SANDIA REPORT

SAND2025-110830 Sandia
Printed October 14, 2025 National
Laboratories

Sierra/SolidMechanics 5.26
ITAR User Manual

Sierra Solid Mechanics Team
Computational Solid Mechanics and Structural Dynamics Department
Engineering Sciences Center

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology
& Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports @osti.gov

Online ordering: http://www.osti.gov/scitech
Auvailable to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road

Alexandria, VA 22312

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders @ntis.gov

Online order: https://classic.ntis.gov/help/order-methods

NYSH

National Nuclear Security Administration

1 Front Matter

Abstract

This is an addendum to the Sierra/SolidMechanics User’s Guide that documents additional
capabilities available only in alternate versions of the Sierra/SolidMechanics (Sierra/SM) code.
These alternate versions are enhanced to provide capabilities that are regulated under the U.S.
Department of State’s International Traffic in Arms Regulations (ITAR) export control rules. The
ITAR regulated codes are only distributed to entities that comply with the ITAR export control
requirements. The ITAR enhancements to Sierra/SM include material models with an
energy-dependent pressure response (appropriate for very large deformations and strain rates) and
capabilities for blast modeling. This document is an addendum only; the standard
Sierra/SolidMechanics User’s Guide should be referenced for most general descriptions of code
capability and use.

Acknowledgements

This document is the result of the collective effort of a number of individuals. This document was
originally written primarily by Arne Gullerud, John Carpenter, and Bill Scherzinger. The current
development team responsible for the Sierra/SolidMechanics codes includes: Frank N. Beckwith,
Michael R. Buche, Gabriel J. de Frias, Scott O. Gampert, Kevin L. Manktelow, Mark T.
Merewether, Scott T. Miller, Matt Mosby, Krishen J. Parmar, Matt G. Rand, Ryan T. Schlinkman,
Timothy R. Shelton, Jesse D. Thomas, Jeremy Trageser, Benjamin C. Treweek, Michael G.
Veilleux, and Ellen B. Wagman. This document is maintained by this team.

Presto_ITAR Release Notes

Release notes for Zapotec and Vivace are compiled alongside release notes for Sierra/SM
(Adagio).

Main Contents

Contents

L. Front Matter.o e 3
A SITACT . .ot 3
AcknOWIEdZEMENLSottt e 3
Presto ITAR Release NOtESttt e e e e e e 3

Main CONLENLS . ..ottt ettt e ettt e e et e et e 4
L1, IntroduCtionttt et e ettt e et e e e 7

1.1.1. Document OVEIVIEWttt ittt et et et e ieee e 7
1.1.2. Running The Code. i i 8
1.1.3. Obtaining SUPPOTtottt ettt et et 8
1.2, Materialsttt e 8
1.2.1. Modular Material Model (MMM) Specifications. 9
1.2.2. CTH Model Specificationsouuiiiiiiiinennnnnnennnn. 43
1.2.3. Equation-of-State Model Specifications 53
1.2.4. Energy Depositionottt 61
1.3, ElementsS. ...ttt 65
1.3.1. Finite Element Model 65
1.3.2. Element SeCtionsttt et et et 69
1.4. Boundary Conditionsiuuiimnttn i, 69
1.4.1. Blast Pressure.ou i e e 70
1.5. Output Variables for Material Models. i, 72
1.0, PO OC . . v v ittt e e e 76
1.6.1. Introductionttt e e e e 76
1.6.2. Methodologyt e 76
1.6.3. Parallel Implementation it 97
1.6.4. User InStruCtionsiiinit ittt ettt et i 100

RefereNCes ... o e 121

Bibliography121

List of Tables

Table 1.1. Face Variables for Blast Pressure Boundary Condition...................... 71

Table 1.2. State Variables for Bodner-Partom Model (Section 1.2.1.3) 72

Table 1.3. State Variables for CTH_EP Model (Section 1.2.2.3) 74

Table 1.4. State Variables for CTH_JFRAC Model (Section 1.2.2.7) 74

Table 1.5. State Variables for Holmquist-Johnson-Cook Concrete Model (Section 1.2.1.4). 74

Table 1.6. State Variables for Hull Concrete Model (Section 1.2.1.5)................... 74

Table 1.7. State Variables for Johnson-Holmquist Ceramic Models (Section 1.2.1.7)...... 75

Table 1.8. State Variables for Johnson-Holmquist-Beissel Ceramic Models (Section 1.2.1.8) 75

Table 1.9. State Variables for Johnson-Cook Model (Section 1.2.1.6) 75

Table 1.10.
Table 1.11.
Table 1.12.
Table 1.13.
Table 1.14.
Table 1.15.
Table 1.16.

Commonly Used Variables. 78
Subscript Definitions e 80
Classification of Materials for a Zapotec Analysis.......................... 80
Summary of the Zapotec coupling algorithm.............................. 81
Lagrangian Data Used Within Zapotec oo, 91
Description of multiStep types vv it 102
Options for Determination of Eulerian Stress State 105

List of Figures

Fig. 1.1. Example Blocking Surface Calculation. 73
Fig. 1.2. Ilustration of donation.u ottt 79
Fig. 1.3. Time synchronization of CTH and Presto_TITAR........cciiiunneenneen.. 82
Fig. 1.4. Momentum insertion and recovery of face-centered velocities: (a) Primary mesh

data before momentum shift, (b) Plus-shifted cell-centered momentum, P*, (c)

Minus-shifted cell-centered momentum, P™. 85
Fig. 1.5. Tllustration of force application.ttt niieiinnnenn.n. 88
Fig. 1.6. Illustration of shell reconstruction algorithm. 94
Fig. 1.7. Illustration of shell reconstruction algorithm for curved structures. 95
Fig. 1.8. Illustration of fluffed shell overlapping a solid structure....................... 96
Fig. 1.9. Mesh decomposition and load balance for Zapotec coupling algorithm. 98
Fig. 1.10. Example of function definition. i, 108
Fig. 1.11. Illustration of the eliminate_excess option.ccivinven.... 114
Fig. 1.12. Illustration of shielded Lagrangian materials................................ 115

1.1 Introduction

This document is an addendum to the Sierra/SolidMechanics User’s Guide. The standard user’s
guide describes the general input structure and most of the commands that are permissible in
Sierra/SM and should be referenced for most documentation and usage guidelines. This
addendum describes additional capabilities that are available only in ITAR versions of Sierra/SM,
i.e., enhanced versions of Sierra/SM that include additional capabilities that make them regulated
under the U.S. Department of State’s International Traffic in Arms Regulations (ITAR). These
enhanced codes are only distributed to entities that comply with the ITAR export control
requirements.

The capabilities in the enhanced Sierra/SM codes that have been indicated as being ITAR
restricted are, in general, only applicable to explicit transient dynamics. These capabilities deal
with material response under very high rates of loading and/or deformation or with blast
modeling. Most of the material response capabilities have been adopted from other
export-controlled codes, such as EPIC and CTH. Some material capabilities, such as the ideal gas
material model, are not explicitly export controlled but are similar in structure to the
export-controlled capabilities. These capabilities are only available in the ITAR-controlled
version of Sierra/SM (Presto_ITAR) and are thus documented here.

1.1.1 Document Overview

This document describes the ITAR restricted capabilities within the Sierra Solid Mechanics
codes. Highlights of the document contents are as follows:

 Section 1.2 presents material models that are included in the Presto_ITAR version of
Sierra/SM. These include materials from the Modular Material Models (MMM) interface
(from EPIC) and CTH, as well as native implementations. These material models have a
pressure response that is dependent on the energy within the element. This chapter also
describes how energy deposition is enabled within the code.

» Section 1.3 describes element features that support the energy-dependent material models,
such as internal iterations to resolve nonlinear energy-pressure relations.

* Section 1.4 describes a specialized boundary condition based on the ConWep code to
simulate the blast pressure from an explosive.

* Section 1.5 presents the variables available for output from the Sierra/SM ITAR material
models.

* Section 1.6 documents Zapotec, the two-way coupling between CTH and Sierra/SM
(explicit, ITAR version).

1.1.2 Running The Code

There are two Sierra/SM ITAR codes: Presto_ITAR and Zapotec. The command to run any
of these executables is essentially the same. For example, the command to run a basic
Presto_ITAR analysis is:

sierra presto_itar -i sierra_input.i

Note that the capabilities defined in this addendum are only available when running the relevant
executable (presto_itar or zapotec) and are not available when running the basic adagio
executable. However, generally all analyses that run with the adagio executable will also run
with the presto_itar executable.

The Sierra command also optionally takes many more options to specify the number of
processors, queues to use, output log file names, etc. See the Sierra command documentation for a
full description of capabilities.

1.1.3 Obtaining Support

Support for all SIERRA Mechanics codes, including Sierra/SM ITAR, can be obtained by
contacting the SIERRA user support team by email at sierra-help @sandia.gov.

1.2 Materials

This chapter describes material models that exist in Presto_ITAR but not in standard Adagio.
In general, all material models that have an explicit pressure dependence on energy are available
only in the ITAR export-controlled version of the code. The material models documented in this
manual are broken into three groups:

¢ Modular Material Models (MMM): The MMM models are a select set of models
extracted from the EPIC code and put into a common interface. They include a range of
models that are widely used in modeling materials in the mild shock regime in a Lagrangian
framework. See Reference [11] for more information.

* CTH Models: These are material models that exist within the CTH code base. This does
not include all of the models in CTH; only those that directly compute a stress are included.
These models include the ability to reference SESAME equation-of-state models to handle
some level of phase change under very large deformations.

» Standard Equation-of-State (EOS) Models: These are implementations of standard EOS
models within the LAME material model package [24].

All material models documented here are only available in presto_itar and not in the
standard adagio executable. Only the commands specific to these models are provided here.

mailto:sierra-help@sandia.gov

General information about conventions and commands for usage of material models is provided in
the Sierra/SolidMechanics User’s Guide.

Additional information in this section describes how to deposit energy into the elements. Only
energy-dependent materials such as those described in this document have the capability to
respond to deposited energy.

1.2.1 Modular Material Model (MMM) Specifications

A set of material models known as Modular Material Model (MMM) subroutines has been
developed to be portable across a variety of codes, as described in [11]. These models have been
made available in Presto_ITAR.

The following MMM models are provided in Presto_ITAR:
* Bodner-Partom strength model with Mie-Gruneisen EOS
* Holmquist-Johnson-Cook concrete model
* Hull concrete model
* Johnson-Cook strength model with Mie-Gruneisen EOS and Johnson-Cook failure model
* Johnson-Holmquist ceramic model
* Johnson-Holmquist-Beissel ceramic model
* Mechanical Threshold Stress (MTS) strength model with Mie-Gruneisen EOS

* Mechanical Threshold Stress (MTS) strength model with Mie-Gruneisen EOS and the
TEPLA continuum level damage model

 Zerilli-Armstrong strength model for BCC metals with Mie-Gruneisen EOS
 Zerilli-Armstrong strength model for FCC metals with Mie-Gruneisen EOS

The inputs for these models are documented in the subsections below. A full description of the
theory and implementation of the models is available in [11].

Properties for these models (excluding TEPLA) can be set via a begin initial conditions command
block. Statistical (Weibull) distributions of properties are able to be used through the standard
Sierra/SolidMechanics commands. Spaces in property names are replaced by underscores in the
initial conditions, e.g., SHEAR MODULUS would become SHEAR_MODULUS.

1.2.1.1 MMM Models with Temperature

The Bodner-Partom, Johnson-Cook, MTS, TEPLA+MTS, and both Zerilli-Armstrong MMM
models evolve the element temperature field. Prescribed temperatures and thermal strains are
disallowed with these models. Uniform initial temperature can be set through the INIT
TEMPERATURE property. An initial element temperature field must be provided either through a
begin initial temperature command or from a transfer. The presence of an element temperature
supersedes the specification of INIT TEMPERATURE.

1.2.1.2 Consistent Equation of State Initialization

For certain scenarios, a preload simulation is performed as setup for an explicit dynamics
simulation that will use MMM models. Material models appropriate for preloading are very
frequently different than the equation of state-based MMM models, and oftentimes include
thermal strains and/or other temperature effects. Consistent initialization of the equation of state is
necessary to prevent non-physical or spurious material response. The temperature specified at the
end of a preload is almost never the same temperature that the equation of state will calculate. As
such, we implement the theory outlined in [23] to properly initialize the equation of state. This
involves augmenting the temperature equation with an energy offset as well as calculating a
non-zero initial internal energy.

MMM models will use this procedure to consistently initialize the EOS if three element variables
are specified: initial_density, initial_pressure,and initial_temperature.
If present, the MMM model will use these three fields to compute the energy offset and initial
internal energy. Some useful commands for utilizing this capability are:

begin user variable initial_pressure

type = element real
initial value = 0.0
end

begin user variable initial_density
type = element real
initial value = 0.0

end

begin user variable initial_temperature
type = element real
initial value = 0.0

end

begin initial condition
block = block_1

read variable = element_density

initialize variable name = initial_density
variable type = element

time = last

(continues on next page)

10

(continued from previous page)

end initial condition

begin initial condition
block = block_ 1

read variable = pressure

initialize variable name = initial_pressure
variable type = element

time = last

end initial condition

begin initial condition
block = block_1

read variable = temperature

initialize variable name = initial_temperature
variable type = element

time = last

end initial condition

For some models, you may need the following to output an element density field:

begin function ElementDensity
type = analytic

expression variable: m = element element_mass
expression variable: v = element volume
evaluate expression = "m/v”

end

begin user output
compute element element_density as function ElementDensity
end

Consistent initialization for multiple integration point elements, e.g., total Lagrange elements,
requires single values of density, pressure, and temperature per element. Values for each
integration point are not permitted.

1.2.1.3 Bodner-Partom Strength Model with Mie-Gruneisen EOS

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
#
BEGIN PARAMETERS FOR MODEL BPSTRESS_MMM
TWO MU = <real>two_mu
YOUNGS MODULUS = <real>youngs_modulus
BULK MODULUS = <real>bulk_modulus

(continues on next page)

11

(continued from previous page)

POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear modulus
LAMBDA = <real>lambda
YIELD STRESS = <real>yield_ stress
INIT DENSITY = <real>init_density
ABS ZERO TEMP = <real>ABS_ZERO_TEMP
INIT TEMPERATURE = <real>INIT_TEMPERATURE
SPECIFIC HEAT = <real>SPECIFIC_HEAT
INIT STATE VAR Z0 = <real>INIT_STATE_VAR_ZO
MAX RATE DO = <real>MAX_RATE_DO
MAX STATE VAR Z1 = <real>MAX_STATE_VAR_Z1
STRAIN HARD PAR ALPHA = <real>STRAIN_HARD_PAR_ALPHA
STRAIN HARD PAR MO = <real>STRAIN_HARD_PAR_MO
STRAIN HARD PAR M1 = <real>STRAIN_HARD_PAR_ M1
STRAIN RATE EXP NO = <real>STRAIN_RATE_EXP_NO
THERM SOFT PAR N1 = <real>THERM_SOFT_PAR_N1
GRUN COEF = <real>GRUN_COEF
MIEGRU COEF K2 = <real>MIEGRU_COEF_K2
MIEGRU COEF K3 = <real>MIEGRU_COEF_K3
MAX TENS PRESS = <real>MAX_ TENS_PRESS

END [PARAMETERS FOR MODEL BPSTRESS_MMM]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

This specification activates the Bodner-Partom Stress model with a Mie-Gruneisen EOS. The
expression for the yield function of this model is:

1
2 3 . 2n
o=7|- " In \/_Ep (1.1)
n+1 2Dy
where n, Z, and m are defined by
Lo 12
n=nyg+—)

0+ 5 (1.2)

m —mgy— nj
Z=7-(Z - 7Z) exp(— —mon) (1.3)
m = mq + mj exp(—aW,) (1.4)

where €, is the equivalent plastic strain rate, Dy is the maximum allowable equivalent plastic
strain rate, 7T is the absolute temperature, and W), is the plastic work per initial volume. Zy, Z1, no,
ni, mg, mip, «, and Dg are all material constants.

The pressure response is described by a cubic Mie-Gruneisen model:

r
p-= (K1ﬂ+1<2u2+1<3p3) (1—7“)+FE5(1+,1) (1.5)

12

where u =

Yo _

v — 1, ['is the Gruneisen coefficient, V and V are the initial and current volumes,

respectively, K is the elastic bulk modulus, and K3 and K3 are material constants.

The Bodner-Partom command block starts with the input line:

BEGIN PARAMETERS FOR MODEL BPSTRESS_MMM

and terminates with an input line of the following form:

END [PARAMETERS FOR MODEL BPSTRESS_MMM]

In the above command blocks:

* The density of the material is defined with the DENSITY command line.

* Only two of the following elastic constants are required to define the unscaled bulk
behavior:

Young’s modulus is defined with the YOUNGS MODULUS command line.
Poisson’s ratio is defined with the POISSONS RATIO command line.
The bulk modulus is defined with the BULK MODULUS command line.
The shear modulus is defined with the SHEAR MODULUS command line.

Lambda is defined with the LAMBDA command line.

* The following command lines are required:

The yield stress of the material is defined with the YTELD STRESS command line.

The initial density of the material is defined with the INITIAL DENSITY command
line. Set this equal to the density specified with the DENSITY command line.

The temperature at absolute zero is defined with the ABS ZERO TEMP command
line.

The specific heat is defined with the SPECIFIC HEAT command line.

The material parameters Z0, DO, Z1, ALPHA, M0, M1, NO, and N1 are defined with
the corresponding command lines listed above.

The Gruneisen parameter Gamma is defined with the GRUN COEF command line.

The K2 parameter for the MMM cubic Mie-Gruneisen model is defined with the
MIEGRUN COEF K2 command line.

The K3 parameter for the MMM cubic Mie-Gruneisen model is defined with the
MIEGRUN COEF K3 command line.

The maximum permitted tensile pressure is defined with the MAX TENS PRESS
command line.

Output variables available for this model are listed in Table 1.2.

13

1.2.1.4 Holmquist-Johnson-Cook Concrete Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
#
BEGIN PARAMETERS FOR MODEL HJCCONCRETE_MMM
TWO MU = <real>two_mu
YOUNGS MODULUS = <real>youngs_modulus
BULK MODULUS = <real>bulk_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
LAMBDA = <real>lambda
YIELD STRESS = <real>yield_stress
INIT DENSITY = <real>init_density
COMP STREN FC = <real>COMP_STREN_FC
DAMAGE COEF D1 = <real>DAMAGE_COEF_DI1
DAMAGE EXP D2 = <real>DAMAGE_EXP_D?2
INIT SHEAR MODULUS = <real>INIT_SHEAR_MODULUS
MAX STRESS = <real>MAX_STRESS
MAX TENS PRESS T = <real>MAX_TENS_PRESS_T
MIN FAIL STRAIN = <real>MIN_FAIL_ STRAIN
PCRUSH = <real>PCRUSH
PLOCKI = <real>PLOCKI
PRESS COEF K1 = <real>PRESS_COEF_K1
PRESS COEF K2 = <real>PRESS_COEF_K2
PRESS COEF K3 <real>PRESS_COEF_K3
PRESS HARD COEF B = <real>PRESS_HARD_COEF_B
PRESS HARD EXP N = <real>PRESS_HARD_EXP_N
STRAIN RATE COEF C = <real>STRAIN_RATE_COEF_C
UCRUSH = <real>UCRUSH
ULOCK = <real>ULOCK
YIELD STRESS A = <real>YIELD_STRESS_A
END [PARAMETERS FOR MODEL HJCCONCRETE_MMM]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

This specification activates the Holmquist-Johnson-Cook concrete model. This model has a yield
surface defined by:

o =[A(1 = D) + BP*"][1 + Cln €] (1.6)

where A, B, n, and C are material constants. Additionally, é¢* = ¢/¢€p, where € is the total
equivalent strain rate and éy = 1.0s™!. P* is the pressure normalized by f/ (the uniaxial
compressive strength at €* = 1.0). The value of o can be limited to oy, if specified in the input
file. D is the damage term, which is computed through the equation:

Ae, + Au
p=Y £ "TP 1.7
Z e (1.7)

14

where € denotes equivalent plastic strain, u denotes plastic volumetric strain, / indicates values at
failure, and A indicates change over a step. The combined failure strain e[]: + ,u[]; is set to
D (P* +T*)P2, where D, and D, are material constants, P* was defined previously, and

T* =T/ f!, where T is the maximum permitted tensile pressure.

The compressive pressure response is dependent upon the values of volumetric crush (uc,,s,) and
lock (ujock), where u = Vy/V — 1, and V and Vj are the current and initial volumes. At strains
below uerusi, the bulk modulus is constant and equal to Pyysp/ terush- At volume strains above
Uiock, the material is considered to be fully compressed with no voids, and is described as:

P=Kia+Kyi*+ Kz’ (1.8)

where @ = (1 — iock) /(1 + fiocr). Between perysn and pyocr, voids are crushed out of the
material, and a linear fit is made between the states at .5, and ek -

The tensile pressure response is defined as P = Ku before perysn, P = K fi after ppjocx (note this
is different than p;,.«), and is linearly interpolated between the states at p¢y54 and upiocx When
between these values. A limit is placed on the tensile pressure by the expression

Pyax = T(1 — D), using the T described previously.

The command block for this model starts with the input line:

BEGIN PARAMETERS FOR MODEL HJCCONCRETE_MMM

and terminates with an input line of the following form:

END [PARAMETERS FOR MODEL HJCCONRETE_MMM]

In the above command blocks:
* The density of the material is defined with the DENSITY command line.

* Only two of the following elastic constants are required to define the unscaled bulk
behavior:

Young’s modulus is defined with the YOUNGS MODULUS command line.

Poisson’s ratio is defined with the POISSONS RATIO command line.

The bulk modulus is defined with the BULK MODULUS command line.

The shear modulus is defined with the SHEAR MODULUS command line.

Lambda is defined with the LAMBDA command line.

* The following command lines are required:
— The yield stress of the material is defined with the YIELD STRESS A command line.

— The initial density of the material is defined with the INITIAL DENSITY command
line. Set this equal to the density specified with the DENSITY command line.

— The line COMP STREN FC sets the value of f.

15

— The material constants D and D> are used in the damage evolution equation.
— The initial shear modulus is set through the command INIT SHEAR MODULUS.

— The maximum permitted equivalent compressive stress is set by the command MAX
STRESS.

— The maximum permitted tensile stress (7') is set by the command MAX TEN PRESS

T.

— The minimum failure strain is set with the command MIN FAIIL STRAIN.

— The pressure and volumetric strain at crush are set with the commands PCRUSH and

UCRUSH, respectively.

— The pressure and volumetric strain at volumetric locking (fully dense material) are set

with the commands PLOCKTI and ULOCK, respectively.

— The fully dense compressive pressure constants K, K>, and K3 are specified through

the related command lines.

— The yield function material constants B, n, and C are specified through the related
command lines.

Output variables available for this model are listed in Table 1.5. More information about this
model is available in [11].

1.2.1.5 Hull Concrete Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

#

BEGIN PARAMETERS FOR MODEL HULLCONCRETE_MMM
TWO MU = <real>two_mu
YOUNGS MODULUS = <real>youngs_modulus
BULK MODULUS = <real>bulk_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
LAMBDA = <real>lambda
YIELD STRESS = <real>yield_stress
INIT DENSITY = <real>init_density
KLOCK = <real>KLOCK
MAX STRESS = <real>MAX_STRESS
MAX TENS PRESS T = <real>MAX_TENS_PRESS_T
PCRUSH = <real>PCRUSH
PRESS COEF K1 = <real>PRESS_COEF_K1
PRESS COEF K2 <real>PRESS_COEF_K2
PRESS COEF K3 <real>PRESS_COEF_K3

(continues on next page)

16

(continued from previous page)

PRESS HARD COEF B = <real>PRESS_HARD_COEF_B
STRAIN RATE COEF C = <real>STRAIN_RATE_COEF_C
UCRUSH = <real>UCRUSH
ULOCK = <real>ULOCK
YIELD STRESS A = <real>YIELD_STRESS_A
END [PARAMETERS FOR MODEL HULLCONCRETE_MMM]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

This specification activates the Hull concrete model. This model has a yield surface defined by:
o =[A+BP][1+Cln¢€"| (1.9)

where A, B, and C are material constants. Additionally, é* = €/¢ég, where ¢ is the total equivalent
strain rate and €y = 1.0s~!. The value of o can be limited to ¢, if specified in the input file.

The compressive pressure response is dependent upon the values of volumetric crush (uc,ys,) and
lock ((jocx), Where u = Vy/V — 1, and V and Vj are the current and initial volumes. At strains
below uerusn, the bulk modulus is constant and equal to Peyysn/terush- Between pe,,sn and

Hiock,
P = Perush + Kifi + K2 @* + Kz 2° (1.10)
where i = yu — pcrysn. At volume strains above py ¢k,
P = Kiock (4 = po) (1.11)

where g is the volumetric strain after unloading down to P = 0 from u = uyock.

The command block for this model starts with the input line:

BEGIN PARAMETERS FOR MODEL HULLCONCRETE_MMM

and terminates with an input line of the following form:

END [PARAMETERS FOR MODEL HULLCONCRETE_MMM]

In the above command blocks:
* The density of the material is defined with the DENSITY command line.

* Only two of the following elastic constants are required to define the unscaled bulk
behavior:

Young’s modulus is defined with the YOUNGS MODULUS command line.

Poisson’s ratio is defined with the POISSONS RATIO command line.

The bulk modulus is defined with the BULK MODULUS command line.

The shear modulus is defined with the SHEAR MODULUS command line.

17

— Lambda is defined with the LAMBDA command line.
* The following command lines are required:
— The yield stress of the material is defined with the YTELD STRESS A command line.

— The initial density of the material is defined with the INITIAL DENSITY command
line. Set this equal to the density specified with the DENSITY command line.

— The maximum permitted equivalent compressive stress is set by the command MAX
STRESS.

— The maximum permitted tensile stress (T) is set by the command MAX TEN PRESS
T.

— The pressure and volumetric strain at crush are set with the commands PCRUSH and
UCRUSH, respectively.

— The volumetric strain at volumetric locking (fully dense material) is set with the
command ULOCK.

— The pressure constants K, K;, and K3 are specified through the related command
lines.

— The yield function material constants B and C are specified through the related
command lines.

Output variables available for this model are listed in Table Table 1.6. More information about
this model is available in [11].

1.2.1.6 Johnson-Cook Strength Model with Mie-Gruneisen EOS and Johnson-Cook
Failure Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
#
BEGIN PARAMETERS FOR MODEL JCSTRESS_MMM
TWO MU = <real>two_mu
YOUNGS MODULUS = <real>youngs_modulus
BULK MODULUS = <real>bulk_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_ modulus
LAMBDA = <real>lambda
YIELD STRESS = <real>yield_stress
INIT DENSITY = <real>init_density
ART VIS CL <real>Linear_Artificial_Bulk_Viscosity
ART VIS CQ <real>Quadratic_Artificial_ Bulk_Viscosity
INIT TEMPERATURE = <real>INIT_TEMPERATURE
MELT TEMPERATURE = <real>MELT_TEMPERATURE

(continues on next page)

18

(continued from previous page)

ROOM TEMPERATURE = <real>ROOM_TEMPERATURE
SPECIFIC HEAT = <real>SPECIFIC_HEAT

JCF MODEL = { NONE | ORIGINAL | MODIFIED | LAME }
JCF D1 = <real>JCF_DI1

JCF D2 = <real>JCF_D2

JCF D3 = <real>JCF_D3

JCF D4 = <real>JCF_D4

JCEF D5 = <real>JCF_D5

JCF EFMIN = <real>JCF_EFMIN

JCF KSTAR = <real>KSTAR

JCF LAMBDA = <real>LAMBDA

JCF LFAIL = <real>JCF_LFAIL

JCF PFAIL = <real>JCF_PFAIL

JCF WM = <real>JCF_WM

JCF REFVOL = <real>JCF_REFVOL

JCF ICSEED = <integer> JCF_ICSEED
JCF ITSEED = <integer> JCF_ITSEED
MAX STRESS = <real>MAX_ STRESS

PRESS HARD COEF = <real>PRESS_HARD_COEF
STRAIN HARD COEF = <real>STRAIN_HARD_COEF
STRAIN HARD EXP = <real>STRAIN_HARD_EXP
STRAIN RATE COEF = <real>STRAIN_RATE_COEF
STRAIN RATE MODEL = { LOG | POWER }

THERM SOFT EXP = <real>THERM_SOFT_EXP
MIEGRU FORM = { CUBIC | USUP }

GRUN COEF = <real>GRUN_COEF

MIEGRU COEF K2 = <real>MIEGRU_COEF_K2
MIEGRU COEF K3 = <real>MIEGRU_COEF_K3
MIEGRU CSBULK = <real>CSBULK

MIEGRU SLOPE = <real>SLOPE

MAX TENS PRESS = <real>MAX_TENS_PRESS
CRITICAL FAILURE PARAMETER = <real> d_crit

#

MODULAR_FAILURE Failure model definitions

#

PRESSURE MULTIPLIER = PRESSURE_INDEPENDENT | WILKINS

| USER_DEFINED (PRESSURE_INDEPENDENT)
LODE_ANGLE_INDEPENDENT |

WILKINS (LODE_ANGLE_INDEPENDENT)
TRIAXIALITY_ INDEPENDENT | JOHNSON_

LODE ANGLE MULTIPLIER

TRIAXIALITY MULTIPLIER
—COOK

| USER_DEFINED (TRIAXIALITY_
—INDEPENDENT)
RATE FAIL MULTIPLIER RATE_INDEPENDENT | JOHNSON_COOK

| USER_DEFINED (RATE_INDEPENDENT)

(continues on next page)

19

(continued from previous page)

TEMPERATURE FAIL MULT
—COOK

—INDEPENDENT)
#
Individual multipli
#
PRESSURE MULTIPLIER
WILKINS ALPHA
WILKINS PRESSURE
#
PRESSURE MULTIPLIER

PRESSURE MULTIPLIER FUNCTION

—name
#
LODE ANGLE MULTIPLIER
WILKINS BETA
#

TRIAXTIALITY MULTIPLIER

JOHNSON COOK D1

JOHNSON COOK D2

JOHNSON COOK D3

#

TRIAXIALITY MULTIPLIE

TRIAXIALITY MULTIPLIE
—name

#

RATE FAIL MULTIPLIER

JOHNSON COOK D4

REFERENCE RATE

#

RATE FAIL MULTIPLIER

RATE FAIL MULTIPLIER
—name

#

TEMPERATURE FAIL MULT

JOHNSON COOK D5

REFERENCE TEMPERATURE

MELTING TEMPERATURE

#

TEMPERATURE FAIL MULT

TEMPERATURE FAIL MULT
—fun_name

#

IPLIER TEMPERATURE_INDEPENDENT | JOHNSON_

| USER_DEFINED (TEMPERATURE_

er definitions

WILKINS
<real> alpha
<real> B

USER_DEFINED
<string> pressure_multiplier_ fun_

WILKINS
<real> Beta

JOHNSON_COOK
<real> D_1
<real> D_2
<real> D_3
R =
R

USER_DEFINED
FUNCTION <string> triax_multiplier_fun_

JOHNSON_COOK
<real> D_4
<real> dot_epsilon_0

USER_DEFINED
FUNCTION <string> rate_fail_multiplier_fun_

IPLIER = JOHNSON_COOK
= <real> D_5
= <real> T_ref
= <real> T_melt
IPLIER = USER_DEFINED

IPLIER FUNCTION <string> temp_multiplier_

END [PARAMETERS FOR MODEL JCSTRESS_MMM
END [PROPERTY SPECIFICATION FOR MATERIAL

]

<string>mat_name]

20

This specification activates the Johnson-Cook Stress model with a Mie-Gruneisen EOS and the
Johnson-Cook failure model. This is a widely used material model, and fits for a range of
materials can be found in the literature. Several options turn on and off slight modifications to the
model, and the failure portion can be used or turned off. The failure model also includes an option
to randomly perturb the failure strains for the model, permitting the adding of material
non-heterogeneity into analyses.

The Johnson-Cook Stress model has a yield function described by:
o =[A+Be)][1+Clné’][1 -T™] +aP (1.12)

Where €, is the equivalent plastic strain, é* = ¢/1.0 sec™!, P is the hydrostatic pressure,
T = (T — Troom)/ (Tpetr — Troom) Where T refers to temperature, and A, B, C, n, m, and a are
material constants. The stress can be capped to a user-specified maximum.

The strain rate dependence can also take on a power-law form, where the expression [1 + C In €*]
is replaced with [¢*C].

The Johnson-Cook Stress model also has the capability to compute material failure. Once failed,
the model provides resistance only to hydrostatic pressure. Material failure occurs when the
damage D is greater than 1.0. Note that a value of D less than 1.0 has no effect on the computed
stresses in the model. D accumulates according to the equation:

A
p=3 (E—j”) (1.13)
P

where Ag), is the increment of plastic strain over a time step, and e}: is the failure strain. The
failure strain is described by the expression:

€} = [D1 + Dyexp(D30)][1 + D4Iné€,][1 + DsT*] (1.14)

where o* is the mean pressure divided by the von Mises equivalent stress, 7" is the normalized
temperature described earlier, €, is the plastic strain rate, and D through D5 are material
constants. Note that the failure strain for a material point changes if the loading or temperature
changes.

For high tensile stresses, the failure strain is handled differently. In the original J-C failure model,
the failure strain is capped at e}ﬁ ;» once the stress reaches O's*pa ;> Which is defined as the
user-specified o, normalized by the von Mises stress. The transition to this cap starts at a
normalized tensile stress of o* > 1.5, at which point it varies linearly to the cap values.

Alternatively, a modified version accumulates damage for tensile pressures as:

S0 - 1A
-7

D (1.15)

where A and K* are material constants. This is activated once the mean tensile pressure exceeds
the threshold o,0.

21

Statistical variation of the failure parameters can also be added through this model. See below for
the commands which activate this.

The command block starts with the input line:

BEGIN PARAMETERS FOR MODEL JCSTRESS_MMM

and terminates with an input line of the following form:

END [PARAMETERS FOR MODEL JCSTRESS_MMM]

In the above command blocks:
* The density of the material is defined with the DENSITY command line.

* Only two of the following elastic constants are required to define the unscaled bulk
behavior:

Young’s modulus is defined with the YOUNGS MODULUS command line.

Poisson’s ratio is defined with the POISSONS RATIO command line.

The bulk modulus is defined with the BULK MODULUS command line.

The shear modulus is defined with the SHEAR MODULUS command line.

Lambda is defined with the LAMBDA command line.
* The following command lines are required:

— The yield stress of the material, shown as A in the equations above, is defined with the
YIELD STRESS command line.

— The initial density of the material is defined with the INITIAL DENSITY command
line. Set this equal to the density specified with the DENSITY command line.

— Extra linear artificial bulk viscosity can be defined with the ART VIS CL command
line; this value should generally be set to zero.

— Extra quadratic artificial bulk viscosity can be defined with the ART VIS CQ
command line; this value should generally be set to zero.

— The room temperature is defined with the ROOM TEMPERATURE command line.
— The melt temperature is defined with the MELT TEMPERATURE command line.
— The specific heat is defined with the SPECIFIC HEAT command line.

— The hardening constant B is specified with the command STRAIN HARD COEF.
— The hardening exponent 7 is specified with the command STRAIN HARD EXP.

— The exponent on the temperature m is specified with the command THERM SOFT
EXP.

22

— The term « is specified with the command PRESS HARD COEF.
— A limit on the yield stress can be specified using the MAX STRESS command line.

— The form of the rate dependence is chosen with the command STRAIN RATE
MODEL" " a@dchoose LOG for the traditional form, and POWER
for the power law version. In both cases, the material
parameter :math: C° which controls the rate effect is
specified with the command line °~ STRAIN RATE COEF.

— The type of failure model is defined with the JCF MODEL command line. If the value
1s NONE, then no failure model is used. The original version of the Johnson-Cook
Failure model with its original treatment of spall is chosen with the ORIGINAL
keyword. The MODIFIED value chooses the modified version of the spall model.
Specifying the value LAME chooses the modular failure model; commands for this
model are explained below.

The Johnson-Cook failure model parameters D1, D>, D3, D4, and D5 are defined with their
corresponding commands, each of which begin with the JCF command word.

The spall cap for the original Johnson-Cook Failure model is specified with the commands
JCF PFAIL and JCF EFMIN for the spall stress (07pq1) and minimum failure strain

(e,f;)» Tespectively.

The spall behavior for the modified Johnson-Cook Failure model is specified with the
commands JCF KSTAR and JCF LAMBDA for K* and 4, respectively. The command JCF
PFATIL specifies the threshold mean tensile pressure (07,0) after which the spall model is
used for failure.

The command JCF LFAIL controls whether the stress will be decayed if a damage > 1.0 is
reached. If this value is set to zero, no failure will occur, though damage will still be
computed. A value of 1 will cause the stress to go to zero once damage > 1.0.

A Weibull modulus-based variability is available through the JCSTRESS_ MMM model.
This capability is activated if the value given for the Weibull modulus using the command
JCF WM is a value greater than zero. JCF REFVOL defines a representative element size,
such as the average size of elements where failure is expected. The commands JCF
ICSEED and JCF ITSEED serve as seeds for the random number generator.

JCSTRESS_MMM permits the choice of two different implementations of the
Mie-Gruneisen model. The command MIEGRU FORM chooses the version.

— The Gruneisen parameter Gamma is defined with the GRUN COEF command line.

— If MIEGRU FORM is chosen as CUBIC, then the cubic version of Mie-Gruneisen is
chosen. The following commands are active:

* The K, parameter for the MMM cubic Mie-Gruneisen model is defined with the
MIEGRUN COEF K2 command line.

23

* The K3 parameter for the MMM cubic Mie-Gruneisen model is defined with the
MIEGRUN COEF K3 command line.

— If MIEGRU FORM is chosen as USUP, then the linear Us — U, version of
Mie-Gruneisen is chosen. The following commands are active:

* The initial bulk sound speed is defined with the MIEGRUN CSBULK command
line.

* The slope of the Uy — U, relation (S) is defined with the MIEGRUN SLOPE
command line.

* The maximum permitted tensile pressure is defined with the MAX TENS PRESS
command line.

* JCSTRESS_MMM supports the modular failure model. The following is a description of the
corresponding commands:

— The command CRITICAL FAILURE PARAMETER is used to specify the critical
failure parameter, used for modular failure.

— The modular failure model multipliers are specified with the commands PRESSURE
MULTIPLIER, LODE ANGLE MULTIPLIER, TRIAXIALITY MULTIPLIER,
RATE FAIL MULTIPLIER, and TEMPERATURE FAIL MULTIPLIER. The
definitions listed above show the supported and default (INDEPENDENT) options for
these multipliers.

— Additional parameters need to be specified for some modular failure multipliers:
+ If an INDEPENDENT multiplier is used, no additional parameters are necessary.

* When the Wilkins model is used for the pressure multiplier, WILKINS ALPHA
and WILKINS PRESSURE must be specified.

* For the Lode angle multiplier, just the WILKINS BETA parameter is required for
the Wilkins model.

* When the Johnson-Cook model is used for the triaxiality multiplier, the D1, D>,
and D3 parameters must be specified. Each of these parameters are specified with
the corresponding commands, beginning with the JOHNSON COOK command
word. These parameters must be specified, even if they already have been
specified beginning with the JC command word.

* One must define D4 with JOHNSON COOK D4 when the Johnson-Cook model is
used for the rate fail multiplier. This is even if JC D4 has already been defined.
Additionally, the reference rate must be specified with REFERENCE RATE.

* The temperature fail multiplier requires D5 when the Johnson-Cook model is
used for it, specified with JOHNSON COOK D5. This is specified in this case, in
addition to JC D5. Reference temperature and melting temperature are also
required, defined with REFERENCE TEMPERATURE and MELTING

24

TEMPERATURE, respectively. One must define these parameters for this case in
addition to ROOM TEMPERATURE and MELT TEMPERATURE described above.

* For multipliers that support user-defined functions (pressure, triaxiality, rate fail,
and temperature fail), the functions need to be specified with the multiplier name
followed by the FUNCTION command word.

Output variables available for this model are listed in Table Table 1.9. More information about
this model is available in [11].

1.2.1.7 Johnson-Holmquist Ceramic Models

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

#

BEGIN PARAMETERS FOR MODEL JHI1CERAMIC_MMM
TWO MU = <real>two_mu
YOUNGS MODULUS = <real>youngs_modulus
BULK MODULUS = <real>bulk_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_ modulus
LAMBDA = <real>lambda
YIELD STRESS = <real>yield_stress
INIT DENSITY <real>init_density
BULKING CNST <real>BULKING_CNST
DAMAGE CNST DP1 = <real>DAMAGE_CNST_DP1
FSTRENGTH MAX = <real>FSTRENGTH_MAX
FSTRENGTH SLOPE = <real>FSTRENGTH_SLOPE
MAX FAIL STRAIN = <real>MAX_FAIL_STRAIN
PRESS COEF K2 = <real>PRESS_COEF_K2
PRESS COEF K3 <real>PRESS_COEF_K3
STRAIN RATE COEF = <real>STRAIN_RATE_COEF
STRENGTH CNST P1 = <real>STRENGTH_CNST_P1
STRENGTH CNST P2 = <real>STRENGTH_CNST_P2
STRENGTH CNST S1 = <real>STRENGTH_CNST_S1
STRENGTH CNST S2 = <real>STRENGTH_CNST_S2
MAX TENS PRESS = <real>MAX_ TENS_PRESS

END [PARAMETERS FOR MODEL JHI1CERAMIC_MMM]

BEGIN PARAMETERS FOR MODEL JH2CERAMIC_MMM
TWO MU = <real>two_mu
YOUNGS MODULUS = <real>youngs_modulus
BULK MODULUS = <real>bulk_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_ modulus
LAMBDA = <real>lambda

(continues on next page)

25

(continued from previous page)

YIELD STRESS <real>yield_stress
INIT DENSITY = <real>init_density
BULKING CNST = <real>BULKING_CNST
DAMAGE COEF D1 = <real>DAMAGE_COEF_D1
DAMAGE EXP D2 = <real>DAMAGE_EXP_D?2
FSTRENGTH COEF B = <real>FSTRENGTH_COEF_B
FSTRENGTH EXP M = <real>FSTRENGTH_EXP_M
FSTRENGTH MAX NORM = <real>FSTRENGTH_MAX_NORM
HEL = <real>HEL
MIN FAIL STRAIN = <real>MIN_FAIL_STRAIN
PRESS COEF K2 <real>PRESS_COEF_K2
PRESS COEF K3 <real>PRESS_COEF_K3
STRAIN RATE COEF = <real>STRAIN_RATE_COEF
STRENGTH COEF A = <real>STRENGTH_COEF_A
STRENGTH EXP N = <real>STRENGTH_EXP_N
MAX TENS PRESS = <real>MAX_ TENS_PRESS

END [PARAMETERS FOR MODEL JH2CERAMIC_MMM]

BEGIN PARAMETERS FOR MODEL JH3CERAMIC_MMM
TWO MU = <real>two_mu
YOUNGS MODULUS = <real>youngs_modulus
BULK MODULUS = <real>bulk_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear modulus
LAMBDA = <real>lambda
YIELD STRESS = <real>yield_ stress
INIT DENSITY = <real>init_density
BULKING CNST <real>BULKING_CNST
DAMAGE COEF D1 = <real>DAMAGE_COEF_DI1
DAMAGE EXP D2 = <real>DAMAGE_EXP_D?2
FSTRENGTH COEF B = <real>FSTRENGTH_COEF_B
FSTRENGTH EXP M = <real>FSTRENGTH_EXP_M
FSTRENGTH MAX NORM = <real>FSTRENGTH_MAX_NORM
HEL = <real>HEL
MIN FAIL STRAIN = <real>MIN_FAIL_ STRAIN
PRESS COEF K2 = <real>PRESS_COEF_K2
PRESS COEF K3 = <real>PRESS_COEF_K3
STRAIN RATE COEF = <real>STRAIN_RATE_COEF
STRENGTH COEF A = <real>STRENGTH_COEF_A
STRENGTH EXP N = <real>STRENGTH_EXP_N
MAX TENS PRESS = <real>MAX_TENS_PRESS

END [PARAMETERS FOR MODEL JH3CERAMIC_MMM]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

This specification activates the Johnson-Holmquist Ceramic models 1 through 3. The three
models differ slightly in how they handle failure. More information is available in [11].

26

The command block starts with the input line:

BEGIN PARAMETERS FOR MODEL JH#CERAMIC_MMM

and terminates with an input line of the following form:

END [PARAMETERS FOR MODEL JH#CERAMIC_MMM]

where #1s 1, 2, or 3.
In the above command blocks:
* The density of the material is defined with the DENSITY command line.

* Only two of the following elastic constants are required to define the unscaled bulk
behavior:

Young’s modulus is defined with the YOUNGS MODULUS command line.

Poisson’s ratio is defined with the POISSONS RATIO command line.

The bulk modulus is defined with the BULK MODULUS command line.

The shear modulus is defined with the SHEAR MODULUS command line.

Lambda is defined with the LAMBDA command line.

* The following command lines are required:

The yield stress of the material is defined with the YIELD STRESS command line.

The initial density of the material is defined with the INITTIAL DENSITY command
line. Set this equal to the density specified with the DENSITY command line.

The maximum permitted tensile pressure is defined with the MAX TENS PRESS
command line.

The remaining command lines are described in [11].

Output variables available for these models are listed in Table 1.7. More information about these
models is available in [11]] and [[9].

1.2.1.8 Johnson-Holmquist-Beissel Ceramic Models

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
#
BEGIN PARAMETERS FOR MODEL JHB1CERAMIC_MMM
TWO MU = <real>two_mu
YOUNGS MODULUS = <real>youngs_modulus
BULK MODULUS = <real>bulk_modulus

(continues on next page)

27

(continued from previous page)

POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear modulus
LAMBDA = <real>lambda
YIELD STRESS = <real>yield_ stress
INIT DENSITY = <real>init_density
BULKING CNST <real>BULKING_CNST
DAMAGE COEF D1 = <real>DAMAGE_COEF_DI1
DAMAGE EXP N = <real>DAMAGE_EXP_N
FSTRENGTH CNST PF = <real>FSTRENGTH_CNST_PF
FSTRENGTH CNST SF = <real>FSTRENGTH_CNST_SF
FSTRENGTH MAX = <real>FSTRENGTH_MAX
MAX FAIL STRAIN = <real>MAX_FAIL_STRAIN
PRESS COEF K2 = <real>PRESS_COEF_K2
PRESS COEF K3 = <real>PRESS_COEF_K3
STRAIN RATE COEF = <real>STRAIN_RATE_COEF
STRENGTH CNST PI = <real>STRENGTH_CNST_PI
STRENGTH CNST SI = <real>STRENGTH_CNST_SI
STRENGTH MAX = <real>STRENGTH_MAX
MAX TENS PRESS = <real>MAX_TENS_PRESS

END [PARAMETERS FOR MODEL JHBI1CERAMIC_MMM]

BEGIN PARAMETERS FOR MODEL JHB2CERAMIC_MMM
TWO MU = <real>two_mu
YOUNGS MODULUS = <real>youngs_modulus
BULK MODULUS = <real>bulk_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
LAMBDA = <real>lambda
YIELD STRESS = <real>yield_stress
INIT DENSITY = <real>init_density
BULKING CNST = <real>BULKING_CNST
DAMAGE COEF D1 = <real>DAMAGE_COEF_DI1
DAMAGE EXP N = <real>DAMAGE_EXP_N
FSTRENGTH CNST PF <real>FSTRENGTH_CNST_PF
FSTRENGTH CNST SF <real>FSTRENGTH_CNST_SF
FSTRENGTH MAX = <real>FSTRENGTH_MAX
HYSTERESIS CNST = <real>HYSTERESIS_CNST
MAX FAIL STRAIN = <real>MAX_FAIL_STRAIN
PHASE TRAN P1 = <real>PHASE_TRAN_PI1
PHASE TRAN P2 = <real>PHASE_TRAN_P2
PHASE2 KP1 = <real>PHASE2_KP1
PHASE2 KP2 = <real>PHASE2_KP2
PHASE2 KP3 = <real>PHASE2_KP3
PHASE2 UPZERO = <real>PHASE2_UPZERO
PRESS COEF K2 = <real>PRESS_COEF_K2

28

(continues on next page)

(continued from previous page)

PRESS COEF K3 = <real>PRESS_COEF_K3
STRAIN RATE COEF <real>STRAIN_RATE_COEF
STRENGTH CNST PI = <real>STRENGTH_CNST_PI
STRENGTH CNST SI = <real>STRENGTH_CNST_ST
STRENGTH MAX = <real>STRENGTH_MAX
MAX TENS PRESS = <real>MAX_TENS_PRESS
END [PARAMETERS FOR MODEL JHB2CERAMIC_MMM]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

This specification activates the Johnson-Holmquist-Beissel Ceramic models 1 and 2. The two
models differ slightly in how they handle failure. More information is available in [11].

The command block starts with the input line:

BEGIN PARAMETERS FOR MODEL JHB#CERAMIC_MMM

and terminates with an input line of the following form:

END [PARAMETERS FOR MODEL JHB#CERAMIC_MMM]

where # is either 1 or 2.
In the above command blocks:
* The density of the material is defined with the DENSITY command line.

* Only two of the following elastic constants are required to define the unscaled bulk
behavior:

Young’s modulus is defined with the YOUNGS MODULUS command line.

Poisson’s ratio is defined with the POISSONS RATIO command line.

The bulk modulus is defined with the BULK MODULUS command line.

The shear modulus is defined with the SHEAR MODULUS command line.

Lambda is defined with the LAMBDA command line.

* The following command lines are required:

— The initial density of the material is defined with the INITIAL DENSITY command
line. Set this equal to the density specified with the DENSITY command line.

— The maximum permitted tensile pressure is defined with the MAX TENS PRESS
command line.

— The remaining command lines are described in [11].

Output variables available for these models are listed in Table 1.8. More information about these
models is available in [11]] and [[9].

29

1.2.1.9 Mechanical Threshold Stress (MTS) Strength Model with Mie-Gruneisen
EOS

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSIT
#

Y = <real>den

sity_value

BEGIN PARAMETERS FOR MODEL MTSSTRESS_MMM

TWO MU = <real>two_mu

YOUNGS MODULUS = <real>youngs_modulus

BULK MODULUS = <real>bulk_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

LAMBDA = <real>lambda

YIELD STRESS = <real>yield_stress

INIT DENSITY = <real>init_density

ABS ZERO TEMP = <real>ABS_ZERO_TEMP

INIT TEMPERATURE = <real>INIT_TEMPERATURE
MELT TEMPERATURE = <real>MELT_TEMPERATURE
SPECIFIC HEAT = <real>SPECIFIC_HEAT

ABS ZERO SHRMOD SMO = <real>ABS_ZERO_SHRMOD_SMO
BURGVEC MAG = <real>BURGVEC_MAG

CNST ALPHA = <real>CNST_ALPHA

CNST BOLTZ = <real>CNST_BOLTZ

CNST CAPA = <real>CNST_CAPA

CNST PINV = <real>CNST_PINV

CNST PINVI = <real>CNST_PINVI

CNST PINVS = <real>CNST_PINVS

CNST QINV = <real>CNST_QINV

CNST QINVI = <real>CNST_QINVI

CNST QINVS = <real>CNST_QINVS

DISLOC CNST HFO = <real>DISLOC_CNST_HFO
DISLOC CNST HF1 <real>DISLOC_CNST_HF1
DISLOC CNST HF2 <real>DISLOC_CNST_HF2
DISLOC CNST SIGA = <real>DISLOC_CNST_SIGA
DISLOC CNST SIGI = <real>DISLOC_CNST_SIGI
DISLOC CNST SIGS = <real>DISLOC_CNST_SIGS
INIT STATE VAR SIGO = <real>INIT_STATE_VAR_SIGO
NORM ACT ENRGY GO = <real>NORM_ACT_ENRGY_GO
NORM ACT ENRGY GOI <real>NORM_ACT_ENRGY_GOI
NORM ACT ENRGY GOS <real>NORM_ACT_ENRGY_GO0S
REF STN RAT EDOTO0 = <real>REF_STN_RAT_EDOTO
REF STN RAT EDOTI = <real>REF_STN_RAT_EDOTI
REF STN RAT EDOTS <real>REF_STN_RAT_EDOTS
REF STN RAT EDOTSO = <real>REF_STN_RAT_EDOTSO
SAT TH STS SIGSO0 = <real>SAT_TH_STS_SIGSO
SHRMOD CNST SM1 = <real>SHRMOD_CNST_SM1

(continues on next page)

30

(continued from previous page)

SHRMOD CNST SM2 = <real>SHRMOD_CNST_SM2
GRUN COEF = <real>GRUN_COEF

MIEGRU COEF K2 = <real>MIEGRU_COEF_K2
MIEGRU COEF K3 = <real>MIEGRU_COEF_K3
MAX TENS PRESS <real>MAX_TENS_PRESS

FAILURE MODEL = NONE | MODULAR_FAILURE (NONE)

CRITICAL FAILURE PARAMETER = <real> d_crit

#

MODULAR_FAILURE Failure model definitions
#

PRESSURE MULTIPLIER

PRESSURE_INDEPENDENT | WILKINS

| USER_DEFINED (PRESSURE_INDEPENDENT)
LODE ANGLE MULTIPLIER = LODE_ANGLE_INDEPENDENT |

WILKINS (LODE_ANGLE_INDEPENDENT)
TRIAXIALITY_INDEPENDENT | JOHNSON_

TRIAXIALITY MULTIPLIER

—COOK
| USER_DEFINED (TRIAXIALITY_
—INDEPENDENT)
RATE FAIL MULTIPLIER = RATE_INDEPENDENT | JOHNSON_COOK

| USER_DEFINED (RATE_INDEPENDENT)
TEMPERATURE FAIL MULTIPLIER TEMPERATURE_INDEPENDENT | JOHNSON_

—COOK

| USER_DEFINED (TEMPERATURE_

—INDEPENDENT)

#

Individual multiplier definitions

#

PRESSURE MULTIPLIER = WILKINS

WILKINS ALPHA = <real> alpha

WILKINS PRESSURE <real> B

#

PRESSURE MULTIPLTER USER_DEFINED

PRESSURE MULTIPLIER FUNCTION = <string> pressure_multiplier_fun_
—name

#

LODE ANGLE MULTIPLIER

WILKINS BETA

WILKINS
<real> beta

#

TRIAXIALITY MULTIPLIER = JOHNSON_COOK
JOHNSON COOK D1 = <real> D_1
JOHNSON COOK D2 = <real> D_2
JOHNSON COOK D3 = <real> D_3

#

(continues on next page)

31

(continued from previous page)

TRIAXIALITY MULTIPLIER = USER_DEFINED
TRIAXIALITY MULTIPLIER FUNCTION = <string> triax_multiplier_fun_
—name

#

RATE FAIL MULTIPLIER = JOHNSON_COOK

JOHNSON COOK D4 = <real> D_4

REFERENCE RATE = <real> dot_epsilon_0
#

RATE FAIL MULTIPLIER = USER_DEFINED
RATE FAIL MULTIPLIER FUNCTION = <string> rate_fail multiplier_fun_
—name

#

TEMPERATURE FAIL MULTIPLIER = JOHNSON_COOK
JOHNSON COOK D5 = <real> D_5
REFERENCE TEMPERATURE = <real> T_ref
MELTING TEMPERATURE = <real> T_melt
#

TEMPERATURE FAIL MULTIPLIER USER_DEFINED
TEMPERATURE FAIL MULTIPLIER FUNCTION = <string> temp_multiplier_
—fun_ name

#
END [PARAMETERS FOR MODEL MTSSTRESS_MMM]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

This specification activates the Mechanical Threshold Stress (MTS) model with a cubic
Mie-Gruneisen EOS. The MTS model has a yield function defined by:

N G N N N
o=0,+ G—(s,hO' + 815.i07 + Sth.s07s) (1.16)
0

where & is the mechanical threshold stress (defined below), &, ;, and & are constants
representing dislocation interactions corresponding to long-range barriers, interstitial atoms, and
solute atoms, and Gy is the shear modulus at absolute zero. The shear modulus at other
temperatures is defined as:

by
G=Gpy— — 1.17
0 exp(by/T) — 1 (1.17)
where b and b, are material constants and 7" is the absolute temperature.
The s;,, terms have the general form:
1
IR S b7}
s = |1 (KT In(&/&)) (1.18)
Gb3gy

where k is the Boltzmann constant, b is the magnitude of the Burger’s vector, g¢ is a normalized
activation energy, € is a reference strain rate, and p and g are exponential constants. For s;,,; and
Sth.s» the equation is identical but with different constants.

32

The update of the mechanical threshold stress ¢ is governed by:

oo
Orene = 07 + —(€,At) (1.19)
3
where:
56 tanh (oz(%)
— =0y |l - — 1.20
o€, 0 tanh(a) (1.20)
®p =ap+ailn(é) + az\/g (1.21)
¢ kT/Gb3A
a-s = a-so (_) (122)
€so

where A, a, ag, ai, and a, are material constants, J, is the saturation threshold stress, and &, is
a reference strain rate.

The command block starts with the input line:

BEGIN PARAMETERS FOR MODEL MTSSTRESS_MMM

and terminates with an input line of the following form:

END [PARAMETERS FOR MODEL MTSSTRESS_MMM]

In the above command blocks:
* The density of the material is defined with the DENSITY command line.

* Only two of the following elastic constants are required to define the unscaled bulk
behavior:

Young’s modulus is defined with the YOUNGS MODULUS command line.

Poisson’s ratio is defined with the POISSONS RATIO command line.

The bulk modulus is defined with the BULK MODULUS command line.

The shear modulus is defined with the SHEAR MODULUS command line.

Lambda is defined with the LAMBDA command line.

* The following command lines are required:
— The yield stress of the material is defined with the YTELD STRESS command line.

— The initial density of the material is defined with the INITIAL DENSITY command
line. Set this equal to the density specified with the DENSITY command line.

— The temperature at absolute zero is defined with the ABS ZERO TEMP command
line.

33

The melt temperature is defined with the MELT TEMPERATURE command line.
The specific heat is defined with the SPECIFIC HEAT command line.

The shear modulus at absolute zero (Gy) is defined with the ABS ZERO SHRMOD
SMO command line.

The magnitude of the Burgers vector (b) is defined with the BURGVEC MAG
command line.

The material constant « is defined with the CNST ALPHA command line.

The material constant A is defined with the CNST CAPA command line.

The material constant ag is defined with the DISLOC CNST HFO command line.
The material constant a; is defined with the DISL.OC CNST HF1 command line.
The material constant a, is defined with the DISLOC CNST HF2 command line.
The Boltzmann constant (k) is defined with the CNST BOLTZ command line.

The dislocation interaction constant &, is defined with the DISL.OC CNST SIGA
command line.

The dislocation interaction constant §; is defined with the DISLOC CNST SIGI
command line.

The dislocation interaction constant & is defined with the DISLOC CNST SIGS
command line.

The 1/p exponent in the equation for s, is defined with the CNST P INV command
line.

The 1/p exponent in the equation for s ; is defined with the CNST PINVI command
line.

The 1/p exponent in the equation for s, s is defined with the CNST PINVS
command line.

The 1/q exponent in the equation for s;j is defined with the CNST QINV command
line.

The 1/g exponent in the equation for s, ; is defined with the CNST QINVI command
line.

The 1/q exponent in the equation for s;j ¢ is defined with the CNST QINVS
command line.

The go value in the equation for s, is defined with the NORM ACT ENRGY GO
command line.

The go value in the equation for s;j; is defined with the NORM ACT ENRGY GOI
command line.

34

— The go value in the equation for s, s 1s defined with the NORM ACT ENRGY GOS
command line.

— The &) value in the equation for s;, is defined with the REF STN RAT EDOTO
command line.

— The €y value in the equation for s;,; is defined with the REF STN RAT EDOTI
command line.

— The €p value in the equation for s;, s is defined with the REF STN RAT EDOTS
command line.

— The initial value for the mechanical threshold stress & is defined with the INIT
STATE VAR SIGO command line.

— The value for ¢, in the equation for the saturation stress 7 is defined with the SAT
TH STS SIGSO command line.

— The value for €, in the equation for the saturation stress 07 is defined with the REF
STN RAT EDOTSO0 command line.

— The material constant b in the temperature shear modulus equation is defined with
the SHRMOD CNST SM1 command line.

— The material constant b, in the temperature shear modulus equation is defined with
the SHRMOD CNST SM2 command line.

— The Gruneisen parameter Gamma is defined with the GRUN COEF command line.

— The K; parameter for the MMM cubic Mie-Gruneisen model is defined with the
MIEGRUN COEF K2 command line.

— The K3 parameter for the MMM cubic Mie-Gruneisen model is defined with the
MIEGRUN COEF K3 command line.

— The maximum permitted tensile pressure is defined with the MAX TENS PRESS
command line.

— The type of failure model is defined with the FATLURE MODEL command line. If the
value is NONE, then no failure model is used. Specifying the value MODULAR
FAILURE chooses the modular failure model; commands for this model are explained
below.

* Modular Failure Model: - The command CRITICAL FAILURE PARAMETER is used
to specify the critical failure parameter, used for modular failure. - The modular failure
model multipliers are specified with the commands PRESSURE MULTIPLIER, LODE
ANGLE MULTIPLIER, TRTAXTALITY MULTIPLIER,RATE FAIL MULTIPLIER,
and TEMPERATURE FAIL MULTIPLIER. The definitions listed above show the
supported and default (INDEPENDENT) options for these multipliers.

More information about this model is available in [11].

35

1.2.1.10 Mechanical Threshold Stress Strength Model with Mie-Gruneisen EOS and
TEPLA Damage Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
#
BEGIN PARAMETERS FOR MODEL TEPLA_MTSSTRESS_MMM
TWO MU = <real>two_mu
YOUNGS MODULUS = <real>youngs_modulus
BULK MODULUS = <real>bulk_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
LAMBDA = <real>lambda
YIELD STRESS = <real>yield_stress
INIT DENSITY = <real>init_density
ABS ZERO TEMP = <real>ABS_ZERO_TEMP
INIT TEMPERATURE = <real>INIT_TEMPERATURE
MELT TEMPERATURE = <real>MELT_TEMPERATURE
SPECIFIC HEAT = <real>SPECIFIC_HEAT
ABS ZERO SHRMOD SMO = <real>ABS_ZERO_SHRMOD_SMO
ALPHA1l1l = <real>ALPHAI11l
ALPHA21 = <real>ALPHA21
ALPHA22 = <real>ALPHA22
ALPHA31 = <real>ALPHA31
ALPHA32 = <real>ALPHA32
ALPHA33 = <real>ALPHA33
ALPHA41 = <real>ALPHA41
ALPHA42 = <real>ALPHA42
ALPHA43 = <real>ALPHA43
ALPHA44 = <real>ALPHA44
ALPHALS1 = <real>ALPHAS51
ALPHAS52 = <real>ALPHAS52
ALPHAS3 = <real>ALPHAS3
ALPHAS54 = <real>ALPHAS54
ALPHAS55 = <real>ALPHAS55
BURGVEC MAG = <real>BURGVEC_MAG
CNST ALPHA = <real>CNST_ALPHA
CNST BOLTZ = <real>CNST_BOLTZ
CNST CAPA = <real>CNST_CAPA
CNST PINV = <real>CNST_PINV
CNST PINVI = <real>CNST_PINVI
CNST PINVS = <real>CNST_PINVS
CNST QINV = <real>CNST_QINV
CNST QINVI = <real>CNST_QINVI
CNST QINVS = <real>CNST_QINVS
DISLOC CNST HFO = <real>DISLOC_CNST_HFO

(continues on next page)

36

(continued from previous page)

DISLOC CNST HF1 <real>DISLOC_CNST_HF1
DISLOC CNST HF2 <real>DISLOC_CNST_HF2
DISLOC CNST SIGA = <real>DISLOC_CNST_SIGA
DISLOC CNST SIGI = <real>DISLOC_CNST_SIGI
DISLOC CNST SIGS <real>DISLOC_CNST_SIGS
Ell = <real>Ell

E21 = <real>E21

E22 = <real>E22

E31 = <real>E31

E32 = <real>E32

E33 = <real>E33

E41 = <real>E41l

E42 = <real>E42

E43 = <real>E43

E44 = <real>E44

E51 = <real>E51

E52 = <real>EbH2

E53 = <real>E53

E54 = <real>E54

E55 = <real>E55

E61l = <real>E61l

E62 = <real>E62

E63 = <real>E63

E64 = <real>E64

E65 = <real>E65

E66 = <real>E66

FAIL POR PHIF = <real>FAIL_POR_PHIF

FAIL SURF GAMAO = <real>FAIL_SURF_GAMAQ
FAIL SURF GAMAl = <real>FAIL_SURF_GAMA1
FAIL SURF GAMA2 = <real>FAIL_SURF_GAMAZ2
ICOMP = <real>ICOMP

INIT POR PHIO = <real>INIT_POR_PHIO

INIT STATE VAR SIGO = <real>INIT_STATE_VAR_SIGO
LENGTH SCALE = <real>LENGTH_SCALE

NORM ACT ENRGY GO = <real>NORM_ACT_ENRGY_GO
NORM ACT ENRGY GOI = <real>NORM_ACT_ENRGY_GOI
NORM ACT ENRGY GOS = <real>NORM_ACT_ENRGY_GO0S
ORTHO = <real>ORTHO

REF STN RAT EDOTO = <real>REF_STN_RAT_EDOTO
REF STN RAT EDOTI = <real>REF_STN_RAT_EDOTI
REF STN RAT EDOTS = <real>REF_STN_RAT_EDOTS
REF STN RAT EDOTS0O = <real>REF_STN_RAT_EDOTSO
RODRIGUES ANGLE = <real>RODRIGUES_ANGLE
RODRIGUES X = <real>RODRIGUES_X

RODRIGUES Y = <real>RODRIGUES_Y

(continues on next page)

37

(continued from previous page)

RODRIGUES Z = <real>RODRIGUES_Z

SAT TH STS SIGSO = <real>SAT_TH_STS_SIGSO
SHRMOD CNST SM1 = <real>SHRMOD_CNST_SM1

SHRMOD CNST SM2 = <real>SHRMOD_CNST_SM2

VOID GROW PAR QGl = <real>VOID_GROW_PAR_QGI1
VOID GROW PAR QG2 <real>VOID_GROW_PAR_QG2
VOID GROW PAR QG3 <real>VOID_GROW_PAR_QG3
GRUN COEF = <real>GRUN_COEF

MIEGRU COEF K2 = <real>MIEGRU_COEF_K2

MIEGRU COEF K3 = <real>MIEGRU_COEF_K3
END [PARAMETERS FOR MODEL TEPLA_MTSSTRESS_MMM]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

This specification activates the Mechanical Threshold Stress (MTS) strength model with a cubic
Mie-Gruneisen EOS and the TEPLA continuum level damage model. This model is an extension
of the standard MTS model, as described in Section 1.2.1.9. The extensions provide an ability to
initialize the porosity, pressure, failure porosity, flow stress, rotation, and stretch arrays and the
specification of an orthotropic yield function. They also modify the MTS model to include the
effect of evolving porosity (void growth) through an extended Gurson model. More information
on this model is available in [11]] and [[20].

The command block starts with the input line:

BEGIN PARAMETERS FOR MODEL TEPLA_MTSSTRESS_MMM

and terminates with an input line of the following form:

END [PARAMETERS FOR MODEL TEPLA_MTSSTRESS_MMM]

Most of the commands for this material are identical to those defined in Section 1.2.1.9. In
addition:

* The command ORTHO specifies that the material is orthotropic if set to 1, or isotropic if set
to 0.

* The terms described by the commands ALPHA11 through ALPHAS55 define the plastic
shape tensor components.

* The terms described by the commands E11 through E66 represent the elastic stiffness
tensor for an orthotropic material.

* The Rodrigues vector for the orthotropic yield surface is defined by the commands
RODRIGUES [X|Y|Z].

* The Rodrigues angle is the angle of rotation around the Rodrigues vector, and is defined by
the command RODRIGUES ANGLE.

* The initial porosity is defined by the command INIT POR PHIO.

38

* The final porosity at failure is given by the command FAIL POR PHIF.

* The command ICOMP toggles pore growth; if it is 0, then pores can grow, whereas if it is 1,
pores do not grow.

* The commands VOID GROW PAR QGI[1|2]|3] define the coeflicients for the Tvergaard
porosity evolution equation.

* The length scale for the over-stress formulation is specified by the command LENGTH
SCALE.

¢ The commands FATIL SURF GAMA[O]|1]|2] define the material constants in the
expression for the failure strain.

More information about this model is available in [11].

1.2.1.11 Zerilli-Armstrong Strength Model for BCC Metals with Mie-Gruneisen
EOS

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value

#

BEGIN PARAMETERS FOR MODEL ZABCCSTRESS_MMM
TWO MU = <real>two_mu
YOUNGS MODULUS = <real>youngs_modulus
BULK MODULUS = <real>bulk_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear modulus
LAMBDA = <real>lambda
YIELD STRESS = <real>yield_ stress
INIT DENSITY = <real>init_density
ABS ZERO TEMP = <real>ABS_ZERO_TEMP
INIT TEMPERATURE = <real>INIT_TEMPERATURE
SPECIFIC HEAT = <real>SPECIFIC_HEAT
STRAIN HARD COEF C5 = <real>STRAIN_HARD_COEF_C5
STRAIN HARD EXP N = <real>STRAIN_HARD_EXP_N
STRAIN RATE COEF Cl1 = <real>STRAIN_RATE_COEF_CI1
STRAIN RATE COEF C4 <real>STRAIN_RATE_COEF_C4
THERM SOFT COEF C3 = <real>THERM_SOFT_COEF_C3
YIELD STRESS CO = <real>YIELD_STRESS_CO
GRUN COEF = <real>GRUN_COEF
MIEGRU COEF K2 = <real>MIEGRU_COEF_K2
MIEGRU COEF K3 = <real>MIEGRU_COEF_K3
MAX TENS PRESS = <real>MAX TENS_PRESS

END [PARAMETERS FOR MODEL ZABCCSTRESS_MMM]

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

39

This specification activates the Zerilli-Armstrong strength model for BCC metals with a
Mie-Gruneisen EOS. The expression for the yield function of this model is:

o = Co+ Crexp(=C3T + C4T In€) + Cse,, (1.23)
where €, is the equivalent plastic strain, 7" is the absolute temperature, € is the equivalent total

strain rate, and Cy, C;, C3, C4, Cs, and n are material constants.

The pressure response is described by a cubic Mie-Gruneisen model, see equation (1.5) for more
details.

The command block starts with the input line:

BEGIN PARAMETERS FOR MODEL ZABCCSTRESS_MMM

and terminates with an input line of the following form:

END [PARAMETERS FOR MODEL ZABCCSTRESS_MMM]

In the above command blocks:
* The density of the material is defined with the DENSITY command line.

* Only two of the following elastic constants are required to define the unscaled bulk
behavior:

Young’s modulus is defined with the YOUNGS MODULUS command line.

Poisson’s ratio is defined with the POISSONS RATIO command line.

The bulk modulus is defined with the BULK MODULUS command line.

The shear modulus is defined with the SHEAR MODULUS command line.

Lambda is defined with the LAMBDA command line.
* The following command lines are required:
— The yield stress of the material is defined with the YIELD STRESS command line.

— The initial density of the material is defined with the INITIAL DENSITY command
line. Set this equal to the density specified with the DENSITY command line.

— The temperature at absolute zero is defined with the ABS ZERO TEMP command
line.

— The specific heat is defined with the SPECIFIC HEAT command line.

— The material constants Cy, C1, C3, C4, Cs, and n are defined with the corresponding
command lines above.

— The Gruneisen parameter Gamma is defined with the GRUN COEF command line.

40

— The K3 parameter for the MMM cubic Mie-Gruneisen model is defined with the
MIEGRUN COEF K2 command line.

— The K3 parameter for the MMM cubic Mie-Gruneisen model is defined with the
MIEGRUN COEF K3 command line.

— The maximum permitted tensile pressure is defined with the MAX TENS PRESS
command line.

More information about this model is available in [11].

1.2.1.12 Zerilli-Armstrong Strength Model for FCC Metals with Mie-Gruneisen
EOS

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
#
BEGIN PARAMETERS FOR MODEL ZAFCCSTRESS_MMM
TWO MU = <real>two_mu
YOUNGS MODULUS = <real>youngs_modulus
BULK MODULUS = <real>bulk_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear modulus
LAMBDA = <real>lambda
YIELD STRESS = <real>yield_ stress
INIT DENSITY = <real>init_density
ABS ZERO TEMP = <real>ABS_ZERO_TEMP
INIT TEMPERATURE = <real>INIT_TEMPERATURE
SPECIFIC HEAT = <real>SPECIFIC_HEAT
STRAIN HARD COEF C2 = <real>STRAIN_HARD_COEF_C2
STRAIN HARD EXP N = <real>STRAIN_HARD_EXP_N
STRAIN RATE COEF C4 = <real>STRAIN_RATE_COEF_C4
THERM SOFT COEF C3 = <real>THERM_SOFT_COEF_C3
YIELD STRESS CO = <real>YIELD_STRESS_CO
GRUN COEF = <real>GRUN_COEF
MIEGRU COEF K2 = <real>MIEGRU_COEF_K2
MIEGRU COEF K3 = <real>MIEGRU_COEF_K3
MAX TENS PRESS <real>MAX_TENS_PRESS
END [PARAMETERS FOR MODEL ZAFCCSTRESS_MMM]
BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

This specification activates the Zerilli-Armstrong strength model for FCC metals with a
Mie-Gruneisen EOS. The expression for the yield function of this model is:

oc=Cy+ Czez exp(—C3T + C4T In €) (1.24)

where €, is the equivalent plastic strain, T is the absolute temperature, € is the equivalent total
strain rate, and Cy, Cp, C3, C4, and n are material constants.

41

The pressure response is described by a cubic Mie-Gruneisen model, see equation (1.5) for more

details.

The command block starts with the input line:

BEGIN PARAMETERS FOR MODEL ZAFCCSTRESS_MMM

and terminates with an input line of the following form:

END [PARAMETERS FOR MODEL ZAFCCSTRESS_MMM]

In the above command blocks:

* The density of the material is defined with the DENSITY command line.

* Only two of the following elastic constants are required to define the unscaled bulk
behavior:

Young’s modulus is defined with the YOUNGS MODULUS command line.
Poisson’s ratio is defined with the POISSONS RATIO command line.
The bulk modulus is defined with the BULK MODULUS command line.
The shear modulus is defined with the SHEAR MODULUS command line.

Lambda is defined with the LAMBDA command line.

* The following command lines are required:

The yield stress of the material is defined with the YTELD STRESS command line.

The initial density of the material is defined with the INITIAL DENSITY command
line. Set this equal to the density specified with the DENSITY command line.

The temperature at absolute zero is defined with the ABS ZERO TEMP command
line.

The specific heat is defined with the SPECIFIC HEAT command line.

The material constants Cy, C, C3, Cy4, and n are defined with the corresponding
command lines above.

The Gruneisen parameter Gamma is defined with the GRUN COEF command line.

The K, parameter for the MMM cubic Mie-Gruneisen model is defined with the
MIEGRUN COEF K2 command line.

The K3 parameter for the MMM cubic Mie-Gruneisen model is defined with the
MIEGRUN COEF K3 command line.

The maximum permitted tensile pressure is defined with the MAX TENS PRESS
command line.

More information about this model is available in [11].

42

1.2.2 CTH Model Specifications

This section describes material models that have been ported from CTH to the LAME material
library [24]. Because of the ITAR export-control restrictions on these models, they are maintained
separately from the standard LAME material library and only linked in with Presto_TITAR.

Warning: Support for CTH material models in Presto_ITAR is currently at an
experimental level. As such, not all features may be fully implemented or tested, and the
analyst should use these models with caution.

Note: The algorithms that apply when these energy-dependent models are in use are currently in
a state of flux as they are being upgraded to the state-of-the-art. This transformation has currently
been applied only to the midpoint-increment uniform-gradient hexahedron element. Attempting
to use these models with any other element will likely result in code failure.

Implementation of the CTH material models departs from the typical behavior found for other
material models present in Presto_ITAR. Generally, this allows the CTH models to be more
flexible in the material behaviors they can represent, particularly for high strain rate,
energy-dependent materials. The main differences are in the treatment of the energy update,
modularity, and parameter specification.

For energy-dependent material models, such as those from this section, Section 1.2.1, and Section
1.2.3, the internal energy is updated using a second-order, implicit equation, see [27]. For the
traditional Presto_ITAR models of Section 1.2.1 and Section 1.2.3, the energy update is
performed as part of the material model. Additionally, all the models assume materials behave
under the Mie-Gruneisen assumption that pressure is linearly dependent upon the internal energy.
This allows these models to explicitly solve the implicit energy equation. While this provides for
an easy solution, it limits the types of material behavior that can be modeled. The CTH models
break from the Mie-Gruneisen assumption, allowing an arbitrary dependence of the pressure on
the internal energy. This motivates several changes in how the elements treat these materials.

The energy update equation is a function of the host code in that its form and method of solution
are code dependent. From a theoretical perspective, a material has no knowledge of such an
equation. Additionally, for portability between codes, a material model should not solve such an
equation since it would possibly have to be different for every code in which it was used. For this
reason, the energy equation update was not pushed into the CTH material models. Instead, it is
computed in the element itself. In the future, other material models from Section 1.2.1 and
Section 1.2.3 may also have the energy update extracted from them, leading to less code
duplication, better consistency across models, and better maintainability.

Not only was the energy update extracted from the material models for the CTH models, but the
assumption of a Mie-Gruneisen form also had to be removed. This requires one to perform an
iterative solve of the energy equation to be self-consistent, since the explicit solution is no longer

43

viable. The initial guess to the solution is based upon a predictor method for the hydrodynamic
work. Later iterations include a fully implicit solve of the hydrodynamic and deviatoric work. For
information on controlling the iterative solution of the energy equation, see Section 1.3.1.1.

The CTH models also depart from the other Prest o_ITAR material models in that they adopt
the concept of modularity. Typically, a solid might have an equation of state model and a yield
model. Models from Section 1.2.1 and Section 1.2.3 explicitly couple these models together.
Thus, if one wants to use an already implemented yield model with a new equation of state, then
one has to write a new material model which couples them together. On the other hand, the CTH
models are modular (although not completely) in that if a given model adheres to a certain
interface, it may be used as a drop-in replacement for other models using the same interface.
Thus, only the new submodel has to be implemented. Currently, there is a single implementation
of a CTH modular model in Presto_ITAR, the CTH_EP model of Section 1.2.2.3.

One side effect of the modularity concept is that not all models compute a stress. Those that do
not cannot be called directly from an element, and hence cannot be used as the material model for
an element. See, for example, the CTH_JO model of Section 1.2.2.4. On the other hand, equation
of state models, such as the CTH_MGR model of Section 1.2.2.1, do compute a stress and so they
can not only be used as a submodel in a modular model such as CTH_EP, but may also be used
directly as an element material model.

Parameter parsing behavior has also been modified from the standard Presto_ITAR practice in
the CTH models. Unlike most of the material models, which require all parameters to be
specified, the CTH models have default values for most parameters. Additionally, the CTH
models introduce the concept of material parameter libraries. These libraries are essentially
lookup tables for the parameters of predefined materials. Thus, one need only specify a material
model, such as CTH_KSES, and a material name like MATLABEL = ALUMINUM. All the
parameters are then automatically loaded. Note that if a predefined material is specified, one may
override library values by additionally specifying the desired properties. When no library material
is specified, this is essentially what occurs, as the entry MATLABEL = USER is implicitly
specified to read the default parameters from the material library.

Many models are unit independent, in that any set of parameters with a consistent set of units will
work correctly with such models. This is the case for most of the models in Presto_ITAR.
However, with the CTH models, this assumption is broken for certain equation of state models as
well as by the use of material libraries. Thus, all CTH models must specify a system of units.
Note that while this is only required for full models and not submodels, submodel parameters
should be specified in units consistent with their parent model. In general, the unit declarations
have the form given by the following block.

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
BEGIN PARAMETERS FOR MODEL <string>mod_name
SI = International system of units
IPS
CGSK
CGSEV = centimeters—grams—-seconds—electron volts

inch-pound-seconds

centimeters—grams—-seconds—kelvin

(continues on next page)

44

(continued from previous page)

UNIT SYSTEM <string>SI|IPS|CGSK|CGSEV|SESAME | SSHOCK (SI)
LENGTH UNIT <real>length_unit (1.0)

MASS UNIT = <real>mass_unit (1.0)

TIME UNIT = <real>time_unit (1.0)

TEMPERATURE UNIT = <real>temperature_unit (1.0)

AMOUNT UNIT = <real>amount_unit (1.0)

CURRENT UNIT = <real>current_unit (1.0)

LUMINOSITY UNIT = <real>luminosity_unit (1.0)

END [PARAMETERS FOR MODEL <string>mod_name]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The UNIT SYSTEM command line may be used to specify an overall system of units to use. The
values of that system may then be overridden for specific units by the other commands. The . . .
denotes all the other parameters of the model, which have been omitted here. The meaning of a
unit command is the value required to convert from SI to the desired unit system. Thus, for
example, if one has a problem where length is measured in centimeters, one would specify
LENGTH UNIT = 1.e2, since there are one hundred centimeters in a meter. Once the unit
system has been specified in this manner, all the model parameters must be entered in this
system.

Paths to the material libraries, as well as certain tabular data required by the CTH SESAME
models, must be specified in the user input as well. Specific parameters are available for setting
the names of data files in the model input. These may be relative or absolute paths. Do not put the
paths or file names in quotes. Additionally, the models recognize the existence of the environment
variable CTHPATH. When CTHPATH is undefined, the default path for all CTH data is relative to
the current directory. When CTHPATH is defined, then SESAME table data is searched for
relative to the directory CTHPATH/data/. Also, in this case material libraries are first searched
for relative to the working directory and upon failure of that, relative to the directory
CTHPATH/data/. If a model cannot find its material library file, it will throw a fatal error.

1.2.2.1 Mie-Gruneisen Model (CTH_MGR)

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
BEGIN PARAMETERS FOR MODEL CTH_MGR
{unit parameters}
MATLABEL = <string>material_label (USER)
EOS DATAFILE = <string>eos_data_file (EOS_data)

RO = <real>density

TO = <real>temperature(298.0)

CS = <real>sound_speed

S1 = <real>us_up_slope (0.0)

GO = <real>gruneisen_parameter (0.0)

(continues on next page)

45

(continued from previous page)

CV = <real>heat_capacity
ESFT = <real>energy_shift (0.0)

RP = <real>porous_density (0.0)

PS = <real>crushup_pressure (1.e9)
PE = <real>»elastic_pressure(0.0)

CE = <real>elastic_sound_speed(0.0)
NSUB = <real>num_subcycles (10.0)

S2 = <real>us_up_quadratic(0.0)

TYP = <real>model_type(1.0)

RO = <real>density_alias

TO = <real>temperature_alias

S = <real>sl_alias

GO = <real>g0O_alias
B = <real>low_pressure_coefficient (0.0)
XB = <real>low_pressure_constant (1.e-4)
NB = <real>low_pressure_power (1.0)
PWR = <real>alpha_power (2.0)
END [PARAMETERS FOR MODEL CTH_MGR]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The Mie-Gruneisen material model describes the nonlinear pressure-volume (or equivalently
pressure-density) response of solids or fluids in terms of a reference pressure-volume curve and
deviations from the reference curve in energy space. The reference curve is taken to be the
experimentally determined principal Hugoniot, which is the locus of end states that can be
reached by a shock transition from the ambient state. For details about this model, see [14].

For Mie-Gruneisen energy-dependent materials, the Mie-Gruneisen command block begins with
the input line:

BEGIN PARAMETERS FOR MODEL CTH_MGR

and is terminated with an input line of the following form:

END [PARAMETERS FOR MODEL CTH_MGR]

In the above command blocks:

* The {unit parameters} lineis a placeholder for the unit block described in Section
1.2.2.

* The MATLABEL command line specifies the name of a material parameter library entry
from which to take default values for the other parameters. This name is searched for under
the model name MGR in the data file specified by the command line EOS DATAFILE.

* The command lines RO (or RO), CS, and CV are required inputs to this model. Alternatively,
one may specify a non-default MATLABEL command line. All other values are optional and
may be left unspecified if the defaults are acceptable.

46

* The initial density for the Hugoniot is defined with the RO command line. If the material is
porous, the RP command line defines the initial density and RO is the ambient density for
the nonporous material.

For information about the CTH Mie-Gruneisen model, consult [14].

1.2.2.2 SESAME Tabular EOS Model (CTH_KSES)

Note: The SESAME tabular interface currently reads tables from a platform-specific binary table
format. Production of this format from the ASCII tables requires use of the bcat code, which is
not built by default. If a current CTH installation is available, then one may use that installation’s
data by setting the CTHPATH environment variable, see Section 1.2.2.

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
BEGIN PARAMETERS FOR MODEL CTH_KSES
{unit parameters}
MATLABEL = <string>material_label (USER)
EOS DATAFILE = <string>eos_data_file (EOS_data)

EOS = <real>eos_number

SR = <real>scaling_factor (1.0)

RO = <real>density(table value)

TO0 = <real>temperature (table value)

RMIN = <real>min_tension_density (0.8*R0)
ZNUC = <real>avg_atomic_number (table wvalue)
ATWT = <real>avg_atomic_weight (table value)
RP = <real>porous_density (0.0)

PS = <real>crushup_pressure (1.e9)

PE = <real>»elastic_pressure(0.0)

CE = <real>elastic_sound_speed (0.0)

NSUB = <real>num_subcycles (10.0)
ESFT = <real>energy_shift (table specific)
TYP <real>model_type (1.0)
RO = <real>density_alias
TO <real>temperature_alias
CLIP = <real>temperature_clip(0.0)
PWR = <real>alpha_power (2.0)
FEOS = <string>sesame_file

END [PARAMETERS FOR MODEL CTH_KSES]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The SESAME tabular EOS model represents the thermodynamic state of a material through
tabular representations of the pressure and internal energy as functions of density and
temperature. Such tables may represent behavior as simple as an ideal gas to extremely
complicated multi-phase behaviors. For more information on the implementation of this model,

47

consult [14]. Information on the SESAME format may be obtained from [17].

For SESAME materials, the SESAME command block begins with the input line:

BEGIN PARAMETERS FOR MODEL CTH_KSES

and is terminated with an input line of the following form:

END

[PARAMETERS FOR MODEL CTH_KSES]

In the above command blocks:

The {unit parameters} line is a placeholder for the unit block described in Section
1.2.2.

The MATLABEL command line specifies the name of a material parameter library entry
from which to take default values for the other parameters. This name is searched for under
the model name SES in the data file specified by the command line EOS DATAFILE.

The command lines EOS and FEOS are required inputs to this model. Alternatively, one
may specify a non-default MATLABEL command line. All other values are optional and
may be left unspecified if the defaults are acceptable.

The command lines RO, TO, ZNUC, and ATWT default to the values given in the specified
table.

The command line ESFT defaults to a value such that the internal energy of the specified
table will be strictly positive for all states. Care should be taken if setting this to a
non-default value as one may break assumptions on the positivity of the internal energy
present in other areas of the code.

For a porous material, the RP command line defines the initial density and RO becomes the
ambient density for the nonporous material.

The command line CLIP sets a delta in temperature from the edge of the table to which
off-table temperatures are returned. In this implementation, extrapolation off of the
tabulated region of a SESAME table can produce unphysical behavior. Thus, it is
recommended to set CLIP to a non-zero value. The default, CLIP = 0.0, is to not clip
off-table temperatures. The temperature delta is taken as the absolute value of CLIP.
Setting a negative value suppresses error messages generated by this process.

For information about the SESAME tabular EOS model, consult [14].

48

1.2.2.3 Elastic-Plastic Modular Model (CTH_EP)

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
BEGIN PARAMETERS FOR MODEL CTH_EP
{unit parameters}
EOS MODEL = <string>CTH_KSES|CTH_MGR
{eos model parameters}
YIELD MODEL = <string>CTH_JO|CTH_ST|CTH_ZE |NONE (NONE)
{yield model parameters}
FRACTURE MODEL = <string>CTH_JFRAC |NONE (NONE)
{fracture model parameters}
RHOL = <real>lower_density (0.0)
RHOU = <real>upper_density (0.0)
END [PARAMETERS FOR MODEL CTH_EP]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The Elastic-Plastic Modular model combines an EOS, yield, and fracture model in the manner
that CTH employs. In particular, the yield models are all of the “traditional” version which
compute a yield stress and shear modulus. The resultant stress is calculated from a radial return
plasticity model. Density degradation of the yield stress is applied when the density lies between
the upper and lower density limits.

For the Elastic-Plastic Modular model, the CTH_EP command block begins with the input line:

BEGIN PARAMETERS FOR MODEL CTH_EP

and is terminated with an input line of the following form:

END [PARAMETERS FOR MODEL CTH_EP]

In the above command blocks:

* The {unit parameters} lineis a placeholder for the unit block described in Section
1.2.2.

e The {eos model parameters}, {yield model parameters}, and
{fracture model parameters} lines are placeholders for all the parameters of the
desired EOS, yield, and fracture models, respectively.

* An EOS model must be specified by the command line EOS MODEL. All other inputs are
optional.

* Density degradation of the yield stress is performed only when the command lines RHOL
and RHOU are specified and satisfy RHOU > RHOL > O.

Output variables available for this model are listed in Table 1.3.

Note: The CTH_EP model does not yet implement a failure model. Thus, while the available

49

fracture model does compute the damage of the material, this information is not acted upon.

1.2.2.4 Johnson-Cook Viscoplastic Model (CTH_JO)

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
BEGIN PARAMETERS FOR MODEL <string>combined_model
YIELD MODEL = CTH_JO
VP DATAFILE = <string>vp_data_file (VP_data)
YIELD MATLABEL = <string>yield_material_label (USER)
AJO = <real>parameter_a(0.0)
BJO = <real>parameter_b (0.0)
CJO = <real>parameter_c (0.0)
MJO = <real>exponent_m(0.0)
NJO = <real>exponent_n (0.0)
TJO = <real>melt_temperature (0.0)
POISSON = <real>poissons_ratio(0.0)
END [PARAMETERS FOR MODEL <string>combined_model]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The Johnson-Cook Viscoplastic model updates the material yield stress based upon the plastic
strain, plastic strain rate, and the temperature. For more details about this model, see [26].

Since the Johnson-Cook model updates only the yield stress for a material, it must be used in
combination with a plasticity model and equation of state. Currently, this means it must be used as
a submodel of the Elastic-Plastic Modular model, see Section 1.2.2.3.

In the above command blocks:
* The combined_model must currently be CTH_EP.

* The YIELD MATLABEL command line specifies the name of a material parameter library
entry from which to take default values for the other parameters. This name is searched for
under the model name JO in the data file specified by the command line VP DATAFILE.

For information about the Johnson-Cook model, consult [26].

1.2.2.5 Zerilli-Armstrong Plasticity Model (CTH_ZE)

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
BEGIN PARAMETERS FOR MODEL <string>combined_model
YIELD MODEL = CTH_ZE
VP DATAFILE = <string>vp_data_file (VP_data)
YIELD MATLABEL = <string>yield_material_label (USER)
ClZE = <real>constant_cl1(0.0)

(continues on next page)

50

(continued from previous page)

C27ZE = <real>constant_c2 (0.0)
C3ZE = <real>constant_c3(0.0)
C47ZE = <real>constant_c4 (0.0)
C5ZE = <real>constant_c¢5(0.0)
AZE = <real>constant_a (0.0)
NZE = <real>constant_n(0.0)

POISSON = <real>poissons_ratio(0.0)
END [PARAMETERS FOR MODEL <string>combined_model]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The Zerilli-Armstrong Plasticity model updates the material yield stress based upon the plastic
strain, plastic strain rate, and the temperature. For more details about this model, see [26].

Since the Zerilli-Armstrong model updates only the yield stress for a material, it must be used in
combination with a plasticity model and equation of state. Currently, this means it must be used as
a submodel of the Elastic-Plastic Modular model, see Section 1.2.2.3.

In the above command blocks:
* The combined_model must currently be CTH_EP.

e The YIELD MATLABEL command line specifies the name of a material parameter library
entry from which to take default values for the other parameters. This name is searched for
under the model name ZE in the data file specified by the command line VP DATAFILE.

For information about the Zerilli-Armstrong model, consult [26].

1.2.2.6 Steinberg-Guinan-Lund Plasticity Model (CTH_ST)

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
BEGIN PARAMETERS FOR MODEL <string>combined_model
YIELD MODEL = CTH_ST
VP DATAFILE = <string>vp_data_file (VP_data)
YIELD MATLABEL = <string>yield_material_label (USER)
ROST = <real>initial_density (0.0)
TMOST = <real>melt_temperature (0.0)
ATMST = <real>melt_law_constant_a(0.0)

GMOST = <real>gruneisen_constant (0.0)

AST = <real>shear_modulus_constant_a (0.0)

BST = <real>shear_modulus_constant_b(0.0)

NST = <real>work_hardening_constant_n(0.0)

ClST = <real>yield_stress_constant_cl (0.0)

C2ST = <real>yield_stress_constant_c2(0.0)

GOST = <real>initial_shear_modulus (0.0)

BTST = <real>work_hardening_constant_b (0.0)

EIST = <real>initial_equivalent_plastic_strain(0.0)

(continues on next page)

51

(continued from previous page)

YPST = <real>peierls_stress (0.0)
UKST = <real>activation_energy (0.0)
YSMST = <real>athermal_yield_stress(0.0)
YAST = <real>athermal_prefactor (0.0)
YOST <real>initial_yield_stress (0.0)
YMST <real>max_yield_stress (0.0)
POISSON = <real>poissons_ratio(0.0)
END [PARAMETERS FOR MODEL <string>combined_model]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The Steinberg-Guinan-Lund Plasticity model updates the material yield stress and shear modulus
based upon the plastic strain, plastic strain rate, the density, and the temperature. For more details
about this model, see [30].

Since the Steinberg-Guinan-Lund model updates only the yield stress and shear modulus for a
material, it must be used in combination with a plasticity model and equation of state. Currently,
this means it must be used as a submodel of the Elastic-Plastic Modular model, see Section
1.2.2.3.

In the above command blocks:
* The combined_model must currently be CTH_EP.

e The YIELD MATLABEL command line specifies the name of a material parameter library
entry from which to take default values for the other parameters. This name is searched for
under the model name ST in the data file specified by the command line VP DATAFILE.

For information about the Steinberg-Guinan-Lund model, consult [30].

1.2.2.7 Johnson-Cook Fracture Model (CTH_JFRAC)

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
BEGIN PARAMETERS FOR MODEL <string>combined_model
FRACTURE MODEL = CTH_JFRAC
FRACTURE MATLABEL = <string>fracture_material_label (USER)
FRACTURE DATAFILE = <string>fracture_data_file (VP_data)
JFD1 <real>parameter_dl (0.0)
JFD2 = <real>parameter_d2(0.0)
JFD3 = <real>parameter_d3(0.0)
0)
0)

JFD4 = <real>parameter_d4 (0.
JFD5 = <real>parameter_d5 (0.
JFTM = <real>melt_temperature(0.0)

JFPF0 = <real>initial_fracture_pressure (0.0)
DYLDRD = <real>strength_degradation_damage (0.0)
DPFRD = <real>stress_degradation_damage (0.0)

(continues on next page)

52

(continued from previous page)

YLDFLR <real>minimum_yield_strength(0.0)
FRCFLR <real>minimum_fracture_stress (0.0)
JFWM = <real>weibull_flag(0.0)
JFIC = <real>random_seed_one (0.0)
JFIT = <real>random_seed_two (0.0)
JFVREF = <real>failure_volume (0.0)
JFOUT = <real>output_message_flag(0.0)
END [PARAMETERS FOR MODEL <string>combined_model]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The Johnson-Cook Fracture model is a scalar damage model for predicting the failure of materials
based upon the plastic strain, plastic strain rate, and yield stress. This model is completely
independent of the similarly named Johnson-Cook Viscoplastic model, see Section 1.2.2.4. For
details about this model, see [25].

Since the Johnson-Cook fracture model only calculates a damage, it must be used in combination
with a plasticity model, equation of state, and a failure model. Currently, this means it must be
used as a submodel of the Elastic-Plastic Modular model, see Section 1.2.2.3.

In the above command blocks:
* The combined_model must currently be CTH_EP.

* The FRACTURE MATLABEL command line specifies the name of a material parameter
library entry from which to take default values for the other parameters. This name is
searched for under the model name JFRAC in the data file specified by the command line
FRACTURE DATAFILE.

* The Weibull modulus capability is currently unimplemented.
Output variables available for this model are listed in Table 1.4.

For more information about the Johnson-Cook Fracture model, consult [25].

1.2.3 Equation-of-State Model Specifications

This section describes material models that are applicable only for use in Presto_ITAR. The
algorithms that apply when these energy-dependent models are in use are currently in a state of
flux as they are being upgraded to the state-of-the-art. This transformation has currently been
applied only to the midpoint-increment uniform-gradient hexahedron element. When using this
element with EOS models, the new algorithms are chosen by default.

53

1.2.3.1 Mie-Gruneisen Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =
<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION
<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =
<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL MIE_GRUNEISEN
RHO_0 = <real>density
C_0 = <real>sound_speed
SHUG = <real>const_shock_velocity
GAMMA_0 = <real>ambient_gruneisen_param
POISSR = <real>poissons_ratio
Y_0 = <real>yield_strength
PMIN = <real>mean_stress (REAL_MAX)

END [PARAMETERS FOR MODEL MIE_GRUNEISEN]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The Mie-Gruneisen material model describes the nonlinear pressure-volume (or equivalently
pressure-density) response of solids or fluids in terms of a reference pressure-volume curve and
deviations from the reference curve in energy space. The reference curve is taken to be the
experimentally determined principal Hugoniot, which is the locus of end states that can be
reached by a shock transition from the ambient state. For details about this model, see [27].

For Mie-Gruneisen energy-dependent materials, the Mie-Gruneisen command block begins with
the input line:

BEGIN PARAMETERS FOR MODEL MIE_GRUNEISEN

and is terminated with an input line of the following form:

END [PARAMETERS FOR MODEL MIE_GRUNEISEN]

In the above command blocks:

* The thermal strain option isused to define thermal strains. See the
Sierra/SolidMechanics User’s Guide for further information on defining and activating
thermal strains.

* The ambient density, pg, is defined with the RHO_0 command line. The ambient density is
the density at which the mean pressure is zero, not necessarily the initial density.

54

* The ambient bulk sound speed, ¢y, is defined by the C_0 command line. The ambient bulk
sound speed is also the first constant in the shock-velocity-versus-particle-velocity relation
D = co + Su, where u is the particle velocity. (See the following description of the SHUG
command line for the definition of S.)

* The second constant in the shock-velocity-versus-particle-velocity equation, S, is defined by
the SHUG command line. The shock-velocity-versus-particle-velocity relation is
D = co + Su, where u is the particle velocity. (See the previous description of the C_0
command line for the definition of cg.)

* The ambient Gruneisen parameter, [y, is defined by the GAMMA__ 0 command line.

* Poisson’s ratio, v, is defined by the POISSR command line. Poisson’s ratio is assumed
constant.

* The yield strength, yg, is defined by the Y_0 command line. The yield strength is zero for
the hydrodynamic case.

* The fracture stress is defined by the PMIN command line. The fracture stress is a mean
stress or pressure, so it must be negative or zero. This is an optional parameter; if not
specified, the parameter defaults to REAL_MAX (no fracture).

For information about the Mie-Gruneisen model, consult [27].

1.2.3.2 Mie-Gruneisen Power-Series Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION
<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION
<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =
<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL MIE_GRUNEISEN_POWER_SERIES
RHO_0 = <real>density

C_0 = <real>sound_speed

K1 = <real>power_series_coeffl

K2 = <real>power_series_coeff?2

K3 = <real>power_series_coeff3

K4 = <real>power_series_coeff4

K5 = <real>power_series_coeffb

GAMMA_0 = <real>ambient_gruneisen_param
POISSR = <real>poissons_ratio

(continues on next page)

55

(continued from previous page)

Y_0 = <real>yield strength
PMIN = <real>mean_stress (REAL_ MAX)
END [PARAMETERS FOR MODEL MIE_GRUNEISEN_POWER_SERIES]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The Mie-Gruneisen power-series model describes the nonlinear pressure-volume (or equivalently
pressure-density) response of solids or fluids in terms of a reference pressure-volume curve and
deviations from the reference curve in energy space. The reference curve is taken to be the
experimentally determined principal Hugoniot, which is the locus of end states that can be
reached by a shock transition from the ambient state. The Mie-Gruneisen power-series model is
very similar to the Mie-Gruneisen model, except that the Mie-Gruneisen model bases the
Hugoniot pressure-volume response on the assumption of a linear
shock-velocity-versus-particle-velocity relation, while the Mie-Gruneisen power-series model
uses a power-series expression. For details about this model, see [27].

For Mie-Gruneisen power-series energy-dependent materials, the Mie-Gruneisen power-series
command block begins with the input line:

BEGIN PARAMETERS FOR MODEL MIE_GRUNEISEN_POWER_SERIES

and is terminated with an input line of the following form:

END [PARAMETERS FOR MODEL MIE_GRUNEISEN_POWER_SERIES]

In the above command blocks:

e The thermal strain option isused to define thermal strains. See the
Sierra/SolidMechanics User’s Guide for further information on defining and activating
thermal strains.

* The ambient density, pg, is defined with the RHO_ 0 command line. The ambient density is
the density at which the mean pressure is zero, not necessarily the initial density.

* The ambient bulk sound speed, cy, is defined by the C_0 command line.

» The power-series coeflicients k1, k, k3, k4, and k5 are defined by the command lines K1,
K2, K3, K4, and K5, respectively. Only the nonzero power-series coefficients need be input,
since coeflicients not specified will default to zero.

* The ambient Gruneisen parameter, [, is defined by the GAMMA_ 0 command line.

* Poisson’s ratio, v, is defined by the POISSR command line. Poisson’s ratio is assumed
constant.

* The yield strength, yq, is defined by the Y_0 command line. The yield strength is zero for
the hydrodynamic case.

* The fracture stress is defined by the PMIN command line. The fracture stress is a mean
stress or pressure, so it must be negative or zero. This is an optional parameter; if not

56

specified, the parameter defaults to REAL_MAX (no fracture).

For information about the Mie-Gruneisen power-series model, consult [27].

1.2.3.3 JWL (Jones-Wilkins-Lee) Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION
<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =
<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =
<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL JWL
RHO_O0 = <real>initial_density
D = <real>detonation_velocity
E_0 = <real>init_chem_energy
A = <real>jwl_const_pressurel
B = <real>jwl_const_pressure?

R1 = <real>jwl_const_nondiml

R2 = <real>jwl_const_nondim?2

OMEGA = <real>jwl_const_nondim3
XDET = <real>x_detonation_point
YDET = <real>y_detonation_point
ZDET = <real>z_detonation_point
TDET = <real>time_of detonation

B5 = <real>burn_width const (2.5)
END [PARAMETERS FOR MODEL JWL]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The JWL model describes the pressure-volume-energy response of the gaseous detonation
products of HE (High Explosive). For details about this model, see [27].

For JWL energy-dependent materials, the JWL command block begins with the input line:

BEGIN PARAMETERS FOR MODEL JWL

and is terminated with an input line of the following form:

END [PARAMETERS FOR MODEL JWL]

In the above command blocks:

57

* The thermal strain option is used to define thermal strains. See the
Sierra/SolidMechanics User’s Guide for further information on defining and activating
thermal strains.

* The initial density of the unburned explosive, pg, is given by the RHO_0 command line.
* The detonation velocity, D, is given by the D command line.

* The initial chemical energy per unit mass in the explosive, Ey, is given by the E_0
command line. Note, this value has NO effect on the actual behavior of the model in terms
of stresses returned or energy generated. The E_ 0 term affects only what initial energy
value is printed in the output log file. The energy generated by the JWL material is
determined by the A, B, R1, R2, and D constants. Most compilations of JWL
parameters give Ey in units of energy per unit volume, rather than energy per unit mass.
Thus, the tabulated value must be divided by pg, the initial density of the unburned
explosive.

* The JWL constants with units of pressure, A and B, are given by the A and B command
lines, respectively.

* The dimensionless JWL constants, Ry, R, and w, are given by the R1, R2, and OMEGA
command lines, respectively.

* The x-coordinate of the detonation point, xp, is given by the XDET command line.
* The y-coordinate of the detonation point, yp, is given by the YDET command line.
* The z-coordinate of the detonation point, zp, is given by the ZDET command line.
* The time of detonation, ¢p, is given by the TDET command line.

* The burn-width constant, Bs, is given by the B5 command line. The burn-width constant
has a default value of 2.5.

For information about the JWL model, consult [27].

1.2.3.4 JWL (Jones-Wilkins-Lee) Model with Multiple Detonation Points

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION
<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION
<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =
<string>thermal_strain_z_function

#

(continues on next page)

58

(continued from previous page)

BEGIN PARAMETERS FOR MODEL JWL_MULTIPOINT
RHO_O0 = <real>initial_density

D = <real>detonation_velocity

E_0 = <real>init_chem_energy

A = <real>jwl_const_pressurel

B = <real>jwl_const_pressure?

R1 = <real>jwl_const_nondiml

R2 = <real>jwl_const_nondim?2

OMEGA = <real>jwl_const_nondim3

B5 = <real>burn_width_const (2.5)

XDET = <real>x_detonation_point... (up to 100 values)
YDET = <real>y_detonation_point... (up to 100 values)
ZDET = <real>z_detonation_point... (up to 100 values)
TDET = <real>time_of_detonation... (up to 100 values)

END [PARAMETERS FOR MODEL JWL_MULTIPOINT]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The JWL MULTIPOINT model describes the pressure-volume-energy response of the gaseous
detonation products of HE (High Explosive). The mechanics for this model is identical to the
JWL model, but this version permits up to 100 detonation points. Each detonation point can have
its own detonation time. For details about this model, see [27].

For JWL MULTIPOINT energy-dependent materials, the JWL_MULTIPOINT command block
begins with the input line:

BEGIN PARAMETERS FOR MODEL JWL_MULTIPOINT

and is terminated with an input line of the following form:

END [PARAMETERS FOR MODEL JWL_MULTIPOINT]

In the above command blocks:

e The thermal strain option is used to define thermal strains. See the
Sierra/SolidMechanics User’s Guide for further information on defining and activating
thermal strains.

* The initial density of the unburned explosive, pg, is given by the RHO_0 command line.
* The detonation velocity, D, is given by the D command line.

* The initial chemical energy per unit mass in the explosive, Ey, is given by the E_0
command line. Note, this value has NO effect on the actual behavior of the model in terms
of stresses returned or energy generated. The E_ 0 term affects only what initial energy
value is printed in the output log file. The energy generated by the JWL MULTIPOINT
material is determined by the A, B, R1, R2, and D constants. Most compilations of
JWL parameters give Eq in units of energy per unit volume, rather than energy per unit

59

mass. Thus, the tabulated value must be divided by py, the initial density of the unburned
explosive.

The JWL constants with units of pressure, A and B, are given by the A and B command
lines, respectively.

The dimensionless JWL constants, Ry, R», and w, are given by the R1, R2, and OMEGA
command lines, respectively.

The x-coordinates of the detonation points, xp, are given by the XDET command line. Note
that the number of detonation points specified should be the same number specified in the y
and z coordinate locations as well as the detonation times.

The y-coordinates of the detonation points, yp, are given by the YDET command line. Note
that the number of detonation points specified should be the same number specified in the x
and z coordinate locations as well as the detonation times.

The z-coordinates of the detonation points, zp, are given by the ZDET command line. Note
that the number of detonation points specified should be the same number specified in the x
and y coordinate locations as well as the detonation times.

The times of detonation for the detonation points, ¢p, are given by the TDET command line.
The detonation times can be different for each detonation point. Note that the number of
detonation points specified should be the same number specified for the x, y, and z
coordinate locations.

The burn-width constant, Bs, is given by the B5 command line. The burn-width constant
has a default value of 2.5.

For information about the JWL model, consult [27].

1.2.3.5 Ideal Gas Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

thermal strain option

THERMAL STRAIN FUNCTION = <string>thermal_strain_function

or all three of the following

THERMAL STRAIN X FUNCTION =
<string>thermal_strain_x_function

THERMAL STRAIN Y FUNCTION =
<string>thermal_strain_y_function

THERMAL STRAIN Z FUNCTION =
<string>thermal_strain_z_function

#

BEGIN PARAMETERS FOR MODEL IDEAL_GAS
RHO_O0 = <real>initial_density
C_0 = <real>»initial_sound_speed
GAMMA = <real>ratio_specific_heats

60

(continues on next page)

(continued from previous page)

END [PARAMETERS FOR MODEL IDEAL_GAS]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The ideal gas model provides a material description based on the ideal gas law. For details about
this model, see [27].

For ideal gas materials, the ideal gas command block begins with the input line:

BEGIN PARAMETERS FOR MODEL IDEAL_GAS

and is terminated with an input line of the following form:

END [PARAMETERS FOR MODEL IDEAL_GAS]

In the above command blocks:

e The thermal strain option is used to define thermal strains. See the
Sierra/SolidMechanics User’s Guide for further information on defining and activating
thermal strains.

* The initial density, pg, is given by the RHO__0 command line.
* The initial sound speed, cg, is given by the C_0 command line.
* The ratio of specific heats, v, is given by the GAMMA command line.

For information about the ideal gas model, consult [27].

1.2.4 Energy Deposition

BEGIN PRESCRIBED ENERGY DEPOSITION
#
block set commands
BLOCK = <string_list>block_names
INCLUDE ALL BLOCKS
REMOVE BLOCK

#
function commands

T FUNCTION <string>t_func_name
X FUNCTION = <string>x_func_name
Y
Z
#
#

FUNCTION = <string>y_func_name
FUNCTION

<string>z_func_name

input mesh command
READ VARIABLE = <string>mesh_var_name
#

(continues on next page)

61

(continued from previous page)

user subroutine commands
ELEMENT BLOCK SUBROUTINE = <string>subroutine_name
other user subroutine command lines
SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON
SUBROUTINE REAL PARAMETER: <string>param_name
= <real>param_value
SUBROUTINE INTEGER PARAMETER: <string>param_name
= <integer>param_value
SUBROUTINE STRING PARAMETER: <string>param_name
= <string>param_value
END [PRESCRIBED ENERGY DEPOSITION]

The PRESCRIBED ENERGY DEPOSITION command block applies a set quantity of energy to
energy-dependent material models for a given set of element blocks. Energy deposition defines a
specific energy deposited (energy per unit mass) the code computes the actual energy added to
each element by multiplying this applied specific energy by the element mass.

Energy deposition represents a particular type of boundary condition, and thus this command
block follows the general specification of command blocks used to specify boundary conditions.
See the Sierra/SolidMechanics User’s Guide for more information on general boundary condition
specification. The PRESCRIBED ENERGY DEPOSITION command block must appear in the
region scope.

There are three options for defining the energy deposition for a set of elements: with standard
SIERRA functions, with a mesh variable in the input mesh file, and by a user subroutine. If the
energy deposition is a reasonably simple description and can be defined using the standard
SIERRA functions, the function option is recommended. If the energy deposition requires a more
complex description, it is necessary to use either the input mesh option or the user subroutine
option. Only one of the three options can be specified in the command block.

The PRESCRIBED ENERGY DEPOSITION command block contains four groups of
commands: block set, function, input mesh, and user subroutine. Each of these command groups,
with the exception of the T FUNCTION command line, is basically independent of the others.
Following are descriptions of the different command groups.

1.2.4.1 Block Set Commands

The block set commands portion of the PRESCRIBED ENERGY DEPOSITION
command block defines a set of element blocks associated with the prescribed energy deposition
and can include some combination of the following command lines:

BLOCK = <string_list>block_names
INCLUDE ALL BLOCKS
REMOVE BLOCK

62

These command lines, taken collectively, constitute a set of Boolean operators for constructing a
set of blocks. See the Sierra/SolidMechanics User’s Guide for more information about the use of
these command lines for creating a set of blocks used in the command block. Either the BLOCK
command line or the INCLUDE ALL BLOCKS command line must be present in the command
block.

1.2.4.2 Function Commands

If the function option is used, either the T function or a set of T, X, Y, and Z function command
lines must be included in the command block.

Following are the command lines related to the function option:

T FUNCTION = <string>t_func_name
X FUNCTION = <string>x_func_name
Y FUNCTION = <string>y_func_name

Z FUNCTION = <string>z_func_name

Each of the above command lines references a function name (defined in the SIERRA scope in a
DEFINITION FOR FUNCTION command block). All the functions referenced in these four
command lines must appear in the SIERRA scope.

The T FUNCTION command line gives the name of the user-defined T function. The T function
describes how the applied input energy dose is integrated over time z. The T function should be 0
at the start time and 1 at the time at which all energy is deposited. The 7 function must be
monotonically increasing over the time it is defined. The T function describes the total percentage
of energy that is deposited at a given time.

The X FUNCTION,Y FUNCTION, and Z FUNCTION command lines define three functions,
which we will denote as X, Y, and Z, respectively. The X, Y, and Z functions describe the total
amount of energy to be deposited in an element as a function of position. Suppose we have
element A with centroid (A, Ay, A;) and mass M. The total energy that will have been deposited
in element A at time ¢ is given by:

Ea = MaX(A)Y (A)Z(A)T (1) (1.25)
where E 4 is the total energy deposited.

1.2.4.3 Input Mesh Command

If the input mesh option is used, the quantity of specific energy deposited for each element will be
read from an element variable defined in the mesh file.

Following is the command line related to the input mesh option:

63

READ VARIABLE = <string>mesh_var_name

The string mesh_var_name must match the name of an element variable in the mesh file that
defines the energy deposition. Suppose that the total specific energy to be deposited for element A
is v(A). The quantity of energy deposited at time ¢ is then given by:

Ex=Mav(A)T (1) (1.26)

The T function in Equation (1.26) is the same as that described in Section 1.2.4.2.

1.2.4.4 User Subroutine Commands

The user subroutine option allows for a very general description of the energy deposition, but this
option requires that you write a user subroutine to implement this capability. The subroutine will
be called by adagio at the appropriate time to generate the energy deposition.

Energy deposition uses an element subroutine signature. The subroutine returns one value per
element for all the elements selected by use of the block set commands. The returned value
is the specific energy flux at an element at a given time. The output flags array is ignored. The
total energy deposited in an element is found by a time integration of the returned subroutine
specific energy fluxes times the element mass. See the Sierra/SolidMechanics User’s Guide for
more information about user subroutines.

Following are the command lines related to the user subroutine option:

ELEMENT BLOCK SUBROUTINE = <string>subroutine_name
SUBROUTINE DEBUGGING OFF | SUBROUTINE DEBUGGING ON
SUBROUTINE REAL PARAMETER: <string>param_name

= <real>param_value
SUBROUTINE INTEGER PARAMETER: <string>param_name

= <integer>param_value
SUBROUTINE STRING PARAMETER: <string>param_name

= <string>param_value

The user subroutine option is invoked by using the ELEMENT BLOCK SUBROUTINE command
line. The string subroutine_name is the name of a FORTRAN subroutine written by the user.
The other command lines listed here (SUBROUTINE DEBUGGING OFF, SUBROUTINE
DEBUGGING ON, SUBROUTINE REAL PARAMETER, SUBROUTINE INTEGER
PARAMETER, and SUBROUTINE STRING PARAMETER) are described in the
Sierra/SolidMechanics User’s Guide.

64

1.2.4.5 Output Variables

When using prescribed energy deposition a few output variables become available:

* specific_internal_energy is an element variable that is the energy per unit mass
that was applied by the boundary condition.

* deposited_internal_energy is the actual energy deposited by the boundary
condition. This value is specific_internal_energy times the element mass.

1.3 Elements

This chapter describes additional information in the elements that are relevant to the
energy-dependent material models described in this document. General information about the
elements used in the SIERRA Solid Mechanics codes can be found in the Sierra/SolidMechanics
User’s Guide.

1.3.1 Finite Element Model

BEGIN FINITE ELEMENT MODEL <string>mesh_descriptor

BEGIN PARAMETERS FOR BLOCK [<string list>block_names]

END [PARAMETERS FOR BLOCK <string list>block_names]
END [FINITE ELEMENT MODEL <string>mesh_descriptor]

The only elements in the SIERRA Solid Mechanics codes that support energy-dependent material
models are:

* Eight-node, uniform-gradient hexahedron: Only the midpoint-increment formulation
[29] supports equation of state (EOS) models. This element is the most heavily tested with
EOS models, and is the one currently recommended for use in this regime. This element is
the only one that currently supports the use of CTH material models.

* Four-node tetrahedron: The regular element-based formulation and the node-based
formulation for the four-node tetrahedron both support EOS models (but not the CTH
models). However, both of these element formulations have problems with EOS models.
The regular 4-node tetrahedral element is subject to volumetric and shear locking, which
can lead to erroneous results. Recent investigations using the node-based tetrahedral
element have shown problems with the computation of pressure, which is vital to the EOS
computations. Thus it is recommended to avoid using either of these elements with EOS
materials.

65

* Smoothed particle hydrodynamics (SPH) elements: These are one-dimensional
elements. These elements can be used with EOS models (but not the CTH models). These
elements are subject to numerical (non physics-based) failure in tension for all materials, so
should be used with caution. Some analyses using SPH for explosives have shown marked
deviation from expected behavior, so close comparisons should be made to other
approaches, such as using uniform-gradient hexahedral elements.

* Eight-node, total lagrange hexahedron: Supports equation of state (EOS) models
including the use of CTH material models.

* Ten-node, total lagrange composite tetrahedron: Supports equation of state (EOS)
models including the use of CTH material models. Mid-edge nodes can sometimes exhibit
spurious behavior when the material model is only an equation of state (purely dilatational,
no deviatoric response).

1.3.1.1 Descriptors of Element Blocks

BEGIN PARAMETERS FOR BLOCK [<string list>block_names]
LINEAR BULK VISCOSITY =
<real>linear_bulk_viscosity_value (0.06)
QUADRATIC BULK VISCOSITY =
<real>quad_bulk_viscosity_value (1.20)
MAX ENERGY ITERATIONS = <integer>max_energy_iterations (1)
ENERGY ITERATION TOLERANCE = <real>energy_iteration_tolerance(1.0e-5)
ELEMENT NUMERICAL FORMULATION = <string>OLD|NEW (OLD)
END [PARAMETERS FOR BLOCK <string list>block_names]

The finite element model consists of one or more element blocks. Associated with an element
block or group of element blocks will be a PARAMETERS FOR BLOCK command block, which
is also referred to in this document as an element-block command block. The basic information
about the element blocks (number of elements, topology, connectivity, etc.) is contained in a mesh
file. Specific attributes for an element block must be specified in the input file. The general
commands for this block are described in the Sierra/SolidMechanics User’s Guide, but several
commands are of particular use when employing EOS models.

Linear and Quadratic Bulk Viscosity

LINEAR BULK VISCOSITY =
<real>linear_bulk_viscosity_value (0.06)

QUADRATIC BULK VISCOSITY =
<real>quad_bulk_viscosity_value (1.20)

The linear and quadratic bulk viscosity are set with these two command lines. These terms assist
with the handling of strong discontinuities in stress, such as those found in a shock front. Setting

66

Explicit Only

these parameters to a level that is too low will cause the simulation to exhibit excess noise
(“ringing”) in the simulation. Setting these too large, however, can cause excessive smearing of
the discontinuity.

For more information, consult the documentation for the elements [16] for a description of the
bulk viscosity parameters.

Energy Iterations

MAX ENERGY ITERATIONS =
<integer>max_energy_iterations (1)

ENERGY ITERATION TOLERANCE =
<real>energy_iteration_tolerance (1.0e-5)

When using an energy-dependent material model, the internal energy is updated using a
second-order, implicit equation that includes terms for pressure-volume, entropy, and deposited
work. The pressure-volume work is broken into hydrodynamic and deviatoric parts. Historically,
Presto_ITAR has solved this equation under the assumption of a Mie-Gruneisen material,
where the pressure is linearly dependent upon the internal energy, see [27]. Section 1.2.3 and
Section 1.2.1 contain examples of materials which use this assumption. In these models, the
energy equation is solved explicitly inside of the material model itself. However, the recent
addition of more general material models (see Section 1.2.2) resulted in the need to remove this
dependency. Also, for general portability of material models, the energy update was extracted
from the material models and placed into the element for these general models.

Due to the implicit nature of the energy equation used by Presto_ITAR, an iteration is required
to make the new state self-consistent. The MAX ENERGY ITERATIONS setting controls the
maximum number of iterations performed in the self-consistent loop. When using a legacy
material model, or a model from Section 1.2.2 that is purely hydrodynamic, the default value of 1
is sufficient. For the former models, this recovers the legacy behavior. In the case of the latter
models, an isentropic predictor method is used that allows for an explicit solution of the implicit
energy equation. For more general models from Section 1.2.2, one should set MAX ENERGY
ITERATIONS to a value of at least 2. This provides for a minimal amount of convergence in the
energy equation.

The convergence criteria for exiting the self-consistent loop which calculates the implicit energy
update may be set via the command ENERGY ITERATION TOLERANCE. For planar shock
problems, the default value is typically reached after two or three iterations. Convergence to full
double precision tolerance typically takes up to six or seven iterations. A warning message will be
printed if the self consistent loop fails to converge to the desired tolerance within the maximum
allowed number of iterations.

67

Element Numerical Formulation

ELEMENT NUMERICAL FORMULATION = <string>OLD |NEW (OLD)

For calculation of the critical time step, it is necessary to determine a characteristic length for each
element. In one dimension, the correct characteristic element length is the distance between the
two nodes of the element. In higher dimensions, this length is usually taken to be the minimum
distance between any of the nodes in the element. However, some finite element codes, primarily
those based on Pronto3D [29], use as a characteristic length an eigenvalue estimate based on work
by Flanagan and Belytschko [7]. That characteristic length provides a stable time step, but often is
far more conservative than the minimum distance between nodes. For a cubic element with side
length equal to 1, and thus also surface area of each face and volume equal to 1, the minimum
distance between nodes is 1. However, the eigenvalue estimate is %, which is only 58% of the

minimum distance. As the length of the element is increased in one direction while keeping
surfaces in the lateral direction squares of area 1, the eigenvalue estimate asymptotes to % for

very long elements. If the length is decreased, the eigenvalue estimate asymptotes to the
minimum distance between nodes for very thin elements. In this case, the eigenvalue estimate is
always more conservative than the minimum distance between nodes. However, consider an
element whose cross section in one direction is not a square but a trapezoid with one side length
much greater than the other. Assume the large side length is 1 and the other side length is
arbitrarily small, €. In this case, the minimum distance between nodes becomes &, creating a
small and inefficient time step. However, the eigenvalue estimate is related to the length across the
middle of the trapezoid, which for the conditions stated is % Since both distances provide stable
time steps, and one or the other can be much larger in various circumstances, the most efficient
calculation is obtained by using the maximum of the two lengths, either the eigenvalue estimate or
the minimum distance between nodes, to determine the time step.

By using the maximum of the lengths, the computed critical time step will be very nearly
unstable, and the TIME STEP SCALE FACTOR command line should be used to provide a
margin of safety; the scale factor should not be greater than 0.9, and sometimes it may need to be
reduced further. Although this time step estimate is closer to the critical value and provides better
accuracy and efficiency, a smaller scale factor may need to be specified for stability. For this
reason, the choice of approach to use is left to the user and is determined by the command line:

ELEMENT NUMERICAL FORMULATION = <string>OLD |NEW (OLD)

If the input parameter is OLD, only the eigenvalue estimate is used; NEW means that the maximum
of the two lengths is used. The default is OLD so that users will have to specifically choose the
new approach and be aware of the scale factor for the time step.

The ELEMENT NUMERICAL FORMULATION command line is applicable to energy-dependent
material models, where the determination of the characteristic length is affected. This length scale
will change both the artificial viscosity and the critical time step. Further details about the critical
time step calculations and the use of this command line are available in [27].

68

1.3.2 Element Sections

Element sections are defined by section command blocks. There are currently nine different types
of section command blocks. The section command blocks appear in the SIERRA scope, at the
same level as the FINITE ELEMENT MODEL command block. No special parameters in the
sections are required for the use of EOS models. However, there are some inputs in the SPH
section that can be useful for explosives computations. The relevant section from the standard
user’s guides is duplicated here, with a few additional comments.

1.3.2.1 SPH Section

BEGIN SPH SECTION <string>sph_section_name
DENSITY FORMULATION = <string>MATERIAL|KERNEL (MATERIAL)
END [SPH SECTION <string>sph_section_name]

SPH (smoothed particle hydrodynamics) is useful for modeling fluids or for modeling materials
that undergo extremely large distortions. One must be careful when using SPH for modeling. SPH
tends to exhibit both accuracy and stability problems, particularly in tension. An SPH particle
interacts with other nearest-neighbor SPH particles based on radius properties of all the elements
involved; SPH particles react with other elements, such as tetrahedra, hexahedra, and shells,
through contact. You should consult [28] regarding the theoretical background for SPH. The full
set of commands for the SPH section are listed in the SIERRA Solid Mechanics user’s guides.

The DENSITY FORMULATION command can be used to define the way in which the particle
radii are updated. For the default option MATERIAL, the material densities and nodal masses are
used to compute a volume associated with a particle at a given time. The radius is then updated to
be the cube root of that volume. The alternative option KERNEL computes the particle densities
based off of the SPH particles’ masses and the SPH kernel density function. The KERNEL option
may be necessary if large expansion of particles is expected (for example, modeling large density
changes in gases). The MATERIAL option generally changes particle densities and thus radii less
than the KERNEL option, so is appropriate for analyses that do not have large density fluctuations.
The KERNEL option is often necessary for EOS models for explosives (such as JWL) or for
shocks in gaseous materials.

1.4 Boundary Conditions

This chapter documents a specialized pressure boundary condition that is currently only available
in the Presto_ITAR version of the Sierra/SM code. Refer to the Sierra/SM User’s Guide for
documentation of other boundary conditions.

69

1.4.1 Blast Pressure

BEGIN BLAST PRESSURE <string>name
SURFACE = <string list>surface_ids
REMOVE SURFACE = <string list>surface_id
BLOCK = <string list>block_ids
REMOVE BLOCK = <string list>block_ids
INCLUDE ALL BLOCKS

BURST TYPE = <string>SURFACE|AIR
TNT MASS IN LBS = <real>tnt _mass_lbs
BLAST TIME = <real>blast_time
BLAST LOCATION = <real>loc_x <real>loc_y <real>loc_z
ATMOSPHERIC PRESSURE IN PSI = <real>atmospheric_press
AMBTIENT TEMPERATURE IN FAHRENHEIT = <real>temperature
FEET PER MODEL UNITS = <real>feet
MILLISECONDS PER MODEL UNITS = <real>milliseconds
PSI PER MODEL UNITS = <real>psi
PRESSURE SCALE FACTOR = <real>pressure_scale(1.0)
IMPULSE SCALE FACTOR = <real>impulse_scale(1.0)
POSITIVE DURATION SCALE FACTOR = <real>duration_scale (1.0)
ACTIVE PERIODS = <string list>period_names
INACTIVE PERIODS = <string list>period_names
BLOCKING SURFACE CALCULATION = {OFF|ON} (OFF)

END [BLAST PRESSURE <string>name]

The BLAST PRESSURE command block is used to apply a pressure load resulting from a
conventional explosive blast. This boundary condition is based on [15]] and [[22], and Sachs
scaling is implemented to match ConWep ([35]).

Warning: The data that BLAST PRESSURE utilizes has been updated to match data from
ConWep 2.1.0.8 and no longer matches the curves reported in [15] or [22].

Angle of incidence is accounted for by transitioning from reflected pressure to incident pressure
according to:

Piotal = Preycos O+ Py (1 — cos6) (1.27)

where 6 is the angle between the face normal vector and the direction to the blast from the face,
Pio1a1 18 the total pressure, P, is the reflected portion of the pressure, and P;; is the incident
portion of the pressure. P,.r and P;,. are based on Friedlander’s equation, as described in [22].

The BLAST PRESSURE command block can be used for surfaces that have faces derived from
solid elements (eight-node hexahedra, four-node tetrahedra, eight-node tetrahedra, etc.),
membranes, and shells.

70

The BLAST PRESSURE command block can also be used for particle-like elements if the
particle elements are created through the use of element death particle conversion. The surfaces
must be defined on the original solid elements.

If 6 is greater than 90 degrees (i.e., the face is pointing away from the blast), only P;,. is applied
to the face. In this case, the face variable cosa, which contains cos 6, is set to zero.

This boundary condition is applied to the surfaces in the finite element model specified by the
SURFACE command line or the exterior of blocks of elements via the BLOCK or INCLUDE ALL
BLOCKS command line. (Any surface specified on the REMOVE SURFACE command line is then
removed from this set.)

Warning: Exercise caution when using INCLUDE ALL BLOCKS, as the boundary
condition will be applied to all faces. This may result in nonzero forces on faces with normals
pointing away from the blast. It is recommended that users verify that the surface normals
point in the correct direction. Additionally, when using shell elements, both faces of the
element are included in the calculations. To address this issue, enable blocking by using the
command BLOCKING SURFACE CALCULATION = ON, which assumes that faces with
normals facing away from the blast are covered.

Table 1.1 Face Variables for Blast Pressure Boundary Condition

Variable Name Type Comments

pressure Real Current total pressure. Varies in time.
normal Vector_3D | Face normal vector.
incident_pressure Real Peak incident pressure.
reflected_pressure | Real Peak reflected pressure.

alpha Real Decay coefficient a.

beta Real Decay coefficient 8.

cosa Real Cosine of 6.

arrival_time Real Time for arrival of blast at face.
positive_duration Real Duration of blast at face.

The face variables listed above will only be output when specifying SURFACE = <string
list>surface_ids and will not be output when using INCLUDE ALL BLOCKS.

The type of burst load is specified with the BURST TYPE command, which can be SURFACE or
ATIR. The SURFACE option is used to define a hemispherical burst, while the ATR option is used
for a spherical burst.

The equivalent amount of TNT (in pounds) is defined with the TNT MASS IN LBS command.
The time at which the explosive is detonated is defined using the BLAST TIME command. This
can be negative, and can be used to start the analysis at the time when the blast reaches the
structure, saving computational time. The location of the blast is defined with the BLAST
LOCATION command. Both BLAST TIME and BLAST LOCATION should be specified in the
unit system of the model.

The current ambient pressure and temperature are defined using the ATMOSPHERIC PRESSURE
IN PST and AMBIENT TEMPERATURE IN FAHRENHEIT commands, respectively. As

71

implied by the command names, these must be supplied in units of pounds per square inch and
degrees Fahrenheit.

Because of the empirical nature of this method for computing an explosive load, appropriate
conversion factors for the unit system used in the model must be supplied. The commands FEET
PER MODEL UNITS,MILLISECONDS PER MODEL UNITS,and PSI PER MODEL
UNITS are used to specify the magnitude of one foot, one millisecond, and one pound per square
inch in the unit system of the model.

All of the commands listed above are required. Scaling factors can optionally be applied to
modify the peak pressure, the impulse, and the duration of the loading. The PRESSURE SCALE
FACTOR command scales the peak value of both the reflected and incident portions of the applied
pressure. The IMPULSE SCALE FACTOR command scales the impulse of the reflected and
incident portions of the applied pressure. The POSITIVE DURATION SCALE FACTOR
command scales the duration of the reflected and incident portions of the applied pressure. Each
of these scaling factors only affects the quantity that it modifies; for example, scaling the pressure
does not affect the impulse or duration.

The ACTIVE PERIODS and INACTIVE PERIODS commands can optionally be used to
activate or deactivate this boundary condition for certain time periods.

Optionally, a surface blocking calculation may be performed to determine whether certain
surfaces shadow others from the blast loading. This calculation is enabled by the command
BLOCKING SURFACE CALCULATION = ON. The blocking surface calculation determines
the percentage of each face that is exposed to the blast source point. The incident and reflected
pressure of the blast is then scaled by the uncovered area of the face.

For information about the blast pressure model, consult [15]], [[22]], and [[35].

1.5 Output Variables for Material Models

Most material models have state variables that can be output upon request. State variables can be
accessed by name or index, although most of the time they are accessed by name. They are only
accessed by index under special circumstances. Refer to the Sierra/SolidMechanics User’s Guide
for more information on how state variables are requested for output. Tables of state variables for
the material models that are only available in Sierra/SolidMechanics are provided below. These
tables contain the indices and names used to access the state variables.

Table 1.2 State Variables for Bodner-Partom Model (Section 1.2.1.3)

72

Source
Point

Fig. 1.1 Example Blocking Surface Calculation.

73

25%

100%

33%

0%

0%

Name
FAILURE_FLAG
EQPS
PLASTIC_WORK
INTERNAL_ENERGY
EQPS_RATE
BULK_VISCOSITY
SQ_SOUND_SPEED
INITIAL_VOLUME
VOLUME_STRAIN
PRESSURE
ELEMENT_LENGTH
EQUIVALENT_STRESS
TEMPERATURE

=]
Q.
]
x

O | NN | W=D

=)

—
(=]

—_
—_

—_
(3]

Table 1.3 State Variables for CTH_EP Model (Section 1.2.2.3)
Index | Name
0 EQPS

1 EQDOT

Table 1.4 State Variables for CTH_JFRAC Model (Section 1.2.2.7)

Index | Name

0 DAMAGE

1 FAILURE_FRACTION
2 FAILURE_THRESHOLD

Table 1.5 State Variables for Holmquist-Johnson-Cook Concrete Model (Section 1.2.1.4)

Index | Name

0 FAILURE_FLAG

1 EQPS

2 PLASTIC_WORK

3 INTERNAL_ENERGY

4 EQPS_RATE

5 BULK_VISCOSITY

6 SQ_SOUND_SPEED

7 INITIAL_VOLUME

8 VOLUME_STRAIN

9 VOLUME_STRAIN_PER_CURRENT_VOLUME
10 PRESSURE

11 ELEMENT_LENGTH

12 EQUIVALENT_STRESS

13 MAX_VOLUMETRIC_STRAIN
14 DAMAGE

Table 1.6 State Variables for Hull Concrete Model (Section 1.2.1.5)

Name

FAILURE_FLAG

EQPS

PLASTIC_WORK
INTERNAL_ENERGY
EQPS_RATE
ARTIFICIAL_VISCOSITY
SQ_SOUND_SPEED
VOLUME_STRAIN
PRESSURE
ELEMENT_LENGTH
EFFECTIVE_STRESS
MAX_VOL_STRAIN_CUR_VOL

3
Q
[
x

—| =[O 0| QAN WKW =D

—| o

74

Table 1.7 State Variables for Johnson-Holmquist Ceramic Models (Section 1.2.1.7)

Index Name
0 & FAILURE_FLAG

1 & EQPS

2 & PLASTIC_WORK

3 & INTERNAL_ENERGY

4 & EQPS_RATE

5 & BULK_VISCOSITY

6 & SQ_SOUND_SPEED

7 & INITIAL_VOLUME

8 & VOLUME_STRAIN

9 & VOLUME_STRAIN_PER_CURRENT_VOLUME
10 & PRESSURE

11 & ELEMENT_LENGTH

12 & EQUIVALENT_STRESS

13 & DAMAGE

14 & BULKING_PRESSURE

15 & Z_FORCE

Table 1.8 State Variables for Johnson-Holmquist-Beissel Ceramic Models (Section 1.2.1.8)

Index Name
0 & FAILURE_FLAG

1 & EQPS

2 & PLASTIC_WORK

3 & INTERNAL_ENERGY

4 & EQPS_RATE

5 & BULK_VISCOSITY

6 & SQ_SOUND_SPEED

7 & INITIAL_VOLUME

8 & VOLUME_STRAIN

9 & VOLUME_STRAIN_PER_CURRENT_VOLUME
10 & PRESSURE

11 & ELEMENT_LENGTH

12 & EQUIVALENT_STRESS

13 & DAMAGE

14 & BULKING_PRESSURE

15 & MAX_VOLUME_STRAIN

16 & Z_FORCE

Table 1.9 State Variables for Johnson-Cook Model (Section 1.2.1.6)

Index Name
0 & FAILURE_FLAG

1 & EQPS

2 & PLASTIC_WORK

3 & INTERNAL_ENERGY

4 & EQPS_RATE

5 & BULK_VISCOSITY

6 & SQ_SOUND_SPEED

7 & INITIAL_VOLUME

8 & VOLUME_STRAIN

9 & VOLUME_STRAIN_CURRENT
10 & PRESSURE

11 & SBAR

12 & EQUIVALENT_STRESS

13 & TEMPERATURE

14 & DAMAGE

15 & INITIAL_FAIL_STRAIN

75

1.6 Zapotec

1.6.1 Introduction

Coupled Euler-Lagrange solution approaches are well suited for modeling problems involving
penetration and blast loading on structures. Such problems are characterized by the transient,
coupled interaction between bodies and/or problem domains. Furthermore, these problems are
often found to have physical domains best modeled using different solution approaches. For
example, in an earth penetration problem, the soil is best modeled using an Eulerian solution
approach due to the large material deformations involved. Conversely, the penetrator is best
modeled using a Lagrangian approach as structural response is of primary interest. A coupled
approach utilizes the strengths of the two solution approaches to address problems not readily
solved by either method alone. In this report, we describe the development of Zapotec, a coupled
Eulerian-Lagrangian computer code for solving the aforementioned class of problems.

Zapotec couples the CTH (current version 13.0) [18], [10], [2]] and Presto_ITAR [[33], [32]
codes. CTH, an Eulerian shock physics code, performs the Eulerian portion of the analysis, while
Presto_ITAR, an explicit finite element code, performs the Lagrangian analysis. Zapotec
controls the coupling between the two codes. In a Zapotec analysis, both CTH and
Presto_ITAR are run concurrently. For a given time step, Zapotec maps the current
configuration of a Lagrangian body and its state onto the fixed Eulerian mesh. Any overlapping
Lagrangian material is inserted into the Eulerian mesh with the updated mesh data passed back to
CTH. Once the material insertion is complete, the external loading on the Lagrangian material
surfaces is then determined from the stress state in the Eulerian mesh. These loads are passed
back to Presto_ITAR as a set of external nodal forces. Once the coupled treatment is complete,
both CTH and Presto_ITAR are run independently over the next time step.

The Zapotec methodology and user inputs required to perform a Zapotec analysis are provided in
the remainder of this report. Sections Section 1.6.2 and Section 1.6.3 provide background
regarding the Zapotec algorithm and its implementation. Section Section 1.6.4 describes the user
inputs for Zapotec. Examples are available in the Zapotec Examples Manual [31].

1.6.2 Methodology
1.6.2.1 Background

The solution approach taken by Zapotec can be described as a loose coupling between two
pre-existing codes, CTH and Presto_ITAR. CTH performs the Eulerian portion of the analysis,
while Presto_ITAR performs the Lagrangian calculations. The two codes are run concurrently
with the appropriate portions of a problem solved on their respective computational domains. A
brief description of the two codes follows. It should be noted that Zapotec only supports 3D
problem development, i.e., the code does not support 1D or 2D applications. This should not pose
any difficulties, as the majority of real applications are 3D and symmetry boundary conditions can
be applied to emulate many 1D and 2D configurations.

76

Before continuing, it should be noted that there are numerous references to Lagrangian methods
throughout this report. There are many Lagrangian methods (e.g., finite elements, finite
difference, meshless methods, efc.). Any reference to Lagrangian methods will really refer to the
finite element method since the Zapotec coupling is with Presto_TITAR, an explicit finite
element code. Likewise, any reference to Eulerian methods will really refer to the solution
procedure utilized by CTH.

CTH is an Eulerian shock physics code that utilizes a two-step approach for the solution of the
conservation equations [18], [10], [2]. The two-step solution approach first involves a Lagrangian
step, where the Eulerian mesh is allowed to deform. The Lagrangian step is followed by a remap
step. The remap algorithm advects material quantities (i.e., the volume flux, mass, momentum,
and energy) from the deformed Lagrangian configuration back into the fixed Eulerian
configuration. The Lagrangian step taken by CTH is transparent to Zapotec, i.e., this is done
internally within CTH. Thus, the Eulerian domain, as observed by Zapotec, is composed of a
fixed, rectilinear mesh. The reader is directed to [18]] and [[10] for a more thorough discussion of
the CTH methodology.

Presto_ITARis an explicit Lagrangian, finite element code developed for modeling transient
solid mechanics problems involving large deformations and contact [33], [32]. The numerical
formulation utilizes an updated Lagrangian approach whereby the reference state at each time step
is updated to coincide with the current configuration. Although the Presto_ITAR formulation
accommodates several element types, Zapotec supports only a limited set. The supported element
types are the Flanagan-Belytschko 8-node constant strain hexahedral element [8], 4-noded and
10-noded tetrahedral solid elements, and the 4-node constant strain quadrilateral shell element.
These elements require hourglass control to eliminate the energy-less modes of deformation. SPH
and mass particles in Presto_ITAR are also supported in Zapotec; however, particles created by
conversion upon element death are not currently supported. Particles must be in the input mesh.
The reader is directed to [32] for a thorough discussion of the Presto_ITAR methodology.

For an Eulerian method, the mesh is fixed in space with material allowed to move through the
mesh. This is advantageous for modeling problems involving large material deformations and/or
diffusion and mixing of gaseous materials. However, the solution scheme presents some
difficulties for material interface tracking and modeling complex material response, particularly
that involving history-dependent materials. With a Lagrangian approach, the mesh deforms with
the material. As a result, boundary and contact conditions are well defined. The major weakness
of a Lagrangian method lies with mesh deformation, where severe element distortion degrades
accuracy and can potentially lead to a failure of the calculation due to mesh entanglement. A
coupled approach can overcome the weaknesses associated with the two methods, allowing for
solution of a class of problems not readily solved by either method alone.

For the class of problems of interest here (impact and blast loading on structures), the degree of
mesh distortion is expected to be severe. In most cases, severe element distortion can be expected
along contact and/or material interfaces. The current technology within Presto_ITAR for
handling large mesh distortions relies upon an element death algorithm. Element death is a
technique commonly used to remove highly distorted elements from the calculation once a
user-prescribed death criterion is met. This technique goes by many names including the eroding
interface algorithm within the EPIC code [13]] and the Slidesurfaces with Adaptive New

77

Definitions (SAND) algorithm within DYNA [[34]. Element death allows the extension of the
finite element method to problems that would not normally be considered. It is an engineering
algorithm that has its limitations. The algorithm can be sensitive to both mesh density and death
criteria. Poor choices can lead to excessive removal of elements and a loss of solution accuracy
for some applications [5], [12].

Zapotec provides an experimental capability for accommodating element death. This capability is
referred to as donation. When an element dies, instead of discarding it, the material from the
element is “donated” to the Eulerian domain and is henceforth treated as an Eulerian material. As
an example, consider the ballistic impact of a long, blunt tungsten rod against a steel target. In a
Zapotec analysis, the projectile would be modeled as a Lagrangian material, while the target is
treated as Eulerian. During the course of penetration, the nose of the projectile mushrooms, as
projectile material flows backwards following the surface of the crater formed in the target (see
Fig. 1.2). This process is referred to as erosion. It is difficult to model the eroding material using
the Lagrangian finite element method alone. Elements within the region of the eroding material
become highly distorted, making it necessary to invoke element death to keep the calculation
running. The consequence of using element death is that elements are removed from the contact
surface, leading to a somewhat less than accurate treatment of the contact problem. With
Zapotec’s donation algorithm, dying Presto_ITAR elements are donated to CTH, allowing
them to be treated as Eulerian materials for the duration of the analysis.

1.6.2.2 Nomenclature

Before discussing the specifics of the Zapotec methodology, it is useful to first define commonly
used variable names and associated nomenclature. As a general rule, plain text will denote scalar
quantities, while bold face denotes either vector or tensor quantities. A list of commonly used
variables and their definitions are as follows:

Table 1.10 Commonly Used Variables

Variable | Definition

Mass

Area

Volume

Density

Volume fraction

Sound speed

Pressure defined positive in compression (p = —1/3trace(o))
Deviatoric stress

Cauchy stress defined positive in tension (o0 =s — pI)
Linear momentum

Internal energy per unit mass

Internal energy

Surface normal

Traction vector (t =0 - n)

Velocity

Force

Coulomb friction coefficient

e S B T RS Y R E RS AN R PN

In the ensuing discussion, subscripts will be associated with the above quantities to denote the
domain and/or type of quantity. A list of subscript definitions follows:

78

Z (ecm)

10

X (ecm)

Fig. 1.2 lllustration of donation.

79

. Target
W Doncted
[Rod

[]voo

Table 1.11 Subscript Definitions
Subscript | Definition

ref Reference state

L Lagrangian problem domain

E Eulerian problem domain

(€] Overlap region (L N E)

1 Refers to a specific Lagrangian element

e Refers to a specific Eulerian cell (e = e (i, j, k)), where i, j, k are cell indices
void Void material within Eulerian domain

m Material number

n Normal component

t Tangential component

The total number of materials in a problem (Nyy) is the summation of the number of Eulerian
materials (Ng) and the number of Lagrangian materials inserted into the Eulerian mesh (Nyp).
The latter need not be the same as the number of actual Lagrangian finite element blocks in the
inputs for Presto_ITAR (NL). It is important to note the difference between the two quantities.
It is often advantageous to map the Lagrangian finite element blocks into a reduced set of CTH
materials to reduce memory requirements (often down to only one CTH material). This is
permitted since all state data associated with the Lagrangian materials are independently mapped
into the Eulerian mesh.

In the Zapotec terminology, an inserted Lagrangian material will be referred to as a placeholder
material within CTH. Eulerian CTH materials are classed as either permanent or donated. The
relationship of these materials with respect to the CTH data storage location is illustrated in Table
1.12. When considering donation, some care is required in setting aside storage for Lagrangian
materials that will be donated to the Eulerian domain. It is required that the number of permanent
Eulerian materials (NE permanent) along with their constitutive data be defined first. Material
definitions for donated and placeholder materials follow.

For many problems, the use of a single placeholder material is sufficient; however, there are
situations where the user should define multiple placeholder materials. These situations arise
when the problem contains multiple Lagrangian materials, with the materials having vastly
differing characteristics. Difficulties can arise with ensuring consistency of pressure and energy
reference states between Presto_ITAR and CTH. Also, inaccuracies can arise in the treatment
of over-filled cells. Issues related to both will be discussed in more detail in the next section,
which describes the material insertion algorithm.

Table 1.12 Classification of Materials for a Zapotec Analysis

Material Type | Classification | Description CTH Storage Location for Material
Eulerian Permanent True Eulerian material 1 < m < NE permanent

Eulerian Donated L material donated t0 E | NE permanent < m < Ng

Lagrangian Placeholder Inserted Lagrangian Ng <m < (Ng+ NyL)

80

1.6.2.3 Overview of the Algorithm

The Zapotec coupling algorithm is summarized in Table 1.13 and Fig. 1.3. In the coupled
treatment, Zapotec maps the current configuration of a Lagrangian body onto the fixed Eulerian
mesh. Any overlapping Lagrangian material is inserted into the Eulerian mesh with the updated
mesh data passed back to CTH. Once the material insertion is complete, the external loading on
the Lagrangian material surfaces is determined from the stress state in the Eulerian mesh. These
loads are passed back to Presto_ITAR as a set of external nodal forces. Once the coupled
treatment is complete, both CTH and Presto_ ITAR are run independently over the next time
step.

Table 1.13 Summary of the Zapotec coupling algorithm

Step Description

1 Remove pre-existing Lagrangian material from the CTH mesh
2 Get updated Lagrangian data

3 Insert Lagrangian material into the CTH mesh:

a. Compute volume overlaps

b. Map Lagrangian data (mass, momentum, pressure, sound,
speed, internal energy)

c. Pass updated mesh data back to CTH

4 Compute external forces on Lagrangian surface:

a. Determine surface overlaps

Compute surface tractions based on Eulerian stress state
Compute normal force on element surface

If friction, compute tangential force

Distribute forces to nodes and pass data back to
Presto_ITAR

oo T

5 Execute Presto_ITAR and CTH

Zapotec controls the time synchronization for CTH and Presto_ITAR. The Zapotec time step is
taken to be the same as the CTH time step. This implies the Presto_ITAR time step is scaled
back whenever it is larger than that for CTH. In practice, this generally occurs at start-up of the
calculation. In most cases, the Presto_ITAR stable time step is smaller than that for CTH due
to the finer resolution typically encountered for the finite element mesh. Zapotec permits
subcycling of the Lagrangian code to improve computational efficiency and accuracy. The time
synchronization associated with the subcycling algorithm is illustrated in Fig. 1.3. The external
nodal forces computed by Zapotec at ¢, are applied to the Lagrangian surfaces for the remainder
of the CTH time step (i.e., at each of the Lagrangian subcycles).

Special care is required when Lagrangian material donation is invoked. If a Lagrangian element
dies during the course of subcycling, it is necessary to redefine the Lagrangian material
boundaries and immediately donate the material to the Eulerian domain. In this situation, the
stable time step taken by CTH is scaled back to coincide with the time at which element death
occurred. In practice, such strict control of the time step by donation is not fully necessary, and
can lead to excessively small time steps. Reasonable solutions are possible by allowing several
deaths to occur before cutting back the time step. See the death_threshold and
max_don_subcycle commands in Section 1.6.4.2 for user options and further discussion.

81

CTH A'tCTH

Presto itar Abpresto_itar

Zapotec Presto_itar and
Coupling CTH Calculation

Fig. 1.3 Time synchronization of CTH and Presto_ITAR.

82

1.6.2.4 Material Insertion Algorithm

In the coupling algorithm, Zapotec first removes any pre-existing Lagrangian material from the
Eulerian mesh, i.e., material inserted during the previous time step. The data removed include any
Lagrangian placeholder data in the CTH database as well as any momentum contribution to cells
in the Eulerian mesh. Zapotec then maps the current configuration of the Lagrangian materials
onto the fixed Eulerian mesh. Any overlapping Lagrangian material is inserted into the Eulerian
mesh with updates made to Eulerian cell data so that momentum and mass are conserved. A
description of the insertion algorithm is provided in this section. Although Zapotec allows the
insertion of multiple Lagrangian materials into the Eulerian mesh, the ensuing discussion will
only consider insertion of a single Lagrangian material for simplicity.

Prior to insertion, the Lagrangian finite elements are converted into a set of 4-node tetrahedral
elements for Zapotec, as the determination of the volume overlap is much simpler with this
geometry. For example, the 8-node hexahedral element utilized by Presto_TITAR is split into
six 4-node tetrahedral elements. The element conversion process and associated data development
is discussed in detail in Section 1.6.2.7. A description of the volume overlap computation is
provided in [19]. The important point made here is that the Lagrangian material inserted into the
Eulerian mesh is now represented by a region composed of tetrahedral elements. One should also
note that these tetrahedral elements are only used to transfer Lagrangian material information to
the Eulerian mesh and should not be confused with a true finite element.

Steps in the Algorithm

Step 1: Compute Volume Overlap Compute the volume overlap of a Lagrangian tetrahedral
element with a rectangular Eulerian cell as follows:

Vo=V, NV,

Step 2: Gather Lagrangian Data for Insertion into the Eulerian Cell The material pressure
and sound speed for Lagrangian materials inserted into the Eulerian mesh is based upon a
volume-weighted average of these quantities. The treatment of the deviatoric stress varies slightly
since only a single deviatoric stress state is specified for an individual CTH cell, regardless of the
number of materials present in the cell. In this case, the deviatoric stress state is based upon a
mass-weighted average of the deviatoric stresses for all materials present in the cell. The
Lagrangian momentum and energy inserted into an Eulerian cell is weighted by the volume
fraction overlap ¢,, which is the fraction of a Lagrangian element overlapping an Eulerian cell.

83

The overlap data associated with a single Lagrangian element are computed as follows:

mo = piVy
bo = Vo/Vl
¢ =cV,

p1 = —1/3trace(o;)
$;] =07 +Ip]

P:, = Va(pref +P1)
P, = ¢0Pl

E, = ¢0(El +Eref)

where the prime () is used to denote weighted quantities and 7 is the identity tensor. Stress is
defined positive in tension, while pressure is defined positive in compression.

Steps 1 and 2 are repeated for all Lagrangian elements overlapping the Eulerian mesh. The net
result is a list of the above quantities that will be inserted into individual cells within the Eulerian
mesh.

Step 3: Gather Eulerian Data from the CTH Database Determine the material and void
volumes from the stored CTH volume fraction data (¢, ,, and ¢, ,,iq), convert material pressures
and cell sound speed to volume-weighted quantities, and specific internal energy to total internal
energy.

Ve = bemVe, wherem=1,...Ng
Ve,void = ¢e,v0idVe

¢, =c.V,

p;,m = pe,mVe,m

Ee,m =€emMem

Step 4: Distribute the Momentum Associated with Eulerian Materials to the Cell Centers
The procedure is illustrated in Fig. 1.4 for a one-dimensional example. The procedure is based on
the half-index shifted (HIS) algorithm proposed by [4] as a more accurate approach for recovering
the Eulerian cell velocities. The HIS-based algorithm is consistently implemented within both
CTH and Zapotec. The data on the primary mesh used for the momentum distribution is outlined
in Fig. 1.4 (a), where the data are comprised of the face-centered velocities v and the
element-centered mass m. For clarity, the subscript e associated with the Eulerian data has been
dropped. The Lagrangian mass and momentum overlapping the itextsuperscript{th} Eulerian cell
is denoted by m, and P, respectively. The Lagrangian material insertion and subsequent
recovery of the CTH face-centered velocities are described below. The distribution of momentum
to the cell centers of the mesh is illustrated in Fig. 1.4 (b) and (c), where one notes that each
face-centered velocity contributes to the cell-centered momenta of cells sharing a face. For
example, the velocity on face i provides a contribution to the momenta of the forward and rear
cells (cells i and i — 1, respectively). The momentum shift to the forward and rear cells are
referred to as the plus- and minus-shifted momenta, respectively.

Step 5: Insert the Lagrangian Data into the Eulerian Cell

84

A ™ &N 47 N

il i i1
> P PS P o » [] [] [] L » L] [J [] L
m; m; mj Vig m; vy m;,; Vv m; Vit
(+ md) (+ Pu) (+ Pu)

i-1 i i-1 i-1 i -1 i-1 i i-1

Fig. 1.4 Momentum insertion and recovery of face-centered velocities: (a) Primary mesh data be-
fore momentum shift, (b) Plus-shifted cell-centered momentum, P*, (c) Minus-shifted cell-centered
momentum, P~.

The Lagrangian overlap data is mapped into the Lagrangian placeholder position, which is denoted
by the subscript m. The Lagrangian momentum is inserted into the centered and staggered meshes
as depicted in Fig. 1.4 (b) and Fig. 1.4 (¢). The insertion is summarized as follows:

Mem < Mem +Mm, wWhere m = Ngy1, ..., Npar
Ve,m — Ve,m +V,

Ve,void — Ve,void - Vo

’ 7 ’

C‘e — Ce + CO

’ ’ ’

Pem < Pem *+ Do

P, —P,+P,

Ee,m — Ee,m + Eo

Step 5 is repeated for all Lagrangian elements overlapping the Eulerian cell. The net result is an
accumulation of the inserted mass, momentum, and energy; volume-weighted sound speed and
pressure for the Eulerian cell.

Step 6: Recover the Face-Centered Velocities for the Eulerian Mesh

The procedure is illustrated for a simple one-dimensional example in Fig. 1.4. As shown, the
velocity recovery requires access to the HIS momenta in adjacent cells.

Step 7: Adjust Over-Filled Cells

Before recovering the Eulerian data and returning it to the CTH database, we must first consider
the case of an over-filled cell, where the volume of inserted Lagrangian material along with the
resident Eulerian material exceeds the Eulerian cell volume. In theory, the coupling would result
in a fully compliant interface between Eulerian and Lagrangian materials. In practice, this is not
the case. There will be small amounts of overlap between Eulerian and Lagrangian materials,
leading to over-filled cells as part of the material insertion step. Zapotec currently uses a cutout
approach in which the overlapping material (both Eulerian and Lagrangian) is removed from the
problem. The cutout methodology is summarized in the following.

First, determine a weighting factor w, ,, for each material m used to correct the material volumes

85

such that the total volume of materials within the cell does not exceed the total cell volume:

We.m :Ve,m/Km where m = 1,..-,Nmat
Nmat

Pem = We,m/ (We,m)
m=1

where K is the initial bulk modulus of the material.

Then, determine the material volume correction and update the current material volume:

AVe,m = ‘;De,mve,void
Ve,m — Ve,m + AVe,m

This scheme will lead to loss of mass from the problem. The algorithm as implemented in the
code has substantial complexity as it attempts to minimize the negative effects of over-filled cell
resolution.

The central issue is the loss of Eulerian material which serves to either resist or push on the
Lagrangian material it is contacting. To avoid excess mass loss and ensure compliance at the
Euler/Lagrange interface, a penalty force algorithm has been developed. The magnitude of this
force is proportional to the overfilled cell volume, and the net intended effect of its application is
to reduce the amount of mass loss and ensure compliance between the two material types. The
penalty algorithm is experimental, and in its current incarnation can lead to spurious forces
applied at odd times. The details of the penalty algorithm are discussed below, but great care
should be taken in its use.

In many cases, the errors associated with overfilled cells do not appear to greatly affect solution
quality. However, more metrics available to the user are needed to better assess the effect of these
algorithms on code solutions. This will be the subject of future development work.

Step 8: Recover the Eulerian Data to be Returned to the CTH Database

This involves recovering the volume-weighted cell sound speed and material pressures, the
volume-weighted cell pressure, the mass-weighted deviatoric stresses, the specific internal energy,
and material volume/void fractions:

Nmal
’
Ce = Ce/Z Ve,m’
m=1
Nmal Nmat
’
pe = Z pe,m/Z Ve,m,
m=1 m=1

€em = Ee,m/me,m,
fe,m = e,m/ve,
fe,void = Ve,void/Ve-
Remark 1: Although the internal energy associated with the Lagrangian overlapping material is

inserted into the CTH database, it is not actually used within CTH since the CTH EOS is never
called for placeholder Lagrangian materials.

86

1.6.2.5 Material Donation Algorithm

The Presto_ITAR code provides an element death capability to remove elements from the
Lagrangian calculation once a prescribed death criterion is reached. Zapotec has the ability to
donate the newly dead Lagrangian elements to the Eulerian problem domain. Essentially, the
donated elements form (or become part of) a new Eulerian material. Donated Lagrangian
material is inserted into the Eulerian mesh using the same algorithm for intact Lagrangian
materials. The only difference between donation and insertion is that the internal energy passed
back to CTH is actually used in the equation of state calculations. As such, it is important to
ensure consistency of the material state computed by Presto_ITAR and that passed into CTH
for future calculations.

The donation algorithm ensures consistency of the pressure-energy state by iterating on the
internal energy. This is done by successive calls to the CTH equation of state routine, whereby a
bisection method is used to iterate on the internal energy until the pressures computed by CTH
and Presto_ITAR are consistent. Material donation is an important algorithm useful for many
Zapotec applications. However, great care should be taken to choose material definitions carefully
to ensure consistency between the Lagrangian and Eulerian domains.

Warning: Donation will be wrong if it occurs before insertion. An element must go through
insertion before being donated to be correctly contributed to the CTH domain. This means
element death occurring at initialization will be wrong.

1.6.2.6 Force Application Algorithm
General Algorithm

Once the material insertion is complete, the external loading on a Lagrangian material surface is
determined from the stress state in the neighboring Eulerian material. This procedure is illustrated
in Fig. 1.5. The cell overlapped by the Lagrangian material surface is referred to as the mixed
Euler/Lagrange (E/L) cell. The adjacent, or forward, cell is usually comprised of only Eulerian
material. The location of the forward cell is determined using the outward pointing normal
associated with the Lagrangian surface element. The Eulerian stress is derived from a weighted
average of the stress in the mixed E/L and forward cells. By default, a linear weighting based on
the volume fraction of Eulerian material in the mixed E/L cell (®,ix) is assumed. Once the
Eulerian stress state is determined, it is straightforward to determine the traction # on the surface
element using the element’s outward normal n;. In turn, the normal force f, applied to the
surface element is derived from the traction and overlapping element surface area A,. The
element-centered force is then distributed to the nodes. This process is repeated for all surface
elements, resulting in a set of nodal forces which are passed back to Presto_ITAR as an update.
Once the coupled treatment is complete, both CTH and Presto_ ITAR are run independently
over the next time step with their updated data.

87

Lagrangian

Material \\ l /
\ /(/ G=o miE qprmx to for (1 - qumx)

t=6-n;
_)@verlap fI

v f=(tn)A

overlap n L

" CTH Mesh | =N 1

\K
- -

Mixed Forward
E/L Cell Cell

Fig. 1.5 lllustration of force application.

Zapotec makes several assumptions regarding the determination of the applied normal force f,.
For inserted Lagrangian materials, the force calculation assumes that a compressive loading

(0 < 0) results from contact between the Lagrangian and Eulerian materials along the interface.
Conversely, if the Eulerian material is in a state of tension (i.e., o, > 0), the contacting materials
are assumed to be separating and no load is transmitted to the Lagrangian material. The normal
force applied to the Lagrangian material is calculated as follows:

£, =0nAon if o <0,
f,=0 if oy > 0.

Zapotec has the capability to evaluate frictional contact, where friction has the effect of retarding
the relative motion between the Lagrangian and Eulerian materials. The friction treatment is
based on a Coulomb friction model, where the user can prescribe either a constant coefficient of
friction between materials or utilize a velocity-dependent friction model. The model is discussed
in more detail in the next section.

For a Zapotec analysis, the user must prescribe a priori the Lagrangian material surfaces that can
interact with Eulerian materials. Lagrangian material surfaces are defined using finite element
blocks with the block Exodus ID, referred to in the Zapotec input deck as “materials”. The
discrete Eulerian/Lagrangian material boundary is represented by a triangular faceted surface of
the discretized Lagrangian domain, and is communicated from Presto_ITAR to Zapotec. The
boundary conversion to a faceted surface, and associated data development, is discussed in
Section 1.6.2.7.

88

Friction Treatment

The friction treatment is outlined in the following.
Step 1: Assess Friction

If friction is considered, compute the tangential friction force f, applied to the surface of the
Lagrangian element. First, determine the direction of sliding between the Lagrangian and
Eulerian materials as follows:

Ve =Vr — (n : Vr)n,

where v is the sliding velocity and v, is the relative velocity between the Lagrangian and
Eulerian materials. The sliding direction s is derived from the sliding velocity as:

§ = Vs/lvsl-

The determination of the relative velocity can be problematic, a consequence of difficulties in
recovering the Eulerian velocity. An interpolation of the face-centered Eulerian velocities is
required to determine the velocity at a point of contact (assumed to be at the centroid of the
Lagrangian surface element). This was considered in the original implementation; however, some
unforeseen problems were encountered. In particular, the area intersection algorithm did not
readily permit the interpolation of velocities outside of the overlapped cell (this occurs when the
element overlaps multiple cells with the surface element centroid residing in a neighboring cell).
In practice, this limitation leads to unreasonable (and non-physical) values for the interpolated
velocities. In addition, resolution of the Eulerian mesh was found to significantly affect the
interpolated velocities.

To avoid these difficulties, several simplifying assumptions were made for the determination of
the relative velocity vector. For the case of a Lagrangian body moving into an Eulerian material,
the relative velocity is based on the Lagrangian velocity at the centroid of the element:

Vy =—VL
This simple assumption is reasonable since the Lagrangian material is generally stronger than the
surrounding Eulerian material and its surface is well defined. For the case of an Eulerian material
impacting a stationary (or rearward moving) Lagrangian material, the relative velocity is
computed as:

Vr =VE — VL,

where vy, is the Lagrangian velocity at the surface element centroid and v is taken as the
cell-centered (i.e., average) velocity for the mixed E/L cell.

Once the sliding direction is determined, the tangential friction force f, is computed as:

ft = min(/'lo-nAO’ ﬁ,max)s = ftS,

89

where fi max 1s the maximum allowed tangential force which serves to limit the relative motion at
the interface to a tied boundary condition (i.e., perfect sticking condition). The maximum allowed
tangential force is computed as:

ﬁ,max = |vs|m/At,

where m and At are the lumped nodal mass at the element centroid and the time step,
respectively.

Step 2: Apply Frictional Forces to Surface Nodes

Distribute the element-centered external forces to the nodes of the Lagrangian surface element:

fr=Ni(f,+ [0

where [refers to the nodes on the surface element (I = 1,2, 3) and N is an interpolation function
(N = 1/3 for the triangular surface elements). The nodal forces are accumulated over the
Lagrangian surface and passed back to Presto_ITAR as a set of external nodal forces.

1.6.2.7 Special Topics
Lagrangian Code Interface

Zapotec accesses the Lagrangian data at every time step. A summary of the data used by Zapotec
is provided in Table 1.14. The data are categorized as node, element, or surface element data.
With each data type, there are two associated variables for the size (quantity) of data on a given
processor. For example, consider the nodal variables nsizel and max_nsizel. The variable
nsizel reflects the actual number of nodes on a processor while max_nsizel reflects the
maximum number of nodes allowed on any processor.

The nodal coordinates and velocities (e.g., the data residing in x1 and xvel) are passed directly
to Zapotec. The element data, however, require some manipulation prior to being used by
Zapotec. The data manipulation is performed at the Lagrangian code interface. At present,
Zapotec supports a limited set of Presto_ITAR element types. These are the
Flanagan-Belytschko 8-node constant strain hexahedral element and the 4-node constant strain
quadrilateral shell element [32]. A general description of the data manipulation follows. Shell
elements require special treatment, which is discussed in the next section.

The parent (or original) finite elements are converted into a set of 4-node tetrahedral elements for
Zapotec, as the determination of the volume overlap is much simpler with this geometry. For
example, the 8-node hexahedral element utilized by Presto_ITAR is split into six 4-node
tetrahedral elements. For a particle element, the radius is used to create an icosahedron around the
particle center. The icosahedron is then converted into twenty 4-node tetrahedral elements for
Zapotec. A similar operation is performed for the Lagrangian material surface definitions, where
the original discrete surface is converted into a list of 3-node triangular surface elements. The
conversion process requires the development of new connectivity arrays for both the element and

90

surface lists. Connectivity arrays relate the global node IDs to the local ordering of nodes for a
given element type. The dimensions for the element-based arrays (1sizel and nsrfl) reflect
the “on the fly” creation of the tetrahedral/triangular elements for Zapotec.

The newly created tetrahedral elements inherit data from the parent element (e.g., the stress state,
density, and internal energy of the parent element is inherited by the newly created tetrahedral
elements). A mapping is generated to track the inheritance of the parent data (see
map_lparent). The only additional data generated for the tetrahedral elements are the element
volumes and momenta. Element momentum is not typically stored (or computed) in finite element
codes. However, the Zapotec material insertion/donation algorithm requires these data for the
update of Eulerian mesh velocities. The element momentum is computed on the fly and reflects
the momentum associated with each of the newly created tetrahedral elements. The momentum
for a given tetrahedral element is computed as follows:

P = plvtetvavg,

where Py is the element momentum, p; is the density of the parent element, Vi is the computed
tetrahedral element volume, and vy, is the average velocity (computed as the average of the nodal
velocities for the four nodes associated with the tetrahedral element).

The lumped nodal mass vector xmass passed to Zapotec differs from that stored by
Presto_ITAR. The data passed to Zapotec reflect the lumped mass associated with the newly
created tetrahedral elements, while the data stored in Prest o_ITAR reflect the lumped mass
associated with the parent elements.

Table 1.14 Lagrangian Data Used Within Zapotec
Zapotec Variable Name | Description

(max_)nsizel (max) number of nodes

(max_) lsizel (max) number of 4-node tet elements

(max_) lparent (max) number of parent elements

msrfl number of surface elements

max_msizel max number of surface elements

x1l, yl, zl nodal coordinates, dimensions (I:max_nsizel)
xvel, yvel, zvel nodal velocities, dimensions (1:max_nsizel)

Xmass nodal mass, dimensions (1:max_nsizel)

nodexl connectivity for inserted 4-node tet elements, dimensions (1:4, I:'max_1lsizel)
matxl element material ID, dimensions (1:max_1lsizel)
map_lparent Parent element to tet map (1 :max_lsizel)

sx1l, syl, szl element total stress, dimensions (1:max_lparent)
sxyl, sxzl, syzl

denl element density, dimensions (1:max_lparent)

csl element sound speed, dimensions (1:max_lparent)
esl element internal energy, dimensions (1:max_lparent)
idonate element status flag, dimensions (l:max_1lsizel):

=0, element is alive

= 1, element has just died, time to donate element

= 2, element is already dead

nsrfxl connectivity for surface triangular elements, dimensions (1:3, l:'max_msizel)

Presto_ITAR tracks the status of an element when element death is invoked. The
Presto_ITAR element status ranges from zero to one, with zero denoting that an element has
died and will be (or has been) removed from the calculation. The user can prescribe the number of
time steps required to kill an element, with the status decremented until a zero value is reached.

91

Zapotec needs this information when the donation algorithm is invoked. The donation vector
idonate tracks the element status, differentiating newly dead elements (1idonate = 1) from
those which have already died and been donated (idonate = 2).

Treatment of Shell Elements

Thin-shell structures pose significant challenges for coupled methods. The major difficulty is
tracking material interfaces by the Eulerian code. Typically, material interface reconstruction
algorithms utilized by Eulerian hydrocodes rely on volume fraction information to approximate
the location and orientation of material interfaces and do not explicitly track the material
interfaces. Such interface reconstruction algorithms tend to work well for solid or thick-skinned
bodies whose material thickness spans several Eulerian cells; however, problems arise when the
material thickness is on the order of the Eulerian cell width or less. In these situations, there is no
information from either the upstream or downstream cells from which to reconstruct the material
interfaces. A simple alternative for avoiding this problem is to refine the Eulerian mesh such that
several cells span the thickness of the thin body. Unfortunately, this approach is impractical for
most 3D applications as memory requirements and analysis times become unmanageable.

A shell reconstruction algorithm has been implemented into Zapotec to accommodate thin-shell
structures where the Lagrangian domain is discretized using shell elements. Using this algorithm,
the shell thickness is allowed to be smaller than the corresponding Eulerian cell width. The shell
reconstruction algorithm creates an effective material interface for the Eulerian code by lifting the
shell geometry into 3 dimensions using the shell thickness. A mathematical /ifting operator is the
right inverse to the more familiar frace operator. In the finite element mesh, the shell element has
an attribute of thickness with the surface geometry defined by the location of the vertex nodes.

“Fluffing” can be used to increase the shell’s volumetric representation by using an effective
thickness rather than the actual thickness. Once the shell has a volume, it can then be inserted into
the Eulerian mesh. The external loading on the outer surface of the lifted shell is then evaluated
and passed back to Presto_TITAR as a set of external nodal forces. The user can control both
the direction for fluffing the shell and the side on which loads are applied. It should be noted that
using fluffed shell elements may return inaccurate results due to exploding elements. User options
are discussed in Section 1.6.4.2. At present, the shell algorithm only supports 4-node quadrilateral
shell elements.

The following procedure outlines the shell reconstruction algorithm for a single Lagrangian shell
element:

Step 1: Determine the Effective Shell Thickness

The effective shell thickness is denoted by #eg sheii- By default, Zapotec assumes an effective shell
thickness based on the minimum effective CTH cell width for all cells in the mesh. The effective

thickness is computed as:
— S S R R
et shell = leell = /Wi + Wy + w3,

92

where w,, wy, and w;, are the widths of Eulerian cells along the x, y, and z coordinate axes. The
default effective thickness fluffs the shell to span at least two CTH cells.

Zapotec provides a number of options for scaling the effective shell thickness. First, a user-defined
scale factor can be applied to the computed effective shell thickness as follows:

teft shell = (scale)leeln,

where “scale” is a user input described later in Section 1.6.4.2 (see the scale command). The
user also has the option to explicitly define the effective shell thickness (see the t scale
command). This latter option allows the user to define an effective shell thickness that is
independent of the CTH mesh resolution and is recommended over using “scale”. This is also
recommended if the shell is smaller than the CTH cell size. Early development of the shell
reconstruction algorithm assumed the effective shell thickness should span at least two CTH cells
to avoid any “bleed-through” of Eulerian material. Recent tests of the algorithm indicate that
bleed-through of material does not occur for blast applications, even when the effective shell
thickness is an order of magnitude less than the CTH cell size. Thus, in many applications, the
effective shell thickness can be specified as the true shell thickness using the t scale command.
A special case exists for donated shell elements, where the effective thickness will automatically
be defined as the true thickness.

Step 2: Create the Fluffed Shell

This procedure is illustrated in Fig. 1.6 using a simple 2D example. In this step, the thin shell
element is essentially transformed into a hexahedral element, having a significantly larger volume.
In order to complete the transformation process, it is necessary to determine a direction for
extending the shell thickness. This direction is based upon the average surface normal, n, which is
computed as:

r'=(x2—x1) + (x3 - x4)
s = (x4 —x1) + (x3 —x2)

r=r'/|r|
s=s"/|s
n=rxs

Once the average surface normal is determined, it is a straightforward procedure to determine the
corners of the fluffed shell. In the algorithm, new nodes are created at the corners of the fluffed
shell, which in turn, are used to define the top and bottom surfaces of the fluffed shell (see Fig. 1.6
for definitions). It is assumed that the outward pointing average surface normal defines the top
surface of the fluffed shell.

Step 3: Convert the Fluffed Shell into Tetrahedral Elements

Convert the fluffed shell (hexahedron) into six tetrahedral elements for insertion into the Eulerian
mesh. The procedure is comparable to that used for solid elements with some exceptions. First,
shell elements have stresses computed at each of the through-thickness integration points. The
insertion algorithm requires a single stress state. By default, the algorithm assumes a stress-free

93

Top Surface

I

o <

1 | T

1 |

I I

; 0.5 teﬁ’,she]l

n n
Original
Shell Element

O_______

,\é

® Original Shell Nodes
g Bottom Surtface

< Newly created fluffed shell nodes

Fig. 1.6 lllustration of shell reconstruction algorithm.

shell that is at its reference energy and density state. The fluffed shell geometry is based on the
current configuration. The user has the option to override the default and use either a stress state
based on an average over all integration points or the stress state at an individual integration point
(see the integ command). In general, the shell element will have 3 to 5 integration points
through the thickness, with the integration points ordered from the bottom to the top of the shell
element.

In addition, the material density can be modified to conserve the inserted mass and momentum
(see the conserve command), where the inserted density is scaled as follows:

Pinserted = pshellehell/ Vinserted-

When the conservation option is invoked, the shell density pgpep is the current shell density. One
issue that arises with the conservation option is that exceedingly low-density material can be
inserted into the CTH mesh. The inserted density and energy state will be inconsistent (as far as
CTH is concerned). It is unclear as to how this affects the CTH calculation. Inaccuracies
associated with inserting inconsistent material state data are thought to outweigh any inaccuracies
with the mass and momentum insertion. Thus, it is generally recommended that conservation not
be applied.

Step 4: Define Exterior Surface for the Fluffed Shell

The user can define the surface (e.g., top, bottom, or both) that can interact with Eulerian
materials. The external loading on the prescribed surface of a fluffed shell is evaluated as outlined
in Section 1.6.2.6. The applied nodal forces are mapped from the surface nodes of the fluffed shell
onto the nodes of the original shell element. The mapped forces are then returned to
Presto_ITAR as a set of external nodal forces.

94

Remark 1: As a convenience, surface definitions for the fluffed shells are generated automatically
within Zapotec. The surface definitions are used for the force application. There is no need for the
user to develop shell surface definitions, such as side sets, in the model file generation.

Remark 2: The shell reconstruction algorithm is useful for creating an artificial material interface
for thin-shell structures interacting with Eulerian materials. It should not be considered as a
substitute for contact between Lagrangian materials.

Remark 3: Zapotec makes no attempt to check for overlapping fluffed shell elements. This can
potentially lead to errors when inserting materials with highly curved thin-shell structures or
structures having irregular sections (e.g., T-sections). To illustrate this problem, consider the
curved structure shown in Fig. 1.7. Fluffed shell elements will overlap on the inside of the circular
structure. Conversely, there will be gaps in the material insertion on the outside of the circular
structure. Thus, the distribution of the shell data in the CTH mesh will not be correct.

Gaps Formed Between

Fluffed Shells
o /
I
1
1
I
1

Original
Shell Elements

N

Ommmm == ———}

Overlapping
Fluffed Shells

Fig. 1.7 lllustration of shell reconstruction algorithm for curved structures.

Remark 4: Zapotec makes no attempt to check for overlaps between fluffed shell elements and
other materials in the problem. For example, consider the joint between a thin-shell structure and
a solid body composed of hexahedral elements, which is modeled as a simple pinned connection
(see Fig. 1.8). If the shell structure deforms and starts to collapse onto the solid body, it is possible
for fluffed shell elements to overlap portions of the solid body. This can lead to over-filled cells in
the vicinity of the joint. In turn, this can lead to over-compressed materials in this region. There is
no ready fix for this problem and the user should exercise care with interpretation of results when
this situation arises.

Remark 5: The default treatment for the shell insertion is the recommended option. One would
like to consider the current state of the shell for insertion; however, this has proven troublesome in
practice. Difficulties arise when the parent shell element becomes highly distorted, either through
distention, hourglassing, or warpage. The state data associated with the highly distorted parent

95

shell element is inaccurate. This inaccurate data gets passed to CTH during the material insertion
step. The inserted data can affect the accuracy of the CTH calculation as it moves forward over
the next time step. In practice, poor states are noted in localized regions of the CTH mesh, which
in turn, affect the time step computation. The net effect is usually a degradation of the CTH stable
time step. Recent testing of the algorithm suggests the insertion of a “stress-free” shell does not
affect the accuracy of the Zapotec calculation and avoids time step issues in CTH.

Flutted Shell
Dverlaps Solid Body

\\
\ LY
'\
\
5 o Solid Body Composed
rigin of Hexahedral Elements
Shell Element

Fig. 1.8 lllustration of fluffed shell overlapping a solid structure.

Penalty Force Algorithm

The mismatch of velocity fields in the Eulerian and Lagrangian domains is thought to be a prime
contributor to the “overfilled cell problem.” One approach to mitigating the overfilled cell
problem is to apply a penalty force to the surface of a Lagrangian material. Penalty methods are
widely used in finite element analysis, generally for the imposition of displacement or contact
constraints. The penalty algorithm can be viewed as a set of interface springs, providing an
approximation for a displacement (or contact) constraint along the interface. The net effect is to
move the Lagrangian material slightly to reduce the amount of overfilling. The penalty force is in
addition to that computed during the force application step. Although there is no unique way of
calculating a penalty force, this force should exhibit the characteristic that its magnitude increases
with the degree of overfilling.

The penalty algorithm is experimental and can lead to spurious forces at various times in the
analysis. It should be used with great care in its current form. Usually, it is recommended to leave
the penalty algorithm off or to at least reduce its scale factor to prevent erroneous forces from
adversely affecting the solution.

In the Zapotec implementation, a penalty pressure is first computed using the volume-weighted
bulk modulus of the Eulerian materials residing in the cell, denoted Ky, and the overfilled cell

96

volume V,, as follows:

Vo

Ppenalty = CpenaltyKeul =
Veul

where cpenairy 18 @ user-prescribed constant coefficient and Ve is the volume of Eulerian material
residing in the cell. The bulk modulus used in the algorithm is the initial bulk modulus of the
Eulerian material. This could be an issue if the bulk modulus changes significantly with the
volumetric strain.

The penalty pressure is applied to the computed Eulerian stress tensor, which in turn, is used in
computing the traction vector and normal force. This is outlined as follows:

’
Op=0E — ppenaltyl,

t=o0p-ng,
O-}’l = t : nL9
[, =0,A0n.

The penalty pressure (hence force) is directly proportional to the user-defined penalty coefficient
Cpenalty- Recent testing of the algorithm suggests coeflicients ranging between 0.1 and 0.2 are
reasonable for most applications.

1.6.3 Parallel Implementation

The material insertion, donation, and force application algorithms are implemented in parallel.
The parallel implementation is load-balanced and allows for efficient computation when running
large simulations. A parallel analysis requires partitioning of the Lagrangian and Eulerian meshes
among the processors. The load balance is not straightforward since the mesh partitioning and
manner of partitioning differs for CTH and Presto_ITAR. CTH utilizes a block-based approach
for mesh decomposition [3]. Presto_ITAR maintains a different mesh decomposition based on
the initial mesh decomposition, and in some cases maintains a second decomposition for contact
surfaces [32]. An illustration of the different domain decompositions is provided in Fig. 1.9. A
static, graph-based method is used to decompose the entire Prest o_ITAR mesh at startup of the
calculation. This mesh decomposition is maintained for the duration of the calculation. Contact
surfaces require special treatment as they evolve over time. For some contact options in
Presto_ITAR, a geometric-based decomposition is utilized. Further details regarding the
parallelization of CTH and Presto_ITAR can be found in [3]] and the Prest o_ITAR theory
manual [[32], respectively.

The material insertion step requires determining the volume overlap of Lagrangian elements with
Eulerian cells on each processor. An efficient parallel implementation of this volume overlap
calculation depends on the balanced division of work among processors. If the overlap calculation
is performed only on processors where overlaps occur, then many processors will be idle. To
overcome this load imbalance, some of the work from processors with overlaps is distributed to
idle processors. In the Zapotec terminology, processors having overlaps are termed masters, while
idle processors are termed workers. The load balance algorithm for the material insertion step
(i.e., volume overlap calculation) is summarized as follows:

97

Sierra/SM

Multiple Parallel Decompositions

(1) Sierra/SMFEA static decomposition: graph based
(2) Contact Decomposition: geometric
(3) CTH mesh: rectangular block decomposition
(4) Overlap Calculation
(a) Identify idle processors
(b) Allocate work to idle
processors

Zapotec

Master
processor

\

Contact

CTH CTH

[\

Fig. 1.9 Mesh decomposition and load balance for Zapotec coupling algorithm.

1. Develop a bounding box about Lagrangian elements on each processor to determine the
geometric extents of Lagrangian elements owned on each processor. Broadcast the
bounding box information to all processors. Each processor compares the bounding box for
their Eulerian mesh against all of the Lagrangian bounding boxes to develop a list of the
portions of the Lagrangian mesh that overlap with the owned portion of the Eulerian
domain. Note that mesh overlaps can vary over the duration of the calculation due to the
ability of the Lagrangian bodies to move through the fixed Eulerian mesh.

. Perform the volume overlap calculation to identify the volume overlap of individual

Lagrangian elements with each Eulerian cell.

a.

b.

Identify processors having volume overlaps (termed masters).
Identify idle processors (termed workers).

Assign workers to masters. Workers are assigned in pairs to each master. If there is an
abundance of workers, then multiple pairs can be assigned to a given master
processor. If there are not enough workers available to provide a master with at least
two workers, then the master processor will perform its own overlap calculation.

Broadcast the master-worker assignments globally.

Communicate the Eulerian mesh coordinate information for a master processor to its
workers. If there are multiple workers available for a master processor, portions of the
Lagrangian data are communicated and put into temporary memory on the assigned
workers.

Master and worker processors perform their assigned volume overlap calculations.

As workers complete their overlap calculations, they communicate the results back to
their master.

98

3. Once all of the overlap data is received from the workers, the master processors complete
the material insertion step, i.e., map the Lagrangian material mass, momentum, stress, efc.
into the Eulerian mesh.

For many applications, the number of mesh overlaps will be larger than the number of processors.
As a result, the master-worker pairings cannot be done at once. In this situation, we perform the
parallel volume overlap calculations in a series of steps. In each step, the master and worker
processors are identified and the overlap calculations are distributed. Each master is first given
two workers. Excess workers are then assigned to the master processors with the largest number
of remaining mesh overlaps that will not be satisfied this step. This process is repeated until all
workers are assigned or no master processor has a mesh overlap to process. If there are still
workers available, then they are assigned in a round-robin method, one for each mesh overlap. In
this manner, the number of steps needed to complete the volume overlap calculations is reduced.

The process of material donation of dead elements from the Lagrangian mesh into the Eulerian
mesh is similar to that of material insertion. The division of labor for master and worker
processors is simpler in this case since there are fewer volume overlaps to consider. First, each
processor determines the number of donated Lagrangian elements that it owns and broadcasts this
information to all other processors. Then, each processor traverses its list of mesh overlaps and
filters out insertion elements, i.e., only donated elements remain in the list. The procedure for
performing the volume overlap calculation follows that for material insertion.

The external loading algorithm determines the forces exerted on the surface of the Lagrangian
elements by the Eulerian materials and has many similarities to the material insertion algorithm.
As discussed previously, Lagrangian material surfaces are discretized using triangular elements,
and thus the volume overlap computed for material insertion is replaced with area intersection for
external loading. Once the Lagrangian area intersection is determined, the applied forces are
computed based on the stress state in the Eulerian material.

The external loading algorithm also requires additional parallel communication steps. Each
master processor maintains an array of force vectors. As the forces on the surfaces overlapping
with the Eulerian cells are computed, the master processes accumulate them into a vector
corresponding to the Lagrangian processor that owns the surface mesh. At the end of each step,
the master processors send the forces to the appropriate Lagrangian processors, where they are
accumulated in the locally-owned force vector. After all of the surfaces have been processed,
Zapotec allows CTH and Presto_ITAR to continue.

1.6.3.1 Improved Material Insertion Algorithm

The material insertion algorithm previously discussed, including the master-worker load
balancing, is known to scale poorly. Once a (simulation-dependent) processor count is reached,
addition of more HPC resources can actually increase the runtime. An alternative material
insertion algorithm is available to address these performance and scalability issues. The improved
insertion scheme is conceptually simpler than the standard algorithm discussed previously. Both
methods begin by checking for bounding box overlaps. The new method then sends data for each
CTH block to the Presto_ITAR subdomains that overlap with it. Volume overlap computations

99

are performed on the Presto_ITAR partitions, and results are sent back to the CTH
decomposition for insertion into CTH. The rationale behind this alternative is that typically all (or
at least most) of the finite element domain is immersed in the CTH domain. If the finite element
decomposition is well-balanced, then overlap computations are expected to be load balanced as
well. Conversely, degraded performance may be expected when a finite element decomposition is
not load balanced.

The improved insertion algorithm for placeholder material is used by default starting in Sierra
version 5.8. Material donation and force application continue to use the algorithm described in
Section 1.6.3. If the legacy material insertion algorithm is desired, place the keyword
use_legacy_insertion in the Zapotec input file.

An alternative algorithm to compute the volumetric intersection between Sierra elements and
CTH cells is available starting in Sierra version 5.22. This algorithm uses the r3d [21] library to
perform the computational geometry. Initial results indicate that significant speedups can occur
when the CTH cell size is smaller than the Sierra element size. Performance for other cell size
ratios is comparable to the current algorithm in Zapotec. The r3d algorithm can be used by
placing the keyword use_r3d in the Zapotec input file.

1.6.4 User Instructions

Five input files are required for a Zapotec analysis: (1) the CTH input file, (2) the Presto_ITAR
input file, (3) the ExoduslI binary model file used by Presto_ITAR, (4) the Zapotec input file,
and (5) a Zapotec list file containing the file names of the Presto_ITAR and CTH input files.
Each of the input files utilizes a keyword input structure for program control. Only the Zapotec list
file and the keyword inputs for the Zapotec input file are discussed herein. The user is directed to
the CTH and Presto_ITAR User Manuals for a discussion of their respective input file
structures. The input file names are generally arbitrary, but Zapotec uses the input file named
zapotec. inp by default and emits an error if the file does not exist and another file name is not
specified in the list file.

This section details the syntax for the Zapotec List File and the Zapotec Input file. The final
sections detail visualization of Zapotec results and managing restarts.

1.6.4.1 Zapotec List File

The Zapotec list file is a simple file with pointers to which input files to use for CTH and
Presto_ITAR. An example is shown below:

sierra input deck = presto_file.i

cth input deck = cth.inp

zapotec input deck = zapotec.inp

cth run id = h ! used as suffix for cth outputs

lag_mass_per_eul_mass = 0.001 ! mass scaling: 0.001 = kg/g
lag_len_per_eul_len = 0.01 ! length scaling: 0.01 = m/cm

100

Global mass and length scaling are also specified in this file. The Sierra/SM model must be scaled
to CTH units (CGSeV) before interacting with the CTH model.

1.6.4.2 Zapotec Input File Keywords

The Zapotec input file utilizes a free-field format, is case insensitive, and allows embedded
comments. Comments begin with *, $, %, and/or ! characters. Comments are allowed anywhere
on a command line, with any data following a comment character ignored by the free-field reader.
Program control is issued using a keyword structure. In general, a keyword is followed by data. In
the following descriptions, keywords are given in bold face print, with keyword data represented
by angled brackets (i.e., <. . .>). Accepted abbreviations for keywords, if any, follow the
keyword in square brackets (i.e., [. . .]). Where appropriate, default values for the keyword data
are specified in curly brackets (i.e., { . . . }). There are also keyword groups that are of a
tree-form, whose general structure must be maintained. An example of this is the keyword plot,
which is followed by the t ime and interval keywords.

The input data are not order dependent. Also, keywords can be repeated within the input file. The
free-field reader will override previous specifications of a particular keyword, i.e., the reader
follows the “last wins” policy. For example, if num_eulerian is specified more than once, the
last assignment will be the one used by Zapotec.

Program Control

num_eulerian [num_eul, num_cth] = <integer> {0}

Number of Eulerian (CTH) materials in the problem. This number is the summation of the
permanent CTH and donated Lagrangian materials in the problem. Void material is not included
in the count of CTH materials. The user is required to input this information.

stop_time = <real> {1.0e20}
stop_cycle = <integer> {1e9}

Stop time or cycle for the Zapotec analysis. This value will control the problem duration. Note it
1s necessary to set stop times/cycles in the CTH and Presto_ITAR input files to larger values.
This will allow problem control by Zapotec. Note, the user can specify the stop time or cycle, but
not both.

max_subcycles [max_sub] = <integer> {50}

Maximum number of Lagrangian subcycles allowed. If max_subcycles is set to zero, then no
Lagrangian subcycling will be allowed and the CTH and Presto_ITAR time steps are
constrained to be identical.

coupling
frequency = <integer> {1} tcutoff = <value> ncutoff = <integer>

101

Two command structures exist within the Zapotec input deck to control coupling and de-coupling.
The first, older-style syntax begins with the keyword coupling. The keyword frequency specifies
the coupling frequency, which defaults to do a coupled calculation at every cycle. The frequency
option allows for less-frequent coupled calculations. This is sometimes useful for problems where
the loading on the Lagrangian structure does not change significantly over time. This option
should be used with care, as the solution accuracy is highly contingent on the coupled interaction
between Eulerian and Lagrangian materials. A less-frequent coupling can miss much of the
physical interaction, leading to a poor solution. The keyword tcutoff specifies a time at which
CTH is shut down and the Presto_ITAR solution continues, while the keyword ncutoff
specifies the number of time steps over which the decoupling occurs.

multistep
time = <real>

type = <analysis type>
ncutoff = <integer> {1}

The multistep keyword enables more complete and varied control for a multi-step calculation (as
opposed to the coupling keyword). This option allows the user to toggle between coupled and
independent calculations at various times. The keyword type indicates the type of analysis to be
undertaken. The available type options are described in Table 1.15. If the Lagrangian type is
specified, then the loading derived from the last coupled treatment will be abruptly cut off. This
can be overridden by specifying the ncutoff option. This allows the loading to decrease linearly
over the prescribed number of time steps. The Lagrangian type is particularly useful for
applications involving air blast loading on structures, where the positive phase duration of the
blast pressure pulse can be much shorter than the response time of the structure. In this situation,
it is useful to capture the initial coupled interaction between the blast and the structure, then turn
off the coupled interaction after the pressure pulse had dropped to a negligible value. The
Lagrangian calculation can then proceed to assess the late-time response of the structure.

Example:
stop_time = 20.0e-3 lanalysis termination time
multistep
time = 0.0 type = independent !run CTH and Sierra/SM
time = 10.0e-3 type = coupled !independently to 10 msec,
lafterwards perform coupled
lcalculation

Table 1.15 Description of multistep types

102

Multistep Type Description Related Option

Coupled Coupled calculations None

Independent Allows CTH and Presto_ITAR to run concurrently, but does not | None
assess the coupled interaction between the two computational domains

Lagrangian Cuts off the CTH portion of the analysis, allowing Presto_ITARto | ncutoff

continue until the Zapotec stop time is reached. By default, the loads
prescribed during the force application step will be terminated over
a single time step. This can be overridden by specifying the ncutoff
option below this command line.

Eulerian Cuts off the Presto_ITAR portion of the analysis, allowing CTHto | None
continue until the Zapotec stop time is reached.
Constant Similar to the Lagrangian option, except that the loads prescribed dur- | None

ing the last force application step are applied for the duration of the
calculation. The ncutoff option will be ignored.

Material Mapping and Insertion

use_legacy_insertion

This keyword, placed anywhere in the Zapotec input file, activates the legacy insertion algorithm
that performs all related computations in the CTH/Eulerian domain. This algorithm is slower and
its use is generally not recommended.

use_r3d

This keyword, placed anywhere in the Zapotec input file, activates the use of the R3d intersection
algorithm that can provide significant performance improvements in certain cases. In particular,
this algorithm provides greater performance when the CTH discretization is finer than the
SIERRA/SM discretization. This option may become default in the future.

Keywords to control the insertion of Lagrangian material into the CTH domain, as described in
Section 1.6.3.1.

material_map
eulerian [eul] = <integer> lagrangian [lag] = <integer>

The material map is a required input for Zapotec that provides a mapping between the
Presto_ITAR material IDs (given by the Exodusll block ID) and the corresponding CTH
placeholder material(s). The keyword eulerian refers to the Eulerian (CTH) material IDs, while
lagrangian refers to the Lagrangian (Presto_ITAR) block IDs. CTH material IDs are
numbered in sequential order as defined in the CTH input file. The eulerian/lagrangian keyword
lines can be repeated as needed. There is no order dependence for these keywords (i.e., the
keyword lagrangian can be specified before eulerian); however, it is required that the data be
input in Euler/Lagrange pairs on the same line in the input file. It is not required that every
Lagrangian element block be included in the mapping, but note that any left out of the coupling
will not be represented in the CTH domain. This can lead to strange code failures. Care should be
taken if blocks are left out. It is generally recommended to include all finite element blocks in the

mapping.

insert
xmin = <real> {-1.0e20}

103

xmax = <real> {1.0e20}
ymin = <real> {-1.0e20}
ymax = <real> {1.0e20}
zmin = <real> {-1.0e20}
zmax = <real> {1.0e20}

Bounds for Lagrangian material insertion. Only Lagrangian elements residing within the
prescribed bounding box will be considered for insertion into the CTH mesh. This keyword
command set can be useful for reducing the volume overlap calculations in the coupling
algorithm.

Example:

material_map
eul = 3 lag = 10 !map Lagrangian matl 10 into CTH placeholder matl 3
lag 20 eul = 3 !map Lagrangian matl 20 into CTH placeholder matl 3
eul = 3 lag = 30 !map Lagrangian matl 30 into CTH placeholder matl 3

External Loading Specification

cthf_insert
xmin = <value>

xmax = <value>
ymin = <value>
ymax = <value>
zmin = <value>
zmax = <value>

Bounding box for inserting Lagrangian material surface data into the coupled calculation. Useful
for reducing the amount of area overlap calculations.

force
material [mat] = <integer> <integer>

weight = <real> {1.0}
option = <integer> {0}
scale = <real> {1.0}
ignore_gaps {off}
ignore_all_gaps {off}

104

ignore_contact_surfaces {off}
penalty = <integer> {1}
pen_coeff = <real> {0.1}
filename = <character>
void = <integer> {2}
Control for force application on Lagrangian materials.

The keyword material refers to the definition of the Lagrangian material (Exodus block IDs).
When setting up the Lagrangian problem, the user must identify the Lagrangian surfaces that can
overlap the Eulerian mesh. In turn, the Zapotec force application algorithm utilizes these surface
definitions to assess the interaction between the Lagrangian and Eulerian materials.

The keyword material sets the Lagrangian materials, i.e., ExoduslI blocks, that can interact with
the Eulerian domain. The material surface definition is automatically generated within the code
and comprises surface elements residing on the exterior boundary of a Lagrangian material. This
includes surfaces residing on a plane of symmetry.

Material surfaces are automatically regenerated when elements die in the Presto_ITAR portion
of the calculation. The automated material surface generation is invoked as follows:

material = <Lagrangian Material ID> <Lagrangian Material ID>
where any number of Lagrangian material (block) IDs can be input.

Blocks can be excluded from the list of material (block) IDs, so that no forces are applied in the
coupling. Note that this can lead to unexpected results, so it is generally recommended that all
finite element blocks are included in the coupling.

Zapotec allows different approaches for determination of the Eulerian stress state, which are
outlined in Table 1.16. The default algorithm, discussed previously in Section 1.6.2.6, derives the
Eulerian stress state from the weighted material pressure for the mixed Euler/Lagrange (E/L) and
forward cells combined with the deviatoric stress from the forward cell (see Fig. 1.5). By default,
a linear weighting is assumed between the mixed and forward cells. The user can modify the
weighting factor (defined as wg in Fig. 1.5) using the keyword weight. The default approach with
a linear weight has been found to work well for problems involving solid materials (e.g.,
penetration applications where both the Lagrangian and Eulerian materials are solids). For
applications involving fluid-structure or blast-structure interaction, force option 2 is
recommended. For bonded materials, force option 3 will automatically be invoked. This will not
affect the force option specified for contacting Euler-Lagrange materials.

Table 1.16 Options for Determination of Eulerian Stress State

Force Op- | Method for Determining Eulerian Stress State

tion

0 (Default) Derived from weighted material pressure in mixed and forward cells combined with deviatoric stress from forward cell, i.e.,
0 = — Pyeighted] + Sforward

1 Derived from pressure and deviatoric stress in the forward cell only, i.e., 0 = — prorwardd + Sforward

2 Derived from pressure in the forward cell only, i.e., 0 = — pforwardl - Note: All shear stresses are set to zero

3 Derived from the pressure and deviatoric stress in the mixed E/L cell. This option is automatically invoked for bonded materials.

105

The keyword scale allows the user to scale the applied normal force on the Lagrangian materials.
It is a global option that scales all forces applied to all Lagrangian materials in the problem. Great
care should be exercised with its use since it scales all forces applied to a Lagrangian body.

The keyword ignore_gaps sets the stress state to zero when the forward cell contains a
Lagrangian material different than itself. To zero the stress when the forward cell contains any
Lagrangian material, use the keyword ignore_all_gaps. For applications where there are small
gaps between Lagrangian bodies (e.g., consider the gap between a door and its door frame), it is
possible to over-compress Eulerian material that flows into the gap. This can lead to excessive and
unrealistic loading on the Lagrangian structure, which is avoided with the ignore_gaps option.
Note that there are other cases in which the use of ignore_gaps can lead to force asymmetries and
apparent mesh biasing, so it is recommended to only use this command if it is needed for a
specific condition.

The command ignore_contact_surfaces is another option to control the application of forces
onto the Lagrangian material. Models that have curved surfaces in contact will sometimes have a
spurious CTH force applied to them, or surfaces will receive spurious force application as they
come into contact with each other. This command turns off CTH force application to element
faces when all nodes of the face are in Lagrangian contact (contact_status = I). Shell elements in
contact are handled as a special case. The contact_shell_facet_status nodal variable
is used to only load the shell from planar sides that are not in Lagrangian contact.

Since ignore_contact_surfaces uses the nodal contact_status field to determine whether or not to
add CTH forces for the face, this command can be sensitive to the relationship between CTH cell
edge length and the search tolerances specified for contact. As two Lagrangian elements are
coming into contact, the CTH material between them can exert large forces as it is compressed.
Adjusting contact search tolerances can allow the CTH force to be ignored prior to actually
coming into contact. Contact search tolerances equal to a fraction (e.g., one-half or one-quarter)
of the smallest CTH edge length have produced reasonable results in a limited number of use
cases.

An additional penalty force can be applied to the Lagrangian structure. This loading is in addition
to the traditional loading derived from the surface traction. The penalty treatment is invoked with
the penalty and pen_coeff commands. A penalty force is generally needed to add an additional
correction for overfilled cells. The penalty treatment is described in Section 1.6.2.7. Note that this
is an experimental capability, and should be used with caution.

There are inherent ambiguities in the application of forces when void is present in the mixed
Euler/Lagrange cell. Since material interfaces are not explicitly tracked in CTH, it is not possible
to determine if an Eulerian material is directly in contact with the inserted Lagrangian material.
The void feature allows a smooth decrease in the applied loading based on the volume fraction of
void in the mixed cell. The applied forces are “corrected” as follows:

fncorrected — fn (1 _ ¢V)void ,

where ¢, is the void volume fraction, f, is the magnitude of the normal force, and void is the
user-defined input. The default is a quadratic decay in the forces.

106

The keyword filename provides the full name of the printed global output file generated for
Lagrangian materials. Examples of output include the global forces exerted on the Lagrangian
materials, average linear and angular velocities, and global bounds of the Lagrangian mesh.

Remark: Materials composed of shell elements require special treatment and their surface
definitions should not be specified using the material command. All force application data for
shells should be specified using the loads keyword within the shell keyword set described in
Section 1.6.4.2.

friction
global = <real> {0}

constant = <real> {0}
eulerian = <integer> lagrangian = <integer

lagrangian = <integer> eulerian = <integer>

velocity = <integer>
eulerian = <integer> lagrangian = <integer>

lagrangian = <integer> eulerian = <integer>

Specification of frictional surfaces between Lagrangian and Eulerian materials. The keyword
global refers to the assignment of a global (constant) Coulomb friction coefficient for all
Lagrangian and Eulerian material interfaces in the problem. The keyword constant is used for the
assignment of a constant friction coefficient between specific Lagrangian and Eulerian materials.
The keyword velocity refers to the assignment of a velocity-dependent function for the friction
coefficient, where the associated data is a function ID. In order to use a velocity-dependent friction
model, the user must prescribe the friction coefficient as a function of sliding velocity using the
function keyword set (see below). As discussed previously, the keyword lagrangian refers to the
Lagrangian material (block) IDs, while eulerian refers to the Eulerian material IDs. Additionally,
the lagrangian/eulerian keywords for each material pair can be in any order and the listing of
pairs can be in any order, but the listing must be pairwise. Note also that keywords can be mixed.
For example, a user can prescribe a global friction coefficient for the problem and then override
the global value by assigning friction coefficients between specific materials. When using mixed
keywords, it is not required that the global keyword precede the other keyword assignments.

function = <Function ID>
<x-value> <y-value>

<x-value> <y-value>

Function definition. The keyword function is used to define a piece-wise linear function,
specified via a set of x-y data pairs. If the independent quantity is outside the range of the x-values
input, then the dependent data is extrapolated as illustrated in Fig. 1.10. There are no limitations
on the number of functions or number of data pairs. The only requirement is that the function ID
be unique and the x-data be monotonically increasing.

Example:

107

y-value function {ID}
extrapolated
¥ below x, X ¥
) x> X2
YI — KBJ YB
y-value
y extrapolated
z above x;
¥z
Xl X2 KB X
Fig. 1.10 Example of function definition.
force
file = force.dat !'Summary data written to force.dat
material = 10, 20, 30, 40 !Force application Lag materials
penalty = 1 !Add in penalty force
p_coeff = 'with coefficient of 5
friction
global = 0.10 !Globally defined Coulomb friction coef.
velocity 10 !function 10 defines the friction
!versus velocity data
eul = 3 lag = 30 !Overrides previous constant

!friction assignment
function 10
100.0 0.10 !data for function 10
200.0 0.04
400.0 0.02

Plot/Restart Control

plot
time = <real> interval = <real>

cycle = <integer> interval = <integer>

Plot specification. The plot keyword triggers Presto_ITAR and CTH to write spatial results
(plot) data at selected times or cycles to their respective results files. The keywords time/cycle and
interval refer to the initial plot time/cycle and plot frequency following the specified plot
time/cycle. The time/cycle keyword lines can be repeated any number of times, but the two cannot
be mixed (i.e., the user cannot specify both time and cycle plot dumps). Although plot frequency

108

is controlled via Zapotec, the spymaster capability in CTH is not yet reliably controlled, thus it is
a best practice to duplicate the plot time/cycle identifiers in the CTH input file using the spy
keyword set. The Presto_ITAR input file needs to have an output specification block to define
output variables, but it does not require that an output frequency be specified. If it does specify an
output frequency, Zapotec requests additional output according to its input file as necessary.

restart
time = <real> interval = <real>

cycle = <integer> interval = <integer>

Restart specification. By default, both Presto_ITAR (if a restart block is defined in its input)
and CTH will write a restart file at the end of an analysis. However, it is often useful to write
intermediate restart files. The restart keyword triggers Presto_ITAR and CTH to write
intermediate restart data at selected times or cycles to their respective restart files. The
times/cycle keyword lines were described above and can be repeated any number of times;
however, the two keyword types cannot be mixed (i.e., the user cannot specify both time and cycle
restart dumps). Although restart timing is controlled via Zapotec, the user must specify
corresponding restart identifiers in the CTH input file using restt keyword set, though Zapotec
controls its output. Similarly to plotting, the Presto_TITAR input file must define the restart
block, but output is controlled by Zapotec. If a restart output frequency is specified in the
Presto_ITAR input, Zapotec will output additional restart steps as needed.

Restart files can be written based on elapsed wall clock time with wall_clock_restart =
HR:MIN:SEC. This functionality works in conjunction with the restart keyword; restart files
will be written when either specification is true.

Effective use of restart requires careful coordination between input files. See Section 1.6.4.4 for
details on executing a restart.

Example:

plot
time = 0.0e-3 interval 1.0e-3 !plot time and frequency
time = 10.0e-3 interval = 2.0e-3
time = 30.0e-3 interval = 2.5e-3

restart
time = 20.0e-3 interval = 20.0e-3 !restart time and frequency
wall_clock_restart = 4:00:00 ! write restart files every 4 hours

109

Shell Element Specification

shell = <integer>
fluff = <character> {bottom}

scale = <real> {1.0}

tscale = <real> {none}
integ = <integer> {-1}
conserve = <integer> {0}
loads = <character> {top}

Shell element data. Insertion of thin shells into the Eulerian mesh requires some manipulation of
the data to assure proper interface tracking. In essence, the Lagrangian shell element is “fluffed”
up to have an effective thickness (and volume) for insertion into the CTH mesh. The data
manipulation is done in the Zapotec interface routines with the Lagrangian code and does not
affect the original finite element mesh data.

In the finite element model development, material blocks composed of shell elements are assigned
unique IDs. The user is required to identify shell element materials (blocks) that will be inserted
in the CTH mesh. This is in addition to their specification in the material and donation maps. The
shell element material is identified using the keyword shell as follows:

shell = <Lagrangian material ID>

Additional (optional) inputs can be specified for manipulation of data for the prescribed shell
material.

The fluff keyword is used to determine which side(s) of the shell is to be extended by one-half the
effective shell thickness, where:

fluff = <top> or <bottom> or <both> or <none>

Sides not selected for extension will be extended by one-half the actual shell thickness. The top
surface is defined by the outward surface normal for the shell element (see Fig. 1.6 for a
description of the surface definitions). The outward surface normal is based on a right-hand rule
with respect to the counter-clockwise ordering of nodes on the shell element. The default is to
extend only the bottom surface of the shell element.

The user can also scale the effective shell thickness using either the scale or tscale commands.
The scale command bases the effective thickness of the shell element on the characteristic length
of a CTH cell and is applied as follows:

teff,shell = (Scale) lcell s

where e shel 1 the effective shell thickness and /¢ is the characteristic cell length, taken as the
minimum length over all cells within the CTH mesh. The tscale command allows the user to
directly input the effective shell thickness. This option is useful when the user wishes to maintain

110

a constant effective shell thickness while considering a varying CTH mesh resolution, e.g., when
conducting a mesh resolution study.

By default, the algorithm assumes the fluffed shell is stress-free and is at its reference density and
energy state (integ = -1). The user has the option to override the default and modify the state data.
The integ command is used to modify the stress state, which can be based on either an average
over all integration points or the stress state at an individual integration point. An integ value of
zero (0) uses an average over all integration points. Any positive value refers to a specific
integration point. In general, the shell element will have 3 to 5 integration points through the
thickness, with the integration points running from the bottom to the top of the shell element.

The inserted material density can be modified to conserve the mass and momentum using the
conserve keyword, where the inserted density is scaled as follows:

Pinserted = pshellehell/ Vinserted-

When the conserve option is invoked, the shell density pgpep is the current shell density rather
than the reference density.

As a convenience, surface definitions for the fluffed shells are generated automatically within
Zapotec. The surface definitions are needed in the force application step of the coupled algorithm.
There is no need for the user to develop shell surface definitions, such as side sets, in the model file
generation. The keyword loads is used to specify the side(s) to apply external forces as follows:

loads = <t op> or <bottom> or <both> or <none>

The default is to apply external forces to the top surface of the fluffed shell (see Fig. 1.6 for
description of the surface definitions).

All force application data for shells are specified using the loads keyword only (i.e., shell
materials should not be included in the material command under the force keyword set). At the
end of the Zapotec coupled treatment, the external loads on the shell are transferred back to the
Lagrangian code as a set of external nodal forces. This requires that the forces on the fluffed shell
surfaces be mapped back onto the original shell element configuration.

Remark: In some applications, it is desirable to exclude groups of shell elements from being
subjected to any externally applied loads (external loading is always evaluated for the defined
Lagrangian material surfaces). An example would be a shell element covering a hexahedral
element face, where the faces and associated face nodes are coincident for the two element types.
In this situation, one may want to insert the shell into the Eulerian mesh to conserve mass and
momentum, but disregard applying external loads to the shell surface. This can be accomplished
by specifying loads = none. If this is not done, there will be a duplication of the Lagrangian
surface definitions (one associated with the underlying hexahedral element and the other
associated with the covering shell element whose surface definition was automatically created by
Zapotec). In this case, the duplicated surface definitions will lead to twice the applied loading on
the Lagrangian material.

Example:

111

shell 10 !Lagrangian material ID for shell block
scale = 1.0 !Scale factor for effective shell thickness
loads = top !Force application on top surface of shell element
fluff = bottom !Fluff shell in direction of the bottom surface of
'the shell element

Donation

death_threshold = <integer>

Threshold for number of Prest o_ITAR elements that must die in a Presto_ITAR time step
before donation will occur. The default is O, i.e., donation will be incurred whenever a
Presto_ITAR element dies. This threshold can be set to some finite number (e.g., between 2 to
5) to avoid the excessively small CTH times steps incurred by donation. This will be at the cost of
losing mass from the problem.

donation_map
eulerian [eul] = <integer> lagrangian [lag] = <integer>

Donated material map. The donation map provides a mapping between the ID of the
Presto_ITAR material to be donated and the corresponding CTH donated material ID. It is
customary to utilize this option if element death is invoked within Prest o_ITAR. With this
option, a dead Presto_ITAR element is donated to the CTH mesh. Once the Lagrangian
element is donated, the donated material is then treated as a CTH material. The donation map is
only specified if donation is desired in the problem, i.e., the user has the option to allow element
death within Presto_ ITAR without donation by not including the associated material in the
donation map. The eulerian/lagrangian keyword lines were described previously and can be
repeated as needed.

donation_off = <Lagrangian material ID> <time>
Allows the user to turn off donation for a given Lagrangian material at a specified time.

don_insert
xmin = <value>

xmax = <value>
ymin = <value>
ymax = <value>
zmin = <value>
zmax = <value>

Bounding box for inserting donated Lagrangian material into the coupled calculation. Useful for
reducing the amount of volume overlap calculations during material insertion/donation.

112

max_don_subcycle = <value>

Number of Lagrangian subcycles to allow before donation occurs. Useful for increasing the stable
CTH time step. This option should be used with care since the configuration of the “dead”
Lagrangian element will continue to change over time. Note that if the “dead” element is inverted
in the current configuration, it will not be donated and the mass associated with that element will
be lost. This lost mass is accumulated in the global variable zap_lost_mass available for
output in Presto_ITAR. We recommend that the value of max_don_subcycle not exceed 3.
The default is zero, which results in the CTH stable time step being cut back to the time at which
element death occurs.

Example:

material_map
eul = 3 lag = 10 !map Lag matl 10 into CTH placeholder matl 3
lag = 20 eul = 3 !map Lag matl 20 into CTH placeholder matl
eul = 3 lag = 30 !map Lag matl 30 into CTH placeholder matl 3

donation_map
eul = 2 lag

w

30 !donate "dying” elements from Lag material 30
!donate them to CTH matl 2

Miscellaneous

ambient_pres = <real> {0.0}

Ambient (reference) pressure associated with the Lagrangian materials. Presto_ITAR assumes
a zero pressure for ambient conditions. This can differ from the value used by CTH for the
Eulerian materials. This option allows the user to specify a consistent ambient pressure for the
Lagrangian materials in the problem. Specifying any non-zero value of ambient_pres acts to
zero out any pressures with magnitude less than ambient_pres, including fluctuating pressure
loads which may not be related to ambient conditions. For example, deltas in pressure across a
shell will not produce load on the shell if they are lower than ambient_pres.

cpu_stop = <real> {1.0e20}

CPU stop time in seconds. This is a useful option when batch processing a calculation with set
CPU time limits. Zapotec will automatically force both CTH and Presto_ITAR to output a
restart at this time. However, currently these restart files may be written at inconsistent times. It is
a current best practice to write frequent restarts and not rely on this command to make a usable
restart at the end of the queue time.

cutoff_placeholder = <volume fraction>

Allows the user to remove trace amounts of Lagrangian material from those cells containing only
placeholder material. Useful if you are desperate and cannot get past a CTH DTMIN error.

eliminate_excess { FALSE}

113

Removes overlapped Eulerian material at the startup of the calculation. This option is useful when
modeling complex Lagrangian material geometries overlapping a large, homogeneous Eulerian
domain. For example, consider the problem of an air blast loading on a multi-room concrete
structure (see Fig. 1.11). The air is best modeled as an Eulerian material, while the structure is
best modeled as Lagrangian. Inserting individual air spaces into the Eulerian mesh would be a
difficult and time-consuming process. This can be avoided using the eliminate_excess option.
With this option, the user can create a large Eulerian region composed of air and then overlay the
Lagrangian structure onto the air space. Any overlapped Eulerian material is automatically
removed from the problem. It should be noted that currently the algorithm employed by this
keyword is not entirely accurate—some Eulerian material may be left behind inside the inserted
Lagrangian material. Although this can cause small spurious pressures at time zero, they are
completely removed in subsequent steps as the Lagrangian material is re-inserted. These small
errors can be alleviated by using the remove exodus command in CTH’s diatom to pre-remove the
finite element mesh from the Eulerian domain.

Lagrangian
Structure Air
Eulerian I:l -
Air + = Ailr

Fig. 1.11 lllustration of the eliminate_excess option.

donation_vmag_threshold = <real> {1.0e4}
Do not donate elements whose velocity magnitude is below this threshold limit.
insert_material_and_finish { FALSE}

Inserts the Lagrangian blocks specified by the material_map into CTH, writes CTH output, and
stops program execution. No time advancement is performed. This option is mostly a debugging
command that allows the user to inspect grid resolution, etc. It can be very useful when checking
a model that uses length scaling.

mdal {FALSE)}

The mdal keyword triggers the following set of options, all of which can be set separately:

cutoff_placeholder = 1.0e-9
donation_vmag_threshold = 1.0e4
max_don_subcycle = 3

exit
All keywords following the keyword exit are ignored.

resize Isizel = <integer> {0}

114

resize msizel = <integer> {0}
resize nsizel = <integer> {0}

Resize array bounds. Zapotec estimates the array bounds for the Lagrangian element, surface
element, and node data described in Section 1.6.2.7. On rare occasions, the actual bounds can
exceed those estimated, resulting in termination of Zapotec at startup. When Zapotec terminates,
an error message is written to the output file indicating the problem array. The user can resize the
array bounds using the above commands, where the keyword following resize indicates the array
type and the third input is a numerical value indicating the new array bound. The keywords Isizel,
msizel, and nsizel refer to the number of volume elements, surface elements, and nodes,
respectively.

shield = <lag ID> <eul ID>

Material shielding. In some instances, one Lagrangian material may shield another. For example,
consider the situation depicted in Fig. 1.12. Here, we have a thin Lagrangian structure
surrounding an interior Lagrangian material. If both materials are identified for force application,
then loads will be incorrectly applied to the interior, shielded material. The force application
algorithm does not check to see if any other Lagrangian material resides in either the mixed E/L
or forward cells. In this situation, it is necessary to identify shielded Lagrangian materials. This is
done using the shield command, whose inputs are the shielded Lagrangian material ID <lag
ID> and its mapped placeholder material location <eul ID> inthe CTH database. In the
implementation, if the material surface has the prescribed Lagrangian material ID and the mixed
E/L contains other placeholder material and any shielded material, then the Lagrangian material is
assumed to be shielded. With this option, the material surface must be defined using the material
option in the force keyword set.

Thin Lagrangian

// Material
¥

Eulerian _
Material Shielded

n Lagrangian

] Material
Forward Mixed

Cell E/L Cell
]

Fig. 1.12 lllustration of shielded Lagrangian materials.

timestep = <integer>

Frequency to write time step information to the printed output file. By default, Zapotec will write
a reduced set of time step information to the output file, the frequency of which is determined
internally.

115

Debug Information

debug
dodonate

doinsert

Iput

my_pe = <integer> {default is all processors}
istart = <integer> {0}

timestep = <integer> {10}

Debug control for various levels in the coupling algorithm. Keywords driver, dolink, and docalcs
provide top-level information regarding time step control and calls to sub-level procedures.
Keywords dodonate, doinsert, lover, and lput provide detailed information regarding material
insertion. Note, printed output from these options can be lengthy and is generally recommended
for developer use only. The keyword my_pe can be used to identify debug information for a
specific processor. The keyword istart indicates the first Zapotec cycle at which debug
information is to be written. The keyword timestep writes time step information to an auxiliary
file, debug_timestep.out. The timestep keyword is followed by the frequency at which data is
written to this file.

1.6.4.3 Visualization

Visualization of Zapotec spatial and temporal results is possible using the ParaView visualization
software [1]. Details on how to appropriately visualize Zapotec results using ParaView are
included in the Examples Manual [31]. Programs specifically designed for visualizing CTH
results, such as SPYPLT and SPYHIS [6], are discussed in their respective user manuals as well
as the CTH documentation. Insertion of tracer points in the Eulerian domain and history output
for the Lagrangian domain is discussed in the CTH and Presto_ITAR documentation,
respectively.

1.6.4.4 Executing Restarts

In order to restart a Zapotec run, each of the input decks must be set up to process restarts
correctly and must be correctly modified upon restart. The steps for this are described in the next
sections.

116

Ensure Input Files Are Configured for Restart at the Start

Before you run the problem, it is important to make sure that your input files are consistent such
that they write out restart files. The Zapotec input file specifies a restart frequency and will force
both Sierra/SM and CTH to write out compatible restart files at the specified frequency. No
additional input is needed in the CTH file, but a restart block is required in the Sierra/SM input.

As described in Section 1.6.4.2, the restart frequency is specified in the zapotec.inp file using the
restart keyword:

restart
time = 0.0 interval = 1.0e-3

In the Sierra/SM file, specify restart using the restart data block in the region block. No restart
frequency is needed, since Zapotec will control the restart frequency. An example of this in a
Sierra/SM input deck is:

begin restart data restart
database name = run.rst
end restart data restart

It is also good to note the CTH run ID, which is specified in the Zapotec list file. It is
recommended to start with the run id ‘a’, so that subsequent restarts can update the id through the
alphabet (b, c, d, etc.). In the Zapotec list file, the run id is specified as:

cth run id = a

One other important item of note: CTH appears to have an internal limit on the length of the path
to restart files. If the restart path is over 80 characters, CTH may fail with one or more restart
database errors. To avoid this, keep the path to the CTH restart files (as well as the CTH restart
file names) shorter than 80 characters.

Determine the Time, Cycle, and CTH Run ID to Use for Restart

When you are ready to restart the analysis, look at the zapotec.out file from the previous run,
which reports the simulation times where restart files are written (an example is shown below):

CTH restart file written: cycle, time, no. dumps: 4543 4.97E-05 2
CTH plot file written: cycle, time: 4543 4.97E-05
SIERRA/SM restart written at cycle, Lag step, time: 4543 4543 4.97E-05
SIERRA/SM plot written at cycle, Lag step, time: 4543 4543 4.97E-05

Of note is the first line, which specifies the cycle and time at which a CTH restart file was written.
Keep note of this cycle number. Also keep note of the CTH run ID (specified in the Zapotec list
file).

117

When restarting a simulation, the log file will be overwritten. To prevent this, the best practice is
to rename zapotec.out to zapotec.out.<runid> (e.g., zapotec.out.a if the run ID is a) after the run
completes. In this way, the log file is not overwritten (preserving the restart times and cycle
numbers) and the log file is associated with the corresponding CTH run ID.

Edit the CTH File to Restart at the Given Cycle

In the CTH input file, add a restart specification that lists the name of the restart file to read from
and which cycle to use for restart. The example lines below show the form of the syntax. In this
example, the previous run ID had been a, so all the CTH restart files were called “rscta”. Also, we
will restart at the cycle number shown in the previous step, cycle 4543:

restart
file = 'rscta'
cycle = 4543
endrestart

Change the CTH Run ID in the Zapotec List File

In this example, we had previously run with the ID a. Now change the line to be:

cth run id = Db

This will preserve all the CTH output and results files from the previous run and generate new
ones with the run ID b (e.g., rsctb, spctb, octb, etc.). Note that CTH does try not to overwrite files,
and thus if you keep the CTH run ID the same, it will likely generate files with an appended
identifier. However, this can be confusing as to which file is the latest, so it is highly
recommended to change the CTH run ID.

Specify the Restart Time in the Presto_ITAR Input File

Add the following line in the Presto_TITAR input file just inside the “begin sierra” block:

restart time = <time>

In our example, <time> = 4.97E-05. Sierra is generally careful about restart files and will append
extra characters to the file names and create new files when needed, so explicitly specifying a new
restart file name is not generally necessary. Thus, this is all you generally need. If you would
rather control this naming yourself, you can change restart names using the input database and
output database keywords as shown above.

118

begin restart data restart
input database name = run.rst
output database name = run_b.rst
end restart data restart

Run the Same Zapotec Command Line as Before

Restart should now activate correctly. Zapotec will check to make sure the CTH and Sierra/SM
restart times are very close and will error out if they are not. If you get this error, check to make
sure the restart times you specified in the CTH and Sierra/SM restart files were the same and that
there were restarts actually written at those times. To check the times actually in the restart files,
use the cthed tool to look at the CTH restart files and grope or blot to look at the times written in
the Presto_ITAR restart files.

119

This page left blank

120

References

(1]

(2]

(3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Utkarsh Ayachit. The ParaView Guide: A Parallel Visualization Application. Kitware, 2015.
ISBN 978-1930934306.

R.L. Bell, M.R. Baer, R.M. Brannon, D.A. Crawford, M.G. Elrick, E.S. Hertel, S.A. Silling,
and P.A. Taylor. CTH User’s Manual and Input Instructions, Version 6.0. Sandia National
Laboratories, Albuquerque, NM, November 2000.

R.L. Bell, M.G. Elrick, and E.S. Hertel. Multi-processing cth: porting legacy fortran code to
mp hardware. In Nuclear Explosives Code Developers’ Conference. San Diego, CA, October
22-25 1996.

D.J Benson. Momentum advection on a staggered mesh. Journal of Computational Physics,
100:143-162, 1992.

G.C. Bessette and D.L. Littlefield. Analysis of loading on long-rod penetrators by oblique
moving plates. In Proceedings of the Conference of the American Physical Society Topical
Group on Shock Compression of Condensed Matters, 937-940. New York, 1998.

D.A. Crawford. Spymaster User’s Guide, Version 1.01. Sandia National Laboratories,
Albuquerque, NM, February 2002.

D.P. Flanagan and T. Belytschko. A uniform strain hexahedron and quadrilateral with
orthogonal hourglass control. International Journal for Numerical Methods in Engineering,
17:679-706, 1981. \href http://dx.doi.org/10.1002/nme.1620170504doi.

D.P. Flanagan and T. Belytschko. A uniform strain hexahedron and quadrilateral with

orthogonal hourglass control. International Journal for Numerical Methods in Engineering,
17:679-706, 1981.

T. J. Holmquist G.R. Johnson and S.R. Beissel. Response of aluminum nitride (including a
phase change to large strains. Journal Applied Physics, 2003.

E.S. Hertel, R.L. Bell, M.G. Elrick, A.V. Farnsworth, G.I. Kerley, J.M. McGlaun, S.V.
Petney, S.A. Silling, P.A. Taylor, and L. Yarrington. Cth: a software family for
multi-dimensional shock physics analysis. Technical Report SAND92-2089C, Sandia
National Laboratories, Albuquerque, NM, July 1993.

G.R. Johnson and S.R. Beissel. Modular material model subroutines for explicit lagrangian
computer codes. Technical Report ARL-CR-556, Network Computing Services, Inc.,
Minneapolis, MN, February 2005.

G.R. Johnson and J.A. Schonhardt. Some parametric sensitivity analyses for high velocity
impact computations. Nuclear Engineering Design, 138:75-91, 1992.

G.R. Johnson and R.A. Stryk. Eroding interface and improved tetrahedral element
algorithms for high-velocity impact computations in three dimensions. International Journal
of Impact Engineering, 5:411-421, 1987.

121

[14] E.S. Hertel Jr. and G.I. Kerley. CTH reference manual: the equation of state package.
Technical Report SAND98-0947, Sandia National Laboratories, Albuquerque, NM, 1998.

[15] C.N. Kingery and G. Bulmash. Airblast parameters from TNT spherical air burst and
hemispherical surface burst. Technical Report ARBBRL-TR-02555, Ballistic Research
Laboratory, Aberdeen Proving Ground, MD, April 1984.

[16] T.A. Laursen, S.W. Attaway, and R.1. Zadoks. SEACAS theory manuals: part III. finite
element analysis in nonlinear solid mechanics. Technical Report SAND98-1760/3, Sandia
National Laboratories, Albuquerque, NM, 1999. \href
http://infoserve.sandia.gov/sand_doc/1998/981760-3.pdfpdf.

[17] S.P. Lyon and J.D. Johnson. SESAME: the Los Alamos National Laboratory equation of
state database. Technical Report LA-UR-92-3407, Los Alamos National Laboratory, 1992.

[18] J.M. McGlaun, S.L. Thompson, and M.G. Elrick. Cth: a three-dimensional shock wave
physics code. International Journal of Impact Engineering, 10:351-360, 1990.

[19] D.P. Peterson. Finding the volume common to a block and a tetrahedron, more quickly.
Technical Report Unpublished SAND Report, Sandia National Laboratories, Albuquerque,
NM, April 1995.

[20] A. Picklesimer. The joint DoD/DoE munitions technology program, progress report for
FYO1, dynamic properties of materials. Technical Report LA-14015-PR, Los Alamos
National Laboratory, February 2003.

[21] Devon Powell and Tom Abel. An exact general remeshing scheme applied to physically
conservative voxelization. Journal of Computational Physics, 297:340-356, 2015.

[22] G. Randers-Pehrson and K.A. Bannister. Airblast loading model for DYNA2D and
DYNA3D. Technical Report ARL-TR-1310, Army Research Laboratory, March 1997.

[23] W.M. Scherzinger. Consistent Modeling for Constitutive and EOS Models. Technical Report
SAND?2022-2411CTF, Sandia National Laboratories, 2022.

[24] W.M. Scherzinger and D.C. Hammerand. Constitutive models in LAME. Technical Report
SAND2007-5873, Sandia National Laboratories, Albuquerque, NM, September 2007. \href
http://infoserve.sandia.gov/sand_doc/2007/075873.pdfpdf.

[25] S. Silling. Use of the Johnson-Cook fracture model in CTH. Technical Report Memo, Sandia
National Laboratories, Albuquerque, NM, 1996.

[26] S.A. Silling. CTH reference manual: viscoplastic models. Technical Report SAND91-0292,
Sandia National Laboratories, Albuquerque, NM, 1991.

[27] J.W. Swegle. SIERRA: PRESTO theory documentation: energy dependent materials version
1.0. Technical Report SAND2009-3801P, Sandia National Laboratories, Albuquerque, NM,
October 2001.

[28] J.W. Swegle, S.W. Attaway, M.W. Heinstein, F.J. Mello, and D.L. Hicks. An analysis of
smoothed particle hydrodynamics. Technical Report SAND93-2513, Sandia National

122

Laboratories, Albuquerque, NM, March 1994. \href
http://infoserve.sandia.gov/sand_doc/1993/932513.pdfpdf.

[29] L.M. Taylor and D.P. Flanagan. Pronto3D: a three-dimensional transient solid dynamics
program. Technical Report SAND87-1912, Sandia National Laboratories, Albuquerque,
NM, March 1989. \href http://infoserve.sandia.gov/sand_doc/1987/871912.pdfpdf.

[30] P.A. Taylor. CTH reference manual: the Steinberg-Guinan-Lund viscoplastic model.
Technical Report SAND92-0716, Sandia National Laboratories, Albuquerque, NM, 1992.

[31] SIERRA Solid Mechanics Team. Zapotec 3.0 Example Problems Manual. Sandia National
Laboratories, Albuquerque, NM, September 2016.

[32] SIERRA Solid Mechanics Team. Sierra/SolidMechanics 5.0 Theory Manual. Sandia
National Laboratories, Albuquerque, NM, April 2021.

[33] SIERRA Solid Mechanics Team. Sierra/SolidMechanics 5.0 User’s Guide. Sandia National
Laboratories, Albuquerque, NM, April 2021.

[34] R.G. Whirley and B.E. Engelmann. Slidesurfaces with adaptive new definitions (sand) for
transient analysis. New Methods in Transient Analysis, PVP 246/AMD 143:65-71, 1992.

[35] Protective Design Center, United States Army Corps of Engineers. Conwep 2.1.0.8. \href
https://pdc.usace.army.mil/software/conweplink.

123

Sandia
National
Laboratories

Sandia National Laboratories
is @ multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.

	Title
	Front Matter
	Abstract
	Acknowledgements
	Presto_ITAR Release Notes

	Main Contents
	Contents
	Introduction
	Document Overview
	Running The Code
	Obtaining Support

	Materials
	Modular Material Model (MMM) Specifications
	MMM Models with Temperature
	Consistent Equation of State Initialization
	Bodner-Partom Strength Model with Mie-Gruneisen EOS
	Holmquist-Johnson-Cook Concrete Model
	Hull Concrete Model
	Johnson-Cook Strength Model with Mie-Gruneisen EOS and Johnson-Cook Failure Model
	Johnson-Holmquist Ceramic Models
	Johnson-Holmquist-Beissel Ceramic Models
	Mechanical Threshold Stress (MTS) Strength Model with Mie-Gruneisen EOS
	Mechanical Threshold Stress Strength Model with Mie-Gruneisen EOS and TEPLA Damage Model
	Zerilli-Armstrong Strength Model for BCC Metals with Mie-Gruneisen EOS
	Zerilli-Armstrong Strength Model for FCC Metals with Mie-Gruneisen EOS

	CTH Model Specifications
	Mie-Gruneisen Model (CTH_MGR)
	SESAME Tabular EOS Model (CTH_KSES)
	Elastic-Plastic Modular Model (CTH_EP)
	Johnson-Cook Viscoplastic Model (CTH_JO)
	Zerilli-Armstrong Plasticity Model (CTH_ZE)
	Steinberg-Guinan-Lund Plasticity Model (CTH_ST)
	Johnson-Cook Fracture Model (CTH_JFRAC)

	Equation-of-State Model Specifications
	Mie-Gruneisen Model
	Mie-Gruneisen Power-Series Model
	JWL (Jones-Wilkins-Lee) Model
	JWL (Jones-Wilkins-Lee) Model with Multiple Detonation Points
	Ideal Gas Model

	Energy Deposition
	Block Set Commands
	Function Commands
	Input Mesh Command
	User Subroutine Commands
	Output Variables

	Elements
	Finite Element Model
	Descriptors of Element Blocks
	Linear and Quadratic Bulk Viscosity
	Energy Iterations
	Element Numerical Formulation

	Element Sections
	SPH Section

	Boundary Conditions
	Blast Pressure

	Output Variables for Material Models
	Zapotec
	Introduction
	Methodology
	Background
	Nomenclature
	Overview of the Algorithm
	Material Insertion Algorithm
	Material Donation Algorithm
	Force Application Algorithm
	General Algorithm
	Friction Treatment

	Special Topics
	Lagrangian Code Interface
	Treatment of Shell Elements
	Penalty Force Algorithm

	Parallel Implementation
	Improved Material Insertion Algorithm

	User Instructions
	Zapotec List File
	Zapotec Input File Keywords
	Program Control
	Material Mapping and Insertion
	External Loading Specification
	Plot/Restart Control
	Shell Element Specification
	Donation
	Miscellaneous
	Debug Information

	Visualization
	Executing Restarts
	Ensure Input Files Are Configured for Restart at the Start
	Determine the Time, Cycle, and CTH Run ID to Use for Restart
	Edit the CTH File to Restart at the Given Cycle
	Change the CTH Run ID in the Zapotec List File
	Specify the Restart Time in the Presto_ITAR Input File
	Run the Same Zapotec Command Line as Before

	References
	Bibliography

