close as possible to the critical time step [33] gives
the most accurate answer. Reducing the time step in an explicit transient dynamics code actually
increases the error.

Our paper is organized as follows. Section Section 12.3.3.2 discusses the critical time step and
motivates a Lanczos-based estimate. The Lanczos iteration and method are briefly introduced in
section Section 12.3.3.3. A cost benefit analysis of the element-based and Lanczos-based
approximations to the critical time is considered in section Section 12.3.3.4. A practical
implementation within an explicit dynamics code is the subject of section Section 12.3.3.5.
Several numerical examples are presented in section Section 12.3.3.6, and we provide our
conclusions in section Section 12.3.3.7.

12.3.3.2 Critical time step

Let K and M be the stiffness and mass matrices arising in an explicit dynamics simulation so that
M is a diagonal matrix due to mass lumping. The critical time step for second order central time
differencing is bounded from above by 2𝜔−2

max where 𝜔2
max is the largest eigenvalue of the

generalized eigenvalue problem

Ku = Mu𝜔2
max,

(
K,M ∈ R𝑛×𝑛

)
, (12.32)

where we assume that 𝜔2
max is positive. An inexpensive [28] upper bound to

𝜔2‘𝑖𝑠𝑔𝑖𝑣𝑒𝑛𝑏𝑦𝑡ℎ𝑒𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 : 𝑚𝑎𝑡ℎ :omega^2_{max,e}‘ over all the element
eigenvalue problems

K𝑒u𝑒 = M𝑒u𝑒𝜔2
𝑒,

(
K𝑒,M𝑒 ∈ R𝑛𝑒×𝑛𝑒

)
, (12.33)

where 𝑛𝑒 � 𝑛. Therefore, 𝜔−2
max,𝑒 ≤ 𝜔−2

max and we have a lower bound for the critical time step.
The maximal element eigenvalue is typically computed analytically [13] for the finite elements
that are typically used in transient dynamics.

98

The Lanczos method rapidly provides a lower bound 𝜔2
max,𝐿 to 𝜔2

max so that

𝜔−2
max,𝑒 ≤ 𝜔−2

max ≤ 𝜔−2
max,𝐿 . (12.34)

In fact, the Lanczos iteration is sharp so that 𝜔−2
max ⪅ 𝜔−2

max,𝐿 so that with care, an excellent
approximation to the critical time step is computed for a modest cost. This approximation may be
dramatically superior to the standard element based estimate. The details of a careful use of the
Lanczos-based estimate is the subject of section Section 12.3.3.5.

12.3.3.3 Lanczos iteration

The Lanczos reduction rapidly provides approximations to the maximum and minimum
eigenvalues of a symmetric A ∈ R𝑛×𝑛, in particular the largest in magnitude eigenvalue. Suppose
that

AQ 𝑗 = Q 𝑗T 𝑗 + f 𝑗e𝑇𝑗 , (12.35)

is a Lanczos reduction of length 𝑗 where f 𝑗 ∈ R𝑛, and e 𝑗 ∈ R 𝑗 contains column 𝑗 of the identity
matrix I𝑛 ∈ R𝑛×𝑛. If we denote

T 𝑗 =

©­­­­«
𝛼1 𝛽2 · · · 0
𝛽2 𝛼2 · · · 0
...

. . . 𝛽 𝑗
0 · · · 𝛽 𝑗 𝛼 𝑗

ª®®®®¬
, 𝛼𝑖, 𝛽𝑖 ∈ R

and

Q 𝑗 =
(

q1 q2 · · · q 𝑗
)
, q𝑖 ∈ R𝑛

then the familiar Lanczos three-term recurrence is recovered by equating column 𝑗 of ((12.35)) to
obtain

f 𝑗 = Aq 𝑗 − q 𝑗𝛼 𝑗 − q 𝑗−1𝛽
𝑇
𝑗−1. (12.36)

Furthermore, because of the orthonormality of Q 𝑗 , we have

𝛼 𝑗 = q𝑇𝑗 Aq 𝑗 ,
q 𝑗+1𝛽 𝑗+1 = f 𝑗 ,

q𝑇𝑖 f 𝑗 = 0, 𝑖 = 1, . . . , 𝑗

and so q 𝑗+1 = f 𝑗 𝛽−1
𝑗+1, where we assume that 𝛽 𝑗+1 is non-zero. We define a Lanczos iteration to be

that computing Aq 𝑗 , 𝛼 𝑗 , 𝛽 𝑗+1, and f 𝑗 . We define the Lanczos method that of computing 𝑚
iterations and computing the largest in magnitude eigenvalue of T𝑚.

99

The largest eigenvalue of the symmetric tridiagonal matrix T 𝑗 approximates the largest in
magnitude eigenvalue of A. We can determine the quality of the approximation produced by an
eigenpair of T 𝑗 . If we post multiply ((12.35)) by s where T 𝑗s = s𝜃 (and ‖s‖ = 1), then

A(Q 𝑗s) − (Q 𝑗s)𝜃 = f 𝑗 (e𝑇𝑗 s). (12.37)

In words, the residual of the approximate eigenpair (Q 𝑗s, 𝜃) is proportional to f 𝑗 (note that e𝑇𝑗 s is
notation for the last component of s). The implication is that we can easily monitor the quality of
the approximation produced by the Lanczos method. If 𝜃 is the largest in magnitude eigenvalue of
T 𝑗 , then 𝜃 ≤ 𝜔2

max ≤ ‖f 𝑗 ‖2 |e𝑇𝑗 s| + 𝜃 (see [44] for a discussion). Hence,

1
‖f 𝑗 ‖2 |e𝑇𝑗 s| + 𝜃

≤ 𝜔−2
max ≤ 1

𝜃
. (12.38)

We also remark that the norm of the residual is a non-increasing function of 𝑗 ; again see [44].

The Lanczos iteration is adapted for computing the largest eigenvalues of ((12.32)) by replacing A
with M−1K and computing an M-orthonormal Q 𝑗 . This orthonormality is needed so that M−1K is
symmetric in the inner product induced by M. See [42], [44] for further discussion and
implementations.

The cost of a careful implementation of a Lanczos iteration, :math:‘ j>1‘, is one matrix-vector
product with K and M−1, and two vector products and vector subtractions. Within an explicit
dynamics code, the cost of computing a Lanczos vector is approximately the cost of an internal
force calculation, represented by the matrix-vector product Kq 𝑗 . Therefore, we approximate the
cost of computing the Lanczos-based time step estimate as

𝑚𝜏 (12.39)

where 𝑚 denotes the number of Lanczos iterations and 𝜏 represents the CPU (central processor
unit) time needed for an element-based explicit dynamics time integration step.

The Lanczos method only requires knowledge of K via its application on a vector. If internal force
calculations are used for the needed matrix-vector products, the Lanczos vectors q 𝑗 are scaled so
that they represent velocities associated with small strain. When these scaled vectors are sent to
the internal force calculation, the internal force calculation becomes a matrix-vector product with
a (constant) tangent stiffness matrix K𝑇 .

12.3.3.4 Cost-Benefit Analysis

This section provides a simple model for assessing the cost of using the Lanczos method for
computing an estimate of the critical time step. We assume that Lanczos-based time step is valid
for 𝑛𝐿 time integration steps. We address the important issue of the adapting the time step when
we present the details for practical use of the Lanczos method in a subsequent section.

Denote by Δ𝑡𝐿 and Δ𝑡𝑒 the time steps estimate of the critical time step computed by the Lanczos
and element-based methods, where the ratio 𝜌 of Δ𝑡𝐿 to Δ𝑡𝑒 is at least as large as one because of

100

((12.34)). After 𝑛𝐿 time steps, the dynamics simulation is advanced in time 𝑛𝐿Δ𝑡𝐿 . Let 𝑛𝑒 be the
number of element-based time steps so that 𝑛𝑒Δ𝑡𝑒 ≤ 𝑛𝐿Δ𝑡𝐿 < (𝑛𝑒 + 1)Δ𝑡𝑒 . In terms of 𝜌, we have
the relationship

𝑛𝑒 ≤ 𝜌𝑛𝐿 < 𝑛𝑒 + 1, (12.40)

so bounding the number of Lanczos-based explicit integration steps in terms of 𝜌 and the number
of element-based integration steps.

Let us examine the computational costs in terms of CPU time in performing the above 𝑛𝐿 and 𝑛𝑒
integration steps. Denote by 𝜏 the CPU time for an element-based time integration step and
assume that it is dominated by the cost of an internal force calculation. Using ((12.40)), the CPU
time of 𝑛𝐿 time integration steps is

(𝑛𝐿 + 𝑚)𝜏, (12.41)

and the CPU time of 𝑛𝑒 time integration steps is 𝑛𝑒𝜏. Equating these two CPU times, determines
when the cost of both approaches is equivalent and results in the relationship

𝑛̂𝑒 = 𝑚 + 𝑛̂𝐿 . (12.42)

Using ((12.42)) within ((12.40)) gives

𝑚

𝜌 − 1
≤ 𝑛̂𝐿 <

𝑚 + 1
𝜌 − 1 (12.43)

so bounding the minimum number of Lanczos-based time integration steps in terms of the number
of Lanczos iterations and 𝜌 so that the cost of the computing the Lanczos-based time step is
amortized.

Our cost benefit analysis provides theb reak-even point at which the Lanczos method becomes
cost-effective by overcoming the associated overhead. For example, let 𝜌 = 1.25 and 𝑚 = 20 so
that 𝑛̂𝐿 is bounded from below by 80, and by ((12.41)) 𝑛̂𝑒 = 100. Hence, the time integration with
the Lanczos-based and element-based estimates of the critical time step give the same simulation
time for the same CPU time. If we use the Lanczos-based time step Δ𝑡𝐿 for more than 80 time
integration steps, then the Lanczos-based approach is cost-effective.

A Lanczos-based critical time estimate is cost effective if 𝑚 is small and 𝜌 is not close to one. The
size of 𝑚 is dependent upon the ability of the Lanczos method to rapidly provide an accurate
approximation to 𝜔2

max. If 𝜌 approaches one, then the Lanczos-based critical time step approaches
the element-based critical time step, implying that 𝑛̂𝐿 must increase to offset the cost of the 𝑚
Lanczos iterations. Section Section 12.3.3.6 demonstrate that 𝑚 is small and that 𝜌 is not close to
one for realistic problems.

Our section ends by considering the additional cost involved with contact. The addition of contact
to an analysis can add computational costs to a time step that are as large as or larger than the
internal force calculations. Therefore, for an analysis with contact, running at a larger time step
than the element-based estimate can have an even greater impact on reducing CPU time for an
analysis.

101

The above analysis is easily extended to the case where we have contact. If the CPU time of
contact over a time step is some multiple 𝛾 of 𝜏, then in analogy to ((12.42)) and ((12.43)), we
have

(1 + 𝛾)𝑛̂𝑒 = 𝑚 + (1 + 𝛾)𝑛̂𝐿 ,

and

𝑚

(𝜌 − 1)(1 + 𝛾) ≤ 𝑛̂𝐿 <
𝑚 + 1 + 𝛾

(𝜌 − 1)(1 + 𝛾)

Again, for example, let 𝜌 = 1.25 and 𝑚 = 20 and assume the computational cost of contact
calculations is the same as an internal force calculation so that 𝛾 = 1. Hence, the break-even point
is 𝑛̂𝐿 = 40 and 𝑛̂𝑒 = 50. The additional cost of the contact calculations within the time integration
reduces the break-even point over that with no contact (𝛾 = 0).

12.3.3.5 Using the Lanczos-based estimate

The previous section shows how the repeated use of a Lanczos-based time step estimate could be
cost-effective within an explicit transient dynamics simulation. This section presents an adaptive
scheme that combines the Lanczos-based estimate with an element-based estimate of the critical
times-step over a number of explicit time integration steps.

Section 12.3.3.2 explained that the Lanczos method provides an approximation to the maximum
eigenvalue of (12.32) from below so overestimating the critical time step. Therefore, we scale
back the Lanczos-based time. The scheme to determine a scaled-back value employs the
element-based time step estimate. Again, let Δ𝑡𝐿 and Δ𝑡𝑒 be the time steps computed by the
Lanczos and element-based methods. The scaled back estimate for the critical time step, Δ𝑡𝑠, is
computed from the equation

Δ𝑡𝑠 = Δ𝑡𝑒 + 𝑓𝑠 (Δ𝑡𝐿 − Δ𝑡𝑒),

where 𝑓𝑠 is a scale factor. (The value for 𝑓𝑠 ranges from 0.9 to 0.95 for our problems—a rigorous
estimate can be made by using ((12.38)).) This value of 𝑓𝑠 results in Δ𝑡𝑠 close to and slightly less
than the critical time step. Once Δ𝑡𝑠 is determined, the ratio

𝑡𝑟 =
Δ𝑡𝑠
Δ𝑡𝑒

is computed. This ratio is then used to scale subsequent element-based estimates for the critical
time step. If Δ𝑡𝑒(𝑛) is the 𝑛𝑡ℎ element-based time step after the time step where the Lanczos
method is computed, then the 𝑛𝑡ℎ time step computed is

Δ𝑡(𝑛) = 𝑡𝑟Δ𝑡𝑒(𝑛) .

The ratio 𝑡𝑟 is used until the next call to the Lanczos method. The next call to the Lanczos method
is controlled by one of two mechanisms. First, the user can set the frequency with which the

102

Lanczos method is called. The user can set a parameter so that the Lanczos method is called only
once every 𝑛 time steps. This number remains fixed throughout an analysis. Second, the user can
control when the Lanczos method is called based on changes in the element-based time step. For
this second method, the change in the element-based critical time step estimate is tracked. At the
𝑛𝑡ℎ step after the call to the Lanczos iteration, the element-based time step is Δ𝑡𝑒(𝑛) . If the value

|Δ𝑡𝑒(𝑛) − Δ𝑡𝑒 |
Δ𝑡𝑒

is greater than some limit set by the user, then the Lanczos method is called. If there is a small,
monotonic change in the element-based time step over a large number of time integration steps,
this second mechanism will result in the Lanczos method being computed. If there is a large,
monotonic change in the element-based critical time step over a few time steps, the Lanczos
method will also be called.

These two mechanisms for calling the Lanczos method may be combined resulting in an adaptive
scheme for estimating the critical time step during an explicit transient dynamics simulation. For
example, suppose the second mechanism, the mechanism based on a change in the element-based
time step, results in a call to the Lanczos method. This resets the counter for the first mechanism,
the mechanism using a set number of time steps between calls to the Lanczos iteration.

12.3.3.6 Numerical experiments

This method for reusing a Lanczos-based time step estimate has been implemented in Presto [31],
and employed within a number of explicit dynamics simulations. We discuss several of these
examples.

Example one: The Lanczos method has been used to obtain a critical time step estimate for a
cubic block consisting solely of cubic elements—a 10 × 10 × 10 mesh of eight-node hexahedral
elements. We know that, for a cubic eight-node hexahedral element, the element-based estimate is
conservative by a factor of 1/

√
3. The Lanczos method yields a critical time estimate for this mesh

that is 𝜌 =
√

3 (approximately 1.732) times larger than the element-based estimate. This is done
by using 20 Lanczos vectors.

Example two: Critical time step estimates were made for two mechanical systems. The systems
consisted of cylindrical metal cans containing a variety of components. Some of these
components have relatively simple geometries, while other components have complex shapes. A
number of the components with complex shapes are a foam material used to absorb impact loads.
One component was modeled with approximately 250,000 degrees of freedom, and the other one
was modeled with approximately 350,000 degrees of freedom. For both of these models, a good
estimate for the maximum eigenvalue was obtained with the Lanczos method by computing only
twenty Lanczos vectors. For the model with 250,000 degrees of freedom, an actual analysis was
run. The value for 𝜌 for this problem was 1.83. The break-even point for this case (𝑛𝐿 = 20 and
𝜌 = 1.83) is 𝑛𝑒 = 45. It was possible to use the same scale factor for 1700 time steps for this
analysis, which is well above the break-even point. The extended use of the Lanczos based
estimate reduced the computation cost by over 56%.

103

Example three: A study of a large-scale model involving 1.7 million nodes (5.1 million degrees of
freedom) showed that only 45 Lanczos vectors were required to obtain a good estimate of the
maximum eigenvalue. The value of 𝜌 for this problems was 1.2. Use of this Lanczos based
estimated for this problem would be extremely cost-effective.

12.3.3.7 Conclusions

The Lanczos method is cost-effective for estimating the critical time step in an explicit, transient
dynamics code. The Lanczos method can give a significantly larger estimate for the critical
time-step than an element-based method (the typical scheme). The adaptive hybrid scheme
synthesizes the Lanczos-based and element-based estimates and allows us to run near the critical
time-step estimate provided by the Lanczos method.

Not all problems will lend themselves reuse of one Lanczos-based estimate for thousands of time
steps. However, if it is possible to use the Lanczos-based estimate for two to three times the
number of time steps required for break-even, we begin to see a noticeable reduction in the total
CPU time required for a problem.

In addition, to the increased efficiency we can achieve with the Lanczos iteration, we also have the
added benefit of increased accuracy. For explicit transient dynamic codes, using a time step as
close as possible to the critical time gives the most accurate answer. Reducing the time step in an
explicit transient dynamics code actually increases the error.

12.4 Implicit Finite Element Methods

To introduce the concept of an implicit time finite element method, we examine the trapezoidal
rule, which is simply the member of the Newmark family obtained by setting 𝛼 = 0, 𝛽 = 1/4, and
𝛾 = 1/2. Substitution of these values into (12.6) yields

Ma𝑛+1 + Fint(d𝑛+1) = Fext(d𝑛+1)

d𝑛+1 = d𝑛 + Δ𝑡v𝑛 +
Δ𝑡2

4
[a𝑛 + a𝑛+1]

v𝑛+1 = v𝑛 +
Δ𝑡
2

[a𝑛 + a𝑛+1] .

(12.44)

Insight into this method can be obtained by combining the first two equations in (12.44) and
solving for d𝑛+1 to get

4
Δ𝑡2

Md𝑛+1 + Fint(d𝑛+1) = Fext(d𝑛+1) + M
(
a𝑛 + Δ𝑡v𝑛 +

4
Δ𝑡2

d𝑛
)

a𝑛+1 =
4
Δ𝑡2

(d𝑛+1 − d𝑛) −
4
Δ𝑡

v𝑛 − a𝑛

v𝑛+1 = v𝑛 +
Δ𝑡
2

[a𝑛 + a𝑛+1]

(12.45)

104

Solving the first equation is the most expensive procedure involved in updating the solution from
𝑡𝑛 to 𝑡𝑛+1. This equation is not only fully coupled, but also non-linear in general due to the internal
force vector.

Note that we can write the first equation of (12.45) in terms of a dynamic incremental residual
r𝑛+1 via

r(d𝑛+1) =
[
Fext(d𝑛+1) + M

(
a𝑛 + Δ𝑡v𝑛 +

4
Δ𝑡2

d𝑛
)
−

(
4
Δ𝑡2

Md𝑛+1 + Fint(d𝑛+1)
)]

= 0 (12.46)

This system has the same form as (11.10), which suggests that the same sort of nonlinear solution
strategies are needed for implicit dynamic calculations as in quasistatics (Section 11). Equation
solving is the topic of the next chapter, where we will discuss at some length the techniques used
to solve (11.9) and (12.46) in Sierra/SolidMechanics, particularly for parallel computing.

105

This page left blank

106

13 Nonlinear Equation Solving

13.1 Introduction

This chapter discusses non-linear equation solving methods, specifically the use of iterative
algorithms for problems in solid mechanics. Although some of this work has taken place over
many years at Sandia National Labs and elsewhere, recent efforts have significantly added to the
functionality and robustness of these algorithms. This chapter primarily documents these recent
efforts. Some historical development is covered for context and completeness, hopefully showing
a complete picture of the current status of iterative solution algorithms for nonlinear solid
mechanics in Sierra/SolidMechanics.

Iterative algorithms have seen somewhat of a resurgent interest, possibly due to the advancement
of parallel computing platforms. Increases in computational speed and available memory have
raised expectations on model fidelity and problem size. Increased problem size has sparked
interest in iterative solvers because the direct solution strategy becomes increasingly inefficient as
problem size grows. A traditional implicit global solution strategy is typically based on Newton’s
method, generating fully coupled linearized equations that are often solved using a direct method.
In many applications in solid mechanics this procedure poses no particular problem for modern
computing platforms with sufficient memory. However, for large three-dimensional models of
interest, the cost of direct equation solving becomes prohibitive on any computer, except for the
largest supercomputers. This motivates the use of iterative solution strategies that do not require
the direct solution of linearized global equations.

Application of purely iterative solvers to the broad, general area of nonlinear finite element solid
mechanics problems has seen only modest success. Certain classes of problems have remained
notoriously difficult to solve. Examples of these include problems that are strongly geometrically
nonlinear, problems with nearly incompressible material response, and problems with frictional
sliding. Thus, much of this chapter is devoted to examining and discussing an implementation of a
multi-level solution strategy, where the nonlinear iterative solver is asked to solve simplified
model problems from which the real solution to these difficult problems is accumulated. This
strategy has greatly contributed to the functionality and robustness of the nonlinear iterative
solver.

13.2 The Residual

r (d𝑛+1) = Fext (d𝑛+1) − Fint (d𝑛+1) = 0 (13.1)

and the implicit dynamics problem using the trapezoidal time integration rule, (12.46), is written
as

r(d𝑛+1) =
[
Fext(d𝑛+1) + M

(
a𝑛 + Δ𝑡 v𝑛 +

4
Δ𝑡2

d𝑛
)
−

(
4
Δ𝑡2

Md𝑛+1 + Fint(d𝑛+1)
)]

= 0. (13.2)

107

In either case, the equation to be solved takes the form

r (d𝑛+1) = 0, (13.3)

where the residual r (d𝑛+1) is, in general, a nonlinear function of the solution vector d𝑛+1. This
form allows us to consider the topic of nonlinear equation solving in its most general form, with
the introduction of iterations, 𝑗 = 0, 1, 2, ..., as

r
(
(d𝑛+1) 𝑗

)
= 0, (13.4)

or simply

r 𝑗 = r
(
d 𝑗

)
= 0. (13.5)

For implicit dynamic Sierra/SM simulations, each load step from time 𝑛 to 𝑛 + 1 requires a new
nonlinear solve with sub-iterations 𝑗 = 0, 1, 2, Here we have omitted the references to the load
step, yet it is understood that, e.g., d 𝑗 is at 𝑛 + 1.

We can rewrite (13.1) and (13.2) as

r 𝑗 = Fext
𝑗 − Fint

𝑗 = 0 (13.6)

and

r 𝑗 = Fext
𝑗 − 4

Δ𝑡2
Md 𝑗 − Fint

𝑗 + F̃ = 0 (13.7)

where Fint
𝑗 = Fint (d 𝑗) = Fint ((d𝑛+1) 𝑗

)
and F̃ is the constant portion of the residual, defined as

F̃ = M
(
a𝑛 + Δ𝑡 v𝑛 +

4
Δ𝑡2

d𝑛
)
.

The task for any nonlinear equation solution technique is to improve the iterate (or guess) for the
solution vector d 𝑗 such that the residual r 𝑗 is close enough to 0. How that is done depends on the
method employed.

Fig. 13.1 depicts a generalized nonlinear loadstep solution with solution iterates 𝑗 = 0, 1, 2, ..., 𝑗∗,
where the iterates converge when

r 𝑗∗

 ≈ 0 at iteration 𝑗∗.

In (a) of Fig. 13.1, the solution starts with iterate d0 taken as the solution of the prior load step
from 𝑛 − 1 to 𝑛. (Note that the zero iterate is not always taken to be the prior solution. See Section
13.6.4 on predictors for more details.) Iterate d0 results in a residual of r0, which then informs the
next iterate d1 such that ‖r1‖ < ‖r0‖. For details on how d1 is formed, see the following Sections
Section 13.3 through Section 13.8. In (b) and (c) this procedure from iteration 𝑗 to 𝑗 + 1 is
depicted, and in (d) the solution procedure has converged at iteration 𝑗∗ with iterate d 𝑗∗ . The load
step from 𝑛 to 𝑛 + 1 is then solved, and the solution procedure for the next load step from 𝑛 + 1 to
𝑛 + 2 starts over in (a).

108

Fig. 13.1 Graphical depiction of nonlinear iterations.

109

13.3 Gradient Property of the Residual

The residual has the very important property that it points in the steepest descent or gradient
direction of the function 𝑓 :

𝑓
(
d 𝑗

)
=

1
2

(
d 𝑗 − d∗)𝑇 r(d 𝑗), (13.8)

which is the energy error of the residual. Solving for d 𝑗 = d∗ is equivalent to minimizing the
energy error of the residual, 𝑓

(
d 𝑗

)
.

The importance of this property can not be overemphasized. Any iterative solver makes use of it
in some way or another. Even though the solution d∗ is not known, a non-zero residual points the
way to improving the guess. Mathematically, our nonlinear solid mechanics problem looks like a
minimization problem discussed at length in the optimization literature, see e.g. [36]. It is from
this viewpoint that the remainder of the nonlinear solution methods will be discussed. The
concept of the energy error of the residual reveals important physical insights into how iterative
algorithms are expected to perform on particular classes of problems.

An example of the energy error of the residual providing physical insight into a problem is
demonstrated in Fig. 13.2.

Two beams, one thick and one thin, are subjected to a uniform pressure load causing a downward
deflection to the equilibrium point (𝑑1, 𝑑2) indicated by the blue dot. If we think of modes of
deformation rather than the nodal degrees of freedom (𝑑1, 𝑑2), two modes of deformation come to
mind: a bending mode and an axial mode.

For the thick beam in Fig. 13.3, the red dashed line is the locus of points (𝑑1, 𝑑2) that induce only
bending stresses in the beam and is therefore called a bending mode. In contrast, the blue dashed
line is the locus of points (𝑑1, 𝑑2) that induce only axial stresses in the beam and is therefore
called an axial mode. These bending and axial modes are characterized by the eigenvectors 𝑞𝑏
and 𝑞𝑎, respectively.

Eigenvectors are typically written as linear combinations of the nodal degrees of freedom. The
bending modes, for example, can be written as 𝑞𝑏 = 𝑎1𝑑1 + 𝑎2𝑑2. However, since we are dealing
with a nonlinear problem in our simple example (and in general), the coefficients 𝑎1 and 𝑎2 vary
with the deformation of the beam - which is precisely why the dashed red line is curved. The
energy error contours can thus be displayed, as shown in Fig. 13.4. Any displacement away from
the equilibrium point (𝑑1, 𝑑2)∗ produces a nonzero residual and consequently requires work.

Now we compare moving the tip of the beam along the red dashed line, which invokes a bending
mode of deformation of the beam versus moving the tip along the blue dashed line, which invokes
an axial mode of deformation. The larger modal stiffness (eigenvalue) corresponding to the axial
mode induces a greater energy penalty for a given amount of displacement compared to the
bending mode. This produces the stretched energy contours shown. Since the ratio of stiffness
between the axial and bending modes is much larger for the thin beam than the thick beam, the
stretching of the energy error contours is more pronounced for the thin beam. Mathematically,
these contours are a graphical representation of the gradient of the residual, ∇r(d).

110

Fig. 13.2 Energy error example: two beams with large and small 𝑥-sectional moments of inertia.

111

Fig. 13.3 Energy error example: modes of deformation for two beams.

Fig. 13.4 Energy error example: energy error contours for two beams.

112

The beam example is chosen for its simplicity, however it also poses a non-trivial nonlinear
problem. Experience has shown that the thinner the beam becomes the more difficult it is to solve.
In fact, convergence investigations reveal that it is the ratio of maximum to minimum eigenvalue
of ∇r(d) that is critical to the performance of iterative methods.

13.4 Newton’s Method for Solving Nonlinear Equations

In this context, the idea embodied in classical Newton’s method is simple. Substituting the
nonlinear residual r(d 𝑗) with the local tangent approximation y(d) gives

y(d) = r(d 𝑗) + ∇r(d 𝑗) (d − d 𝑗), (13.9)

which is linear in the vector of unknowns (d). Solving (13.9) (solving for y(d) = y(d 𝑗+1) = 0)
gives the iterative update for Newton’s method,

d 𝑗+1 = d 𝑗 − ∇r−1(d 𝑗)r(d 𝑗). (13.10)

The structural mechanics community commonly refers to the tangent stiffness matrix in the
context of geometrically nonlinear problems. Based on (13.9), the tangent stiffness matrix arises
from the tangent approximation of 𝑓 (d 𝑗):

K𝑇 = ∇r(d 𝑗). (13.11)

Then (13.10) can be written as

d 𝑗+1 = d 𝑗 − [K𝑇]−1 r(d 𝑗), (13.12)

the solution of which requires the inverse of K𝑇 .

A conceptual view of Newton’s method applied to our two beam example is shown in Fig. 13.5.

Newton’s method is generally considered to be the most robust of the nonlinear equation solution
techniques, albeit at the cost of generating the tangent stiffness matrix (13.11) and solving the
linear system of equations with 𝑛𝑑𝑜 𝑓 unknowns:

[K𝑇]
(
d 𝑗+1 − d 𝑗

)
= −r(d 𝑗). (13.13)

There are a number of linear equation solution techniques available, and
Sierra/SolidMechanicshas the ability to apply a linear equation solution approach available in the
FETI library (discussed briefly in section Section 13.7).

As mentioned, Newton’s method relies on computing the tangent stiffness matrix which, by
examination of (13.14), requires the partial derivatives (with respect to the unknowns) of the
external and internal force vector,

K𝑇 =
𝜕

𝜕d

[
Fext
𝑗 − Fint

𝑗

]
. (13.14)

113

Fig. 13.5 Energy error example: Newton’s method applied to two beams.

114

In practice, for all but the simplest of material models, the exact tangent cannot be computed.
Thus Sierra/SolidMechanics computes a secant approximation with the property

K𝑇 · (𝛿d) = r(d 𝑗 + 𝛿d) − r(d 𝑗) (13.15)

by simply probing the nonlinear system via perturbations 𝛿d. In (13.15), the notation K𝑇 is used
to indicate that the probed tangent is an approximation of the exact tangent.

13.5 Steepest Descent Method

As mentioned in section Section 13.3, the steepest descent iteration takes steps in the direction of
the gradient of the energy error of the residual. On its own, it would not be considered a viable
solver for solid mechanics because of its general lack of performance compared to Newton-based
methods. However, there are algorithmic elements of this method that are conceptually important
for understanding nonlinear iterative solver such as the method of conjugate gradients, and in fact
are used in their construction.

The idea behind the steepest descent method is to construct a sequence of search directions, s 𝑗 ,

s 𝑗 = M−1g 𝑗 = −M−1r(d 𝑗), (13.16)

in which the energy decreases, thus producing a new guess of the solution vector

d 𝑗+1 = d 𝑗 + 𝛼s 𝑗 . (13.17)

The minimization is accomplished by taking a step of length 𝛼 along s 𝑗 , where 𝛼 is called the line
search parameter:

d
d𝛼

𝑓 (d 𝑗 + 𝛼s 𝑗) ≈
[
r(d 𝑗)

]𝑇 s 𝑗 + 𝛼
[
r(d 𝑗 + s 𝑗) − r(d 𝑗)

]𝑇 s 𝑗 = 0, (13.18)

which, after simplification, gives

𝛼 =

[
r(d 𝑗)

]𝑇 s 𝑗[
r(d 𝑗 + s 𝑗) − r(d 𝑗)

]𝑇 s 𝑗
. (13.19)

The preconditioner matrix M is included in (13.16) to accelerate the convergence rate of the
steepest descent method. Note that in this case M is not meant to be the mass matrix.

Fig. 13.6 through Fig. 13.8 all show high aspect ratio ellipses. It turns out that the ideal
preconditioner would transform the ellipses to circles; this, in turn, would be M = K𝑇 . As
expected, the ideal steepest descent method is Newton’s method. However, the steepest descent
framework gives us a way to use approximations of K𝑇 .

A conceptual view of the steepest descent method applied to our two beam example is shown in
Fig. 13.6. As indicated in the figure, the thinner beam would require more steepest descent
iterations to obtain convergence compared to the thicker beam.

115

Fig. 13.6 Energy error example: Steepest descent method applied to two beams.

116

It is instructive to consider whether or not the large number of iterations are due to the
nonlinearities in this model problem. For this purpose, we construct the two beam model problem
in linearized form. Fig. 13.7 shows the first iteration of the steepest descent method for the
linearized problem. The immediate difference seen between the linearized version and the
nonlinear problem is in the elliptic form of the energy error contours. However, the contours are
still stretched reflecting the relative modal stiffness of the axial and bending modes. Thus, from
the same starting point, 𝑑1 = 𝑑2 = 0, the initial search direction is composed of different amounts
of 𝑑1 and 𝑑2. This is also apparent in all subsequent iterations. Fig. 13.8 shows the completed
iterations for both thick and thin beams.

Fig. 13.7 Energy error example: First two iterations of the steepest descent method applied to
linearized version of the two beam problem.

Even for the linearized problem, there is a large difference in the number of iterations required for
the steepest descent method to converge for the two beams. We can see this because the slope of
the search directions is smaller for the thin beam. Therefore, each iteration makes less progress to
the solution.

In general, the convergence rate of the steepest descent method is directly related to the spread of
the eigenvalues in the problem. In our conceptual beam example, the ratio 𝜆max/𝜆min = 𝜆𝑎/𝜆𝑏
(often called the condition number) is larger for the thin beam. It can be shown that in the worst

117

Fig. 13.8 Energy error example: Steepest descent method applied to linearized version of the two
beam problem.

118

case, the steepest descent iterations reduce the energy error of the residual according to

𝑓 (d 𝑗+1) =
(
𝜆max/𝜆min − 1
𝜆max/𝜆min + 1

)2
𝑓 (d 𝑗). (13.20)

13.6 Method of Conjugate Gradients

With the foundation provided by the steepest descent method, application of a conjugate gradient
algorithm to (13.6) or (13.7) follows in a straightforward manner. Like the steepest descent
method, the important feature the conjugate gradient (or CG) algorithm is that it only needs to
compute the nodal residual vectors element by element, and as a result, does not need the large
amount of storage required for Newton’s method.

The method of conjugate gradients is a well-developed algorithm for solving linear equations.
Much of the original work can be found in the articles [7, 8, 14] and the books [23, 41]. A
convergence proof of CG with inexact line searches can be found in [19], and a well-presented
tutorial of linear CG can be found in [46]. The goal here is to review the method of conjugate
gradients to understand the benefits and potential difficulties encountered when applying it to the
solution of the nonlinear equations in solid mechanics problems.

13.6.1 Linear CG

The CG algorithm also uses the gradient, g 𝑗 , to generate a sequence of search directions s 𝑗 for
iterations 𝑗 = 1, 2, ...:

s 𝑗 = −M−1r(d 𝑗) + 𝛽 𝑗s 𝑗−1. (13.21)

Note the additional (rightmost) term in (13.21) relative to the steepest descent algorithm of
(13.16). The scalar 𝛽 𝑗 is chosen such that s 𝑗 and s 𝑗−1 are K-conjugate; this property is key to the
success of the CG algorithm. Vectors s 𝑗 and s 𝑗−1 are K-conjugate if

s𝑇𝑗 Ks 𝑗−1 = 0, (13.22)

where K is the stiffness matrix. For a linear problem, K is a constant positive definite matrix
(assuming the internal force of (13.14) is linear). Combining (13.21) and (13.22) gives the
following expression for the search direction:

s 𝑗 =
g𝑇𝑗 Ks 𝑗−1

s𝑇𝑗−1Ks 𝑗−1
. (13.23)

Effective progress toward the solution requires minimizing the energy error of the residual along
proposed search directions. As with the steepest descent method, the line search performs this

119

function. Minimizing the energy error of the residual along the search direction occurs where the
inner product of the gradient and the search direction is zero:

g𝑇𝑗 (Δd 𝑗 + 𝛼s 𝑗)s 𝑗 =
[
ΔFext(𝑡) − K · (Δd 𝑗 + 𝛼s 𝑗)

]𝑇 M−1s 𝑗
=

[
(ΔFext(𝑡) − K · (Δd 𝑗)𝑇 − (K · 𝛼s 𝑗)𝑇

]
M−1s 𝑗

= g𝑇𝑗 s 𝑗 − 𝛼 𝑗s𝑇𝑗 K𝑇M−1s 𝑗
= 0.

(13.24)

Solving (13.24) gives an exact expression for the line search parameter 𝛼,

𝛼 𝑗 =
g𝑇𝑗 s 𝑗

s𝑇𝑗 M−1Ks 𝑗
, (13.25)

due to the inherent symmetry of K.

The essential feature of the method of conjugate gradients is that once a search direction
contributes to the solution, it need never be considered again. As a result, the inner product of the
error e changes from iteration to iteration in the following manner

e 𝑗+1Ke 𝑗+1 − e 𝑗Ke 𝑗 =
𝑛−1∑
𝑖= 𝑗+1

𝛿𝑖s𝑖

𝑇

K

𝑛−1∑
𝑖= 𝑗+1

𝛿𝑖s𝑖
 −

𝛿 𝑗s 𝑗 +
𝑛−1∑
𝑖= 𝑗+1

𝛿𝑖s𝑖

𝑇

K
𝛿 𝑗s 𝑗 +

𝑛−1∑
𝑖= 𝑗+1

𝛿𝑖s𝑖


= −
[
𝛿 𝑗s 𝑗

]𝑇 K
[
𝛿 𝑗s 𝑗

]
.

(13.26)

Since K is constant and positive definite, the energy error of the residual decreases monotonically
as the iterations proceed. Choosing 𝛽 𝑗 such that the property in (13.22) holds gives the important
result that the sequence of search directions s1, s2, ... spans the solution space in at most 𝑛𝑒𝑞
iterations. Furthermore, (13.26) reveals that the search directions s1, s2, ... reduce the error in the
highest eigenvalue mode shapes first and progressively move to lower ones.

An additional important numerical property of CG is that it can tolerate some inexactness in the
line search as discussed in [18] and still maintain its convergence properties.

Applying linear CG to our simple linearized beam model problem would generate the comparison
depicted in Fig. 13.9. The fact that the linear CG algorithm precisely converges in two iterations
demonstrates the significance of the orthogonalization with the previous search direction.

13.6.2 Nonlinear CG

For fully nonlinear problems, where the kinematics of the system are not confined to small strains,
the material response is potentially nonlinear and inelastic, and the contact interactions feature
potentially large relative motions between surfaces with frictional response, the residual is a
function of the unknown configuration at (𝑛 + 1), as indicated in (13.1) and (13.2).

120

Fig. 13.9 A comparison of steepest descent and linear CG methods applied to the linearized beam
example.

121

Nonetheless, in application of linear CG concepts, it is typical to proceed with the requirement
that the new search direction satisfy

s𝑇𝑗 (g 𝑗 − g 𝑗−1) = 0. (13.27)

A comparison of (13.27) and (13.22) reveals that (g 𝑗 − g 𝑗−1) can be interpreted to mean the
instantaneous representation of K𝑁𝐿s 𝑗−1 to the extent that the incremental solution is known and
therefore, how it influences the residual.

Combining (13.21) and (13.27) gives the following result for the search direction

s 𝑗 = 𝛽 𝑗s 𝑗−1 − g 𝑗 =

(
g𝑇𝑗 (g 𝑗 − g 𝑗−1)

s𝑇𝑗−1(g 𝑗 − g 𝑗−1)

)
s 𝑗−1 − g 𝑗 . (13.28)

Use of 𝛽 𝑗 as implied in (13.28) is proposed in the nonlinear CG algorithm in [24]. Alternatives to
𝛽 𝑗 have also been proposed. For example, simplification of (13.28) is possible if it can be
assumed that previous line searches were exact, in which case

s𝑇𝑗−1g 𝑗 = s𝑇𝑗−2g 𝑗−1 = 0. (13.29)

The orthogonality implied in (13.29) allows the following simplification to the expression for the
search direction:

s 𝑗 =

(
g𝑇𝑗 (g 𝑗 − g 𝑗−1)
−s𝑇𝑗−1g 𝑗−1

)
=

(
g𝑇𝑗 (g 𝑗 − g 𝑗−1)

−(𝛽 𝑗−1s 𝑗−2 − g 𝑗−1)𝑇g 𝑗−1

)
=

(
g𝑇𝑗 (g 𝑗 − g 𝑗−1)

g𝑇𝑗−1g 𝑗−1

)
. (13.30)

Use of the result in (13.30) to define the search directions is recommended in the nonlinear CG
algorithm in [19]. The Solid Mechanics code adopts this approach because it has performed better
overall. There are, however, instances when the condition implied in (13.29) is not satisfied (due
to either highly nonlinear response or significantly approximate line searches).

The orthogonality ratio is computed every iteration to determine the nonlinearity of the problem
and/or the inexactness of the previous line search. When the orthogonality ratio exceeds a
nominal value (default is 0.1), the nonlinear CG algorithm is reset by setting

s 𝑗 = g 𝑗 . (13.31)

We recognize that the line search must be more general to account for potential nonlinearities.
Minimizing the gradient g𝑇 (Δd 𝑗 + 𝛼 𝑗s 𝑗) along the search direction s 𝑗 still occurs where their
inner product is zero, but an exact expression for 𝛼 𝑗 can no longer be obtained. A secant method
for estimating the rate of change of the gradient along s 𝑗 is employed. Setting the expression to
zero will yield the value of 𝛼 𝑗 that ensures the gradient is orthogonal to the search direction:

d
d𝛼

[
g𝑇

(
d 𝑗 + 𝛼s 𝑗

)]
𝛼=0 s 𝑗 ≈ g𝑇

(
d 𝑗

)
s 𝑗 + 𝛼 𝑗s𝑇𝑗

[
d

d𝛼
[g𝑇

(
d 𝑗 + 𝛼s 𝑗

)
]𝛼=0

]
s 𝑗 = 0, (13.32)

122

where
[d

d𝛼 [g𝑇 (d 𝑗 + 𝛼s 𝑗)]𝛼=0
]
is the instantaneous representation of the tangent stiffness matrix.

In order to preserve the memory efficient attribute of nonlinear CG, a secant approximation of the
tangent stiffness is obtained by evaluating the gradient at distinct points 𝛼 = 0 and 𝛼 = 𝜖 ,[

d
d𝛼

[g𝑇 (d 𝑗 + 𝛼s 𝑗)]𝜖𝛼=0

]
=

1
𝜖

[
g𝑇 (d 𝑗 + 𝛼s 𝑗)

]
𝛼=𝜖 −

[
g𝑇 (d 𝑗 + 𝛼s 𝑗)

]
𝛼=0 . (13.33)

Substituting (13.33) into (13.32) and taking 𝜖 = 1 yields the following result for the value of the
line search parameter 𝛼 𝑗 :

𝛼 𝑗 =
−g𝑇 (Δd 𝑗)s 𝑗

g𝑇 (Δd 𝑗 + s 𝑗) − g𝑇 (Δd 𝑗)s 𝑗
. (13.34)

Applying nonlinear CG to our simple beam model problem would conceptually generate the
iterations depicted in Fig. 13.10.

Fig. 13.10 Nonlinear conjugate gradient method applied to the two beam problem.

123

13.6.3 Convergence Properties of CG

It is well known that the convergence rates of iterative, matrix-free solution algorithms such as
CG are highly dependent on the eigenvalue spectrum of the underlying equations. In the case of
linear systems of equations, where the gradient direction varies linearly with the solution error, the
number of iterations required for convergence is bounded by the number of degrees of freedom.
Unfortunately, no such guarantee exists for nonlinear equations. In practice, it is observed that
convergence is unpredictable. Depending on the nonlinearities, a solution may be obtained in
surprisingly few iterations, or the solution may be intractable even with innumerable iterations
and the reset strategy of (13.31), where the search direction is reset to the steepest descent
(current gradient) direction.

As a practical matter, for all but the smallest problem there is an expectation that convergence will
be obtained in fewer iterations. In order to understand the conditions under which this is even
possible, we summarize here an analysis (which can be found in many texts) of the convergence
rate of the method of conjugate gradients.

𝑓 (d 𝑗) = 2

(√
𝜆max/𝜆min − 1√
𝜆max/𝜆min + 1

) 𝑗
𝑓 (d0). (13.35)

Several important conclusions can be drawn from this analysis. First, convergence of linear CG as
a whole is only as fast as the worst eigenmode. Second, it is not only the spread between the
maximum and minimum eigenvalues that is important but also the number of distinct eigenvalues
in the spectrum. Finally, the starting value of the residual can influence the convergence path to
the solution.

These conclusions hold for the case of CG applied to the linear equations, yet they remain an
important reminder of what should be expected in the nonlinear case. They can provide guidance
when the convergence behavior deteriorates.

13.6.4 Predictors

One of the most beneficial capabilities added to the nonlinear preconditioned CG iterative solver
(nlPCG) is the ability to generate a good starting vector. Algorithmically, good starting vector is
simply

d∗𝑝𝑟𝑒𝑑∗
0 = d0 + Δd∗𝑝𝑟𝑒𝑑∗, (13.36)

where Δd∗𝑝𝑟𝑒𝑑∗ is called the predictor.

This can dramatically improve the convergence rate. A perfect predictor would give a
configuration that has no inherent error, and thus no iterations would be required to improve the
solution.

Any other predicted configuration, of course, has error associated with it. This error can be
expressed as a linear combination of distinct eigenvectors. Theoretically, CG will iterate at most

124

to the same number as there are distinct eigenvectors. The goal is to generate a predictor with less
computational work than that required to iterate to the same configuration.

Computing the incremental solution from the previous step to the current one, and using this
increment to extrapolate a guess to the next is a cost effective predictor. Not only is it trivially
computed, but it also contains modes shapes that are actively participating in the solution. That
is,

Δd∗𝑝𝑟𝑒𝑑∗ = d𝑛−1
𝑗∗ − d𝑛−1

0 (13.37)

and therefore,

d𝑛,∗𝑝𝑟𝑒𝑑∗0 = d𝑛0 + Δd∗𝑝𝑟𝑒𝑑∗. (13.38)

In (13.37), (𝑛 − 1) refers to the previous load step, as we explicitly write the predicted
configuration d𝑛,∗𝑝𝑟𝑒𝑑∗0 for load step 𝑛 in (13.38).

When the solution path is smooth and gradually varying, this predictor is extremely effective. A
slight improvement can be made by performing a line search along the predictor in which case it
is more appropriately named a starting search direction. The effect of a simple linear predictor on
our simple beam model problem is depicted in Fig. 13.11.

13.6.5 Preconditioned CG

We have mentioned the preconditioner M without any specifics on how it is formed.
Preconditioning is essential for good performance of the CG solver. Sierra/SolidMechanics offers
two forms of preconditioning, the nodal preconditioner and the full tangent preconditioner. The
nodal preconditioner is constructed by simply computing and assembling the 3 × 3 block diagonal
entry of the gradient of the residual, (13.11). In this most general case, the precondition will
contain contributions from both the internal force and external force. Sierra/SolidMechanics at
this point only includes the contribution to the nodal preconditioner from the internal force:

[
M𝑛𝑃𝐶
𝐼

]
=

[∫
𝜑ℎ𝑡 (Ω)

[
𝑁𝐼,𝑖

(
𝜑−1
𝑡 (x)

)
C𝑁𝐼, 𝑗

(
𝜑−1
𝑡 (x)

)]
d𝑣

]
, (13.39)

where the term C in (13.39) is the instantaneous tangent material properties describing the
material. For the many nonlinear material models supported by the Solid Mechanics module,
exact material tangents would be onerous. A simple but effective alternative is to assume an
equivalent hypo-elastic material response for every material model where the hypo-elastic bulk
and shear moduli are conservatively set to the largest values that the material model may obtain.
The formation of the nodal preconditioner is therefore simple, and need only be performed once
per load step.

The full tangent preconditioner is constructed by computing the tangent stiffness matrix. As
mentioned in section Section 13.4, the tangent stiffness is obtained via probing (13.15), the
nonlinear system of equations.

125

Fig. 13.11 A linear predictor applied to the beam problem can produce a good starting point.

126

13.7 Parallel Linear Equation Solving

FETI is now a well established approach for solving a linear system of equations on parallel
MPI-based computer architectures. Its inception and early development is described in [49].
Prevalent in the literature is a description of the FETI algorithm as the foundation for a parallel
implementation of Newton’s method and its typical requirement for direct equation solving
capability. The dual-primal unified FETI method which forms the basis of the Sierra/SM’s FETI
solver was introduced in [9, 10].

The Sierra/SM module generalizes the use of FETI to include not just a means to provide
Newton’s method, but also as a preconditioner for nonlinear preconditioned conjugate gradient.
The basic notion of FETI is embodied in its name, Finite Element Tearing and Interconnecting,
resulting in a separability of the linear system of equations to sub-problems, one for each
processor.

13.8 Enforcing Constraints within Solvers

Theoretically, constraint enforcement is reasonably straightforward. However, performance and/or
robustness difficulties reveal themselves in the practical use of solvers where there are many
constraints and/or a changing active constraint set. It is in the application of the methods for
treating constraints within the solver where difficulties start. Mathematically, there are two broad
categories of constraints, equality constraints and inequality constraints. Again, with the aid of
the simple beam example we have used throughout this chapter, Fig. 13.12 shows where one
would encounter such constraints in practice.

At the fixed end of the cantilever beam, where the displacements are required to be zero, we pose
an equality constraint,

h(d) = 0. (13.40)

(13.40) is written in matrix notation and can alternatively be written in index notation as

ℎ𝐿 (𝑑𝑖) = 0 , 𝐿 = 1, 𝑛con , 𝑖 = 1, 𝑛dofpn, (13.41)

where h is the constraint operator. The constraint operator is simply the collection by row of all
the equality constraints (in this case, 𝑛con = 2). Notice that for the fixed end of the beam, the
constraint operator is very simple. All of the constraints are linear with respect to the
displacements 𝑑 𝐼=1

1 and 𝑑 𝐼=1
2 . The form of the equality constraint operator may be linear, 𝛼𝑖𝑑𝑖 = 0,

or nonlinear. However, the essential feature is that the unknowns can be written on the left-hand
side of the equation.

Returning to our simple beam example, the ellipse presents itself as an obstacle to the motion of
the tip of the beam. It constrains node 2 to be outside the ellipse that has major axis 𝑎, minor axis
𝑏, is centered at (0, 𝑐) and is rotated by angle 𝛼 with respect to the horizontal axis. Given these

127

Fig. 13.12 Simple beam example with constraints.

128

specifications for the location and orientation of the obstacle, we write the following inequality
constraint

g(d) ≥ 0, (13.42)

in matrix notation, and alternatively in index notation as

𝑡 (𝑑𝑖) ≥ 0 , 𝐿 = 1, 𝑛con , 𝑖 = 1, 𝑛dofpn. (13.43)

Fig. 13.13 (a) and (b) is a graphical depiction of the energy error contours as they are modified
when using a Lagrange multiplier method and a penalty method, respectively.

Fig. 13.13 Energy error contours for simple beam example with constraints.

Fig. 13.14 is a graphical depiction of the energy error contours as they are modified when using an
augmented Lagrangian (mixed Lagrangian, penalty) method. As the tip of the beam is penetrating
the ellipse (violating the kinematic constraint), a penalty force is generated according to

𝑓
(
𝑑𝑘+ 𝑗/ 𝑗∗

)
=

1
2

(
𝑑𝑘+ 𝑗/ 𝑗∗ − 𝑑∗

)𝑇
𝑟
(
𝑑𝑘+ 𝑗/ 𝑗∗

)
+ 𝜆𝑇𝑘𝐻

(
𝑑𝑘+ 𝑗/ 𝑗∗

)
+ 1

2
𝜀𝑔𝑔

𝑇 (
𝑑𝑘+ 𝑗/ 𝑗∗

)
𝑔

(
𝑑𝑘+ 𝑗/ 𝑗∗

)
,

(13.44)

129

in which it is apparent that an augmented Lagrange method is a combination of a Lagrange
multiplier method and a penalty method. The advantage of this approach is that the penalty 𝜀𝑔 can
be soft, thus avoiding the ill-conditioning associated with penalty methods that must rely on
overly stiff penalty parameters for acceptable constraint enforcement.

Fig. 13.14 Energy error contours for simple beam example with constraints.

The soft penalty parameter is indicated by the energy error contours increasing only moderately.
The iteration counter 𝑗 refers to the nonlinear CG iteration. It proceeds from 𝑗 = 1, 2, . . . to 𝑗∗,
where the well-conditioned model problem is converged. However, because of the soft penalty
parameter, there is a significant constraint violation. Introducing an outer loop and the concept of
nested iterations, repeated solutions of the well-conditioned problem are solved while the
multiplier, 𝜆𝑘 , is updated in each of the outer iterations, 𝑘 = 1, 2,

Fig. 13.15 shows a graphical depiction of the updates of the Lagrange multiplier. The iteration
counter 𝑘 refers to the outer Lagrange multiplier update. Although not immediate obvious, once
the multiplier is updated, dis-equilibrium is introduced (especially in the early updates) and a new
model problem must be solved. Eventually, as the multiplier converges, the constraint error tends
to zero as well as the corresponding dis-equilibrium.

130

Fig. 13.15 Energy error contours for simple beam example with constraints.

131

13.9 Multi-Level Iterative Solver

The multi-level solver concept is based on a strategy where an attribute and/or nonlinearity is
controlled within the nonlinear solver. It is important to recognize that complete linearization (as
in a Newton Raphson approach) is not necessary and in many cases not optimal. Furthermore,
there are several cases where nonlinearities are not even the source of the poor convergence
behavior. The essential concept of the strategy is to identify the feature that makes convergence
difficult to achieve and to control it in a manner that encourages the nonlinear core solver to
converge to the greatest extent possible.

The control is accomplished by holding fixed a variable that would ordinarily be free to change
during the iteration, by reducing the stiffness of dilatational modes of deformation, or by
restricting the search directions to span only a selected sub-space. The core CG solver is used to
solve a model problem - a problem where the control is active. When the core CG solver is
converged, an update on the controlled variable is performed, the residual is recalculated, and a
new model problem is solved. The approach has similarities to a Newton Raphson algorithm, as
shown in Fig. 13.16.

Fig. 13.16 A schematic of a single-level multi-level solver.

The generality of the multi-level solver is apparent in the case where multiple controls are active.

132

Multiple controls can occur at a single-level or be nested at different levels - hence the name
multi-level solver. Fig. 13.17 depicts a 2-level multi-level solver.

Fig. 13.17 A schematic of a two-level multi-level solver.

As depicted in Fig. 13.16 and Fig. 13.17, the iterative solver by its nature solves the model
problem and/or the nested problem within some specified tolerance (as opposed to nearly exact
solutions obtained by a direct solver). The inexactness of these solves is most often not an issue,
however there are some cases where a certain amount of precision is required.

133

This page left blank

134

14 Element Basics

14.1 Properties of Shape Functions

In this chapter we explore the basic issues associated with the design of finite elements, which are
the building blocks of the methods we have discussed. In particular we will discuss how
definitions and manipulations are done at the local level to produce the elemental quantities, like
m𝑒, fint𝑒 , and k𝑒, that are needed for assembly and solution of the global equations of motion. We
concentrate in this chapter on one-field problems, i.e., where only the deformation mapping 𝜑𝑡 is
discretized. It will turn out that many nonlinear solid mechanics applications of interest, including
nearly incompressible elasticity and metal plasticity, require more sophisticated approximations in
which other variables (like pressure) must be explicitly included in the formulation.

To start, we discuss in general terms the requirements usually placed upon shape function
definitions. It should be noted that these conditions are sufficient but not necessary, so that many
formulations exist that violate one or more of them. However, it is also fair to say that most finite
elements in wide use satisfy the conditions we will discuss.

The first condition relates to convergence of the finite element method in general, and the
implication on properties of shape functions for elements. We begin by defining 𝑚, which will
denote the highest order shape function spatial derivative present in the expression for the stiffness
matrix. For the class of problems we have considered so far, we find from Section 13 that the
element stiffness takes the form

𝑘𝑒𝑝𝑞

(
d𝑒

𝑖

𝑛+1

)
=
𝜕 𝑓 int𝑝

𝜕𝑑𝑒𝑞

(
d𝑒

𝑖

𝑛+1

)
(14.1)

The internal force vector required in (14.1) was given generically in Section 10, equations (10.43)
and (10.44), as:

𝑓 int,𝑒
𝑝 =

∫
𝜑ℎ𝑡 (Ω𝑒)


3∑
𝑗=1

𝑁𝑎, 𝑗

(
𝜑−1
𝑡 (x)

)
𝑇 ℎ𝑖 𝑗

 d𝑣 (14.2)

Performing the differentiation indicated in (14.1) will produce no higher than first-order
derivatives of the shape functions; therefore 𝑚 = 1.

The three general convergence requirements we need to mention are as follows:

• The global shape function 𝑁𝐽 should have global continuity of the order 𝑚 − 1. In
mathematical terms, they should be 𝐶𝑚−1 on Ωℎ.

• The restriction of the global shape functions to individual elements (i.e., the {𝑁𝐽}) should
be 𝐶𝑚 on the element interiors.

• The elemental shape functions {𝑁𝐽} should be complete.

The first two of these requirements are fairly simple to understand. The first, 𝐶𝑚−1 continuity
requirement, simply means that all derivatives up to 𝑚 − 1 of the shape functions should not

135

undergo jumps as element boundaries are crossed. In the current case this means that all 𝑁𝐽
should be 𝐶0 continuous. Since the approximation to the configuration mapping 𝜑ℎ𝑡 is a linear
combination of these shape functions, we see that the physical restriction placed by this condition
amounts to no more that a requirement that the displacement be single-valued throughout the
domain (i.e., gaps and interpenetrations at element boundaries may not occur).

The second requirement on element interiors simply states that the shape functions should be
sufficiently smooth so that the element stiffness expressions are integrable. Physically speaking,
the first derivatives of the configuration mapping produces strain measures, so we simply require
that the strains be well-behaved on element interiors by this restriction. Note that global
smoothness of the strains (and therefore stresses) is not required. This point is of some
importance in the reporting of results, as we discuss later.

The third requirement, the completeness requirement, is somewhat more involved to explain and
yet corresponds fairly directly to physical ideas. We say that a given element is complete when
setting the element degrees of freedom according to a given low-order polynomial forces the
solution 𝜑ℎ𝑡 to be interpolated according to the same polynomial point wise in the element. The
degree of polynomials for which we place this requirement is referred to as the degree of
completeness for the element.

In the current case where we deal with solid continua, the usual degree of completeness demanded
is 1. This means that all global solutions representable by polynomials, up to and including order
1, should be exactly representable by the element. It is worthwhile to consider an example of this
point. Suppose we are in three dimensions and set element degrees of freedom via

d𝑒𝑎 = 𝑐0 + 𝑐1𝑋
𝑒
𝑎e𝑥 + 𝑐2𝑌

𝑒
𝑎 e𝑦 + 𝑐3𝑍

𝑒
𝑎e𝑧, (14.3)

where 𝑐0, 𝑐1, 𝑐2, 𝑐3 are arbitrary constants and 𝑋𝑒𝑎 , 𝑌 𝑒𝑎 , 𝑍𝑒𝑎 are the reference coordinates for local
node number 𝑎. The completeness condition requires that

𝜑ℎ𝑡 (X𝑒) =
𝑛𝑒𝑛∑
𝑎=1

𝑁𝑎 (X𝑒)d𝑒𝑎 =
(
𝑐0 + 𝑐1𝑋

𝑒e𝑥 + 𝑐2𝑌
𝑒e𝑦 + 𝑐3𝑍

𝑒e𝑧
)

(14.4)

hold for all X𝑒 ∈ Ω𝑒 and for all values of the arbitrary constants.

14.1.1 Element patch test

As mentioned above, the completeness requirement has a physical interpretation as well. In solid
mechanics we have already pointed out that the first spatial derivatives of the displacements
produce strains. Since we require that an element be able to reproduce arbitrary global solutions
that are linear polynomials, this also implies that any state where the first derivatives (i.e., strains)
are constant should be exactly representable. Thus a complete element should be able to exactly
represent any uniform strain state. A practical way to test for this condition is to impose a
boundary value problem on an arbitrary patch of elements having a constant strain (and thus
stress) solution and then demand exactness of the numerical solution. Such a test is called a patch

136

test and has become one of the standard benchmarks by which any new proposed element
formulation is tested and evaluated.

A particularly useful instantiation of the patch test is to prescribe a combined rigid body rotation
and stretch, making use of all of the constants 𝑐0, 𝑐1, …, as depicted graphically in Fig. 14.1.
Here a piecewise combination of global linear function are specified.

Fig. 14.1 Element Patch test in 2D.

14.2 Parameterization

With these three criteria in hand for element definitions, we proceed to define a recipe through
which element definitions and manipulations can be systematically performed. The most basic
definition to be made toward this end is the concept of the local (or parent) parameterization of an
element. In effect we seek to define a local coordinate system that will be the same for every
element in a problem, which contributes in great part to the modularity we will desire for element
level operations.

We will denote a vector of these local variables by r, with r being a 2-vector in two dimensions

137

and a 3-vector in three dimensions. Specifically, we define r as

r =

[
𝑟
𝑠

]
two dimensions,


𝑟
𝑠
𝑡

 three dimensions (14.5)

The local variables 𝑟, 𝑠, and 𝑡 are all assumed to range between −1 and 1, so that the domain
definition is likewise standardized among all elements of the same type in a given problem. The
domain of r is often referred to as the parent domain. As shown in Fig. 14.2, the two dimension
parent domain is a bi-unit square, and in three dimensions a bi-unit cube.

Fig. 14.2 Local parameterization and coordinate mappings in two and three dimensions.

Of course, for this alternative element coordinate system to be of practical use, its relationship
with the global coordinate system must be defined. This is accomplished through a shape function
expansion via

X𝑒 (r) =
𝑛𝑒𝑛∑
𝑎=1

𝑁̃𝑎 (r)X𝑒
𝑎, (14.6)

where X𝑒 is the global (reference) coordinate mapping covering element 𝑒 and where X𝑒
𝑎 are the

element nodal (reference) coordinates, as before. Note also in (14.6) that the shape functions have

138

been written using the parent coordinates as the independent variables. This is the reason for the
superposed tilde on the shape function. One could think of r as a material point label within the
element, so that X𝑒 and r are two reference coordinate systems for the element that are related
according to (14.6). The most important generic class of finite elements is comprised of
isoparametric elements. Such elements are defined by utilizing the same shape functions for
definition of deformation 𝜑ℎ𝑡 (X𝑒) as for the element coordinates X𝑒. One can show that,
providing all element shape functions sum to one at any point in the element, an isoparametric
element automatically satisfies the completeness condition. Furthermore, provided the shape
functions are also suitably smooth on the element interior and match neighboring element
descriptions on element boundaries, all three of the conditions required for convergence are met
by isoparametric shape functions.

There are important implications of the isoparametric approach for the Lagrangian description of
large deformation solid mechanics. The implications are related to the restrictions imposed on the
mapping from the parent domain to the physical domain. So that we may distinguish carefully
between mappings taking r as an argument and those taking X, we will use the superposed tildes
for the former, as in (14.6). If an element is isoparametric, then by definition the configuration
mapping over an element is given by

𝜑̃ℎ𝑡 (r) =
𝑛𝑒𝑛∑
𝐼=1

𝑁̃𝐼 (r)d𝑒𝐼 , (14.7)

where the shape functions 𝑁̃𝐼 (r) are exactly the same as in (14.6). However, it should also be the
case that the function 𝜑̃ℎ𝑡 (r) should be obtainable from the composition of 𝜑̃ℎ𝑡 (X𝑒) defined
according to (14.4) with X𝑒 (r) defined according to (14.6). Thus we can write:

𝑛𝑒𝑛∑
𝐼=1

𝑁̃𝐼 (r)d𝑒𝐼 = 𝜑̃ℎ𝑡 (r) =
𝑛𝑒𝑛∑
𝐼=1

𝑁𝐼 (X𝑒 (r)) d𝑒𝐼 . (14.8)

Comparing the leftmost and rightmost expressions of (14.8) and realizing that the equality must
hold for any given combination of the element degrees of freedom d𝑒𝐼 , we are led to conclude that
the alternative shape function expressions 𝑁̃𝐼 (r) and 𝑁𝐼 (X𝑒) must be related by composition
via

𝑁̃𝐼 = 𝑁𝐼 ◦ X𝑒 . (14.9)

Thus we have the option of defining the shape functions over whatever domain is convenient, and
since the parent domain is the one that is standardized, we typically begin with an expression for
𝑁̃𝐼 and then derive the implied expression for 𝑁𝐼 according to

𝑁𝐼 = 𝑁̃𝐼 ◦ (X𝑒)−1 . (14.10)

(14.10) reveals the important implications as a practical condition on the inverse mapping (X𝑒)−1

of X𝑒. It must be well behaved for the shape function 𝑁𝐼 to make sense.

Fortunately, according to the implicit function theorem, the inverse function to (14.6) is smooth
and one-to-one provided the Jacobian of the indicated transformation is nonzero. This essentially

139

amounts to a geometric restriction on elements in the reference domain. In two dimensions, e.g.,
the implication is that all interior angles in each 4-noded element must be less than 180 degrees.

Finally, let us consider shape functions that take the current coordinates, x𝑒 = 𝜑ℎ𝑡 (X𝑒). Such an
expression is needed in (14.2) where the spatial derivatives in the current configuration are
needed:

𝑁̂𝐼,𝑖 =
𝜕

𝜕x𝑒𝑖
𝑁̂𝐼 (14.11)

where we have temporarily introduced the additional notation 𝑁̂ to indicate that the shape
function takes the current coordinate.

Following similar reasoning as above, one can conclude that the functions 𝑁̂ must obey

𝑁𝐼 = 𝑁̂𝐼 ◦
(
𝜑̃ℎ𝑡

)−1
(14.12)

Again for the needed function
(
𝜑̃ℎ𝑡

)−1 to be well-behaved, the Jacobian of the transformation
((14.7) must be non-zero. This amounts to:

det
[
𝜕𝜑̃ℎ𝑡
𝜕r

]
= det

[
𝜕𝜑̃ℎ𝑡
𝜕X𝑒

]
det

[
𝜕X𝑒

𝜕r

]
≠ 0 (14.13)

Provided the original element definitions are not overly distorted, the second term on the right
hand side of (14.13) will be non-zero. Thus the well-posedness of the spatial shape functions 𝑁̃𝐼
requires that det

[
𝜕𝜑̃ℎ𝑡
𝜕X𝑒

]
be non-zero. Notice, though, that this is an approximation of the

determinant, 𝐽, of the deformation gradient, as defined in Section 5. According to (5.10), 𝐽 must
be positive point wise for the concept of volume change to have any physical meaning. Thus,
provided the approximated deformation mapping remains kinematically admissible (i.e., 𝐽 > 0),
the spatially defined shape functions are guaranteed to be well-behaved.

With this discussion as background, we now turn our attention to definition of the shape functions
according to the parent domain. To keep the notation complexity to a minimum, we will drop the
explicit distinction between 𝑁𝐼 , 𝑁̃𝐼 , and 𝑁̂𝐼 , referring to all these objects as simply 𝑁𝐼 .

140

15 Element Formulations

This chapter covers the various elements that the Solid Mechanics module has available. We first
discuss all of the solid elements, then the shell elements, and finally the beam elements.

15.1 Uniform Gradient Hex8 Solid Element

This element has proven to be the workhorse solid element for Solid Mechanics. The hex8 is
an eight-node hexahedron element with a topology and a node numbering convention shown in
Fig. 15.1. It also is referred to as the mean-quadrature Hex8 because of the particular manner in
which it generates a mean-quadrature representation of the gradient (and divergence) operator.
The approach adapted for developing a mean strain rate quadrature for the eight-node hexahedron
is that given by Reference [11]. While the approach and notation is cumbersome, it provides the
structure needed to achieve a closed-form solution for the integration of an arbitrary hexahedron
and an explicit and unambiguous identification of the orthogonal hourglass modes.

Fig. 15.1 Isoparametric coordinate representation of the eight-noded hex element.

141

15.1.1 Kinematics

The eight-node solid hexahedron element relates the spatial coordinates 𝑥𝑖 to the nodal
coordinates 𝑥𝑖𝐼 through the isoparametric shape functions 𝑁𝐼 as follows:

𝑥𝑖 = 𝑥𝑖𝐼𝑁
𝐼 (𝜉𝑖). (15.1)

In accordance with index notation convention, repeated subscripts imply summation over the
range of that subscript. The lower case subscripts have a range of three, representing the spatial
coordinate directions. Upper case subscripts have a range of eight, corresponding to element
nodes.

The same shape functions are used to define the element displacement field in terms of the nodal
displacements 𝑢𝑖𝐼 :

𝑢𝑖 = 𝑢𝑖𝐼𝑁
𝐼 (𝜉𝑖). (15.2)

Since these shape functions apply to both spatial coordinates and displacement, their material
derivative (represented by a superposed dot) must vanish. Hence, the velocity field is given by:

𝑣𝑖 = 𝑣𝑖𝐼𝑁
𝐼 (𝜉𝑖). (15.3)

The velocity gradient 𝑣𝑖, 𝑗 is defined as follows:

𝑣𝑖, 𝑗 = 𝑣𝑖𝐼𝑁
𝐼
, 𝑗 . (15.4)

By convention, a comma preceding a lower case subscript denotes differentiation with respect to
the spatial coordinates, hence 𝑣𝑖, 𝑗 denotes 𝜕𝑣𝑖/𝜕𝑥 𝑗 .

The shape functions 𝑁 𝐼 map a unit cube in the isoparametric coordinates 𝜉𝑖 to a general
hexahedron in the spatial coordinates 𝑥𝑖. The unit cube is centered at the origin in 𝜉𝑖-space so that
the shape functions may be conveniently expanded in terms of an orthogonal set of base vectors,
given in Table 15.1, as follows:

𝑁 𝐼 (𝜉𝑖) = 1
8
Σ𝐼 + 1

4
𝜉𝑖Λ𝐼𝑖 +

1
2
𝜉2𝜉3Γ𝐼1 +

1
2
𝜉1𝜉3Γ𝐼2 +

1
2
𝜉1𝜉2Γ𝐼3 + 𝜉1𝜉2𝜉3Γ𝐼4. (15.5)

Table 15.1 Deformation modes of the eight-noded hex element
𝜉 1 𝜉 2 𝜉 3 Σ𝐼 Λ𝐼

1 Λ𝐼
2 Λ𝐼

3 Γ𝐼
1 Γ𝐼

2 Γ𝐼
3 Γ𝐼

4
1 − 1

2 − 1
2 − 1

2 1 -1 -1 -1 1 1 1 -1
2 1

2 − 1
2 − 1

2 1 1 -1 -1 1 -1 -1 1
3 1

2
1
2 − 1

2 1 1 1 -1 -1 -1 1 -1
4 − 1

2
1
2 − 1

2 1 -1 1 -1 -1 1 -1 1
5 − 1

2 − 1
2

1
2 1 -1 -1 1 -1 -1 1 1

6 1
2 − 1

2
1
2 1 1 -1 1 -1 1 -1 -1

7 1
2

1
2

1
2 1 1 1 1 1 1 1 1

8 − 1
2

1
2

1
2 1 -1 1 1 1 -1 -1 -1

The above vectors represent the deformation modes of a unit cube, as shown in Fig. 15.2. The first
vector, Σ𝐼 accounts for rigid body translation. The linear base vectors Λ𝐼𝑖 may be readily

142

combined to define three uniform normal strain rate modes, three uniform shear strain rate modes,
and three rigid body rotation rates for the unit cube. The last four vectors Γ𝐼𝛼 (Greek subscripts
have a range of four) give rise to modes with linear strain variations which are neglected by mean
strain quadrature. These vectors define the hourglass patterns for a unit cube. Hence the modes Γ𝐼𝛼
are referred to as the hourglass base vectors.

Fig. 15.2 Deformation modes of the eight-noded hex element.

15.1.2 Mean Quadrature

The variational statement gives the following relationship for the element nodal forces 𝑓 𝑖𝐼 due to
the divergence of the stress field,

𝑣𝑖𝐼 𝑓
𝑖𝐼 =

∫
𝑉
𝑡𝑖 𝑗𝑑𝑖 𝑗d𝑣. (15.6)

The integral in (15.6) is evaluated using a constant stress, thereby considering only a mean strain
rate within the element:

𝑣𝑖𝐼 𝑓
𝑖𝐼 =

∫
𝑉
𝑡𝑖 𝑗𝑑𝑖 𝑗d𝑣 = 𝑉𝑡 𝑖 𝑗 𝑣̄𝑖, 𝑗 . (15.7)

143

The assumed constant stress field is represented by 𝑡 𝑖 𝑗 , which will be referred to as the mean
stress tensor. It is assumed that the mean stress depends only on the mean strain. Mean
kinematic quantities are defined by integrating over the element as follows:

𝑣̄𝑖, 𝑗 =
1
𝑉

∫
𝑉
𝑣𝑖, 𝑗d𝑣. (15.8)

The gradient operator 𝐵𝐼𝑖 is defined by

𝐵𝐼𝑖 =
∫
𝑉
𝑁 𝐼, 𝑗d𝑣. (15.9)

The mean velocity gradient, applying (15.9) is then given by

𝑣̄𝑖, 𝑗 =
1
𝑉
𝑣𝑖𝐼𝐵

𝐼
𝑗 . (15.10)

The nodal forces are then given by

𝑓 𝑖𝐼 = 𝑡 𝑖 𝑗𝐵𝐼𝑗 . (15.11)

Computing nodal forces by this integration scheme requires evaluation of the gradient operator 𝐵𝐼𝑗
and volume. These two tasks can be linked together by using the relationship 𝑥𝑖, 𝑗 = 𝛿

𝑖
𝑗 . Therefore

(15.9) yields

𝑥𝑖𝐼𝐵
𝐼
𝑗 =

∫
𝑉

(
𝑥𝑖𝐼𝑁

𝐼
)
, 𝑗

d𝑣 = 𝑉𝛿𝑖𝑗 . (15.12)

Consequently, the gradient operator 𝐵𝐼𝑖 may alternatively be expressed by

𝐵𝐼𝑗 =
𝜕𝑉

𝜕𝑥𝑖𝐼
. (15.13)

To integrate the element volume in closed form, the Jacobian of the isoparametric transformation
is used transform the integral over the unit cube,

𝑉 =
∫
𝑉

d𝑉 =

1/2∫
−1/2

1/2∫
−1/2

1/2∫
−1/2

𝐽d𝜉1d𝜉2d𝜉3. (15.14)

The Jacobian 𝐽 is the determinant of the transformation operator 𝜕𝑥𝑖/𝜕𝜉 𝑗 and may be expressed
as

𝐽 = 𝑒𝑖 𝑗 𝑘
𝜕𝑥1

𝜕𝜉𝑖
𝜕𝑥2

𝜕𝜉 𝑗
𝜕𝑥3

𝜕𝜉𝑘
. (15.15)

Using (15.1), (15.14), and (15.15), the element volume may be expressed in the following form:

𝑉 = 𝑥1
𝐼 𝑥

2
𝐽𝑥

3
𝐾𝐷

𝐼𝐽𝐾 , (15.16)

144

where

𝐷 𝐼𝐽𝐾 = 𝑒𝑖 𝑗 𝑘
1/2∫

−1/2

1/2∫
−1/2

1/2∫
−1/2

𝐽
𝜕𝑁 𝐼

𝜕𝜉𝑖
𝜕𝑁 𝐽

𝜕𝜉 𝑗
𝜕𝑁𝐾

𝜕𝜉𝑘
d𝜉1d𝜉2d𝜉3. (15.17)

Observe that the coefficient array 𝐷 𝐼𝐽𝐾 is identical for all hexahedra. Furthermore, it possesses
the alternator properties given by

𝐷 𝐼𝐽𝐾 = 𝐷𝐽𝐾𝐼 = 𝐷𝐾𝐼𝐽 = −𝐷 𝐼𝐾𝐽 = −𝐷𝐽𝐼𝐾 = −𝐷𝐾𝐽𝐼 . (15.18)

Therefore, applying (15.13) and (15.14) to the expression (15.16) yields the following closed-form
expression for evaluation the components of the gradient operator, 𝐵𝐼𝑖 :

𝐵𝐼1
𝐵𝐼2
𝐵𝐼3

 =


𝑥2
𝐽𝑥

3
𝐾

𝑥3
𝐽𝑥

1
𝐾

𝑥1
𝐽𝑥

2
𝐾

 𝐷 𝐼𝐽𝐾 . (15.19)

Looking at the form of (15.19), it is evident that evaluating each component of 𝐷 𝐼𝐽𝐾 involves
integrating a polynomial which is at most bi-quadratic. However, since the integration is over a
symmetric region, any term with a linear dependence will vanish. The only terms which survive
the integration will be the constant, square, double square, and triple square terms. Furthermore,
the alternator properties cause half of these remaining terms to drop out. The resulting expression
for 𝐷 𝐼𝐽𝐾 is

𝐷 𝐼𝐽𝐾 =
1

192
𝑒𝑖 𝑗 𝑘

(
3Λ𝐼𝑖Λ

𝐽
𝑗Λ

𝐾
𝑘 + Λ𝐼𝑖 Γ

𝐽
𝑘Γ

𝐾
𝑗 + Γ𝐼𝑘Λ

𝐽
𝑗Γ
𝐾
𝑖 + Γ𝐼𝑗Γ

𝐽
𝑖 Λ

𝐾
𝑘

)
. (15.20)

The expression in (15.20) is evaluated using Table 15.1, after which practical formula for
computing the gradient operator 𝐵𝐼𝑖 and volume are developed.

The gradient operator component 𝐵1
𝑥 is given explicitly by

𝐵1
𝑥 = [𝑦2(𝑧63 − 𝑧45) + 𝑦3𝑧24 + 𝑦4(𝑧38 − 𝑧52) + 𝑦5(𝑧86 − 𝑧24) + 𝑦6𝑧52 + 𝑦8𝑧45] /12, (15.21)

where {𝑥𝑖𝐼} = {𝑥𝐼 , 𝑦𝐼 , 𝑧𝐼} and 𝑧𝐼𝐽 = 𝑧𝐼 − 𝑧𝐽 . To obtain the balance of the gradient operator
components 𝐵𝐼𝑥 , the nodal index permutations contained in Table 15.2 are used. To obtain the
components 𝐵𝐼𝑦 and 𝐵𝐼𝑧, the coordinate permutations contained in Table 15.3 are used.

Table 15.2 Permutation of Nodal Indices
𝐵1
𝑖 2 3 4 5 6 7 8

𝐵2
𝑖 3 4 1 6 7 8 5

𝐵3
𝑖 4 1 2 7 8 5 6

𝐵4
𝑖 1 2 3 8 5 6 7

𝐵5
𝑖 8 7 6 1 4 3 2

𝐵6
𝑖 5 8 7 2 1 4 3

𝐵7
𝑖 6 5 8 3 2 1 4

𝐵8
𝑖 7 6 5 4 3 2 1

145

Table 15.3 Permutation of Nodal Coordinates
𝐵𝐼
𝑥 y z

𝐵𝐼
𝑦 z x

𝐵𝐼
𝑧 z y

It is worth noting at this point the difference between the mean quadrature (alt. mean strain rate,
mean stress) approach and one-point Gauss quadrature. The latter method would effectively
neglect the last three terms of (15.21). In a parallelepiped, the nodal coordinates contain no
component of the hourglass base vectors, consequently, only the first term of (15.21) is necessary
to compute the gradient operator and volume. In such a case, one-point quadrature is equivalent to
the mean quadrature formula. However, for a general hexahedron shape, one-point quadrature does
not correctly assess a state of uniform stress and strain, thus, may not be convergent [Zienkiewicz,
1977]. In view of the requirements of the Iron’s patch test, it is likely that (15.20) is unique.

15.1.3 Orthogonal Hourglass Control

The mean stress - mean strain rate formulation considers only the linear part of the velocity field.
The remaining portion of the velocity field is the so-called hourglass field. Excitation of these
modes may lead to sever, unresisted mesh distortion. A method for isolating the hourglass modes
so that they may be treated independently of the rigid body and uniform strain modes is required.
This is accomplished by developing an hourglass gradient operator connected with hourglass
restoring forces. The linear velocity field on which the mean strain rates are based is given by

𝑣LIN𝑖 = 𝑣𝑖𝐼

(
1
8
Σ𝐼 + 1

𝑉
(𝑥 𝑗 − 1

8
𝑥
𝑗
𝐽Σ

𝐽)𝐵𝐼𝑗
)
. (15.22)

The hourglass velocity field 𝑣HG
𝑖 may be defined by removing the linear portion of the velocity

field. Thus,

𝑣HG
𝑖 = 𝑣𝑖 − 𝑣LIN𝑖 , (15.23)

or in terms of the nodal velocities,

𝑣HG
𝑖 = 𝑣𝑖𝐼 − 𝑣𝑖0Σ𝐼 −

1
𝑉

(
𝑥
𝑗
𝐼 − 𝑥

𝑗
0Σ𝐼

)
𝑣𝑖𝐽𝐵

𝐽
𝑗 , (15.24)

where 𝑣𝑖0 = 1
8𝑣𝑖𝐼Σ𝐼 and 𝑥

𝑖
0 = 1

8𝑥
𝑖
𝐼Σ𝐼 .

The hourglass velocity field, (15.24), is in the improper null space of the gradient operator 𝐵𝐼𝑖 .
The linear velocity field, (15.22), spans 12 degrees of freedom: 3 rates of rigid body translation, 3
rates of rigid body rotation, and 6 uniform strain rates, which means that the hourglass subspace is
remaining 12 degrees of freedom.

An hourglass gradient operator is constructed from the hourglass basis vectors Λ𝐼𝛼 as follows:

𝐺 𝐼
𝛼 =

𝑉

𝛿

[
Λ𝐼1, Λ

𝐼
2, Λ

𝐼
3, Λ

𝐼
4

]
, (15.25)

146

where 𝛿 is a generalized element dimension developed below. This scaling provides the hourglass
gradient operator with the same dimensional characteristics as the uniform gradient operator.
While 𝐺 𝐼

𝛼 is orthogonal to 𝐵𝐼𝑖 , the following property:

𝐵𝐼𝑖𝐺
𝐼
𝛼 ≠ 0, (15.26)

means that 𝐺 𝐼
𝛼 used with the full velocity field 𝑣𝑖𝐼 will couple the hourglass behavior to the

uniform strain rate behavior. Thus, hourglass strain rates ¤𝑞𝑖𝛼 are developed with 𝐺 𝐼
𝛼 operating on

only the hourglass velocities 𝑣HG
𝑖𝐼 ,

¤𝑞𝑖𝛼 =
1
𝑉
𝑣HG
𝑖𝐼 𝐺

𝐼
𝛼 . (15.27)

Alternatively, an unrestricted operator may be developed by requiring is to satisfy the following
condition:

𝑣𝑖𝐼𝛾
𝐼
𝛼 = 𝑣HG

𝑖𝐼 𝐺
𝐼
𝛼 . (15.28)

Using the hourglass velocity, (15.24), provides

𝑣𝑖𝐼𝛾
𝐼
𝛼 =

[
𝑣𝑖𝐼 − 𝑣𝑖0Σ𝐼 −

1
𝑉

(
𝑥
𝑗
𝐼 − 𝑥

𝑗
0Σ𝐼

)
𝑣𝑖𝐽𝐵

𝐽
𝑗

]
𝐺 𝐼
𝛼, (15.29)

which, when rearranged and using the orthogonality of the mode shapes Σ𝐼 and Γ𝐼𝛼 (i.e.,
Σ𝐼Γ𝐼𝛼 = 0) gives

𝑣𝑖𝐼𝛾
𝐼
𝛼 = 𝑣𝑖𝐼

(
𝐺 𝐼
𝛼 −

1
𝑉
𝑥
𝑗
𝐽𝐺

𝐽
𝛼𝐵

𝐼
𝑗

)
. (15.30)

The condition for the unrestricted operator is satisfied if the hourglass operator 𝛾 𝐼𝛼 is defined as

𝛾 𝐼𝛼 =
𝑉

𝛿

(
Γ𝐼𝛼 −

1
𝑉
𝑥
𝑗
𝐽Γ

𝐽
𝛼𝐵

𝐼
𝑗

)
, (15.31)

and the hourglass strain rates are defined as

¤𝑞𝑖𝛼 =
1
𝑉
𝑣𝑖𝐼𝛾

𝐼
𝛼 . (15.32)

To control the hourglass modes, generalized forces 𝑄𝑖𝛼 are defined which are conjugate to ¤𝑞𝑖𝛼, so
that the work rate is given by

𝑣𝑖𝐼 𝑓
𝑖𝐼
HG = 𝑉𝑄𝑖𝛼 ¤𝑞𝑖𝛼 . (15.33)

Utilizing (15.31), the contribution to the nodal forces due to hourglass resistance is given be

𝑓 𝑖𝐼HG = 𝑄𝑖𝛼𝛾 𝐼𝛼 . (15.34)

The hourglass restoring forces are calculated from

𝑄̌𝑖𝛼 = 𝜖 2𝜇𝑡𝑎𝑛𝛿𝑖 𝑗𝛿𝛼𝛽 ¤𝑞 𝑗 𝛽, (15.35)

147

where 2𝜇𝑡𝑎𝑛 is the tangent shear stiffness obtained from the deviatoric constitutive behavior of the
mean stress and mean strain rate in the element, and 𝜖 is a scaling parameter. The scaling 𝜖 assures
the level of the hourglass restoring forces remains below that of the mean deviatoric stress state.

The deviatoric behavior is used since the hourglass modes are constant volume, higher order
straining modes of the element. The tangent modulus assures that the evolution of the hourglass
restoring forces parallels that of the mean deviatoric stress state.

The invariant time derivative of the generalized forces 𝑄𝑖𝛼 accounts for the finite rotations
expected in use of the element in applications. The derivative is given by

𝑄̌𝑖𝛼 = ¤𝑄𝑖𝛼 − 𝜔𝑖 𝑗𝑄 𝑗𝛼, (15.36)

where 𝜔𝑖 𝑗 is the spin tensor.

The hourglass restoring forces are added to those obtained from the divergence of the mean stress
state so that the complete result is

𝑓 𝑖𝐼 =
(
𝑡 𝑖 𝑗𝐵𝐼𝑗 +𝑄𝑖𝛼𝛾 𝐼𝛼

)
. (15.37)

15.1.4 Linear Hyperelastic Hourglass Control

The traditional hourglass formulation is in rate form, and as such is not guaranteed to be
energetically reversible and may not result in symmetric contributions to the finite element
stiffness matrix. Here we describe a hyperelastic hourglass formulation that overcomes these
limitations and also allows us to define Lagrangian hourglass strains which are valuable for
extending the formulation to nonlinear hourglass response, as discussed in the next section.

Consider an element’s total hourglass energy defined as follows:

𝜓𝑒 (x) = 𝑉𝜖𝜇𝑡𝑎𝑛

(4∑
𝛼=1

𝜀2
𝛼

)
, (15.38)

where 𝑉 is the reference volume of the element, x is the element’s current nodal coordinates, and
𝜀𝛼 is a measure of the hourglass strain for hourglass mode 𝛼. The hourglass strain here is based
on an hourglass operator defined in the model/reference coordinates (this is in contrast to the total
and incremental hourglass formulations which use hourglass operators in the current
configuration). The hourglass strains are given by

𝜀𝛼 =

√√√ 3∑
𝑖=1

𝜖𝑖𝛼𝜖𝑖𝛼 (no sum over 𝛼),

with hourglass strain vector 𝜖 :

𝜖𝑖𝛼 =
8∑
𝐼=1

𝐻 𝐼
𝛼𝑥

𝐼
𝑖 ,

148

where 𝐻 𝐼
𝛼 is the unrestricted hourglass operator defined in the reference configuration:

𝐻 𝐼
𝛼 =

1
𝛿

[
Γ𝐼𝛼 −

1
𝑉
𝑋𝐽𝑗 Γ

𝐽
𝛼𝐵

𝐼
𝑗

]
,

where 𝐵 is the gradient operator with respect to the reference configuration, and X is the element’s
reference coordinates. Note that this definition of the unrestricted hourglass is analogous to 𝛾 𝐼𝛼
from Section 15.1.3, but includes a factor of 1

𝑉 to simplify notation. The value of 𝛿, a
characteristic element length scale, is chosen so that the hyperelastic hourglass forces match the
classical formulation at small stains. The proposed hourglass energy is objective due to the
definition of the hourglass strain, which is invariant to rigid body rotations of the current
coordinates, x. The resulting hourglass forces follow from work conjugacy:

𝑓 𝑖𝐼HG = −𝜕𝜓𝑒
𝜕𝑥 𝐼𝑖

.

Being derived from an objective potential energy, these forces are objective, path independent.
The resulting stiffness matrix is guaranteed to be symmetric and hourglass deformations are
elastically reversible. Because we are assuming an energy which is quadratic in the hourglass
strain, the resulting forces are linear with hourglass displacement. In addition, the unrestricted
hourglass operator 𝐻 has both rigid body modes and affine deformation modes in its null-space,
meaning the hourglass forces will be orthogonal to affine motions of the element.

An extension to a non-linear hyperelastic hourglass formulation is described below.

15.1.5 Nonlinear Hyperelastic Hourglass Control

An additional limitation of the traditional hourglass control is that the hourglass resistance is
typically formulated to be (incrementally) linearly proportional to hourglass deformation
increments. A hyperelastic hourglass control formulation can overcome this limitation by using a
nonlinear hyperelastic energy which is a function of the four hourglass strains. We use a
generalized definition of the energy function from (15.38):

𝜓̂𝑒 (x) = 𝑉𝜖𝜇𝑡𝑎𝑛𝜀2
0

(4∑
𝛼=1

[
𝑒𝑚

(
𝜀𝛼
𝜀0

)]2
)
,

where 𝜀0 is called the transition strain, and 𝑒𝑚 (·) is a function which takes a strain and returns an
alternative Seth-Hill strain measure. In particular, it is defined by

𝑒𝑚 (𝜀) =
1
𝑚

((𝜀 + 1)𝑚 − 1) ,

if 𝜀 is a strain, 𝑒𝑚 (𝜀) satisfies all the requirements of a strain measure. In particular, it satisfies
𝑒𝑚 (0) = 0, 𝑒′𝑚 (0) = 1. As a result, at small strains, 𝑒𝑚 ≈ 𝜀 for any 𝑚. A value of 𝑚 = 2
corresponds to a Green-Lagrange strain measure, while 𝑚 = 1 is an identity map. The variable 𝜀0
is called the transition strain because it sets the strain level at which the nonlinearity of the strain

149

measure begins to become dominant. For a very large transition strain, the hourglass force
response will remain linear up to large hourglass strains as the term 𝜀𝛼

𝜀0
remains small. For small

transition strains, the nonlinearity become noticeable earlier. The hourglass energy for this model
scales as 𝜀2𝑚 as strains get large, meaning the hourglass force scales as the hourglass displacement
to the 2𝑚 − 1 power at large deformations.

Fig. 15.3 shows the hourglass resistance force vs displacement for varying transition strains and
Seth-Hill exponent 𝑚.

Fig. 15.3 Nonlinear hourglass force versus displacement.

150

15.2 Tet4 Solid Element

This element is the standard 4-noded tetrahedral element. It is notoriously stiff and prone to
locking, but included for completeness. More information on this element can be found in [27].

15.3 Tet10 Solid Element

The default 10-noded tetrahedral solid element is the composite tetrahedron, as given in [43],
which is an extension of the composite tetrahedron and triangle formulations in [47]] and [[50].
This 10-noded tetrahedron consists of 12 linear, 4-noded sub-tetrahedra. The nodal fields,
including displacement, are linear within each sub-tetrahedron and, therefore, piecewise linear
within the parent 10-noded tetrahedron. The deformation gradient and stress fields are formulated
to be linear over this 10-noded tetrahedron; the gradient operator projects the piecewise
discontinuous gradients among the 12 sub-tetrahedra into a linear basis on the parent
tetrahedron.

As stated in [43]], [[47]], and [[50], there are several advantages of this composite tetrahedron
formulation over commonly used alternatives. Tetrahedral elements provide generally more robust
and efficient finite element meshing than hexahedral elements. As opposed to the traditional
formulation of the quadratic 10-noded tetrahedron, this formulation has a well-balanced mass
lumping to all 10 nodes lending to improved performance in explicit transient dynamics, contact,
and other solid mechanics capabilities that rely upon the nodal mass distribution. Volumetric
locking and unrealistic pressure oscillations are still possible for this element when modeling
isochoric deformation (plasticity) and nearly incompressible materials, but this behavior can be
alleviated further by volume-averaging the dilation over the element [43]. In Sierra/SM, this
option is called VOLUME AVERAGE J = ON, which is a default setting for the composite
tetrahedron.

A 10-noded, quadratic, fully-integrated tetrahedral element is also available in Sierra/SM. For
more information on this element, refer to [27].

15.4 Belytschko-Tsay Shell Element

The 4-noded Belytschko-Tsay shell (or BT-shell4) is the simplest of the shell elements offered.
The original reference can be found in [3]. It should be considered as the minimal 5-parameter
Mindlin-type formulation that includes a constant transverse shear contribution.

151

15.5 Key-Hoff Shell Element

The 4-noded Key-Hoff shell (or KH-shell4) is slightly more involved than the BT-shell4, in that it
includes a term for a linear-varying transverse shear in its formulation. The inclusion of this term
is an improvement on the BT-shell4 because it properly models warped shell geometry - albeit in a
low-order way. The original reference for this element can be found in [30].

15.6 Belytschko-Leviathan Shell Element

The 4-noded Belytschko-Leviathan shell (or BL-shell4) is slightly more involved than the
KH-shell4, in that it includes additional shear terms as well as additional hourglass controls. The
inclusion of the hourglass terms (also known as the physical stabilization parameter) is an
improvement on the KH-shell in that it eliminates some of the over-stiffness sometimes observed
in the KH-shell4. The BL-shell4 also includes a projection of the angular velocities and the
internal forces. The original references for this element can be found in [1]] and [[2].

15.7 Shear Correction for Layered Shell Elements

For sandwich composite plates with a low modulus core, the effects of transverse shear
deformation can be significant. Thus, the results of first-order shear deformation theory, as
applied for layered shell elements in Sierra/SM, are affected by the choice of shear correction
factor (𝐾). In reference [37], an expression is derived for the variation of transverse shear through
the thickness of a laminated plate. The expression given for the shear correction factor is:

𝐾 =


(
𝐴44 −

𝐴2
45
𝐴55

) ∫ ℎ/2

−ℎ/2

[∫ 𝑧

−ℎ/2(𝑄̄1𝑖𝛽1𝑖 + 𝑧𝑄̄1𝑖𝛿1𝑖)𝑑𝑧
]2[

𝑞44 −
𝑄̄2

45
𝑄̄55

]

−1

, for 𝑖 = 1, 2, 6. (15.39)

Here, the 𝐴𝑖 𝑗 are the corresponding terms in the laminate extensional stiffness matrix, the 𝑄̄𝑖 𝑗 are
the terms of the reduced stiffness matrix, 𝛽𝑖 𝑗 and 𝛿𝑖 𝑗 are terms of the compliance sub-matrices,
and ℎ is the thickness of the section. When expressed in algebraic form, for a laminate of 𝑁 layers
and a coordinate system centered at the centroidal axis of the section, the shear correction factor
can be expressed as

𝐾 =

[
𝐴44 −

𝐴2
45
𝐴55

]−1

∑𝑁
𝑘=1

1(
𝑄̄𝑘

44−
𝑄̄𝑘2

45
𝑄̄𝑘

55

) [
𝑃𝑘 (𝑧𝑘+1 − 𝑧𝑘) + 𝑅𝑘

2 (𝑧2𝑘+1 − 𝑧2𝑘) +
𝑉𝑘
3 (𝑧3𝑘+1 − 𝑧

3
𝑘) +

𝑊𝑘

4 (𝑧4𝑘+1 − 𝑧4𝑘) +
𝑋𝑘

5 (𝑧5𝑘+1 − 𝑧
5
𝑘)

] ,
(15.40)

152

where

𝑃𝑘 = 𝑇
2
𝑘 + 𝐻2

𝑘 𝑧
2
𝑘 − 2𝑇𝑘𝐻𝑘 𝑧𝑘 +𝑈2

𝑘 +
𝐽2
𝑘 𝑧

4
𝑘

4
−𝑈𝑘𝐽𝑘 𝑧2𝑘 + 2𝑇𝑘𝑈𝑘 − 𝑇𝑘𝐽𝑘 𝑧2𝑘 − 2𝐻𝑘𝑈𝑘 𝑧𝑘 + 𝐻𝑘𝐽𝑘 𝑧3𝑘 ,

𝑅𝑘 = 2𝑇𝑘𝐻𝑘 − 2𝐻2
𝑘 𝑧𝑘 + 2𝐻𝑘𝑈𝑘 − 𝐻𝑘𝐽𝑘 𝑧2𝑘 ,

𝑉𝑘 = 𝐻
2
𝑘 −

𝐽2
𝑘 𝑧

2
𝑘

2
+𝑈𝑘𝐽𝑘 + 𝑇𝑘𝐽𝑘 − 𝑧𝑘𝐻𝑘𝐽𝑘 ,

𝑊𝑘 = 𝐻𝑘𝐽𝑘 ,

𝑋𝑘 =
𝐽2
𝑘

4
,

𝑇𝑘 =
𝑘−1∑
𝑚=1

𝐻𝑚 (𝑧𝑚+1 − 𝑧𝑚),

𝑈𝑘 =
𝑘−1∑
𝑚=1

𝐽𝑚
2
(𝑧2𝑚+1 − 𝑧2𝑚),

𝐻𝑘 = 𝑄̄
𝑘
1𝑖𝛽1𝑖 , for 𝑖 = 1, 2, 6,

(15.41)

and

𝐽𝑘 = 𝑄̄
𝑘
1𝑖𝛿1𝑖 , for 𝑖 = 1, 2, 6.

For the laminate cross-section geometry, see Figure 2 in reference [37]. This correction factor has
been coded into a subroutine and is used for the layered shell formulation in Sierra/SM.

15.8 3D Beam Element

The two-noded beam in Sierra/SM is based on conventional Timoshenko beam theory in which
the functional form of the deformation is made explicit on a cross section normal to the reference
axis. Thus, the deformation is described in terms of kinematic variables that depend on the
coordinate along the reference axis. As shown in Fig. 15.4, the axis connecting node 1 and node 2
labeled 𝜉1 is this reference axis. The beam is defined by a cross-section of fixed-shape existing
uniformly along the reference axis and is formulated using isoparametric coordinates.

As will be apparent, the assumptions about the deformation of the beam are those of a
Timoshenko beam theory. In particular, the transverse shear deformation is modeled. Planar
cross-sections originally perpendicular to the reference axis remain flat and undeformed though
not necessarily remain perpendicular to the reference axis under deformation.

When initially curved beams are modeled with straight beam segments, the global curvature
properties are represented by the change in orientation from one beam element to the next. In
effect, the smooth variation in curvature of the original reference axis is approximated by discrete
changes in orientation occurring at the element ends; the elements are chord approximations to
the original curved beam, much like linear shell elements when modeling a curved structure. This

153

approximation is the same order as the constant membrane and bending stress approximations
introduced in the element integration.

Fig. 15.4 Isoparametric coordinate representation of the two-noded beam element.

15.8.1 Kinematics

The motion of the beam is defined in terms of the velocity of the reference axis and the additional
rotation of the region within the cross-section defined by 𝐴(𝜉2, 𝜉3),

𝑣𝑖 (𝑥 𝑗) = 𝑣𝑖 (𝜉1) − 𝜀𝑖𝑚𝑛𝜌𝑚𝜔𝑛 (𝜉1). (15.42)

Here, 𝜌𝑚 is the position vector from the reference axis to a point in the cross-section 𝐴(𝜉2, 𝜉3).
The position vector is perpendicular to the reference axis and has the units of length.

Based on (15.42), the spatial gradient of the velocity is given by

𝑣𝑖, 𝑗 (𝑥𝑘) = 𝑣𝑖, 𝑗 (𝜉1) − 𝜀𝑖𝑚𝑛𝜌𝑚𝜔𝑛, 𝑗 (𝜉1). (15.43)

154

[Note: In the special case when the isoparametric coordinates 𝜉𝑖 coincide with the spatial
coordinates 𝑥𝑖, the velocity of the beam is given by:

{𝑣𝑖} = {(𝑣𝑥 + 𝑧𝜔𝑦 − 𝑦𝜔𝑧), (𝑣𝑦 − 𝑧𝜔𝑥), (𝑣𝑧 + 𝑦𝜔𝑥)}. (15.44)

The stretching (symmetric part of the velocity gradient) is then given by

𝑑𝑥𝑥 = 𝑣𝑥,𝑥 + 𝑧𝜔𝑦,𝑧 − 𝑦𝜔𝑧, 𝑥,
𝑑𝑦𝑦 = 0,
𝑑𝑧𝑧 = 0,

2𝑑𝑥𝑦 = −𝜔𝑧 + 𝑣𝑦,𝑥 − 𝑧𝜔𝑥, 𝑥,
2𝑑𝑥𝑧 = 𝜔𝑦 + 𝑣𝑧,𝑥 − 𝑦𝜔𝑥, 𝑥,
2𝑑𝑦𝑧 = 0,

(15.45)

and the spin (skew-symmetric part of the velocity gradient) is given by

2𝜔𝑥𝑦 = −𝜔𝑧 − 𝑣𝑦,𝑥 + 𝑧𝜔𝑥, 𝑥,
2𝜔𝑥𝑧 = 𝜔𝑦 − 𝑣𝑧,𝑥 − 𝑦𝜔𝑥, 𝑥,
2𝜔𝑦𝑧 = −2𝜔𝑥 ,

(15.46)

where it is now apparent that Timoshenko beam theory allowing transverse shear deformation is
considered, see Reference [6]. Using Timoshenko beam theory allows the rotation rates 𝜔𝑦 and
𝜔𝑧 to be described separately, rather than defined by −𝑣𝑧,𝑥 and 𝑣𝑦,𝑥 , respectively. Consequently,
the (separate) finite element assumptions on the velocity and rotation rates are required to be no
more than continuous represented. In the event that the slender beam limit of vanishing transverse
shear strains holds, classical beam theory is recovered, though special considerations in the
element formulation (introduced below) are needed to prevent shear locking.]

Returning to our description of the more general case, the two-noded beam relates the spatial
coordinates 𝑥𝑖𝐼 through the isoparametric shape functions 𝑁𝐼 , 𝐼 = 1, 2 as follows:

𝑥𝑖 = 𝑥𝑖𝐼𝑁𝐼 (𝜉1). (15.47)

The shape functions map a unit interval in the isoparametric coordinate 𝜉𝑖 to a general beam
segment in the spatial coordinates, 𝑥𝑖. The unit interval is centered at the origin in the 𝜉1-space so
that the shape functions may be conveniently expanded in terms of an orthogonal set of base
vectors:

𝑁𝐼 (𝜉1) =
1
2
Σ𝐼 + 𝜉1Λ𝐼 (15.48)

where at node 1: 𝜉1 = −1
2 , Σ1 = 1, Λ1 = −1, and at node 2: 𝜉1 = +1

2 , Σ2 = 1, Λ2 = 1. As shown in
Fig. 15.5, these two modes represent the deformation modes of a unit interval −1

2 ≤ 𝜉1 ≤ 1
2 .

Although the velocity gradient of the two-noded beam is quite complex in description when using
a Timoshenko beam theory (15.43), the modes Σ𝐼 and Λ𝐼 combine to represent rates of rigid body
translation and rotation, and the uniform strain rates, with no hourglass mode of deformation.

155

Fig. 15.5 Deformation modes of a unit interval.

156

The same shape functions are used to define the reference axis displacement in terms of the nodal
displacements, 𝑢𝑖𝐼 :

𝑢𝑖 = 𝑢𝑖𝐼𝑁𝐼 (𝜉1). (15.49)

Since these shape functions apply to spatial coordinates and displacements, their material
derivatives must vanish. Hence, the velocity field and rotational rate are given by

𝑣𝑖 = 𝑣𝑖𝐼𝑁𝐼 (𝜉1),
𝜔𝑖 = 𝜔𝑖𝐼𝑁𝐼 .(𝜉1)

(15.50)

The velocity gradient and the gradient of the rotational rate are defined as follows:

𝑣𝑖, 𝑗 = 𝑣𝑖𝐼𝑁𝐼, 𝑗 ,

𝜔𝑖, 𝑗 = 𝜔𝑖𝐼𝑁𝐼, 𝑗 .
(15.51)

15.8.2 Mean Quadrature

In order to introduce the concept of a mean (constant) strain and stress in the beam, we need to
deal with the explicit dependence of the velocity on the coordinates 𝜉2 and 𝜉3 normal to the
reference axis. The divergence of the stress field in the variational statement is expanded for the
beam as follows:∫

𝑉
𝑡𝑖 𝑗𝑑𝑖 𝑗d𝑣

+1/2∫
−1/2

∫
𝐴

𝑡𝑖 𝑗𝑣𝑖, 𝑗 (𝜉1)𝑙d𝑎d𝜉1

−
+1/2∫

−1/2

∫
𝐴

𝑡𝑖 𝑗

[
𝜀𝑖𝑚𝑛𝜌

𝑚
, 𝑗𝜔

𝑛 (𝜉1) + 𝜀𝑖𝑚𝑛𝜌𝑚𝜔𝑛, 𝑗 (𝜉1)
]
𝑙 d𝑎d𝜉1.

(15.52)

The dependence on 𝜉2 and 𝜉3 is explicit since 𝐽 specializes to

𝐽 = 𝐴𝜀𝑟𝑠𝑡
𝜕𝑥𝑟
𝜕𝜉1

𝑚𝑠𝑛𝑡 = 𝐴𝑙, (15.53)

where 𝑙 is the length of the beam, 𝐴 its (constant) cross-sectional area, and 𝑚𝑠 and 𝑛𝑡 are the unit
vectors along the 𝜉2 and 𝜉3 axes, respectively.

At this point, we can write the classical force and bending stress resultants N 𝑖 𝑗 and M𝑖
𝑗 as:

N 𝑖 𝑗 =
∫
𝐴

𝑡𝑖 𝑗d𝑎,

M𝑖
𝑗 =

∫
𝐴

𝑡𝑖𝑛𝜀𝑛𝑚 𝑗 𝜌
𝑚d𝑎.

(15.54)

157

Now, we introduce the average stresses 𝜏𝑖 𝑗 and average bending stresses 𝜇𝑖𝑗 as:

𝜏𝑖 𝑗 =
1
𝐴
N 𝑖 𝑗 ,

𝜇𝐼𝑗 =
1
𝐴
M𝑖

𝑗 .

(15.55)

Combining (15.52) through (15.55) yields a reduced divergence of the stress field:∫
𝑉
𝑡𝑖 𝑗𝑑𝑖 𝑗d𝑣

+1/2∫
−1/2

𝜏𝑖 𝑗𝑣𝑖, 𝑗 (𝜉1)𝑙 𝐴d𝜉1

−
+1/2∫

−1/2

[
𝜏𝑖 𝑗𝜀𝑖𝑚𝑛𝜌

𝑚
, 𝑗𝜔

𝑛 (𝜉1) + 𝜇 𝑗𝑛𝜔𝑛, 𝑗 (𝜉1)
]
𝑙 𝐴d𝜉1.

(15.56)

The integrals in the reduced divergence of the stress field in the element are evaluated using a
mean stress, thereby considering only a state of constant axial, bending, and torsional stress within
the element. Expressing (15.56) explicitly with mean kinematic quantities 𝑣̄𝑖, 𝑗 , 𝜔̄𝑛 and 𝜔̄𝑛, 𝑗 , and
mean stresses 𝜏𝑖 𝑗 and 𝜇̄ 𝑗𝑛, yields:∫

𝑉
𝑡𝑖 𝑗𝑑𝑖 𝑗d𝑣 = 𝑉

(
𝜏𝑖 𝑗 𝑣̄𝑖, 𝑗 + 𝜏𝑖 𝑗𝜀𝑖𝑚𝑛𝜌𝑚, 𝑗 𝜔̄𝑛 + 𝜇̄

𝑗
𝑛𝜔̄

𝑛
, 𝑗

)
, (15.57)

where the mean kinematic quantities are defined by integrating over the element as follows:

𝑣̄𝑖, 𝑗 =
1
𝑉

∫
𝑉
𝑣𝑖, 𝑗d𝑣,

𝜔̄𝑛 =
1
𝑉

∫
𝑉
𝜔𝑛d𝑣,

𝜔̄𝑛, 𝑗 =
1
𝑉

∫
𝑉
𝜔𝑛, 𝑗d𝑣.

(15.58)

The gradient operator is defined by

: 𝑙𝑎𝑏𝑒𝑙 : 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑓 𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 : 𝑒𝑞 : 𝑏18

𝐵𝑖𝐼 =

+1/2∫
−1/2

𝑁𝐼, 𝑗 𝐽d𝜉1,

and an averaging operator is defined by

: 𝑙𝑎𝑏𝑒𝑙 : 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑓 𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 : 𝑒𝑞 : 𝑏19

𝐴𝐼 =

+1/2∫
−1/2

𝑁𝐼𝐽d𝜉1.

158

With these definitions, the mean velocity gradient, mean rotational rate, and mean rotational rate
gradient can be expressed in the more convenient form:

𝑣̄𝑖, 𝑗 =
1
𝑉
𝑣𝑖𝐼𝐵 𝑗 𝐼 ,

𝜔̄𝑛 =
1
𝑉
𝜔𝑛𝐼 𝐴𝐼 ,

𝜔̄𝑛, 𝑗 =
1
𝑉
𝜔𝑛𝐼 𝐵 𝑗 𝐼 .

(15.59)

Thus, the divergence of the stress field becomes:∫
𝑉
𝑡𝑖 𝑗𝑑𝑖 𝑗d𝑣 = 𝑣𝑖𝐼

(
𝜏𝑖 𝑗𝐵 𝑗 𝐼

)
− 𝜀𝑖𝑚𝑛𝜌𝑚, 𝑗𝜔𝑛𝐼

(
𝜏𝑖 𝑗 𝐴𝐼

)
− 𝜔𝑛𝐼

(
𝜇̄
𝑗
𝑛𝐵 𝑗 𝐼

)
, (15.60)

where, evident by inspection of (15.60), the nodal forces due to the divergence of the stress field
are then given by:

𝑓𝑖𝐼 = 𝜏
𝑖 𝑗𝐵 𝑗 𝐼 , (15.61)

and the nodal torques by:

𝑚𝑛𝐼 = −𝜀𝑖𝑚𝑛𝜌𝑚, 𝑗 𝜏𝑖 𝑗 𝐴𝐼 − 𝜇̄
𝑗
𝑛𝐵 𝑗 𝐼 . (15.62)

15.8.3 Evaluation of Stress Resultants

The constant axial, bending, and torsional stress resultant assumptions result in a mean gradient
operator and an averaging operator that select mean strain rates linear over the cross-section of the
beam. Material non-linearities, though, will result in the stress distribution over the cross to be
anything but linear, e.g., in the case of plasticity. As a consequence, the integrals for the force and
bending stress resultants are implemented using numerical quadrature over the cross-section. The
location of these integration points for the different cross-sections supported are shown in the
Theusersguide.

At each integration point, the strain rate is computed from the nodal velocities and rotation rates.
The material constitutive behavior is also incrementally evaluated. With a weighting factor and
distance from the reference axis for each integration point, the stress resultant integrals are
computed simply as a weighted-sum over all integration points. Finally, the stress resultant
integrals include the optional offset of the reference axis from the geometric centroid of the
cross-section. Details of how the cross-section is specified and how the reference axis is offset are
discussed in the Sierra/SM User Manual.

159

15.8.4 Bending Performance

A correction of the strain energy in the bending of thick beams is necessary due to the
overestimation of the transverse shear contributions. This correction of 4

5 (Reference [6]) is
related to the discrepancy between the constant distributions of transverse shear strains implied by
the displacement assumptions of the beam and the parabolic through distribution.

In the limit of reducing cross-sectional area, a beam theory with transverse shear becomes
arbitrarily stiff in transverse shear response and the transverse shear strains should vanish.
Without any correction, the result is a 1

ℎ2 (and 1
𝑤2) growth in the transverse shear strain energy,

known as shear locking. If 𝑙 is the length of the beam element, transverse shear strain energy scale
factors of 6ℎ2

𝑙2
(and 6𝑤2

𝑙2
) provide, in the limiting case of slender beam behavior, quadratic

displacement convergence to the Kirchhoff bending result without the shear locking in the
element. Implementation of the shear locking correction factors is done by considering the
minimum of 4

5 and 6ℎ2

𝑙2
(and 4

5 and 6𝑤2

𝑙2
), thus allowing a transition from the transverse shear

corrected thick beam to the vanishing transverse shear strains 𝑑𝑥𝑧, 𝑑𝑦𝑧 (implying 𝑣𝑧,𝑥 = 𝜔𝑦 and
−𝑣𝑦,𝑥 = 𝜔𝑥) required for the thin slender behavior.

15.9 3D Spring Element

The 2-noded 3D spring element is a simple beam formulation that includes concepts embodied in
Timoshenko beam theory.

15.10 Superelement

The superelement formulation in Sierra/SM conforms to the Craig-Bampton reduction capability
in Sierra/SD. An option in Sierra/SM is a corotational formulation, which uses the Kabsch
algorithm [29] to minimize the root mean square deviations between model coordinates and
current coordinates of the superelement connection nodes. Additionally, this superelement
formulation supports uniform gravity load and uniform initial velocity, with the latter satisfying a
zero modal velocity condition, 𝜈𝑖 = 0.

160

16 Contact

section{Contact virtual work}

As a starting point for the treatment of contact, its contribution to the virtual work expression can
be stated as: ∫

𝑆3

(
−𝑡𝑁𝛿𝑔𝑁 + 𝑡𝑇𝛼𝛿𝑔𝛼𝑇

)
d𝑎, (16.1)

where 𝑆3 is the common surface between two continua, 𝑡𝑁 is the contact normal traction (positive
in compression) 𝑡𝑇𝛼 is the contact tangential traction in one of two local (tangent plane) directions
𝛼, and $delta g_N:math:‘ and delta g_T^{alpha}:math: are the directional derivatives of the
contact normal gap g_N$ and tangential slip :math:‘g_T^{alpha} in the direction of ¤𝜑, i.e.:

𝛿𝑔𝑁 :=
d
d𝛽

����
𝛽=0

[𝑔𝑁 (𝜑 + 𝛽 ¤𝜑)]

, 𝛿𝑔𝛼𝑇 :=
d
d𝛽

����
𝛽=0

[
𝑔𝛼𝑇 (𝜑 + 𝛽 ¤𝜑)

]
.

(16.2)

In (16.1), the deformation is subject to the following constraints, referred to as the Kuhn-Tucker
conditions. The Kuhn-Tucker conditions are a set of constraints to be considered representative of
the mechanical contact problem in continuum mechanics, and can be written as:

𝛿𝑔𝑁 ≥ 0 (a) impenetrability constraint,
𝑡𝑁 ≥ 0 (b) no adhesion condition,

𝑡𝑁𝑔𝑛 ≥ 0 (c) complementary condition,
𝑡𝑁 ¤𝑔𝑁 ≥ 0 (d) persistency condition,

(16.3)

for frictionless response and

Φ := ‖𝑡𝑇 ‖ − 𝜇𝑡𝑁 ≤ 0 (a) slip function,

𝐿𝑣𝑔𝑇 − 𝜍
𝑡𝑇
‖𝑡𝑇 ‖

= 0 (b) slip rule,

𝜍 ≥ 0 (c) consistency parameter,
Φ𝜍 = 0 (d) complementary condition,

(16.4)

for the prescription of a Coulomb friction (where 𝜇 is the friction coefficient). In (16.3), the gap
𝑔𝑁 is defined with respect to all material points Y ∈ 𝑆3 as:

𝑔𝑁 (X, 𝑡) = min
Y∈𝑆3

‖𝜑(X) − 𝜑(Y)‖ ∗ 𝑠𝑖𝑔𝑛 ∗ (𝑔𝑁), (16.5)

where

sign(𝑔𝑁) =
{
−1 if 𝜑(X) lies on the interior of the contacted body,
1 otherwise.

(16.6)

161

The tangential gap rate 𝐿𝑣𝑔𝑇 in (16.4) is defined as follows:

𝐿𝑣𝑔𝑇 =
(
𝜑 (X) − 𝜑

(
Ȳ(X)

))
· (p𝛼 ⊗ p𝛼) , (16.7)

where p𝛼 and p𝛼 are base vectors associated with any appropriate surface coordinate system used
to describe 𝑆3, with these base vectors being evaluated at the current contact point (Ȳ(X)) that
satisfies the minimization of (16.3). Use of the notation 𝐿𝑣 is meant to imply a Lie derivative,
which can be understood to be the time derivative of an object as viewed from an embedded
reference frame, in this case the convected frame p𝛼 frame, that moves along with the point.

16.1 Discretized forms of contact constraints

The question is then, how to represent these conditions in discretized form suitable for FE solution
methods. A simple example, shown in Fig. 16.1, serves to demonstrate the concern that this
question embodies. Two discretizations for the interface are evident and, as this simple example
indicates, leads to an ambiguous definition of the interface.

Fig. 16.1 Concerns in constraints choices for contact problems.

162

A historical treatment of contact has focused on applying the Kuhn-Tucker condition directly to
the discretized form, leading to what we will be referring to here as a node-face treatment of
contact, or node-face contact. As we will review here in this chapter, this treatment of contact is
relatively straightforward from a conceptual standpoint, however it does have several issues - even
to the point of the overall approach being pathological in some applications.

Alternatively, more recent investigations have focused on addressing these issues, leading to what
we will be referring to here as a face-face treatment of contact, or face-face contact. These
methods consider the weak form more directly, thus leading to a variationally consistent approach
(e.g., mortar methods are an example of this approach and are, at the moment, prevalent in the
literature).

16.1.1 Node-Face contact

For node-face contact the Kuhn-Tucker conditions are assumed to apply to one side of the
contacting surfaces.Thus the gap 𝑔𝑁 is defined with respect to all nodal points Y𝐼 as:

𝑔𝑁 (X𝐼 , 𝑡) = min
Y𝐼∈𝑆3

‖𝜑(X𝐼) − 𝜑(Y)‖ ∗ 𝑠𝑖𝑔𝑛 ∗ (𝑔𝑁), (16.8)

where 𝐼 refers to a nodal point on one side of the interface, whose coordinates are X𝐼 , 𝑡 at time 𝑡 of
interest. The right-hand side of (16.8) is the discrete form of (16.5) but is more commonly called
the closest-point projection, which will be discussed in some detail in Section 16.2.3.

As mentioned, there are issues associated with node-face constraints. They stem from the
application of contact constraints directly to the discretized problem. As shown in Fig. 16.1, the
potential to over constrain the interface is avoided by applying the impenetrability constraint only
at selected points along the interface. In the Solid Mechanics module these points coincide with
the nodes, as it makes it convenient to obtain contact results (normal and tangential tractions,
stick/slip results, etc.) and interpret them in post-processing.

However, this approach does not truly alleviate over-constraining. This is easily demonstrated
with an enlightening example (we will make use of this example for the discussion of node-face
contact and face-face contact, so making a proper introduction is worthwhile). Fig. 16.2, shows a
beam bending problem that is being modeled with continuum elements, in this case hex8
elements. The beam is cantilevered at its left end appropriately, i.e., fixed at the neutral axis and
constrained from motion only in the x-direction elsewhere.

The analytic solution to this problem is one where the neutral axis should take the displacement
corresponding to an arc of a circle. When the moment is prescribed to be 𝑀∗ the beam should
deform into a perfect circle.

When the beam is meshed with either an all coarse mesh (4 elements through its thickness) or an
all fine mesh (16 elements through its thickness), the Finite Element results appear to be quite
acceptable, producing the pure bending solution.

However, lets now combine coarse and fine discretizations to solve the problem. In this case a
mesh tying constraint is required to obtain the solution, which is seen to be fundamentally a

163

Fig. 16.2 A continuum beam subjected to pure bending.

164

contact problem with adhesion and infinite frictional capacity. The combining of coarse and fine
discretizations can be done is a couple of canonical ways, as shown in Fig. 16.3; one where the
interface between the discretizations is vertical and the other where is along the neutral axis.

Fig. 16.3 A continuum beam that includes mesh tying subjected to pure bending.

In both cases, we apply the standard rule of thumb: given the same material on both sides of the
interface, apply the contact constraints on the finer discretization. Subjecting the beam to the
prescribed moment reveals at once the issue: kinematically enforcing a zero gap condition at each
node is exactly correct in one case, where the interface is through the depth of the beam, and
severely over constraining in the other, where the interface is along the neutral axis. As Fig. 16.4
shows, the over constraint can be severe and may produce spurious stress distributions in the fine
mesh, particularly near the neutral axis.

165

Fig. 16.4 Results for a continuum beam that includes mesh tying subjected to pure bending.

166

16.2 Contact Search

The contact search algorithm is a logical component of the overall contact capability. Much of the
reason to consider search as a separate component is due to a need to revisit and replace
algorithms as they demonstrate better performance. As problem sizes grow there is an increasing
computational cost of this aspect of computational solid mechanics, particularly on distributed
memory (parallel) computers.

As a way of introducing the concepts inherent in contact search algorithms, we recognize the
similarity of contact search to many other other problems in the simulation domain (e.g., the
video gaming industry). In this more abstract sense, a significant part of the contact search
algorithm is a proximity determination of one object with respect to another. Collision detection,
as it is also referred to, is computationally intensive but also studied thoroughly to obtain the best
performance possible. Thus the contact algorithm in Sierra/SolidMechanics is comprised of the
more general proximity search followed by the much more specific detailed detection of contact in
the context of a discrete Finite Element method.

16.2.1 Proximity search algorithms

Although various proximity search algorithms have been developed over the years, those that have
been used in Sierra/SolidMechanics are discussed. Proximity search algorithms deal with
bounding boxes. Construction of bounding boxes are straightforwardly computed as the vector of
min/max coordinates of the volume swept by the predicted motion of either nodes or faces over a
time step. Specifically, over the time step (𝑡 → 𝑡 + Δ𝑡), the axis-aligned bounding box for node 𝐼
is computed as follows:

𝑎𝑎𝑏𝑏(𝑁𝐼) = min(𝜑(X𝐼 , 𝑡), 𝜑(X𝐼 , 𝑡 + Δ𝑡)) , max(𝜑(X𝐼 , 𝑡), 𝜑(X𝐼 , 𝑡 + Δ𝑡)). (16.9)

The resulting data of an axis aligned bounding box calculation is the absolute minimum amount
of data (min and max 𝑥, 𝑦, 𝑧 coordinates) representing a contact entity. The example expressed in
(16.9) is for a node; with the extension to a face being straightforwardly computed as:

𝑎𝑎𝑏𝑏(𝐹𝑀) = min(𝑎𝑎𝑏𝑏(𝑁𝐽), 𝐽 = nodes of face 𝑀) , max(𝑎𝑎𝑏𝑏(𝑁𝐽), 𝐽 = nodes of face 𝑀).
(16.10)

This allows a simplification or reduction of the contact problem to the more general proximity
detection based solely on axis-aligned bounding boxes of contact entities. Many of the structural
modeling capabilities within Sierra/SM are converted to these primitives (i.e., nodes and faces).
Beams and shells, for example, do not explicitly represent volume, but a volume is inferred with
ancillary data such as thickness. These elements are converted to contact primitives by lofting the
finite element geometry explicitly to volumetric discretizations.

167

16.2.2 Parallel search algorithms

The strategy for computational simulation of contact on distributed memory architectures
(parallel computing) is to decompose the contact problem in a distributed manner among the
compute nodes. Typically known as domain decomposition methods, there are several that are
directly applicable to the contact problem. Inertial decomposition and recursive coordinate
bisection (RCB) decomposition are two geometric-based algorithms that are examples. This
geometry-based decomposition approach is depicted graphically in Fig. 16.5.

Fig. 16.5 Simple illustration of the domain decomposition for contact problems.

The proximity search algorithm thus performs with parallel scalability and serial efficiently on
each processor.

168

16.2.3 Contact kinematics

Recall that the output of the proximity search is a collection of bounding box pairs whose volumes
overlap. The contact entities associated with the bounding boxes are then considered for contact in
what we call a detailed search. Detailed searching is a term applied to computing the contact
kinematic quantities associated with either the node-face or face-face algorithm.

Closest point projection for node-face contact
The underpinning of the node-face contact approach is the choice of a set of points at which to
apply the Kuhn-Tucker conditions. Once this choice is made, it follows that a contact point must
be determined for each node. The closest point projection is the name given to this calculation,
which is simply the point on the opposing surface that minimizes the gap, i.e.,

𝑔𝑁 (XI, 𝑡) = min
Y∈{∗ 𝑓 𝑎𝑐𝑒𝑡𝑠𝑜𝑛𝑠𝑖𝑑𝑒𝐴𝑠𝑢𝑟 𝑓 𝑎𝑐𝑒∗}

‖𝜑(XI) − 𝜑(Y)‖ ∗ 𝑠𝑖𝑔𝑛 ∗ (𝑔𝑁). (16.11)

This can be seen simply as the discrete form of the gap function expressed in (16.3). Immediately
with the discrete surface not possessing 𝐶1 continuity, the closest point projection is no longer
unique. At and around edges and corners are the regions on the side A surface where the issues
arise. Fig. 16.6 depicts a simple illustration of the non-uniqueness encountered.

Fig. 16.6 Simple illustration of the non-uniqueness in the closest point projection.

Minimum volume overlap for face-face contact
The face-face contact approach seeks to avoid these issues by considering the volume overlap
between the discrete sides of the interface.

169

This page left blank

170

17 Boundary Conditions

This chapter describes the theoretical and mathematical basis for some common boundary
conditions.

17.1 Distributed Force and Moment

17.1.1 Boundary Condition Purpose

The purpose of the distributed force boundary condition is to distribute a known set of forces and
moments onto a meshed body of 𝑁 nodes in a smooth manner. The force distribution is
formulated to have the following properties:

• The provided force distribution exactly reproduces three XYZ net target translational forces
and three XYZ net target moments.

• The distribution avoids concentrated forces that may cause high local deformation.

• The force distribution uses translational forces only. Net moments are applied via
translational force couples.

There are likely infinitely many force distributions that meet the above properties. The distributed
force BC aims to find and apply at least one reasonable such distribution.

17.1.2 Boundary Condition Implementation

The distributed force boundary condition applies nodal forces constructed by a linear combination
of six assumed distributions. Each of these force distributions provide a contribution
predominately aligned with each of the net forces and net moments. The distributions are
essentially a weight for dividing a net global force over the 𝑁-node set.

Three translational force distributions D𝑥 , D𝑦 and D𝑧 are given in (17.1). The 𝑥, 𝑦, and 𝑧
subscripts denote the force direction, and x̂ = (1, 0, 0), ŷ = (0, 1, 0), and ẑ = (0, 0, 1). The 𝐼 𝑡ℎ
subscript denotes the 𝐼 𝑡ℎ node in the 𝑁-node set. 𝑚𝐼 is the mass at node 𝐼. The translational force
distributions are unitless.

D𝑥𝐼 =

(
𝑚𝐼∑𝑁
𝐼=1𝑚𝐼

)
x̂

D𝑦𝐼 =

(
𝑚𝐼∑𝑁
𝐼=1𝑚𝐼

)
ŷ

D𝑧𝐼 =

(
𝑚𝐼∑𝑁
𝐼=1𝑚𝐼

)
ẑ

(17.1)

171

Note, the translational distributions have an identical shape to a gravity load. This choice to
weight the nodal forces by mass is somewhat arbitrary, but does a good job of minimizing
artificial force concentration. Also, note that a gravity load applies no net moment about the
center of mass of the node set.

The moment distributions apply a net moment about the node set center of mass. The center of
mass of the node set C is calculated by (17.2). p𝐼 represents the coordinates of node 𝐼. The three
trial moment distributions D′

𝑟𝑥 , D′
𝑟𝑦, D′

𝑟𝑧 are given by (17.3). The 𝑟𝑥, 𝑟𝑦, and 𝑟𝑧 subscripts denote
the torques about x̂, ŷ, and ẑ.

C =

∑𝑁
𝐼=1𝑚𝐼p𝐼∑𝑁
𝐼=1𝑚𝐼

(17.2)

D′
𝑟𝑥𝐼 = 𝑚𝐼 (x̂ × (p𝐼 − C))

D′
𝑟𝑦𝐼 = 𝑚𝐼 (ŷ × (p𝐼 − C))

D′
𝑟𝑧𝐼 = 𝑚𝐼 (ẑ × (p𝐼 − C))

(17.3)

The constructed trial moment distributions may produce a net translational force. This is
corrected by first computing the net translational force produced by each trial moment
distribution, and subtracting off a scaled translational force distribution. The corrected pure
moment distributions are given in (17.4).

D𝑟𝑥𝐼 = D′
𝑟𝑥𝐼 −

(
𝑁∑
𝐼=1

D′
𝑟𝑥𝐼 · x̂

)
D𝑥𝐼 −

(
𝑁∑
𝐼=1

D′
𝑟𝑥𝐼 · ŷ

)
D𝑦𝐼 −

(
𝑁∑
𝐼=1

D′
𝑟𝑥𝐼 · ẑ

)
D𝑧𝐼

D𝑟𝑦𝐼 = D′
𝑟𝑦𝐼 −

(
𝑁∑
𝐼=1

D′
𝑟𝑦𝐼 · x̂

)
D𝑥𝐼 −

(
𝑁∑
𝐼=1

D′
𝑟𝑦𝐼 · ŷ

)
D𝑦𝐼 −

(
𝑁∑
𝐼=1

D′
𝑟𝑦𝐼 · ẑ

)
D𝑧𝐼

D𝑟𝑧𝐼 = D′
𝑟𝑧𝐼 −

(
𝑁∑
𝐼=1

D′
𝑟𝑧𝐼 · x̂

)
D𝑥𝐼 −

(
𝑁∑
𝐼=1

D′
𝑟𝑧𝐼 · ŷ

)
D𝑦𝐼 −

(
𝑁∑
𝐼=1

D′
𝑟𝑧𝐼 · ẑ

)
D𝑧𝐼

(17.4)

The total forces to be applied are a weighted sum of the six force distributions D𝑟𝑥 , D𝑟𝑦, D𝑟𝑧, D𝑥 ,
D𝑦, and D𝑧. Note the moment force D𝑟𝑥 , D𝑟𝑦, and D𝑟𝑧 distribution values have units of mass times
length while the translational force distributions D𝑥 , D𝑦, D𝑧 are unitless.

The translational force distributions apply no moment. The corrected moment force distributions
apply no net translational force. However, a moment distribution applied in one direction may
cause a secondary moment in different direction. These moment coupling terms are computed in
(17.5). The 𝑀𝑥𝑦 term, as an example, represents the net moment generated about ŷ, given that a

172

nodal force distribution D𝑟𝑥 is applied.

𝑀𝑥𝑥 =
𝑁∑
𝐼=1

(((p𝐼 − C) × D𝑟𝑥𝐼) · x̂)

𝑀𝑥𝑦 =
𝑁∑
𝐼=1

(((p𝐼 − C) × D𝑟𝑥𝐼) · ŷ)

𝑀𝑥𝑧 =
𝑁∑
𝐼=1

(((p𝐼 − C) × D𝑟𝑥𝐼) · ẑ)

𝑀𝑦𝑥 =
𝑁∑
𝐼=1

(((p𝐼 − C) × D𝑟𝑦𝐼) · x̂)

𝑀𝑦𝑦 =
𝑁∑
𝐼=1

(((p𝐼 − C) × D𝑟𝑦𝐼) · ŷ)

𝑀𝑦𝑧 =
𝑁∑
𝐼=1

(((p𝐼 − C) × D𝑟𝑦𝐼) · ẑ)

𝑀𝑧𝑥 =
𝑁∑
𝐼=1

(((p𝐼 − C) × D𝑟𝑧𝐼) · x̂)

𝑀𝑧𝑦 =
𝑁∑
𝐼=1

(((p𝐼 − C) × D𝑟𝑧𝐼) · ŷ)

𝑀𝑧𝑧 =
𝑁∑
𝐼=1

(((p𝐼 − C) × D𝑟𝑧𝐼) · ẑ)

(17.5)

It is observed (but not proven) that the 3 × 3 moment coupling matrix M is symmetric.
Approximate symmetry of the moment coupling matrix is assumed during the solution process. If
the moment coupling matrix is not symmetric, then the net moments applied by the distributed
force and moment boundary condition may be off in an amount proportional to the lack of
symmetry.

To achieve the target net forces and moments b, (17.6) is solved to find the force distribution
multipliers w. 𝑏𝑥 , 𝑏𝑦, and 𝑏𝑧 have units of force and 𝑏𝑟𝑥 , 𝑏𝑟𝑦, and 𝑏𝑟𝑧 have units of moment. For
the units to work out, 𝑤𝑥 , 𝑤𝑦, and 𝑤𝑧 have units of force, while 𝑤𝑟𝑥 , 𝑤𝑟𝑦, and 𝑤𝑟𝑧 have units of
one over time squared.

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 𝑀𝑥𝑥 0.5 ∗ (𝑀𝑥𝑦 + 𝑀𝑦𝑥) 0.5 ∗ (𝑀𝑥𝑧 + 𝑀𝑧𝑥)
0 0 0 0.5 ∗ (𝑀𝑥𝑦 + 𝑀𝑦𝑥) 𝑀𝑦𝑦 0.5 ∗ (𝑀𝑦𝑧 + 𝑀𝑧𝑦)
0 0 0 0.5 ∗ (𝑀𝑥𝑧 + 𝑀𝑧𝑥) 0.5 ∗ (𝑀𝑦𝑧 + 𝑀𝑧𝑦) 𝑀𝑧𝑧





𝑤𝑥
𝑤𝑦
𝑤𝑧
𝑤𝑟𝑥
𝑤𝑟𝑦
𝑤𝑟𝑧


=



𝑏𝑥
𝑏𝑦
𝑏𝑧
𝑏𝑟𝑥
𝑏𝑟𝑦
𝑏𝑟𝑧


(17.6)

173

The actual final force F to apply to each node 𝐼 is given by (17.7).

F𝐼 = 𝑤𝑥D𝑥𝐼 + 𝑤𝑦D𝑦𝐼 + 𝑤𝑧D𝑧𝐼 + 𝑤𝑟𝑥D𝑟𝑥𝐼 + 𝑤𝑟𝑦D𝑟𝑦𝐼 + 𝑤𝑟𝑧D𝑟𝑧𝐼 (17.7)

17.1.3 Limitations and Special Cases

The distributed force and moment boundary conditions apply moments via translational force
couples to a set of nodes. Special cases of node sets exist such that the application of distributed
moments is not well-posed.

One example of these use cases is if the node set contains a single node, or a set of nodes in the
same exact position. In this scenario, no force applied to the nodes will result in any moments.
This manifests as a zero matrix for the moment coupling terms given by (17.5). The resulting zero
sub-matrix in (17.6) renders its solution impossible. Such a case should be avoided. However, if
encountered in the code, the distributed moments will be ignored.

A second pathological node arrangement is a collinear set of nodes. No set of forces on a collinear
node set can produce a torque around the collinear axis. Such a case will manifest as a singular
system in (17.6). This node configuration should be avoided. However, if detected, the target
torque around the collinear node axis will be ignored and the other two orthogonal moments
returned correctly.

17.2 Inertia Relief

The inertia relief boundary condition is used to balance the free body diagram of forces acting on
a body such that the net force external force acting on the body is zero. The inertia relief boundary
condition heavily leverages the distributed force and moment capability Section 17.1.

Inertia relief computes the net external forces Fsum and moments Msum acting on a body. These
net external forces include forces from pressures, tractions, gravity, and other boundary
conditions. Fsum and Msum are computed using Equations (17.8) and (17.9). The 𝐼 index is the 𝐼 𝑡ℎ
node in the set. F𝑒𝑥𝑡 is the translation external force acting on a node, M𝑒𝑥𝑡 is the external moment
acting on a node, and p represents the coordinates of the node. The moments on the body are
computed around the body center of mass 𝐶 as computed in (17.2).

Fsum =
∑

F𝑒𝑥𝑡𝐼 (17.8)

Msum =
∑

((p𝐼 − C) × F𝑒𝑥𝑡𝐼 + M𝑒𝑥𝑡𝐼) (17.9)

In order to compute the inertia relief forces, the distributed force boundary condition is leveraged,

174

ultimately solving (17.6) for the b given in (17.10).

b =



−𝐹sum𝑥

−𝐹sum𝑦

−𝐹sum𝑧

−𝑀sum𝑥

−𝑀sum𝑦

−𝑀sum𝑧


(17.10)

17.3 Viscous Damping

17.3.1 Rigid Body Invariant Damping

The rigid body invariant damping option heavily leverages the inertia relief boundary condition
Section 17.2. Rigid body invariant damping automatically applies an inertia relief boundary
condition that counterbalances just the damping forces being applied by the viscous damping BC.
This counterbalancing force ensures the total applied damping has no effect on the rigid body
motion of parts and thus only effects the vibration models of the part.

175

This page left blank

176

A. Known Issues

• Many more references could be given in Section 1.1.

• Many, if not all, Epic materials models have no theory documentation. We recommend
searching the open literature.

• Particle methods, such as Smooth Particle Hydrodynamics, are undocumented.

• Representative volume elements are undocumented. However a reference paper does exist.

177

This page left blank

178

References

[1] T. Belytschko and I. Leviathan. Physical stabilization of the 4-node shell element with one
point quadrature. Computer Methods in Applied Mechanics and Engineering, 113:321–350,
1994.

[2] T. Belytschko and I. Leviathan. Projection schemes for one-point quadrature shell elements.
Computer Methods in Applied Mechanics and Engineering, 115:277–286, 1994.

[3] T. Belytschko and C.-S Tsay. Explicit algorithms for nonlinear dynamics of shells. Nonlinear
finite element analysis of plates and shells, pages 209–231, 1981.

[4] D.J. Benson. Stable time step estimation for multi-material eulerian hydrocodes. Computer
Methods in Applied Mechanics and Engineering, 167:191–205, 1998.

[5] R. Courant, K. Friedrichs, and H. Lewy. Über die partiellen differenzengleichungen der
mathematischen physik. Mathematische Annalen, 100:32–74, 1928.

[6] G.R. Cowper. The shear coefficient in Timoshenko’s beam theory. Journal of Applied
Mechanics, 33:335–340, 1966.

[7] J.W. Daniel. Convergence of the conjugate gradient method with computationally convenient
modifications. Numerische Mathematik, 10:125–131, 1967.

[8] J.W. Daniel. The conjugate gradient method for linear and nonlinear operator equations.
SIAM Journal on Numerical Analysis, 4:10–26, 1967.

[9] C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson, and D. Rixen. FETI-DP: a dual-primal
unified FETI method – part i: a faster alternative to the two-level FETI method.
International Journal for Numerical Methods in Engineering, 50:1523–1544, 2001.

[10] C. Farhat, M. Lesoinne, and K. Pierson. A scalable dual-primal domain decomposition
method. Numerical Linear Algebra with Applications, 7:687–714, 2000.

[11] D.P. Flanagan and T. Belytschko. A uniform strain hexahedron and quadrilateral with
orthogonal hourglass control. International Journal for Numerical Methods in Engineering,
17:679–706, 1981. doi:10.1002/nme.1620170504.

[12] D.P. Flanagan and T. Belytschko. Simultaneous relaxation in structural dynamics. Journal of
the Engineering Mechanics Division, ASCE, 107:1039–1055, 1981.

[13] D.P. Flanagan and T. Belytschko. Eigenvalues and stable time steps for the uniform strain
hexahedron and quadrilateral. ASME Journal of Applied Mechanics, 51:35–40, 1984.

[14] R. Fletcher and C.M. Reeves. Function minimization by conjugate gradients. The Computer
Journal, 7:149–153, 1964.

[15] Y.C. Fung. Foundations of Solid Mechanics. Prentice-Hall, Inc, 1965.

[16] Y.C. Fung. A First Course in Continuum Mechanics. Prentice-Hall, Inc, 2nd edition, 1977.

179

https://doi.org/10.1002/nme.1620170504

[17] G.L. Goudreau. Evaluation of discrete methods for the linear dynamic response of elastic
and viscoelastic solids. Technical Report 69–15, U.C. Berkeley, Department of Civil
Engineering, 1970.

[18] A. Greenbaum. Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences.
Linear Algebra Appl., 113:7–63, 1989.

[19] L. Grippo and S. Lucidi. A globally convergent version of the Polak-Ribière conjugate
gradient method. Math. Program., 78:375–391, 1997.

[20] M.E. Gurtin. An Introduction to Continuum Mechanics. Mathematics in Science and
Engineering. Academic Press, Inc., 1982.

[21] M.E. Gurtin, E. Fried, and L. Anand. The Mechanics and Thermodynamics of Continua.
Cambridge University Press, 2010.

[22] R.W. Hamming. Numerical Methods for Scientists and Engineers. Dover, 1973.

[23] M.R. Hestenes. Conjugate Direction Methods in Optimization. Springer-Verlag, Berlin,
1980.

[24] M.R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. J.
Res. Natl. Bur. Stand., 49:409–436, 1952.

[25] H.M. Hilber, T.J.R. Hughes, and R.L. Taylor. Improved numerical dissipation for time
integration algorithms in structural dynamics. Earthquake Engineering and Structural
Dynamics, 5:283–292, 1977.

[26] T.J.R. Hughes. The Finite Element Method–Linear Static and Dynamic Finite Element
Analysis. Prentice-Hall, Inc, Englewood Cliffs, NJ, 1987.

[27] T.J.R. Hughes. The Finite Element Method: Linear static and dynamic finite element
analysis. Dover, 2000. Reprint of “The Finite Element Method”, Prentice-Hall, 1987.

[28] B.M. Irons. Applications of a theorem on eigenvalues to finite element problems. Technical
Report CR/132/70, University of Wales, Department of Civil Engineering, Swansea, U.K.,
1970.

[29] W. Kabsch. A solution for the best rotation to relate two sets of vectors. Acta
Crystallographica Section A, 32(5):922–923, Sep 1976. doi:10.1107/S0567739476001873.

[30] S.W. Key and C.C. Hoff. An improved constant membrane and bending stress shell element
for explicit transient dynamics. Computer Methods in Applied Mechanics and Engineering,
124(1–2):33–47, 1995. doi:10.1016/0045-7825(95)00785-Y.

[31] J.R. Koteras and A. S. Gullerud. Presto user’s guide version 1.05. Technical Report
SAND2003-1089, Sandia National Laboratories, Albuquerque, NM, April 2003.

[32] J.R. Koteras and R.B. Lehoucq. Estimating the critical time-step in explicit dynamics using
the Lanczos method. International Journal for Numerical Methods in Engineering,
69(13):2780–2788, 2006.

180

https://doi.org/10.1107/S0567739476001873
https://doi.org/10.1016/0045-7825(95)00785-Y

[33] R.D. Krieg and S.W. Key. Transient shell response by numerical time integration.
International Journal for Numerical Methods in Engineering, 7:273–286, 1973.

[34] W.M. Lai, D. Rubin, and E. Krempl. Introduction to Continuum Mechanics. Pergamon
Press, 3rd edition, 1993.

[35] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear
differential and integral operators. J. Research of the National Bureau of Standards,
45(4):255–282, October 1950. Research Paper 2133.

[36] D.G. Luenberger and Y. Ye. Linear and Nonlinear Programming. International Series in
Operations Research & Management Science. Springer, 2008.

[37] P. Madabhusi-Raman and J.F. Davalos. Static shear correction factor for laminated
rectangular beams. Composites Part B: Engineering, 27(3):285–293, 1996.
doi:10.1016/1359-8368(95)00014-3.

[38] L.E. Malvern. Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, Inc,
1969. pages 226-228.

[39] J.E. Marsden and T.J.R. Hughes. Mathematical Foundations of Elasticity. Dover, 1983.

[40] N.M. Newmark. A method of computation for structural dynamics. Journal of Engineering
Mechanics, ASCE, 85(EM3):67–94, 1959.

[41] J. Nocedal. Theory of Algorithms for Unconstrained Optimization, pages 199–242. Springer,
1991.

[42] B. Nour-Omid. The Lanczos algorithm for solution of large generalized eigenproblems. In
The Finite Element Method: Linear static and dynamic finite element analysis,Thomas J.R.
Hughes, pages 582–600. Dover, 2000.

[43] J.T. Ostien, J.W. Foulk, A. Mota, and M.G. Veilleux. A 10-node composite tetrahedral finite
element for solid mechanics. International Journal for Numerical Methods in Engineering,
2016.

[44] B.N. Parlett. The symmetric eigenvalue problem. Number 20 in Classic in Applied
Mathematics. SIAM, 1998. Reprint of “The symmetric eigenvalue problem”, Prentice-Hall,
1980.

[45] W.D. Pilkey and W. Wunderlich. Mechanics of Structures: Variational and Computational
Methods. CRC Press, 1994.

[46] J.R. Shewchuck. An introduction to the conjugate gradient algorithm without all of the
agonizing pain. Technical Report, Carnegie Mellon University, Pittsburg, PA, 1994.

[47] P. Thoutireddy, J.F. Molinari, E.A. Repetto, and M. Ortiz. Tetrahedral composite finite
elements. International Journal for Numerical Methods in Engineering, 53(6):1337–1351,
2002.

[48] S. Timoshenko and J.N. Goodier. Theory of Elasticity. McGraw Hill Book Company, 3rd
edition, 1970.

181

https://doi.org/10.1016/1359-8368(95)00014-3

[49] A. Toselli and O. Widlund. Domain Decomposition Methods – Algorithms and Theory.
Springer Series in Computational Mathematics. Springer, 2005.

[50] Y.Guo, M. Ortiz, T. Belytschko, and E.A. Repetto. Triangular composite finite elements.
International Journal for Numerical Methods in Engineering, 47(1-3):287–316, 2000.

182

Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.

	Title
	Abstract
	Acknowledgements
	Contents
	Nonlinear Behavior
	Introduction
	Linear Structural Component
	Material Nonlinearity
	Geometric Nonlinearity
	Contact Nonlinearity

	Linear Elastic Initial/Boundary Value Problem
	Basic Equations of Linear Elasticity
	Equations of Motion
	Boundary and Initial Conditions
	Problem Specification
	The Quasistatic Approximation

	Weak Forms
	Introduction
	Quasistatic Case
	Fully Dynamic Case

	Large Deformation Framework
	Introduction
	Notational Framework
	Lagrangian and Eulerian Descriptions
	Governing Equations in the Spatial Frame

	Deformation Measures
	Deformation Gradient
	Polar Decomposition

	Rates of Deformation
	Material and Spatial Velocity and Acceleration
	Rate of Deformation Tensors

	Stress Measures
	Cauchy Stress
	Nanson’s Formula
	First and Second Piola-Kirchhoff Stress

	Balance Laws
	Localization
	Conservation of Mass
	Conservation of Linear Momentum
	Conservation of Angular Momentum
	Stress Power
	Thermodynamics

	Frame Indifference
	Objective Strain and Strain Rate Measures
	Stress Rates

	Discretization
	Weak Form for Large Deformation Problems
	Finite Element Discretization
	Galerkin Finite Element Methods
	Discrete Equations
	Generation of Vector/Matrix Equations
	Localization and Assembly

	Quasistatics
	Quasistatic Assumption
	Internal Force Vector
	External Force Vector
	Incremental Load Approach

	Dynamics
	Semi-Discrete Approach
	Time-Stepping Procedures
	Explicit Finite Element Methods
	Element-based Critical Time Step Estimate
	Nodal-based Critical Time Step Estimate
	Lanczos-based Critical Time Step Estimate
	Introduction
	Critical time step
	Lanczos iteration
	Cost-Benefit Analysis
	Using the Lanczos-based estimate
	Numerical experiments
	Conclusions

	Implicit Finite Element Methods

	Nonlinear Equation Solving
	Introduction
	The Residual
	Gradient Property of the Residual
	Newton’s Method for Solving Nonlinear Equations
	Steepest Descent Method
	Method of Conjugate Gradients
	Linear CG
	Nonlinear CG
	Convergence Properties of CG
	Predictors
	Preconditioned CG

	Parallel Linear Equation Solving
	Enforcing Constraints within Solvers
	Multi-Level Iterative Solver

	Element Basics
	Properties of Shape Functions
	Element patch test

	Parameterization

	Element Formulations
	Uniform Gradient Hex8 Solid Element
	Kinematics
	Mean Quadrature
	Orthogonal Hourglass Control
	Linear Hyperelastic Hourglass Control
	Nonlinear Hyperelastic Hourglass Control

	Tet4 Solid Element
	Tet10 Solid Element
	Belytschko-Tsay Shell Element
	Key-Hoff Shell Element
	Belytschko-Leviathan Shell Element
	Shear Correction for Layered Shell Elements
	3D Beam Element
	Kinematics
	Mean Quadrature
	Evaluation of Stress Resultants
	Bending Performance

	3D Spring Element
	Superelement

	Contact
	Discretized forms of contact constraints
	Node-Face contact

	Contact Search
	Proximity search algorithms
	Parallel search algorithms
	Contact kinematics

	Boundary Conditions
	Distributed Force and Moment
	Boundary Condition Purpose
	Boundary Condition Implementation
	Limitations and Special Cases

	Inertia Relief
	Viscous Damping
	Rigid Body Invariant Damping

	A. Known Issues
	References
	Bibliography

