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Abstract

Accurate and efficient constitutive modeling remains a cornerstone issue for solid mechanics
analysis. Over the years, the LAME advanced material model library has grown to address this
challenge by implementing models capable of describing material systems spanning soft polymers
to stiff ceramics including both isotropic and anisotropic responses. Inelastic behaviors including
(visco)plasticity, damage, and fracture have all incorporated for use in various analyses. This
multitude of options and flexibility, however, comes at the cost of many capabilities, features, and
responses and the ensuing complexity in the resulting implementation. Therefore, to enhance
confidence and enable the utilization of the LAME library in application, this effort seeks to
document and verify the various models in the LAME library. Specifically, the broader strategy,
organization, and interface of the library itself is first presented. The physical theory, numerical
implementation, and user guide for a large set of models is then discussed. Importantly, a number
of verification tests are performed with each model to not only have confidence in the model itself
but also highlight some important response characteristics and features that may be of interest to
end-users. Finally, in looking ahead to the future, approaches to add material models to this
library and further expand the capabilities are presented.
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1 Introduction

Constitutive modeling is a fundamental aspect of solid mechanics modeling and simulation. The
wide range of behaviors of solid materials requires a vast number of models capable of modeling
all (or even some of) the different responses. This is in contrast to fluid mechanics, for example.
As such, constitutive modeling is arguably the major problem in solid mechanics. A constitutive
model is necessary for accurately predicting the state of a material. This determination includes
both the stress state whose resolution is essential for many phenomena of interest like fracture and
failure as well as capturing inelastic responses like damage or multiphysics couplings.

One aspect of obtaining an accurate resolution of the stress field is, in one sense, easy to
understand. It is mesh discretization. More degrees of freedom in a simulation enables better
resolution and results in a more accurate stress field if we look just at the mathematics. If all
materials followed an elastic law, then mesh resolution on its own would be all that is needed to
resolve the stress field. In reality, however, materials do not exhibit elastic responses except in
very limited cases.

This leads us to a second aspect of calculating accurate stress fields, which is much harder to
understand. This one concerns the physics. The specific behavior of a material depends on the
physical processes specific to that material, and this must be included in a constitutive model in
some form or another. The main goal of the Library of Advanced Materials for Engineering -
LAME - is to provide a simple means to implement the wide variety of models in a library that
can be used by our solid mechanics application codes.
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2 Strategy

As a third party library, the Library of Advanced Materials for Engineering (LAME) is renewing a
commitment to accurate, robust, and efficient constitutive modeling for solid mechanics. There are
three distinct groups that require services from LAME: constitutive model developers, application
code developers, and analysts. Each group has different, but related, requirements on LAME.

Constitutive modelers who develop the mathematical models describing the response of interest
and the associated numerical methodologies require a framework for developing and
implementing these models. This framework must be well documented so that these developers
can easily develop and implement a model that can, when the model is sufficiently robust, be used
reliably in production calculations.

Application code developers, on the other hand, require that the library of constitutive models
share a common, simple interface. This requires that the conceptual division between a
constitutive model and the application code be well understood. The application codes also
require verified behavior of the models along with certain performance requirements as these
models can be called billions of times in an analysis.

Analysts require constitutive models that are both verified and well documented. The responses of
interest can very greatly depending on the material utilized and the conditions under which it is
loaded. This accounts for the wide range and sheer volume of constitutive models in the literature.
Furthermore, there may be nothing that affects the results of an analysis more then the constitutive
model. Therefore, the analyst needs a thorough knowledge of the behavior of the models along
with how to use it in an application code. Such an understanding is also essential for the accurate
determination and calibration of different material and model parameters. In some cases, even
subtle changes in a material specimen’s history can lead to large variation in properties and
responses. As such, a clear description and understanding of this input data is essential for
appropriate utilization of different models.

Due to the varied requirements on LAME, a strategy for supporting these various user groups has
been developed. This strategy is described here.

2.1 Code Development

There are many strategies that can be employed for a code development process. The choice of
such a procedure depends on what the overall project is creating. And even after a development
process has been selected, it is often tailored to the needs of the specific code project.

The LAME code development team has spent some time deciding on an appropriate process that
reflects the needs of the project and its stakeholders.

Given that LAME has two roles, as an interface to a host code that will supply a material model
response and as a repository for constitutive models, this led us to consider two different code
development processes: one for the interface and one for the constitutive models.
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For the interface an iferative process was chosen. The iterative process allows us to plan and
generate requirements, perform analysis and design, implement and deploy code changes and
finally test and evaluate the code. This process can work well for the interface design where we
implement the conceptual changes that we want to the interface. The models beneath the interface
should be unaffected by these changes, and where they are affected it will be on the surface.

For the constitutive models a waterfall process was chosen. Generally the process of developing
and implementing a constitutive model is a linear process that is followed by a single person. That
person generates requirements, designs the solution, implements the solution as a piece of code,
verifies the code and maintains the code. Much of the constitutive modeler’s work involves
formulating the model, which is a solid mechanics and applied mathematics problem first and
foremost. This can be seen as either the gathering requirements phase or part of the design phase.
The design and implementation phases are where the code development occur. All models are
verified after they are implemented. However, model verification itself is quite complicated, so
this step is not simple. Finally the model is maintained through documentation and user support.
Bug fixes are also an aspect of code maintenance in this process.

2.2 Model Implementation

The key feature in LAME that allows constitutive models to be implemented easily and
application codes to be able to use those models is the interface. The key concept to understand
concerning the interface is that it defines what roles the constitutive models have, what roles the
application codes have, and how the models and the codes transfer information.

From the application code perspective we would like all of the constitutive models to look the
same. Of course this is not the case. This is why, if we were to look at our legacy finite element
codes, we see information regarding specific constitutive models show up in the application codes.
Even a piece of information as simple as a material model ID will show up in the application code
in order that the code call the correct model. Modern programming languages/styles allow us to
avoid this confusion.

From a constitutive modeling perspective we would like a simple interface for implementing
constitutive models. Constitutive modelers are only part-time code developers. They can have
strengths in many areas in addition to code development, including physics, chemistry, continuum
mechanics, applied mathematics, numerical methods and experimental mechanics. Having a code
development environment that is useful for a constitutive model developer is necessary in the
design of the constitutive model library.
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2.2.1 Code Standards

The need to supply not only robust constitutive models, but also a robust constitutive modeling
environment, requires strict adherence to code standards. Some code standards are stylistic. These
are necessary to support the code (promoting readability) and to simplify the effort needed by the
constitutive modeler to implement a model. Other code standards are necessary to support the
code on various platforms and to prevent unintended behavior like memory leaks.

2.2.2 Testing Standards

Ensuring robust and reliable constitutive models also requires testing. There are two main
concerns in providing constitutive modeling to an application code: accuracy and speed. Both of
these concerns can be addressed to a large degree through testing. Toward this end two testing
systems are developed: a verification test suite and a performance test suite.

2.2.2.1 Verification Testing

Constitutive models for the large deformation of materials can be extremely complex. This
complexity is added to by the issues associated with implementing the model in the code. There
are two questions associated with assessing this complexity. First, what is the expected result of
the model, independent of its implementation? Second, does the implementation model that
response?

2.2.2.2 Performance Testing

In a nonlinear solid mechanics analysis, the constitutive models are called often. For an explicit
transient dynamics problem, the model is called once for each time step for each integration point
in the finite element model. On the other hand, implicit quasi-static analyses call the model every
iteration of every time step for each integration point in the finite element model.

Given the amount of time that a nonlinear solid mechanics finite element analysis spends
calculating the stresses in a constitutive model, the performance of the constitutive model can
have a large effect on the performance of the host code.

In order to ensure some measure of performance, a procedure for testing the performance of the
models is proposed. First, a baseline set of performance data must be generated. Given that the
CPU time used by the model can depend on many things, including the current loads on the
machine where the test is being run, developing an approach for modeling the performance is not
straightforward. If we call the various states of the machine “configurations”, then the best
approach appears to be to generate a large set of data for the performance of the constitutive model
that reflects the performance on a single machine over a large variety of its configurations.

27



Specifically, since we want to test only the speed of the constitutive model, we run tests that are
fully prescribed strain paths. This eliminates any need for the material driver to solve an
equilibrium state. We also want to test as many of the features of the constitutive model as
possible. This requires a prescribed strain path that pushes the model into regimes of interest. For
example, for an elastic-plastic model the performance test has to trigger plasticity, otherwise it
will not reflect accurately on how the model performs in an analysis. We also want the strain path
to push the plasticity model deep enough into the plastic range.

Determination of an appropriate strain path is not clear cut for all materials. Recognizing this, the
performance tests should be documented clearly so that we know exactly what we are testing and
we can go back and modify a test if there is some feature of the model that doesn’t appear in the
performance test.

2.2.3 Documentation Standards

In order to disseminate information about the models in LAME, there must be a commitment to
documentation. The theory behind the models and their implementation must be documented.
Furthermore, much of the success of the verification and performance testing depends on
documentation too. Finally, documentation must be generated for analysts that allows them to
understand what materials and behavior the model can represent, along with the inputs necessary
to use the model and the outputs that come from the model.

2.3 Model Status

As previously discussed, LAME is structured to facilitate support of model and application
developers as well as analysts. This means that models in various stages of development from
initial research to robust analysis tools may be found in LAME. For analysts and end users, this
diverse model base could pose a challenge during model selection. To try and aid in this selection,
the LAME library has been split into two branches — development and production.

The development branch — as its name implies — is intended for any model that is currently being
implemented, improved, or otherwise studied. New models not yet subject to full verification
rigors are placed here. As such, the usage of development models in simulations supporting
engineering decisions should be carefully considered and vetted. Production models have been
subject to strong verification activities and meet further standards to help give credibility and
credence to any simulation results.

To establish that a model is at a production state of readiness, the model must meet three criteria.
The first is that it must have a minimum of one regression test but more tests are recommended.
Given the diversity of model complexities and fidelities arriving at an alternative common
baseline requirement is challenging. Second, the model must be sufficiently documented
including underlying theory, discussion of numerical implementation, usage guides, and
documentation of verification tests. Third, the verification tests and ensuing documentation must
be peer-reviewed. This review should consider the appropriateness of the documentation and the
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verification tests. Importantly, the alignment of verification tests to expected usage and model
phenomenology should be assessed to ensure that the test basis is sufficient for model usage. This
peer-review should be documented and retained.

Whereas the production status of a model is meant to establish a credibility basis with respect to
verification, validation of a model requires consideration of the actual material of interest, the
intended usage, and availability of experimental data. Thus, validation must be considered on a
case-by-case basis and determinations in that context are out of scope of this manual. Importantly,
a model being production status does not make any statement towards validation.
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3 Interface

LAME is designed to have a simple interface that allows the easy implementation of a wide range
of constitutive models. This interface is between the application code (sometimes referred to as
the “host code”) and the constitutive model.

The interface has two main aspects: the data that is passed between the application code and the
model, and the functions that pass this data. Given that the interface consists of data and
functions, the most reasonable way to set up this interface is through a class.

The class that defines this interface is the Material class, which is declared in
include/interface/Material.h.

There are two types of data that are passed between the application code and the model. The first
is the material property information. This is done using an object in the MatProps class. This is
used when constructing a material model at the beginning of an analysis.

The second type of data that is passed between the application code and the material model is the
data that the material model uses during an analysis. This data is in the Mat Params struct. This
data consists of the stress, the kinematics, the time and time step, etc.

More detail can be found in [88].
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4 Material Models

This section details the constitutive models that are implemented and supported in LAME. The
description of each model has four sections. First, a section discussing the theory of the model is
found. This is the mathematical description of the model in a continuum mechanics framework,
independent of its implementation in a computational code. As these models are intended for
solid mechanics analysis, the following section describes the numerical implementation of the
model. This delves into how the model is implemented in the code and any special numerical
techniques that are used to integrate the model. The subsequent section presents the verification
problems that are run for the model. Through the results of such problems, evidence is provided
that, to the best of our understanding, the model is behaving as expected. Finally, documentation
of the model user inputs and user outputs are given for analyst reference.

It is our belief that this collection of documentation is important for the use of our constitutive
models, and it provides confidence that our models are implemented correctly for the capabilities
that are tested.

What this documentation does not provide is guidance on how to use the models. Different
materials behave differently, and it is the responsibility of the user to ensure that the material
model chosen can accurately model the behavior of a particular material. Furthermore, even with
a single material, many models might be capable of modeling the material depending on the
loading in a given analysis. It is the responsibility of the analyst to ensure that the model they
choose is the best model for their problem. Across the different models, parameters may also vary
in value or have slight changes in interpretation. Care needs to undertaken to ensure that material
and model parameters used accurately reflect the specific material being investigated (some
parameters may vary with simple changes in processing route) and capture the behaviors that of
interest. If emphasis needs to be placed on initial yield rather than failure, subtle differences in
some parameters may be expected.

4.1 Hypoelastic Models

Many models presented in this report are derived starting with small deformation formulations.
These models are implemented in finite deformation codes by substituting the rate of deformation
for the strain rate (it should be noted that the rate of deformation is not the rate of any strain
measure), and making the stress rate objective. There are many objective stress rates to choose
from, the two most common being the Jaumann and the Green-Mclnnis.

Models that are implemented using the Jaumann or Green-Mclnnis stress rate are done so in an
unrotated configuration. This means that the incremental constitutive relations are written in this
configuration. The tensor components of the Cauchy stress, o7, and the rate of deformation, D;;,
are unrotated using some orthogonal tensor, Ql.‘j1 = @i, such that

Tij = QrioQi; 5 dij = QriDrQij 4.1)
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where T;; and d;; are the components of the unrotated stress and rate of deformation respectively.
The choice of orthogonal tensor, Q;;, depends on the objective stress rate. The incremental
constitutive relation is then written as

T;.rjl."'l = 7—3 + ﬁj (dr1, At) 4.2)

After the stress is updated in the unrotated configuration, it is rotated forward to the current
configuration [29]. (The terminology used in describing the unrotated configuration with the
rotations backward and forward is infinitely confusing. It is simply one of the many difficulties
encountered using finite deformation hypoelastic models.)

If the Green-Mclnnis stress rate is used, then the unrotated configuration is found using the
rotation tensor from the polar decomposition of the deformation gradient

dx™' = F;dX; i Fij=RuUkj=VaRe 5 Qij = Ri

If the Jaumann stress rate is used, then the unrotated configuration is found using the rotation
tensor from the polar decomposition of the incremental deformation gradient

R;

A = F,jdx : Fl’j:RikUkj:AikRkj s Qij

Without loss of generality we will assume the Green-Mclnnis stress rate. The algorithm for the
Jaumann stress rate can be recovered by substituting F;; for F;; and R;; for R;; in what follows.

Before updating the stress, the rotation is calculated from the deformation gradient in the current
configuration, F;;. The unrotated rate of deformation is then

d Rn+lD Rn+l
lj -

and the unrotated stress is updated using (4.2). Then the stress is rotated to the current
configuration, using the same rotation that we used to unrotate the rate of deformation

n+1 Rn+lTn+1Rn+l

The unrotated stress from the previous time step is simply Tl’; = RZI.UHR[”].. Furthermore, for the
elastic model (Section 4.3) the stress update algorithm can be reduced to

ot = RERY o R RIS + A6 AtD g + 2uAt Dy (4.3)

One final note about this algorithm. While it is convenient to use the rotation tensor R;’j“, strictly
this is not correct. Since the rate of deformation is most often computed at the mid-step
configuration, the rotation used to unrotate the rate of deformation should be the rotation from the
mid-step deformation gradient, i.e. the deformation gradient that relates the mid-step
configuration to the reference configuration. Other consistency considerations should also be
considered, but we will not discuss them here. Suffice it to say that the solutions all converge in
the limit of infinitesimal time steps. In a future release of LAME other options might be added.
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4.2 Hyperelastic Models

Hyperelastic materials are in many ways easier to understand than hypoelastic materials, and are
often considered more thermodynamically consistent. On the other hand, it may be difficult to
consistently extend a small deformation model to the finite deformation regime in a hyperelastic
framework. Regardless of the pluses and minuses of the two formulations, hyperelastic models are
in LAME and will be reviewed here.

Hyperelastic models generally assume a scalar valued strain energy density that is a function of
invariants of the deformation through the deformation gradient, F;;. Using the principle of
material frame indifference, the strain energy density is written as a function of the symmetric
right Cauchy-Green tensor, C;; = Fi; Fy

W =W (Ci)

The stress, in particular the second Piola-Kirchhoff stress, is found by taking the derivative of W
with respect to C;;. This relation comes from the stress-power relations. From the second
Piola-Kirchhoff stress, we can find the Cauchy stress

ow 1

— 5 0y = —=FySyF;

('3C,-- ij J kO kL jl

Hyperelastic models are generally of two types. The most common are written in terms of the
three invariants of C;;: Iy, I, and I3

Sij=2

1
I]:tI'C:Cil' ; Izzi(Cil-ij—Ci-Ci~) ; 13:detC

The second Piola-Kirchhoff stress is then
ow oIy, oW o0, oW 90l

S;ii=2— - -
J 811 GC,-J- * (912 6C,-j * 613 6C,-j

Evaluating this expression requires the derivatives of the invariants with respect to the
components C;;

(9]1 612 (913 -1
—— =6 3 ——=h6;-Cyj ; ——=hC;
ac; 7 acy; YT ac; U

Using this in the expression for the second Piola-Kirchhoft stress, and converting it to the Cauchy

stress, we have
2 [OW ow ow ow 5
= —={—0;i+|—+1,— | B;; — —B7;
iy 1{013 ”+(6ll+ 1612) ZANFTA 'f}

The majority of hyperelastic models calculate the stress in this manner.

Some hyperelastic models, however, have their strain energy densities written in terms of the
principal stretches [78]. When this is the case the calculation of the stress is more complex. The
right stretch can be written as



where A; are the principal stretches, or eigenvalues, and €; are the principal directions, or
eigenvectors. The strain energy density is W(4;). We calculate the stress components of the

second Piola-Kirchhoff stress, S;;, with respect to the principal directions

S= S,‘jéi ® éj
This is done by calculating W /JC in the following manner
ow . _ oW

Writing the right Cauchy-Green tensor with respect to the principal directions we have

3 3
C:Z/lizéi(géi ; 5C222/li5/liéi®éi+/1?(5(f)ij (éi®éj+éj®éi)
i=1 i=1

Equating terms on both sides of (4.4) we get

s LW o LW o 1OW e e ise

4.4)

These calculations can also be checked by writing the invariants in terms of the principal stretches.

For a hyperelastic model written in terms of the invariants the results should be the same.

The differences between hypoelastic and hyperelastic models should not matter for the analyst.
For the constitutive modeler, however, the benefits and drawbacks of the two formulations must be

considered.

4.3 Elastic Model

4.3.1 Theory

The elastic model is a hypoelastic extension of isotropic, small-strain, linear elasticity [63], [92],

[105]. The stress-strain response for an isotropic, elastic material is
gjj = /1(5,']'8](]( + 2/18,'j

where the Lamé constants, A and u, are given by

1= Ev _ B E
T ev(-2n  HT 2y

This model is extended to a finite-deformation, hypoelastic model by first making it a rate
equation. Then the stress rate is replaced with an objective stress rate and the strain rate is

replaced with the rate of deformation. This gives us

(;)-ij: /léijDkk + 2,uD,-J-
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The stress rate is arbitrary, as long as it is objective. Two objective stress rates are commonly
used: the Jaumann rate and the Green-MclInnis rate. For problems with fixed principal axes of
deformation, these two rates give the same answers. For problems where the principal axes of
deformation rotate during the deformation, the two rates can give different answers. Generally
speaking there is no reason to pick one objective rate over another. Sierra/SM uses the
Green-Mclnnis rate.

The fourth-order elastic moduli are used in many constitutive models. There are many equivalent
representations for the elastic moduli. In index notation we present the following three
representations

(o]
0ij=CijxiDr

E v 1
Cijki = v5,-j5kl + 5 (5ik5jl + 6il(5ﬂ<)]

1+v|1-=-2
Cijki = A6ij6x1 + pt (6ik S ji + 616 i)

2
Cijkr = Kbijoi + (5ik5jl + 010k — §5ij5kl)
where K is the elastic bulk modulus and is given by

P
~3(1-2v)

4.3.2 Implementation

The elastic model is a hypoelastic model and is implemented using an unrotated configuration in
order to preserve objectivity. Given an unrotated rate of deformation, d;;, and the unrotated stress
at time 1,,, Tl'J’, the unrotated stress is updated by integrating the constant unrotated rate of
deformation

T/ = T/ + A6;j Atdyy + 2uAtd;;

4.3.3 Verification

Three verification problems are run for the elastic model: uniaxial stress, pure shear, and biaxial
stress. The results of these test problems serve as verification for the elastic model.
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4.3.3.1 Uniaxial Stress

The elastic model was verified in uniaxial stress. The problem was run with a Young’s modulus of
200 GPa and a Poisson’s ratio of 0.3. The axial stress is simply

o1 = Eeqy

The axial stress is shown in Fig. 4.1. The axial stress is linear with the axial strain and has a slope
of E =200 X 10° MPa.

The lateral strains for uniaxial stress are
€22 = £33 = —VE(]

The lateral strains are shown in Fig. 4.2.
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Fig. 4.1 The axial stress component o, in uniaxial stress using the elastic model.
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Fig. 4.2 The lateral strain components ¢, and ¢33
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4.3.3.2 Biaxial Stress

The elastic model is verified in biaxial stress. Biaxial stress is a plane stress state where o1 = o7,
092 = 07, and all other stress components are zero. The problem is displacement controlled in the
x1 and x; directions. If the applied strains are £;; = € and €3, = ae where a € [0, 1], then the
applied displacements are

ui =/11 -1 ) /11 :exp(s)
u =A—1 ; A =exp(ae).

In the following results, a will be taken to be 0.45. For the plane stress state, we have 033 = 0,
which allows us to solve for £33

833:—L(1+a’)8.
1-v

The component £33 is shown in Fig. 4.3. The in-plane stress components are

0'11:1 (I+av)e

— 2

E_ (a+v)
g~ = a V) E.
22 1—V2

The in-plane stress components are shown in Fig. 4.4.

4.3.3.3 Pure Shear

The elastic model is verified in pure shear. Pure shear gives a stress state where o7, is the only
non-zero stress component. The problem is completely displacement controlled and the applied
shear strain is €1 = &(1).

The shear stress in the problem is
o112 = 2,118

The shear stress-strain response is shown in Fig. 4.5.

4.3.3.4 Performance

The performance of the elastic model was analyzed using the material point driver. The elastic
model was run in uniaxial strain for 1 billion calculations and the CPU time was recorded using
clock() method in the time.h header. The start and end times are found and the CPU time is
calculated by dividing the difference by the variable CLOCKS_PER_SECOND.

Since the CPU times will depend on many things outside of the actual code, a set of times were
generated as a baseline. For this task the 1 billion calculations were performed 100 times. With
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Fig. 4.3 The strain component ¢33 in biaxial stress using the elastic model.
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the 100 CPU times the mean and standard deviation were calculated. Next we assume a normal
distribution of CPU times and the normal distribution is generated.

Subsequent performance tests involve generating 10 sets of the 1 billion calculations. This much
smaller data set is used to generate its own mean and standard deviation. If this mean is within 3
standard deviations of the baseline mean, then the performance of the model is assumed to be
identical to that of the baseline model.

4.3.4 User Guide

BEGIN PARAMETERS FOR MODEL ELASTIC
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>

SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>

END [PARAMETERS FOR MODEL ELASTIC]

There are no output variables available for the elastic model. For information about the elastic
model, consult [101].

4.4 Elastic Three Dimensional Orthotropic Model

4.41 Theory

The ELASTIC 3D ORTHOTROPIC model is an extension of the previously discussed ELASTIC
routine and describes the linear elastic response of a material which exhibits orthotropic
symmetry, where the orientation of the principal material directions can be arbitrary with respect
to the global Cartesian axes as specified by the user.

First, a rectangular, cylindrical, or spherical reference coordinate system is defined. The material
coordinate system can then be defined through two successive rotations about axes in the
reference coordinate system. These principal axes are denoted as A, B, and C in the following.
Thermal strains are also defined with respect to these principal material axes.

The elastic stiffness for an orthotropic material can be described in terms of the elastic compliance
which relates the strain to the stress, &;; = S;;x;0%;. For a material with an orthogonal ABC
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coordinate system, and written in that reference frame, the elastic compliance tensor is given by

r_1 _¥YBA _YCA 7
Eaa Epp Ecc 0 0 0

_yas _1 = _YcB
Eaa Epp Ecc 0 0 0

_Yac _Yysc _1_
Ean Epp Ecc 0 0 0

[S] = : (4.5)

0 0 0 0 0

1
2GcaA
where the ~ is used to denote a variable in the ABC material system.

From the definition (4.5), it can be seen that requiring symmetry leads to relations of the form,

Vrx =y Epp e = v Ecc i =y Exa
BA=VAB——  VYCB=VBC——  VAC=VCAT—-
Exa Epp Ecc

Therefore, only 9 independent constants are needed to fully define the model behavior.

The orthotropic model is also formulated in a hypoelastic fashion, leading to a constitutive
equation (in the ABC material frame) of,

© ~

2 A A
7ij= Cijki (Dkl - Dﬁd) ,
where 1531 is the thermal strain rate.

The elastic stiffness tensor, @i ki 1s the inverse of the compliance, @i ikl = Sl

.1, and as such may
. ijkl
be determined to be,

[Casaa Canss Cccaa 0 0 0
Caae Cgpee Cgpcc 0 0 0
3 Cccan Cppee Cecce 0 0 0
[C] =
0 0 0 2G AB 0 0
0 0 0 0 2Gpc 0
0 0 0 0 0 2G4
where
1 —vpcv 1 —vcav 1 —vapv
Canaa = —ZC “BEan ; Caaas= %EBB : Cccec = %ECC
+ + +
Canpp = A YAV g\ Cppoe = VORI VABYCA o Goyy = YACTVECVAR g

45



and A =1 —vApvBa — VBCVCB — VCAVRT — 2VABVBCVCA-

[38] for more information about the elastic three-dimensional orthotropic model.

4.4.2 Implementation

Given the similarities in formulation, the 3D orthotropic and elastic models are integrated in a
similar fashion. Section 4.3.2 discussed many of these issues in detail for the isotropic elastic
formulation. As such, in this section, special attention is paid to the treatment of the complexity
associated with the orthotropic model — namely, the multiple coordinate systems.

To implement the elastic 3D orthotropic model, two coordinate systems need to be considered —
the local ABC material and global XY Z coordinate systems. The former is used in defining the
material response and the latter refers to the larger boundary value problem being analyzed. To
map between these configurations, a user-defined coordinate system is specified that can be
rotated twice about one of its current axes to give the final, desired directions. A corresponding
rotation tensor, Qi j» may also be constructed in this way and used to transform various variables.
Noting that the elastic stiffness tensor is constant throughout loading enables the transformation

Cijki = 0aiOpjOckQaiCabea (4.6)

to be performed during initialization. The * is used with the rotation tensor Q;; to emphasize that
it does not map between the unrotated and rotated configurations (as defined in (4.1)) and is
instead associated with transforming between the ABC and XY Z frames.

In the material coordinate system, the thermal strain tensor may be written as,

5{7 = &1 (0) 6iadja + & (6) 5ip0 i + &1 (0) 5 e,

where " (9), 82}2 (0), and &' () are the temperature (6) dependent thermal strain functions in
the A, B, and C principal material directions, respectively, and ¢;; is the Kronecker delta. Using
the same constant transformation, Q;;, the XY Z-system thermal strain tensor is determined to

be,

gl (0) = QuiglyOjp. 4.7)
Following (4.3), the updated Cauchy stress may then be found to be,
n*tnl

ol = RER O R R+ C (ArDy = (el (071) = & (6)).

where the time dependency in the thermal strains is accounted for through changes in the
temperature field.
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4.4.3 Verification

The elastic 3D orthotropic model is verified through both biaxial displacement and uniaxial strain
tests. The first is performed with the material and global coordinate systems aligned to investigate
anisotropy while the second is done with the material coordinate system misaligned with respect
to the global system. The latter also incorporates a thermal loading component to test the thermal
strain contributions. In this case, it is assumed that each of the thermal strain input functions have
linear slopes of @44, a@pp, and a,. for the A, B, and C principal material axes, respectively. A
common zero strain reference temperature, 7y, is assumed for all three functions. The set of
material properties used for these tests are given in Table 4.1.

Table 4.1 The material properties for the elastic 3D orthotropic model used for the varying temper-
ature, uniaxial stress tests.

Esa =E | 10,000.0 ksi | G4p | 100.0 ksi
Epp 200.0 kst Gpc | 1,000.0 ksi
ECC 10.0 ksi GCA 5.0 ksi
vap=v | 0.25 . | 50 ’%
VBC 0.2 app 500 'U—Kg
VCA 0.003 Qe 5 'L%

0o 293 K

4.4.3.1 Biaxial Displacement

First, to investigate anisotropic effects, the case of a biaxial applied displacement of the form,
u; = 101; + 202,

is considered for a material which has its axes aligned with the global Cartesian system —

a1 = ap =0orthe A, B, and C frame is the same as the €;, €,, and &3. To simplify the problem,
Ay = %/11 and it can be shown that (noting 033 = 0 from a corresponding traction free
condition),

€11 :ln(l +/11) N

1
&2 =In (l + 5/11)

VaC t+ VBCVABS VBC + VBAVAC
11—
1 —vaBvBa 1 —vaBvBa

£33 = — £22.

With the strain state known, analytical stresses may be found via Hooke’s law. The corresponding
results of both the numerical and analytical results are presented below in Fig. 4.6. Numerical
results are found through a single element test. Importantly, by comparing the results of Fig.
4.6(a) and Fig. 4.6(b) the expected and desired anisotropy may be clearly seen in the vast
difference of stress magnitudes (as indicated by the figure scaling). Additionally, the matching
results serves to verify the model under such conditions.
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Fig. 4.6 Analytical and numerical results of axial o;; and transverse, 0, and o33, as a function of the
stretch 2;.

4.4.3.2 Uniaxial Strain

Secondly, the capabilities of this model under arbitrary rotations are explored. To be able to
analytically consider this problem, a uniaxial strain (g;; = £116;16 1) loading is investigated. The
material properties are rotated with the specified orientations per Equations (4.6) and (4.7) using
the specified orientations in Table 4.2. A combined thermal-mechanical loading is considered.
Specifically, the material is first stretched to the specified strain and that strain is then held fixed
during a heating step (AT =400 K) to investigate the ability of the model to accurately incorporate
anisotropic coeflicients of thermal expansion. The results for both the analytical and numerical
(from a corresponding single element simulation) analyses are shown in Fig. 4.7 with the normal
and shear stresses presented in Fig. 4.7(a) and Fig. 4.7(b) respectively. Clear agreement may be
seen during both the thermal and mechanical loading stages including the anisotropic effects
further verifying model capabilities.

Table 4.2 The coordinate system rotations used with the elastic 3D orthotropic model for the uniaxial
strain test.

a7 | 30 | Direction 1
ap | 60 | Direction?2 | 1

4.4.4 User Guide

BEGIN PARAMETERS FOR MODEL ELASTIC_3D_ORTHOTROPIC
#

# Elastic constants

#
YOUNGS MODULUS = <real>

(continues on next page)
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(continued from previous page)

POISSONS RATIO
SHEAR MODULUS
BULK MODULUS
LAMBDA

TWO MU

#

<re
<re
<re
<re
<re

al>
al>
al>
al>
al>

# Material coordinates system

#

COORDINATE SYSTEM
DIRECTION FOR ROTATION

ALPHA

SECOND DIRECTION FOR ROTATION =

SECOND ALPHA
#

# Required parameters

#

YOUNGS MODULUS
YOUNGS MODULUS
YOUNGS MODULUS
POISSONS RATIO
POISSONS RATIO
POISSONS RATIO

#

AA
BB
CC
AB
BC

CA =
SHEAR MODULUS AB
SHEAR MODULUS BC
SHEAR MODULUS CA

<real>
<real>
<real>
<real>
<real>
<real>
<real>
<real>
<real>

# Thermal strain functions

definition

= <string> coordinate_system_name

= <real> 11213
<real> (degrees)
<real> 11213

= <real> (degrees)

(continues on next page)
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(continued from previous page)

#

THERMAL STRAIN AA FUNCTION = <string>
THERMAL STRAIN BB FUNCTION = <string>
THERMAL STRAIN CC FUNCTION = <string>

#
END

[PARAMETERS FOR MODEL ELASTIC_3D_ORTHOTROPIC]

In the above command blocks all of the following are required inputs.

Even though they are not used within the material model itself, elastic constants are still
required input for hourglass control, certain preconditioners, and other various capabilities.
After examining various test problems, it has been determined that using the mean of the
orthotropic properties as the isotropic elastic constants yields the best results.

The Young’s moduli corresponding to the principal material axes A, B, and C are given by
the YOUNGS MODULUS AA, YOUNGS MODULUS BB, and YOUNGS MODULUS CC
command lines.

The Poisson’s ratio defining the BB normal strain when the material is subjected only to AA
normal stress is given by the POISSONS RATIO AB command line.

The Poisson’s ratio defining the CC normal strain when the material is subjected only to BB
normal stress is given by the POISSONS RATIO BC command line.

The Poisson’s ratio defining the AA normal strain when the material is subjected only to CC
normal stress is given by the POISSONS RATIO CA command line.

The remaining Poisson’s ratios needed for the orthotropic elastic relations (i.e. the BA, CB,
and AC Poisson’s ratios) are calculated internally. They are calculated as usual from the
given Poisson’s ratios, given Young’s moduli, and energy considerations, which provide
expressions for these parameters from the resulting symmetry of the compliance tensor.

The shear moduli for shear in the AB, BC, and CA planes are given by the SHEAR
MODULUS AB, SHEAR MODULUS BC, and SHEAR MODULUS CA command lines,
respectively.

The thermal strain functions for normal thermal strains along the principal material
directions are given by the THERMAL STRAIN AA FUNCTION, THERMAL STRAIN
BB FUNCTION, and THERMAL STRAIN CC FUNCTION command lines.

Warning: The ELASTIC_3D_ORTHOTROP IC model cannot currently be used in
conjunction with the control stiffness implicit solver block.

There are no output variables available for the Elastic Three-Dimensional Orthotropic material
model.
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4.5 Neo-Hookean Model

4.5.1 Theory

The neo-Hookean model is a hyperelastic generalization of isotropic, small-strain linear elasticity.
The stress-strain response for the neo-Hookean model may be determined from a free energy
function - in this case the strain energy density, W. The form of the strain energy density [91] is

W(Ci)) = %K [1 (JZ— 1) “lnJ

1.
3 oK (Ckx —3), (4.8)

where K and u are the bulk and shear moduli, respectively. The deformation measure is given by
C;;, the components of the right Cauchy-Green tensor, where C;; = Fy;Fy ;. The determinant of
the deformation gradient is given by J and is a measure of the volumetric part of the deformation.

C;; provides the isochoric part of the deformation and is given by
Cij = FuiFyj, Fj=J"'7F;. (4.9)

The second Piola-Kirchoff stress, with components S;;, may be determined by taking a derivative
of the strain energy density and the Cauchy stress may be found by mapping from the second
Piola-Kirchoff stress. The components of the Cauchy stress are

1 1 _5/3 1
oij = EK (J - j) 5,"1‘ +J / M (B,‘j - gBkké‘f./) s (410)
where B;; = Fii Fj, are the components of the left Cauchy-Green tensor and ¢;; is the Kronecker

delta.

Linearizing (4.10) we recover small strain linear elasticity

2
oij = (K - g/.l) Ltk’kd,'j +u (u,’,]‘ + l/tj,,')

2
= (K - g/.t) 8kk5ij + 2/18,']‘.

The neo-Hookean model is used for the recoverable (elastic) part for a number of inelastic, finite
deformation constitutive models.

4.5.2 Implementation

As a hyperelastic model, the current state of the material may be determined by the total
deformation. To this end we use the polar decomposition of the deformation gradient,

Fij = Vik Ry, 4.11)
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in which V;; are the components of the left stretch tensor and R;; is the corresponding rotation.
Noting that,

Bij = Vit Vi,

and J = det (Vl-_,-), the Cauchy stress (via (4.10)) is found. The unrotated stress, 7;;, which is
needed for internal force calculations in Sierra/SM, is found using the transformation

Tij = RiiokiRyj.

4.5.3 Verification

It is possible to find closed form solutions for a number of loadings. Five problems are described
here: uniaxial stress, pure shear strain, pure shear stress, uniaxial strain and simple shear. One set
of material properties was used for all tests and they are given in Table 4.3. The elastic modulus
and Poisson’s ratio are given in addition to the bulk and shear moduli.

Table 4.3 The material properties for the neo-Hookean model used for both the uniaxial and simple
shear tests.

K [ 0.5MPa | x| 0.375 MPa
E | 09MPa| v |02

4.5.3.1 Uniaxial Stress

For uniaxial stress we will assume, without loss of generality, that o; # 0. The deformation, in
terms of the components of the left stretch tensor, for this stress state is

Vii=A41, Va=Vz=A41,,

with all other components being zero.

The Cauchy stress is given by (4.10), however for simplicity we will use the Kirchhoff stress
instead

7 = Joij,
where in what follows 711 = 7. With the lateral stresses being zero we have two equations

K 2
r=2 (2= 1)+ S (- )

K 1 —2/3(2 2
0_2(J 1) 02 (4 3).
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First, we solve for J by looking at the trace of the stress tensor. This gives us

3K ( , 27
:—J—l).J:,/l il
T 2( "3

Once we have J we can write /l% = J /A, and solve for A; by looking at the deviatoric part of the
Kirchhoft stress. For this we have

J
T= ,uJ_2/3 (/l% - /1—1) .

Rearranging we get a cubic equation for A;
prp. (1J2/3) A —T=0.
u
A solution for this can be found with the following substitution

p T .2/3
A =x+-—, p=-J2,
1=Xta P p (4.12)

which gives a quadratic equation for x>

3
6 3, D

-Jx’+—==0.
X X 27

The one meaningful solution to this polynomial is

=
I
|~
+
—_—
|~
N —
()
|
—_—
ol
~—
(98]

with which we can substitute into (4.12) to get A;. With J and 4; we can solve for A,. Note that in
this solution the axial Kirchhoff stress, 7, is the independent variable.

This solution is compared to the solution from a single element problem in Sierra/SM in Fig.
4.8(a) and Fig. 4.8(b). It should be noted that the response of the neo-Hookean model is slightly
nonlinear. The linear elastic solution is given by the green line in each figure.

4.5.3.2 Pure Shear Strain

For pure shear strain the deformation gradient, which is symmetric, is
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Fig. 4.8 Analytical and numerical results for the (a) uniaxial stress and (b) lateral strain. The green
line gives the linear elastic response.

which gives no volume change, J = 1. Since there is no volume chance, the Kirchhoff stress is
equal to the Cauchy stress: T = . Using (4.10), the non-zero stress components are

o =B (12 _ 1—2)

B (/12+/l‘2) - 1]

G33=§(2—ﬂz+/1_2).

W=

o1 =022 =

The results of a single element problem in Sierra/SM are compared with the analytical solution in
Fig. 4.9. It is interesting to note that the normal stresses, 011, 022, and 033 are not equal to zero.
This is a much different result than what we get for the linear hypoelastic model.

4.5.3.3 Pure Shear Stress

Since pure shear strain did not result in a pure shear stress state, we do not expect a pure shear
stress state to result in a pure shear strain state. For pure shear stress the only non-zero stress
component is

012 =7 = uBjy,

and using (4.10) it can be shown that J = 1. The deformation, in terms of the left Cauchy-Green
deformation tensor, is

B Bp 0
[Bij] = |Bi2 0
0 0 B
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Fig. 4.9 Analytical and numerical results for the neo-Hookean model subjected to a pure shear
strain. The solid lines are the analytical results and the boxes are results from Sierra/SM.
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Fig. 4.10 Analytical and numerical results for the neo-Hookean model subjected to a pure shear
stress. The curve gives the logarithmic strain component, ¢33 = %ln B. The solid lines are the
analytical results and the boxes are results from Sierra/SM.
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The equation we need to solve for the deformation is det B = 1. This gives us the cubic equation
\2
B3—(—) B-1=0.
J7

This is a cubic equation of the same form as that in the uniaxial stress problem. We make the
substitution

2
B:x+£,p:(1) . (4.13)
3x u
This gives us a quadratic equation in x>
3
6 3, P

-x"+—==0,

X X 77

which has the solution

1/3
11 [ 4p?
Xx= =441 - —
2 27

Substituting this solution into (4.13) gives B.

The results of a single element problem in Sierra/SM are compared with the analytical solution in
Fig. 4.10. Of interest here is the fact that the normal strains, &1, £27, and £33 are not equal to zero.
Again, this is a different result than what we get for the linear hypoelastic model.

4.5.3.4 Uniaxial Strain

First, utilizing a displacement condition corresponding to uniaxial strain results in a deformation
gradient of the form,

Fl'j = /1(51,‘(51]' + 52552]' + 53,'53j.
By evaluating relation (4.10) with this deformation field produces stresses that may be written

as

1 1\ 2
= K(a-=|+2 (42—1)4—5/3,
oI =5 ( /l)+3'u

1 1\ 1
on=0p==-K|[1-=|-= (12—1)1—5/3
2-08 75 ( /l) 3

with the shear stress components equal to zero. Both the corresponding analytical and numerical
solutions are presented in Fig. 4.11.
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Fig. 4.11 Analytical and numerical results for the uniaxial stretch case.
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4.5.3.5 Simple Shear

For the simple shear case, a deformation gradient of the form,
Fij = 6ij +v61i62j,

is assumed. Noting this is a volume preserving deformation (J = 1) and again evaluating (4.10)
produces stresses that may be written as,

2 5
o1 =Wouy

3

L 5

02 =033 = —gm’

o1 = 1y

Both the corresponding analytical and numerical solutions are presented in Fig. 4.12.

4.5.4 User Guide

BEGIN PARAMETERS FOR MODEL NEO_HOOKEAN
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>

SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>

END [PARAMETERS FOR MODEL NEO_HOOKEAN]

There are no output variables available for the neo-Hookean model.

4.6 Gent Model

4.6.1 Theory

The Gent model is a hyperelastic model of rubber elasticity developed from phenomenological
continuum mechanics approaches. Specifically, the model is based on the concept of limiting
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chain extensibility and is an accurate approximation to the Arruda-Boyce model [6]. To determine
the stress-strain response of the Gent model, a strain energy density of the form [35],

Bkk —3)

m

W(By) = %K [1( 2_ 1) —InJ (4.14)

2

1
+ E,U.]m In (1 -

is proposed with K and u the bulk and shear moduli, J the determinant of the deformation
gradient and J,, an input parameter for limiting the value of By — 3. J,, is the parameter
effectively accounting for limiting chain extensibility. The deformation measure is given by B;;,
the components of the Left Cauchy Green tensor, where B;; = F;i Fy. By provides the isochoric
part of the deformation and is given by

Bij = FuFy ; Fyy=J"'F;. (4.15)
In the limit where J,,, — oo the Gent model reduces to the classical neo-Hookean model (see
(4.8)). This can be seen by defining x to be ﬁ taking a Taylor series expansion of

In (1 — (Bkx — 3)x) about x = 0 and taking the limit as x — 0.

The second Piola-Kirchoff stress, with components §;;, may be determined by taking a derivative
of the strain energy density. A mapping of the second Piola-Kirchoff may be used to determined
the Cauchy stress. These relations produce components of the Cauchy stress, o7, that are

I8 udy (Bi' — $Buid; )
1 ( 1)5ij N 73 / (4.16)

oj==K|J-- —
Y2 J J — Bex +3

where ¢;; is the Kronecker delta.

The Gent model is a useful model for rubber elasticity as it is simple and provides similar
predictions to comparatively complicated molecular models [6], [17]. It is also a practical model
to use since analytic solutions to benchmark problems exist for this model.

4.6.2 Implementation

As a hyperelastic model, the current state of the material may be determined by the total
deformation. To this end we use the polar decomposition of the deformation gradient,

Fij = Vik Ry, 4.17)

in which V;; are the components of the left stretch tensor and R;; is the corresponding rotation.
Noting that,

Bij = Vi Vi,

and J = det (Vl- j), the Cauchy stress (via (4.16)) is found. The unrotated stress, T;;, which is
needed for internal force calculations in Sierra/SM, is found using the transformation

Tij = RriokiRyj.
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4.6.3 Verification

It is possible to find closed form solutions for a number of loadings. Three problems are described
here: uniaxial strain, simple shear, and hydrostatic compression. One set of material properties
was used for all tests and they are given in Table 4.4. The elastic modulus and Poisson’s ratio are
given in addition to the bulk modulus, shear modulus, and limiting chain extensibility parameter,
Im-

Table 4.4 The material properties for the Gent model used for uniaxial strain, simple shear, and
hydrostatic compression tests.

K | 0325MPa | u | 0.15MPa | J,, | 13.125
E | 039MPa | v | 0.33

4.6.3.1 Uniaxial Strain

First, utilizing a displacement condition corresponding to uniaxial strain results in a deformation
gradient of the form,

Fij = A61i01j + 0262 + 63;03;.

By evaluating relation (4.16) with this deformation field, we produce stresses that may be written
as,

1)_g Impt (2= 1)
3

|
- _K|1-=
T =5 ( 1) 3B, +3) B +21

+ = )
38— (Jp+3)33+22

) 1 Jmpt (A% =1)

1K/l !
O =033 == - =
2=03=75 1

with the shear stress components equal to zero. Both the corresponding analytical and numerical
solutions are presented in Fig. 4.13.

4.6.3.2 Simple Shear

For the simple shear case, a deformation gradient of the form,

Fij = 6ij +v61i62j,
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Fig. 4.13 Analytical and numerical results for the uniaxial stretch case.

is assumed. Noting this is a volume preserving deformation (J = 1) and again evaluating (4.16)
produces stresses that may be written as,

o= 2 Tmpty*
3Jm _72
o2 = o33 = -5 by
- - 3Jm _72
op = iy
Jm _72

Both the corresponding analytical and numerical solutions are presented in Fig. 4.14.
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Fig. 4.14 Analytical and numerical results for the simple shear case.

4.6.3.3 Hydrostatic Compression

The volumetric deformation capabilities of the model are also investigated through displacement
controlled hydrostatic compression. Specifically, hydrostatic compression results in a deformation
gradient of the form,

Fij = 26,5,

where 0 < A < 1. As there is no deviatoric deformation, evaluation of (4.16) produces stresses
that may be written as,

USRS Iy S
0'11—0'22—0'33—5 A—F,

with the shear stress components equal to zero. Both the corresponding analytical and numerical
solutions are presented in Fig. 4.15.
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Fig. 4.15 Stress determined analytically and numerically for the Gent model during displacement
controlled hydrostatic compression.
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4.6.4 User Guide

BEGIN PARAMETERS FOR MODEL GENT
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>

SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>
#

Jm Parameter = <real>

END [PARAMETERS FOR MODEL GENT]

There are no output variables available for the Gent model.

4.7 Elastic-Plastic Model

4.7.1 Theory

The elastic-plastic model is a hypoelastic, rate-independent linear hardening plasticity model. The
rate form of the constitutive equation assumes an additive split of the rate of deformation into an
elastic and plastic part

- ne P
The stress rate only depends on the elastic strain rate in the problem
o
oij= CijuDS, (4.19)
where C;jx; are the components of the fourth-order, isotropic elasticity tensor.

The key to the model is finding the plastic rate of deformation. For associated flow the plastic rate
of deformation is in a direction normal to the yield surface. The yield surface is given by

f(aij,ozij,ép) :</)(0',-j,a/l~j) —5’(5‘17) =0 (420)

where ¢ is the effective stress, @;; are the components of the back stress (used with kinematic
hardening), and & is the hardening function which is a function of an internal state variable, the
equivalent plastic strain €. An example of such a yield surface (plotted in the deviatoric w-plane)
is presented below in Fig. 4.16. The isotropy of the yield surface is clearly evident.

For the elastic plastic model a linear hardening law is assumed

o =0, +HE 4.21)
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vonMises

Fig. 4.16 Example von Mises yield surface (J;) used by the elastic-plastic model presented in the
deviatoric 7-plane. In this case the surface is plotted for «;; = 0 and &” = 0.
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where oy is the yield stress and H' is the hardening modulus.

If the stress state is such that f < 0, the the behavior of the material is elastic; if the stress state is
such that f = 0 and f < 0, i.e. the strain rate brings the stress inside the yield surface, then the
behavior of the material is elastic; if the stress state is such that f = 0 and f > 0, i.e. the strain
rate brings the stress outside the yield surface, then plastic deformation occurs.

We assume associated flow in this model, which gives the plastic rate of deformation
DP =y—— (4.22)

where vy is the consistency parameter. For the elastic-plastic model the yield surface is assumed to
be a von Mises yield surface with a back stress tensor to denote the center of the yield surface.
The effective stress for a von Mises yield surface is

[3
¢ (o)) = Eftjfij o &ij = Sij i (4.23)

where s;; are the components of the deviatoric stress tensor

1
Sij =0 — §5i]'0'kk (424)

and a;; are the components of the back stress tensor, another internal state variable.

The equivalent plastic strain is found through equating the rate of plastic work

WP =0;,D?. =Ge" — &=y

ij
t
el = / vdt
0

Finally, the model allows for kinematic hardening through the back stress. The back stress is a
symmetric, deviatoric rank two tensor that evolves in the following manner

2
@ij = 3 (1-pB)H'D;, (4.25)

The radius of the yield surface can be defined, R = 4/&;;¢;;. The evolution of the radius of the

yield surface is given by
. 2 .
R= \/;ﬁH & (4.26)

In (4.25) and (4.26) the parameter 3 € [0, 1] distributes the hardening between isotropic and
kinematic hardening. If § = 1 the hardening is isotropic, if S = 0 the hardening is kinematic, and
if B is between 0 and 1 the hardening is a combination of isotropic and kinematic.
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4.7.2 Implementation

The elastic-plastic linear hardening model is implemented using a predictor-corrector algorithm.
First, an elastic trial stress state is calculated. This is done by assuming that the rate of
deformation is completely elastic

tr _ gn
T)[ = T}; + At (A6;jdri + 2pd;)
The trial stress state can be decomposed into a pressure and a deviatoric stress

1
pr=ATE s =T -y

The difference between the deviatoric trial stress state and the back stress is compared to the
current radius of the yield surface

t t . 2 _ gtr et
fl‘;’ :Si;_a?j s & —fijr'fijr'
If £2. < R? then the strain rate is elastic and the stress update is finished. If £2 > R? then plastic
tr p tr p

deformation has occurred. The algorithm then needs to determine the extent of plastic
deformation.

The normal to the yield surface, N;; is assumed to lie in the direction of the trial stress state. This
gives us the following expression for N;;
A
ij
Nij =727
Al
In what follows the change in the yield surface is assumed to be a linear combination of isotropic

and kinematic hardening, i.e. the yield surface grows and or moves. Using a backward Euler
algorithm the final deviatoric stress state is

n+l _ _tr P
S = 8ij — Ar2ud;;

3.
At dll; = \/;ASPNU

2 .
CZ?].H = a'?j + \/;(1 —ﬁ) (H ASP)Nij
and the updated radius of the yield surface is
n+1 n 2 I A =
R"™ =R +,8\/;(HA8”)

Combining these expressions we get an equation for the change in the equivalent plastic strain
over the load step

where the plastic strain increment is

The updated back stress is

e 3
Bu+ H')A&P = \/;(”flt]r” - R”) : fl’]’ = sl[]r - al’.’j

With A&g” we can update the stress and the internal state variables.
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4.7.3 Verification

The elastic-plastic material model is verified for a number of loading conditions. The elastic
properties used in these analyses are £ = 70 GPa and v = 0.25. The hardening parameters are
oy =200 MPa, H" = 500 MPa, and 8 = 1. By setting 8 = 1 the hardening is isotropic.

4.7.3.1 Uniaxial Stress

The elastic-plastic model is tested in uniaxial tension. The test looks at the stress, strain, and
equivalent plastic strain and compares these values against analytical results for the same problem.
The model is tested in uniaxial stress in the x (x1), directions.

For the uniaxial stress problem, the only non-zero stress component is o7;. In the analysis that
follows 011 = . There are three non-zero strain components, €11, €22, and £33. In the analysis
that follows £17 = &. Furthermore, the axial elastic stress, 8?1 = o/ E will be denoted by &°.

Axial Stresses

The uniaxial stress calculated by the model in Adagio is compared to an analytical solution. For
uniaxial loading in the x; direction, the effective stress is

¢=0

If the stress state is on the yield surface, then ¢ = & (£7), so the axial stress, as a function of the
hardening function, is

o=0(&)=0y+H'E’ (4.27)

The stress state can be calculated from the hardening law and the anisotropy parameters.

To evaluate the axial stress we need the equivalent plastic strain as a function of the axial strain. If
we equate the rate of plastic work we get

oel=0(6-6° — &l=g-¢&°

which, when integrated, gives us an equation for the equivalent plastic strain

E —
=27 (4.28)
E+H

The equivalent plastic strain can then be used in (4.45) to find the axial stress, o

B oy+H'e 4.29)
CTIfHE '

The axial stresses is shown in Fig. 4.17.
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Lateral Strains

For the lateral strains we need the plastic strains and therefore the normal to the yield surface. The
components of the normal to the yield surface are

00 90 90 ]

80‘11 - ’ (90'22 _60'33 B 2
The elastic axial and lateral strain components are

ag
e _ Y _ . (Y S I
811— =& N 822—833— VE— ve

The plastic axial strain component is

o
=g -—==e-¢°
n E

which comes from the additive decomposition of the strain rates. Using the equivalent plastic
strain (4.46) we can find the lateral plastic strain components

1
el :823 == (e — &%

The lateral {em total} stain components prior to yield are €2, = £33 = —ve. After yield they are

1
&) = E33 = —ve® — E{-,‘p

where ¢® = o /E.

Results are shown in Fig. 4.18.

4.7.3.2 Pure Shear

The shear stress calculated by the elastic-plastic model in Adagio is compared to analytical
solutions. Considering pure shear with respect to the x;-x, axes, the only non-zero shear stress is
012, and the only non-zero shear strain will be 1, For pure shear with respect to the x;-x, axes,
the effective stress is

¢=V3on
If the stress state is on the yield surface, then ¢ = & (&), so the shear stress is
o (&P)

V3

Using this, the pure shear stress state can be calculated from the hardening law and the anisotropy
parameters.
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Fig. 4.17 Axial stress for loading in the x, direction for the elastic-plastic model with linear hardening.
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Fig. 4.18 Lateral strains for uniaxial stress loading in the x; direction for the elastic-plastic model
with linear hardening.

73



To evaluate the shear stress we need the equivalent plastic strain as a function of the shear strain.
If we equate the rate of plastic work we get

. . 2
oeP = 20’12 (é‘lz — {-;‘72) - &g'=— (5‘12 - é?g)

V3

which, when integrated, gives us an implicit equation for the equivalent plastic strain

ép::ji-Fnz—-&(ép))
V3 V3G

The equivalent plastic strain can now be used to find the shear stress.

Boundary Conditions for Pure Shear
The deformation gradient that gives pure shear for loading relative to the xj-x, axes is
Ta+s2y t@a-ah o 0e0
[Fl={3(Aa-2"") F(a+a2!) 0of — [e]l=|e 0 0| ; e=In4
0 0 1 00O

For loading relative to the x;-x3 axes and the x3-x; axes the boundary conditions are modified
appropriately.

Results

The results for the elastic-plastic model loaded in pure shear are shown in Fig. 4.19. We see that
the stress strain curves in pure shear as calculated by Adagio follow the expected stress strain
curves. All other stress and strain components for the three problems are zero.

4.7.4 User Guide

BEGIN PARAMETERS FOR MODEL ELASTIC_PLASTIC
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>

SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>

(continues on next page)
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Fig. 4.19 Results are for shear in the x;-x, plane, x,-x; plane, and x;-x; plane.
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(continued from previous page)

TWO MU = <real>

#

# Hardening Behavior

#

YIELD STRESS = <real>
BETA = <real>

HARDENING MODULUS = <real>
END [PARAMETERS FOR MODEL ELASTIC_PLASTIC]

In the above command blocks:

* The elastic constants describe both the pre-yield behavior of the model and the slope of post
yield unloading.

» The yield stress, the stress at which yield first initiates, is defined with the YIELD STRESS

command

line.

* The hardening modulus, the slope of the post yield hardening curve, is defined with the
HARDENING MODULUS command line.

* The beta parameter defines if hardening is isotropic or kinematic.

Output variables available for this model are listed in Table 4.5 and Table 4.6. For information
about the elastic-plastic model, consult [101].

Table 4.5 State Variables for ELASTIC PLASTIC Model

Name Description

EQPS equivalent plastic strain, &7
RADIUS radius of the yield surface, R
BACK_STRESS | back stress (symmetric tensor), a;;

Table 4.6 State Variables for ELASTIC PLASTIC Model for Shells

Name Description

EQPS equivalent plastic strain, &”

TEN— equivalent plastic strain only accumulated when the material is in tension (trace
SILE_EQPS | of stress tensor is positive)
RADIUS radius of the yield surface, R
BACK_STRESSack stress (symmetric tensor), «;;
ITERA- radial return iterations

TIONS

ERROR error in plane stress iterations
PS_ITER plane stress iterations

TSTRAIN integrated thickness strain
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4.8 Elastic-Plastic Power Law Hardening Model

4.8.1 Theory

The elastic-plastic power law hardening model is a hypoelastic, rate-independent plasticity model
with power law hardening [100]. The rate form of the constitutive equation assumes an additive
split of the rate of deformation into an elastic and plastic part

— Ne p
Dl' = D ij + Dij
The stress rate only depends on the elastic strain rate in the problem
° e
0ij= Cijii Dy
where C;jx; are the components of the fourth-order, isotropic elasticity tensor.

The key to integrating the model is finding the plastic rate of deformation. For associated flow the
plastic rate of deformation is in a direction normal to the yield surface. The yield surface is given
by

f (O'[j,ép) = ¢ (O','j) - 5’(517) =0 (431)

where ¢ is the equivalent stress and ¢ is the hardening function which is a function of the
equivalent plastic strain €. For this model the hardening function uses a power law

T(&') =0y +AEP —er)"

which is shown in Fig. 4.20. The yield stress is o, the hardening constant is A, the hardening
exponent is n, and the Liiders strain is £7. The bracket < - > is the Macaulay bracket defined as

- {o, ifx <0

x, ifx>0.

By assuming associated plastic flow, the plastic rate of deformation can be written as

99

Db =y .
L 7(90',']'

(4.32)
For this model the yield surface is chosen to be a von Mises yield surface, so
3
¢ (0ij) = A/ 55i55ij
2
where s;; are the components of the deviatoric stress
Sij = 05j = §§i]'o-kk

Unlike the elastic-plastic model Section 4.7, the power-law hardening model does not allow for
kinematic hardening, so there is no back stress.
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Fig. 4.20 Typical stress-strain response for the power-law hardening model.
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4.8.2 Implementation

The elastic-plastic power-law hardening model is implemented using a predictor-corrector
algorithm. First, an elastic trial stress state is calculated. This is done by assuming that the rate of
deformation is completely elastic

t
Tl-jr = Tl'} + At (/l(S,'jdkk + 2,ud,~j)
The trial stress state is decomposed into a pressure and a deviatoric stress

1
ptr — gT]?]; ; slt; = Tl[]r — p[réij

The effective trial stress is calculated and and used in the yield function (4.31).
f(st.2) = e (sh) -7 @
If f < 0O then the strain rate is elastic and the stress update is finished. If f > 0O then plastic

deformation has occurred and a radial return algorithm determines the extent of plastic
deformation.

The normal to the yield surface is assumed to lie in the direction of the trial stress state. This gives
us the following expression for N;;

tr
I
U s

S

i
Using a backward Euler algorithm, the final deviatoric stress state is

n+l _ _tr p
Sij = Si— At2,udl.j

3.
Adg = \/;AEJPN,']'

The equation for the change in the equivalent plastic strain over the load step is found as the
solution to

where the plastic strain increment is

BUAE? + 5 (8, +AEP) — ¢ + £, =0

4.8.3 Verification

The elastic-plastic power-law hardening model is verified for uniaxial stress and pure shear. The
elastic properties used in these analyses are £ = 70 GPa and v = 0.25. The hardening law used for
the model is

g (eP)=0y+A(E° —er)"

For these calculations o, = 200 MPa, A = 400 MPa, n = 0.25, and &;, = 0.008.
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4.8.3.1 Uniaxial Stress

The elastic-plastic power-law hardening model is tested in uniaxial tension. The test looks at the
axial stress and the lateral strain and compares these values against analytical results for the same
problem. In this verification problem only the normal strains/stresses are needed, and the shear
terms are not exercised.

For the uniaxial stress problem, the only non-zero stress component is o7;. In the analysis that
follows 011 = 0. There are three non-zero strain components, €11, €22, and £33. In the analysis
that follows £11 = € and &7, = £33. Furthermore, the axial elastic strain, £, = o/ E will be
denoted by &£°.

The equivalent plastic strain, P, for this model is equivalent to 811)1, and is
G
d=g—-——=
E

This allows us, after yield, to parameterize the problem with the equivalent plastic strain.

For the lateral strains we need the lateral plastic strain. Plastic incompressibility (si « = 0) gives

us
1
P _ __zp
€y =3¢
Combined with the lateral elastic strains we have the lateral strain as a function of the equivalent
plastic strain

The results are shown in Fig. 4.21 and Fig. 4.22 and show agreement between the model in
Adagio and the analytical results.

4.8.3.2 Pure Shear

The elastic-plastic power-law hardening model is tested in pure shear. The test looks at the shear
stress as a function of the shear strain and compares these values against analytical results for the
same problem. For the pure shear problem, the only non-zero strain component is £, and the only
non-zero stress component is op;.

After yield, the shear stress as a function of the hardening curve is o, = & (&P) / V3. The elastic
shear strain is €5, = 072/2G; the plastic shear strain is 811)2 = /3&P /2. Using this, the shear stress

12
and strain are given as functions of the equivalent plastic strain
(&%) V3i,, 1a@)
o1 = s En= S8t ———
V3 2 V3 2w

This allows us, after yield, to parameterize the problem with &P.

The results are shown in Fig. 4.23 and show agreement between the model in Adagio and the
analytical results.
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Fig. 4.21 The axial stress as a function of axial strain for the elastic-plastic power-law hardening
model.
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Fig. 4.22 The lateral strain as a function of axial strain for the elastic-plastic power-law hardening
model.
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Fig. 4.23 The shear stress as a function of shear strain for the elastic-plastic power-law hardening
model.
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4.8.4 User Guide

BEGIN PARAMETERS FOR MODEL EP_POWER_HARD

#

# Elastic constants

#

YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>
#

# Hardening behavior

#

YIELD STRESS = <real>

HARDENING CONSTANT = <real>
HARDENING EXPONENT = <real>
LUDERS STRAIN = <real>
END [PARAMETERS FOR MODEL EP_POWER_HARD]

In the above command blocks:

e The YIELD STRESS is the stress at which the plastic power law yielding and hardening
model takes effect. See Fig. 4.20.

* The LUDERS STRAIN defines a regime of zero hardening modulus prior to onset of the
power law hardening. A small Luder band is seen in the hardening behavior or many
metals. See Fig. 4.20 for details.

* The HARDENING CONSTANT command line and HARDENING EXPONENT command
define the power law hardening curve. Past the Luder strain the hardened yield surface
radius is given by the HARDENING CONSTANT times plastic strain to the HARDENING
EXPONENT power.

Output variables available for this model are listed in Table 4.7 and Table 4.8. For information
about the elastic-plastic power-law hardening model, consult [101].

Table 4.7 State Variables for EP POWER HARD Model

Name Description

EQPS equivalent plastic strain, P

TEN- equivalent plastic strain only accumulated when the material is in tension (trace
SILE_EQPS | of stress tensor is positive)

RADIUS radius of yield surface, R

ITERA- number of radial return iterations

TTIONS
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Table 4.8 State Variables for EP POWER HARD Model for Shells

Name Description

EQPS equivalent plastic strain, P

TEN- equivalent plastic strain only accumulated when the material is in tension (trace
SILE_EQPS | of stress tensor is positive)

RADIUS radius of yield surface, R

ITERA- number of radial return iterations

TIONS

ERROR error in plane stress iterations

PS_ITER plane stress iterations

4.9 Ductile Fracture Model

4.9.1 Theory

The ductile fracture model is identical to the elastic-plastic power-law hardening model with the
addition of a failure criterion and an isotropic decay of the stress to zero during the failure process
within the constitutive model. To accomplish this task, the tearing parameter, ,, proposed by
Wellman [108] is introduced and the functional form as given as

4

{ = /08 <ﬂ> d&P (4.33)

3 (O-max - O'm)

where oy 1S the maximum principal stress, and o7, is the mean stress. It can also be noted that
the tearing parameter evolves during the plastic deformation regime as indicated by integrating
over the effective plastic strain, &”. The angle brackets denoting the Macaulay brackets, where

<x>:{o ifx<0

x ifx>0

are used to ensure that the failure process occurs only with tensile stress states and prevent
“damage healing”. The failure process then initiates at a critical tearing parameter, ', and the
corresponding stress decay occurs over a strain interval corresponding to the critical crack
opening strain, gqcos- Importantly, the £..o5 serves a dual role in that it may also be used to control
the energy dissipated during failure. With respect to the latter point, careful selection of the
critical crack opening strain may be used to ensure consistent energy is dissipated through
different meshes. This decay process is isotropic and linear with the current damage value being
equivalent to the ratio of crack opening strain in the direction of the maximum principal stress to
the critical value.
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4.9.2 Implementation

The ductile fracture model seeks to capture both the nonlinear elastic-plastic and fracture
responses of a ductile metal. Independently, each of these requirements necessitates the use of a
nonlinear solution algorithm and the combination of the two is even more complex. This
consideration is compounded by the relaxation and softening observed during the failure process
that introduces additional complications for the global finite element solver. For this discussion,
however, the focus is solely on the underlying numerical treatment of the failure process at the
constitutive level. The solution of the elastic-plastic constitutive problem was discussed in detail
in Section 4.8.2 while details of the implications at the global finite element problem are found in
the Sierra/SM User’s Manual [113]. With respect to the latter, it is important to note that in
quasistatic cases the ductile fracture model is tightly integrated with the multilevel CONTROL
FATILURE capabilities although details of this coupling are left to [108], [113].

Prior to fracture initiation — while tl’j“ < tff“ — the ductile fracture model is exactly that of the
elastic-plastic power law. Through this process the tearing parameter is continually calculated at
the plastically converged state. When fracture initiation is first detected — t;’,” > tf,rit —the
direction of the maximum principal stress, denoted by the normalized vector n;", is determined
and stored. Regardless of loading path, this vector does not change during the unloading process.
Additionally, for this first initial failure step, the unrotated stress tensor, 7;; must be set equal to its
maximum value, Tl.i.rit before any unloading may be performed. This maximum value is simply
given by,

crit _ 4n

et — pnoy (i _ =t
1) L 12 12 tn+l _ tn
P p

with TltJ’ being the elastic trial stress. As alluded to in the prior section, a linear decay based on the
crack opening strain in the direction of maximum stress, €., is utilized. To determine this decay
value, the crack opening strain increment is first found via
+1 _ +1
deces =< pni"d " ni >,
where d;’;’l is the total unrotated rate of deformation and f is a partitioning factor between plastic

and crack opening strains and takes the value of 1 for all loading steps emph{except} the initiation
step. The < - > are the Macaulay brackets. During the first fracture step,

n+l _ gcrit
B = I I
T i+l n’
Iy —1Ip
The current crack opening strain is then simply,

n+l _ n n+l
8cos - gcos + dgcos At

and the decay value, ™! is then found as,

n+l
Eccos — €
a,n+l — max [0, COS )
€ccos

86



To perform the actual stress decay, the hardening and yield values are proportionally decayed
via,

6_n+1 (b:p) — a,n+15_f; ﬁlnj+l — a,n+1 ;lj’
with 5/ = ¢ (Tl.‘]:.rit) being the critical yield stress associated with the yield surface, ¢, and g;; is

the backstress tensor used with kinematic hardening. The decayed stress is then found by radially
returning to the reduced yield stress, 0"*! (£). As a J, deviatoric yield stress is used for the
plastic response, the hydrostatic component of the stress tensor is similarly decayed.

4.9.3 Verification

The ductile fracture model is tested in uniaxial stress and pure shear. For these test problems, the
Young’s modulus and Poisson’s ratio are £ = 70 GPa and v = 0.25. The yield stress is taken to be
oy = 200 MPa while the hardening constant and exponent are A = 400 MPa and n = 0.25,
respectively, and the Luders strain is 0.008. To describe failure, the critical tearing parameter is
t;m = 0.025 and the critical crack opening strain is €¢cos = 0.001.

4.9.3.1 Uniaxial Stress

For loading in uniaxial stress the only non-zero stress component is o11. All other stress
components are zero. If the stress state is on the yield surface then this stress is

o =d(&r),

with & being the yield stress including any hardening effects associated with the evolution of the
effective plastic strain, 7. To evaluate the axial stress we need the equivalent plastic strain as a
function of the axial strain, €. If we equate the rate of plastic work we get

p

- = . .e = . .e .
el = o (811 —811) — &P =é-¢&],=¢]

which, when integrated, gives us an implicit equation for the equivalent plastic strain

& (&)
=

&l = (611 -

Alternatively, we write the axial strain as a function of the equivalent plastic strain, which allows
us to parameterize the problem with &7

o(&r
811:§p+¥

In uniaxial stress the pressure is o1 /3 and the maximum principal stress is oyax = 0711. Using
this in (4.33) we get

=gP
tp=¢&
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i.e. the tearing parameter is equal to the equivalent plastic strain. This result is shown in Fig.
4.24(a). The final value for the tearing parameter is a function of the number of steps, or the step
size. The smaller the step size the closer the final value is to tf,“t.

The axial stress as a function of axial strain is shown in Fig. 4.24(b). The axial stress depends on
the elastic-plastic response until the critical tearing parameter is reached. As with the tearing
parameter results, this point is time step dependent. Once the critical tearing parameter is reached
the stress decay occurs over the critical crack opening strain.
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Fig. 4.24 The (a) tearing parameter, 7,,, and (b) axial stress-strain response for the ductile fracture
model in uniaxial stress. The post failure reduction in stress depends on the time discretization or
step size.

4.9.3.2 Pure Shear

For loading in pure shear the only non-zero stress component is oj2. All other stress components
are zero. If the stress state is on the yield surface then the shear stress is

o (&P)
V3

To evaluate the shear stress we need the equivalent plastic strain as a function of the shear strain.
If we equate the rate of plastic work we get

012 =

. . 2
el =20 (5‘12 — é?z) - &gh=— (é12 - é?z)

V3
which, when integrated, gives us an implicit equation for the equivalent plastic strain
o(&P) )
V3G |

o fon-

V3
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Alternatively, we write the shear strain, £1» as a function of the equivalent plastic strain, which
allows us to parameterize the problem with &7

3 7 (P
E1p = iép + o (&7)

2 V3G

In pure shear the pressure is zero, and the maximum principal stress is omax = 012. Using this in
(4.33) we get
2\t
Q;Z 5 E.

This result is shown in Fig. 4.25, where the tearing parameter is a function of the shear strain. The
final value for the tearing parameter is a function of the number of steps, or the step size. The
smaller the step size the closer the final value is to t;m.

The shear stress as a function of shear strain is shown in Fig. 4.26. The shear stress depends on
the elastic-plastic response until the critical tearing parameter is reached. As with the tearing
parameter results, this point is time step dependent. Once the critical tearing parameter is reached
the stress decay occurs over the critical crack opening strain.

4.9.4 User Guide

BEGIN PARAMETERS FOR MODEL DUCTILE_FRACTURE
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>

SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>

TWO MU = <real>

#

# Yield surface parameters
#

YIELD STRESS = <real>

HARDENING CONSTANT = <real>

HARDENING EXPONENT = <real>

LUDERS STRAIN = <real>

#

# Falilure parameters

#

CRITICAL TEARING PARAMETER <real>

CRITICAL CRACK OPENING STRAIN <real>
END [PARAMETERS FOR MODEL DUCTILE_FRACTURE]
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Fig. 4.25 The tearing parameter, 7,,, in pure shear. The maximum tearing parameter depends on the
time discretization or step size.
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Fig. 4.26 Shear stress vs. shear strain for the ductile fracture model in pure shear. The post failure
reduction in stress depends on the time discretization or step size.
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In the above command blocks:

The YIELD STRESS is the stress at which the plastic power load yielding and hardening
model takes effect. See Fig. 4.20.

The LUDERS STRAIN defines a regime of zero hardening modulus prior to onset of the
power law hardening. A small Luder band is seen in the hardening behavior or many
metals. See Fig. 4.20 for details.

The HARDENING CONSTANT command line and HARDENING EXPONENT command
define the power law hardening curve. Past the Luder strain the hardened yield surface
radius is given by the HARDENING CONSTANT times plastic strain to the HARDENING
EXPONENT power.

CRITICAL TEARING PARAMETER defines the 7, value at which fracture and
subsequent decay of stress will occur.

When the model undergoes additionally strain after reaching the critical tearing parameter
the stress in the model will decay to zero. The amount strain over which the stress decays to
zero is defined with the CRITICAL CRACK OPENING STRAIN command line. The
relevant opening strain is the component of strain that is aligned with the
maximum-principal-stress direction at initial failure.

Output variables available for this model are listed in Table 4.9. For information about the ductile
fracture material model, consult [108].

Table 4.9 State Variables for DUCTILE FRACTURE Model

ING_PARAMETER

Name Description

EQPS equivalent plastic strain, P

RADIUS radius of yield surface, R

BACK_STRESS back stress - tensor «;;

TEAR- Current value of the integrated tearing parameter

CRACK_OPENING_ $TRkfieht value of the crack opening strain. Will be zero prior to reaching

the maximum tearing parameter.

FAIL- Crack opening direction (maximum principal stress direction at failure)
URE_DIRECTION - vector
DF_STRAIN_XX XX component of current strain

DF_

STRAIN_YY YY component of current strain

DF_

STRAIN_ZZ ZZ component of current strain

DF_

STRAIN_XY XY component of current strain

DF_

STRAIN_YZ YZ component of current strain

DF_STRAIN_ZX ZX component of current strain
MAX_RADIUS Yield surface radius at failure
MAX_PRESS Stress pressure norm at failure
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4.10 Multilinear Elastic-Plastic Model

4.10.1 Theory

The multilinear elastic-plastic model is a generalization of the standard rate independent plasticity
models already presented - the linear and power law hardening models. However, rather than
having a specific functional form, the multilinear hardening model allows the user to input a
piecewise linear function for the hardening curve. The rate form of the constitutive equation
assumes an additive split of the rate of deformation into an elastic and plastic part such that

— e p
The stress rate only depends on the elastic strain rate so that,

° e
0ij=CijuiDyys

where C; i, are the components of the fourth-order, isotropic elasticity tensor.

The key to the model is finding the plastic rate of deformation. For associated flow, the plastic rate
of deformation is in the direction normal to the yield surface. With a yield surface given by

¢ (O-ij) -0 (ép) =0
then the plastic rate of deformation can be written as

9
D’ = y%. (4.34)
ij

For this model the yield surface is taken to be a von Mises yield surface, such that

3
¢ (0ij) = 55183

2
where s;; are the components of the deviatoric stress
1
Sij = Oij = §5ij‘0'kk~
For simplicity it is easier to write (4.34) in terms of the normal to the yield surface

a¢ | 9¢

DP. =yN;; ; Nj; =
Y e Y 80',']‘ (90','1'

The model also incorporates temperature dependence in that the elastic properties and the yield
stress can be functions of temperature. This is not as general as having the yield curves depend on
temperature. For that behavior the thermoelastic-plastic model can be used.

An example stress vs. plastic strain hardening curve is shown in Fig. 4.27. This curve was
generated for a loading case of uniaxial strain. In this case, the effective stress is the same as the
uniaxial. Therefore, for use with the multilinear elastic-plastic model this curve would simply
have to be discretized and used as input.
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Fig. 4.27 An example of a multilinear elastic-plastic stress-strain curve.
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4.10.2 Implementation

The multilinear elastic-plastic model is implemented using a predictor-corrector algorithm. First,
an elastic trial stress state is calculated. This is done in the unrotated configuration (see Section
4.1) by assuming that the rate of deformation is completely elastic

szjr = Tz’; + At (/léijdkk + 2,ud,~j) .

The trial stress state is decomposed into a pressure and a deviatoric stress

1
PS5 S =T -y

The effective trial stress is calculated and used with the yield function (4.31),
f (sf.]’.,s"’) =¢ (sf.;) - (&h).

If f < 0 then the response is elastic and the stress update is finished. If f > 0 then plastic
deformation has occurred and a radial return algorithm is used to determine the extent of this
behavior.

The model assumes associated flow such that the normal to the yield surface lies in the direction
of the trial stress state. This leads to the following expression for the normal, N;;,

tr

ij

prerri

IS

S
Nl'j =

Using a backward Euler algorithm, the final deviatoric stress state may be written as

n+l _ tr _ p
Sij =8 — Af2ud;;

where the plastic strain increment, Adll.)j, 1S

3
P _ _
Adl] = \/;ASPNU-

Thus, to determine the response of the material the increment of the effective plastic strain, A&?,
needs to be determined. This may be done by solving the linearized consistency equation over the
load step that is written as,

BUAE? + 5 (&, + A&P) — ¢ + £, = 0.

4.10.3 Verification

The multilinear elastic-plastic material model is verified for uniaxial stress and pure shear. The
elastic properties used in these analyses are £ = 70 GPa and v = 0.25. In order to appropriately
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verify this model, the hardening curve must have a functional form to appropriately determine an
analytical solution. Here, the hardening law used for the model is a Voce law with the following
form

o (&P) =0y + A (1 —exp(-n&’)).

In the numerical analyses, this expression is discretized at a series of plastic strain values and used
as input. For these calculations o, = 200 MPa, A = 200 MPa, and n = 20.

4.10.3.1 Uniaxial Stress

The multilinear elastic-plastic model is tested in uniaxial tension. The test looks at the axial stress
and the lateral strain and compares these values against analytical results for the same problem. In
this verification problem only the normal strains/stresses are needed, and the shear terms are not
exercised.

For the uniaxial stress problem, the only non-zero stress component is o7;. In the analysis that
follows 011 = 0. There are three non-zero strain components, €11, €22, and £33. In the analysis
that follows €11 = € and g7, = £33. Furthermore, the axial elastic strain, 8‘1’1 = o /E will be
denoted by &£°.

The equivalent plastic strain, &P, for this model is equivalent to eﬁ)l, and is
E =& —
E

This allows us, after yield, to parameterize the problem with the equivalent plastic strain.
For the lateral strains we need the lateral plastic strain. Incompressibility gives us

_ 1_
g =——gP

22 2

Combined with the lateral elastic strains we have the lateral strain as a function of the equivalent

plastic strain

oE?) 1,
- =&

E 2

& =—-v

The results are shown in Fig. 4.28 and Fig. 4.29 and show agreement between the model in
Adagio and the analytical results.

4.10.3.2 Pure Shear

The multilinear elastic-plastic model is tested in pure shear. The test looks at the shear stress as a
function of the shear strain and compares these values against analytical results for the same
problem. For the pure shear problem, the only non-zero strain component is €1, and the only
non-zero stress component is ;.
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Fig. 4.28 The axial stress as a function of axial strain for the multilinear elastic-plastic model with
an analytical Voce law for the hardening model.
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Fig. 4.29 The lateral strain as a function of axial strain for the multilinear elastic-plastic model with
an analytical Voce law for the hardening model.

98



After yield, the shear stress as a function of the hardening curve is o, = & (&P) / V3. The elastic

shear strain is €], = 0712/2G; the plastic shear strain is 85)2 = V/3&P/2. Using this, the shear stress

and strain are given as functions of the equivalent plastic strain

@) V3, 1TE)
N “TB 26

S 2
This allows us, after yield, to parameterize the problem with &P.

012 =

The results are shown in Fig. 4.30 and show agreement between the model in Adagio and the
analytical results.
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Fig. 4.30 The shear stress as a function of shear strain for the multilinear elastic-plastic model with
an analytical Voce law for the hardening model.

99



4.10.4 User Guide

BEGIN PARAMETERS FOR MODEL MULTILINEAR_EP

#

# Elastic constants

#

YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>

TWO MU = <real>

#

# Hardening behavior

#

YIELD STRESS = <real>
BETA = <real> (1.0)

HARDENING FUNCTION = <string> hardening_function_name

#

# Functions

#

YOUNGS MODULUS FUNCTION = <string> ym_function_name

POISSONS RATIO FUNCTION = <string> pr_function_name

YIELD STRESS FUNCTION = <string> yield_stress_function_name
END [PARAMETERS FOR MODEL MULTILINEAR_EP]

In the above command blocks:
* The beta parameter defines if hardening is isotropic or kinematic.
* YIELD STRESS defines the stress where plastic yielding first occurs.

* The HARDENING FUNCTION command line references the name of a function defined in
a FUNCTION command line in the SIERRA scope. The function describes the hardening
behavior of the material as stress versus equivalent plastic strain. The x values of the
function should be values of equivalent plastic strain while the y values of the function can
be either the increment of stress over the yield stress or the actual stress at the
corresponding equivalent plastic strain. Note the hardening function can have its first point
defined at (0,0), or at (0, YIELD_STRESS). Either function definition behaves the same as
only the slope of the hardening function between two strains is used by the model.

e The YOUNGS MODULUS FUNCTION command line references the name of a function
defined in a FUNCT ION command line in the SIERRA scope that describes a scale factor
on Young’s modulus as a function of temperature.

* The POISSONS RATIO FUNCTION command line references the name of a function
defined in a FUNCTION command line in the SIERRA scope that describes a scale factor
on Poisson’s ratio as a function of temperature.
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e The YIELD
defined in a
on the yield

STRESS FUNCTION command line references the name of a function
FUNCTION command line in the SIERRA scope that describes a scale factor
stress as a function of temperature.

Output variables available for this model are listed in Table 4.10 and Table 4.11.

Table 4.10 State Variables for MULTILINEAR EP Model

Name Description

EQPS equivalent plastic strain

TEN- equivalent plastic strain only accumulated when the material is in tension (trace
SILE_EQPS of stress tensor is positive)

RADIUS radius of yield surface

BACK_STRESS

back stress (symmetric tensor)

YOUNGS_MODU

Lth8 current Young’s modulus as a function of temperature

POIS- the current Poisson’s ratio as a function of temperature
SONS_RATIO
YIELD_STRES|Sthe current yield stress as a function of temperature
ITERATIONS | radial return iterations
YIELD_FLAG | inside (0) or on (1) the yield surface

Table 4.11 State Variables for MULTILINEAR EP Model for Shells
Name Description
EQPS equivalent plastic strain
TEN- equivalent plastic strain only accumulated when the material is in tension (trace
SILE_EQPS of stress tensor is positive)
RADIUS radius of yield surface

BACK_STRESS

back stress (symmetric tensor)

YOUNGS_MODU

L8 current Young’s modulus as a function of temperature

POIS- the current Poisson’s ratio as a function of temperature
SONS_RATIO

YIELD_STRES|Sthe current yield stress as a function of temperature
ITERATIONS | radial return iterations

ERROR error in plane stress iterations

PS_ITER plane stress iterations
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4.11 Multilinear Elastic-Plastic Fail Model

4.11.1 Theory

Like the ductile fracture model, the multilinear elastic-plastic fail model is an extension of an
existing plasticity model (multilinear elastic-plastic) to include a ductile failure criteria. Again,
the tearing parameter criterion and failure propagation model of Wellman [108] is selected.
Specifically, this approach uses a failure criterion (the tearing parameter, ¢, ) that is based on the
history of the plastic strain and stress states. Most failure criteria for ductile failure involve some
form of the stress triaxiality, or the ratio of the pressure and the effective (shear) stress. The
tearing parameter, however, is slightly different in that it depends on the pressure and the
maximum principal stress and is given as,

& 20, "
Y B B, > de,, (435)
g /0. <3 (O-max - O-m) g

with o« and o, being the maximum principal and mean stresses, respectively. The exponent m
is typically taken to be 4 while the (-) are Macaulay brackets defined as,

0 x<0
<x>_{x x>0~

and introduced so that failure only occurs and propagates under tensile stress states. Failure then
initiates when the tearing parameter, #,, reaches a critical value, tf,r“. After this point, the stress
decays (to 0) in a linear fashion according to the ratio of the crack opening strain in the maximum
principal stress direction to its critical value, £..os. Modification and control of this latter
parameter is important as it may be used to ensure consistent energy is dissipated through
different meshes.

4.11.2 Implementation

The multilinear elastic-plastic fail model seeks to capture both the nonlinear elastic-plastic and
fracture responses of a ductile metal. Independently, each of these requirements necessitates the
use of a nonlinear solution algorithm and the combination of the two is even more complex. This
consideration is compounded by the relaxation and softening observed during the failure process
that introduces additional complications for the global finite element solver. For this discussion,
however, the focus is solely on the underlying numerical treatment of the failure process at the
constitutive level. The solution of the elastic-plastic constitutive problem was discussed in detail
in Section 4.10.2 while details of the implications at the global finite element problem are found
in the Sierra/SM User’s Manual [113]. With respect to the latter, it is important to note that the
ductile fracture model is tightly integrated with the multilevel CONTROL FAILURE capabilities
although details of this coupling are left to [108], [113].

Prior to fracture initiation — while t;’,“ < tlcfit — the multilinear elastic-plastic fail model is the
same as the “normal” multilinear elastic-plastic model. Through this process the tearing
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parameter is continually calculated at the plastically converged state. When fracture initiation is
first detected — tl’§+1 > tff“ — the crack direction (assumed aligned with the maximum principal
stress), denoted by the normalized vector nf", is determined and stored. Regardless of loading
path, this vector does not change during the unloading process. Additionally, for this first initial
failure step, the unrotated stress tensor, 7;; must be updated to its maximum value, Tl.j.rit before any
unloading may be performed. This is done simply by,

crit _ "

crit _ n tr _ n 14 14
Iy =T+ (Tij Tij) preoamrt

p p

with Tfj’ being the elastic trial stress. As alluded to in the prior section, a linear decay based on the
crack opening strain in the direction of maximum stress, €.g, 1S utilized. To determine this decay
value, the crack opening strain increment is first found via
+1 +1
decos =< yni"d"nf >,
where dl’?j” is the unrotated rate of deformation and vy is a partitioning factor between plastic and

crack opening strains and takes the value of 1 for all loading steps except the initiation step and the
“< - >” are the Macaulay brackets. During the first fracture step,

n+l _ gcrit
y = Ip Ip
T oo+l _
Ip Ip

The current crack opening strain is then simply,

n+l _ n n+1
gcos - Scos + dgcos At.

and the decay factor, @, may be written as

1
o™ = max [0, M] _

Eccos
Given the temperature dependence, stress decay is slightly more complicated than in the ductile
fracture case. This task is primarily accomplished by decreasing the yield stress (radius)
proportionally with the decay factor,

where 6/ = ¢ (T“) is the yield stress at failure. The decayed stress is then found by radially
returning to this reduced yield stress. Similarly, the hydrostatic and von Mises effective stress at
failure (0','5 and 6{ > fespectively) are also calculated and stored to appropriately constrain the
stress state. An additional check is then performed to ensure (and if necessary modify) the
decayed stress to ensure that,

f

Om < aoy,; oom < afé'VfM.
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4.11.3 Verification

The multilinear elastic-plastic model with failure has been tested with a number of verification
tests. Specifically, uniaxial stress and uniaxial strain loadings are considered. For the
elastic-plastic response, the same material properties as those in Section 4.10.3 are again
considered. To this end, the Young’s modulus and Poisson ratio are £ = 70 GPa and v = (.25,
respectively, and a Voce hardening model of the form,

g (&P) =0y, +A(1 —exp(—n&l)),

is discretized and used. In this case, o, = 200 MPa, A = 200 MPa, and n = 20.

In terms of failure, the critical tearing parameter, tf,rit is taken to be .04, the critical crack opening
strain, Eccos, 18 .005 and m = 4.0.

4.11.3.1 Uniaxial Stress

To consider the uniaxial response, displacement controlled deformations are applied such that the
only non-zero stress is the axial component, o1. Through such a loading path, three distinct
regimes result. The first is the elastic domain with 7, = 0. Second is the plastic domain. During
this stage,

o =0 (&),

and by considering the rate of plastic work and integrating yields the implicit (in terms of
equivalent plastic strain) relation,

By rearranging, the axial strain may be found in terms of the plastic strain as,
o (&P
g1 =&+ g

With this stress state (0;; = 07110;161), the pressure is simply ¢11/3 and the maximum principal
stress is omax = 0711. From (4.35), the tearing parameter is then

—gP
t,=¢&P.
The final stage of deformation corresponds to the failure process in which the axial stress is,
011 = @0peaks

and

Eccos — (311 - Speak)

Eccos
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In the preceding relations, opeak and &peak are the axial stress and strain, respectively, at failure

initiation. The former is simply opeak = 0 (t;rit) and &peak = t;rit + O0peak /E.

The tearing parameter and axial stress evolution as a function of axial strain are presented in Fig.
4.31(a) and Fig. 4.31(b), respectively. Good agreement is observed between the results verifying
the model capability under such a loading. Three different numerical load incrementations were
considered in this analysis and some dependence on load step is noted in the post-failure response
of Fig. 4.31(b). Even with this observation, the resulting agreement between the different
responses is still quite good.
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Fig. 4.31 Analytical and humerical results of the tearing parameter and axial stress evolution through
a uniaxial tension loading path as a function of the axial strain, ¢;.

4.11.3.2 Pure Shear

The analysis of the pure shear loading path follows closely with that of the ductile fracture model
(Section 4.9.3.2). In this case, pure shear deformations are applied such that the only non-zero
stress and strain are 017 and €1, respectively. Therefore, during plastic loading

o
on=—,
V3
and by comparing the plastic rate of work,
3 7 (&P
E1p = £<§p+0-(8 )

2 N

Additionally, as the stress state is purely in shear there is no hydrostatic stress and the maximum
principal stress is simply omax = 0712 leading to an expression for the tearing parameter of the
form,
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The stress then simply decays after the critical tearing parameter is reached. Numerical (from
Adagio) and analytical results are presented in Fig. 4.32. Specifically, the tearing parameter and
shear stress evolutions are presented in Fig. 4.32(a) and Fig. 4.32(b), respectively. Clear
agreement is noted indicating the ability of the model to capture the response over a variety of
loading paths.
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Fig. 4.32 Analytical and numerical results of the tearing parameter and shear stress evolution
through a pure shear loading path as a function of the shear strain, ¢,.

4.11.4 User Guide

BEGIN PARAMETERS FOR MODEL ML_EP_FAIL
#
# Elastic constants
#
YOUNGS MODULUS <real>
POISSONS RATIO = <real>

SHEAR MODULUS = <real>

BULK MODULUS = <real>

LAMBDA = <real>

TWO MU = <real>

#

# Hardening behavior

#

YIELD STRESS = <real>

BETA = <real> (1.0)

HARDENING FUNCTION = <string> hardening_function_name
#

# Functions

#

YOUNGS MODULUS FUNCTION = <string> ym_function_name

(continues on next page)
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(continued from previous page)

POISSONS RATIO FUNCTION
YIELD STRESS FUNCTION

#

<string> pr_function_name
<string> yield_stress_function_name

# Failure parameters

#

CRITICAL TEARING PARAMETER

<real>

CRITICAL CRACK OPENING STRAIN = <real>

CRITICAL BIAXIALITY RATIO = <real> critical_ratio(0.0)
FAILURE EXPONENT = <real> (4.0)
END [PARAMETERS FOR MODEIL ML_EP_FAIL]

In the above command blocks:

The beta parameter defines if hardening is isotropic or kinematic.
YIELD STRESS defines the stress for onset of yielding and plasticity.

The HARDENING FUNCTION command line references the name of a function defined in
a FUNCTION command line in the SIERRA scope. The function describes the hardening
behavior of the material as stress versus equivalent plastic strain. The x values of the
function should be values of equivalent plastic strain while the y values of the function can
be either the increment of stress over the yield stress or the actual stress at the
corresponding equivalent plastic strain. Note the hardening function can have its first point
defined at (0,0), or at (0, YIELD_STRESS). Either function definition behaves the same as
only the slope of the hardening function between two strains is used by the model.

The YOUNGS MODULUS FUNCTION command line references the name of a function
defined in a FUNCT ION command line in the SIERRA scope that describes a scale factor
on Young’s modulus as a function of temperature.

The POISSONS RATIO FUNCTION command line references the name of a function
defined in a FUNCTION command line in the SIERRA scope that describes a scale factor
on Poisson’s ratio as a function of temperature.

The YIELD STRESS FUNCTION command line references the name of a function
defined in a FUNCT ION command line in the SIERRA scope that describes a scale factor
on the yield stress as a function of temperature.

CRITICAL TEARING PARAMETER defines the 7, value at which fracture and
subsequent decay of stress will occur.

When the model undergoes additionally strain after reaching the critical tearing parameter
the stress in the model will decay to zero. The amount strain over which the stress decays to
zero is defined with the CRITICAL CRACK OPENING STRAIN command line. The
relevant opening strain is the component of strain that is aligned with the
maximum-principal-stress direction at initial failure.

The CRITICAL BIAXIALITY RATIO command line should only be used under highly
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specific conditions and with extreme caution. It is intended only for the special case where
the stress state is nearly biaxial, resulting in nearly identical principal strains. In this case,
the eigenvector computation can give unreliable results for the direction vectors for the
principal strains. If the ratio of the difference between two principal strains divided by their
magnitude is less that the value specified by the CRITICAL BIAXIALITY RATIO
command, the direction of the vector defining the crack opening strain will be given equal
weight in each of the principal directions associated with those strains. The default value for
the critical ratio is 0.0, which means that the principal directions will be accepted directly
from the eigenvector computation. This command should only be used as a last resort if the
loading is nearly biaxial and the default value has been demonstrated to lead to elements
with high strains that are not failing long after reaching the critical tearing parameter.

* The FATLURE EXPONENT command line specifies the exponent on the tearing parameter,
the m parameter in (4.35). This exponent defaults to 4.0.

Output variables available for this model are listed in Table 4.12 and Table 4.13.

Table 4.12 State Variables for ML EP FAIL Model
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Name

Description

EQPS

Equivalent plastic strain

RADIUS

Radius of yield surface

BACK_STRESS

back stress - tensor

BACK_STRESS_XX

back stress - Xxx component

BACK_STRESS_YY

back stress - yy component

BACK_STRESS 77

back stress - zz component

BACK_STRESS_XY

back stress - Xy component

BACK_STRESS_YZ

back stress - yz component

BACK_STRESS_ZX

back stress - zx component

YOUNGS_MODULUS

Current Young’s modulus as a function of temperature

POISSONS_RATIO

Current Poisson’s ratio as a function of temperature

YIELD_STRESS

Current Yield stress as a function of temperature

TENSILE_EQPS

equivalent plastic strain only accumulated when the material is in
tension (trace of stress tensor is positive)

ITERATIONS

radial return iterations

YIELD_FLAG

inside(0) or on(1) yield surface

TEARING_PARAMETER

Current integrated value of the tearing parameter. Zero until yield
is reached

CRACK_OPENING_STRAT

NCurrent value of the crack opening strain. Zero until the critical
tearing parameter is reached

FAILURE_DIRECTION

crack opening direction at failure - vector

FAIL- crack opening direction at failure - x component
URE_DIRECTION_X
FAIL- crack opening direction at failure - y component
URE_DIRECTION_Y
FAIL- crack opening direction at failure - z component

URE_DIRECTION_Z

MAX_RADIUS

maximum radius at initial failure

MAX_PRESSURE

maximum stress pressure norm at initial failure

CRITI-
CAL_CRACK_OPENING_

q

3

TRAIN

CRITI-
CAL_TEARING_PARAMET

ER

Table 4.13 State Variables for ML EP FAIL Model for Shells
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Name

Description

EQPS

equivalent plastic strain

RADIUS

radius of yield surface

BACK_STRESS

back stress - tensor

BACK_STRESS_XX

back stress - Xxx component

BACK_STRESS_YY

back stress - yy component

BACK_STRESS 77

back stress - zz component

BACK_STRESS_XY

back stress - Xy component

BACK_STRESS_YZ

back stress - yz component

BACK_STRESS_ZX

back stress - zx component

YOUNGS_MODULUS

Current Young’s modulus as a function of temperature

POIS-
SONS_RATIO

Current Poisson’s ratio as a function of temperature

YIELD_STRESS

Current Yield stress as a function of temperature

ITER

radial return iterations

ING_PARAMETER

ERROR Error in plane stress iterations
PS_ITER Plane stress iterations
TEAR- Current integrated value of the tearing parameter. Zero until yield is

reached

CRACK_OPENING_

5 ChikreNt value of the crack opening strain. Zero until the critical tearing
parameter is reached

URE_DIRECTION_ %

FAIL- crack opening direction at failure - vector
URE_DIRECTION

FAIL- crack opening direction at failure - X component
URE_DIRECTION_X

FAIL- crack opening direction at failure - y component
URE_DIRECTION_Y

FAIL- crack opening direction at failure - z component

4
]

RADTIUS_MAX

maximum radius at initial failure

TENSILE_EQPS

equivalent plastic strain only accumulated when the material is in tension
(trace of stress tensor is positive)

4.12 Johnson-C

4.12.1 Theory

ook Model

The Johnson-Cook model [48], [49] is an isotropic, hypoelastic plasticity model. Unlike the
previously discussed models, the Johnson-Cook formulation is rate-dependent and as such is often
considered for high-rate, finite strain simulations like those for impact. The viscoplastic response
is phenomenological in that the form of the model is not derived from any physical mechanisms
like other viscoplastic models, e.g. Zerilli-Armstrong [112], Steinberg-Guinan-Lund [94], [95],
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BCJ [16], and the MTS model [30], [31] to name a few. Like most other rate-dependent models,
the current formulation utilizes an effective plastic strain rate, £”, to capture rate dependence.

As with other hypoelastic plasticity models, an additive decomposition of of the total rate of
deformation such that,

—_ NE p
Dij = Dij + Dij’
is used such that an objective stress rate of the form,

° e

0= CijrDyys
with C; 4, being the fourth-order, isotropic elasticity tensor, may be used.

With respect to the yield behavior, the Johnson-Cook model incorporates both strain rate and
temperature, 6, dependence. This leads to a yield function of the form,

f(O'l'j,ép,g‘p,Q) =¢(O'ij) —5'(5”,5”,0),

in which ¢ (07;) is the effective stress — the von Mises effective stress is used — and & is the
isotropic hardening function. Incorporating the temperature and rate dependency, the hardening
function is written as,

o (87,87,0) = [A+B ()] [1+C (In&r)| [1 -7 M] (4.36)

where &” is the equivalent plastic strain, £7* = £ /& is a dimensionless plastic strain rate, and 6*
is the homologous temperature. The quantities A, B, C, &y, N, and M are material parameters.
The Macaulay brackets in (4.36) ensure that 7 is equal to the static flow stress

O = [A + B (&")N ] [1 - oM ] when €7 < &j. The homologous temperature is defined as,

0 — Href

0 = ————
Qmelt - gref

(4.37)
with 6, 6., and Oy, being the current, reference, and melt temperatures. Note, the temperature
used internal to the Johnson-Cook model is NOT the standard prescribed “temperature” field.
Instead, the material temperature is initialized by a model input as 6. By assuming adiabatic
thermal conditions, subsequent plastic work raises the material temperature via,

A = P o&p,
pCy

where p is the materials density, C,, is the specific heat, and 8 (0 < 8 < 1) is the fraction of plastic
work that is converted to heat.

The Johnson-Cook model also has a failure criterion. The Johnson-Cook damage model [49] has
a failure strain that is given by:

g/ = (D1 + Dyexp (D3n)) (1+D4InéP*) (1+ Ds6")
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with Dy, D>, D3, D4, and D5 being material parameters and 7 is the triaxiality
(n = (1/3) ok /Typm). The damage in the model is accumulated over time using:

/ —a’t (4.38)
o &l

When D = 1, the material has failed. For the default behavior of the Johnson-Cook model, the
fracture behavior is not active.

4.12.2 Implementation

The implementation of the Johnson-Cook model requires the effective strain rate to be used for
calculating the rate effects on yield. This is done through a predictor-corrector return mapping
algorithm. In what follows the temperature dependence is not included; this will be addressed
later.

The initial response is assumed to be elastic and a trial stress state is calculated
T} = T}; + Ciju Atdy

Since the plastic response is independent of pressure we can use the deviatoric stress

1
§5ij'Tkk
tr _

Sij = s +2,uAtdl],

sij=T;j —

with d; : being the total deviatoric rate of deformation — d’ = dij — (1/3) 6;jdk.

If this gives a von Mises stress that is greater then the effective stress, i.e.

¢tr: /; t; tr >A+B(8p(n))

then plastic deformation occurs and we solve the following nonlinear equation for &7,
| A+ B (80 + 8187)" | [14 Cn (max (1,87 /0)) | = 9 = 3ueé?. (4.39)

This simple equation comes from the radial return algorithm

tI' tr
s?;'l tr —3uArel — ¢ — s?;'l = (¢" - 3u At &) ¢tjr

Taking the inner product of both sides gives (4.39).
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4.12.3 Verification

The Johnson-Cook model is verified through a series of uniaxial stress and pure shear tests. Given
the emphasis on the strain-rate and temperature dependent nature of the model a series of these
tests are performed at different loading conditions. The material properties and model parameters
used for these tests are given in Table 4.14 and come from the work of Corona and Orient [26].
Note, in this case a modified reference plastic strain rate is used (&g = 1 X 10~*s~1) as the one
reported in [26] was selected based on calibration conditions. Here the value is selected to better
investigate and highlight strain rate dependency.

Table 4.14 The material properties and model parameters of the Johnson-Cook model used for
verification testing

E [71.7GPa v 0.33

A | 217 MPa B 405 MPa

C | 0.0075 g | 1x107*s7T
Ot | 293 K Omert | 750 K

N [041 M |11

p | 2810kg/m3 | C, |9601J/(kg-K)
D, | 0.015 D> |0.24

D3 | -15 D; | -0.039

Ds | 8.0

4.12.3.1 Uniaxial Stress

To determine a (semi)-analytical expression of the Johnson-Cook model, the equivalency of
plastic work for uniaxial loading is recalled such that,

g&P =0 (8 - &%, (4.40)

with o, &, and £° being the uniaxial stress, total strain rate, and elastic strain rate, respectively.
Assuming &P > &, and noting that €7 = £ — £°, the expression for the flow stress (4.36), the
definition of the homologous temperature (4.37), and the dimensionless strain rate, the plastic
work expression (4.40) may be rearranged as

c 1
C[A+B(@E)N][1-oM] C

&l = &gexp (4.41)
Given the implicit nature (in terms of effective plastic strain) of (4.41), a semi-analytical approach
is used to evaluate the Johnson-Cook model. Specifically, a simple forward Euler integration
scheme is adopted to solve (4.41) and then update the remaining state variables. Using such an
approach, Fig. 4.33 presents the stress-strain and corresponding damage evolution of the
Johnson-Cook determined at three strain rates. A constant total logarithmic strain rate is applied
by utilizing an applied displacement of the form,

u; (1) = (e“" = 1) 6:1,
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where w is the considered strain rate. Here rates corresponding to a slow quasistatic
(w=1x1073s71), medium (w = 1s7!), and high rate (w = 1 x 103s~!) loading are considered to
explore a variety of regimes. Temperature effects are not addressed in Fig. 4.33 (8 = 0) to first
investigate the purely mechanical response. The damage evolution is evaluated by simply
integrating expression (4.38) and noting that for a uniaxial loading = 1/3. In this case, as the
constitutive behavior is being probed the material does not degrade when D > 1.
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Fig. 4.33 Semi-analytical and numerical (a) stress-strain and (b) damage evolutions of the Johnson-
Cook model subjected to a uniaxial loading at three different applied strain rates. In these results,
B=0.

From the results of Fig. 4.33 clear agreement is observed between the numerical and
semi-analytical response verifying the model behavior in a variety of conditions. Next, to explore
the thermomechanical coupling, three different plastic work conversion ratios (5 = 0.00, 0.50 and
1.0) are considered for the medium strain rate (w = 1s™!). The stress, damage, and temperature
evolutions are all presented in Fig. 4.34 as a function of axial strains.

From Fig. 4.34 the influence of the thermomechanical coupling may be clearly observed. For
instance, a roughly 50 K increase in material temperature over the loading range may be seen in
the B = 1 case leading to a roughly 25% decrease in the damage metric and approximately 10%
drop in final stress. Additionally, clear agreement between the semi-analytical and numerical
responses providing additional verification of the coupled capabilities of the model.

4.12.3.2 Pure Shear

For the pure shear case, a loading like that described in Appendix A is utilized. Specifically,
displacements producing a deformation gradient of,

1 ) 1 )
Fij = E(“ﬂ 1) (5,~15,~1+5,-25,~2)+5(A—A 1) (61672 + 6128 1) + 6:36 3,

are considered with A = A (¢) = e“’. This loading leads to a logarithmic shear strain rate of
€12 = w that is constant in time enabling the study of strain rate effects.
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Fig. 4.34 Semi-analytical and numerical (a) stress-strain (b) damage and (c) temperature evolutions

of the Johnson-Cook model subjected to a uniaxial loading with three different plastic work con-
version ratios, 5. The strain rate for all three cases is ¢ = 1s7!.
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In the shear stress case, the plastic work equivalency is written as,
- Lp _ P
o&l = 20‘]2812.

Like the uniaxial stress case, the definition of the effective stress may be used with the fact that

&, = %5” to find the following form of the effective plastic strain rate when &P > &,

V3o, 1
ClA+B &)V [1-0M] C

&P = &yexp

A simple forward Euler scheme is then used to integrate the model at three different strain rates —
w =.001s7!, 1s7! and 1000s™!. The stress-strain and damage evolution responses of these cases
are presented in Fig. 4.35 for the purely mechanical case (8 = 0). With respect to the damage
evolution, it is noted that for pure shear responses n = 0.
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Fig. 4.35 Semi-analytical and numerical (a) stress-strain and (b) damage evolutions of the Johnson-
Cook model subjected to a pure shear loading at three different applied strain rates. In these results,
B=0.

The effect of plastic work is considered for w = 1s~! in Fig. 4.36. Similar influences like those
reported in the uniaxial stress case are observed. A larger increase in temperature through plastic
loading is noted however. Regardless in both the results of Figures Fig. 4.35 and Fig. 4.36 clear
agreement between numerical and semi-analytical is observed further verifying the current
implementation of the Johnson-Cook model.
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Fig. 4.36 Semi-analytical and numerical (a) stress-strain (b) damage and (c) temperature evolutions

of the Johnson-Cook model subjected to a pure shear loading with three different plastic work
conversion ratios, 5. The strain rate for all three cases is ¢ = 1s7!.
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4.12.4 User Guide

BEGIN PARAMETERS FOR MODEL JOHNSON_COOK

#

# Elastic constants

#

YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>

#

# Yield surface parameters
#

YIELD STRESS = <real>

HARDENING CONSTANT = <real>
HARDENING EXPONENT = <real>

RATE CONSTANT = <real>
REFERENCE RATE = <real> (0.001)
EDOT_REF = <real> (0.0)
#

# Failure strain parameters

#

D1 = <real> (0.0)

D2 = <real> (0.0)

D3 = <real> (0.0)

D4 = <real> (0.0)

D5 = <real> (0.0)

#

# Temperature softening commands
#

RHOCV = <real>
BETA = <real>
THERMAL EXPONENT = <real>
REFERENCE TEMPERATURE = <real>
MELT TEMPERATURE = <real>
INITIAL TEMPERATURE = <real>

#

FORMULATION = <int> (0)

#

END [PARAMETERS FOR MODEL JOHNSON_COOK]

In the command blocks that define the Johnson-Cook model:
*» The YIELD STRESS defines the stress for onset of yield and the plasticity.

¢ The HARDENING CONSTANT command line defines B.
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The HARDENING EXPONENT command line defines N

The RHOCV command line defines pC, which is the product of material density and
specific heat.

The material initial temperature is defined by the INITIAL TEMPERATURE command
line. Note, the Johnson Cook material model temperature is NOT linked to the standard
model “temperature” field that is set from BEGIN PRESCRIBED TEMPERATURE
command blocks.

The thermal exponent M is defined with the THERMAL EXPONENT command line. This
exponent must be greater than zero.

The reference temperature 6,y is defined with the REFERENCE TEMPERATURE
command line.

The melt temperature 6,,.;; is defined with the MELT TEMPERATURE command line.

The reference strain rate, £, is defined with the REFERENCE RATE command line. The
default is 0.001 s~

The fraction of plastic work that is converted to heat, g, is defined with the BETA command
line. The default is 0.95.

The fracture coefficient D is defined with the D1 command line. The default is 0.0.
The fracture coefficient D5 is defined with the D2 command line. The default is 0.0.
The fracture coefficient D3 is defined with the D3 command line. The default is 0.0.
The fracture coeflicient D4 is defined with the D4 command line. The default is 0.0.
The fracture coefficient D5 is defined with the D5 command line. The default is 0.0.

The failure model — and corresponding coefficients — are only valid for solid (3D) elements.
Specitying the values for 2D elements (e.g. shell) will result in an error as the damage
model is not implemented. A possible alternative is the J, Plasticity Model specified with
Johnson-Cook hardening and failure.

FORMULATION controls the strain rate source term. A FORMULATION of 0 is the default
which is to use the total strain rate. A FORMULATION of 1 means use the plastic strain
rate. The plastic strain rate is monotonic and changes a much lower frequency than the total
strain rate, thus use of the plastic strain rate may be more stable.
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4.12.4.1 Warnings and Usage Guidelines

Warning: Strongly rate dependent models may fare poorly in implicit quasistatic solution. In
implicit the rate term used to evaluate the current load step is the rate seen by the model in the
previous load step. Potentially this can cause the solution to jump back and forth between a
high right and low rate equilibrium state from step to step.

Output variables available for this model are listed in Table 4.15.

Table 4.15 State Variables for JOHNSON COOK Model

Name Description

RADIUS radius of yield surface
EQPS equivalent plastic strain
THETA temperature

EQDOT effective total strain rate
ITER

EFATL failure strain, &/
DAMAGE damage, D
YIELD_STRESS | yield stress

4.13 J, Plasticity Model

4.13.1 Theory

The J; plasticity model is a generic implementation of a von Mises yield surface with kinematic
and isotropic hardening features. Unlike other models (e.g. Elastic-Plastic, Elastic-Plastic Power
Law) more flexible, general hardening forms are implemented enabling different isotropic
hardening descriptions and some rate and/or temperature dependence.

As is common to other plasticity models in LAME, the J, plasticity model uses a hypoelastic
formulation. As such, the total rate of deformation is additively decomposed into an elastic and
plastic part such that

_ NeE P
Dij = Dij + Dij'
The objective stress rate, depending only on the elastic deformation, may then be written as,
o €

0ij=CijrDy;s

where C; 4, is the fourth-order elastic, isotropic stiffness tensor.
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The yield surface for the J, plasticity model, f, may be written,
[ (o), i, 87, 8P, 0) = ¢ (03), aij) — G (87, 87,9), (4.42)

in which «;;, &7, P, and 6 are the kinematic backstress, equivalent plastic strain, equivalent
plastic strain rate, and absolute temperature, respectively, while ¢ and & are the effective stress
and a generic form of the flow stress. Broadly speaking, the effective stress describes the shape of
the yield surface and kinematic effects while the flow stress gives the size of the current yield
surface. It should also be noted that in writing the yield surface in this way, the dependence on the
state variables is split between the effective stress and flow stress functions.

For J, plasticity, the effective stress is given as,

3
¢ (03, @ij) = 3 (51 — @) (51 = @ij)

with s;; being the deviatoric stress defined as s;; = 0y — (1/3)0;;. For the flow stress, a
general representation of the form,

o (7, 87.0) = oy (87) &y (0) + K (57) 6, (87) o (0)

is allowed. In this fashion, the effects of rate (&) and temperature (Jy,,) dependence on yield
(o) and isotropic hardening (K (£7)) are decomposed. Separate temperature and rate
dependencies may be be specified for yield (subscript y) and hardening (h). This assumption is an
extension of the multiplicative decomposition of the Johnson-Cook model [48], [49]. It should be
noted that not all effects need to be included and the default parameterization of the hardening
classes is such that the response is rate and temperature independent. The following section on
plastic hardening will go into more detail on possible choices for functional representations.

An associated flow rule is utilized such that the plastic rate of deformation is normal to the yield
surface and is given by,

o 3
Dp =y—=y—3y;/,
L ’yaa','j 72¢SU
where vy is the consistency multiplier enforcing f = 0 during plastic deformation. Given the form
of f, it can also be shown that y = &”.

Additional discussion on options for failure models and adiabatic heating may be found in [61],
[62] and [60], respectively.

4.13.1.1 Plastic Hardening

Plastic hardening refers to increases in the flow stress, -, with plastic deformation. As such,
hardening is described via a functional relationship between the flow stress and isotropic
hardening variable (effective plastic strain), & (£”). Over the course of nearly a century of work in
metal plasticity, a variety of relationships have been proposed to describe the interactions
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associated with different physical interpretations, deformation mechanisms, and materials. To
enable the utilization of the same plasticity models for different material systems, a modular
implementation of plastic hardening has been adopted such that the analyst may select different
hardening models from the input deck thereby avoiding any code changes or user subroutines. In
this section, additional details are given for the different models to enable the user to select the
appropriate choice of model. Note, the models being discussed here are only for isotropic
hardening in which the yield surface expands. Kinematic hardening in which the yield surface
translates in stress-space with deformation and distortional hardening where the shape of the yield
surface changes shape with deformation are not treated. For a larger discussion of the
phenomenology and history of different hardening types, the reader is referred to [42], [57],
[64].

Given the ubiquitous nature of these hardening laws in computational plasticity, some (if not
most) of this material may be found elsewhere in this manual. Nonetheless, the discussion is
repeated here for the convenience of the reader.

Linear

Linear hardening is conceptually the simplest model available in LAME. As the name implies, a
linear relationship is assumed between the hardening variable, €7, and flow stress. The hardening
modulus, H’, is a constant giving the rate of change of flow stress with plastic flow. The flow
stress expression may therefore be written,

Tg=o0y+HE.

The simplicity of the model is its main feature as the constant slope,

@
der ’

makes the model attractive for analytical models and cheap for computational implementations

(e.g. radial return algorithms require only a single correction step). Unfortunately, the simplicity

of the representation also means that it has limited predictive capabilities and can lead to overly

stiff responses.

Power Law

Another common expression for isotropic hardening is the power-law hardening model. Due to its
prevalence, a dedicated ELASTIC-PLASTIC POWER LAW HARDENING model may be found
in LAME (see Section 4.8.1). This expression is given as,

5':O'y+A<6_‘p—8L >n,

in which < - > are Macaulay brackets, £ is the Luders strain, A is a fitting constant, and # is an
exponent typically taken such that 0 < n < 1. The Luders strain is a positive, constant strain value
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(defaulted to zero) giving an initially perfectly plastic response in the plastic deformation domain
(see Fig. 4.20). The derivative is then simply,

do

— =nA <&l —g >0V

d&p t
Note, one difficulty in such an implementation is that when the effective equivalent plastic strain is
zero, numerical difficulties may arise in evaluating the derivative and necessitate special treatment
of the case.

Voce

The Voce hardening model (sometimes referred to as a saturation model) uses a decaying
exponential function of the equivalent plastic strain such that the hardening eventually saturates to
a specified value (thus the name). Such a relationship has been observed in some structural metals
giving rise to the popularity of the model. The hardening response is given as,

og=0y+A(1—-exp(-néP)),

in which A is a fitting constant and # is a fitting exponent controlling how quickly the hardening
saturates. Importantly, the derivative is written as,

do

—— =nAexp (-neP),

YL p (-né")
and is well defined everywhere giving the selected form an advantage over the aforementioned
power law model.

Johnson-Cook

The Johnson-Cook hardening model is a variant of the classical Johnson-Cook [48], [49]
expression. In this instance, the temperature-dependence is neglected to focus on the
rate-dependent capabilities while allowing for arbitrary isotropic hardening forms via the use of a
user-defined hardening function. With these assumptions, the flow stress may be written as,

elol2)

in which &, (&”) is the user-specified rate-independent hardening function, C is a fitting constant
and & is a reference strain rate. The Macaulay brackets ensure the material behaves in a rate
independent fashion when &7 < &.

o

o =y (&)
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Power Law Breakdown

Like the Johnson-Cook formulation, the power-law breakdown model is also rate-dependent.
Again, a multiplicative decomposition is assumed between isotropic hardening and the
corresponding rate-dependence dependent. In this case, however, the functional form is derived
from the analysis of Frost and Ashby [33] in which power-law relationships like those of the
Johnson-Cook model cease to appropriately capture the physical response. The form used here is
similar to the expression used by Brown and Bammann [16] and is written as,

zp\ (1/m)
1 + asinh (8—) ,
8

with &, (&) being the user supplied rate independent expression, g is a model parameter related
to the activation energy required to transition from climb to glide-controlled deformation, and m
dictates the strength of the dependence.

& =dy (&)

4.13.1.2 Flow Stress

Unlike the previously described models, the flow-stress hardening method is less a specific
physical representation and more a generalization of hardening behaviors to allow greater
flexibility in separately describing isotropic hardening, rate-dependence, and temperature
dependence. As such, the generic flow-stress definition of

o (8P, &P,0) =y (V) & (eP) 7 (0),

is used in which ¢ and & are rate and temperature multipliers, respectively, that by default are
unity (such that the response is rate and temperature independent). The isotropic hardening
component, 0, is specified as,

oy =0y, +K(&P),

with o, being the constant yield stress and K is the isotropic hardening that is initially zero and a
function of the equivalent plastic strain. A multiplicative decomposition such as this mirrors the
general structure used by Johnson and Cook [48], [49] although greater flexibility is allowed in
terms of the specific form of the rate and temperature multipliers.

Given the aforementioned defaults for rate and temperature dependence, the corresponding
multipliers need not be specified. A representation for the isotropic hardening, however, must be
specified and can be defined via linear, power-law, Voce, or user-defined representations. For the
user-defined case, an isotropic hardening function is required and it must be highlighted that the
interpretation differs from the general user-defined hardening model. In this case, as the specified
function represents the isotropic hardening, it should start from zero — not yield.

Although the flow-stress hardening model defaults to rate and temperature independent, a
multiplier may be defined for either (or both) of the terms. For rate-dependence, either the
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previously discussed Johnson-Cook or power-law breakdown models or a user-defined multiplier
may be used. For the user-defined capability, the multiplier should be input as a strictly positive
function of the equivalent plastic strain rate with a value of one in the rate-independent limit.

In terms of temperature dependence, the multiplier may be specified given a Johnson-Cook
dependency [48], [49],

0 — gref )M
emelt - Href ’

&(9):1—(

with Oref, Omerc and M being the reference temperature, melting temperature, and temperature
exponent. The temperature multiplier may also be specified via a user defined function.

4.13.1.3 Decoupled Flow Stress

Like the flow-stress hardening method, the decoupled flow-stress hardening implementation is a
generalization of the hardening behaviors to allow greater flexibility. In differentiating the two, for
the decoupled model the rate and temperature dependence may be separately specified for the
yield and hardening portions of the flow stress. As such, the generic flow-stress definition of

o (87, 8.0) = oy, (87) &y (6) + K (37) 6 (87) o, (0)

is used in which & and & are rate and temperature multipliers, respectively, that by default are
unity (such that the response is rate and temperature independent) with subscripts y and h
denoting functions associated with yield and hardening. The isotropic hardening is described by
K (&”) and o is the constant initial yield stress. It may also be seen that if the yield and hardening
dependencies are the same (6y = 0y, and Jy = 0y,) the decoupled flow stress model reduces to that
of the flow stress case and mirrors the general structure of the Johnson-Cook model [48], [49].

Given the aforementioned defaults for rate and temperature dependence, the corresponding
multipliers need not be specified. A representation for the isotropic hardening, however, must be
specified and can be defined via linear, power-law, Voce, or user-defined representations. For the
user-defined case, an isotropic hardening function should be used and it must be highlighted that
the interpretation differs from the general user-defined hardening model. In this case, as the
specified function represents the isotropic hardening, it should start from zero — not yield.

Although the decoupled flow-stress hardening model defaults to rate and temperature
independent, a multiplier may be defined for any of the terms. For rate-dependence, either the
previously discussed Johnson-Cook or power-law breakdown models or a user-defined multiplier
may be used. For the user-defined capability, the multiplier should be input as a strictly positive
function of the equivalent plastic strain rate with a value of one in the rate-independent limit.

In terms of temperature dependence, the multiplier may be specified given a Johnson-Cook
dependency [48], [49],

0 — eref )M
emelt - eref ’

&(9):1—(
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where Orer, Omelt, and M are the reference temperature, melting temperature, and temperature
exponent. A temperature multiplier may also be specified via a user defined function.

4.13.2 Implementation

The J; plasticity model is implemented using a radial return predictor-corrector algorithm. First,
an elastic trial stress state is calculated. This is done by assuming that the rate of deformation is
completely elastic,

Tij =T}, + At (A6;jdii + 2udij) -

The trial stress state is decomposed into a pressure and a deviatoric stress

1
PISRT 5 =T Py
A trial yield function value, /7", is calculated by assuming purely thermoelastic deformations
(&P = 0,8 = &L) such that,

tr tr n =P P _ _ gtr tr .n ~ (zP ZP _
f (sl.j, @js Ens Epp = 0, 9n+1) =¢ (sl.j,a/l.j) -0 (sn,str =0, 9n+1) .

If 7 < 0 then the strain rate is elastic and the stress update is finished. If f” > 0 then plastic
deformation has occurred and a radial return algorithm determines the extent of plastic
deformation.

The normal to the yield surface is assumed to lie in the direction of the trial stress state. This gives
the following expression for N;;,

tr n
ij ij
N, ij= 0~ -
I (st =)
Using a backward Euler algorithm, the final deviatoric stress state is

n+l _ tr _ P
Sij =S At2,udt.j,

3
P _ [ZAZPN..
Adl.j_\/;As N,].

The equation for the change in the equivalent plastic strain over the load step is found as the
solution to

where the plastic strain increment is

BUAEP + T (84 + AEP AL, 0p41) — ¢ + f =0,

in which the plastic strain rate is approximated as, &’ = A&P /At.
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4.13.3 Verification

The J; plasticity model is verified through a series of uniaxial stress and pure shear tests
considering a variety of hardening models. Specifically, the boundary value problems of
Appendix A are used. Throughout these tests, the elastic properties are maintained as £ = 70 GPa
and v = 0.25.

Additional verification exercises for the various failure models and adiabatic heating capabilities
may be found in [61], [62] and [60], respectively.

4.13.3.1 Plastic Hardening

For the verification of the J, model, a series of tests using different rate independent, rate
dependent, and combinations of these hardening models are investigated for both uniaxial stress
and pure shear. For these cases, by imposing a constant plastic strain rate as described in
Appendix A the model response may be analytically determined as a function of time. For the rate
independent cases, a constant rate of &7 = 1 x 107*s~! is used to replicate quasi-static

conditions.

The various rate dependent and rate independent hardening coefficients are found in Table 4.16
while the remaining model parameters are unchanged from the previous verification exercises.
For the current verification exercises, the rate independent hardening models (linear, Voce, and
power-law) and rate dependent forms (Johnson-Cook, power-law breakdown) are examined.

Table 4.16 The model parameters for the hardening verification tests used with the J, plasticity
model during verification tests. Parameters for the rate independent hardening functions, &, are
also given and denoted with a - while the subscript refers to the functional form.

C 0.1 &0 I x107%s7T
g 021s ! |m 16.4

Hiinear | 200 MPa
APL 400 MPa I7lpL 0.25
Avoce | 200 MPa | fivoee | 20
oy 200 MPa

Rate-Independent

First, the ability of the built-in rate independent hardening models is assessed in both uniaxial
stress and pure shear. Specifically, the linear, power-law, and Voce hardening models are
considered and the results determined analytically and numerically via Sierra are presented in Fig.
4.37. As expected, excellent agreement is noted between the two sets of results. Importantly, as
the responses of all three rate independent isotropic hardening models are presented in the same
figures, the corresponding behaviors can be seen. Note, the given parameterizations are not
selected for any form of equivalency. Nonetheless, the linear post-yielding behavior of the linear
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model can be seen and compared to the non-linear responses of the Voce and power-law
implementations. The critical difference between the latter two being that the Voce response
saturates at a stress level while the power-law continues to grow.

600, 350,

w
o
o
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N
o
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axial stress, o (MPa)
w
o
o

shear stress, 7 (MPa)

100 O O Linear i O O Linear
O O Power-Law 50¢ O O Power-Law| |
¢ ¢ Voce ¢ ¢ Voce
80 0.1 0.2 0.3 0.4 0.5 8o 0.1 0.2 0.3 0.4 0.5
axial strain, ¢ (-) shear strain, ¢ (-)
(a) Uniaxial Stress (b) Pure Shear

Fig. 4.37 Analytical and numerical (Sierra) (a) uniaxial stress-strain and (b) pure shear responses
of the J, plasticity model with linear, power-law, and Voce rate independent isotropic hardening.
Solid lines are analytical while open symbols are numerical.

Rate-Dependent

With the performance of the model under rate independent conditions established, next the
capabilities of the rate dependent (Johnson-Cook and power-law breakdown) formulations are
considered. Note, the flow-stress and decoupled flow-stress models that incorporate more flexible
descriptions of isotropic hardening and rate and temperature dependence are left to later sections.
With the current Johnson-Cook and power-law breakdown models, user-defined analytic functions
are used for each of the specified rate independent hardening functions.

The uniaxial stress-strain responses are interrogated for the Johnson-Cook and power-law
breakdown rate dependent hardening models considering linear, power-law, and Voce isotropic
hardening in Fig. 4.38. Five decades of plastic strain rates &” = 1 x 1073 — 1 x 10's7! are
considered. In comparing the analytical and numerical results between all of the cases exceptional
agreement is noted between every case.

Similarly, the pure shear responses of the six hardening combinations over the five plastic strain
rates are given in Fig. 4.39 for both analytical and numerical approaches. As with the normal
cases, outstanding agreement is noted between the various results. Thus, between the plethora of
problems presented in Fig. 4.38 and Fig. 4.39 the performance of the rate-dependent models may
be considered verified.
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Fig. 4.38 Uniaxial stress-strain responses of the J, plasticity model with (a,b) linear, (c,d) power-law,
and (e,f) Voce isotropic hardening with the (a,c,e) Johnson-Cook and (b,d,f) Power-law breakdown
rate dependent hardening models. Solid lines are analytical while open symbols are numerical
(Sierra).
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Fig. 4.39 Pure shear responses of the J, plasticity model with (a,b) linear, (c,d) power-law, and (e,f)
Voce isotropic hardening with the (a,c,e) Johnson-Cook and (b,d,f) Power-law breakdown rate de-
pendent hardening models. Solid lines are analytical while open symbols are numerical (Sierra).
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Flow Stress

As a next step in verification, the capabilities of the flow-stress hardening model incorporating
rate- and temperature-dependence is assessed. To this end, Fig. 4.40 presents uniaxial stress-strain
responses considering linear, power-law, and Voce isotropic hardening models with both
Johnson-Cook and power-law breakdown rate dependent multipliers and Johnson-Cook type
temperature dependence. Five decades of strain rates along with temperatures spanning 180 K are
considered in the various figures. In all of the results, agreement is noted between analytical and
numerical results.

To complement the uniaxial results, pure shear results are given in Fig. 4.41. These results
consider the same combinations of linear, power-law, and Voce isotropica hardening multiplier,
Johnson-Cook and power-law breakdown rate multipliers, and Johnson-Cook temperature
dependence. The same ranges of rates and temperatures are considered. As with the uniaxial
cases, good agreement is noted between the analytical and numerical results.

Decoupled Flow Stress

As a further extension, the verification of the decoupled flow-stress model is explored. To this
end, Fig. 4.42 and Fig. 4.43 present uniaxial stress-strain results of various combinations of linear,
power-law, and Voce isotropic hardening functions with rate-independent, Johnson-Cook, and
power-law breakdown rate multipliers applied in different combinations to yield and hardening.
Hardening is taken to be temperature-independent while yield has a Johnson-Cook temperature
multiplier. The considered cases span five decades of applied strain rates and a range of
temperatures. In these cases, the various analytical and numerical results are in agreement.

While the previous results considered temperature-dependence on yield only, the temperature
dependence on hardening is examined in Fig. 4.44 and Fig. 4.45. As with the previous case,
linear, power-law, and Voce isotropic hardening laws are considered in conjunction with different
combinations of Johnson-Cook, power-law breakdown, and rate-independent rate multipliers
spanning large ranges of strain rates and temperatures. Once again, excellent agreement is noted
between analytical and numerical results.

4.13.4 User Guide

BEGIN PARAMETERS FOR MODEL J2_PLASTICITY

#

# Elastic constants

#

YOUNGS MODULUS <real>

POISSONS RATIO = <real>

SHEAR MODULUS = <real>

BULK MODULUS = <real>

(continues on next page)
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Fig. 4.41 Pure shear responses of the J, plasticity model using the flow-stress hardening model
comprised of (a,b) linear, (c,d) power-law, and (e,f) Voce isotropic hardening, (a,c,e) Johnson-Cook
and (b,d,f) Power-law breakdown rate multipliers and (a-f) Johnson-Cook temperature multipliers.
Solid lines are analytical while open symbols are numerical (Sierra).
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Fig. 4.42 Uniaxial stress-strain responses of the J, plasticity model using the decoupled flow-
stress hardening model comprised of (a-c) linear (“L”) and (d-f) power-law (“PL”), (a-f) temperature
independent hardening, (a-f) Johnson-Cook type temperature multiplier for yield, (a,d) Johnson-
Cook (“JC”) and power-law breakdown (“PLB”) type yield and hardening rate multipliers, respec-
tively, (b,e) rate-independent (-) yield with Johnson-Cook type hardening rate dependence, and (c,f)
power-law breakdown yield rate dependence with rate-independent hardening. Solid lines are an-
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Fig. 4.43 Uniaxial stress-strain responses of the J, plasticity model using the decoupled flow-stress
hardening model comprised of (a-c) Voce isotropic hardening (“V”), (a-c) temperature indepen-
dent hardening, (a-c) Johnson-Cook type temperature multiplier for yield, (a) Johnson-Cook (“JC”)
and power-law breakdown (“PLB”) type yield and hardening rate multipliers, respectively, (b) rate-
independent (-) yield with Johnson-Cook type hardening rate dependence, and (c) power-law break-
down yield rate dependence with rate-independent hardening. Solid lines are analytical while open

symbols are numerical (Sierra).
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Fig. 4.44 Uniaxial stress-strain responses of the J;, plasticity model using the decoupled flow-stress
hardening model comprised of (a-c) linear (“L”) and (d-f) power-law (“PL”) hardening, (a-f) tempera-
ture independent yield, (a-f) Johnson-Cook type temperature multiplier for hardening, (a,d) power-
law breakdown (“PLB”) and Johnson-Cook (“JC”) rate multipliers for yield and hardening, respec-
tively (b,e) rate-independent (-)hardening with Johnson-Cook type yield rate dependence, and (c,f)
power-law breakdown hardening rate dependence with rate-independent yield. Solid lines are an-
alytical while open symbols are nhumerical (Sierra).
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Fig. 4.45 Uniaxial stress-strain responses of the J;, plasticity model using the decoupled flow-stress
hardening model comprised of (a-c) Voce (“V”) isotropic hardening, (a-c) temperature indepen-
dent yield, (a-c) Johnson-Cook type temperature multiplier for hardening, (a) power-law breakdown
(“PLB”) and Johnson-Cook (“JC”) rate multipliers for yield and hardening, respectively (b) rate-
independent (-)hardening with Johnson-Cook type yield rate dependence, and (c) power-law break-
down hardening rate dependence with rate-independent yield. Solid lines are analytical while open
symbols are numerical (Sierra).
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(continued from previous page)

LAMBDA = <real>
TWO MU = <real>

#

# Yield surface parameters
#

YIELD STRESS = <real>

BETA = <real> (1.0)
#

# Hardening model

#

HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED |
FLOW_STRESS | DECOUPLED_FLOW_STRESS | JOHNSON_COOK |
POWER_LAW_BREAKDOWN

#

# Linear hardening

#

HARDENING MODULUS = <real>

#

# Power—law hardening

#

HARDENING CONSTANT = <real>

HARDENING EXPONENT = <real> (0.5)

LUDERS STRAIN <real> (0.0)

#

# Voce hardening

#

HARDENING MODULUS
EXPONENTIAL COEFFICIENT
#

# Johnson—-Cook hardening
#

HARDENING FUNCTION = <string>hardening_function_name

<real>
<real>

RATE CONSTANT = <real>
REFERENCE RATE = <real>

#

# Power law breakdown hardening
#

HARDENING FUNCTION = <string>hardening_function_name
RATE COEFFICIENT <real>

RATE EXPONENT <real>

# User defined hardening

#

HARDENING FUNCTION = <string>hardening_function_name

(continues on next page)
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#

# Following Commands Pertain to Flow_Stress Hardening Model

#

# - Isotropic Hardening model

#

ISOTROPIC HARDENING MODEL = LINEAR | POWER_LAW | VOCE |

USER_DEFINED

#

# Specifications for Linear, Power-law, and Voce same as above

#

# User defined hardening

#

ISOTROPIC HARDENING FUNCTION = <string>iso_hardening_fun_name

#

# - Rate dependence

#

RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |
USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)

Specifications for Johnson—-Cook, Power—-law-breakdown
same as before EXCEPT no need to specify a

hardening function

User defined rate multiplier

FH W Hh FH W R H

RATE MULTIPLIER FUNCTION = <string> rate_mult_function_name

#

# — Temperature dependence

#

TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |
TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)

#

# Johnson—-Cook temperature dependence
#

MELTING TEMPERATURE = <real>

REFERENCE TEMPERATURE = <real>

TEMPERATURE EXPONENT <real>

#

# User-defined temperature dependence

TEMPERATURE MULTIPLIER FUNCTION = <string>temp_mult_function_name
#

# Following Commands Pertain to Decoupled_ Flow_Stress Hardening Model

(continues on next page)
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— Isotropic Hardening model
SOTROPIC HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED
Specifications for Linear, Power-law, and Voce same as above

User defined hardening

SH R H R R H R R H

ISOTROPIC HARDENING FUNCTION = <string>isotropic_hardening_function_
—name
#
# - Rate dependence
#
YIELD RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |
USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)

#

# Specifications for Johnson-Cook, Power—-law-breakdown same as before
# EXCEPT no need to specify a hardening function

# AND should be preceded by YIELD

#

# As an example for Johnson—-Cook yield rate dependence,
#

YIELD RATE CONSTANT = <real>

YIELD REFERENCE RATE = <real>

#

# User defined rate multiplier

#

YIELD RATE MULTIPLIER FUNCTION = <string>yield_rate_mult_function_
—name
#
HARDENING_RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |
USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)

Syntax same as for yield parameters but with a HARDENING prefix

— Temperature dependence

FH W HHR H H

YIELD TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |
TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)

#

# Johnson-Cook temperature dependence
#

YIELD MELTING TEMPERATURE = <real>
YIELD REFERENCE TEMPERATURE = <real>

(continues on next page)
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YIELD TEMPERATURE EXPONENT = <real>

#

# User-defined temperature dependence

YIELD TEMPERATURE MULTIPLIER FUNCTION = <string>yield_temp_mult_fun_
—name

#

HARDENING TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |

TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)

#
# Syntax for hardening constants same as for yield but
# with HARDENING prefix
#
#
# Optional Failure Definitions
# Following only need to be defined if intend to use failure model
#

FAILURE MODEL = TEARING_PARAMETER | JOHNSON_COOK_FAILURE | WILKINS
| MODULAR_FAILURE | MODULAR_BCJ_FAILURE

CRITICAL FAILURE PARAMETER = <real>

#

# TEARING_PARAMETER Failure model definitions
#

TEARING PARAMETER EXPONENT = <real>

#

# JOHNSON_COOK_FAILURE Failure model definitions
#

JOHNSON COOK D1 = <real>

JOHNSON COOK D2 = <real>

JOHNSON COOK D3 = <real>

JOHNSON COOK D4 = <real>

JOHNSON COOK D5 = <real>

#

#Following Johnson—-Cook parameters can only be defined once. As.
—such, only

# needed if not previously defined via Johnson-Cook multipliers

# w/ flow-stress hardening. Does need to be defined

# w/ Decoupled Flow Stress

#

REFERENCE RATE = <real>
REFERENCE TEMPERATURE = <real>
MELTING TEMPERATURE = <real>

#
# WILKINS Failure model definitions

(continues on next page)
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#
WILKINS ALPHA =
WILKINS BETA =
WILKINS PRESSURE =
#
# MODULAR_FAILURE
#

PRESSURE MULTIPLIER

<real>
<real>
<real>

Failure model definitions

= PRESSURE_INDEPENDENT | WILKINS
| USER_DEFINED (PRESSURE_INDEPENDENT)

LODE ANGLE MULTIPLIER = LODE_ANGLE_INDEPENDENT |

TRIAXTALITY MULTIPLIER

—INDEPENDENT)

WILKINS (LODE_ANGLE_INDEPENDENT)
TRIAXIALITY_ INDEPENDENT | JOHNSON_COOK
| USER_DEFINED (TRIAXIALITY_

RATE FAIL MULTIPLIER = RATE_INDEPENDENT | JOHNSON_COOK

TEMPERATURE FAIL MULTIPLIER

—INDEPENDENT)
#

| USER_DEFINED (RATE_INDEPENDENT)
TEMPERATURE_INDEPENDENT | JOHNSON_COOK
| USER_DEFINED (TEMPERATURE_

# Individual multiplier definitions

#

PRESSURE MULTIPLIER

WILKINS ALPHA
WILKINS PRESSURE
#

PRESSURE MULTIPLIER

WILKINS
= <real>
= <real>

USER_DEFINED

PRESSURE MULTIPLIER FUNCTION = <string> pressure_multiplier_fun_name

#

LODE ANGLE MULTIPLIER = WILKINS

WILKINS BETA
#

TRIAXTALITY MULTIPLIER

JOHNSON COOK D1
JOHNSON COOK D2
JOHNSON COOK D3
#

TRIAXTALITY MULTIPLIER

= <real>

JOHNSON_COOK

= <real>
<real>

= <real>

USER_DEFINED

TRIAXIALITY MULTIPLIER FUNCTION = <string> triaxiality_multiplier_

—fun_name

#

RATE FAIL MULTIPLIER = JOHNSON_COOK

JOHNSON COOK D4

= <real>

# REFERENCE RATE should only be added if not previously defined

REFERENCE RATE

= <real>

(continues on next page)
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#

RATE FAIL MULTIPLIER = USER_DEFINED

RATE FAIL MULTIPLIER FUNCTION = <string> rate_fail multiplier_fun_
—name

#

TEMPERATURE FAIL MULTIPLIER = JOHNSON_COOK

JOHNSON COOK D5 = <real>

# JC Temperatures should only be defined if not previously given
REFERENCE TEMPERATURE = <real>

MELTING TEMPERATURE = <real>

#

TEMPERATURE FAIL MULTIPLIER

TEMPERATURE FAIL MULTIPLIER FUNCTION
—name

#

# MODULAR _BCJ_FAILURE Failure model definitions

#

INITIAL DAMAGE <real>

INITIAL VOID SIZE = <real>

USER_DEFINED
<string> temp_multiplier_ fun_

DAMAGE BETA = <real> (0.5)
GROWTH MODEL = COCKS_ASHBY | NO_GROWTH (NO_GROWTH)
NUCLEATION MODEL = HORSTEMEYER_GOKHALE | CHU_NEEDLEMAN_STRAIN
| NO_NUCLEATION (NO_NUCLEATION)
#
GROWTH RATE FAIL MULTIPLIER = JOHNSON_COOK | USER_DEFINED

| RATE_INDEPENDENT
(RATE_INDEPENDENT)
JOHNSON_COOK | USER_DEFINED
| TEMPERATURE_INDEPENDENT
(TEMPERATURE__INDEPENDENT)

GROWTH TEMPERATURE FATIL MULTIPLIER

#
NUCLEATION RATE FAIL MULTIPLIER

JOHNSON_COOK | USER_DEFINED
| RATE_INDEPENDENT
(RATE_INDEPENDENT)
JOHNSON_COOK | USER_DEFINED
| TEMPERATURE_INDEPENDENT
(TEMPERATURE_INDEPENDENT)

NUCLEATION TEMPERATURE FAIL MULTIPLIER

#
# Definitions for individual growth and nucleation models
#

GROWTH MODEL = COCKS_ASHBY

DAMAGE EXPONENT = <real> (0.5)

#

NUCLEATION MODEL
NUCLEATION PARAMETERI1

HORSTEMEYER GOKHALE
<real> (0.0)

(continues on next page)
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NUCLEATION PARAMETER2
NUCLEATION PARAMETER3

<real> (0.0)
<real> (0.0)

#

NUCLEATION MODEL = CHU_NEEDLEMAN_STRAIN
NUCLEATION AMPLITUDE = <real>

MEAN NUCLEATION STRAIN = <real>

NUCLEATION STRAIN STD DEV = <real>

#

# Definitions for rate and temperature fail multiplier

# Note: only showing definitions for growth.

# Nucleation terms are the same just with NUCLEATION instead
# of GROWTH
#

GROWTH RATE FAIL MULTIPLIER = JOHNSON_COOK

GROWTH JOHNSON COOK D4 = <real>

GROWTH REFERENCE RATE = <real>

#

GROWTH RATE FAIL MULTIPLIER = USER_DEFINED

GROWTH RATE FAIL MULTIPLIER FUNCTION = <string> growth_rate_fail_
—mult_func

#

GROWTH TEMPERATURE FAIL MULTIPLIER = JOHNSON_COOK
GROWTH JOHNSON COOK Db = <real>
GROWTH REFERENCE TEMPERATURE = <real>
GROWTH MELTING TEMPERATURE = <real>

#

GROWTH TEMPERATURE FAIL MULTIPLIER
GROWTH TEMPERATURE FAIL MULTIPLIER FUNCTION
—mult_func

USER_DEFINED
<string> temp_fail_

#
#
#
# Optional Adiabatic Heating/Thermal Softening Definitions
# Following only need to be defined if intend to use failure model
#
THERMAL SOFTENING MODEL = ADIABATIC | COUPLED
#
SPECIFIC HEAT = <real> # not needed for COUPLED
BETA_TQ = <real>

END [PARAMETERS FOR MODEL J2_PLASTICITY]

In the command blocks that define the J, plasticity model:

* The reference nominal yield stress, 7, is defined with the YTELD STRESS command line.
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The beta parameter defines if hardening is isotropic.

The type of hardening law is defined with the HARDENING MODEL command line, other
hardening commands then define the specific shape of that hardening curve.

The hardening modulus for a linear hardening model is defined with the HARDENING
MODULUS command line.

The hardening constant for a power law hardening model is defined with the HARDENING
CONSTANT command line.

The hardening exponent for a power law hardening model is defined with the HARDENING
EXPONENT command line.

The Luders strain for a power law hardening model is defined with the LUDERS STRAIN
command line.

The hardening function for a user defined hardening model is defined with the HARDENING
FUNCTION command line.

The shape of the spline for the spline based hardening is defined by the CUBIC SPLINE
TYPE, CARDINAL PARAMETER, KNOT EQPS, and KNOT STRESS command lines.

The isotropic hardening model for the flow stress hardening model is defined with the
ISOTROPIC HARDENING MODEL command line.

The function name of a user-defined isotropic hardening model is defined via the
ISOTROPIC HARDENING FUNCTION command line.

The optional rate multiplier for the flow stress hardening model is defined with the RATE
MULTIPLIER command line.

The optional temperature multiplier for the flow stress hardening model is defined via the
TEMPERATURE MULTIPLIER command line.

The function name of a user-defined temperature multiplier is defined with the
TEMPERATURE MULTIPLIER FUNCTION command line.

For a Johnson-Cook temperature multiplier, the melting temperature, ey, 1S defined via
the MELTING TEMPERATURE command line.

For a Johnson-Cook temperature multiplier, the reference temperature, 6,.¢, is defined via
the REFERENCE TEMPERATURE command line.

For a Johnson-Cook temperature multiplier, the temperature exponent, M, is defined via the
TEMPERATURE EXPONENT command line.

The optional rate multiplier for the yield stress for the decoupled flow stress hardening
model is defined with the YIELD RATE MULTIPLIER command line.

The optional rate multiplier for the hardening for the decoupled flow stress hardening model
is defined with the HARDENING RATE MULTIPLIER command line.
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* The optional temperature multiplier for the yield stress for the decoupled flow stress
hardening model is defined with the YTELD TEMPERATURE MULTIPLIER command
line.

* The optional temperature multiplier for the hardening for the decoupled flow stress
hardening model is defined via the HARDENING TEMPERATURE MULTIPLIER
command line.

Output variables available for this model are listed in Table 4.17.

Table 4.17 State Variables for J2 PLASTICITY Model

Name Description

EQPS equivalent plastic strain, &”
EQDOT equivalent plastic strain rate, 7
SEFF effective stress, ¢
TENSILE_EQPS tensile equivalent plastic strain, éf’
DAMAGE damage, ¢

VOID_COUNT void count, i

VOID_SIZE void size, v

DAMAGE_DOT damage rate, ¢
VOID_COUNT_DOT void count rate, i
PLASTIC_WORK_HEAT_RATE | plastic work heat rate, Q7

4.14 Hosford Plasticity Model
4.14.1 Theory

Like other elastic-plastic models in LAME, the Hosford plasticity model is a rate-independent
hypoelastic formulation. Unlike the Hill and other more complex plasticity models, it is isotropic.
In a similar fashion to those models, the total rate of deformation is additively decomposed into an
elastic and plastic part such that

. =D¢ p
Dyj =D+ D"

The objective stress rate, depending only on the elastic deformation, may then be written as,
° €
7ij= Cijii Dy

The Hosford plasticity model utilizes a yield surface first put forth by W. F. Hosford in the 1970’s
[45] that is isotropic but non-quadratic. This specific form was proposed due to experimental
observations of biaxial stretching in which neither the Tresca or J, yield surfaces could describe
the results. In contrast to many of the yield surfaces proposed for similar purposes, only two
parameters are utilized. Even with these limited terms, the developed model is quite versatile and
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can be reduced to von Mises or Tresca conditions as well as capturing responses in between. This
yield surface is given as,

f(0ij,&") = ¢ (o) = 7 (87) =0,

in which ¢ (07;) is the Hosford effective stress and & (£7) is the current yield stress that may
depend on rate and/or temperature. The Hosford effective stress is a non-quadratic function of the
principal stresses (o7, i =1,2,3) and is given as

o1 = o2l +|op — 03] + |y — 037 Ve

¢ (0vj) = 3

in which a is the yield surface exponent. Interestingly, if a = 2 or 4 the yield surface reduces to
that of a J, von Mises surface while a = 1 or as a — oo produces a Tresca like shape. If the value
of a is above 4 the yield surface takes a position between the Tresca and J, limits. Typical values
are a = 6 or a = 8 for bcc and fcc metals, respectively [37]. To highlight this variability the yield
surface is plotted below in Fig. 4.46 for three values of a —a = 4, 8, and 100.

I /

0 WP

— a=4 — a=100

— a=8

Fig. 4.46 Example Hosford yield surfaces, f (0y;,£” = 0;a), presented in the deviatoric 7-plane. The
presented surfaces correspond to the different yield exponents ¢ = 4, 8, and 100.
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For the hardening function, & (£”), a variety of forms including linear, power law, or a more
general user defined function may be used.

An associated flow rule is utilized such that the plastic rate of deformation is normal to the yield
surface and is given by,

. 0¢
DP =y—
Y 4 ao, if
where vy is the consistency multiplier enforcing f = 0 during plastic deformation. Given the form
of f, it can also be shown that y = &”.

For details on the plasticity model, please see [86]. Additional details on failure models and
adiabatic heating capabilities may be found in [61], [62] and [60], respectively.

4.14.1.1 Plastic Hardening

Plastic hardening refers to increases in the flow stress, o, with plastic deformation. As such,
hardening is described via a functional relationship between the flow stress and isotropic
hardening variable (effective plastic strain), & (£”). Over the course of nearly a century of work in
metal plasticity, a variety of relationships have been proposed to describe the interactions
associated with different physical interpretations, deformation mechanisms, and materials. To
enable the utilization of the same plasticity models for different material systems, a modular
implementation of plastic hardening has been adopted such that the analyst may select different
hardening models from the input deck thereby avoiding any code changes or user subroutines. In
this section, additional details are given for the different models to enable the user to select the
appropriate choice of model. Note, the models being discussed here are only for isotropic
hardening in which the yield surface expands. Kinematic hardening in which the yield surface
translates in stress-space with deformation and distortional hardening where the shape of the yield
surface changes shape with deformation are not treated. For a larger discussion of the
phenomenology and history of different hardening types, the reader is referred to [42], [57],

[64].

Given the ubiquitous nature of these hardening laws in computational plasticity, some (if not
most) of this material may be found elsewhere in this manual. Nonetheless, the discussion is
repeated here for the convenience of the reader.

Linear

Linear hardening is conceptually the simplest model available in LAME. As the name implies, a
linear relationship is assumed between the hardening variable, €7, and flow stress. The hardening
modulus, H’, is a constant giving the rate of change of flow stress with plastic flow. The flow
stress expression may therefore be written,

Tg=o0y+HE.
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The simplicity of the model is its main feature as the constant slope,

do e

der
makes the model attractive for analytical models and cheap for computational implementations
(e.g. radial return algorithms require only a single correction step). Unfortunately, the simplicity
of the representation also means that it has limited predictive capabilities and can lead to overly

stiff responses.

Power Law

Another common expression for isotropic hardening is the power-law hardening model. Due to its
prevalence, a dedicated ELASTIC-PLASTIC POWER LAW HARDENING model may be found
in LAME (see Section 4.8.1). This expression is given as,

5':0'y+A<§p—8L >n,

in which < - > are Macaulay brackets, £ is the Luders strain, A is a fitting constant, and n is an
exponent typically taken such that 0 < n < 1. The Luders strain is a positive, constant strain value
(defaulted to zero) giving an initially perfectly plastic response in the plastic deformation domain
(see Fig. 4.20). The derivative is then simply,

do
— =nA< gb —&r >(n—1) .

dep
Note, one difficulty in such an implementation is that when the effective equivalent plastic strain is
zero, numerical difficulties may arise in evaluating the derivative and necessitate special treatment

of the case.

Voce

The Voce hardening model (sometimes referred to as a saturation model) uses a decaying
exponential function of the equivalent plastic strain such that the hardening eventually saturates to
a specified value (thus the name). Such a relationship has been observed in some structural metals
giving rise to the popularity of the model. The hardening response is given as,

o =0y+A(1—-exp(—nét)),

in which A is a fitting constant and # is a fitting exponent controlling how quickly the hardening
saturates. Importantly, the derivative is written as,

d6
é =nAexp (—né?),

and is well defined everywhere giving the selected form an advantage over the aforementioned

power law model.
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Johnson-Cook

The Johnson-Cook hardening model is a variant of the classical Johnson-Cook [48], [49]
expression. In this instance, the temperature-dependence is neglected to focus on the
rate-dependent capabilities while allowing for arbitrary isotropic hardening forms via the use of a
user-defined hardening function. With these assumptions, the flow stress may be written as,

eol2)]

in which &, (&”) is the user-specified rate-independent hardening function, C is a fitting constant
and & is a reference strain rate. The Macaulay brackets ensure the material behaves in a rate
independent fashion when &7 < &.

T =y (87)

Power Law Breakdown

Like the Johnson-Cook formulation, the power-law breakdown model is also rate-dependent.
Again, a multiplicative decomposition is assumed between isotropic hardening and the
corresponding rate-dependence dependent. In this case, however, the functional form is derived
from the analysis of Frost and Ashby [33] in which power-law relationships like those of the
Johnson-Cook model cease to appropriately capture the physical response. The form used here is
similar to the expression used by Brown and Bammann [16] and is written as,

zp\ (1/m)
1 + asinh (8—) ,
8

with &, (&7) being the user supplied rate independent expression, g is a model parameter related
to the activation energy required to transition from climb to glide-controlled deformation, and m
dictates the strength of the dependence.

F =&y (&)

4.14.2 Implementation

The Hosford plasticity model is implicitly integrated using a closest point projection (CPP) return
mapping algorithm (RMA). The resulting nonlinear equations are solved via a line search
augmented Newton-Raphson method and the stress update routine is very similar to that of the
Hill plasticity model. The key difference between the two is the isotropy. Specifically, given that
the Hosford yield surface is isotropic and the functional form is given in terms of principal
stresses, the stress update routine is performed in principal stress space and then converted to
global Cartesian values.

For a loading step, a trial stress state, Tl.f/.’ , may be computed by knowing the rate of deformation,
d;j, and time step as, '

Titjr = Tlr]l + AtCijpdy .-
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The principal stresses, 7", may then be used to determine the trial yield function value,

" =¢ (Tl.”, gr (”)). If ¢"" < 0, the elastic trial solution is acceptable. On the other hand, if the

trial solution is inadmissible, the aforementioned CPP-RMA problem is solved in principal stress
space. The crux of this algorithm is the simultaneous solution of two nonlinear equations — (i) the
flow rule and (ii) consistency condition. The former leads to a residual, R;, of the form (again in
principal stress space),

¢
T T

while the latter is enforced by the yield function,
f=¢(T)-0(&") =0

and its derivative (f) being zero. This system is solved via a Newton-Raphson type approach in
which the state variables (stress, 7;, and consistency multiplier, ) are iteratively corrected until
the residuals are satisfied. Using (k + 1) and (k) to denote the next and current iterations, this
updating takes the form,
Ay*D = Ay 1 A (Ay),
Ti(k+1) — T;(k) + ATl,

in which 7(® = 7" and Ay(®) = 0. Consistent linearization of the two equations can be solved to
give correction increments of the form,

k (k) (k)é‘rﬁ(")
F - R, LJ

A(Ay) =
dg k) (k)a¢<'<>
o Lu H(k)
(k)
__ p) [ pk) ¢
LR, +A(Ay) aT)

with Ll.(f) being the Hessian of the CPP-RMA problem and H ¥) is the slope of the hardening
curve.

Previous studies have indicated that the Newton-Raphson method alone may be insufficient to
guarantee convergence with arbitrary stress states in the case of non-quadratic yield surfaces [5],
[81], [86]. To address this, a line search method is adopted. In such an approach, the
incrementation rule (4.43) is modified such that,

Ay = ay ™+ ah (ay),
Ti(k+1) _ Ti(k) + aAT,

where a € (0, 1] is the step magnitude. This parameter enforces that the solution be converging
and 1s determined via various convergence criteria. The @ = 1 case corresponds to the
Newton-Raphson method. Utilization of this approach has been shown to greatly increase the
robustness of this algorithm under large trial stresses [86].
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Finally, upon convergence of the algorithm, the Cartesian stress are found from the principal
stresses via,

3

n+l _ n+1 ~k ~k
Tl-j = ZTk é; éj,
k=1

in which él’? is the eigenvector of the k" principal stress.

Details of this implementation and the line search algorithm may be found in the work of
Scherzinger [86].

4.14.3 Verification

The Hosford plasticity material model is verified through a variety of loading and material
conditions. For these cases, the elastic properties corresponding to 2090-T3 aluminum [9] given
in Section 4.15.3 are utilized. Additional verification exercises for the various failure models and
adiabatic heating capabilities may be found in [61], [62] and [60], respectively.

The elastic properties are E = 70 GPa and v = 0.25 while a linear hardening law of the form,
o (&P) =0y +KEP,

with o, = 200 MPa and K = E/200 is assumed. For these studies, two different yield surface
exponents will be used, a = 4, 8. The former corresponds to the J, surface while the latter is a
common value for aluminum.

4.14.3.1 Uniaxial Stress

In the case of uniaxial stress (o), it is trivial to note that the corresponding principal stress state is
simply o1 = 07, 0 = 03 = 0. As such, regardless of a,

¢ = |o].
With the aforementioned linear hardening, this case reduces to that discussed in Section 4.7.3.1.
Corresponding analytical and numerical results (both with a = 4 and 8) of the axial stress and

lateral strain are presented in Fig. 4.47(a) and Fig. 4.47(b), respectively. In these figures, the
invariance of response on yield surface exponent through this loading is clearly observed.

4.14.3.2 Pure Shear

To explore the impact of the yield exponent a, the case of pure shear is considered. Specifically,
the only shear component shall be in the Cartesian e — e, direction such that o, = 7 and &, are

152



0.000pg
2001
-0.005}-
s =
%— h;l‘S
< 150r — Tanalytical 5 -0.010} —analytical
a O O Adagio < O O Adagio
3 — a=4 o — a=4
+ 100} : @
7] — a=8 Y —0.015F a=8
g ©
[}
s B
50 -0.020}
0 H H H -0.025 ; H i
0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05
axial strain, ¢ (-) axial strain, ¢, (-)
(a) Uniaxial Stress (b) Lateral Strain

Fig. 4.47 Axial stress-strain (a) and lateral strain (b) results of the Hosford plasticity model deter-
mined analytically and numerically for the case of yield surface exponents a = 4, 8.

the only non-zero components. Noting that the three principal stresses are 7, 0, —7, the yield
condition simplifies to

¢ = [1 +2"_1]1/a T.

The equivalent plastic strain may then be found as a function of 1, in the same way as presented
in Section 4.15.3.2. Shear stress-strain results for both a = 4, 8 are presented in Fig. 4.48 as
determined both by adagio and analytically. The boundary conditions for this loading are given in
Appendix A. In these results, the effect of the yield surface exponent, a, may clearly be seen.

4.14.3.3 Plastic Hardening

To verify the capabilities of the hardening models, rate independent and rate dependent alike, the
constant equivalent plastic strain rate, £”, uniaxial stress and pure shear verification tests
described in Appendix A are utilized. In these simplified loading cases, the material state may be
found explicitly as a function of time knowing the prescribed equivalent strain rate. For the rate
independent cases, a strain rate of &” = 1 x 10~*s~! is used for ease in simulations although the
selected rate does not affect the results. Through this testing protocol, the hardening models are
not only tested at different rates but also different yield surface shapes. In the current Hosford
case, multiple yield surface exponents, a, are considered to probe this effect. Additionally, the rate
dependent models are tested for a wide range of strain rates (over five decades) and with all three
rate independent hardening functions (& in the previous theory section). Although linear, Voce,
and power-law rate independent representations are utilized in the rate dependent tests, in those
cases the hardening models are prescribed via user-defined analytic functions. The rate
independent verification exercises, on the other hand, examine the built-in hardening models. This
distinction necessitates the different considerations and treatments.

The various rate dependent and rate independent hardening coefficients are found in Table 4.18
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Fig. 4.48 Shear stress-strain results of the Hosford plasticity model determined analytically and
numerically for the case of yield surface exponents a =4, 8.

while the remaining model parameters are unchanged from the previous verification exercises.
For the current verification exercises, the rate independent hardening models (linear, Voce, and
power-law) will first be considered and then the rate dependent forms (Johnson-Cook, power-law
breakdown).

Table 4.18 The model parameters for the hardening verification tests used with the Hosford plas-
ticity model during verification tests. Parameters for the rate independent hardening functions, &,
are also given and denoted with a ~ while the subscript refers to the functional form.

C 0.1 &0 I x 107471
g 021s " |m 16.4

Hiinear | 200 MPa
ApL 400 MPa ﬁpL 0.25
Avoce | 200 MPa | fivoee | 20
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Linear

The aforementioned verification exercises from Appendix A are used to investigate the numerical
implementation of the rate independent linear hardening model. Results from uniaxial stress and
pure shear exercises determined analytically and numerically are given in Fig. 4.49 for three
different exponents a = 4, 8, and 20. The first exponent produces a J; like response with the
latter increasing the curvature of the yield surface. As discussed in Section 4.14.3.1, a purely
uniaxial response is independent of exponent thus producing the collapsed results in Fig. 4.49. In
both the uniaxial stress and pure shear cases, clear agreement is noted between the two sets of

results. The linear slope (tangent modulus) giving the model its name is also observable in the
results of Fig. 4.49.

0 O a=4 0O 0 a=4
o0 a=8 0o a=8
500 ¢ ¢ a=20 300 ¢ O a=20
E o & 250}
g’ 2
s & 200}
4300 ¢ 2
¢ ¢
£ E 150
© 200 o B
5 2 100!
%]
100 50+
8% o1 02 03 04 0.5 80 0.1 0.2 0.3 0.4 0.5
axial strain, ¢ (-) shear strain, ¢ (-)
(a) Uniaxial Stress (b) Pure Shear

Fig. 4.49 Uniaxial stress-strain (a) and pure shear (b) responses of the Hosford plasticity model with
rate independent, linear hardening. Solid line are analytical while open symbols are nhumerical.

Power-Law

To consider the performance of the common power-law hardening model with the Hosford yield
surface, the uniaxial stress and pure shear exercises of Appendix A are solved analytically and
numerically. These results are presented in Fig. 4.50 for three different Hosford exponents —

a = 4, 8 and 20. As expected from previous discussions the uniaxial stress results in Fig. 4.50(a)
are independent of a. For both the uniaxial stress and pure shear results, the desired agreement
between analytical and numerical solutions is apparent. These results also highlight the initial
curved response during plastic-deformation eventually transitioning into a more linear type
response.
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Fig. 4.50 Uniaxial stress-strain (a) and pure shear (b) responses of the Hosford plasticity model with
rate independent, power-law hardening. Solid line are analytical while open symbols are numerical.

Voce

For the rate independent Voce hardening model, the problems of Appendix A are used to verify the
model response. Specifically, results for the uniaxial stress and pure shear analyses are presented
in Fig. 4.51 as determined analytically and numerically for three different values of a —a = 4, 8,
and 20. From these results, clear agreement is noted between the two sets of results; including the
invariance of the uniaxial stress case to a (Fig. 4.51a). Additionally, the results of Fig. 4.51 also
exemplify the saturation nature of the Voce hardening model as the stress-strain response
eventually asymptotes.
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(a) Uniaxial Stress (b) Pure Shear

Fig. 4.51 Uniaxial stress-strain (a) and pure shear (b) responses of the Hosford plasticity model with
rate independent, Voce hardening. Solid line are analytical while open symbols are numerical.
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Johnson-Cook

As noted in Section 4.14.3.1, the uniaxial stress response is independent of a. This is also
reflected Appendix A in which the stress weighting coeflicients (I') for the Hosford uniaxial case
are one. As such in Fig. 4.52 the results of the constant equivalent plastic strain rate uniaxial stress
test are presented with a = 8 and using the linear (Fig. 4.52a), power-law (Fig. 4.52b), and Voce
(Fig. 4.52c) rate independent hardening models for five different rates —

&P =1x1073, 1x1072, 1x 107!, 1 x 10° and 1 x 10" s~!. In all cases in Fig. 4.52 excellent
agreement is observed between the results.

120 1200
© o rate: 1.0e-03
0 o rate: 1.0e-02
100 A A rate: 1.0e-01 1000 e it
o o rate: 1.0e+00 M
© te: 1.0e+01 © M
£ 500 O O rate: 1.0e+ £ 500 ﬂﬁﬁ
\;. Z} /;‘::AMM
ﬁ 600 LpaeeEEEttl . ﬁ 600/( MWM
7 Eaﬁwﬁwk&nﬂ‘ R /f;;"
T 400 MM MWH‘A T 400|
% A A A 600000000 eoce00ee % © o rate: 1.0e-03
° [Cooeott ROl o ga g © 0 o rate: 1.0e-02
200 200 A A rate: 1.0e-01
© o rate: 1.0e+00
0O rate: 1.0e+01
8.0 0.1 0.2 0.3 0.4 0.5 8.0 0.1 0.2 0.3 0.4 0.5
axial strain, ¢ (-) axial strain, ¢ (-)
(a) Linear Hardening (b) Power-Law Hardening

120

o o rate: 1.0e-03
© O rate: 1.0e-02
1000/ A A rate: 1.0e-01
© o rate: 1.0e+00
O O rate: 1.0e+01

800 Jovoese

600 S s oo
-

200

axial stress, ¢ (MPa)

8.0 0.1 0.2 0.3 0.4 0.5
axial strain, € (-)

(c) Voce Hardening

Fig. 4.52 Uniaxial stress-strain response of the Hosford plasticity model (¢« = 8) with rate dependent,
Johnson-Cook type hardening with (a) linear (b) power-law and (c) Voce rate independent harden-
ing. Solid lines are analytical results while open symbols are numerical.

Unlike the uniaxial stress case, for pure shear the response depends on the exponent a. Therefore,
in addition to the three hardening models, results are also presented for three different exponent
values — a = 4, 8, and 20. The results for all nine cases are presented in Fig. 4.53 and Fig. 4.54
and again excellent agreement is noted in all instances.
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Fig. 4.53 Stress-strain response of the Hosford plasticity model with rate dependent, Johnson-Cook

type hardening in pure shear with (a-c) linear (d-f) and power-law rate independent hardening. Solid
lines are analytical results while open symbols are numerical.
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Fig. 4.54 Stress-strain response of the Hosford plasticity model with rate dependent, Johnson-Cook
type hardening in pure shear with (a-c) Voce rate independent hardening. Solid lines are analytical
results while open symbols are numerical.
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Power-Law Breakdown

As mentioned in the previous Johnson-Cook section, for the Hosford model under uniaxial stress
the response is independent of yield surface exponent, a. Therefore, Fig. 4.55 presents the results
of the constant equivalent plastic strain rate verification test of Appendix A for strain rates
spanning five decades — &7 = 1 x 1073, 1x1072, 1 x 107!, 1 x10%°and 1 x 10! s~1. The tests are
performed for each rate- independent hardening model. In all fifteen cases excellent agreement is
noted between numerical and analytical results.
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Fig. 4.55 Uniaxial stress-strain response of the Hosford plasticity model (¢« = 8) with rate dependent,
power-law breakdown type hardening with (a) linear (b) power-law and (c) Voce rate independent
hardening. Solid lines are analytical results while open symbols are humerical.

Similarly, Fig. 4.56 and Fig. 4.57 gives the results of the pure shear variant of the constant
equivalent plastic strain rate verification test of Appendix A. The same five rates used in the
uniaxial stress case are again utilized although in this instance as the pure shear response does
depend on a the results are given for three yield surface exponents —a = 4, 8 and 20. In the
forty-five cases shown in Fig. 4.56 and Fig. 4.57 quite acceptable agreement is noted verifying the
capabilities of the rate dependent Hosford implementation.
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4.14.4 User Guide

BEGIN PARAMETERS

FOR MODEL HOSFORD_PLASTICITY

#

# Elastic constants

#

YOUNGS MODULUS = <real>

POISSONS RATIO = <real>

SHEAR MODULUS <real>

BULK MODULUS = <real>

LAMBDA = <real>

TWO MU = <real>

#

# Yield surface parameters

#

YIELD STRESS = <real>

A = <real> (4.0)
#

#

# Hardening model

#

HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED |

FLOW_STRESS | DECOUPLED_FLOW_STRESS |
POWER_LAW_BREAKDOWN

JOHNSON_COOK |

#

# Linear hardening

#

HARDENING MODULUS = <real>
#

# Power—law hardening

#

HARDENING CONSTANT = <real>

HARDENING EXPONENT =
LUDERS STRAIN

<real> (0.5)
<real> (0.0)

#

# Voce hardening

#

HARDENING MODULUS = <real>
EXPONENTIAL COEFFICIENT = <real>
#

# Johnson—-Cook hardening

#

HARDENING FUNCTION = <string>hardening_function_name
RATE CONSTANT = <real>
REFERENCE RATE = <real>
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#

# Power law breakdown hardening

#

HARDENING FUNCTION = <string>hardening_function_name
RATE COEFFICIENT = <real>

RATE EXPONENT = <real>

# User defined hardening

#

HARDENING FUNCTION = <string>hardening_function_name
#

#

# Following Commands Pertain to Flow_Stress Hardening Model

#

# - Isotropic Hardening model

#

ISOTROPIC HARDENING MODEL = LINEAR | POWER_LAW | VOCE |

USER_DEFINED

#

# Specifications for Linear, Power-law, and Voce same as above

#

# User defined hardening

#

ISOTROPIC HARDENING FUNCTION = <string>iso_hardening_fun_name

#

# - Rate dependence

#

RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |
USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)

Specifications for Johnson—-Cook, Power—-law-breakdown
same as before EXCEPT no need to specify a

hardening function

User defined rate multiplier

FH o H HHR HR W R H

RATE MULTIPLIER FUNCTION = <string> rate_mult_function_name

#

# — Temperature dependence

#

TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |
TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)

#

# Johnson—-Cook temperature dependence

(continues on next page)
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#
MELTING TEMPERATURE = <real>
REFERENCE TEMPERATURE = <real>
TEMPERATURE EXPONENT = <real>
#

# User-defined temperature dependence

TEMPERATURE MULTIPLIER FUNCTION = <string>temp_mult_function_name

#

# Following Commands Pertain to Decoupled_Flow_Stress Hardening Model

#

# - Isotropic Hardening model

#

ISOTROPIC HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED

#

# Specifications for Linear, Power-law, and Voce same as above

#

# User defined hardening

#

ISOTROPIC HARDENING FUNCTION = <string>isotropic_hardening_ function_
—name

#

# - Rate dependence

#

YIELD RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)

#

# Specifications for Johnson—-Cook, Power—-law-breakdown same as before
# EXCEPT no need to specify a hardening function

# AND should be preceded by YIELD

#

# As an example for Johnson—-Cook yield rate dependence,
#

YIELD RATE CONSTANT = <real>

YIELD REFERENCE RATE = <real>

#

# User defined rate multiplier

#

YIELD RATE MULTIPLIER FUNCTION = <string>yield_rate_mult_function_
—name

#

HARDENING_RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)

#

# Syntax same as for yield parameters but with a HARDENING prefix

#

(continues on next page)
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# - Temperature dependence

#

YIELD TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |
TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)

#

# Johnson—-Cook temperature dependence
#

YIELD MELTING TEMPERATURE = <real>

YIELD REFERENCE TEMPERATURE = <real>

YIELD TEMPERATURE EXPONENT <real>

#

# User-defined temperature dependence

YIELD TEMPERATURE MULTIPLIER FUNCTION = <string>yield_temp_mult_fun_
—name

#

HARDENING TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |

TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)

#
# Syntax for hardening constants same as for yield but
# with HARDENING prefix
#
#
# Optional Failure Definitions
# Following only need to be defined if intend to use failure model
#

FAILURE MODEL = TEARING_PARAMETER | JOHNSON_COOK_FAILURE | WILKINS
| MODULAR_FAILURE | MODULAR_BCJ_FAILURE

CRITICAL FAILURE PARAMETER = <real>

#

# TEARING_PARAMETER Failure model definitions
#

TEARING PARAMETER EXPONENT = <real>

#

# JOHNSON_COOK_FAILURE Failure model definitions
#

JOHNSON COOK D1 = <real>

JOHNSON COOK D2 = <real>

JOHNSON COOK D3 = <real>

JOHNSON COOK D4 = <real>

JOHNSON COOK D5 = <real>

#

#Following Johnson-Cook parameters can only be defined once. As.
—such, only

(continues on next page)

166




(continued from previous page)

needed 1f not previously defined via Johnson-Cook multipliers

#
# w/ flow-stress hardening. Does need to be defined
# w/ Decoupled Flow Stress

#

REFERENCE RATE = <real>
REFERENCE TEMPERATURE = <real>
MELTING TEMPERATURE = <real>

#

# WILKINS Failure model definitions
#

WILKINS ALPHA = <real>

WILKINS BETA = <real>

WILKINS PRESSURE = <real>

#

# MODULAR_FAILURE Failure model definitions
#

PRESSURE MULTIPLIER PRESSURE_INDEPENDENT | WILKINS

| USER_DEFINED (PRESSURE_INDEPENDENT)

LODE ANGLE MULTIPLIER = LODE_ANGLE_INDEPENDENT |
WILKINS (LODE_ANGLE_INDEPENDENT)
TRIAXTALITY MULTIPLIER = TRIAXTIALITY_INDEPENDENT | JOHNSON_COOK
| USER_DEFINED (TRIAXIALITY_
—INDEPENDENT)
RATE FAIL MULTIPLIER = RATE_INDEPENDENT | JOHNSON_COOK

| USER_DEFINED (RATE_INDEPENDENT)
TEMPERATURE FAIL MULTIPLIER = TEMPERATURE_INDEPENDENT | JOHNSON_COOK
| USER_DEFINED (TEMPERATURE_

—INDEPENDENT)

#

# Individual multiplier definitions
#

PRESSURE MULTIPLIER = WILKINS
WILKINS ALPHA = <real>
WILKINS PRESSURE = <real>

#

PRESSURE MULTIPLIER = USER_DEFINED
PRESSURE MULTIPLIER FUNCTION = <string> pressure_multiplier_fun_name
#

LODE ANGLE MULTIPLIER = WILKINS
WILKINS BETA = <real>

#

TRIAXTALITY MULTIPLIER = JOHNSON_COOK
JOHNSON COOK D1 = <real>
JOHNSON COOK D2 = <real>
JOHNSON COOK D3 = <real>

(continues on next page)
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#

TRIAXTALITY MULTIPLIER = USER_DEFINED

TRIAXIALITY MULTIPLIER FUNCTION = <string> triaxiality_multiplier_
—fun_name

#

RATE FAIL MULTIPLIER JOHNSON_COOK

JOHNSON COOK D4 <real>

# REFERENCE RATE should only be added if not previously defined

REFERENCE RATE = <real>

#

RATE FAIL MULTIPLIER USER_DEFINED

RATE FAIL MULTIPLIER FUNCTION = <string> rate_fail multiplier_fun_
—name

#

TEMPERATURE FATIL MULTIPLIER = JOHNSON_COOK

JOHNSON COOK D5 = <real>

# JC Temperatures should only be defined if not previously given
REFERENCE TEMPERATURE = <real>

MELTING TEMPERATURE = <real>

#

TEMPERATURE FAIL MULTIPLIER

TEMPERATURE FAIL MULTIPLIER FUNCTION
—name

#

# MODULAR_BCJ_FAILURE Failure model definitions

#

INITIAL DAMAGE <real>

INITIAL VOID SIZE = <real>

USER_DEFINED
<string> temp_multiplier_fun_

DAMAGE BETA = <real> (0.5)
GROWTH MODEL = COCKS_ASHBY | NO_GROWTH (NO_GROWTH)
NUCLEATION MODEL = HORSTEMEYER_GOKHALE | CHU_NEEDLEMAN_STRAIN

| NO_NUCLEATION (NO_NUCLEATION)
#
GROWTH RATE FAIL MULTIPLIER

JOHNSON_COOK | USER_DEFINED
| RATE_INDEPENDENT
(RATE_INDEPENDENT)
GROWTH TEMPERATURE FAIL MULTIPLIER = JOHNSON_COOK | USER_DEFINED
| TEMPERATURE_INDEPENDENT
(TEMPERATURE__INDEPENDENT)
#
NUCLEATION RATE FAIL MULTIPLIER = JOHNSON_COOK | USER_DEFINED
| RATE_INDEPENDENT
(RATE_INDEPENDENT)
JOHNSON_COOK | USER_DEFINED
| TEMPERATURE_INDEPENDENT

NUCLEATION TEMPERATURE FAIL MULTIPLIER

(continues on next page)
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(TEMPERATURE_INDEPENDENT)

#
# Definitions for individual growth and nucleation models
#
GROWTH MODEL = COCKS_ASHBY
DAMAGE EXPONENT = <real> (0.5)
#
NUCLEATION MODEL = HORSTEMEYER_GOKHALE
NUCLEATION PARAMETER1 = <real> (0.0)
NUCLEATION PARAMETER2 <real> (0.0)

0.0)

NUCLEATION PARAMETER3 = <real> (

#

NUCLEATION MODEL = CHU_NEEDLEMAN_STRAIN
NUCLEATION AMPLITUDE = <real>

MEAN NUCLEATION STRAIN = <real>

NUCLEATION STRAIN STD DEV = <real>

#

# Definitions for rate and temperature fail multiplier

# Note: only showing definitions for growth.

# Nucleation terms are the same just with NUCLEATION instead
# of GROWTH
#

GROWTH RATE FAIL MULTIPLIER = JOHNSON_COOK

GROWTH JOHNSON COOK D4 = <real>
GROWTH REFERENCE RATE = <real>
#

GROWTH RATE FAIL MULTIPLIER
GROWTH RATE FAIL MULTIPLIER FUNCTION
—mult_func

USER_DEFINED
<string> growth_rate_fail_

#

GROWTH TEMPERATURE FAIL MULTIPLIER = JOHNSON_COOK

GROWTH JOHNSON COOK D5 = <real>

GROWTH REFERENCE TEMPERATURE = <real>

GROWTH MELTING TEMPERATURE = <real>

#

GROWTH TEMPERATURE FATIL MULTIPLIER = USER_DEFINED

GROWTH TEMPERATURE FAIL MULTIPLIER FUNCTION = <string> temp_fail_
—mult_func

#

Optional Adiabatic Heating/Thermal Softening Definitions
Following only need to be defined if intend to use failure model

HH R H H

(continues on next page)
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THERMAL SOFTENING MODEL = ADIABATIC | COUPLED

#
SPECIFIC HEAT = <real> # not needed for COUPLED
BETA_TQ = <real>

END [PARAMETERS FOR MODEL HOSFORD_PLASTICITY]

In the command blocks that define the Hosford plasticity model:

The reference nominal yield stress, 7, is defined with the YTELD STRESS command line.
The yield surface exponent, a, is defined with the A command line.

The type of hardening law is defined with the HARDENING MODEL command line, other
hardening commands then define the specific shape of that hardening curve.

The hardening modulus for a linear hardening model is defined with the HARDENING
MODULUS command line.

The hardening constant for a power law hardening model is defined with the HARDENING
CONSTANT command line.

The hardening exponent for a power law hardening model is defined with the HARDENING
EXPONENT command line.

The Luders strain for a power law hardening model is defined with the LUDERS STRAIN
command line.

The hardening function for a user defined hardening model is defined with the HARDENING
FUNCTION command line.

The shape of the spline for the spline based hardening is defined by the CUBIC SPLINE
TYPE, CARDINAL PARAMETER, KNOT EQPS, and KNOT STRESS command lines.

Output variables available for this model are listed in Table 4.19.

Table 4.19 State Variables for HOSFORD PLASTICITY Model

Name Description

EQPS equivalent plastic strain, €7
EQDOT equivalent plastic strain rate, £”
SEFF effective stress, ¢
TENSILE_EQPS tensile equivalent plastic strain, éf’
DAMAGE damage, ¢

VOID_COUNT void count, i

VOID_SIZE void size, v

DAMAGE_DOT damage rate, ¢
VOID_COUNT_DOT void count rate, 1
PLASTIC_WORK_HEAT_RATE | plastic work heat rate, QP
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4.15 Hill Plasticity Model

4.15.1 Theory

The Hill plasticity model is similar to other plasticity models except that it is not isotropic. It is a
hypoelastic, rate-independent plasticity model. The rate form of the equation assumes an additive
split of the rate of deformation into an elastic and plastic part

. =D° p
Dyj =D+ D",

The stress rate only depends on the elastic rate of deformation
° €
7ij= CijruDy,

where C;jx; are the components of the fourth-order, isotropic elasticity tensor.

The Hill plasticity model has an orthotropic yield surface that assumes orthogonal principal
material directions. An example of this yield surface is presented below in Fig. 4.58 along with
examples of two isotropic surfaces — the von Mises (J2) and Hosford (with a = 8). The various
surface parameters correspond to 2090-T3 aluminum and the specific Hill strengths are found in
[86]. By comparing the Hill surface to the two isotropic surfaces, the impact of the anisotropy is
clear. Additionally, substantial differences to the normals of the yield surfaces at points of
intersection highlight the impact of the yield function selection on the resulting flow directions.

Like other plasticity models, the Hill yield surface, f, is written,
f (0, &") = ¢ (03j) — 7 () =0,

with ¢ being the effective stress and & is the current yield stress that may be dependent on rate
and/or temperature. The Hill effective stress is essentially an orthotropic extension of the von
Mises function. After accounting for plastic incompressibility and related constraints, there are

six individual yield stresses: 07}, 075,, 033, T}, T53- and 73,. These yield stresses correspond to 3

220 Y33> 23’
normal and 3 shear yield stresses. Written in terms of the components, the effective stress has the

form,

¢? (01j) = F (62 = 633)* + G (033 — 011)* + H (611 — 622)?

A2 A2 A2
+2L05; +2Mb5, +2Noy,.

The coefficients F, G, H, L, M, and N were introduced by Hill. In terms of the yield stresses they
are:
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f vonMises

f Hos ford

Fig. 4.58 Example anisotropic Hill yield surface, /. (cr,-j, &P = 0), presented in the deviatoric 7-plane
fit to 2090-T3 aluminum. Comparison von Mises (/) and Hosford (with « = 8) surfaces are also
presented.
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where ¢ is a reference yield stress.
Rather than input the six independent yield stresses, the ratios of the yield stresses to some
reference yield stress are generally used as input. These ratios are
y y
o T
Rij=— ; Rp=V3Z2
o o
y y
o T
Rp=-2; Rp=V3Z2 (4.44)
o o
y y
(o T
Ryz=-2 5 Ry =V3-2.
o o

These ratios are set up so that if R;; = 1 then the yield surface is isotropic.

The orientation of the principal material axes with respect to the global Cartesian axes may be
specified by the user. First, a rectangular or cylindrical reference coordinate system is defined.
Spherical coordinate systems are not currently implemented for the Hill model. The material
coordinate system can then be defined through two successive rotations about axes in the
reference rectangular or cylindrical coordinate system. In the case of the cylindrical coordinate
system this allows the principal material axes to vary point-wise in a given element block.

The plastic rate of deformation, as with the isotropic models, assumes associated flow

oy 08

0o 7(90' ij '
Given the form for ¢, the consistency parameter, y is equal to the rate of the equivalent plastic
strain, &”.

For more information about the Hill plasticity model, consult [42]. Additional discussion on
options for failure models and adiabatic heating may be found in [61], [62] and [60],
respectively.
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4.15.1.1 Plastic Hardening

Plastic hardening refers to increases in the flow stress, &, with plastic deformation. As such,
hardening is described via a functional relationship between the flow stress and isotropic
hardening variable (effective plastic strain), & (£”). Over the course of nearly a century of work in
metal plasticity, a variety of relationships have been proposed to describe the interactions
associated with different physical interpretations, deformation mechanisms, and materials. To
enable the utilization of the same plasticity models for different material systems, a modular
implementation of plastic hardening has been adopted such that the analyst may select different
hardening models from the input deck thereby avoiding any code changes or user subroutines. In
this section, additional details are given for the different models to enable the user to select the
appropriate choice of model. Note, the models being discussed here are only for isotropic
hardening in which the yield surface expands. Kinematic hardening in which the yield surface
translates in stress-space with deformation and distortional hardening where the shape of the yield
surface changes shape with deformation are not treated. For a larger discussion of the
phenomenology and history of different hardening types, the reader is referred to [42], [57],

[64].

Given the ubiquitous nature of these hardening laws in computational plasticity, some (if not
most) of this material may be found elsewhere in this manual. Nonetheless, the discussion is
repeated here for the convenience of the reader.

Linear

Linear hardening is conceptually the simplest model available in LAME. As the name implies, a
linear relationship is assumed between the hardening variable, €7, and flow stress. The hardening
modulus, H’, is a constant giving the rate of change of flow stress with plastic flow. The flow
stress expression may therefore be written,

Tg=o0y+HE.

The simplicity of the model is its main feature as the constant slope,

do o

dsr
makes the model attractive for analytical models and cheap for computational implementations
(e.g. radial return algorithms require only a single correction step). Unfortunately, the simplicity
of the representation also means that it has limited predictive capabilities and can lead to overly
stiff responses.
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Power Law

Another common expression for isotropic hardening is the power-law hardening model. Due to its
prevalence, a dedicated ELASTIC-PLASTIC POWER LAW HARDENING model may be found
in LAME (see Section 4.8.1). This expression is given as,

5':0'y+A<§p—8L >n,

in which < - > are Macaulay brackets, £ is the Luders strain, A is a fitting constant, and » is an
exponent typically taken such that 0 < n < 1. The Luders strain is a positive, constant strain value
(defaulted to zero) giving an initially perfectly plastic response in the plastic deformation domain
(see Fig. 4.20). The derivative is then simply,

do

— =nA <&’ —g >V

d&v L
Note, one difficulty in such an implementation is that when the effective equivalent plastic strain is
zero, numerical difficulties may arise in evaluating the derivative and necessitate special treatment
of the case.

Voce

The Voce hardening model (sometimes referred to as a saturation model) uses a decaying
exponential function of the equivalent plastic strain such that the hardening eventually saturates to
a specified value (thus the name). Such a relationship has been observed in some structural metals
giving rise to the popularity of the model. The hardening response is given as,

o=0y,+A(1-exp(-nél)),

in which A is a fitting constant and # is a fitting exponent controlling how quickly the hardening
saturates. Importantly, the derivative is written as,

45
é =nAexp (-né?),

and is well defined everywhere giving the selected form an advantage over the aforementioned

power law model.

Johnson-Cook

The Johnson-Cook hardening model is a variant of the classical Johnson-Cook [48], [49]
expression. In this instance, the temperature-dependence is neglected to focus on the
rate-dependent capabilities while allowing for arbitrary isotropic hardening forms via the use of a
user-defined hardening function. With these assumptions, the flow stress may be written as,

o2
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in which &, (&”) is the user-specified rate-independent hardening function, C is a fitting constant
and & is a reference strain rate. The Macaulay brackets ensure the material behaves in a rate
independent fashion when &7 < &.

Power Law Breakdown

Like the Johnson-Cook formulation, the power-law breakdown model is also rate-dependent.
Again, a multiplicative decomposition is assumed between isotropic hardening and the
corresponding rate-dependence dependent. In this case, however, the functional form is derived
from the analysis of Frost and Ashby [33] in which power-law relationships like those of the
Johnson-Cook model cease to appropriately capture the physical response. The form used here is
similar to the expression used by Brown and Bammann [16] and is written as,

zp\ (1/m)
1 + asinh (8—) ,
8

with &, (&) being the user supplied rate independent expression, g is a model parameter related
to the activation energy required to transition from climb to glide-controlled deformation, and m
dictates the strength of the dependence.

o =y (8)

4.15.1.2 Flow Stress

Unlike the previously described models, the flow-stress hardening method is less a specific
physical representation and more a generalization of hardening behaviors to allow greater
flexibility in separately describing isotropic hardening, rate-dependence, and temperature
dependence. As such, the generic flow-stress definition of

o (eP,&P,0) =ay (7)o (€P) o (0),

is used in which ¢ and & are rate and temperature multipliers, respectively, that by default are
unity (such that the response is rate and temperature independent). The isotropic hardening
component, 0, is specified as,

oy =0y, +K(&P),

with o, being the constant yield stress and K is the isotropic hardening that is initially zero and a
function of the equivalent plastic strain. A multiplicative decomposition such as this mirrors the
general structure used by Johnson and Cook [48], [49] although greater flexibility is allowed in
terms of the specific form of the rate and temperature multipliers.

Given the aforementioned defaults for rate and temperature dependence, the corresponding

multipliers need not be specified. A representation for the isotropic hardening, however, must be
specified and can be defined via linear, power-law, Voce, or user-defined representations. For the
user-defined case, an isotropic hardening function is required and it must be highlighted that the
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interpretation differs from the general user-defined hardening model. In this case, as the specified
function represents the isotropic hardening, it should start from zero — not yield.

Although the flow-stress hardening model defaults to rate and temperature independent, a
multiplier may be defined for either (or both) of the terms. For rate-dependence, either the
previously discussed Johnson-Cook or power-law breakdown models or a user-defined multiplier
may be used. For the user-defined capability, the multiplier should be input as a strictly positive
function of the equivalent plastic strain rate with a value of one in the rate-independent limit.

In terms of temperature dependence, the multiplier may be specified given a Johnson-Cook
dependency [48], [49],

0 - Qref )M
Qmelt - Href ’

&(9):1—(

with O, Omerr and M being the reference temperature, melting temperature, and temperature
exponent. The temperature multiplier may also be specified via a user defined function.

4.15.1.3 Decoupled Flow Stress

Like the flow-stress hardening method, the decoupled flow-stress hardening implementation is a
generalization of the hardening behaviors to allow greater flexibility. In differentiating the two, for
the decoupled model the rate and temperature dependence may be separately specified for the
yield and hardening portions of the flow stress. As such, the generic flow-stress definition of

o (87, 87.0) = oy, (87) &y (0) + K (57) 6 (87) o, (0)

is used in which ¢ and & are rate and temperature multipliers, respectively, that by default are
unity (such that the response is rate and temperature independent) with subscripts y and h
denoting functions associated with yield and hardening. The isotropic hardening is described by
K (&7) and o is the constant initial yield stress. It may also be seen that if the yield and hardening
dependencies are the same (6y = 0y, and Jy = dy,) the decoupled flow stress model reduces to that
of the flow stress case and mirrors the general structure of the Johnson-Cook model [48], [49].

Given the aforementioned defaults for rate and temperature dependence, the corresponding
multipliers need not be specified. A representation for the isotropic hardening, however, must be
specified and can be defined via linear, power-law, Voce, or user-defined representations. For the
user-defined case, an isotropic hardening function should be used and it must be highlighted that
the interpretation differs from the general user-defined hardening model. In this case, as the
specified function represents the isotropic hardening, it should start from zero — not yield.

Although the decoupled flow-stress hardening model defaults to rate and temperature
independent, a multiplier may be defined for any of the terms. For rate-dependence, either the
previously discussed Johnson-Cook or power-law breakdown models or a user-defined multiplier
may be used. For the user-defined capability, the multiplier should be input as a strictly positive
function of the equivalent plastic strain rate with a value of one in the rate-independent limit.
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In terms of temperature dependence, the multiplier may be specified given a Johnson-Cook
dependency [48], [49],

0 — Qref )M
emelt - Gref ’

&(9):1—(

where Orer, Omelr, and M are the reference temperature, melting temperature, and temperature
exponent. A temperature multiplier may also be specified via a user defined function.

4.15.2 Implementation

The Hill plasticity model uses a predictor-corrector algorithm for integrating the constitutive
model. Given a rate of deformation, ifindex d;;else dfi, and a time step, A, a trial stress state is
calculated based on an elastic response

T, =T + At Cijpdy

If the trial stress state lies outside the yield surface, i.e. if ifindex ¢(Tl.’j’ ) > aelse ¢(T) > ofi,
then the model uses a backward Euler algorithm to return the stress to the yield surface. There are
two equations that need to be solved. To ensure that the plastic strain increment is in the correct
direction we have
op
oT;;
while to ensure that the stress state is on the yield surface we require

f=9¢(T;) -5 (") =0
The primary algorithm for solving these equations is a Newton-Raphson algorithm. Using Ay

(which is equal to A&P) and ifindex T;;else Tfi as the solution variables, we set up an iterative
algorithm where

0

P _ P
R! = Atd!, - Ay

Ay*D = Ay (0 L A (Ay)
(k+1) _ (k)
Ly " =T +AT
where Ay = 0 and ifindex TiS.O) = Tfj’ else T(” = T fi and
Ardf; = Cpy (T = Tu)

The Newton-Raphson algorithm gives

k
F0 _ g6 p0) ¢
ij ijkl BT,
Ady) = —5 ®
¢ (k) 00 a0
aT,;, ikl 3T,

8¢(k)
0Tk

—_r® (R
ATy = -L, (R +A(Ay)
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A straightforward Newton-Raphson algorithm does not always converge, so the return mapping
algorithm is augmented with a line search algorithm

Ay*D = Ay L oA (Ay)

(k+1) _ (k)
Iy =T +aAl;

where @ € (0, 1] is the line search parameter which is determined from certain convergence
considerations. If @ = 1 then the Newton-Raphson algorithm is recovered. The line search
algorithm greatly increases the reliability of the return mapping algorithm.

4.15.3 Verification

The Hill plasticity material model is verified for a number of loading conditions.

Additional verification exercises for the various failure models and adiabatic heating capabilities
may be found in [61], [62] and [60], respectively.

The elastic properties used in these analyses are £ = 70 GPa and v = 0.25. The parameters that
are used to define the yield surface are

R11 =1.000680 ; Rj2=0.909194
R22 = 0.906397 ) R23 =0.851434

R33 =1.027380 ; R31 =0.799066

These parameters correspond to a parameterization of the Barlat model for 2090-T3 aluminum [9]
that is fit to the Hill model. The hardening law used for the model is a Voce law with the following
form

o (&P) = oy + A (1 —exp(-né’))

For these calculations o, = 200 MPa, A = 200 MPa, and n = 20. Finally, the coordinate system
used in these calculations is a rectangular coordinate system with the ey, e;, e3 axes aligned with
the x, y, z axes.

4.15.3.1 Uniaxial Stress

The Hill plasticity model is tested in uniaxial tension along the three orthogonal principal material
directions. The tests looks at the stress, the strain, and the equivalent plastic strain and compares
these values against analytical results for the same problem. In this verification problem only the
normal stresses are needed, and the shear terms are not exercised. Therefore, the parameters R,
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R»>3, and R3; are not used in the problem and a separate verification test will be needed for shear
response.

The model is tested in uniaxial stress in the x, y, and z directions, giving three test problems. Each
problem can be formulated exactly the same. For the description of the test we will only look at
loading in the x direction (x; direction).

For the uniaxial stress problem, the only non-zero stress component is o71. In the analysis that
follows 011 = 0. There are three non-zero strain components, €11, €22, and £33. In the analysis
that follows €11 = €. Furthermore, the axial elastic strain, 8‘]’1 = o /E will be denoted by &°.

Axial Stresses

The uniaxial stress calculated by the model in Adagio is compared to analytical solutions. For
uniaxial loading in the e direction, the effective stress is

o
R

If the stress state is on the yield surface, then ¢ = & (£7), so the axial stress, as a function of the
hardening function, is

o = Ry o (P) (4.45)

This shows that the stress state can be calculated from the hardening law and the anisotropy
parameters.

To evaluate the axial stress we need the equivalent plastic strain as a function of the axial strain. If
we equate the rate of plastic work we get

TEP =0 (6-£° — & =Ry (6-¢°

which, when integrated, gives us an implicit equation for the equivalent plastic strain

5'(51’))
E

gl =Ry (8—R11 (4.46)

The equivalent plastic strain can then be used in (4.45) to find the axial stress, o

The axial stresses for loading in the other directions can be found the same way. The axial stresses
for loading in the ey, e;, and e3 directions are shown in Fig. 4.59.

Lateral Strains

For the lateral strains we need the plastic strains and therefore the normal to the yield surface. The
components of the normal to the yield surface are
g 1 8¢ 09

=— =-HRy1 ; — =-GRy
60'11 Ry (90'22 60'33

180



The elastic axial and lateral strain components are

o
e _ _ . e _ & _ _ _
811———8 N 822—833— V—E— Ve

E

(&

The plastic axial strain component is

p o
g, =&1—-—==€—-¢&
11 E

€

which comes from the additive decomposition of the strain rates. Using the equivalent plastic
strain (4.46) we can find the lateral plastic strain components

‘952 =—(g-¢&°% HR%1 ; 823 =—(e-¢&% GR%1
The lateral total stain components prior to yield are £yp = £33 = —ve. After yield they are

&gy = —ve® — HR1EP

£33 —VSe - GR]]ép

where ° = o /E.

For loading in the y direction, a similar analysis leads to the lateral strains, after yield

£33 = —ve® — FRyEP

11 = —ve® — HRy»EP
For loading in the z direction, a similar analysis leads to the lateral strains, after yield

e11 = —ve® — GRy3&P

&y = —V{;‘e - FR33{§p

Results for all three loadings are shown in Fig. 4.60, Fig. 4.61, and Fig. 4.62.

4.15.3.2 Pure Shear

The shear stress calculated by the Hill plasticity model in Adagio is compared to analytical
solutions. Without loss of generality we will look at solutions for pure shear with respect to the
e1-e, axes. Solutions for shear with respect to the other axes will be similar. In what follows, the
only non-zero shear stress will be o717, and the only non-zero shear strain will be &1, In general,
for pure shear with respect to the e;-e, axes, the effective stress is

_y3212
¢ Rz
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Fig. 4.59 Stresses when loading in the ¢;, ¢, and e;-directions using the Hill model with a Voce
hardening law.
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Fig. 4.60 Lateral strain as a function of axial strain for the Hill model of 2090-T3 aluminum. Loading
is in the ¢,-direction and the hardening law is a Voce law.
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Fig. 4.61 Lateral strain as a function of axial strain for the Hill model of 2090-T3 aluminum. Loading
is in the ¢,-direction and the hardening law is a Voce law.
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Fig. 4.62 Lateral strain as a function of axial strain for the Hill model of 2090-T3 aluminum. Loading
is in the ¢;-direction and the hardening law is a Voce law.
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If the stress state is on the yield surface, then ¢ = & (£7), so the shear stress is
O1p=—F70 (ép) (4.47)
V3

This shows that the pure shear stress state can be calculated from the hardening law and the
anisotropy parameters.

To evaluate the shear stress we need the equivalent plastic strain as a function of the shear strain.
If we equate the rate of plastic work we get

_ 2Ry

V3

which, when integrated, gives us an implicit equation for the equivalent plastic strain

gel =205 (612 - 65,) — & (£12 — €],)

If we define Ry = R}2/ V3 then we get a form similar to what we had for uniaxial stress

_ . . 0 (&P)
P =2R -R
€ 12 (812 Ve )

The equivalent plastic strain can now be used to find the shear stress.

Boundary Conditions for Pure Shear
The deformation gradient that gives pure shear for loading relative to the e-e, axes is
Haea) -1 o 050
[Fl=[i@a-2" L@a+a) o] - [el=|e 0 0] ; £=Ina
0 0 1 00O

For loading relative to the e;-e3 axes and the e3-e| axes the boundary conditions are modified
appropriately.

Results

The results for the Hill plasticity model loaded in pure shear are shown in Fig. 4.63. We see that
the stress strain curves in pure shear as calculated by Adagio follow the expected stress strain
curves. All other stress and strain components for the three problems are zero.
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Fig. 4.63 Shear stress versus shear strain using the Hill model with a Voce hardening law. Results
are for shear in the three orthogonal planes of the material coordinate system.
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4.15.3.3 Plastic Hardening

To verify the capabilities of the hardening models, rate independent and rate dependent alike, the
constant equivalent plastic strain rate, £°, uniaxial stress and pure shear verification tests
described in Appendix A are utilized. In these simplified loading cases, the material state may be
found explicitly as a function of time knowing the prescribed equivalent strain rate. For the rate
independent cases, a strain rate of &¥ = 1 X 10~%s~! is used for ease in simulations although the
selected rate does not affect the results. Through this testing protocol, the hardening models are
not only tested at different rates but also in different principal material directions to consider the
anisotropy of the Hill yield surface. Additionally, the rate dependent models are tested for a wide
range of strain rates (over five decades) and with all three rate independent hardening functions
(7y in the previous theory section). Although linear, Voce, and power-law rate independent
representations are utilized in the rate dependent tests, in those cases the hardening models are
prescribed via user-defined analytic functions. The rate independent verification exercises, on the
other hand, examine the built in hardening models. This distinction necessitates the different
considerations and treatments.

The various rate dependent and rate independent hardening coefficients are found in Table 4.20
while the remaining model parameters are unchanged from the previous verification exercises.
For the current verification exercises, the rate independent hardening models (linear, Voce, and
power-law) will first be considered and then the rate dependent forms (Johnson-Cook, power-law
breakdown).

Table 4.20 The model parameters for the hardening verification tests used with the Hill plasticity
model during verification tests. Parameters for the rate independent hardening functions, &, are
also given and denoted with a - while the subscript refers to the functional form.

C 0.1 &0 I x107%s7T
g 021s " |m 16.4

Hiinear | 200 MPa
APL 400 MPa ﬁpL 0.25
Avoce | 200 MPa | fivoee | 20

Linear

To examine the performance of the rate independent linear hardening model, the verification
exercises from Appendix A are used. In this case, as the Hill yield surface is being considered, the
responses are determined numerically and analytically in the uniaxial stress case with loading in
three different principal material directions and three different shear planes for the pure shear case.
These results are presented in Fig. 4.64. From these responses, superb agreement between the
analytical and numerical results is noted. Additionally, the constant linear stress-strain response
during plastic deformations clearly demonstrates the behavior giving this model its name.
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Fig. 4.64 Uniaxial stress-strain (a) and pure shear (b) responses of the Hill plasticity model with rate
independent, linear hardening. Solid lines are analytical while open symbols are numerical.

Power-Law

The rate independent power-law hardening model is verified by using the uniaxial stress and pure
shear problems of Appendix A. Results of these endeavors determined analytically and
numerically are presented in Fig. 4.65 in which the uniaxial stress problem is presented for
loading aligned with the three different principal material directions and three different shear
planes for the pure shear case. From these results, outstanding agreement is noted between both
numerical and analytical results sets verifying the model. Also, the initially stiff hardening
decreasing to a lower linear tangent modulus characteristic of power-law hardening models is
clearly evident in the various result sets of Fig. 4.65.
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Fig. 4.65 Uniaxial stress-strain (a) and pure shear (b) responses of the Hill plasticity model with rate
independent, power-law hardening. Solid lines are analytical while open symbols are numerical.
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Voce

Verification of the rate independent Voce hardening model is pursued by considering both the
uniaxial stress and pure shear approaches of Appendix A. The results of these investigations
determined analytically and numerically are shown in Fig. 4.66. For the uniaxial stress cases,
loadings in each of the three principal material directions is presented while complementary
results from the three shear planes are shown for the pure shear case. In each of these six
instances, exemplary agreement is observed between the different results sets. Additionally, such
stress-strain results also show the saturation behavior associated with Voce models in which at
some equivalent plastic strain the material no longer hardens.
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Fig. 4.66 Uniaxial stress-strain (a) and pure shear (b) responses of the Hill plasticity model with rate
independent, Voce hardening. Solid lines are analytical while open symbols are numerical.

Johnson-Cook

As noted in Appendix A, the uniaxial stress response depends on the yield surface anisotropy
coefficients (for the Hill model the R’s). The respective coefficients are given in the
aforementioned appendix while Fig. 4.67 and Fig. 4.68 present the results of forty-five different
verification exercises corresponding to different combinations of the three material principal
directions (€1, é», and é3), five equivalent plastic strain

rates(1 x 1073, 1 x 1072, 1 x 107!, 1 x 10% and 1 x 10" s71), and three rate independent
hardening models (linear, power-law, and Voce). For each combination, the analytical and
numerical results match to within acceptably small numerical differences.

For the pure shear case, the problem discussed in Appendix A is considered. The results still
depend on the Hill R coefficients and forty-five different loadings are presented in Fig. 4.69 and
Fig. 4.70. In this instance, three different shearing planes are used in lieu of the principal
directions. Nonetheless, for these results the key result remains the same — analytical matches
numerical further verifying rate dependent capabilities.
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Fig. 4.67 Uniaxial stress-strain response of the Hill plasticity model with rate dependent, Johnson-
Cook type hardening with (a-c) linear and (d-f) power-law rate independent hardening. Solid lines
are analytical results while open symbols are numerical.
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Fig. 4.69 Stress-strain response of the Hill plasticity model with rate dependent, Johnson-Cook type
hardening in pure shear with (a-c) linear and (d-f) power-law rate independent hardening. Solid lines
are analytical results while open symbols are numerical.
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Fig. 4.70 Stress-strain response of the Hill plasticity model with rate dependent, Johnson-Cook

type hardening in pure shear with (a-c) Voce rate independent hardening. Solid lines are analytical
results while open symbols are numerical.
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Power-Law Breakdown

For the power-law breakdown model, the same forty-five cases discussed in the previous section
(three directions, five rates, three hardening models) are again solved via the approach of
Appendix A in Fig. 4.71 and Fig. 4.72. Although the impact of rate on the responses differs due to
the assumed representation of the rate-dependent hardening, excellent agreement is still noted
between analytical and numerical results.

To expand on the uniaxial stress results, the response through pure shear is also probed via the
method of Appendix A. Again forty-five different cases are investigated and their results are
presented in Fig. 4.73 and Fig. 4.74. Once again, the results aligning thereby verifying the
capability of the model and producing additional credibility.

4.15.4 User Guide

BEGIN PARAMETERS FOR MODEL HILL_PLASTICITY

#

# Elastic constants

#

YOUNGS MODULUS = <real>

POISSONS RATIO = <real>

SHEAR MODULUS = <real>

BULK MODULUS = <real>

LAMBDA = <real>

TWO MU = <real>

#

# Material coordinates system definition

#

COORDINATE SYSTEM = <string> coordinate_system_name

DIRECTION FOR ROTATION = <real> 11213

ALPHA = <real> (degrees)

SECOND DIRECTION FOR ROTATION = <real> 1|23

SECOND ALPHA = <real> (degrees)

#

# Yield surface parameters

#

YIELD STRESS = <real>

R11 = <real> (

R22 = <real> (

R33 <real> (
(
(
(

R12 = <real>
R23 = <real>
R31 = <real>

N
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Fig. 4.71 Uniaxial stress-strain response of the Hill plasticity model with rate dependent, power-
law breakdown type hardening in with (a-c) linear and (d-f) power-law rate independent hardening.
Solid lines are analytical results while open symbols are numerical.
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Fig. 4.72 Uniaxial stress-strain response of the Hill plasticity model with rate dependent, power-law

breakdown type hardening in with (a-c) Voce rate independent hardening. Solid lines are analytical
results while open symbols are numerical.
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Fig. 4.73 Stress-strain response of the Hill plasticity model with rate dependent, power-law break-
down type hardening in pure shear with (a-c) linear and (d-f) power-law rate independent hardening.
Solid lines are analytical results while open symbols are numerical.
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Fig. 4.74 Stress-strain response of the Hill plasticity model with rate dependent, power-law break-
down type hardening in pure shear with (a-c) Voce rate independent hardening. Solid lines are
analytical results while open symbols are numerical.
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#

# Hardening model

#

HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED |
FLOW_STRESS | DECOUPLED_FLOW_STRESS | JOHNSON_COOK |
POWER_LAW_BREAKDOWN

#

# Linear hardening

#

HARDENING MODULUS = <real>

#

# Power—law hardening

#

HARDENING CONSTANT = <real>

HARDENING EXPONENT = <real> (0.5)

LUDERS STRAIN <real> (0.0)

#

# Voce hardening

#

HARDENING MODULUS = <real>

EXPONENTIAL COEFFICIENT = <real>

#

# Johnson—-Cook hardening

#

HARDENING FUNCTION = <string>hardening_function_name
RATE CONSTANT = <real>

REFERENCE RATE = <real>

#

# Power law breakdown hardening

#

HARDENING FUNCTION = <string>hardening_function_name
RATE COEFFICIENT = <real>

RATE EXPONENT = <real>

# User defined hardening

#

HARDENING FUNCTION = <string>hardening_function_name
#

#

# Following Commands Pertain to Flow_Stress Hardening Model
#

# - Isotropic Hardening model

#

ISOTROPIC HARDENING MODEL = LINEAR | POWER_LAW | VOCE |

(continues on next page)
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(continued from previous page)

USER_DEFINED
#
# Specifications for Linear, Power-law, and Voce same as above
#
# User defined hardening
#
ISOTROPIC HARDENING FUNCTION = <string>iso_hardening_fun_name
#
# - Rate dependence
#
RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |
USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)

Specifications for Johnson-Cook, Power-law-breakdown
same as before EXCEPT no need to specify a

hardening function

User defined rate multiplier

HH H R FHR W R HH

RATE MULTIPLIER FUNCTION = <string> rate_mult_function_name

#

# — Temperature dependence

#

TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |
TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)

#

# Johnson-Cook temperature dependence
#

MELTING TEMPERATURE = <real>
REFERENCE TEMPERATURE = <real>
TEMPERATURE EXPONENT = <real>

#

# User—-defined temperature dependence

TEMPERATURE MULTIPLIER FUNCTION = <string>temp_mult_function_name

#

# Following Commands Pertain to Decoupled Flow Stress Hardening Model
#

# - Isotropic Hardening model

#

ISOTROPIC HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED
#

# Specifications for Linear, Power-law, and Voce same as above

#

# User defined hardening

#

(continues on next page)
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(continued from previous page)

ISOTROPIC HARDENING FUNCTION = <string>isotropic_hardening_function_
—name
#
# - Rate dependence
#
YIELD RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |
USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)

#

# Specifications for Johnson-Cook, Power—-law-breakdown same as before
# EXCEPT no need to specify a hardening function

# AND should be preceded by YIELD

#

# As an example for Johnson—-Cook yield rate dependence,
#

YIELD RATE CONSTANT = <real>

YIELD REFERENCE RATE = <real>

#

# User defined rate multiplier

#

YIELD RATE MULTIPLIER FUNCTION = <string>yield_rate_mult_function_
—name

#

HARDENING_RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |
USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)

Syntax same as for yield parameters but with a HARDENING prefix

— Temperature dependence

HH R R R H

YIELD TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |
TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)

#

# Johnson—-Cook temperature dependence
#

YIELD MELTING TEMPERATURE = <real>
YIELD REFERENCE TEMPERATURE = <real>
YIELD TEMPERATURE EXPONENT = <real>

#

# User-defined temperature dependence
YIELD TEMPERATURE MULTIPLIER FUNCTION = <string>yield_temp_mult_fun_
—name
#
HARDENING TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |
TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)

(continues on next page)
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# Syntax for hardening constants same as for yield but
# with HARDENING prefix
#
#
# Optional Failure Definitions
# Following only need to be defined if intend to use failure model
#

FAILURE MODEL = TEARING_PARAMETER | JOHNSON_COOK_FAILURE | WILKINS
| MODULAR_FAILURE | MODULAR_BCJ_FAILURE

CRITICAL FAILURE PARAMETER = <real>

#

# TEARING_PARAMETER Failure model definitions
#

TEARING PARAMETER EXPONENT = <real>

#

# JOHNSON_COOK_FAILURE Failure model definitions
#

JOHNSON COOK D1 = <real>

JOHNSON COOK D2 = <real>

JOHNSON COOK D3 = <real>

JOHNSON COOK D4 = <real>

JOHNSON COOK D5 = <real>

#

#Following Johnson-Cook parameters can only be defined once. As.
—such, only

# needed if not previously defined via Johnson-Cook multipliers

# w/ flow-stress hardening. Does need to be defined

# w/ Decoupled Flow Stress

#

REFERENCE RATE = <real>

REFERENCE TEMPERATURE = <real>

MELTING TEMPERATURE = <real>

#

# WILKINS Failure model definitions

#

WILKINS ALPHA = <real>

WILKINS BETA = <real>

WILKINS PRESSURE = <real>

#

# MODULAR_FAILURE Failure model definitions
#

PRESSURE MULTIPLIER = PRESSURE_INDEPENDENT | WILKINS

| USER_DEFINED (PRESSURE_INDEPENDENT)

(continues on next page)
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LODE ANGLE MULTIPLIER = LODE_ANGLE_INDEPENDENT |
WILKINS (LODE_ANGLE_INDEPENDENT)
TRIAXTALITY MULTIPLIER = TRIAXIALITY_INDEPENDENT | JOHNSON_COOK
| USER_DEFINED (TRIAXIALITY_
—INDEPENDENT)
RATE FAIL MULTIPLIER = RATE_INDEPENDENT | JOHNSON_COOK

| USER_DEFINED (RATE_INDEPENDENT)
TEMPERATURE FATL MULTIPLIER = TEMPERATURE_INDEPENDENT | JOHNSON_COOK
| USER_DEFINED (TEMPERATURE_

—INDEPENDENT)

#

# Individual multiplier definitions
#

PRESSURE MULTIPLIER = WILKINS
WILKINS ALPHA = <real>
WILKINS PRESSURE = <real>

#

PRESSURE MULTIPLIER USER_DEFINED

PRESSURE MULTIPLIER FUNCTION = <string> pressure_multiplier_fun_name
#

LODE ANGLE MULTIPLIER = WILKINS

WILKINS BETA = <real>

#

TRIAXTIALITY MULTIPLIER = JOHNSON_COOK
JOHNSON COOK D1 = <real>
JOHNSON COOK D2 = <real>
JOHNSON COOK D3 = <real>

#

TRIAXTALITY MULTIPLIER USER_DEFINED

TRIAXIALITY MULTIPLIER FUNCTION = <string> triaxiality_multiplier_
—fun_name

#

RATE FAIL MULTIPLIER JOHNSON_COOK

JOHNSON COOK D4 <real>

# REFERENCE RATE should only be added if not previously defined

REFERENCE RATE = <real>

#

RATE FAIL MULTIPLIER USER_DEFINED

RATE FAIL MULTIPLIER FUNCTION = <string> rate_fail multiplier_fun_
—name

#

TEMPERATURE FAIL MULTIPLIER = JOHNSON_COOK

JOHNSON COOK D5 = <real>

# JC Temperatures should only be defined if not previously given
REFERENCE TEMPERATURE = <real>

(continues on next page)
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MELTING TEMPERATURE = <real>

#

TEMPERATURE FAIL MULTIPLIER = USER_DEFINED

TEMPERATURE FAIL MULTIPLIER FUNCTION = <string> temp_multiplier_fun_
—name

#

# MODULAR _BCJ_FAILURE Failure model definitions

#

INITIAL DAMAGE = <real>

INITIAL VOID SIZE = <real>

DAMAGE BETA = <real> (0.5)

GROWTH MODEL = COCKS_ASHBY | NO_GROWTH (NO_GROWTH)

NUCLEATION MODEL HORSTEMEYER_GOKHALE | CHU_NEEDLEMAN_STRAIN
| NO_NUCLEATION (NO_NUCLEATION)
#

GROWTH RATE FAIL MULTIPLIER

JOHNSON_COOK | USER_DEFINED

| RATE_INDEPENDENT

(RATE_INDEPENDENT)

GROWTH TEMPERATURE FAIL MULTIPLIER = JOHNSON_COOK | USER_DEFINED
| TEMPERATURE_INDEPENDENT
(TEMPERATURE__INDEPENDENT)

#

NUCLEATION RATE FAIL MULTIPLIER

JOHNSON_COOK | USER_DEFINED

| RATE_INDEPENDENT

(RATE_INDEPENDENT)

NUCLEATION TEMPERATURE FAIL MULTIPLIER = JOHNSON_COOK | USER_DEFINED
| TEMPERATURE_INDEPENDENT
(TEMPERATURE_INDEPENDENT)

#

# Definitions for individual growth and nucleation models

#

GROWTH MODEL = COCKS_ASHBY

DAMAGE EXPONENT = <real> (0.5)

#

NUCLEATION MODEL = HORSTEMEYER_GOKHALE

NUCLEATION PARAMETER1 = <real> (0.0)

NUCLEATION PARAMETER2 = <real> (0.0)

NUCLEATION PARAMETER3 = <real> (0.0)

#

NUCLEATION MODEL = CHU_NEEDLEMAN_STRAIN
NUCLEATION AMPLITUDE = <real>

MEAN NUCLEATION STRAIN = <real>

NUCLEATION STRAIN STD DEV = <real>

#

# Definitions for rate and temperature fail multiplier

(continues on next page)
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# Note: only showing definitions for growth.

# Nucleation terms are the same just with NUCLEATION instead
# of GROWTH

#

GROWTH RATE FAIL MULTIPLIER = JOHNSON_COOK

GROWTH JOHNSON COOK D4 = <real>

GROWTH REFERENCE RATE = <real>

#

GROWTH RATE FAIL MULTIPLIER = USER_DEFINED

GROWTH RATE FAIL MULTIPLIER FUNCTION = <string> growth_rate_fail_
—mult_ func

#

GROWTH TEMPERATURE FAIL MULTIPLIER = JOHNSON_COOK

GROWTH JOHNSON COOK D5 = <real>

GROWTH REFERENCE TEMPERATURE = <real>

GROWTH MELTING TEMPERATURE = <real>

#

GROWTH TEMPERATURE FAIL MULTIPLIER = USER_DEFINED

GROWTH TEMPERATURE FAIL MULTIPLIER FUNCTION = <string> temp_fail_
—mult_func

#
#
#
# Optional Adiabatic Heating/Thermal Softening Definitions
# Following only need to be defined if intend to use failure model
#
THERMAL SOFTENING MODEL = ADIABATIC | COUPLED
#
SPECIFIC HEAT = <real> # not needed for COUPLED
BETA_TQ = <real>

END [PARAMETERS FOR MODEL HILL_PLASTICITY]

In the command blocks that define the Hill plasticity model:
* The reference nominal yield stress, 7, is defined with the YTELD STRESS command line.

* The ratio of the normal yield stress in the €;€; material direction is defined with the R11
command line. The default is 1.0.

* The ratio of the normal yield stress in the €,€; material direction is defined with the R22
command line. The default is 1.0.

* The ratio of the normal yield stress in the €3€3 material direction is defined with the R33
command line. The default is 1.0.
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* The ratio of the shear yield stress in the €€, material direction is defined with the R12
command line. The default is 1.0.

* The ratio of the shear yield stress in the €,€; material direction is defined with the R23
command line. The default is 1.0.

* The ratio of the shear yield stress in the €3€; material direction is defined with the R31
command line. The default is 1.0.

* The type of hardening law is defined with the HARDENING MODEL command line, other
hardening commands then define the specific shape of that hardening curve.

* The hardening modulus for a linear hardening model is defined with the HARDENING
MODULUS command line.

* The hardening constant for a power law hardening model is defined with the HARDENING
CONSTANT command line.

* The hardening exponent for a power law hardening model is defined with the HARDENING
EXPONENT command line.

* The Luders strain for a power law hardening model is defined with the LUDERS STRAIN
command line.

* The hardening function for a user defined hardening model is defined with the HARDENING
FUNCTION command line.

* The shape of the spline for the spline based hardening is defined by the CUBIC SPLINE
TYPE, CARDINAL PARAMETER, KNOT EQPS, and KNOT STRESS command lines.

Output variables available for this model are listed in Table 4.21.

Table 4.21 State Variables for HILL PLASTICITY Model

Name Description

EQPS equivalent plastic strain, 7
EQDOT equivalent plastic strain rate, £”
SEFF effective stress, ¢
TENSILE_EQPS tensile equivalent plastic strain, éf’
DAMAGE damage, ¢

VOID_COUNT void count, n

VOID_SIZE void size, v

DAMAGE_DOT damage rate, ¢
VOID_COUNT_DOT void count rate, 7
PLASTIC_WORK_HEAT_RATE | plastic work heat rate, Q7

207




4.16 Barlat Plasticity Model

4.16.1 Theory

The Barlat plasticity model is a hypoelastic, rate-independent plasticity model. The underlying
yield surface is both anisotropic and non-quadratic [9]. With respect to the former, linear
transformations of the deviatoric stress are used to capture texture and anisotropy effects. The rate
form of this model assumes an additive split of the rate of deformation into an elastic and plastic

part
_ne p
Dij = Dij + Dij'
The stress rate only depends on the elastic rate of deformation
o= CijuDy,
where C;j; are the components of the fourth-order, isotropic elasticity tensor.

To describe anisotropy in the yield-behavior, two linear transformation tensors, lej . and Cl’J’ 4o are
introduced such that,

’ v . "o
Sij = CijraSki ; Sij = CijkiSkls
with s;; being the deviatoric stress tensor (s;; = 0y; — 1/30%40;;) and s; ; and s:; being

transformed stresses. Two transformations are used to capture both the anisotropy of the yield

surface and flow rule. In Voigt notation the two transformation tensors are given as,

0 c’12 —c’13 0 0 0
c’21 0 —c’23 0O O
ch, —=c 0 0

()
(e
(e)
)
_‘;\
IN
o O
S o OO

0 0 0 0 0 c
0” c’l’2 —0:1:3 0 0 0
R SR
m_ | %1 3
(€71 = 0 0 0 c”’ 0 0
0 0 0 0 & 0
0o 0 0 0 0

Alternatively, the transformed stresses may be written in terms of the Cauchy stress tensor as,

r 7/ . "o o_gn

Sij = Lijuou ’ Sij = Lijuoki,

’ _ v _ o : L . . :

whf.:re L"J' w = C jmnlmnkl and Ll.j w = C jmnlmnkl- In this case, /;;x; is the symmetric deviatoric
projection tensor and takes the form of,

1

1
Lija = 5 (6ikdj1 +6udjk) — §5ij5kl~
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In reduced form,

Cp+cl; 2, +c); ¢, —2¢;; O 0 0
—20’21 + c’23 c’21 + c’23 c’21 — 26’23 0 0 0
(L] = L] =2e5 +c5y o5y —2e o+ 0, 0 0 ’
3 0 0 0 3¢, 0 0
0 0 0 0 3¢ O
0 0 0 0 0 3c

and an analogous expression may be written for L:; Ll

The yield surface, f, is given as,
f (0, &7) = ¢ (03j) — T (&") =0,

in which ¢ (o7;) is the effective stress and & (£7) is the current yield stress that may depend on
rate and/or temperature. The effective stress is written in terms of the principal transformed
stresses (sl’. and s;’, respectively) and the yield surface exponent, a, as,

1
6 (o)) :{Z[m — 1 |5 = Y1+ IS = s
+ 155 = 5717+ |55 — s5|" + |55, = s5|°
1/a
+ 185 = 5717+ |55 = s51" + |55 — s’3’|“]}

An example of such a yield surface is given in Fig. 4.75 along with examples of previously
presented (von Mises, Hosford, Hill) surfaces. The presented Barlat surface corresponds to that of
2090-T3 aluminum first characterized by Barlat et al. [9]. In Fig. 4.75, both the anisotropy and
non-quadratic nature of the yield surface is evident leading to differing strengths and flow
directions at various stresses from any of the other models.

The orientation of the principal material axes with respect to the global Cartesian axes may be
specified by the user. First, a rectangular or cylindrical reference coordinate system is defined.
Spherical coordinate systems are not currently implemented for the Barlat model. The material
coordinate system can then be defined through two successive rotations about axes in the
reference rectangular or cylindrical coordinate system. In the case of the cylindrical coordinate
system this allows the principal material axes to vary point-wise in a given element block.

The plastic rate of deformation, as with the isotropic models, assumes associated flow

in which v is the consistency multiplier. Given the form for ¢, y is equal to the rate of the
equivalent plastic strain, £”. As the yield surface is cast in transformed stress space, determining
the flow direction in Cartesian space may be done via the chain rule (details may be found in [86])
leading to an expression of the form,

3 ’ ”
a¢ Z ( a¢ ask ’ a¢ 6Sk ”
7 L

. ’ ’ mnij ” 7 mnij | *
doi; 05} Osmp ds} Osin

(4.48)
k=1

209



inll

f vonMises

fHosford fBarlat

Fig. 4.75 Example Barlat yield surface, fzq 4 (0ij, 87 = O), of 2090-T3 aluminum presented in the
deviatoric m-plane. Comparison von Mises (J;), Hosford (with « = 8), and Hill surfaces are also
presented for comparison.
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For more information about the Barlat plasticity model, consult [9], [86]. Additional discussion
on options for failure models and adiabatic heating may be found in [61], [62] and [60],
respectively.

4.16.1.1 Plastic Hardening

Plastic hardening refers to increases in the flow stress, -, with plastic deformation. As such,
hardening is described via a functional relationship between the flow stress and isotropic
hardening variable (effective plastic strain), & (£”). Over the course of nearly a century of work in
metal plasticity, a variety of relationships have been proposed to describe the interactions
associated with different physical interpretations, deformation mechanisms, and materials. To
enable the utilization of the same plasticity models for different material systems, a modular
implementation of plastic hardening has been adopted such that the analyst may select different
hardening models from the input deck thereby avoiding any code changes or user subroutines. In
this section, additional details are given for the different models to enable the user to select the
appropriate choice of model. Note, the models being discussed here are only for isotropic
hardening in which the yield surface expands. Kinematic hardening in which the yield surface
translates in stress-space with deformation and distortional hardening where the shape of the yield
surface changes shape with deformation are not treated. For a larger discussion of the
phenomenology and history of different hardening types, the reader is referred to [42], [57],

[64].

Given the ubiquitous nature of these hardening laws in computational plasticity, some (if not
most) of this material may be found elsewhere in this manual. Nonetheless, the discussion is
repeated here for the convenience of the reader.

Linear

Linear hardening is conceptually the simplest model available in LAME. As the name implies, a
linear relationship is assumed between the hardening variable, €7, and flow stress. The hardening
modulus, H’, is a constant giving the rate of change of flow stress with plastic flow. The flow
stress expression may therefore be written,

Tg=o0y+HE.

The simplicity of the model is its main feature as the constant slope,

do o

dsr
makes the model attractive for analytical models and cheap for computational implementations
(e.g. radial return algorithms require only a single correction step). Unfortunately, the simplicity
of the representation also means that it has limited predictive capabilities and can lead to overly
stiff responses.
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Power Law

Another common expression for isotropic hardening is the power-law hardening model. Due to its
prevalence, a dedicated ELASTIC-PLASTIC POWER LAW HARDENING model may be found
in LAME (see Section 4.8.1). This expression is given as,

5':0'y+A<§p—8L >n,

in which < - > are Macaulay brackets, £ is the Luders strain, A is a fitting constant, and » is an
exponent typically taken such that 0 < n < 1. The Luders strain is a positive, constant strain value
(defaulted to zero) giving an initially perfectly plastic response in the plastic deformation domain
(see Fig. 4.20). The derivative is then simply,

do

— =nA <&’ —g >V

d&v L
Note, one difficulty in such an implementation is that when the effective equivalent plastic strain is
zero, numerical difficulties may arise in evaluating the derivative and necessitate special treatment
of the case.

Voce

The Voce hardening model (sometimes referred to as a saturation model) uses a decaying
exponential function of the equivalent plastic strain such that the hardening eventually saturates to
a specified value (thus the name). Such a relationship has been observed in some structural metals
giving rise to the popularity of the model. The hardening response is given as,

o=0y,+A(1-exp(-nél)),

in which A is a fitting constant and # is a fitting exponent controlling how quickly the hardening
saturates. Importantly, the derivative is written as,

45
é =nAexp (-né?),

and is well defined everywhere giving the selected form an advantage over the aforementioned

power law model.

Johnson-Cook

The Johnson-Cook hardening model is a variant of the classical Johnson-Cook [48], [49]
expression. In this instance, the temperature-dependence is neglected to focus on the
rate-dependent capabilities while allowing for arbitrary isotropic hardening forms via the use of a
user-defined hardening function. With these assumptions, the flow stress may be written as,

o2

212

o =y (87)




in which &, (&”) is the user-specified rate-independent hardening function, C is a fitting constant
and & is a reference strain rate. The Macaulay brackets ensure the material behaves in a rate
independent fashion when &7 < &.

Power Law Breakdown

Like the Johnson-Cook formulation, the power-law breakdown model is also rate-dependent.
Again, a multiplicative decomposition is assumed between isotropic hardening and the
corresponding rate-dependence dependent. In this case, however, the functional form is derived
from the analysis of Frost and Ashby [33] in which power-law relationships like those of the
Johnson-Cook model cease to appropriately capture the physical response. The form used here is
similar to the expression used by Brown and Bammann [16] and is written as,

zp\ (1/m)
1 + asinh (8—) ,
8

with &, (&) being the user supplied rate independent expression, g is a model parameter related
to the activation energy required to transition from climb to glide-controlled deformation, and m
dictates the strength of the dependence.

o =y (8)

4.16.2 Implementation

Like the Hill and Hosford models, the Barlat plasticity model uses a elastic predictor-inelastic
corrector closest point projection (CPP) return mapping algorithm (RMA) for integration. Details
of the numerical scheme and forms of the necessary derivatives may be found in the work of
Scherzinger [86]. For this approach, given a rate of deformation, d,;, and a time step, At, a trial
stress state is calculated based on an elastic response

Tl-tjr = Tl’; + At Cijrdi.

If the trial stress state lies outside the yield surface, i.e. if gb(Tl.’j’ ) > 0, then the model uses an
implicit, backward Euler algorithm to return the stress to the yield surface. To perform this task,
two nonlinear equations need to be solved. The first is associated with the satisfaction of the
flow-rule and ensures that the plastic strain increment is in the correct direction. Such a relation
leads to a residual of the form,

Rij = Adg. - Ay— =0. (4.49)

while the second equation to be addressed enforces that the converged stress state is on the yield
surface and is written as,

f=¢(T;)-d (&) =0. (4.50)
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The primary method for solving these equations is a Newton-Raphson algorithm. With Ay (which
is equal to A&P) and T;; being the solution variables, an iterative algorithm is utilized such that

Ay**D = Ay L A (Ay)

Ti(.k+1) T(k) + AT,
J

with Ay© = 0 and Tl.(jo) = Tl’]r . The plastic rate of deformation correction is then simply
P _ ~-l
Adij - Cijkl (TIZ - Tkl) :

After linearizing the residual and consistency equations (Equations (4.49) and (4.50)), the set of
nonlinear equations may be solved for the correction increments leading to expressions of the
form,

(k)

) _ gk £ 9¢
f Ll]kl aTkl
3¢(k) ) a¢( )
aT;; Uk £

A(Ay) =
+H' )

(k)
_ ) [ pk ¢
ATy ==L (sz +A(Ay) 0T )

and _Ll.(].(k) ; 1s the Hessian of the RMA problem (not the yield surface) and is given as,

82k )—1

k) _ .. (k)
Lijkl N (Sl]kl * Ay ao'ijaO'kl

and S;ji = Cpj
Unfortunately, a straightforward Newton-Raphson algorithm does not always converge, so the

RMA is augmented with a line search algorithm producing modified incrementation relations
with

A)/(k“) = A)/(k) + aA (Ay),

Ti§_k+1) T(k) + QAT

where « € (0, 1] is the line search parameter which is determined from certain convergence
considerations. If @ = 1 then the Newton-Raphson algorithm is recovered. The line search
algorithm greatly increases the reliability of the return mapping algorithm.
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4.16.3 Verification

To verify the Barlat plasticity model a similar approach to that used for the Hill plasticity model
(Section 4.15.3) is utilized.

Additional verification exercises for the various failure models and adiabatic heating capabilities
may be found in [61], [62] and [60], respectively.

Specifically, both uniaxial stress and pure shear loadings are considered. To this end, the response
of a 2090-T3 aluminum [9] with Voce hardening of the form,

T (87) = oy + A (1 —exp (=b&P))

is used. The corresponding elastic, plastic, and anisotropy model parameters are given in Table
4.22.

Table 4.22 The material and model parameters for the Barlat plasticity model used for verification
testing. The anisotropy coefficients correspond to 2090-T3 aluminum.

E | 70 GPa % 0.25

a 8 oy | 200 MPa
A 200 MPa | b 20

¢, | -0.069888 | 7, | 0.981171

c\; | 0936408 | 7, | 0.476741
¢, | 0.079143 | ¢4, | 0.575316
c), | 1.003060 | ¢ | 0.866827
¢y | 0.524741 | ¢ [ 1.145010
¢, | 1363180 | %, | -0.079294
¢, | 1023770 | 7, | 1.051660
¢l | 1.069060 | cZ | 1.147100
¢l | 0954322 | ¢/, | 1.404620

Finally, the coordinate system used in these calculations is a rectangular coordinate system with
the el.l, el.z, e3 axes aligned with the x, y, z axes.

i

4.16.3.1 Uniaxial Stress

First, the response of the material subject to a uniaxial stress is considered. As such, the Cauchy
stress tensor takes the form o;; = 076;161. In the transformed stress space, this uniaxial tensor

215



becomes,

’ ’
, 1 Cly+ s /O , 0
s =—0o 0 =2¢l. +¢ 0
73 0 007 L 4
31 T 632
" ”
1 ¢, + 0 0
s;; = 50’ 0 =2c%, + 5, 0
14 14
0 0 —2c31 +c%,

It is noted from (4.51) the that two transformed stress tensors are purely diagonal and therefore in
a principal state. The actual ordering of the components into the corresponding principal stresses
depends on the anisotropy coefficients. By inspection of Table 4.22 it is clear in this instance that
tensors are already ordered (s} = s, s{ = 57, etc.). With this observation, the effective stress
may be reduced to,

¢ (o)) = wlo,
where w is a constant dependent on model parameters and is written as,
1 1 ’ ’ 4 /" o|a 4 / ’” " oa ’ / ’” "7 oja
w zg{thlZ + 3 = = |7 ey + 3+ 26 = el F ey + 013+ 265 — ¢y
+|chy = 205 — ¢y = 31" + ey = 25 + 2¢5; — hs|* + |chy — 265, + 265 — |

1/a
’ ’ 144 /" |1a 7 ’ 14 7 1a 14 7 144 " oa
+ ey = 2¢5) — ¢y — 3l H ey = 2¢3) + 265 — 3l + 3, — 2¢3) +2¢5 — €5, ]} .

Axial Stresses

To determine the axial stress, it is first noted that during plastic deformation,
¢ (0ij) = wo =5 (&"),
where the fact that a tensile loading will be investigated (o > 0) is leveraged. The stress is then
simply,
o (&P)

o= . (4.51)
w

This shows that during plastic deformation the stress state can be calculated from the hardening
law and anisotropy parameters.

To evaluate the axial stress, a relationship between the equivalent plastic strain and axial strain is
needed. By noting the uniaxial stress state and equating the rate of plastic work, it is evident
that,

. o1
GEP =0 (6-8% — & =—(6-£%
w
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which, when integrated, gives an implicit equation for the equivalent plastic strain that is written
as

oo L (,g _ &(ép)) . (4.52)

w wE

The equivalent plastic strain can then be used in (4.51) to find the axial stress, o-. Corresponding
stress-strain results determined analytically in this fashion and numerically via Adagio are
presented below in Fig. 4.76.

400 T T T !
350

300

N
9]
o

axial stress, o, (MPa)
= N
w o
o o
T

=

o

o
1

' ; 1 .
0.00 0.02 0.04 0.06 0.08 0.10
axial strain, ¢;; (-)

Fig. 4.76 Axial stress-strain response determined analytically and numerically for 2090-T3 aluminum
using the Barlat plasticity model with Voce hardening.
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Lateral Strains

To determine the plastic strain, the derivatives of the yield surface with respect to the Cauchy
stress (0¢/00;;) are needed. From (4.48) it can be seen that these relations are quite complex and
the reader is referred to [86] for a detailed discussion of how to rigorously evaluate these
derivatives under arbitrary conditions. In this effort, the fact that the principal directions of the
transformed stresses (él’." and él’?”) are aligned with the global coordinate system (él.l’ = el.l etc.)
simplifies the problem sufficiently to allow for an analytical treatments. In this case,

I
6sk

/7
Hsl.j

_ k _k

With this observation, the lateral flow directions may be written as,

6¢ 1 a¢ / / a¢ V4 / 6¢ V4 V4
9023 :g[as/l ( 13~ 2¢h,) + o5, (ch, +C23) + 95, (c5, - 2532)
6¢ 144 144 144 144 6¢ 144 144
+ _asflf (cf3 = 2cf,) + 3s] (c5) +c5y) + _8s’3’ (5 -2 32)]
(9¢ _1 (9¢ ’ ’ ’ ’ ’ ’
905 3 [asfl (clp —2¢};) + 9, (chy —2¢hs) + Fra 2 (c3 + %)
a¢ 122 144 a¢ 144 142 8¢ V4 144
+ ds7 (cfh —2cT3) + 3s] (c5) —2¢h3) + 957 (c5) + %) ]’

in which the various d¢/ds; derivatives are functions of the anisotropy coefficients and explicit
forms may be found in [86].
The total strain is written simply as,

P

_ e
&ij = £ T €

with the elastic strain being

o
e _ e _ _. Y
€y = €33 = VE’

and the plastic strains found via the flow rules as,

P _ zp 5¢ . P _ zp a¢
»n =€ ’ &33=¢ :
(90'22 30'33

&€

The flow directions were given previously in (4.53) and (4.53) while the equivalent plastic strain
may be found via (4.52). Fig. 4.77 presents the lateral strains as a function of the axial. Clear
agreement may be observed both in Fig. 4.76 and Fig. 4.77 verifying the model. Additionally, the
effect of the anisotropy is plainly evident in Fig. 4.77 in which the two lateral strains differ by
approximately a factor of four.

To test the other directions and further examine the anisotropic character of the model, the
coordinate system rotation input options are used to align the 2 and 3 directions of the material

218



0.00

-0.01

| | |
o o o
o o o
H w N

—0.05

lateral strain, ey,,645 (-)

—0.06

-0.07

—-0.08 | I |
0.00 0.02 0.04 0.06 0.08 0.10

axial strain, ¢, (-)

Fig. 4.77 Lateral strain as a function of axial strain of 2090-T3 aluminum with Voce hardening as
determined by the Barlat plasticity model both analytically and numerically.
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with the applied load. Analytical expressions may be determined by similarly rotating the
coeflicients in the previous expressions, although these are not repeated here for brevity. The
corresponding results for the loading aligned with the 2 and 3 directions are presented in Fig. 4.78
and Fig. 4.79, respectively. All of the results are given with respect to the original coordinate
system to avoid confusion. Clear agreement between analytical and simulation results is noted in
both cases further verifying the capabilities of the model. Importantly, by comparing the various
stress-strain and lateral strain curves, the influence of the material and model anisotropy on the

responses may readily be observed.
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Fig. 4.78 Stress-strain (a) and lateral strain (b) responses of 2090-T3 aluminum with Voce hardening
and the Barlat plasticity model. The material is rotated such that the loading is alighed with the 2

direction.
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Fig. 4.79 Stress-strain (a) and lateral strain (b) responses of 2090-T3 aluminum with Voce hardening
and the Barlat plasticity model. The material is rotated such that the loading is aligned with the 3

direction.
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4.16.3.2 Pure Shear

In this section, the pure shear response of the Barlat model is interrogated to assess its
performance under such conditions. Before proceeding, it is important to recall the ordering of
the shear stresses in Sierra/SM. Specifically, the 012, 023, and 03 stresses are associated with the
44, 55, and 66, respectively, anisotropy coeflicients.

To explore the shear performance of the Barlat plasticity model, a stress tensor of the form
Oij=T (51- 102 + 020 jl) is considered. The ordered principal stresses of the transformed stress
tensors are,

7 "
/ CouT ) CiT
5= 0 ; s; = 0 , (4.53)
’ ”
—CT —CcuT

thereby simplifying the effective stress to,
¢ (03j) = ¢,
with
1 1/a
‘= {5 16 = €1+ Iy + I+ Lely |+ Iely ]} .
During plastic flow,
p=1{=0(&"),

producing an expression for the stress in terms of equivalent plastic strain as,

T==0(&").

¢

A relationship between the equivalent plastic and axial strains may be determined by first
considering the equivalency of plastic work,

_ . : : ip 2, :
el =271 (812 - &5,) — &P == (&1, - &%).
Integrating leads to an implicit expression of the form,
2 7 (&P
& == (.912 _oé )) . (4.54)
¢ (G

The preceding relations may be used to analytically determine the shear stress-strain response.
Corresponding results, along with those produced by Adagio, are presented in Fig. 4.80. Shear
responses are also presented for stress tensors of the form o;; = 7 (62,~63 j 0302 j) (23) and
Oij=T (5 1i03; + 0301 j) (31). Analytically, these results were determined by substituting the
relevant anisotropy coeflicients in (4.53)-(4.54). For the results from Adagio, the coordinate
system input commands were used to rotate the material coordinate system accordingly.

In all the cases presented in Fig. 4.80 excellent agreement is noted. This not only verifies the
performance of the current model under pure shear loadings but also demonstrates the impact of
the anisotropy and exercises the coordinate system rotation capabilities.
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Fig. 4.80 Shear stress-strain results for 2090-T3 aluminum determined analytically and numerically
by the Barlat plasticity model with Voce Hardening
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4.16.3.3 Plastic Hardening

To verify the capabilities of the hardening models, rate independent and rate dependent alike, the
constant equivalent plastic strain rate, £°, uniaxial stress and pure shear verification tests
described in Appendix A are utilized. In these simplified loading cases, the material state may be
found explicitly as a function of time knowing the prescribed equivalent strain rate. For the rate
independent cases, a strain rate of &¥ = 1 X 10~%s~! is used for ease in simulations although the
selected rate does note affect the results. Through this testing protocol, the hardening models are
not only tested at different rates but also in different principal material directions to consider the
anisotropy of the Barlat yield surface. Additionally, the rate dependent models are tested for a
wide range of strain rates (over five decades) with all three rate independent hardening functions
(0y in the previous theory section). Although linear, Voce, and power-law rate independent
representations are utilized in the rate dependent tests, in those cases the hardening models are
prescribed via user-defined analytic functions. The rate independent verification exercises, on the
other hand, examine the built-in hardening models. This distinction necessitates the different
considerations and treatments.

The rate dependent and rate independent hardening coefficients are found in Table 4.23 while the
remaining model parameters are unchanged from the previous verification exercises. For the
current verification exercise, the rate independent hardening models (linear, Voce, and power-law)
will first be considered and then the rate dependent forms (Johnson-Cook, power-law
breakdown).

Table 4.23 The model parameters for the hardening verification tests used with the Barlat plasticity
model during verification tests. Parameters for the rate independent hardening functions, &, are
also given and denoted with a - while the subscript refers to the functional form.

C 0.1 &0 Ix 107457t
g 0.21 7! m 16.4
HLinear 200 MPa R .
ApL 400 MPa fipL 0.25
Avoce 200 MPa iVoce 20
Linear

For the rate independent linear hardening model, verification is considered via the uniaxial stress
and pure shear exercises of Appendix A. As the anisotropic Barlat yield surface is being used for
this examination, the uniaxial stress response is determined for loading in three different principal
material planes while the pure shear response is found along three shear planes. Results
determined analytically and numerically are presented in Fig. 4.81. Clear agreement is evident
between the dual solution approaches. Additionally, the linear response and constant tangent
modulus during plastic deformation highlights the characteristic feature of the current model.
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Fig. 4.81 Uniaxial stress-strain (a) and pure shear (b) responses of the Barlat plasticity model with
rate independent, linear hardening. Solid lines are analytical while open symbols are numerical

Power-Law

To probe the power-law rate independent hardening model, analytical and numerical results to the
uniaxial stress and pure shear problems of Appendix A are determined. Given the anisotropic
nature of the current model, responses are determined along the three principal and three shearing
planes for the uniaxial stress and pure shear cases and all six cases are shown in Fig. 4.82. In
considering Fig. 4.82, it is apparent that the numerical and analytical responses agree quite well
verifying this specific response. These cases also highlight the initially stiff plastic response that
eventually evolves into a more compliant linear like response that is associated with a power-law
hardening model.

Voce

Verifying the Voce model is addressed through the methods of Appendix A. To this end, analytical
and numerical uniaxial stress and pure shear responses are determined along three different
principal directions and shear planes, respectively. The results for these various cases are
presented in Fig. 4.83 and unambiguous agreement is readily seen between the analytical and
numerical results providing further credence to hardening model capabilities. Responses in Fig.
4.83 also exhibit the clear saturation of hardening with sufficient plastic strain that is usually
associated with the Voce model.
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Fig. 4.82 Uniaxial stress-strain (a) and pure shear (b) responses of the Barlat plasticity model with
rate independent, power-law hardening. Solid lines are analytical while open symbols are numeri-
cal.
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Johnson-Cook

To investigate the uniaxial response of the Johnson-Cook rate dependent hardening model, the
problem discussed in Appendix A is considered. In this analysis, the response depends only on
time and the various ¢’ and ¢’ Barlat yield surface coefficients. For a full-spectrum verification,
forty-five different cases are evaluated using three different material principal directions (é;, é»,
and é3), five different rates (67 = 1x 107, 1 x 1072, 1 x 107!, 1x 10° and 1 x 10" s71), and
three different rate independent hardening models (linear, Voce, and power-law). All forty-five
analytical and numerical results are presented in Fig. 4.84 and Fig. 4.85 and quite notable
agreement is observed in each instance.

For the pure shear case, the forty-five different permutations are again explored. The same five
rates and three hardening models are used although three different shearing planes are used instead
of the three principal directions. The solution of the pure shear problem is described in Appendix
A and the analytical and numerical results are presented in Fig. 4.86 and Fig. 4.87. As with the
uniaxial stress response excellent correspondence is noted between the two sets of results.

Power-Law Breakdown

In the case of the power-law Breakdown model, verification is again pursued through the problem
of Appendix A and using the same forty-five cases discussed with the Johnson-Cook model.
Corresponding results are given in Fig. 4.88 and Fig. 4.89 and as with the preceding results
substantial convergence is noted between the analytical and numerical results giving further
credence to the hardening models.

As with the uniaxial stress case, the pure shear capabilities are interrogated through the procedure
of Appendix A using the same forty-five cases outlined in the Johnson-Cook discussion. The
analytical and numerical results are presented in Fig. 4.90 and Fig. 4.91. Again, the two result sets
align beautifully enabling further capability credibility.

4.16.4 User Guide

BEGIN PARAMETERS FOR MODEL BARLAT_PLASTICITY
#
# Elastic constants
#
YOUNGS MODULUS <real>
POISSONS RATIO = <real>

SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>
#

(continues on next page)
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Fig. 4.84 Uniaxial stress-strain response of the Barlat plasticity model (a« = 8) with rate dependent,
Johnson-Cook type hardening with (a-c) linear and (d-f) power-law rate independent hardening.
Solid lines are analytical results while open symbols are numerical.
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Fig. 4.88 Uniaxial stress-strain response of the Barlat plasticity model (a« = 8) with rate dependent,
power-law breakdown type hardening with (a-c) linear and (d-f) power-law rate independent hard-
ening. Solid lines are analytical while open symbols are nhumerical.
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Fig. 4.91 Stress-strain response of the Barlat plasticity model (« = 8) with rate dependent, power-law
breakdown type hardening in pure shear with (a-c) Voce rate independent hardening. Solid lines
are analytical results while open symbols are numerical.
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(continued from previous page)

# Material coordinates system definition

#

COORDINATE SYSTEM = <string> coordinate_system_name
DIRECTION FOR ROTATION = <real> 11213
ALPHA = <real> (degrees)
SECOND DIRECTION FOR ROTATION = <real> 1[2]3
SECOND ALPHA = <real> (degrees)
#

# Yield surface parameters

#

YIELD STRESS = <real>

A = <real> (4.0)

CP12 = <real> (1.0)

Cp13 = <real> (1.0)

CpP21 = <real> (1.0)

CP23 = <real> (1.0)

Cp31 = <real> (1.0)

CP32 = <real> (1.0)

Cp44 = <real> (1.0)

CP55 = <real> (1.0)

CP66 = <real> (1.0)

CPP12 = <real> (1.0)

CPP13 = <real> (1.0)

CPP21 = <real> (1.0)

CpPP23 = <real> (1.0)

CPP31 = <real> (1.0)

CPP32 = <real> (1.0)

CpP44 = <real> (1.0)

CPP55 = <real> (1.0)

CPP66 = <real> (1.0)

#

# Hardening model

#

HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED |
FLOW_STRESS | DECOUPLED_FLOW_STRESS | JOHNSON_COOK |
POWER_LAW_BREAKDOWN

#

# Linear hardening

#

HARDENING MODULUS = <real>

#

# Power—law hardening

#

(continues on next page)
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(continued from previous page)

HARDENING CONSTANT <real>
HARDENING EXPONENT = <real> (0.5)

LUDERS STRAIN = <real> (0.0)

#

# Voce hardening

#

HARDENING MODULUS = <real>

EXPONENTIAL COEFFICIENT = <real>

#

# Johnson—-Cook hardening

#

HARDENING FUNCTION = <string>hardening_function_name
RATE CONSTANT = <real>

REFERENCE RATE = <real>

#

# Power law breakdown hardening

#

HARDENING FUNCTION = <string>hardening_function_name
RATE COEFFICIENT = <real>

RATE EXPONENT = <real>

# User defined hardening

#

HARDENING FUNCTION = <string>hardening_function_name
#

#

# Following Commands Pertain to Flow_Stress Hardening Model

#

# — Isotropic Hardening model

#

ISOTROPIC HARDENING MODEL = LINEAR | POWER_LAW | VOCE |

USER_DEFINED

#

# Specifications for Linear, Power-law, and Voce same as above

#

# User defined hardening

#

ISOTROPIC HARDENING FUNCTION = <string>iso_hardening_fun_name

#

# - Rate dependence

#

RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |
USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)

(continues on next page)
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(continued from previous page)

Specifications for Johnson—-Cook, Power-law—-breakdown
same as before EXCEPT no need to specify a
hardening function

#

#

#

#

# User defined rate multiplier

#

RATE MULTIPLIER FUNCTION = <string> rate_mult_function_name

#

# — Temperature dependence

#

TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |
TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)

#

# Johnson—-Cook temperature dependence
#

MELTING TEMPERATURE = <real>
REFERENCE TEMPERATURE = <real>
TEMPERATURE EXPONENT = <real>

#

# User-defined temperature dependence

TEMPERATURE MULTIPLIER FUNCTION = <string>temp_mult_function_name

#

# Following Commands Pertain to Decoupled Flow Stress Hardening Model

#

# - Isotropic Hardening model

#

ISOTROPIC HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED

#

# Specifications for Linear, Power-law, and Voce same as above

#

# User defined hardening

#

ISOTROPIC HARDENING FUNCTION = <string>isotropic_hardening_ function_
—name

#

# — Rate dependence

#

YIELD RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)

Specifications for Johnson-Cook, Power—-law-breakdown same as before
EXCEPT no need to specify a hardening function
AND should be preceded by YIELD

FH H R FH W R

As an example for Johnson—-Cook yield rate dependence,

(continues on next page)
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#

YIELD RATE CONSTANT = <real>
YIELD REFERENCE RATE = <real>
#

# User defined rate multiplier
#

YIELD RATE MULTIPLIER FUNCTION = <string>yield_rate_mult_function_
—name

#
HARDENING_RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |
USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)

Syntax same as for yield parameters but with a HARDENING prefix

— Temperature dependence

HH FHR R R H

YIELD TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |
TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)

#

# Johnson-Cook temperature dependence
#

YIELD MELTING TEMPERATURE = <real>
YIELD REFERENCE TEMPERATURE = <real>
YIELD TEMPERATURE EXPONENT = <real>

#
# User-defined temperature dependence
YIELD TEMPERATURE MULTIPLIER FUNCTION = <string>yield_temp_mult_fun_
—name
#
HARDENING TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |
TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)

#
# Syntax for hardening constants same as for yield but
# with HARDENING prefix
#
#
# Optional Failure Definitions
# Following only need to be defined if intend to use failure model
#

FAILURE MODEL = TEARING_PARAMETER | JOHNSON_COOK_FAILURE | WILKINS
| MODULAR_FAILURE | MODULAR_BCJ_FAILURE

CRITICAL FATILURE PARAMETER = <real>
#

(continues on next page)
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# TEARING_PARAMETER Failure model definitions

#

TEARING PARAMETER EXPONENT = <real>
#

# JOHNSON_COOK_FAILURE Failure model definitions
#

JOHNSON COOK D1 = <real>
JOHNSON COOK D2 = <real>
JOHNSON COOK D3 = <real>
JOHNSON COOK D4 = <real>
JOHNSON COOK D5 = <real>

#

#Following Johnson—-Cook parameters can only be defined once. As.
—such, only
# needed if not previously defined via Johnson—-Cook multipliers

# w/ flow-stress hardening. Does need to be defined

# w/ Decoupled Flow Stress

#

REFERENCE RATE = <real>

REFERENCE TEMPERATURE = <real>

MELTING TEMPERATURE = <real>

#

# WILKINS Failure model definitions

#

WILKINS ALPHA = <real>

WILKINS BETA = <real>

WILKINS PRESSURE = <real>

#

# MODULAR_FAILURE Failure model definitions

#

PRESSURE MULTIPLTIER = PRESSURE_INDEPENDENT | WILKINS
| USER_DEFINED (PRESSURE_INDEPENDENT)

LODE ANGLE MULTIPLIER = LODE_ANGLE_INDEPENDENT |

WILKINS (LODE_ANGLE_INDEPENDENT)
TRIAXIALITY_INDEPENDENT | JOHNSON_COOK
| USER_DEFINED (TRIAXIALITY_

TRIAXTALITY MULTIPLIER

—INDEPENDENT)

RATE FAIL MULTIPLIER = RATE_INDEPENDENT | JOHNSON_COOK

| USER_DEFINED (RATE_INDEPENDENT)
TEMPERATURE_INDEPENDENT | JOHNSON_COOK
| USER_DEFINED (TEMPERATURE_

TEMPERATURE FAIL MULTIPLIER

—INDEPENDENT)
#
# Individual multiplier definitions

#

(continues on next page)
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PRESSURE MULTIPLIER = WILKINS
WILKINS ALPHA = <real>
WILKINS PRESSURE = <real>

#

PRESSURE MULTIPLIER USER_DEFINED

PRESSURE MULTIPLIER FUNCTION = <string> pressure_multiplier_fun_name
#

LODE ANGLE MULTIPLIER = WILKINS

WILKINS BETA = <real>

#

TRIAXTIALITY MULTIPLIER = JOHNSON_COOK
JOHNSON COOK D1 = <real>
JOHNSON COOK D2 = <real>
JOHNSON COOK D3 = <real>

#

TRIAXIALITY MULTIPLIER USER_DEFINED
TRIAXIALITY MULTIPLIER FUNCTION = <string> triaxiality_multiplier_
—fun_name

#
RATE FAIL MULTIPLIER = JOHNSON_COOK
JOHNSON COOK D4 = <real>

# REFERENCE RATE should only be added if not previously defined

REFERENCE RATE = <real>

#

RATE FAIL MULTIPLIER = USER_DEFINED

RATE FAIL MULTIPLIER FUNCTION = <string> rate_fail multiplier_fun_
—name

#

TEMPERATURE FATIL MULTIPLIER = JOHNSON_COOK

JOHNSON COOK D5 = <real>

# JC Temperatures should only be defined if not previously given
REFERENCE TEMPERATURE = <real>

MELTING TEMPERATURE = <real>

#

TEMPERATURE FATIL MULTIPLIER = USER_DEFINED

TEMPERATURE FAIL MULTIPLIER FUNCTION = <string> temp_multiplier_fun_
—name

#

# MODULAR_BCJ_FAILURE Failure model definitions

#

INITIAL DAMAGE = <real>

INITIAL VOID SIZE = <real>

DAMAGE BETA = <real> (0.5)

GROWTH MODEL = COCKS_ASHBY | NO_GROWTH (NO_GROWTH)

NUCLEATION MODEL HORSTEMEYER_GOKHALE | CHU_NEEDLEMAN_STRAIN

(continues on next page)
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| NO_NUCLEATION (NO_NUCLEATION)
#
GROWTH RATE FAIL MULTIPLIER = JOHNSON_COOK | USER_DEFINED
| RATE_INDEPENDENT
(RATE_INDEPENDENT)
JOHNSON_COOK | USER_DEFINED
| TEMPERATURE_INDEPENDENT
(TEMPERATURE_INDEPENDENT)

GROWTH TEMPERATURE FATIL MULTIPLIER

#
NUCLEATION RATE FAIL MULTIPLIER

JOHNSON_COOK | USER_DEFINED
| RATE_INDEPENDENT
(RATE_INDEPENDENT)
JOHNSON_COOK | USER_DEFINED
| TEMPERATURE_INDEPENDENT
(TEMPERATURE_INDEPENDENT)

NUCLEATION TEMPERATURE FAIL MULTIPLIER

#

# Definitions for individual growth and nucleation models
#

GROWTH MODEL = COCKS_ASHBY

DAMAGE EXPONENT = <real> (0.5)

#

NUCLEATION MODEL HORSTEMEYER_GOKHALE

NUCLEATION PARAMETERI1 <real> (0.0)

NUCLEATION PARAMETER2 = <real> (0.0)

NUCLEATION PARAMETER3 = <real> (0.0)

#

NUCLEATION MODEL = CHU_NEEDLEMAN_STRAIN
NUCLEATION AMPLITUDE = <real>

MEAN NUCLEATION STRAIN = <real>

NUCLEATION STRAIN STD DEV = <real>

#

# Definitions for rate and temperature fail multiplier

# Note: only showing definitions for growth.

# Nucleation terms are the same just with NUCLEATION instead
# of GROWTH
#

GROWTH RATE FAIL MULTIPLIER = JOHNSON_COOK

GROWTH JOHNSON COOK D4 = <real>

GROWTH REFERENCE RATE = <real>

#

GROWTH RATE FAIL MULTIPLIER = USER_DEFINED

GROWTH RATE FAIL MULTIPLIER FUNCTION = <string> growth_rate_fail_
—mult_func

#

GROWTH TEMPERATURE FAIL MULTIPLIER = JOHNSON_COOK

(continues on next page)
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GROWTH JOHNSON COOK Db = <real>
GROWTH REFERENCE TEMPERATURE = <real>
GROWTH MELTING TEMPERATURE = <real>

#

GROWTH TEMPERATURE FAIL MULTIPLIER

GROWTH TEMPERATURE FAIL MULTIPLIER FUNCTION
—mult_func

USER_DEFINED
<string> temp_fail_

#
#
#
# Optional Adiabatic Heating/Thermal Softening Definitions
# Following only need to be defined if intend to use failure model
#
THERMAL SOFTENING MODEL = ADIABATIC | COUPLED
#
SPECIFIC HEAT = <real> # not needed for COUPLED
BETA_TOQ = <real>

END [PARAMETERS FOR MODEL BARLAT_PLASTICITY]

In the command blocks that define the Barlat plasticity model:
* The reference nominal yield stress, 7, is defined with the YTELD STRESS command line.
* The exponent for the yield surface description, a, is defined with the A command line.

¢ The transformation coefficient, C/12’ is defined with the CP12 command line. It is defaulted
to 1.0.

’

137 is defined with the CP 13 command line. It is defaulted

¢ The transformation coefficient, ¢
to 1.0.

’

210 is defined with the CP21 command line. It is defaulted

¢ The transformation coefficient, ¢
to 1.0.

¢ The transformation coeflicient, c/23, is defined with the CP23 command line. It is defaulted
to 1.0.

’

110 is defined with the CP31 command line. It is defaulted

¢ The transformation coefficient, ¢
to 1.0.

¢ The transformation coeflicient, c/32, is defined with the CP 32 command line. It is defaulted
to 1.0.

’

445 is defined with the CP44 command line. It is defaulted

¢ The transformation coefficient, c¢
to 1.0.
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’

559 is defined with the CP55 command line. It is defaulted

The transformation coefficient, ¢
to 1.0.

’

66° is defined with the CP 66 command line. It is defaulted

The transformation coefficient, ¢
to 1.0.

’”

129 is defined with the CPP 12 command line. It is

The transformation coefficient, ¢
defaulted to 1.0.

14

137 is defined with the CPP 13 command line. It is

The transformation coefficient, ¢
defaulted to 1.0.

’”

210 is defined with the CPP21 command line. It is

The transformation coefficient, ¢
defaulted to 1.0.

The transformation coefficient, cg3, is defined with the CPP 23 command line. It is
defaulted to 1.0.

14

310 is defined with the CPP31 command line. It is

The transformation coefficient, ¢
defaulted to 1.0.

The transformation coefficient, c'3'2, is defined with the CPP 32 command line. It is
defaulted to 1.0.

14

440 is defined with the CPP44 command line. It is

The transformation coefficient, ¢
defaulted to 1.0.

’”

555 is defined with the CPP55 command line. It is

The transformation coefficient, ¢
defaulted to 1.0.

14

66° is defined with the CPP 66 command line. It is

The transformation coefficient, ¢
defaulted to 1.0.

The type of hardening law is defined with the HARDENING MODEL command line, other
hardening commands then define the specific shape of that hardening curve.

The hardening modulus for a linear hardening model is defined with the HARDENING
MODULUS command line.

The hardening constant for a power law hardening model is defined with the HARDENING
CONSTANT command line.

The hardening exponent for a power law hardening model is defined with the HARDENING
EXPONENT command line.

The Luders strain for a power law hardening model is defined with the LUDERS STRAIN
command line.

The hardening function for a user defined hardening model is defined with the HARDENING
FUNCTION command line.

The shape of the spline for the spline based hardening is defined by the CUBIC SPLINE
TYPE, CARDINAL PARAMETER, KNOT EQPS, and KNOT STRESS command lines.
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Output variables available for this model are listed in Table 4.24.

Table 4.24 State Variables for BARLAT PLASTICITY Model

Name Description

EQPS equivalent plastic strain, P
EQDOT equivalent plastic strain rate, £”
SEFF effective stress, ¢
TENSILE_EQPS tensile equivalent plastic strain, &/
DAMAGE damage, ¢

VOID_COUNT void count, 7

VOID_SIZE void size, v

DAMAGE_DOT damage rate, ¢
VOID_COUNT_DOT void count rate, 7
PLASTIC_WORK_HEAT_RATE | plastic work heat rate, Q7

4.17 Plane Stress Rate Plasticity Model

4.17.1 Theory

The plane stress rate plasticity model is the plane stress formulation of a J; plasticity model given
by Simo and Taylor [90] (and described again in Simo and Hughes [91]) extended to include
rate-dependent hardening and a failure model for use with shell elements.

. . . . . o .
Like other plasticity models, the components of the objective stress rate, 0;;, are written as,

° e
aij= CijruDy,
where C;;; are the components of the fourth-order, isotropic elasticity tensor and ij are the

components of the elastic part of the total rate of deformation tensor. An additive split of the total
rate of deformation tensor into elastic and plastic contributions is assumed such that,

= DS +DP
Dyj = D; + D¥,.

The plane stress formulation recasts the three-dimensional problem into a constrained subspace
with plane stress conditions acting as the constraints. To do this, the plane stress rate plasticity
model follows the approach of Simo and Taylor [90] to enforce o3 = 093 = 033 = 0 and related
conditions.

For the plasticity portion of the model, the formulation of Simo and Taylor [90] is used (In the
work of Simo and Taylor [90] and later Simo and Hughes [91], hardening is assumed to be rate
and temperature independent. Here, such terms are included but do not materially change the
formulation. Similarly, the earlier works also introduce kinematic hardening which is not used in
the current model.) in which a traditional three-dimensional J, plasticity model is recast in
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reduced subspace. To do this, it is recalled that in three-dimensions the von Mises effective stress,
@, is written,

3
2
¢ = 58ijSij»

with s;; = 0y; — (1/3) o 6;; the deviatoric stress. To write an equivalent expression in the
reduced subspace, the vector, o, and matrix, E, are introduced as (Note, here the x and X
notations are introduced for vector and matrix objects, respectively, to clearly distinguish that
these variables are not tensors. This results from operating in the constrained stress subspace and
means that these terms do not have properties of a tensor and act on each other as traditional
matrices and vectors.),

o1 o 2 -1 0
ag=|02 |, ; £=§—120,
J12 o 0 0 3
such that,
S11 B
s=|sn |[=Pc.
s |

_ 2
§=a'Po=3¢"
where
1 2 -1 0
P= 3 -1 2 01,
o 0O 0 6

in which P and P differ by a two in the shear term to reflect Voigt corrections.

A yield function, f, is introduced as,

f=¢*-R%, (4.55)

R= \/gé' (87,2, 0),

where &7 and £” are the equivalent plastic strain (isotropic hardening variable) and its rate,
respectively. Various hardening options may be used with this model. In general, the current flow
stress is written as,

with,

_ (=p =~ _ A [~ 0 — Gref M
o (8”,81’, 9) = (O'y +K (sp)) o (sp) 1- (—) , (4.56)
emelt - eref
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in which oy is the original yield stress, K is the isotropic hardening function that may take linear,
power-law, or multilinear form, & the rate multiplier whose specification will be defined later, and
the right-most term is the Johnson-Cook temperature dependence term that may be optionally
used to give temperature dependence of the flow-stress.

To complete the theoretical formulation, the flow rules are specified as,

de’ = AP o,

. 2
d&P = &P At = /l\/;/),

where A is the consistency multiplier enforcing f = 0 during plastic deformation and dg? is the
plastic strain increment in the constrained subspace. It is emphasized here that the yield surface
described in (4.55) is not homogeneous of degree one like in other three-dimensional
formulations presented in this manual. As such, the consistency multiplier and equivalent plastic
strain increment are not equivalent. As an example of this, by consideration of the preceding
relations, it is apparent that A has units of one over stress.

The specification of the rate dependence, &, is important as it enables the consideration of two
different model responses. These behaviors are controlled via the USER RATE DEPENDENCE
command. If this input parameter is zero, then either an analytical or user-defined
rate-dependence may be given. Importantly, in this case failure is not modeled. For the analytical
case, the Johnson-Cook [48], [49] rate-multiplier is used such that,

1+c1n(¥) & > &
€0

A (EP) —
7 ) RPN

with C being the rate dependence multiplier and &y is a reference rate. Note, while other models
allow user specification of the reference rate, the plane stress rate plasticity model uses the value
set in the original work of Johnson-Cook [48] such that &) = 1s~L Alternatively, a user function
may be specified for the rate multiplier, &.

If USER RATE DEPENDENCE is set to one, both rate dependence and failure may be modeled.
With respect to the rate dependence, (4.56) is rewritten,

& (87.87.0) = & (87, 8") (1 - (M)M) ,

Hrnelt - Qref

in which both isotropic hardening and rate dependence are described via definition of &. In this
case, 0 cannot be specified through analytical expressions and must instead be given as a series of
isotropic hardening curves; each at a different strain rate. For rates not explicitly given,
interpolation is performed between relevant curves. Note, no extrapolation is performed with
respect to the rates. If a rate is determined outside any specified curves, the hardening is
calculated with respect to the bounding curve.

For failure, a failure parameter, «, is calculated as

t

t 4
a:/ %épdt:ZLl, (4.57)
o &r(m.é7) = er(n,&7)
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in which the summation is used to imply the discrete calculation of the damage variable over a
series of loadsteps and & is the rate and triaxiality, 7, dependent failure strain. The failure strain,
£y, 1s specified in a fashion similar to &. Specifically, a series of triaxiality dependent functions
are defined each at a given strain rate. Interpolation is used at rates between those specified.
Extrapolation outside the defined bounds is not done and the extremum curves are instead used.

The onset of damage is assumed to occur when @ = 1 and the current failure strain is taken to be
the critical one such that sjf = gy (t = t.,) with t., being the time at which @ = 1. Subsequent
damage calculation is performed via,

fer 1 . 1.
a(t>ty,)= / ——&Pdt +/ —&Pdt. (4.58)
0 8f (n’ 8p) ter gf

After the critical failure parameter has been reached, an exponential decay relation is used to
decrease the strength of the material. In this fashion, a decay relation of the form,

& =get™, (4.59)
is used in which C; is the decay coeflicient.

For more information about the plane stress rate plasticity model, consult [90], [91].

4.17.2 Implementation

The plane stress rate plasticity model encapsulates both a plasticity and failure model. These
features are implemented in a decoupled, sequential sense. As such, the implementation of these
features will also be presented and discussed in a sequential fashion.

For the plasticity portion, the approach of Simo and Taylor [90] (and Simo and Hughes [91]) in
developing a single scalar equation to solve is adopted. As will be discussed, a slightly different
approach will be used to solve this equation versus that used previously. To get to this single
scalar equation, an elastic-predictor inelastic corrector scheme is adopted. In this scheme, an
elastic predictor is calculated by assuming all deformation is elastic such that,

g =" +MiC de", (4.60)

in which n and n+1 denote the material states at ¢ = ¢, and ¢ = 1,41, respectively, with
At = t,41 — t,. The plane stress stiffness matrix, C, is given as,

I

o O

<

C=

(S
|
<
[\ %]
o< =
S = <

—_

[\S)

with E and v being the Youngs Modulus and Poisson’s ratio, respectively, and dg™*! is the plane
stress total strain increment that is written,

diy
d§ = At dr» s
2d1>
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where d;; are the components of the rate of deformation tensor.

The stress at time ¢ = t,,41 may be given as,
= 1
T =C g™ - £,
which noting the definition of the trial stress in (4.60) may be implicitly rewritten,
0_n+1 — O_lr -2 C‘v P 0_n+1 .
Rearranging yields,
[1+acp|e = o, (4.61)

with [ the identity matrix. Importantly, by noting that " is known it is clear that (4.61) is an
equation for the updated stress vector in terms of only the unknown scalar consistency parameter,
A. To further simplify the problem, it can be shown that C and P share the same principal
subspaces such that (see Simo and Hughes [91] for details),

EZQAPQT, . Q:QACQT’

where Q7 is an orthogonal matrix such that of = Q_1 and the matrices Q, AP and AC are given
as, - - -

1/3 00 E/(1-v) 0 0
Al=| 0 1 0], ; A°= 0 2u 0
- 0 0 2 - 0 0 2u

[ -too

o=—1|1 1 0
= V219 0 v2

By introducing a transformed stress vector in the principal space of C and P, , such that,

ni
n=|m |=0Q"c,
1712 o
the effective stress may be rewritten,
2 T AP
¢"=m An.

By rewriting (4.61) in the transformed space the premultiplying matrix on the left-hand side can
be analytically inverted such that,

M
E
1+/1—3t(1_v)
(!
n+l — 5
T+2
tr
U5V
1+A2u
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and the effective stress may be written as a scalar function of 4,
1 (1r)2 1r\2 12
3001)° (3)"+2(n))

2 2
E 1+A42
P+MWJ [1+A2u]

¢ (A) =

Noting that the equivalent plastic strain and rate may be written,

2 . A (2
—p(n+l) — —p(n) +/1Jj . cP — —\/j
& € 3¢, ’ € At 3¢’

means determining the updated states reduces to solving the scalar consistency equation,

fQ=¢ -5,

for A. This is done iteratively by using a line-search augmented Newton-Raphson method like that
described in [86].

Failure is handled separately from plasticity and in a straight-forward fashion. Specifically, if
a" > 1 (above the critical value) then a decay coefficient, 8"*!, is calculated via

_n
ﬁn+l — eCl(l a )’

and the yield stress is scaled accordingly such that,

Such corrections are done prior to performing the plasticity calculation. Updating the damage
variable, o”*!, is done via relations (4.57) (or (4.58)) after convergence is achieved for the
inelastic correction.

4.17.3 User Guide

BEGIN PARAMETERS FOR MODEL PLANE_ _STRESS_RATE_PLASTICITY
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>

SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>
#

# Optional parameters related to inelastic correction criteria

#

(continues on next page)
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TOLERANCE = <real> tolerance (1.0e-10)

MAX_ INEL _CORR_ITER = <int> maximum_correction_iterations (100)
MAX_LS_CORR_ITER = <int> maximum_line_search_cutbacks (20)
#

USER RATE DEPENDENCE = 0|1 (0)

YIELD STRESS = <real>

#

FORMULATION = <int> formulation (1)

#

# Input Options for USER RATE DEPENDENCE = 0

#

# linear hardening

HARDENING MODULUS = <real> hardening_modulus

# power law hardening

HARDENING CONSTANT = <real> hardening_ constant
HARDENING EXPONENT = <real> hardening_exponent (0.5)
# multilinear hardening

HARDENING FUNCTION = <string>

#

# Rate dependence

#

# Johnson—-Cook rate dependence

RATE CONSTANT = <real>

# multilinear rate dependence

RATE FUNCTION = <string> rate_function_name

#

# Input Options for USER RATE DEPENDENCE = 1

#

# rate-dependent yield

YIELD STRAIN RATES = <real_ list> yield_strain_rates
YIELD CURVES = <string_list> yield_function_names
# rate-—-dependent damage

FRACTURE STRAIN RATES
FRACTURE CURVES
DECAY COEFFICIENT
#

# Thermal softening commands (Johnson—-Cook)

<real list> fracture_strain_ rates
<string_list> fracture_function_names
<real> (1.0)

INITIAL TEMPERATURE = <real>
MELT TEMPERATURE = <real>
REFERENCE TEMPERATURE = <real>
THERMAL EXPONENT = <real>

#
END [PARAMETERS FOR MODEL PLANE_STRESS_RATE_PLASTICITY]

In the command blocks that define the Plane Stress Rate Plasticity model:
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TOLERANCE specifies the numerical value used for assessing convergence of the plastic
correction routine.

Optionally, the user can specify the maximum number of inelastic correction iterations for
the plasticity inelastic correction routines. By default this value is 100.

Optionally, the user can specify the maximum number of line search cutbacks in the
plasticity correction routine. By default this value is 20 and only impacts the formulation
not equal to O (plastic strain rate) case.

The reference nominal yield stress, 7, is defined with the YTELD STRESS command line.

The formulation parameter defines whether the total strain rate (formulation = 0) or
equivalent plastic strain rate (anything else) is used for calculating rate dependence.

INITIAL TEMPERATURE defines the initial temperature at t = 0.
MELT TEMPERATURE defines T, in (4.56).

REFERENCE TEMPERATURE defines Tref in (4.56).

THERMAL EXPONENT defines M in (4.56).

The USER RATE DEPENDENCE is used to control the way hardening may be specified
and whether or not failure is calculated.

— For USER RATE DEPENDENCE = 0, plastic hardening may be specified as linear,
power-law, OR multilinear. Failure cannot be used with USER RATE DEPENDENCE
= 0:

* For linear hardening, a non-zero HARDENING MODULUS should be specified.
Do not give if using power-law or multilinear hardening.

* For power-law hardening, the HARDENING CONSTANT should be specified.
Optionally, the HARDENING EXPONENT parameter should be specified if the
default value (0.5) is not to be used. Do not give for linear or multilinear
hardening.

* For multilinear hardening, a function name should be given for HARDENING
FUNCTION command. Do not specify for linear or power-law hardening.

* For Johnson-Cook rate-dependence, a rate constant must be specified via the
RATE CONSTANT command. Do not use if using functionally specified
rate-dependence.

* For functionally defined rate-dependence, a function name should be given via
the RATE FUNCTION command. Do not specify if using Johnson-Cook type
rate dependence.

— For USER RATE DEPENDENCE = 1, plastic hardening is specified through a series
of user functions. Failure can be modeled
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+ Rate-dependent plastic hardening is specified jointly via the YIELD STRAIN
RATES and YIELD CURVES commands. YIELD STRAIN RATES is a list of
strain rates corresponding one-to-one to functions specified in the YIELD
CURVES list of strings giving user-defined function names. Each YIELD
CURVES function should give the plastic isotropic plastic hardening curve at the
corresponding rate given in YIELD STRAIN RATES.

+ Failure strains used in calculating damage are specified via the FRACTURE
STRAIN RATES and FRACTURE CURVES commands. Similarly to the plastic
hardening, a list of strain rates should be given with the FRACTURE STRAIN
RATES input. Each rate should correspond one-to-one with a user function listed
via FRACTURE CURVES. These functions are specified as a function of
triaxiality and should give the failure strain at the specified rate.

* The decay coefficient, C, that controls the exponential decay of the yield stress
related to failure should be specified via the DECAY COEFFICIENT command.

Output variables available for this model are listed in Table 4.25.

Table 4.25 State Variables for PLANE STRESS RATE PLASTICITY Model
Name | Description

EQPS equivalent plastic strain, 7
EQDOT | equivalent plastic strain rate, &7
SEFF | effective stress, ¢

4.18 Modular Plane Stress Plasticity Model

4.18.1 Theory

Like the plane stress plasticity model of Section 4.17, the modular plane stress plasticity (MPSP)
model is a plane stress implementation of a J, plasticity formulation largely following and
motivated by the works of Simo and Taylor [90] and Simo and Hughes [91]. However, the
modular plane stress plasticity model differs from those prior works and the aforementioned plane
stress plasticity formulation via its specification of the hardening. Specifically, in the current case
kinematic hardening is neglected and expanded isotropic hardening and rate-dependence are
considered by leveraging various modular hardening capabilities used with a variety of solid
plasticity models (i.e. the J, plasticity model in Section 4.13).

Like other plasticity models, the components of the objective stress rate, 00',- j, are written as,
o= Ciju Dy,

where C;; are the components of the fourth-order, isotropic elasticity tensor and D, are the
components of the elastic part of the total rate of deformation tensor. An additive split of the total

252



rate of deformation tensor into elastic and plastic contributions is assumed such that,
— e P
Dij = Dij + Dij'
With a J, plasticity model, the effective stress measure, ¢, may be written,

2_3 : _
¢ = 55ijSij ; Sij = Oij — §O'kk5ij,

with s;; begin the deviatoric stress tensor. After enforcing the plane-stress conditions
(013 = 023 = 033 = 0), there are only three non-zero stress components. As such, the problem
may be simplified by introducing the projection matrix, P, of Simo and Taylor [90],

1 2 -1 0
P = 3 -1 2 0],
o 0O 0 3
so that,
s=Pc
where,
o11 S11
g=| 02 ; S=1 822
012 S12

Note, in the previous and following relations an explicit matrix notation is used to denote
variables in the projected stress space to reinforce that these terms are not tensors. To this end, a
single underline (x) is used for a vector while a twice underlined variable (X) is a matrix.

The projected effective stress measure, ¢, may then be taken to be,

$*=c'Po,

in which a superscript T denotes transpose and,

1 2 -1 0
o 0 0 6

Written in this fashion, there is a small difference between the projected effective stress (¢) and
the traditional 3D form (¢) associated with a constant premultiplier. This is due to subtle
differences in notation used by the plane-stress references [90], [91] and is accounted for in the
definition of the yield surface radius, R, ensuring equivalence in forms.

A corresponding yield function, f, is introduced such that,

f=é(c)- R (&.8"),
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where R is the yield surface radius in the deviatoric -plane that isotropically hardens via
dependencies on the equivalent plastic strain (isotropic hardening variable) and its rate that are
denoted &P and &P, respectively. The radius may be related to the current yield stress, &, via,

R= \/g& (&7, &P).

The distinguishing feature of the modular plane stress plasticity model is a flexible definition of
the isotropic hardening in which the current yield stress is generically written,

T =00y (EP) + K (87) 64 (£7),

with oy, K, and & ;, being the constant initial yield stress, isotropic hardening, and separate rate
multipliers for yield and hardening, respectively. A variety of different forms may be assumed as
described below.

To complete the theoretical formulation, the flow rules are specified as,

de” = AP o,

2 _
& 3¢

where A is the consistency multiplier enforcing f = 0 during plastic deformation and dg? is the
plastic strain increment in the constrained subspace. It is emphasized here that the current yield
function described in is not homogeneous of degree one like in other three-dimensional
formulations presented in this manual. As such, the consistency multiplier and equivalent plastic
strain increment are not equivalent. As an example of this, by consideration of the preceding
relations, it is apparent that A has units of one over stress.

For more information about the modular plane stress plasticity model, consult [90], [91].

4.18.1.1 Plastic Hardening

Plastic hardening refers to increases in the flow stress, -, with plastic deformation. As such,
hardening is described via a functional relationship between the flow stress and isotropic
hardening variable (effective plastic strain), o (7). Over the course of nearly a century of work in
metal plasticity, a variety of relationships have been proposed to describe the interactions
associated with different physical interpretations, deformation mechanisms, and materials. To
enable the utilization of the same plasticity models for different material systems, a modular
implementation of plastic hardening has been adopted such that the analyst may select different
hardening models from the input deck thereby avoiding any code changes or user subroutines. In
this section, additional details are given for the different models to enable the user to select the
appropriate choice of model. Note, the models being discussed here are only for isotropic
hardening in which the yield surface expands. Kinematic hardening in which the yield surface
translates in stress-space with deformation and distortional hardening where the shape of the yield
surface changes shape with deformation are not treated. For a larger discussion of the
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phenomenology and history of different hardening types, the reader is referred to [42], [57],
[64].

Given the ubiquitous nature of these hardening laws in computational plasticity, some (if not
most) of this material may be found elsewhere in this manual. Nonetheless, the discussion is
repeated here for the convenience of the reader.

Linear

Linear hardening is conceptually the simplest model available in LAME. As the name implies, a
linear relationship is assumed between the hardening variable, £”, and flow stress. The hardening
modulus, H’, is a constant giving the rate of change of flow stress with plastic flow. The flow
stress expression may therefore be written,

F=0,+HE".
The simplicity of the model is its main feature as the constant slope,

do

der ’

makes the model attractive for analytical models and cheap for computational implementations
(e.g. radial return algorithms require only a single correction step). Unfortunately, the simplicity
of the representation also means that it has limited predictive capabilities and can lead to overly
stiff responses.

Power Law

Another common expression for isotropic hardening is the power-law hardening model. Due to its
prevalence, a dedicated ELASTIC-PLASTIC POWER LAW HARDENING model may be found
in LAME (see Section 4.8.1). This expression is given as,

Tg=0y+A <& —g >",

in which < - > are Macaulay brackets, £y is the Luders strain, A is a fitting constant, and # is an
exponent typically taken such that 0 < n < 1. The Luders strain is a positive, constant strain value
(defaulted to zero) giving an initially perfectly plastic response in the plastic deformation domain
(see Fig. 4.20). The derivative is then simply,

do
— =nA <&l —g >0

d&p L

Note, one difficulty in such an implementation is that when the effective equivalent plastic strain is
zero, numerical difficulties may arise in evaluating the derivative and necessitate special treatment
of the case.
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Voce

The Voce hardening model (sometimes referred to as a saturation model) uses a decaying
exponential function of the equivalent plastic strain such that the hardening eventually saturates to
a specified value (thus the name). Such a relationship has been observed in some structural metals
giving rise to the popularity of the model. The hardening response is given as,

og=0y+A(l—-exp(-néh)),

in which A is a fitting constant and # is a fitting exponent controlling how quickly the hardening
saturates. Importantly, the derivative is written as,

do

—— =nAexp (-ne?),

T p (-né")
and is well defined everywhere giving the selected form an advantage over the aforementioned
power law model.

Johnson-Cook

The Johnson-Cook hardening model is a variant of the classical Johnson-Cook [48], [49]
expression. In this instance, the temperature-dependence is neglected to focus on the
rate-dependent capabilities while allowing for arbitrary isotropic hardening forms via the use of a
user-defined hardening function. With these assumptions, the flow stress may be written as,

elol2)

in which &, (&”) is the user-specified rate-independent hardening function, C is a fitting constant
and & is a reference strain rate. The Macaulay brackets ensure the material behaves in a rate
independent fashion when &7 < &.

o =y (&)

b

Power Law Breakdown

Like the Johnson-Cook formulation, the power-law breakdown model is also rate-dependent.
Again, a multiplicative decomposition is assumed between isotropic hardening and the
corresponding rate-dependence dependent. In this case, however, the functional form is derived
from the analysis of Frost and Ashby [33] in which power-law relationships like those of the
Johnson-Cook model cease to appropriately capture the physical response. The form used here is
similar to the expression used by Brown and Bammann [16] and is written as,

zp (1/}11)
1 + asinh (8—) ,
8

with &, (&) being the user supplied rate independent expression, g is a model parameter related
to the activation energy required to transition from climb to glide-controlled deformation, and m
dictates the strength of the dependence.

o =0y (&)

256



4.18.1.2 Flow Stress

Unlike the previously described models, the flow-stress hardening method is less a specific
physical representation and more a generalization of the hardening behaviors to allow greater
flexibility in separately describing isotropic hardening and rate-dependence. As such, the generic
flow-stress definition of

o (&P, &) =ay (87) o (EF),

is used in which & is the rate multiplier that by default is unity (such that the response is rate
independent) and &, is the isotropic hardening component that may also be specified as,

oy =0y, +K (&),

with o, being the constant yield stress and K is the isotropic hardening that is initially zero and a
function of the equivalent plastic strain. A multiplicative decomposition such as this mirrors the
general structure used by Johnson and Cook [48], [49] although greater flexibility is allowed in
terms of the specific form of the rate multiplier.

Given the aforementioned default for rate-dependence, the corresponding multiplier need not be
specified. A representation for the isotropic hardening, however, must be specified and can be
defined via linear, power-law, Voce, or user-defined representations. For the user-defined case, an
isotropic hardening function is required and it must be highlighted that the interpretation differs
from the general user-defined hardening model. In this case, as the specified function represents
the isotropic hardening, it should start from zero — not yield.

Although the flow-stress hardening model defaults to rate independent, a multiplier may be
defined. For rate-dependence, either the previously discussed Johnson-Cook or power-law
breakdown models or a user-defined multiplier may be used. For the user-defined capability, the
multiplier should be input as a strictly positive function of the equivalent plastic strain rate with a
value of one in the rate-independent limit.

4.18.1.3 Decoupled Flow Stress

Like the flow-stress hardening method, the decoupled flow-stress hardening implementation is a
generalization of the hardening behaviors to allow greater flexibility. In differentiating the two, for
the decoupled model the rate dependence may be separately specified for the yield and hardening
portions of the flow stress. As such, the generic flow-stress definition of

o (8P, &") = oyby (EP) + K (EP) 6w (7)),

is used in which & are rate multipliers that by default are unity (such that the response is rate
independent) with subscripts y and h denoting functions associated with yield and hardening. The
isotropic hardening is described by K (£”) and oy is the constant initial yield stress. It may also
be seen that if the yield and hardening dependencies are the same (Jy = 07,) the decoupled flow
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stress model reduces to that of the flow stress case and mirrors the general structure of the
Johnson-Cook model [48], [49].

Given the aforementioned default to rate dependence, the corresponding multiplier need not be
specified. A representation for the isotropic hardening, however, must be specified and can be
defined via linear, power-law, Voce, or user-defined representations. For the user-defined case, an
isotropic hardening function should be used and it must be highlighted that the interpretation
differs from the general user-defined hardening model. In this case, as the specified function
represents the isotropic hardening, it should start from zero — not yield.

Although the decoupled flow-stress hardening model defaults to rate independent, a multiplier
may be defined. For rate-dependence, either the previously discussed Johnson-Cook or power-law
breakdown models or a user-defined multiplier may be used. For the user-defined capability, the
multiplier should be input as a strictly positive function of the equivalent plastic strain rate with a
value of one in the rate-independent limit.

4.18.2 Implementation

The integration approach for the modular plane stress plasticity model follows largely from the
elastic-predictor/inelastic-corrector radial return approaches of Simo and Taylor [90] (and Simo
and Hughes [91]) with the exception of an extra line-search step and slightly modified treatment
for the hardening. To this end, the total strain increment de = £At is given as,

where At = 1,41 — t, in which t = ¢, and ¢ = 1,4 are a completely known state and the state to be
determined. The trial stress may then be written,

" =Clg,+de-£] (4.62)
with
1 v 0
- E
C= 5 v 1 0
= I=v1o0 0 L

and E and v being the elastic modulus and Poisson’s ratio, respectively. The trial yield function is
then simply,

ftr — (52 (gtr) _ R2 (52,0) )

For the case of plastic loading, if a fully implicit backward Euler scheme is adopted the plastic
strain flow rules are,

Ep =ENHAPT, |, (4.63)

=n+1
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g 2
2 =y ﬂ\/;(p,m. (4.64)

~ _ P
gn+1 - g (§n+l §n+1) ’

By introducing,

and using relations (4.62) and (4.63), the updated stress may be shown to be,

[! +1C B] o, =0, (4.65)

with / being the identity matrix. As noted by Simo and Taylor [90], C and P share characteristic
subspaces Q enabling a principle decomposition such that,

=QA"Q o C=04A°0
in which,
1 1 0 100 £ 0 0
T 1 P 3 C 1-v
Q'=—|-110 ; A'=10 1 0f s A-=| 0 2u O
= V2] 9 0 V2 - 00 2 0 0 u
In this space, a transformed stress, 77, may be given as,
n=0"c
which, when substituted into (4.65) yields,
[1 + AAC AP] n =" (4.66)

Importantly, in (4.66) the matrix on the left-hand side is diagonal and easily inverted. The updated
transformed stress is thus a function of the consistency multiplier alone. Substituting the
corresponding evaluation of the stress into the definition of the effective stress produces a scalar
function of A such that,

r 2 r 2 r 2
%(”tn) N (’7[22) +2 (’flz)
[1 + 1L E ]2 [1 +/12,u]2

7 =

3(1—v)

With the effective stress written as a function of A alone and the flow rules in (4.63) and (4.64)
only an appropriate approximation for the effective plastic strain rate is needed to arrive at the
single scalar consistency equation to be solve. To that end, using (4.64), the effective plastic strain
rate is taken to be,

&P (1) ~ % At\/7¢n+1 ().
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The updated yield function is now written as,

frr1 () = @2, () = R* (1) = 0.

This non-linear equation may be readily solved via a line-search augmented Newton-Raphson
approach (see [86]) by recasting the consistency condition as a residual,

rf () =f@)=0.
Which, when linearized as,

fo_ .9
Pl =T + EA/L

with k being the non-linear correction iteration and AA is the consistency increment yields the

solution (with r-]f = 0),

The derivative is simply given as,

(o))

dl  da
where
2 2 2
4 () =2 L SO, )+ 2 ()

and

d ( , 4 dK d&P  d&P doy doy,

— |R ) = - oy + KO Y + — + K— ,

a ( 3 (0 +Kou) [‘T’l az dl ' da (Gy ag " aap
in which

ds® _ |2 ¢
E_\ﬁ(‘p”da)’
ds? 1 |2 d¢

dr - ArN3

As only a single equation needs to be solved, a merit function, ¥, is simply given as,

2
f
w(ﬂ):%(%)

y

which may be solved via the quadratic approximation line-search scheme of [86].
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4.18.3 Verification

Given the modular nature of the modular plane stress plasticity (MPSP) model, a variety of tests
are constructed to ascertain performance under different loadings and and combinations of
hardening models. The model parameters needed for such tests are given below in Table 4.26.
While a large number of combinations of the hardening and/or rate multipliers have been tested
under different conditions (>100 tests), here, for brevity only a sampling of these tests are
presented.

Table 4.26 Model parameters for verification tests used with the modular plane stress plasticity
(MPSP) model.

E 70GPa | v 0.33 (-)

oy 200 MPa | H’ 500 MPa
Ap. | 400 MPa | np. | 0.25(-)
Avoce | 200 MPa | nvoce | 20 (-)

C 0.1 () €0 I x107* 7T
g 021s 1 |m 16.4 (-)

4.18.3.1 Uniaxial stress

For the uniaxial stress tests, the constant equivalent plastic strain boundary value problem of
Appendix A is used. Although that discussion is for 3D formulations, the plane stress assumptions
agree with the assumed boundary conditions (e.g. traction free out-of-plane stress) enabling the
same results to be used here. Results for such tests and their corresponding analytical solutions
are shown in Fig. 4.92 for constant strain rates of & = 1 X 1073571 (Fig. 4.92(a)) and &7 = 157!
(Fig. 4.92(b)).

4.18.3.2 Balanced Biaxial

To assess performance of the model with multiple stress components, a constant equivalent plastic
strain rate balanced biaxial test is considered. For this test, a stress-state (in the projected plane
stress space) of

o (1)
o= -o@
0

is assumed. Note, such a loading is equivalent to a pure shear loading in a rotated frame of
reference. As such, many of the pure shear results of Appendix A may be leveraged. To that end, if
elasticity effects are included the total strain, & (¢), may be found to be

~ = _ qel
g(t)ziay+0'hl((81’(t t))+§§p(l_tel)’

V3 2p
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Fig. 4.92 Analytical and numerical constant equivalent plastic strain rate verification tests of the
modular plane stress plasticity models with a uniaxial stress state and strain rates of (a) ¢ =
1 x 1073s7! and (b) £” = 1s~! with linear, power-law, and voce isotropic hardening and power-law
breakdown rate-dependence. Solid lines are analytical and open symbols are from finite element
calculations.

with ¢! being the time at yield (elastic limit). To produce the desired stress state, the
corrresponding displacements are u; () = exp (¢ (1)) — 1 and u, (1) = exp (—& (1)) — 1. Results of
such tests and their corresponding analytical solutions are presented below in Fig. 4.93 with
constant strain rates of &” = 1 x 1073s™! (Fig. 4.93(a)) and &7 = 1s~! (Fig. 4.93(b)).

P oo (A) K™ — (N) K™ S
= 0 00 (A) K" —(N) K™ =
= O O (A K™ — (N) K™ =
N N

—200

—400

0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
e (5) ey (5)

Fig. 4.93 Analytical and numerical constant equivalent plastic strain rate verification tests of the
modular plane stress plasticity models with a balanced biaxial stress state and strain rates of (a)
&P = 1x1073s7! and (b) £” = 1s~! with linear, power-law, and voce isotropic hardening and power-law
breakdown rate-dependence. Solid lines are analytical and open symbols are from finite element
calculations. Positive valued stresses correspond to o; while negative values are o;.

262



4.18.3.3 Biaxial Shear

As a final set of tests, the pure shear response is probed. To accomplish this loading, the previous
balanced biaxial test is reconsidered with the geometry rotated 45° about the out of plane
direction producing a stress state of,

0
o ()= 0
Oxy (t)

The previous results from Section 4.18.3.2 regarding the solution for the balanced biaxial problem
may again be used with o, (f) = o (). Result for this case, both analytical and finite element, are
given in Fig. 4.93 with constant applied strain rates of &’ = 1 x 1073s! and &” = 1s~! in Fig.
4.94(a) and Fig. 4.94(b), respectively.

500 500

oo @K™  — (NK"
oo MK — (NE oo WK — (NE”
00 A

oo @K™ — (NE™

O ¢ (A) K™ — (N) K™ ) Kvoee — (N) K

Foo 0.05 0.10 0.15 0.20 Soo 0.05 0.10 0.15 0.20
ey (4) e ()

Fig. 4.94 Analytical and numerical constant equivalent plastic strain rate verification tests of the
modular plane stress plasticity models with a pure shear stress state and strain rates of (a) ¢” =
1 x 1073s~! and (b) ¢” = 1s~! with linear, power-law, and voce isotropic hardening and power-law
breakdown rate-dependence. Solid lines are analytical and open symbols are from finite element
calculations.

4.18.4 User Guide

BEGIN PARAMETERS FOR MODEL MODULAR_PLANE_STRESS_PLASTICITY
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>

SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>

(continues on next page)
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(continued from previous page)

TWO MU = <real>
#

YIELD STRESS = <real>
#
#
# Hardening model
#

HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED |
FLOW_STRESS | DECOUPLED_FLOW_STRESS | JOHNSON_COOK |
POWER_LAW_BREAKDOWN

#

# Linear hardening

#

HARDENING MODULUS = <real>

#

# Power—law hardening

#

HARDENING CONSTANT <real>

HARDENING EXPONENT = <real> (0.5)

LUDERS STRAIN = <real> (0.0)

#

# Voce hardening

#

HARDENING MODULUS <real>

EXPONENTIAL COEFFICIENT = <real>

#

# Johnson-Cook hardening

#

HARDENING FUNCTION = <string>hardening_function_name
RATE CONSTANT = <real>

REFERENCE RATE = <real>

#

# Power law breakdown hardening

#

HARDENING FUNCTION = <string>hardening_function_name
RATE COEFFICIENT = <real>

RATE EXPONENT = <real>

# User defined hardening

#

HARDENING FUNCTION = <string>hardening_function_name
#
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#

# Following Commands Pertain to Flow_Stress Hardening Model

#

# - Isotropic Hardening model

#

ISOTROPIC HARDENING MODEL = LINEAR | POWER_LAW | VOCE |

USER_DEFINED

#

# Specifications for Linear, Power-law, and Voce same as above

#

# User defined hardening

#

ISOTROPIC HARDENING FUNCTION = <string>iso_hardening_fun_name

#

# - Rate dependence

#

RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |
RATE_INDEPENDENT (RATE_INDEPENDENT)

Specifications for Johnson—-Cook, Power—-law-breakdown
same as before EXCEPT no need to specify a

hardening function

User defined rate multiplier

FH W Hh FHR W R H

RATE MULTIPLIER FUNCTION = <string> rate_mult_function_name

#

#

# Following Commands Pertain to Decoupled_ Flow_Stress Hardening Model

#

# — Isotropic Hardening model

#

ISOTROPIC HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED

#

# Specifications for Linear, Power-law, and Voce same as above

#

# User defined hardening

#

ISOTROPIC HARDENING FUNCTION = <string>isotropic_hardening_ function_
—name

#

# - Rate dependence

#

YIELD RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

RATE_INDEPENDENT (RATE_INDEPENDENT)

(continues on next page)
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(continued from previous page)

#

# Specifications for Johnson—-Cook, Power—law-breakdown same as before
# EXCEPT no need to specify a hardening function

# AND should be preceded by YIELD

#

# As an example for Johnson—-Cook yield rate dependence,
#

YIELD RATE CONSTANT = <real>

YIELD REFERENCE RATE = <real>

#

# User defined rate multiplier

#

YIELD RATE MULTIPLIER FUNCTION = <string>yield_rate_mult_function_
—name

#

HARDENING_RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

RATE_INDEPENDENT (RATE_INDEPENDENT)

#

# Syntax same as for yield parameters but with a HARDENING prefix

#

END [PARAMETERS FOR MODEL MODULAR_PLANE_STRESS_PLASTICITY]

In the command blocks that define the Modular Plane Stress Plasticity model:
* The reference nominal yield stress, 7, is defined with the YTELD STRESS command line.

* The type of hardening law is defined with the HARDENING MODEL command line, other
hardening commands then define the specific shape of that hardening curve.

* The hardening modulus for a linear hardening model is defined with the HARDENING
MODULUS command line.

* The hardening constant for a power law hardening model is defined with the HARDENING
CONSTANT command line.

* The hardening exponent for a power law hardening model is defined with the HARDENING
EXPONENT command line.

* The Luders strain for a power law hardening model is defined with the LUDERS STRAIN
command line.

* The hardening function for a user defined hardening model is defined with the HARDENING
FUNCTION command line.

* The shape of the spline for the spline based hardening is defined by the CUBIC SPLINE
TYPE, CARDINAL PARAMETER, KNOT EQPS, and KNOT STRESS command lines.
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* The isotropic hardening model for the flow stress hardening model is defined with the
ISOTROPIC HARDENING MODEL command line.

* The function name of a user-defined isotropic hardening model is defined via the
ISOTROPIC HARDENING FUNCTION command line.

* The optional rate multiplier for the flow stress hardening model is defined with the RATE
MULTIPLIER command line.

* The optional rate multiplier for the yield stress for the decoupled flow stress hardening
model is defined with the YTELD RATE MULTIPLIER command line.

* The optional rate multiplier for the hardening for the decoupled flow stress hardening model
is defined with the HARDENING RATE MULTIPLIER command line.

Output variables available for this model are listed in Table 4.27.

Table 4.27 State Variables for MODULAR PLANE STRESS PLASTICITY Model

Name Description

RADIUS yield surface radius in deviatoric w-plane, R
EQPS equivalent plastic strain, &”

EQDOT equivalent plastic strain rate, £”
TENSILE_EQPS | tensile equivalent plastic strain, éf

4.19 Power Law Creep Model

4.19.1 Theory

The power law creep model describes the secondary (or steady-state) creep and is useful in
capturing the time-dependent behavior of metals, brazes, or solder at high homologous
temperatures. It may also be used as a simple model for the time-dependent behavior of geologic
materials such as salt. A general discussion of such creep behaviors and the associated modeling
may be found in the texts of [57], [77] while the specific implementation used here is discussed in
[101].

In the power law creep model, the effective creep strain rate is taken to be explicitly a function of
stress and temperature. A power law relation is used for the stress dependence while an Arrhenius
like expression is used to capture thermal effects. As such, the effective creep strain rate is written
as,

= — _Q
C=Ad" — 4.67
€ O-VMCXP(RQ), ( 6)

where £° is the effective creep strain rate, 7, is the von Mises stress, A is the creep constant, m
is the creep exponent, Q is the activation energy, R is the universal gas constant (1.987 cal/mole
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K), and 6 is the absolute temperature. As a slip based mechanism, it is assumed that the creep
strains are deviatoric leading to a 3D evolution law of the form,

pe = ge3 Si

Y 2 OyM ’

with s;; being the deviatoric stress. The corresponding incremental constitutive equation for this
model is then given as,

Oo'l'j: Cijkl (Dkl - D;:(l) . (468)

4.19.2 Implementation

Given the time-dependent nature of the model response, an explicit, forward Euler scheme is used
to integrate the routine. Prior analysis [101] has shown that this implementation is conditionally
stable and found an expression of the form

4(1+v)
3EAexp (%) mo™-1

Aty <

vM

for the critical time step for stability, At,,. This time step is calculated using the previously
determined material state (state n) and compared to the input time step. If necessary, the time step
is cut back to meet this critical limit.

To determine the updated material state (state n + 1) it is first noted that the creep process is purely
deviatoric. Therefore, the stress may be decomposed as,

n_ _ . ne.. n
T, = =p"bij + 55

where p is the pressure (p" = — (1/3) T},) and Tj; is the unrotated stress. Given the decoupled
nature of the hydrostatic and deviatoric components, the updated pressure may be found as,

p"™ = p" - KdiAt,

with d;; being the unrotated rate of deformation. By similarly decomposing the rate of
deformation,

1 N
dij = gdkk&'j +dj,

with d; ; being the deviatoric part of the rate of deformation, the updated deviatoric stress is

7 Q - _1
n+l n 3 n \m n
Sij =8 t2u (d,-j - —Aexp (—n) (O’VM) sij) .

The updated stress is then simply,

n+l _ _ n+lg¢ . n+1
Tl.j =-p 5lj+sij.
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4.19.3 Verification

The power law creep model is verified through two, time-dependent tests — creep and stress
relaxation. It is noted that given the strong time dependency and form of the differential
constitutive equations, a closed form analytical expression for the response is not readily available.
Semi-analytical approaches in which simple numerical integration is used to solve the underlying
differential equation, however, are well suited to such efforts and are used here to verify the
numerical responses. The set of material properties and model parameters used for these tests are
taken from [89] and are given in Table 4.28 and it is assumed that there are no thermal strains.

Table 4.28 The material properties and model parameters for the power law creep model used for
the verification testing.

E 90.68 MPa | v | 0.39
A 512x107° | m | 4.51
O/R | 19,853.50K | 6 | 673.00K

4.19.3.1 Creep

To consider the creep response, the model response is determined both numerically and
semi-analytically. Through such a response, the stress tensor is 0y; = o (f) 6;16;1 where o () is a
prescribed boundary condition. For this investigation, o () ramps linearly from 0 to ¢4, over
the interval t = [0, 100 s] and 0,4, = 300 MPa. The stress is then held constant (& = 0) for the
next 900 s. Inverting the constitutive law (4.68) for the strain rate yields,

. c
Djj = S;jki0x + Dij‘

Furthermore, given the stress tensor form above, the creep deformation rate is,

_ - 1
ij = AO’S"M exXp (R—i) [5,'1(5j1 - 5 (5,'25j2 + 5,'3(5j3) . (4.69)

and
SijkiCTki = TSij11-
The total deformation rate may then be determined and easily integrated to find an analytical

response for the strain. To this end, both the semi-analytical and numerical strain and stress
responses (as a function of time) are presented in Fig. 4.95(a) and Fig. 4.95(b), respectively.
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Fig. 4.95 Semi-analytical and numerical results of (a) strain and (b) stress evolution during a creep
test.

4.19.3.2 Stress Relaxation

The stress relaxation response of the considered model is evaluated both numerically and
semi-analytically. Specifically, a displacement controlled loading of u; = A (¢) is investigated.
The other displacement degrees of freedom are not constrained so that a uniaxial stress state
results — o;; (t) = o (¢) 6;10;1. The displacement is prescribed such that it scales linearly from
up=0atr=0tou; = .01 att = 100 s and then held fixed for 900 s. Initially the considered
element is of unit length.

To determine the material response, it is noted that: (emph{i}) oy = 033 = 0; (emph{ii})
DS, = D§3 due to isotropy; and (emph{iii}) the creep deformation rate takes the form (4.69).
With these observations, the elastic deformation rate in the direction of loading (D‘l’l) becomes,

e A(1)

—m -0
1= T+ 10 B — A0, exp (—) . 4.70)

R6
Additionally, from (emph{i}) and (emph{ii}) above, it may be found that,
D3, = D33 = -vDy;, (4.71)
leading to an equation for the stress in the direction of loading of,
11 = (Ciin = 2vCii2) DY
Additionally, as D;; = ij +Ds . the strains may easily integrated by using relations (4.69), (4.70),

and (4.71). The resultant numerical and semi-analytical strain and stress responses are shown in
Fig. 4.96(a) and Fig. 4.96(b), respectively.
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Fig. 4.96 Semi-analytical and numerical results of the (a) strain and (b) stress evolution during a
stress relaxation test.

4.19.4 User Guide

BEGIN PARAMETERS FOR MODEL POWER_LAW_CREEP
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>

SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>

#

# Viscoplastic parameters
#

CREEP CONSTANT = <real>
CREEP EXPONENT = <real>
THERMAL CONSTANT = <real>

MAX SUBINCREMENTS = <integer> (100)
END [PARAMETERS FOR MODEL POWER_LAW_CREEP]

In the above command blocks:
* The creep constant, A, in (4.67) is defined with the CREEP CONSTANT command line.
* The creep exponent, m, in (4.67) is defined with the CREEP EXPONENT command line.

* The thermal constant, Q/R in (4.67) is defined with the THERMAL CONSTANT command
line.
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* Time step sub incrementation within the material model may be used to accurately calculate
the true creep stress. The maximum sub-increments in a load step is defined with the MAX
SUBINCREMENTS command line. The default is 100. A larger number of steps can
potentially improve accuracy if a large amount of creep happens in a single step. A smaller
number of steps can sometimes improve analysis speed.

Output variables available for this model are listed in Table 4.29.

Table 4.29 State Variables for POWER LAW CREEP Model

Name Description
ECREEP | equivalent creep strain
SEQDOT | equivalent stress rate

4.20 Viscoplastic Model

4.20.1 Theory

The viscoplastic model is a rate dependent plasticity model that is useful for modeling solders and
brazes and was developed by Neilsen et al. [74]. This model is formulated in terms of the stress
rate for the material. Like many inelastic models, the rate of deformation, D,;, is additively
decomposed into an elastic, ij, and an inelastic, Dg‘ part such that,

_ e in
Dij = Dij +Dij'

The elastic rate of deformation is the only part that contributes to the stress rate and it does so
through the elastic moduli, C;;;, in a linear fashion leading to the relation,

oij= CijuDS,, (4.72)

where C;j; are the components of the fourth-order, isotropic elasticity tensor. The stress rate is
arbitrary, as long as it is objective. Two objective stress rates are commonly used: the Jaumann
rate and the Green-Mclnnis rate. For problems with fixed principal axes of deformation, these two
rates give the same answers. For problems where the principal axes of deformation rotate during
the deformation, the two rates can give different answers. Generally speaking there is no reason to
pick one objective rate over another.

The inelastic strain rate is a function of the stress state, o5;, the temperature, 6, and a number of
internal state variables including both scalar isotropic, D, and tensorial kinematic, B;;, hardening
variables. With these dependencies defined, a general form for the evolution of the inelastic
deformation may be given by,

. 3
D;? =57 (¢ij,0; D, Bij) nij,
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where n;; is the direction of inelastic deformation and is defined as,

3

3 2 2
T=1[7 {5~ §Bij Sij —§Bij ,

with s;; being the deviatoric stress tensor. The inelastic strain rate, 7y, is defined via a hyperbolic
sin law,

1 2
nj; = ; (S,'j - _Bij) , (473)

and

' - p(0)
v = f(0) |sinh (m)} , (4.74)

where f(60) = exp(g(6)). The expressions g(6), @(6), and p(6) are model parameters that are
functions of temperature.

The evolution laws for the state variables D and B;; are,

D= T pan? 4@ Do)*, (4.75)
— 0
and
3, = 24 pin 4.76
Bij—mDij_ASbBij, (4.76)
where
2
b= §BijBij-

The parameters Dg, A1, Ay, Az, Ag, As and Ag are model parameters. The parameters Ay, Ay, A4
and As are also functions of temperature. The model can be simplified with the appropriate choice
of these parameters.

The following material parameters are functions of temperature and have the following form

G(0) = Gohg(0) ; K(6) = Koh(6)
g(0) = gohg(6) : p(60) = pohy(60) : a(6) = @oha(6)
A1(0) = AVhi(6) 5 Ax(0) = Aha(0)
As(0) = AQha(8) 5 As(8) = Adhs(0)

where the functions 4, (6) are normalized functions of temperature and the values (*)o or (*)° are
the reference values that are input in the command block.
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4.20.2 Implementation

An explicit, forward Euler scheme is used to integrate the viscoplastic model. First, during
initialization, the isotropic hardening variable D is set to 1.001Dy. This is done to avoid a
singularity in (4.75). Additionally, the kinematic variable is set to zero (B;; = 0).

Like the power law creep model that is integrated in a similar fashion, the chosen numerical
scheme is conditionally stable. As detailed in [74], a critical stability time step of,

2a (0) D

Atn+1 <
3G £ (6) p (6) sinh?®-! (a(;)D) cosh (—a(;)D)

b

may be determined. For convince, in the following the dependence of f, p, and @ will be
assumed and not explicitly written. Instead, f"*! will be used to refer to f (9”” ). Two additional
limits are also imposed to ensure accurate integration of the state variables. Specifically,

20D oAt
Atn+1 < #,
|Dn - Dn—l|
20D oAt
Aty < #,
|bn - bn—ll

where § is an allowable error measure (here, 1.0x1073) and %, refers to the time rate of change of
variable x at time step n. The current time step is checked to ensure it meets those criteria or else
it is scaled back to ensure accurate integration.

and

After assessing the acceptability of the time step, the new material state at time ¢ = 7,41 is
determined. If the time step needs to be cut back, multiple sub-increments are used. To elaborate,
let k denote a specific sub-increment and N represent the total number of sub-increments. Each
k" interval evaluates the numerical routine over a step size 5tF where At = Zfzo 5t*. In such
cases, temperature dependent variables are linearly interpolated between their values at ¢, and
tn+1. For example,
k

G'=G,+ AA—’t (Gus1 = G)
where At* is the current sub-increment time, Atk = Zf:o ot". For simplicity and clarity of
presentation, in the discussion below it is assumed that the input time step is acceptable and only a
single increment is needed. If additional sub-increments were needed, the below steps would be
repeated N times with time intervals of 5.

It is first noted that the unrotated stress, T;;, and deformation rate, d;;, may be decomposed as,

n _ ne n
Tij = =poij + 55
1

n _

Sk +

ij’
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with p being the pressure (p = —%Tk r) and dAl ; being the rate of deviatoric deformation. As the
inelastic deformation flows in a deviatoric direction, the hydrostatic and deviatoric components
may be evaluated separately. With this in mind, the pressure may be easily integrated via,

n+1

pn+l — pn o + 5 (Kn +Kn+l) dkkAl,

where K" is abbreviated notation for K (6"). The inelastic deformation rate is then determined
as,

~ 3
in _ n n. nn n n
D=y (al.j, 6" D ,Bl.j) .,
by evaluating expressions (4.73)-(4.74) at t = t, and 8 = 6". The internal state variables may then
be similar evolved via (4.75) and (4.76). With the inelastic state determined, the updated
deviatoric stress may be found via,

n+l i 2AtG" (d;; — D
Sij = —gn Sip TEAIGT\dij = Pij)
with the updated stress being,

n+1 n+l n+l

4.20.3 Verification

The viscoplastic model is verified through two, time-dependent tests — creep and stress relaxation.
To simplify the problem for verification purposes, the isothermal response only considering
isotropic hardening and recovery is investigated. It is noted, however, that given the stress
dependence and evolving internal state variable in the inelastic strain rate, a closed-form analytical
solution may not be found. Semi-analytical approaches numerically integrating the differential
equations are easily obtainable and used for comparison purposes. The considered test
temperature is 450°°‘C(: math : ‘723 K) and material properties and model parameters are those
of CusilABA taken from Table 3 of [74] and are reproduced for convenience below in Table

4.30.

Table 4.30 Material properties and model parameters used for isothermal, isotropic harden-
ing/recovery creep and stress

E [77.8 GPa v [0.375

g |-13.88 p | 2589

Ay | 3x10* MPa*! | Ay | 2.07x107 72—
Az | 1746 Dy | 50.0 MPa

A4 | 0 MPa/le*! As | 0.0 zi—

Ag | 0.0 a [ 1.0
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4.20.3.1 Creep

The creep response of the viscoplastic model is investigated both numerically and
semi-analytically. For such a loading, the stress tensor is 0; = o (t) ;10,1 with o (¢) being a
prescribed quantity. For this study, o (¢) ramps linearly from O to o7,,, over the interval

t = [0, 100 s] with 7,5, = 300 MPa. That magnitude is then maintained for the next 900 s.

To analytically determine the model response, the constitutive law (4.72) is inverted to yield

Dij = Siju0k + DI, (4.77)
and it is trivial to determine that
SijkiOki = TS11ki- (4.78)
For the inelastic response, for the purely isotropic case it is noted that 7 = ¢ () and therefore
nij = % [6:16;1 — % (61262 + 61363) | . Additionally, the inelastic strain rate reduces to,
TP
y = f |sinh (—U( ))] (4.79)
aD
producing a rate of inelastic deformation of,
~ 1
D;? = ’)/ |:6[15j1 - 5 (6526j2 + 6,3613):| . (480)

Expressions (4.77), (4.78), (4.80), and (4.75) can be easily integrated (via forward Euler or
Runge-Kutta) to determine a semi-analytical response. Both the numerical and semi-analytical
responses of the strain and stress (including flow stress, D) are presented below in Fig. 4.97(a)
and Fig. 4.97(b), respectively.

4.20.3.2 Stress Relaxation

The model response through a stress relaxation type loading is considered here both numerically
and semi-analytically. For this purpose, a displacement controlled loading, u; = A (1), is
employed. The other displacement degrees of freedom are not prescribed to ensure that a uniaxial
stress state (0;; = o (t) 6,10 1) develops. Specifically, the displacement is set to scale linearly over
100 s (from t = 0 to ¢ = 100 s) obtaining a maximum of #; = 0.01 at # = 100 s. Initially, a unit
length is assumed. This displacement is held fixed over the next 900 s to investigate the stress
relaxation characteristics of the model.

A similar procedure to the power law creep model (Section 4.19.3.2) is employed here.
Specifically, by noting the elastic isotropy, uniaxial stress state, and (4.80) the elastic deformation
rate in the direction of loading (D?l) is found to be,

e __AQ)
NI

where an expression for y is given in (4.79). By noting ¢7; = C,-jleil and D;; = ij + Dg‘ the
material state may easily be found via numerical integration. The result strain and stress
evolutions are given in Fig. 4.98(a) and Fig. 4.98(b), respectively.
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Fig. 4.97 Semi-analytical and numerical results of (a) strain and (b) external and internal, (D), stress
evolution during a creep test with the viscoplastic model.
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evolution during a stress relaxation test with the viscoplastic model.
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4.20.4 User Guide

BEGIN PARAMETERS FOR MODEL VISCOPLASTIC

#

# Elastic constants

#

YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>

BULK MODULUS = <real>
LAMBDA = <real>

TWO MU = <real>

FLOW RATE = <real>

SINH EXPONENT = <real>

ALPHA = <real>

ISO HARDENING = <real>

ISO RECOVERY = <real>

ISO EXPONENT = <real>

KIN HARDENING = <real>

KIN RECOVERY = <real>

KIN EXPONENT = <real>

FLOW STRESS = <real>

SHEAR FUNCTION = <string>
BULK FUNCTION = <string>
RATE FUNCTION = <string>
EXPONENT FUNCTION = <string>
ALPHA FUNCTION = <string>
IHARD FUNCTION = <string>
IREC FUNCTION = <string>
KHARD FUNCTION = <string>
KREC FUNCTION = <string>

MAX SUBINCREMENTS = <int> itmax (2000)
END [PARAMETERS FOR MODEL VISCOPLASTIC]

In the above command blocks:

* Since the model requires functions to describe the temperature dependence of the bulk and
shear modulus, it is recommended that one inputs the bulk and shear modulus at some
reference temperature. However, any two of the elastic constants can be used for input.

* The reference value in the equation for the flow rate, In fy, is defined with the FLOW RATE
command line.

* The reference value for the exponent on the sinh function, py, is defined with the STNH
EXPONENT command line.
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The reference value alphay is defined with the ALPHA command line.

The reference value for the isotropic hardening parameter, AV, is defined with the TSO
HARDENING command line.

The reference value for the isotropic recovery parameter, A?, is defined with the IS0
RECOVERY command line.

The value for the isotropic hardening exponent parameter, As, is defined with the TSO
EXPONENT command line.

The reference value for the kinematic hardening parameter, AV is defined with the KIN
HARDENING command line.

The reference value for the kinematic recovery parameter, A?, is defined with the KIN
RECOVERY command line.

The value for the kinematic hardening exponent parameter, Ag, is defined with the KIN
EXPONENT command line.

The value for the flow stress, Dy, is defined with the FLOW STRESS command line.

The user-defined and normalized function that gives the shear modulus as a function of
temperature, hg(6), is defined with the SHEAR FUNCTION command line.

The user-defined and normalized function that gives the bulk modulus as a function of
temperature, hg (6), is defined with the BULK FUNCTION command line.

The user-defined and normalized function that gives the flow rate as a function of
temperature, h,(0), is defined with the RATE FUNCTION command line.

The user-defined and normalized function that gives the sinh exponent as a function of
temperature, h,(6), is defined with the EXPONENT FUNCTION command line.

The user-defined and normalized function that gives @ as a function of temperature, A, (6),
is defined with the ALPHA FUNCTION command line.

The user-defined and normalized function that gives A; as a function of temperature, /(6),
is defined with the THARD FUNCTION command line.

The user-defined and normalized function that gives A; as a function of temperature, h;(6),
is defined with the TREC FUNCTION command line.

The user-defined and normalized function that gives A4 as a function of temperature, h4(6),
is defined with the KHARD FUNCTION command line.

The user-defined and normalized function that gives As as a function of temperature, hs(6),
is defined with the KREC FUNCTION command line.

The Viscoplastic model may need to take sub-increments to solve for the plastic flow over
the current time step. The maximum number of steps that may be taken on a step prior to
issuing an error can be set by the MAX SUBINCREMENTS command line. This value
defaults to 2000.
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Output variables available for this model are listed in Table 4.31.

More information on the model can be found in the report by Neilsen, et. al. [74].

Table 4.31 State Variables for VISCOPLASTIC Model

Name Description

EQPS equivalent plastic strain

SVB kinematic hardening variable, B

SVB_XX | kinematic hardening variable - xx component, B
SVB_YY | kinematic hardening variable - yy component, By,
SVB_7zZ | kinematic hardening variable - zz component, B,
SVB_XY | kinematic hardening variable - Xy component, B,
SVB_YZ | kinematic hardening variable - yz component, By,
SVB_ZzX | kinematic hardening variable - zx component, B,
SVD 1sotropic hardening variable, D

EQDOT inelastic strain rate, y

COUNT | number of sub-increments

SHEAR | shear modulus, G (6)

BULK bulk modulus, K (6)

RATE g(0) (see (4.74))

EXP p(0) (see (4.74))

ALPHA | a(0) (see (4.74))

Al isotropic hardening parameter, A;(6)
A2 isotropic recovery parameter, A, (6)
A4 kinematic hardening parameter, A4(6)
A5 kinematic recovery parameter, As(6)

4.21 Munson-Dawson Viscoplastic Model

4.21.1 Theory

The Munson-Dawson (MD) model was originally defined in [69], [70], [71], but several changes
were made in [84]. This section presents the current model in a small strain setting. (Section
4.21.2 briefly mentions how the model is extended into the finite deformation realm.) Note that
compressive stresses and strains are treated as positive in this section, as is common in the
geomechanics literature.

The MD model is an isotropic, hypoelastic, unified viscoplastic, material model. The total strain

rate &;; is decomposed into an elastic strain rate sle]l a thermal strain rate s}?, and a viscoplastic

. .V
strain rate sl.]P :

. .el .th .Vp
Eij =& &+ €. (4.81)

280



The elastic portion of the MD model utilizes the following simple linear relationship between 8'211

and the stress rate 07},
i = Cijuesh = Ciju (S'kl -8 - SZIID) (4.82)
Cijki = (B=2/3u)6;j 6+ (5ik 01+ 04 5jk) , (4.83)

where C; 4, is the elastic stiffness, which is composed of the bulk modulus B, the shear modulus
1, and the Kronecker Delta ¢;;. The thermal strain portion of the model is simply

831 = —-a 9 6ij (484)
where « is the coefficient of thermal expansion, and 6 is the temperature. Sierra/SM also offers
thermal strain functions for adding thermal strain effects to any given model. If & # 0, then MD
model users should not specify a thermal strain function, otherwise thermal strains will be applied
twice.

Plastic deformation is assumed to be isochoric and only occurs in the presence of shear stress.
The MD model utilizes the Hosford stress as its equivalent shear stress measure 6. The Hosford
stress is

1/a
5={%[|0'1—(Tz|”+|<72—0'3|a+|01—U3|a]} : (4.85)
where o; are the principal stresses and a is a material parameter. This definition for o was
proposed in [45] because it encompasses the Tresca stress (a = 1), the von Mises stress (a = 2),
and a range of behaviors in-between (1 < a < 2). One can also reproduce the Tresca stress with

a = oo, the von Mises stress with a = 4, and behaviors in-between with 4 < a < oo. This second
range avoids potential singularities in the first and second derivatives of (4.85), so the exponent is
restricted to a > 4.

The viscoplastic strain evolves according to an associated flow rule
g = gw 97
t ao, ij

(4.86)

where &P is the equivalent viscoplastic strain rate. It can be decomposed into two components
&P =" 4 &%, (4.87)

where £" is the transient equivalent viscoplastic strain rate and £ is the steady state equivalent
viscoplastic strain rate.

The MD model decomposes the steady state behavior into four mechanisms:

i=0
— \ 1
&% =A; exp _9i) (2 fori =0,1, and 2
! RO \u
2 - -
K — — Ql . (O- - O-g)
gy =H(o — 0y) ; B; exp (_R_Q) sinh (qT ,
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The variables A;, B;, Q;, n;, 0, and g are all model parameters. All four mechanisms have an
Arrhenius temperature dependence, where Q; is an activation energy and R = 8.314J/(K mol) is
the universal gas constant. Mechanism 3 is only activated when ¢ exceeds 0y, as reflected in the
heaviside function H(0 — ). Typically, the parameters B; are chosen to produce a smooth
transition to mechanism 3 at 7.

The simple functional forms of (4.88) suffice for the steady-state behavior, but the transient
behavior is somewhat more complex. During work hardening under constant stress, &
approaches the transient strain limit £ from below, and the total viscoplastic strain rate slows
down over time. During recovery under constant stress, &% approaches ™ from above, and the
total viscoplastic strain rate speeds up over time. The rate that £" approaches & is governed by

g =(F-1) &%, (4.88)

where

gtl’*

| 2
F = exp lsign (8% — &%) (1 _f ) ] . (4.89)

and « is a quantity that depends on whether the material is work hardening or recovering. These
two behaviors are captured in the following equations

o . .
(047 +ﬁh loglo (_) étr < étr*
K= H

(4.90)

M

o . .
Ay +ﬁr lOglO (;) st > étr*.

where a; and ; are model parameters. Note that the parameter x must be non-negative,
otherwise (4.88) produces a negative/positive £ when " is below/above £"*. (Such behavior
occurs during reverse creep, but the MD model is only designed to model forward creep.) To
enforce this, (4.90) is calculated first, and then

Kk < max(«,0)
is applied.

The MD model uses two mechanisms to endow £** with stress and temperature dependence:

=trs =tr*

&

M-

Il
o

1

— \ m;
& = K; exp(c; 0) (%) ,

where K;, ¢;, and m; are parameters to be calibrated against experimental results.
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4.21.2 Implementation

The full details of the MD model’s numerical implementation are published in [84]. This section
discusses several salient points for the typical MD model user and to define all the input
parameters in Section 4.21.4.

* As discussed in Section 4.21.3, one can obtain an analytical solution to the MD model’s

ordinary differential equations if the exponent in (4.89) is changed from 2 to 1, and

sign (8" — &) = 1. To accommodate this possibility, (4.89) is numerically implemented as

str\ X
F =exp [sign (87 — gty (1 _f )

étr*

(4.91)

where y is a user specified integer that is equal to 2 by default, but one can set y = 1 for
verification testing.

» Each steady state creep mechanism is implemented with a viscoplastic rate scale factor s,
such that (4.88) becomes

§S
1
i=0
—\ N
EF =sA; exp |- Qi) (Z fori = 0, 1, and?2
RO \ u
2 _
. i . g — 0,
gy =sH(T - 0y) Z B; exp (_Rgé)) sinh (q%) )
i=0

This scale factor can be used to speed up or slow down the equivalent steady-state strain rate and
the total equivalent viscoplastic strain rate, because &P = ¥ + &% = F £%. The default value is

s = 1, but it can be useful to set s to some small value to “freeze” the material’s viscoplasticity for
a period of time, or increase s to larger values to squeeze hundreds of years into a few seconds.
Speeding up the viscoplasticity can allow one to make quasi-static simulations using explicit
dynamics, provided inertial effects are kept to a minimum. The variable s is implemented as an
internal state variable, rather than a material parameter, so a user can modify it in the middle of a
simulation. Internal state variables can be altered by creating a user variable with the same name
as the internal state variable (viscoplastic_rate_scale_factor in this case) in a Sierra

input deck and modifying the user variable with a user function or user subroutine (see Sections
2.3 and A.2.1 in [85]).

* The MD model is extended into the finite-deformation realm using hypoelasticity.
Consistent with the Green-Mclnnis stress rate, the infinitesimal strain rates are replaced
with the corresponding unrotated rates of deformation (i.e. £;; — D;;) and the stress is
replaced with the unrotated Cauchy stress (o;; — T1ij).

* Following the lead of Scherzinger [86], the model’s time derivatives are discretized using
the backwards Euler method, and the resulting non-linear algebraic equations are solved
with a line search augmented Newton-Raphson method.
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A typical user of the model should not need to adjust the routine’s default numerical parameters,
but the parameters are briefly mentioned here should adjustment become necessary.

* The implementation has some expressions where & is in the denominator of a fraction. If
an initial calculation of the Hosford stress results in & < 07y, then the initial value is
replaced with Gyin. The value of 07yip should be small enough to have negligible impact,
yet still avoid o = 0.

* Each iteration of the implicit integration routine updates the merit function
w® =1/2 (REJ{C)RS‘) + r(k)z) for iteration k, where Rl.(;‘) and r®) are the residuals
associated with the differential equations in (4.86) and (4.88), respectively. An iteration is

considered converged when Vw*) < \/wnax. The value of \/wmax should be a small
positive value close to zero.

 [f a Newton iteration (or a line search iteration) does not produce sufficient decrease in w®,
a line search iteration is performed. The line search algorithm selects /), for each iteration
7, to search for a sufficient decrease in w® (£(/)) along the search direction provided by the
Newton iteration. The start and end of the last Newton iteration are ¢/) = 0 and (V) = 1,
respectively. A decrease in w® (¢()) is considered sufficient if
w® (DY < (1 -2£20D)w®(0), where £ is a positive value usually set close to zero.

* The minimum allowed value of £/ is .
¢ The maximum number of Newton iterations is k.
* The maximum number of line search iterations iS jmax-

See [84] for further discussion of these numerical parameters.

4.21.3 Verification

The MD model contains ordinary differential equations ((4.86) and (4.88)) that make it non-trivial
to verify. A straightforward analytical solution, however, can be constructed to these equations if
X = 11n(4.91) and if the stresses and temperatures remain piecewise constant in time.

Temporally constant stresses and temperatures allow (4.82), (4.83), (4.84), (4.85), (4.86), (4.87),
and (4.88) to be integrated to

et = et (t)) = Cppn (Tonn = Oun (1)) — @ (0= 6(1))) S+ &7 — €7 (1)) (4.92)

loloa

8‘,:1; - sﬁ(tj) = [étr —&"(t;)+&% (1 - tj)] don

(4.93)
where ¢; is the time at the end of the previous time period j. The quantities from the previous
time period (ex;(t;), omn(2)), 6(t;), sZ‘l)(tj), and £"(t,)) are assumed to be known. Setting y = 1
in (4.91) enables the following general analytical solution to (4.88):

N

gr=% 1 {exp(K) +exp _L (Cy - ésst)]} : (4.94)
K glr*
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One can solve for the integration constant C; using the initial condition & = " (z;) at 1 = 1;.
After substituting the result back into (4.94), one obtains

Strx
=tr

g = € In {exp(K) +
K

étr

exp (étr(ti) K) - exp(K)] exp [—é &% (t - tj)]} ) (4.95)

Combining (4.92), (4.93), and (4.95) produces the following closed form expression for the total
strain change over a time period

ext — ex(ty) = Cil o (Tmn — T (2))) — @ (8 = 6(2)) Sw+

St
[8 In {exp(K) +
K

g(t;)

exp ( gtr]* ) - CXP(K)] exp [—é &% (1 - t_/)]}

— () + 5 (1 - tj)} ;Ti,'

The next three subsections compare numerical solutions against analytical solutions for
axisymmetric compression, pure shear, and unequal biaxial compression. In each case, the
numerical solution for the total strain is denoted as &;;, while the analytical solution for the total
strain in (4.96) is denoted as &;;. All the verification tests only involve principal deformations, so
hypoelasticity simply reinterprets the stress and strain in Section 4.21.1 as the Cauchy stress and
logarithmic strain, respectively. As a reminder, compressive stresses and strains are treated as
positive.

All the verification tests utilize Calibration 3B of the MD model. The full parameter set can be
found in [84], but Fig. 4.99, Fig. 4.100 and Fig. 4.101 depict much of the calibration graphically.
Fig. 4.99 shows the shape of the Hosford equivalent stress surface for a = 16. The Hosford surface
and the angle ¢ of its normal n;; depend on the Lode angle ¢ of the deviatoric stress

O'S.ev = 0y; — 1/30% 6;;. Fig. 4.100 and Fig. 4.101 show the individual mechanisms & and &*,
as well as the sums 8™ = Y|/ " and &% = Y7 ) &%, so that one can visualize where each
mechanism dominates the total behavior.

4.21.3.1 Triaxial Compression

Triaxial compression tests are frequently used to characterize the creep and strength behavior of
geomaterials, such as rock salt. Cylindrical specimens are subjected to a radial confining pressure
oy and an axial stress 0,,. Axisymmetric compression is perhaps a more appropriate name for
these tests, because the hoop stress gy is equal to oy, but triaxial compression is the common
name.

The applied stress and temperature histories for the test are shown in the top two plots in Fig.
4.102. The test begins with an isothermal, 20 MPa hydrostatic, hold period for 10 days, where the
strain is purely elastic. Att = 0, 0, is increased to 35 MPa, while the other stresses are held fixed,
causing a 15 MPa equivalent stress. This stress state is held for the next 50 days. The strain
evolves quickly at first, but slows down to the steady-state rate as the material work hardens. At

285



0o A
Hosford (a = 16)

1
1
I
I
I
I
I
1
1
1
I
I
I
I
I
|
1
1
1
I
I
I
I
I
1
1
'S
I
I
I
I
I
1
1
1
I
I
I
I
I
1
1
1
I
I
I
I
I
I
1
1
I
I
'

Fig. 4.99 Hosford equivalent stress surface in the n-plane.
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Fig. 4.100 Stress and temperature dependence of the transient strain limit for Calibration 3B.
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Fig. 4.101 Stress and temperature dependence of the steady-state strain rate for Calibration 3B.

t =50, 0, is decreased to 33 MPa, while the other stresses are held fixed. The 2 MPa drop in &
causes the strain rate to slow down markedly, but it gradually builds to a new steady-state rate as
the material recovers over the next 50 days.

In summary, the numerical and analytical solutions for the total strain match very well throughout
the test, which verifies:

* Linear elasticity under triaxial compression

* Zero viscoplastic strain evolution under hydrostatic loading

* Viscoplastic strain evolution for ¢ = —30°

e Work hardening (8" < £"*) dominated by transient strain limit mechanism 1
* Recovery (¥ > &) dominated by transient strain limit mechanism 1

* Steady-state strain accumulation dominated by transient strain limit mechanism 2.

4.21.3.2 Pure Shear

The Hosford equivalent stress depends on a for —30deg < ¢ < 30deg, but it is independent of a
for ¢ = —30° (triaxial compression) and ¢ = 30° (triaxial extension). Pure shear is a simple stress
state that exercises the Hosford stress at a Lode angle other than ¢ = +30°. Pure shear can be
expressed in the principal frame as 03 = —o; and 0, = 0. In addition to exercising the model
under pure shear, this test also varies the temperature to verify thermal expansion and creep at
elevated temperatures.

The applied stress and temperature histories for the test are shown in the top two plots in Fig.
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4.103. The test begins with a 0 MPa hydrostatic hold period for 10 days while the temperature is
linearly ramped from 27°C to 57°C. Some thermal strains develop during this time. At¢ = 0, the
temperature ramp stops, o7 is increased to 5 MPa, o> is held at zero, and o3 is reduced to -5 MPa.
This state is held for the next 50 days, while the material creeps. At ¢ = 50, 6 is increased to
112°C, but the stresses remain fixed. The sharp increase in 8 causes a step change in thermal
strain, and then accelerated creep is observed over the over the next 50 days.

In summary, the numerical and analytical solutions for the total strain match very well throughout
the test, which verifies:

* Linear elasticity under pure shear

* Thermal expansion

* Viscoplastic strain evolution for ¢ = 0°

* Temperature dependence of transient strain limit mechanism 1
 Steady-state strain accumulation dominated by mechanism 1

* Steady-state strain accumulation dominated by mechanism 2.

4.21.3.3 Unequal Biaxial Compression

Unequal biaxial compression is another stress state that exercises the Hosford stress at a Lode
angle other than ¢y = +30°. Unequal compressive stresses oxx and oyy are applied to two faces of
a cube, while o, = 0. This stress state is slightly more complex than triaxial compression or pure
shear because all three stress magnitudes are unequal. This test also alters the stress component
ratios after 50 days of creep to verify the model’s ability to change Lode angle.

The applied stress and temperature histories for the test are shown in the top two plots in Fig.
4.104. The test begins with a stress free hold period for 10 days. At ¢ = 0, o is increased to 3.5
MPa, oy is increased to 5 MPa, and o, is held at zero. In this stress state, yy = 13.0° and the
intermediate principal stress is oxx. The intermediate principal strain rate xx ~ 0 and &yy = —&,,
because the flow rule (4.86) causes £'P to be coaxial with the flow potential normal n;;, and n;; is
nearly horizontal at ¢ = 13.0° in Calibration 3B (see Fig. 4.99). Att = 50, o is increased to 6.0
MPa, while the other stresses remain fixed. The sharp increase in oy causes a step change in
elastic strain that is visible because the viscoplastic strains are small at these low values of 7. In
this stress state, ¢ = 21.1° and the intermediate principal stress is oyy. Accordingly, £y, ~ 0 and
Exx ~® —&4,. If one looks more closely, however, &yy is slightly positive and £xx > —&,, because

Y = 21.1° is beginning to approach the corner of the Tresca hexagon (see again Fig. 4.99).

In summary, the numerical and analytical solutions for the total strain match very well throughout
the test, which verifies:

* Linear elasticity under unequal biaxial compression
* Viscoplastic strain evolution for ¢ = 13.0° and a subsequent change to ¢ = 21.1°

* Transient strain accumulation dominated by transient strain limit mechanism 0
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* Steady-state strain accumulation dominated by mechanism 0.

4.21.4 User Guide

BEGIN PARAMETERS FOR MODEL MD_VISCOPLASTIC
# Elastic constants

YOUNGS MODULUS = <real>
POISSONS RATIO = <real>

SHEAR MODULUS = <real>

BULK MODULUS = <real>

LAMBDA = <real>

TWO MU = <real>

# Steady-state creep parameters
A0 = <real> (0.0)
Al = <real> (0.0)
A2 = <real> (0.0)
Q0oR = <real> (0.0)
QloR = <real> (0.0)
Q20R = <real> (0.0)
no = <real> (0.0)
nl = <real> (0.0)
n2 = <real> (0.0)
sigma_g = <real>

BO = <real> (0.0)
B1 = <real> (0.0)
B2 = <real> (0.0)
gq = <real> (0.0)
# Transient creep parameters

KO = <real> (0.0)
K1 = <real> (0.0)
c0 = <real> (0.0)
cl = <real> (0.0)
mO = <real> (0.0)
ml = <real> (0.0)
alpha_h = <real> (0.0)
alpha_r = <real> (0.0)
beta_h = <real> (0.0)
beta_r = <real> (0.0)
# Other parameters

alpha = <real> (0.0)
a = <real> (1000.0)
# Numerical implementation parameters
_chi = <real> (2.0)
_sigma_min = <real> (le-10 * SHEAR_MODULUS)

_sgrt_omega_max = <real> (le-11)
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o xi = <real> (le-4)
_gamma = <real> (0.1)
_k_max = <real> (100)
_Jj_max = <real> (10)

END [PARAMETERS FOR MODEL MD_VISCOPLASTIC]

Output variables available for this model are listed in Table 4.32.

Table 4.32 State Variables for MD_VISCOPLASTIC Model

Name Description

EQ_TR_STRAIN equivalent transient viscoplastic strain, &
EQ_VP_STRAIN equivalent viscoplastic strain, &P

EQ STRESS equivalent stress, o
VP_RATE_SCALE_FACTOR | viscoplastic rate scale factor, s

4.22 Hyperfoam Model

4.22.1 Theory

The hyperfoam model is a hyperelastic model that can be used for modeling elastomeric foams. It
is based on a strain energy with a form given by Storakers [93] which is similar to a form
presented by Ogden [78]. The strain energy depends on the principal stretch ratios of the material
and is given by

N 2
W) = Z a_zl

i=1 i

U [
/11'+/12'+A‘3”—3+E(J 'ﬁ'—l)] (4.96)

where y; and ; are input parameters and J is the determinant of the deformation gradient. The
value of S; is calculated from the parameters v; via

pi=—"

L1 =2y
The v; can be thought of as Poisson’s ratios, however in the context of the summation in (4.96) it
is best to consider them as fitting parameters.

The strain energy (4.96) is a sum of N contributions. The principal Kirchoff stresses for the
hyperfoam model, 7¢, can be calculated as

ow
= —
Tk ké?/lk

which can be used to calculate the components of the Kirchoff stress, 7;;, through

3
~k Ak

k=1
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where é lk are the components of the k™ eigenvector of the left stretch tensor in the global
Cartesian coordinate system. The components of the Cauchy stress are then

jTl‘j. (497)

O',‘j =

Finally, it should be noted that the Hyperfoam model is also capable of reproducing the Blatz-Ko
model [10, 11]. If only one term is chosen, N = 1, and p; = u, @1 = =2, and v; = 0.25 we get the
Blatz-Ko strain energy density

M2
w=C 24205
2(13 ’ )

where I, and I3 are the second and third invariants of the right Cauchy-Green tensor.

4.22.2 Implementation

The hyperfoam model is evaluated using the left stretch tensor, V;;. Given the left stretch, the
eigenvalues, Ay, and eigenvectors, él’.‘, of the stretch are calculated

3
& % 3 Z ok sk
k=1

Next, the determinant of the deformation gradient is calculated
J =41 A243.

Then the contribution of each term in the expansion is added to the Kirchoff stress

-1 W Al A1 2 A2 53 53
TS = Ti’} +4 ER €€ 2 ol ciejtaAs 03 €
where Tl.(;. =0 and
W™ 2u,
/l — (ﬂan _ J_anﬁn) i (4.98

After summing the terms n = 1, ..., N the Kirchoff stress is converted to the Cauchy stress using
(4.97). If necessary the Cauchy stress is transformed back into an unrotated configuration to be
returned to the host code.

4.22.3 Verification

The hyperfoam model is verified for four loading paths: uniaxial strain, biaxial strain, pure shear,
and simple shear. The material parameters used for the verification tests are shown in Table 4.33.
For these problems N = 3.
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Table 4.33 The material properties for the hyperfoam model tested in uniaxial strain.

EQPS equivalent plastic strain
SVB kinematic hardening variable, B
SVB_ XX | kinematic h

Ui 25.8 MPa -21.9 MPa | 0.0814 MPa
a; 2.536 2.090 -8.807
\Z 0.5630 0.5507 0.3662

4.22.3.1 Uniaxial Strain

Since the hyperfoam model is formulated in terms of principal stretches, a uniaxial strain problem
is a very simple verification problem that can be run.

In uniaxial strain, the stretch ratio in the direction of straining is A = exp(&), where ¢ is the
applied strain. In a direction orthogonal to the direction of straining the stretch ratios are equal to
one. The determinant of the deformation gradient is J = A.

Since the deformation is aligned with the global coordinate axes, the eigenvectors of the left
stretch are also aligned with the global coordinate axes. Using the derivatives of the strain energy
density given in (4.98), the non-zero stress components are

1Y 2u;

4 . —a: B
== /1‘“—/1‘“5’)
o11 ﬂ; @ (

lN
==ty
/li:1

The results of the analysis in tension are shown in Fig. 4.105 to Fig. 4.107.

24k (1 _/1—0/1‘,3;‘)
@;

For the results in Fig. 4.105, a single element is strained to & = 0.6 which, in uniaxial strain in
tension, is very large for this model. At some point the stresses begin to increase rapidly. Since
the axial stress and the lateral stresses are both very large, the pressure in uniaxial strain in tension
is also very large. For this extreme loading the model in Adagio shows agreement with the
analytical solution.

The model is also loaded in uniaxial compression. These results are shown in Fig. 4.106. The
model again shows agreement with the analytical solution. The behavior in compression is very
different than tension. The maximum stress is an order of magnitude less at a strain of £ = —0.6,
where the axial stress is just over 9 MPa, compared to £ = 0.6 in tension where the axial and lateral
stresses are nearly 450 MPa. The lateral stresses reach a plateau while the axial stress increases.
The stresses in compression also have a different nonlinear form than the stresses in tension.
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Finally, both the tension and compression responses are shown in Fig. 4.107. Here the continuity
of the behavior at £ = 0 can be seen along with the very different responses in tension and
compression.

450 I
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Fig. 4.105 The axial and lateral stresses for uniaxial strain in tension using the hyperfoam model.
The results show agreement with the analytical results. The material properties for the model are
given in Table 4.33

4.22.3.2 Biaxial Strain

Another simple verification problem for the hyperfoam model is biaxial strain.

In biaxial strain, the stretch ratios are prescribed in two orthogonal directions. For this
A1 = exp(e;) and A, = exp(e;), where g; are the applied strains in the x; and x; directions. In the
third direction orthogonal to the first two, the stretch ratio is one. The determinant of the
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Fig. 4.106 The axial and lateral stresses for uniaxial strain in compression using the hyperfoam
model. The results show agreement with the analytical results. The material properties for the
model are given in Table 4.33.
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Fig. 4.107 The axial and lateral stresses for uniaxial strain in both tension and compression using
the hyperfoam model. The results show agreement with the analytical results and that the response
of the material is very different in tension and compression. The material properties for the model
are given in Table 4.33.
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deformation gradient is J = A4145.

1

2 1 < | 5

o1 = /ll/l /’ll [/1(1’1 (/1112) Q’zﬁt] ; = /l_ ; ” 1 _ (/11/12)—0’1,81]
— 1 N ;i

on = Z )]

The results of the analysis in tension are shown in Fig. 4.108 to Fig. 4.110.

For the results in Fig. 4.108, a single element is strained with £; = 0.4 and &, = 0.2 which, in
biaxial strain in tension, is very large for this model. At some point the normal stresses begin to
increase rapidly. Since the normal stresses are very large, the hydrostatic pressure is also very
large. For this extreme loading the model in Adagio shows agreement with the analytical
solution.

The model is also loaded in biaxial compression. These results are shown in Fig. 4.109. The
model again shows agreement with the analytical solution. The behavior in compression is very
different than tension. The maximum stress is orders of magnitude less at a strain of €1 = -0.4
and &, = —0.3, where the maximum normal stress is just over 4.5 MPa, compared to £ = 0.4 and
&7 = 0.3 in tension where the normal stresses from the model are nearly 1.3 GPa. The lateral
stress 0, reaches a plateau while the other two stress increase with increased straining The
stresses in compression also have a different nonlinear form than the stresses in tension.

Finally, both the tension and compression responses are shown in Fig. 4.110. Here the continuity
of the behavior at € = 0 can be seen along with the very different responses in tension and
compression.

4.22.3.3 Pure Shear

The hyperfoam model is is also tested in pure shear in strain. Note that this is different from pure
shear in stress.

In pure shear, the principal stretch ratios are 11 = 4, A1, = 1, and A3 = A~!. The determinant of the
deformation gradient is J = 1, which means the Kirchhoff and Cauchy stress measures are the
same.

The principal stresses are

2 2
O'IZZ 'ul(/l"’—l) ; op=0 0'3:2 'ul(/l'“‘—l)

a; a;
i=1 i=1 !
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