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Abstract

Accurate and efficient constitutive modeling remains a cornerstone issue for solid mechanics
analysis. Over the years, the LAMÉ advanced material model library has grown to address this
challenge by implementing models capable of describing material systems spanning soft polymers
to stiff ceramics including both isotropic and anisotropic responses. Inelastic behaviors including
(visco)plasticity, damage, and fracture have all incorporated for use in various analyses. This
multitude of options and flexibility, however, comes at the cost of many capabilities, features, and
responses and the ensuing complexity in the resulting implementation. Therefore, to enhance
confidence and enable the utilization of the LAMÉ library in application, this effort seeks to
document and verify the various models in the LAMÉ library. Specifically, the broader strategy,
organization, and interface of the library itself is first presented. The physical theory, numerical
implementation, and user guide for a large set of models is then discussed. Importantly, a number
of verification tests are performed with each model to not only have confidence in the model itself
but also highlight some important response characteristics and features that may be of interest to
end-users. Finally, in looking ahead to the future, approaches to add material models to this
library and further expand the capabilities are presented.
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is solved with a single pass at each time step, leading to a solution that is out of
equilibrium. The curve “ControlRxnDiff” is solved until convergence, indicat-
ing equilibrium. The equilibrium result is seen to agree with the exact solution. . 445

Fig. 4.158. Imagery showing the phase field solutions generated from the 1D PhaseBC FeFp
verification test, with the phase boundary condition placed at 𝑥 = 0.5 and ℓ =
0.001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
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1 Introduction

Constitutive modeling is a fundamental aspect of solid mechanics modeling and simulation. The
wide range of behaviors of solid materials requires a vast number of models capable of modeling
all (or even some of) the different responses. This is in contrast to fluid mechanics, for example.
As such, constitutive modeling is arguably the major problem in solid mechanics. A constitutive
model is necessary for accurately predicting the state of a material. This determination includes
both the stress state whose resolution is essential for many phenomena of interest like fracture and
failure as well as capturing inelastic responses like damage or multiphysics couplings.

One aspect of obtaining an accurate resolution of the stress field is, in one sense, easy to
understand. It is mesh discretization. More degrees of freedom in a simulation enables better
resolution and results in a more accurate stress field if we look just at the mathematics. If all
materials followed an elastic law, then mesh resolution on its own would be all that is needed to
resolve the stress field. In reality, however, materials do not exhibit elastic responses except in
very limited cases.

This leads us to a second aspect of calculating accurate stress fields, which is much harder to
understand. This one concerns the physics. The specific behavior of a material depends on the
physical processes specific to that material, and this must be included in a constitutive model in
some form or another. The main goal of the Library of Advanced Materials for Engineering -
LAMÉ - is to provide a simple means to implement the wide variety of models in a library that
can be used by our solid mechanics application codes.

23



This page left blank

24



2 Strategy

As a third party library, the Library of Advanced Materials for Engineering (LAMÉ) is renewing a
commitment to accurate, robust, and efficient constitutive modeling for solid mechanics. There are
three distinct groups that require services from LAMÉ: constitutive model developers, application
code developers, and analysts. Each group has different, but related, requirements on LAMÉ.

Constitutive modelers who develop the mathematical models describing the response of interest
and the associated numerical methodologies require a framework for developing and
implementing these models. This framework must be well documented so that these developers
can easily develop and implement a model that can, when the model is sufficiently robust, be used
reliably in production calculations.

Application code developers, on the other hand, require that the library of constitutive models
share a common, simple interface. This requires that the conceptual division between a
constitutive model and the application code be well understood. The application codes also
require verified behavior of the models along with certain performance requirements as these
models can be called billions of times in an analysis.

Analysts require constitutive models that are both verified and well documented. The responses of
interest can very greatly depending on the material utilized and the conditions under which it is
loaded. This accounts for the wide range and sheer volume of constitutive models in the literature.
Furthermore, there may be nothing that affects the results of an analysis more then the constitutive
model. Therefore, the analyst needs a thorough knowledge of the behavior of the models along
with how to use it in an application code. Such an understanding is also essential for the accurate
determination and calibration of different material and model parameters. In some cases, even
subtle changes in a material specimen’s history can lead to large variation in properties and
responses. As such, a clear description and understanding of this input data is essential for
appropriate utilization of different models.

Due to the varied requirements on LAMÉ, a strategy for supporting these various user groups has
been developed. This strategy is described here.

2.1 Code Development

There are many strategies that can be employed for a code development process. The choice of
such a procedure depends on what the overall project is creating. And even after a development
process has been selected, it is often tailored to the needs of the specific code project.

The LAMÉ code development team has spent some time deciding on an appropriate process that
reflects the needs of the project and its stakeholders.

Given that LAMÉ has two roles, as an interface to a host code that will supply a material model
response and as a repository for constitutive models, this led us to consider two different code
development processes: one for the interface and one for the constitutive models.

25



For the interface an iterative process was chosen. The iterative process allows us to plan and
generate requirements, perform analysis and design, implement and deploy code changes and
finally test and evaluate the code. This process can work well for the interface design where we
implement the conceptual changes that we want to the interface. The models beneath the interface
should be unaffected by these changes, and where they are affected it will be on the surface.

For the constitutive models a waterfall process was chosen. Generally the process of developing
and implementing a constitutive model is a linear process that is followed by a single person. That
person generates requirements, designs the solution, implements the solution as a piece of code,
verifies the code and maintains the code. Much of the constitutive modeler’s work involves
formulating the model, which is a solid mechanics and applied mathematics problem first and
foremost. This can be seen as either the gathering requirements phase or part of the design phase.
The design and implementation phases are where the code development occur. All models are
verified after they are implemented. However, model verification itself is quite complicated, so
this step is not simple. Finally the model is maintained through documentation and user support.
Bug fixes are also an aspect of code maintenance in this process.

2.2 Model Implementation

The key feature in LAMÉ that allows constitutive models to be implemented easily and
application codes to be able to use those models is the interface. The key concept to understand
concerning the interface is that it defines what roles the constitutive models have, what roles the
application codes have, and how the models and the codes transfer information.

From the application code perspective we would like all of the constitutive models to look the
same. Of course this is not the case. This is why, if we were to look at our legacy finite element
codes, we see information regarding specific constitutive models show up in the application codes.
Even a piece of information as simple as a material model ID will show up in the application code
in order that the code call the correct model. Modern programming languages/styles allow us to
avoid this confusion.

From a constitutive modeling perspective we would like a simple interface for implementing
constitutive models. Constitutive modelers are only part-time code developers. They can have
strengths in many areas in addition to code development, including physics, chemistry, continuum
mechanics, applied mathematics, numerical methods and experimental mechanics. Having a code
development environment that is useful for a constitutive model developer is necessary in the
design of the constitutive model library.
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2.2.1 Code Standards

The need to supply not only robust constitutive models, but also a robust constitutive modeling
environment, requires strict adherence to code standards. Some code standards are stylistic. These
are necessary to support the code (promoting readability) and to simplify the effort needed by the
constitutive modeler to implement a model. Other code standards are necessary to support the
code on various platforms and to prevent unintended behavior like memory leaks.

2.2.2 Testing Standards

Ensuring robust and reliable constitutive models also requires testing. There are two main
concerns in providing constitutive modeling to an application code: accuracy and speed. Both of
these concerns can be addressed to a large degree through testing. Toward this end two testing
systems are developed: a verification test suite and a performance test suite.

2.2.2.1 Verification Testing

Constitutive models for the large deformation of materials can be extremely complex. This
complexity is added to by the issues associated with implementing the model in the code. There
are two questions associated with assessing this complexity. First, what is the expected result of
the model, independent of its implementation? Second, does the implementation model that
response?

2.2.2.2 Performance Testing

In a nonlinear solid mechanics analysis, the constitutive models are called often. For an explicit
transient dynamics problem, the model is called once for each time step for each integration point
in the finite element model. On the other hand, implicit quasi-static analyses call the model every
iteration of every time step for each integration point in the finite element model.

Given the amount of time that a nonlinear solid mechanics finite element analysis spends
calculating the stresses in a constitutive model, the performance of the constitutive model can
have a large effect on the performance of the host code.

In order to ensure some measure of performance, a procedure for testing the performance of the
models is proposed. First, a baseline set of performance data must be generated. Given that the
CPU time used by the model can depend on many things, including the current loads on the
machine where the test is being run, developing an approach for modeling the performance is not
straightforward. If we call the various states of the machine “configurations”, then the best
approach appears to be to generate a large set of data for the performance of the constitutive model
that reflects the performance on a single machine over a large variety of its configurations.
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Specifically, since we want to test only the speed of the constitutive model, we run tests that are
fully prescribed strain paths. This eliminates any need for the material driver to solve an
equilibrium state. We also want to test as many of the features of the constitutive model as
possible. This requires a prescribed strain path that pushes the model into regimes of interest. For
example, for an elastic-plastic model the performance test has to trigger plasticity, otherwise it
will not reflect accurately on how the model performs in an analysis. We also want the strain path
to push the plasticity model deep enough into the plastic range.

Determination of an appropriate strain path is not clear cut for all materials. Recognizing this, the
performance tests should be documented clearly so that we know exactly what we are testing and
we can go back and modify a test if there is some feature of the model that doesn’t appear in the
performance test.

2.2.3 Documentation Standards

In order to disseminate information about the models in LAMÉ, there must be a commitment to
documentation. The theory behind the models and their implementation must be documented.
Furthermore, much of the success of the verification and performance testing depends on
documentation too. Finally, documentation must be generated for analysts that allows them to
understand what materials and behavior the model can represent, along with the inputs necessary
to use the model and the outputs that come from the model.

2.3 Model Status

As previously discussed, LAMÉ is structured to facilitate support of model and application
developers as well as analysts. This means that models in various stages of development from
initial research to robust analysis tools may be found in LAMÉ. For analysts and end users, this
diverse model base could pose a challenge during model selection. To try and aid in this selection,
the LAMÉ library has been split into two branches – development and production.

The development branch – as its name implies – is intended for any model that is currently being
implemented, improved, or otherwise studied. New models not yet subject to full verification
rigors are placed here. As such, the usage of development models in simulations supporting
engineering decisions should be carefully considered and vetted. Production models have been
subject to strong verification activities and meet further standards to help give credibility and
credence to any simulation results.

To establish that a model is at a production state of readiness, the model must meet three criteria.
The first is that it must have a minimum of one regression test but more tests are recommended.
Given the diversity of model complexities and fidelities arriving at an alternative common
baseline requirement is challenging. Second, the model must be sufficiently documented
including underlying theory, discussion of numerical implementation, usage guides, and
documentation of verification tests. Third, the verification tests and ensuing documentation must
be peer-reviewed. This review should consider the appropriateness of the documentation and the
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verification tests. Importantly, the alignment of verification tests to expected usage and model
phenomenology should be assessed to ensure that the test basis is sufficient for model usage. This
peer-review should be documented and retained.

Whereas the production status of a model is meant to establish a credibility basis with respect to
verification, validation of a model requires consideration of the actual material of interest, the
intended usage, and availability of experimental data. Thus, validation must be considered on a
case-by-case basis and determinations in that context are out of scope of this manual. Importantly,
a model being production status does not make any statement towards validation.
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3 Interface

LAMÉ is designed to have a simple interface that allows the easy implementation of a wide range
of constitutive models. This interface is between the application code (sometimes referred to as
the “host code”) and the constitutive model.

The interface has two main aspects: the data that is passed between the application code and the
model, and the functions that pass this data. Given that the interface consists of data and
functions, the most reasonable way to set up this interface is through a class.

The class that defines this interface is the Material class, which is declared in
include/interface/Material.h.

There are two types of data that are passed between the application code and the model. The first
is the material property information. This is done using an object in the MatProps class. This is
used when constructing a material model at the beginning of an analysis.

The second type of data that is passed between the application code and the material model is the
data that the material model uses during an analysis. This data is in the MatParams struct. This
data consists of the stress, the kinematics, the time and time step, etc.

More detail can be found in [88].
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4 Material Models

This section details the constitutive models that are implemented and supported in LAMÉ. The
description of each model has four sections. First, a section discussing the theory of the model is
found. This is the mathematical description of the model in a continuum mechanics framework,
independent of its implementation in a computational code. As these models are intended for
solid mechanics analysis, the following section describes the numerical implementation of the
model. This delves into how the model is implemented in the code and any special numerical
techniques that are used to integrate the model. The subsequent section presents the verification
problems that are run for the model. Through the results of such problems, evidence is provided
that, to the best of our understanding, the model is behaving as expected. Finally, documentation
of the model user inputs and user outputs are given for analyst reference.

It is our belief that this collection of documentation is important for the use of our constitutive
models, and it provides confidence that our models are implemented correctly for the capabilities
that are tested.

What this documentation does not provide is guidance on how to use the models. Different
materials behave differently, and it is the responsibility of the user to ensure that the material
model chosen can accurately model the behavior of a particular material. Furthermore, even with
a single material, many models might be capable of modeling the material depending on the
loading in a given analysis. It is the responsibility of the analyst to ensure that the model they
choose is the best model for their problem. Across the different models, parameters may also vary
in value or have slight changes in interpretation. Care needs to undertaken to ensure that material
and model parameters used accurately reflect the specific material being investigated (some
parameters may vary with simple changes in processing route) and capture the behaviors that of
interest. If emphasis needs to be placed on initial yield rather than failure, subtle differences in
some parameters may be expected.

4.1 Hypoelastic Models

Many models presented in this report are derived starting with small deformation formulations.
These models are implemented in finite deformation codes by substituting the rate of deformation
for the strain rate (it should be noted that the rate of deformation is not the rate of any strain
measure), and making the stress rate objective. There are many objective stress rates to choose
from, the two most common being the Jaumann and the Green-McInnis.

Models that are implemented using the Jaumann or Green-McInnis stress rate are done so in an
unrotated configuration. This means that the incremental constitutive relations are written in this
configuration. The tensor components of the Cauchy stress, 𝜎𝑖 𝑗 , and the rate of deformation, 𝐷𝑖 𝑗 ,
are unrotated using some orthogonal tensor, 𝑄−1

𝑖 𝑗 = 𝑄 𝑗𝑖, such that

𝑇𝑖 𝑗 = 𝑄𝑘𝑖𝜎𝑘𝑙𝑄𝑙 𝑗 ; 𝑑𝑖 𝑗 = 𝑄𝑘𝑖𝐷𝑘𝑙𝑄𝑙 𝑗 (4.1)
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where 𝑇𝑖 𝑗 and 𝑑𝑖 𝑗 are the components of the unrotated stress and rate of deformation respectively.
The choice of orthogonal tensor, 𝑄𝑖 𝑗 , depends on the objective stress rate. The incremental
constitutive relation is then written as

𝑇𝑛+1𝑖 𝑗 = 𝑇𝑛𝑖 𝑗 + 𝑓𝑖 𝑗 (𝑑𝑘𝑙 ,Δ 𝑡) (4.2)

After the stress is updated in the unrotated configuration, it is rotated forward to the current
configuration [29]. (The terminology used in describing the unrotated configuration with the
rotations backward and forward is infinitely confusing. It is simply one of the many difficulties
encountered using finite deformation hypoelastic models.)

If the Green-McInnis stress rate is used, then the unrotated configuration is found using the
rotation tensor from the polar decomposition of the deformation gradient

𝑑𝑥𝑛+1𝑖 = 𝐹𝑖 𝑗𝑑𝑋 𝑗 ; 𝐹𝑖 𝑗 = 𝑅𝑖𝑘𝑈𝑘 𝑗 = 𝑉𝑖𝑘𝑅𝑘 𝑗 ; 𝑄𝑖 𝑗 = 𝑅𝑖 𝑗

If the Jaumann stress rate is used, then the unrotated configuration is found using the rotation
tensor from the polar decomposition of the incremental deformation gradient

𝑑𝑥𝑛+1𝑖 = 𝐹̂𝑖 𝑗𝑑𝑥
𝑛
𝑗 ; 𝐹̂𝑖 𝑗 = 𝑅̂𝑖𝑘𝑈̂𝑘 𝑗 = 𝑉̂𝑖𝑘 𝑅̂𝑘 𝑗 ; 𝑄𝑖 𝑗 = 𝑅̂𝑖 𝑗

Without loss of generality we will assume the Green-McInnis stress rate. The algorithm for the
Jaumann stress rate can be recovered by substituting 𝐹̂𝑖 𝑗 for 𝐹𝑖 𝑗 and 𝑅̂𝑖 𝑗 for 𝑅𝑖 𝑗 in what follows.

Before updating the stress, the rotation is calculated from the deformation gradient in the current
configuration, 𝐹𝑖 𝑗 . The unrotated rate of deformation is then

𝑑𝑖 𝑗 = 𝑅
𝑛+1
𝑘𝑖 𝐷𝑘𝑙𝑅

𝑛+1
𝑙 𝑗

and the unrotated stress is updated using (4.2). Then the stress is rotated to the current
configuration, using the same rotation that we used to unrotate the rate of deformation

𝜎𝑛+1𝑖 𝑗 = 𝑅𝑛+1𝑖𝑘 𝑇
𝑛+1
𝑘𝑙 𝑅𝑛+1𝑗 𝑙

The unrotated stress from the previous time step is simply 𝑇𝑛𝑖 𝑗 = 𝑅
𝑛
𝑘𝑖𝜎𝑘𝑙𝑅

𝑛
𝑙 𝑗 . Furthermore, for the

elastic model (Section 4.3) the stress update algorithm can be reduced to

𝜎𝑛+1𝑖 𝑗 = 𝑅𝑛+1𝑖𝑘 𝑅𝑛𝑚𝑘𝜎𝑚𝑛𝑅
𝑛
𝑛𝑙𝑅

𝑛+1
𝑗 𝑙 + 𝜆𝛿𝑖 𝑗Δ𝑡𝐷𝑘𝑘 + 2𝜇Δ𝑡𝐷𝑖 𝑗 (4.3)

One final note about this algorithm. While it is convenient to use the rotation tensor 𝑅𝑛+1𝑖 𝑗 , strictly
this is not correct. Since the rate of deformation is most often computed at the mid-step
configuration, the rotation used to unrotate the rate of deformation should be the rotation from the
mid-step deformation gradient, i.e. the deformation gradient that relates the mid-step
configuration to the reference configuration. Other consistency considerations should also be
considered, but we will not discuss them here. Suffice it to say that the solutions all converge in
the limit of infinitesimal time steps. In a future release of LAMÉ other options might be added.
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4.2 Hyperelastic Models

Hyperelastic materials are in many ways easier to understand than hypoelastic materials, and are
often considered more thermodynamically consistent. On the other hand, it may be difficult to
consistently extend a small deformation model to the finite deformation regime in a hyperelastic
framework. Regardless of the pluses and minuses of the two formulations, hyperelastic models are
in LAMÉ and will be reviewed here.

Hyperelastic models generally assume a scalar valued strain energy density that is a function of
invariants of the deformation through the deformation gradient, 𝐹𝑖 𝑗 . Using the principle of
material frame indifference, the strain energy density is written as a function of the symmetric
right Cauchy-Green tensor, 𝐶𝑖 𝑗 = 𝐹𝑘𝑖𝐹𝑘 𝑗

𝑊 = 𝑊
(
𝐶𝑖 𝑗

)
The stress, in particular the second Piola-Kirchhoff stress, is found by taking the derivative of𝑊
with respect to 𝐶𝑖 𝑗 . This relation comes from the stress-power relations. From the second
Piola-Kirchhoff stress, we can find the Cauchy stress

𝑆𝑖 𝑗 = 2
𝜕𝑊

𝜕𝐶𝑖 𝑗
; 𝜎𝑖 𝑗 =

1
𝐽
𝐹𝑖𝑘𝑆𝑘𝑙𝐹𝑗 𝑙

Hyperelastic models are generally of two types. The most common are written in terms of the
three invariants of 𝐶𝑖 𝑗 : 𝐼1, 𝐼2, and 𝐼3

𝐼1 = trC = 𝐶𝑖𝑖 ; 𝐼2 =
1
2

(
𝐶𝑖𝑖𝐶 𝑗 𝑗 − 𝐶𝑖 𝑗𝐶𝑖 𝑗

)
; 𝐼3 = detC

The second Piola-Kirchhoff stress is then

𝑆𝑖 𝑗 = 2
(
𝜕𝑊

𝜕𝐼1

𝜕𝐼1
𝜕𝐶𝑖 𝑗

+ 𝜕𝑊
𝜕𝐼2

𝜕𝐼2
𝜕𝐶𝑖 𝑗

+ 𝜕𝑊
𝜕𝐼3

𝜕𝐼3
𝜕𝐶𝑖 𝑗

)
Evaluating this expression requires the derivatives of the invariants with respect to the
components 𝐶𝑖 𝑗

𝜕𝐼1
𝜕𝐶𝑖 𝑗

= 𝛿𝑖 𝑗 ;
𝜕𝐼2
𝜕𝐶𝑖 𝑗

= 𝐼1𝛿𝑖 𝑗 − 𝐶𝑖 𝑗 ;
𝜕𝐼3
𝜕𝐶𝑖 𝑗

= 𝐼3𝐶
−1
𝑖 𝑗

Using this in the expression for the second Piola-Kirchhoff stress, and converting it to the Cauchy
stress, we have

𝜎𝑖 𝑗 =
2
𝐽

{
𝜕𝑊

𝜕𝐼3
𝛿𝑖 𝑗 +

(
𝜕𝑊

𝜕𝐼1
+ 𝐼1

𝜕𝑊

𝜕𝐼2

)
𝐵𝑖 𝑗 −

𝜕𝑊

𝜕𝐼2
𝐵2
𝑖 𝑗

}
The majority of hyperelastic models calculate the stress in this manner.

Some hyperelastic models, however, have their strain energy densities written in terms of the
principal stretches [78]. When this is the case the calculation of the stress is more complex. The
right stretch can be written as

U =
3∑
𝑖=1

𝜆𝑖 ē𝑖 ⊗ ē𝑖
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where 𝜆𝑖 are the principal stretches, or eigenvalues, and ē𝑖 are the principal directions, or
eigenvectors. The strain energy density is𝑊 (𝜆𝑖). We calculate the stress components of the
second Piola-Kirchhoff stress, 𝑆𝑖 𝑗 , with respect to the principal directions

S = 𝑆𝑖 𝑗 ē𝑖 ⊗ ē 𝑗

This is done by calculating 𝜕𝑊/𝜕C in the following manner

𝛿𝑊 =
𝜕𝑊

𝜕𝜆𝑖
𝛿𝜆𝑖 =

𝜕𝑊

𝜕C
: 𝛿C (4.4)

Writing the right Cauchy-Green tensor with respect to the principal directions we have

C =
3∑
𝑖=1

𝜆2
𝑖 ē𝑖 ⊗ ē𝑖 ; 𝛿C =

3∑
𝑖=1

2𝜆𝑖𝛿𝜆𝑖 ē𝑖 ⊗ ē𝑖 + 𝜆2
𝑖 𝛿𝜔̄𝑖 𝑗

(
ē𝑖 ⊗ ē 𝑗 + ē 𝑗 ⊗ ē𝑖

)
Equating terms on both sides of (4.4) we get

𝑆11 =
1
𝜆1

𝜕𝑊

𝜕𝜆1
; 𝑆22 =

1
𝜆2

𝜕𝑊

𝜕𝜆2
; 𝑆33 =

1
𝜆3

𝜕𝑊

𝜕𝜆3
; 𝑆𝑖 𝑗 = 0 otherwise

These calculations can also be checked by writing the invariants in terms of the principal stretches.
For a hyperelastic model written in terms of the invariants the results should be the same.

The differences between hypoelastic and hyperelastic models should not matter for the analyst.
For the constitutive modeler, however, the benefits and drawbacks of the two formulations must be
considered.

4.3 Elastic Model

4.3.1 Theory

The elastic model is a hypoelastic extension of isotropic, small-strain, linear elasticity [63], [92],
[105]. The stress-strain response for an isotropic, elastic material is

𝜎𝑖 𝑗 = 𝜆𝛿𝑖 𝑗𝜀𝑘𝑘 + 2𝜇𝜀𝑖 𝑗

where the Lamé constants, 𝜆 and 𝜇, are given by

𝜆 =
𝐸𝜈

(1 + 𝜈) (1 − 2𝜈) ; 𝜇 =
𝐸

2 (1 + 𝜈)

This model is extended to a finite-deformation, hypoelastic model by first making it a rate
equation. Then the stress rate is replaced with an objective stress rate and the strain rate is
replaced with the rate of deformation. This gives us

◦
𝜎𝑖 𝑗= 𝜆𝛿𝑖 𝑗𝐷𝑘𝑘 + 2𝜇𝐷𝑖 𝑗
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The stress rate is arbitrary, as long as it is objective. Two objective stress rates are commonly
used: the Jaumann rate and the Green-McInnis rate. For problems with fixed principal axes of
deformation, these two rates give the same answers. For problems where the principal axes of
deformation rotate during the deformation, the two rates can give different answers. Generally
speaking there is no reason to pick one objective rate over another. Sierra/SM uses the
Green-McInnis rate.

The fourth-order elastic moduli are used in many constitutive models. There are many equivalent
representations for the elastic moduli. In index notation we present the following three
representations

◦
𝜎𝑖 𝑗= C𝑖 𝑗 𝑘𝑙𝐷𝑘𝑙

C𝑖 𝑗 𝑘𝑙 =
𝐸

1 + 𝜈

[
𝜈

1 − 2𝜈
𝛿𝑖 𝑗𝛿𝑘𝑙 +

1
2

(
𝛿𝑖𝑘𝛿 𝑗 𝑙 + 𝛿𝑖𝑙𝛿 𝑗 𝑘

) ]
C𝑖 𝑗 𝑘𝑙 = 𝜆𝛿𝑖 𝑗𝛿𝑘𝑙 + 𝜇

(
𝛿𝑖𝑘𝛿 𝑗 𝑙 + 𝛿𝑖𝑙𝛿 𝑗 𝑘

)
C𝑖 𝑗 𝑘𝑙 = 𝐾𝛿𝑖 𝑗𝛿𝑘𝑙 + 𝜇

(
𝛿𝑖𝑘𝛿 𝑗 𝑙 + 𝛿𝑖𝑙𝛿 𝑗 𝑘 −

2
3
𝛿𝑖 𝑗𝛿𝑘𝑙

)
where 𝐾 is the elastic bulk modulus and is given by

𝐾 =
𝐸

3 (1 − 2𝜈)

4.3.2 Implementation

The elastic model is a hypoelastic model and is implemented using an unrotated configuration in
order to preserve objectivity. Given an unrotated rate of deformation, 𝑑𝑖 𝑗 , and the unrotated stress
at time 𝑡𝑛, 𝑇𝑛𝑖 𝑗 , the unrotated stress is updated by integrating the constant unrotated rate of
deformation

𝑇𝑛+1𝑖 𝑗 = 𝑇𝑛𝑖 𝑗 + 𝜆𝛿𝑖 𝑗Δ𝑡𝑑𝑘𝑘 + 2𝜇Δ𝑡𝑑𝑖 𝑗

4.3.3 Verification

Three verification problems are run for the elastic model: uniaxial stress, pure shear, and biaxial
stress. The results of these test problems serve as verification for the elastic model.
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4.3.3.1 Uniaxial Stress

The elastic model was verified in uniaxial stress. The problem was run with a Young’s modulus of
200 GPa and a Poisson’s ratio of 0.3. The axial stress is simply

𝜎11 = 𝐸𝜀11

The axial stress is shown in Fig. 4.1. The axial stress is linear with the axial strain and has a slope
of 𝐸 = 200 × 103 MPa.

The lateral strains for uniaxial stress are

𝜀22 = 𝜀33 = −𝜈𝜀11

The lateral strains are shown in Fig. 4.2.

Fig. 4.1 The axial stress component 𝜎11 in uniaxial stress using the elastic model.
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Fig. 4.2 The lateral strain components 𝜀22 and 𝜀33 in uniaxial stress using the elastic model.
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4.3.3.2 Biaxial Stress

The elastic model is verified in biaxial stress. Biaxial stress is a plane stress state where 𝜎11 = 𝜎1,
𝜎22 = 𝜎2, and all other stress components are zero. The problem is displacement controlled in the
𝑥1 and 𝑥2 directions. If the applied strains are 𝜀11 = 𝜀 and 𝜀22 = 𝛼𝜀 where 𝛼 ∈ [0, 1], then the
applied displacements are

𝑢1 = 𝜆1 − 1 ; 𝜆1 = exp(𝜀)
𝑢2 = 𝜆2 − 1 ; 𝜆2 = exp(𝛼𝜀).

In the following results, 𝛼 will be taken to be 0.45. For the plane stress state, we have 𝜎33 = 0,
which allows us to solve for 𝜀33

𝜀33 = − 𝜈

1 − 𝜈 (1 + 𝛼) 𝜀.

The component 𝜀33 is shown in Fig. 4.3. The in-plane stress components are

𝜎11 =
𝐸

1 − 𝜈2 (1 + 𝛼𝜈) 𝜀

𝜎22 =
𝐸

1 − 𝜈2 (𝛼 + 𝜈) 𝜀.

The in-plane stress components are shown in Fig. 4.4.

4.3.3.3 Pure Shear

The elastic model is verified in pure shear. Pure shear gives a stress state where 𝜎12 is the only
non-zero stress component. The problem is completely displacement controlled and the applied
shear strain is 𝜀12 = 𝜀(𝑡).

The shear stress in the problem is

𝜎12 = 2𝜇𝜀

The shear stress-strain response is shown in Fig. 4.5.

4.3.3.4 Performance

The performance of the elastic model was analyzed using the material point driver. The elastic
model was run in uniaxial strain for 1 billion calculations and the CPU time was recorded using
clock() method in the time.h header. The start and end times are found and the CPU time is
calculated by dividing the difference by the variable CLOCKS_PER_SECOND.

Since the CPU times will depend on many things outside of the actual code, a set of times were
generated as a baseline. For this task the 1 billion calculations were performed 100 times. With
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Fig. 4.3 The strain component 𝜀33 in biaxial stress using the elastic model.
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Fig. 4.4 The normal stress components 𝜎11 and 𝜎22 in biaxial stress using the elastic model.
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Fig. 4.5 The shear stress component 𝜎12 in pure shear using the elastic model.
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the 100 CPU times the mean and standard deviation were calculated. Next we assume a normal
distribution of CPU times and the normal distribution is generated.

Subsequent performance tests involve generating 10 sets of the 1 billion calculations. This much
smaller data set is used to generate its own mean and standard deviation. If this mean is within 3
standard deviations of the baseline mean, then the performance of the model is assumed to be
identical to that of the baseline model.

4.3.4 User Guide

BEGIN PARAMETERS FOR MODEL ELASTIC
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>

END [PARAMETERS FOR MODEL ELASTIC]

There are no output variables available for the elastic model. For information about the elastic
model, consult [101].

4.4 Elastic Three Dimensional Orthotropic Model

4.4.1 Theory

The ELASTIC 3D ORTHOTROPIC model is an extension of the previously discussed ELASTIC
routine and describes the linear elastic response of a material which exhibits orthotropic
symmetry, where the orientation of the principal material directions can be arbitrary with respect
to the global Cartesian axes as specified by the user.

First, a rectangular, cylindrical, or spherical reference coordinate system is defined. The material
coordinate system can then be defined through two successive rotations about axes in the
reference coordinate system. These principal axes are denoted as A, B, and C in the following.
Thermal strains are also defined with respect to these principal material axes.

The elastic stiffness for an orthotropic material can be described in terms of the elastic compliance
which relates the strain to the stress, 𝜀𝑖 𝑗 = S𝑖 𝑗 𝑘𝑙𝜎𝑘𝑙 . For a material with an orthogonal ABC
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coordinate system, and written in that reference frame, the elastic compliance tensor is given by

[
S̃
]
=



1
𝐸𝐴𝐴

− 𝜈𝐵𝐴𝐸𝐵𝐵
− 𝜈𝐶𝐴𝐸𝐶𝐶

0 0 0

− 𝜈𝐴𝐵𝐸𝐴𝐴
1
𝐸𝐵𝐵

− 𝜈𝐶𝐵𝐸𝐶𝐶
0 0 0

− 𝜈𝐴𝐶𝐸𝐴𝐴
− 𝜈𝐵𝐶𝐸𝐵𝐵

1
𝐸𝐶𝐶

0 0 0

0 0 0 1
2𝐺𝐴𝐵 0 0

0 0 0 0 1
2𝐺𝐵𝐶 0

0 0 0 0 0 1
2𝐺𝐶𝐴



, (4.5)

where the ·̃ is used to denote a variable in the 𝐴𝐵𝐶 material system.

From the definition (4.5), it can be seen that requiring symmetry leads to relations of the form,

𝜈𝐵𝐴 = 𝜈𝐴𝐵
𝐸𝐵𝐵
𝐸𝐴𝐴

; 𝜈𝐶𝐵 = 𝜈𝐵𝐶
𝐸𝐶𝐶
𝐸𝐵𝐵

; 𝜈𝐴𝐶 = 𝜈𝐶𝐴
𝐸𝐴𝐴
𝐸𝐶𝐶

.

Therefore, only 9 independent constants are needed to fully define the model behavior.

The orthotropic model is also formulated in a hypoelastic fashion, leading to a constitutive
equation (in the ABC material frame) of,

◦
𝜎̃𝑖 𝑗= C̃𝑖 𝑗 𝑘𝑙

(
𝐷̃𝑘𝑙 − 𝐷̃𝑡ℎ

𝑘𝑙

)
,

where 𝐷̃𝑡ℎ
𝑖 𝑗 is the thermal strain rate.

The elastic stiffness tensor, C̃𝑖 𝑗 𝑘𝑙 , is the inverse of the compliance, C̃𝑖 𝑗 𝑘𝑙 = S̃−1
𝑖 𝑗 𝑘𝑙 , and as such may

be determined to be,

[
C̃
]
=



C𝐴𝐴𝐴𝐴 C𝐴𝐴𝐵𝐵 C𝐶𝐶𝐴𝐴 0 0 0

C𝐴𝐴𝐵𝐵 C𝐵𝐵𝐵𝐵 C𝐵𝐵𝐶𝐶 0 0 0

C𝐶𝐶𝐴𝐴 C𝐵𝐵𝐶𝐶 C𝐶𝐶𝐶𝐶 0 0 0

0 0 0 2𝐺𝐴𝐵 0 0

0 0 0 0 2𝐺𝐵𝐶 0

0 0 0 0 0 2𝐺𝐶𝐴



.

where

C𝐴𝐴𝐴𝐴 =
1 − 𝜈𝐵𝐶𝜈𝐶𝐵

Δ
𝐸𝐴𝐴 ; C𝐵𝐵𝐵𝐵 =

1 − 𝜈𝐶𝐴𝜈𝐴𝐶
Δ

𝐸𝐵𝐵 ; C𝐶𝐶𝐶𝐶 =
1 − 𝜈𝐴𝐵𝜈𝐵𝐴

Δ
𝐸𝐶𝐶

C𝐴𝐴𝐵𝐵 =
𝜈𝐵𝐴 + 𝜈𝐶𝐴𝜈𝐵𝐶

Δ
𝐸𝐴𝐴 ; C𝐵𝐵𝐶𝐶 =

𝜈𝐶𝐵 + 𝜈𝐴𝐵𝜈𝐶𝐴
Δ

𝐸𝐵𝐵 ; C𝐶𝐶𝐴𝐴 =
𝜈𝐴𝐶 + 𝜈𝐵𝐶𝜈𝐴𝐵

Δ
𝐸𝐶𝐶
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and Δ = 1 − 𝜈𝐴𝐵𝜈𝐵𝐴 − 𝜈𝐵𝐶𝜈𝐶𝐵 − 𝜈𝐶𝐴𝜈𝑅𝑇 − 2𝜈𝐴𝐵𝜈𝐵𝐶𝜈𝐶𝐴.

[38] for more information about the elastic three-dimensional orthotropic model.

4.4.2 Implementation

Given the similarities in formulation, the 3D orthotropic and elastic models are integrated in a
similar fashion. Section 4.3.2 discussed many of these issues in detail for the isotropic elastic
formulation. As such, in this section, special attention is paid to the treatment of the complexity
associated with the orthotropic model – namely, the multiple coordinate systems.

To implement the elastic 3D orthotropic model, two coordinate systems need to be considered –
the local 𝐴𝐵𝐶 material and global 𝑋𝑌𝑍 coordinate systems. The former is used in defining the
material response and the latter refers to the larger boundary value problem being analyzed. To
map between these configurations, a user-defined coordinate system is specified that can be
rotated twice about one of its current axes to give the final, desired directions. A corresponding
rotation tensor, 𝑄̃𝑖 𝑗 , may also be constructed in this way and used to transform various variables.
Noting that the elastic stiffness tensor is constant throughout loading enables the transformation

C𝑖 𝑗 𝑘𝑙 = 𝑄̃𝑎𝑖𝑄̃𝑏 𝑗𝑄̃𝑐𝑘𝑄̃𝑑𝑙C̃𝑎𝑏𝑐𝑑 (4.6)

to be performed during initialization. The ·̃ is used with the rotation tensor 𝑄𝑖 𝑗 to emphasize that
it does not map between the unrotated and rotated configurations (as defined in (4.1)) and is
instead associated with transforming between the 𝐴𝐵𝐶 and 𝑋𝑌𝑍 frames.

In the material coordinate system, the thermal strain tensor may be written as,

𝜀𝑡ℎ𝑖 𝑗 = 𝜀𝑡ℎ𝑎𝑎 (𝜃) 𝛿𝑖𝑎𝛿 𝑗𝑎 + 𝜀𝑡ℎ𝑏𝑏 (𝜃) 𝛿𝑖𝑏𝛿 𝑗 𝑏 + 𝜀
𝑡ℎ
𝑐𝑐 (𝜃) 𝛿𝑖𝑐𝛿 𝑗𝑐,

where 𝜀𝑡ℎ𝑎𝑎 (𝜃) , 𝜀𝑡ℎ𝑏𝑏 (𝜃) , and 𝜀
𝑡ℎ
𝑐𝑐 (𝜃) are the temperature (𝜃) dependent thermal strain functions in

the 𝐴, 𝐵, and 𝐶 principal material directions, respectively, and 𝛿𝑖 𝑗 is the Kronecker delta. Using
the same constant transformation, 𝑄̃𝑖 𝑗 , the 𝑋𝑌𝑍-system thermal strain tensor is determined to
be,

𝜀𝑡ℎ𝑖 𝑗 (𝜃) = 𝑄̃𝑎𝑖𝜀
𝑡ℎ
𝑎𝑏𝑄̃ 𝑗 𝑏 . (4.7)

Following (4.3), the updated Cauchy stress may then be found to be,

𝜎𝑛+1𝑖 𝑗 = 𝑅𝑛+1𝑖𝑘 𝑅𝑛𝑚𝑘𝜎
𝑛
𝑚𝑛𝑅

𝑛
𝑛𝑙𝑅

𝑛+1
𝑗 𝑙 + C𝑖 𝑗 𝑘𝑙

(
Δ𝑡𝐷𝑘𝑙 −

(
𝜀𝑡ℎ𝑘𝑙

(
𝜃𝑛+1

)
− 𝜀𝑡ℎ𝑘𝑙 (𝜃

𝑛)
))
,

where the time dependency in the thermal strains is accounted for through changes in the
temperature field.
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4.4.3 Verification

The elastic 3D orthotropic model is verified through both biaxial displacement and uniaxial strain
tests. The first is performed with the material and global coordinate systems aligned to investigate
anisotropy while the second is done with the material coordinate system misaligned with respect
to the global system. The latter also incorporates a thermal loading component to test the thermal
strain contributions. In this case, it is assumed that each of the thermal strain input functions have
linear slopes of 𝛼𝑎𝑎, 𝛼𝑏𝑏, and 𝛼𝑐𝑐 for the 𝐴, 𝐵, and 𝐶 principal material axes, respectively. A
common zero strain reference temperature, 𝑇0, is assumed for all three functions. The set of
material properties used for these tests are given in Table 4.1.

Table 4.1 The material properties for the elastic 3D orthotropic model used for the varying temper-
ature, uniaxial stress tests.

𝐸𝐴𝐴 = 𝐸 10,000.0 ksi 𝐺𝐴𝐵 100.0 ksi
𝐸𝐵𝐵 200.0 ksi 𝐺𝐵𝐶 1,000.0 ksi
𝐸𝐶𝐶 10.0 ksi 𝐺𝐶𝐴 5.0 ksi
𝜈𝐴𝐵 = 𝜈 0.25 𝛼𝑎𝑎 50 𝜇𝜀

K
𝜈𝐵𝐶 0.2 𝛼𝑏𝑏 500 𝜇𝜀

K
𝜈𝐶𝐴 0.003 𝛼𝑐𝑐 5 𝜇𝜀

K
𝜃0 293 K

4.4.3.1 Biaxial Displacement

First, to investigate anisotropic effects, the case of a biaxial applied displacement of the form,

𝑢𝑖 = 𝜆1𝛿1𝑖 + 𝜆2𝛿2𝑖,

is considered for a material which has its axes aligned with the global Cartesian system –
𝛼1 = 𝛼2 = 0 or the 𝐴, 𝐵, and 𝐶 frame is the same as the ê1, ê2, and ê3. To simplify the problem,
𝜆2 = 1

2𝜆1 and it can be shown that (noting 𝜎33 = 0 from a corresponding traction free
condition),

𝜀11 = ln (1 + 𝜆1) ,

𝜀22 = ln
(
1 + 1

2
𝜆1

)
𝜀33 = − 𝜈𝐴𝐶 + 𝜈𝐵𝐶𝜈𝐴𝐵

1 − 𝜈𝐴𝐵𝜈𝐵𝐴
𝜀11 −

𝜈𝐵𝐶 + 𝜈𝐵𝐴𝜈𝐴𝐶
1 − 𝜈𝐴𝐵𝜈𝐵𝐴

𝜀22.

With the strain state known, analytical stresses may be found via Hooke’s law. The corresponding
results of both the numerical and analytical results are presented below in Fig. 4.6. Numerical
results are found through a single element test. Importantly, by comparing the results of Fig.
4.6(a) and Fig. 4.6(b) the expected and desired anisotropy may be clearly seen in the vast
difference of stress magnitudes (as indicated by the figure scaling). Additionally, the matching
results serves to verify the model under such conditions.
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Fig. 4.6 Analytical and numerical results of axial 𝜎11 and transverse, 𝜎22 and 𝜎33, as a function of the
stretch 𝜆1.

4.4.3.2 Uniaxial Strain

Secondly, the capabilities of this model under arbitrary rotations are explored. To be able to
analytically consider this problem, a uniaxial strain (𝜀𝑖 𝑗 = 𝜀11𝛿𝑖1𝛿 𝑗1) loading is investigated. The
material properties are rotated with the specified orientations per Equations (4.6) and (4.7) using
the specified orientations in Table 4.2. A combined thermal-mechanical loading is considered.
Specifically, the material is first stretched to the specified strain and that strain is then held fixed
during a heating step (Δ𝑇 =400 K) to investigate the ability of the model to accurately incorporate
anisotropic coefficients of thermal expansion. The results for both the analytical and numerical
(from a corresponding single element simulation) analyses are shown in Fig. 4.7 with the normal
and shear stresses presented in Fig. 4.7(a) and Fig. 4.7(b) respectively. Clear agreement may be
seen during both the thermal and mechanical loading stages including the anisotropic effects
further verifying model capabilities.

Table 4.2 The coordinate system rotations usedwith the elastic 3D orthotropicmodel for the uniaxial
strain test.

𝛼1 30 Direction 1 3
𝛼2 60 Direction 2 1

4.4.4 User Guide

BEGIN PARAMETERS FOR MODEL ELASTIC_3D_ORTHOTROPIC
#
# Elastic constants
#
YOUNGS MODULUS = <real>

(continues on next page)
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(a) Normal stresses (b) Shear stresses

Fig. 4.7 Analytical and numerical results of the stress state through a thermomechanical uniaxial
strain loading as a function of the axial strain 𝜀11.

(continued from previous page)
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>
#
# Material coordinates system definition
#
COORDINATE SYSTEM = <string> coordinate_system_name
DIRECTION FOR ROTATION = <real> 1|2|3
ALPHA = <real> (degrees)
SECOND DIRECTION FOR ROTATION = <real> 1|2|3
SECOND ALPHA = <real> (degrees)
#
# Required parameters
#
YOUNGS MODULUS AA = <real>
YOUNGS MODULUS BB = <real>
YOUNGS MODULUS CC = <real>
POISSONS RATIO AB = <real>
POISSONS RATIO BC = <real>
POISSONS RATIO CA = <real>
SHEAR MODULUS AB = <real>
SHEAR MODULUS BC = <real>
SHEAR MODULUS CA = <real>
#
# Thermal strain functions

(continues on next page)
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(continued from previous page)
#
THERMAL STRAIN AA FUNCTION = <string>
THERMAL STRAIN BB FUNCTION = <string>
THERMAL STRAIN CC FUNCTION = <string>
#

END [PARAMETERS FOR MODEL ELASTIC_3D_ORTHOTROPIC]

In the above command blocks all of the following are required inputs.

• Even though they are not used within the material model itself, elastic constants are still
required input for hourglass control, certain preconditioners, and other various capabilities.
After examining various test problems, it has been determined that using the mean of the
orthotropic properties as the isotropic elastic constants yields the best results.

• The Young’s moduli corresponding to the principal material axes A, B, and C are given by
the YOUNGS MODULUS AA, YOUNGS MODULUS BB, and YOUNGS MODULUS CC
command lines.

• The Poisson’s ratio defining the BB normal strain when the material is subjected only to AA
normal stress is given by the POISSONS RATIO AB command line.

• The Poisson’s ratio defining the CC normal strain when the material is subjected only to BB
normal stress is given by the POISSONS RATIO BC command line.

• The Poisson’s ratio defining the AA normal strain when the material is subjected only to CC
normal stress is given by the POISSONS RATIO CA command line.

• The remaining Poisson’s ratios needed for the orthotropic elastic relations (i.e. the BA, CB,
and AC Poisson’s ratios) are calculated internally. They are calculated as usual from the
given Poisson’s ratios, given Young’s moduli, and energy considerations, which provide
expressions for these parameters from the resulting symmetry of the compliance tensor.

• The shear moduli for shear in the AB, BC, and CA planes are given by the SHEAR
MODULUS AB, SHEAR MODULUS BC, and SHEAR MODULUS CA command lines,
respectively.

• The thermal strain functions for normal thermal strains along the principal material
directions are given by the THERMAL STRAIN AA FUNCTION, THERMAL STRAIN
BB FUNCTION, and THERMAL STRAIN CC FUNCTION command lines.

Warning: The ELASTIC_3D_ORTHOTROPIC model cannot currently be used in
conjunction with the control stiffness implicit solver block.

There are no output variables available for the Elastic Three-Dimensional Orthotropic material
model.
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4.5 Neo-Hookean Model

4.5.1 Theory

The neo-Hookean model is a hyperelastic generalization of isotropic, small-strain linear elasticity.
The stress-strain response for the neo-Hookean model may be determined from a free energy
function - in this case the strain energy density,𝑊 . The form of the strain energy density [91] is

𝑊 (𝐶𝑖 𝑗 ) =
1
2
𝐾

[
1
2

(
𝐽2 − 1

)
− ln 𝐽

]
+ 1

2
𝜇

(
𝐶̄𝑘𝑘 − 3

)
, (4.8)

where 𝐾 and 𝜇 are the bulk and shear moduli, respectively. The deformation measure is given by
𝐶𝑖 𝑗 , the components of the right Cauchy-Green tensor, where 𝐶𝑖 𝑗 = 𝐹𝑘𝑖𝐹𝑘 𝑗 . The determinant of
the deformation gradient is given by 𝐽 and is a measure of the volumetric part of the deformation.
𝐶̄𝑖 𝑗 provides the isochoric part of the deformation and is given by

𝐶̄𝑖 𝑗 = 𝐹̄𝑘𝑖 𝐹̄𝑘 𝑗 , 𝐹̄𝑖 𝑗 = 𝐽
−1/3𝐹𝑖 𝑗 . (4.9)

The second Piola-Kirchoff stress, with components 𝑆𝑖 𝑗 , may be determined by taking a derivative
of the strain energy density and the Cauchy stress may be found by mapping from the second
Piola-Kirchoff stress. The components of the Cauchy stress are

𝜎𝑖 𝑗 =
1
2
𝐾

(
𝐽 − 1

𝐽

)
𝛿𝑖 𝑗 + 𝐽−5/3𝜇

(
𝐵𝑖 𝑗 −

1
3
𝐵𝑘𝑘𝛿𝑖 𝑗

)
, (4.10)

where 𝐵𝑖 𝑗 = 𝐹𝑖𝑘𝐹𝑗 𝑘 , are the components of the left Cauchy-Green tensor and 𝛿𝑖 𝑗 is the Kronecker
delta.

Linearizing (4.10) we recover small strain linear elasticity

𝜎𝑖 𝑗 =

(
𝐾 − 2

3
𝜇

)
𝑢𝑘,𝑘𝛿𝑖 𝑗 + 𝜇

(
𝑢𝑖, 𝑗 + 𝑢 𝑗 ,𝑖

)
=

(
𝐾 − 2

3
𝜇

)
𝜀𝑘𝑘𝛿𝑖 𝑗 + 2𝜇𝜀𝑖 𝑗 .

The neo-Hookean model is used for the recoverable (elastic) part for a number of inelastic, finite
deformation constitutive models.

4.5.2 Implementation

As a hyperelastic model, the current state of the material may be determined by the total
deformation. To this end we use the polar decomposition of the deformation gradient,

𝐹𝑖 𝑗 = 𝑉𝑖𝑘𝑅𝑘 𝑗 , (4.11)
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in which 𝑉𝑖 𝑗 are the components of the left stretch tensor and 𝑅𝑖 𝑗 is the corresponding rotation.
Noting that,

𝐵𝑖 𝑗 = 𝑉𝑖𝑘𝑉𝑘 𝑗 ,

and 𝐽 = det
(
𝑉𝑖 𝑗

)
, the Cauchy stress (via (4.10)) is found. The unrotated stress, 𝑇𝑖 𝑗 , which is

needed for internal force calculations in Sierra/SM, is found using the transformation

𝑇𝑖 𝑗 = 𝑅𝑘𝑖𝜎𝑘𝑙𝑅𝑙 𝑗 .

4.5.3 Verification

It is possible to find closed form solutions for a number of loadings. Five problems are described
here: uniaxial stress, pure shear strain, pure shear stress, uniaxial strain and simple shear. One set
of material properties was used for all tests and they are given in Table 4.3. The elastic modulus
and Poisson’s ratio are given in addition to the bulk and shear moduli.

Table 4.3 The material properties for the neo-Hookean model used for both the uniaxial and simple
shear tests.

𝐾 0.5 MPa 𝜇 0.375 MPa
𝐸 0.9 MPa 𝜈 0.2

4.5.3.1 Uniaxial Stress

For uniaxial stress we will assume, without loss of generality, that 𝜎11 ≠ 0. The deformation, in
terms of the components of the left stretch tensor, for this stress state is

𝑉11 = 𝜆1, 𝑉22 = 𝑉33 = 𝜆2,

with all other components being zero.

The Cauchy stress is given by (4.10), however for simplicity we will use the Kirchhoff stress
instead

𝜏𝑖 𝑗 = 𝐽𝜎𝑖 𝑗 ,

where in what follows 𝜏11 = 𝜏. With the lateral stresses being zero we have two equations

𝜏 =
𝐾

2

(
𝐽2 − 1

)
+ 2

3
𝜇𝐽−2/3

(
𝜆2

1 − 𝜆2
2

)
0 =

𝐾

2

(
𝐽2 − 1

)
− 1

3
𝜇𝐽−2/3

(
𝜆2

1 − 𝜆2
2

)
.
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First, we solve for 𝐽 by looking at the trace of the stress tensor. This gives us

𝜏 =
3𝐾
2

(
𝐽2 − 1

)
.𝐽 =

√
1 + 2𝜏

3𝐾
.

Once we have 𝐽 we can write 𝜆2
2 = 𝐽/𝜆1 and solve for 𝜆1 by looking at the deviatoric part of the

Kirchhoff stress. For this we have

𝜏 = 𝜇𝐽−2/3
(
𝜆2

1 −
𝐽

𝜆1

)
.

Rearranging we get a cubic equation for 𝜆1

𝜆3
1 −

(
𝜏

𝜇
𝐽2/3

)
𝜆1 − 𝐽 = 0.

A solution for this can be found with the following substitution

𝜆1 = 𝑥 + 𝑝

3𝑥
, 𝑝 =

𝜏

𝜇
𝐽2/3, (4.12)

which gives a quadratic equation for 𝑥3

𝑥6 − 𝐽𝑥3 + 𝑝
3

27
= 0.

The one meaningful solution to this polynomial is

𝑥 =


𝐽

2
+

√(
𝐽

2

)2
−

( 𝑝
3

)3


1/3

,

with which we can substitute into (4.12) to get 𝜆1. With 𝐽 and 𝜆1 we can solve for 𝜆2. Note that in
this solution the axial Kirchhoff stress, 𝜏, is the independent variable.

This solution is compared to the solution from a single element problem in Sierra/SM in Fig.
4.8(a) and Fig. 4.8(b). It should be noted that the response of the neo-Hookean model is slightly
nonlinear. The linear elastic solution is given by the green line in each figure.

4.5.3.2 Pure Shear Strain

For pure shear strain the deformation gradient, which is symmetric, is

[
𝐹𝑖 𝑗

]
=

1
2


(
𝜆 + 𝜆−1) (

𝜆 − 𝜆−1) 0(
𝜆 − 𝜆−1) (

𝜆 + 𝜆−1) 0
0 0 2

 ,
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(a) Axial stress (b) Lateral Strain

Fig. 4.8 Analytical and numerical results for the (a) uniaxial stress and (b) lateral strain. The green
line gives the linear elastic response.

which gives no volume change, 𝐽 = 1. Since there is no volume chance, the Kirchhoff stress is
equal to the Cauchy stress: 𝝉 = 𝝈. Using (4.10), the non-zero stress components are

𝜎12 =
𝜇

2

(
𝜆2 − 𝜆−2

)
𝜎11 = 𝜎22 =

𝜇

3

[
1
2

(
𝜆2 + 𝜆−2

)
− 1

]
𝜎33 =

𝜇

3

(
2 − 𝜆2 + 𝜆−2

)
.

The results of a single element problem in Sierra/SM are compared with the analytical solution in
Fig. 4.9. It is interesting to note that the normal stresses, 𝜎11, 𝜎22, and 𝜎33 are not equal to zero.
This is a much different result than what we get for the linear hypoelastic model.

4.5.3.3 Pure Shear Stress

Since pure shear strain did not result in a pure shear stress state, we do not expect a pure shear
stress state to result in a pure shear strain state. For pure shear stress the only non-zero stress
component is

𝜎12 = 𝜏 = 𝜇𝐵12,

and using (4.10) it can be shown that 𝐽 = 1. The deformation, in terms of the left Cauchy-Green
deformation tensor, is

[
𝐵𝑖 𝑗

]
=


𝐵 𝐵12 0
𝐵12 𝐵 0
0 0 𝐵

 .
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Fig. 4.9 Analytical and numerical results for the neo-Hookean model subjected to a pure shear
strain. The solid lines are the analytical results and the boxes are results from Sierra/SM.
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Fig. 4.10 Analytical and numerical results for the neo-Hookean model subjected to a pure shear
stress. The curve gives the logarithmic strain component, 𝜀33 = 1

2 ln 𝐵. The solid lines are the
analytical results and the boxes are results from Sierra/SM.
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The equation we need to solve for the deformation is det B = 1. This gives us the cubic equation

𝐵3 −
(
𝜏

𝜇

)2
𝐵 − 1 = 0.

This is a cubic equation of the same form as that in the uniaxial stress problem. We make the
substitution

𝐵 = 𝑥 + 𝑝

3𝑥
, 𝑝 =

(
𝜏

𝜇

)2
. (4.13)

This gives us a quadratic equation in 𝑥3

𝑥6 − 𝑥3 + 𝑝
3

27
= 0,

which has the solution

𝑥 =

[
1
2
+ 1

2

√
1 − 4𝑝3

27

]1/3

.

Substituting this solution into (4.13) gives 𝐵.

The results of a single element problem in Sierra/SM are compared with the analytical solution in
Fig. 4.10. Of interest here is the fact that the normal strains, 𝜀11, 𝜀22, and 𝜀33 are not equal to zero.
Again, this is a different result than what we get for the linear hypoelastic model.

4.5.3.4 Uniaxial Strain

First, utilizing a displacement condition corresponding to uniaxial strain results in a deformation
gradient of the form,

𝐹𝑖 𝑗 = 𝜆𝛿1𝑖𝛿1 𝑗 + 𝛿2𝑖𝛿2 𝑗 + 𝛿3𝑖𝛿3 𝑗 .

By evaluating relation (4.10) with this deformation field produces stresses that may be written
as

𝜎11 =
1
2
𝐾

(
𝜆 − 1

𝜆

)
+ 2

3
𝜇

(
𝜆2 − 1

)
𝜆−5/3,

𝜎22 = 𝜎33 =
1
2
𝐾

(
𝜆 − 1

𝜆

)
− 1

3
𝜇

(
𝜆2 − 1

)
𝜆−5/3

with the shear stress components equal to zero. Both the corresponding analytical and numerical
solutions are presented in Fig. 4.11.
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Fig. 4.11 Analytical and numerical results for the uniaxial stretch case.
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4.5.3.5 Simple Shear

For the simple shear case, a deformation gradient of the form,

𝐹𝑖 𝑗 = 𝛿𝑖 𝑗 + 𝛾𝛿1𝑖𝛿2 𝑗 ,

is assumed. Noting this is a volume preserving deformation (𝐽 = 1) and again evaluating (4.10)
produces stresses that may be written as,

𝜎11 = 𝑊
2
3
𝜇𝛾2

𝜎22 = 𝜎33 = −1
3
𝜇𝛾2

𝜎12 = 𝜇𝛾

Both the corresponding analytical and numerical solutions are presented in Fig. 4.12.

4.5.4 User Guide

BEGIN PARAMETERS FOR MODEL NEO_HOOKEAN
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>

END [PARAMETERS FOR MODEL NEO_HOOKEAN]

There are no output variables available for the neo-Hookean model.

4.6 Gent Model

4.6.1 Theory

The Gent model is a hyperelastic model of rubber elasticity developed from phenomenological
continuum mechanics approaches. Specifically, the model is based on the concept of limiting
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Fig. 4.12 Analytical and numerical results for the simple shear case.

60



chain extensibility and is an accurate approximation to the Arruda-Boyce model [6]. To determine
the stress-strain response of the Gent model, a strain energy density of the form [35],

𝑊 (𝐵𝑖 𝑗 ) =
1
2
𝐾

[
1
2

(
𝐽2 − 1

)
− ln 𝐽

]
+ 1

2
𝜇𝐽𝑚 ln

(
1 − 𝐵̄𝑘𝑘 − 3

𝐽𝑚

)
, (4.14)

is proposed with 𝐾 and 𝜇 the bulk and shear moduli, 𝐽 the determinant of the deformation
gradient and 𝐽𝑚 an input parameter for limiting the value of 𝐵̄𝑘𝑘 − 3. 𝐽𝑚 is the parameter
effectively accounting for limiting chain extensibility. The deformation measure is given by 𝐵𝑖 𝑗 ,
the components of the Left Cauchy Green tensor, where 𝐵𝑖 𝑗 = 𝐹𝑖𝑘𝐹𝑗 𝑘 . 𝐵̄𝑘𝑘 provides the isochoric
part of the deformation and is given by

𝐵̄𝑖 𝑗 = 𝐹̄𝑖𝑘 𝐹̄𝑗 𝑘 ; 𝐹̄𝑖 𝑗 = 𝐽−1/3𝐹𝑖 𝑗 . (4.15)

In the limit where 𝐽𝑚 →∞ the Gent model reduces to the classical neo-Hookean model (see
(4.8)). This can be seen by defining 𝑥 to be 1

𝐽𝑚
, taking a Taylor series expansion of

ln
(
1 − (𝐵̄𝑘𝑘 − 3)𝑥

)
about 𝑥 = 0 and taking the limit as 𝑥 → 0.

The second Piola-Kirchoff stress, with components 𝑆𝑖 𝑗 , may be determined by taking a derivative
of the strain energy density. A mapping of the second Piola-Kirchoff may be used to determined
the Cauchy stress. These relations produce components of the Cauchy stress, 𝜎𝑖 𝑗 , that are

𝜎𝑖 𝑗 =
1
2
𝐾

(
𝐽 − 1

𝐽

)
𝛿𝑖 𝑗 +

𝐽−5/3𝜇𝐽𝑚
(
𝐵𝑖 𝑗 − 1

3𝐵𝑘𝑘𝛿𝑖 𝑗

)
𝐽𝑚 − 𝐵̄𝑘𝑘 + 3

, (4.16)

where 𝛿𝑖 𝑗 is the Kronecker delta.

The Gent model is a useful model for rubber elasticity as it is simple and provides similar
predictions to comparatively complicated molecular models [6], [17]. It is also a practical model
to use since analytic solutions to benchmark problems exist for this model.

4.6.2 Implementation

As a hyperelastic model, the current state of the material may be determined by the total
deformation. To this end we use the polar decomposition of the deformation gradient,

𝐹𝑖 𝑗 = 𝑉𝑖𝑘𝑅𝑘 𝑗 , (4.17)

in which 𝑉𝑖 𝑗 are the components of the left stretch tensor and 𝑅𝑖 𝑗 is the corresponding rotation.
Noting that,

𝐵𝑖 𝑗 = 𝑉𝑖𝑘𝑉𝑘 𝑗 ,

and 𝐽 = det
(
𝑉𝑖 𝑗

)
, the Cauchy stress (via (4.16)) is found. The unrotated stress, 𝑇𝑖 𝑗 , which is

needed for internal force calculations in Sierra/SM, is found using the transformation

𝑇𝑖 𝑗 = 𝑅𝑘𝑖𝜎𝑘𝑙𝑅𝑙 𝑗 .
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4.6.3 Verification

It is possible to find closed form solutions for a number of loadings. Three problems are described
here: uniaxial strain, simple shear, and hydrostatic compression. One set of material properties
was used for all tests and they are given in Table 4.4. The elastic modulus and Poisson’s ratio are
given in addition to the bulk modulus, shear modulus, and limiting chain extensibility parameter,
𝐽𝑚.

Table 4.4 The material properties for the Gent model used for uniaxial strain, simple shear, and
hydrostatic compression tests.

𝐾 0.325 MPa 𝜇 0.15 MPa 𝐽𝑚 13.125
𝐸 0.39 MPa 𝜈 0.33

4.6.3.1 Uniaxial Strain

First, utilizing a displacement condition corresponding to uniaxial strain results in a deformation
gradient of the form,

𝐹𝑖 𝑗 = 𝜆𝛿1𝑖𝛿1 𝑗 + 𝛿2𝑖𝛿2 𝑗 + 𝛿3𝑖𝛿3 𝑗 .

By evaluating relation (4.16) with this deformation field, we produce stresses that may be written
as,

𝜎11 =
1
2
𝐾

(
𝜆 − 1

𝜆

)
− 2

3
𝐽𝑚𝜇

(
𝜆2 − 1

)
𝜆3 − (𝐽𝑚 + 3) 𝜆5/3 + 2𝜆

𝜎22 = 𝜎33 =
1
2
𝐾

(
𝜆 − 1

𝜆

)
+ 1

3
𝐽𝑚𝜇

(
𝜆2 − 1

)
𝜆3 − (𝐽𝑚 + 3) 𝜆5/3 + 2𝜆

,

with the shear stress components equal to zero. Both the corresponding analytical and numerical
solutions are presented in Fig. 4.13.

4.6.3.2 Simple Shear

For the simple shear case, a deformation gradient of the form,

𝐹𝑖 𝑗 = 𝛿𝑖 𝑗 + 𝛾𝛿1𝑖𝛿2 𝑗 ,
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Fig. 4.13 Analytical and numerical results for the uniaxial stretch case.

is assumed. Noting this is a volume preserving deformation (𝐽 = 1) and again evaluating (4.16)
produces stresses that may be written as,

𝜎11 =
2
3
𝐽𝑚𝜇𝛾

2

𝐽𝑚 − 𝛾2

𝜎22 = 𝜎33 = −1
3
𝐽𝑚𝜇𝛾

2

𝐽𝑚 − 𝛾2

𝜎12 =
𝐽𝑚𝜇𝛾

𝐽𝑚 − 𝛾2

Both the corresponding analytical and numerical solutions are presented in Fig. 4.14.
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Fig. 4.14 Analytical and numerical results for the simple shear case.

4.6.3.3 Hydrostatic Compression

The volumetric deformation capabilities of the model are also investigated through displacement
controlled hydrostatic compression. Specifically, hydrostatic compression results in a deformation
gradient of the form,

𝐹𝑖 𝑗 = 𝜆𝛿𝑖 𝑗 ,

where 0 < 𝜆 ≤ 1. As there is no deviatoric deformation, evaluation of (4.16) produces stresses
that may be written as,

𝜎11 = 𝜎22 = 𝜎33 =
1
2
𝐾

(
𝜆3 − 1

𝜆3

)
,

with the shear stress components equal to zero. Both the corresponding analytical and numerical
solutions are presented in Fig. 4.15.
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Fig. 4.15 Stress determined analytically and numerically for the Gent model during displacement
controlled hydrostatic compression.
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4.6.4 User Guide

BEGIN PARAMETERS FOR MODEL GENT
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>
#
Jm Parameter = <real>

END [PARAMETERS FOR MODEL GENT]

There are no output variables available for the Gent model.

4.7 Elastic-Plastic Model

4.7.1 Theory

The elastic-plastic model is a hypoelastic, rate-independent linear hardening plasticity model. The
rate form of the constitutive equation assumes an additive split of the rate of deformation into an
elastic and plastic part

𝐷𝑖 𝑗 = 𝐷
e
𝑖 𝑗 + 𝐷

p
𝑖 𝑗 (4.18)

The stress rate only depends on the elastic strain rate in the problem
◦
𝜎𝑖 𝑗= C𝑖 𝑗 𝑘𝑙𝐷

e
𝑘𝑙

(4.19)

where C𝑖 𝑗 𝑘𝑙 are the components of the fourth-order, isotropic elasticity tensor.

The key to the model is finding the plastic rate of deformation. For associated flow the plastic rate
of deformation is in a direction normal to the yield surface. The yield surface is given by

𝑓
(
𝜎𝑖 𝑗 , 𝛼𝑖 𝑗 , 𝜀

𝑝 ) = 𝜙 (
𝜎𝑖 𝑗 , 𝛼𝑖 𝑗

)
− 𝜎̄ (𝜀𝑝) = 0 (4.20)

where 𝜙 is the effective stress, 𝛼𝑖 𝑗 are the components of the back stress (used with kinematic
hardening), and 𝜎̄ is the hardening function which is a function of an internal state variable, the
equivalent plastic strain 𝜀𝑝. An example of such a yield surface (plotted in the deviatoric 𝜋-plane)
is presented below in Fig. 4.16. The isotropy of the yield surface is clearly evident.

For the elastic plastic model a linear hardening law is assumed

𝜎̄ = 𝜎𝑦 + 𝐻′𝜀𝑝 (4.21)
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Fig. 4.16 Example von Mises yield surface (𝐽2) used by the elastic-plastic model presented in the
deviatoric 𝜋-plane. In this case the surface is plotted for 𝛼𝑖 𝑗 = 0 and 𝜀𝑝 = 0.
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where 𝜎𝑦 is the yield stress and 𝐻′ is the hardening modulus.

If the stress state is such that 𝑓 < 0, the the behavior of the material is elastic; if the stress state is
such that 𝑓 = 0 and ¤𝑓 < 0, i.e. the strain rate brings the stress inside the yield surface, then the
behavior of the material is elastic; if the stress state is such that 𝑓 = 0 and ¤𝑓 > 0, i.e. the strain
rate brings the stress outside the yield surface, then plastic deformation occurs.

We assume associated flow in this model, which gives the plastic rate of deformation

𝐷
p
𝑖 𝑗 = ¤𝛾

𝜕𝜙

𝜕𝜎𝑖 𝑗
(4.22)

where ¤𝛾 is the consistency parameter. For the elastic-plastic model the yield surface is assumed to
be a von Mises yield surface with a back stress tensor to denote the center of the yield surface.
The effective stress for a von Mises yield surface is

𝜙
(
𝜎𝑖 𝑗

)
=

√
3
2
𝜉𝑖 𝑗𝜉𝑖 𝑗 ; 𝜉𝑖 𝑗 = 𝑠𝑖 𝑗 − 𝛼𝑖 𝑗 (4.23)

where 𝑠𝑖 𝑗 are the components of the deviatoric stress tensor

𝑠𝑖 𝑗 = 𝜎𝑖 𝑗 −
1
3
𝛿𝑖 𝑗𝜎𝑘𝑘 (4.24)

and 𝛼𝑖 𝑗 are the components of the back stress tensor, another internal state variable.

The equivalent plastic strain is found through equating the rate of plastic work

¤𝑊 𝑝 = 𝜎𝑖 𝑗𝐷
p
𝑖 𝑗 = 𝜎̄ ¤̄𝜀

𝑝 → ¤̄𝜀𝑝 = ¤𝛾

𝜀𝑝 =
∫ 𝑡

0
¤𝛾𝑑𝑡

Finally, the model allows for kinematic hardening through the back stress. The back stress is a
symmetric, deviatoric rank two tensor that evolves in the following manner

¤𝛼𝑖 𝑗 =
2
3
(1 − 𝛽) 𝐻′𝐷p

𝑖 𝑗
(4.25)

The radius of the yield surface can be defined, 𝑅 =
√
𝜉𝑖 𝑗𝜉𝑖 𝑗 . The evolution of the radius of the

yield surface is given by

¤𝑅 =

√
2
3
𝛽𝐻′ ¤̄𝜀𝑝 (4.26)

In (4.25) and (4.26) the parameter 𝛽 ∈ [0, 1] distributes the hardening between isotropic and
kinematic hardening. If 𝛽 = 1 the hardening is isotropic, if 𝛽 = 0 the hardening is kinematic, and
if 𝛽 is between 0 and 1 the hardening is a combination of isotropic and kinematic.
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4.7.2 Implementation

The elastic-plastic linear hardening model is implemented using a predictor-corrector algorithm.
First, an elastic trial stress state is calculated. This is done by assuming that the rate of
deformation is completely elastic

𝑇 𝑡𝑟𝑖 𝑗 = 𝑇
𝑛
𝑖 𝑗 + Δ𝑡

(
𝜆𝛿𝑖 𝑗𝑑𝑘𝑘 + 2𝜇𝑑𝑖 𝑗

)
The trial stress state can be decomposed into a pressure and a deviatoric stress

𝑝𝑡𝑟 =
1
3
𝑇 𝑡𝑟𝑘𝑘 ; 𝑠𝑡𝑟𝑖 𝑗 = 𝑇

𝑡𝑟
𝑖 𝑗 − 𝑝𝑡𝑟𝛿𝑖 𝑗

The difference between the deviatoric trial stress state and the back stress is compared to the
current radius of the yield surface

𝜉 𝑡𝑟𝑖 𝑗 = 𝑠
𝑡𝑟
𝑖 𝑗 − 𝛼𝑛𝑖 𝑗 ; 𝜉2

𝑡𝑟 = 𝜉
𝑡𝑟
𝑖 𝑗 𝜉

𝑡𝑟
𝑖 𝑗

If 𝜉2
𝑡𝑟 < 𝑅

2 then the strain rate is elastic and the stress update is finished. If 𝜉2
𝑡𝑟 > 𝑅

2 then plastic
deformation has occurred. The algorithm then needs to determine the extent of plastic
deformation.

The normal to the yield surface, 𝑁𝑖 𝑗 is assumed to lie in the direction of the trial stress state. This
gives us the following expression for 𝑁𝑖 𝑗

𝑁𝑖 𝑗 =
𝜉 𝑡𝑟𝑖 𝑗

‖𝜉 𝑡𝑟𝑖 𝑗 ‖
In what follows the change in the yield surface is assumed to be a linear combination of isotropic
and kinematic hardening, i.e. the yield surface grows and or moves. Using a backward Euler
algorithm the final deviatoric stress state is

𝑠𝑛+1𝑖 𝑗 = 𝑠𝑡𝑟𝑖 𝑗 − Δ𝑡 2𝜇𝑑
p
𝑖 𝑗

where the plastic strain increment is

Δ𝑡 𝑑𝑝𝑖 𝑗 =

√
3
2
Δ𝜀𝑝𝑁𝑖 𝑗

The updated back stress is

𝛼𝑛+1𝑖 𝑗 = 𝛼𝑛𝑖 𝑗 +
√

2
3
(1 − 𝛽) (𝐻′Δ𝜀𝑝) 𝑁𝑖 𝑗

and the updated radius of the yield surface is

𝑅𝑛+1 = 𝑅𝑛 + 𝛽
√

2
3
(𝐻′Δ𝜀𝑝)

Combining these expressions we get an equation for the change in the equivalent plastic strain
over the load step

(3𝜇 + 𝐻′) Δ𝜀𝑝 =
√

3
2

(
‖𝜉 𝑡𝑟𝑖 𝑗 ‖ − 𝑅𝑛

)
; 𝜉 𝑡𝑟𝑖 𝑗 = 𝑠

𝑡𝑟
𝑖 𝑗 − 𝛼𝑛𝑖 𝑗

With Δ𝜀𝑝 we can update the stress and the internal state variables.
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4.7.3 Verification

The elastic-plastic material model is verified for a number of loading conditions. The elastic
properties used in these analyses are 𝐸 = 70 GPa and 𝜈 = 0.25. The hardening parameters are
𝜎𝑦 = 200 MPa, 𝐻′ = 500 MPa, and 𝛽 = 1. By setting 𝛽 = 1 the hardening is isotropic.

4.7.3.1 Uniaxial Stress

The elastic-plastic model is tested in uniaxial tension. The test looks at the stress, strain, and
equivalent plastic strain and compares these values against analytical results for the same problem.
The model is tested in uniaxial stress in the 𝑥 (𝑥1), directions.

For the uniaxial stress problem, the only non-zero stress component is 𝜎11. In the analysis that
follows 𝜎11 = 𝜎. There are three non-zero strain components, 𝜀11, 𝜀22, and 𝜀33. In the analysis
that follows 𝜀11 = 𝜀. Furthermore, the axial elastic stress, 𝜀e11 = 𝜎/𝐸 will be denoted by 𝜀e.

Axial Stresses

The uniaxial stress calculated by the model in Adagio is compared to an analytical solution. For
uniaxial loading in the 𝑥1 direction, the effective stress is

𝜙 = 𝜎

If the stress state is on the yield surface, then 𝜙 = 𝜎̄ (𝜀𝑝), so the axial stress, as a function of the
hardening function, is

𝜎 = 𝜎̄ (𝜀𝑝) = 𝜎𝑦 + 𝐻′𝜀𝑝 (4.27)

The stress state can be calculated from the hardening law and the anisotropy parameters.

To evaluate the axial stress we need the equivalent plastic strain as a function of the axial strain. If
we equate the rate of plastic work we get

𝜎̄ ¤̄𝜀𝑝 = 𝜎 ( ¤𝜀 − ¤𝜀e) → ¤̄𝜀𝑝 = ¤𝜀 − ¤𝜀e

which, when integrated, gives us an equation for the equivalent plastic strain

𝜀𝑝 =
𝐸𝜀 − 𝜎𝑦
𝐸 + 𝐻′

(4.28)

The equivalent plastic strain can then be used in (4.45) to find the axial stress, 𝜎

𝜎 =
𝜎𝑦 + 𝐻′𝜀
1 + 𝐻′/𝐸 (4.29)

The axial stresses is shown in Fig. 4.17.
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Lateral Strains

For the lateral strains we need the plastic strains and therefore the normal to the yield surface. The
components of the normal to the yield surface are

𝜕𝜙

𝜕𝜎11
= 1 ;

𝜕𝜙

𝜕𝜎22
=

𝜕𝜙

𝜕𝜎33
= −1

2

The elastic axial and lateral strain components are

𝜀e11 =
𝜎

𝐸
= 𝜀e ; 𝜀e22 = 𝜀e33 = −𝜈𝜎

𝐸
= −𝜈𝜀e

The plastic axial strain component is

𝜀
p
11 = 𝜀11 −

𝜎

𝐸
= 𝜀 − 𝜀e

which comes from the additive decomposition of the strain rates. Using the equivalent plastic
strain (4.46) we can find the lateral plastic strain components

𝜀
p
22 = 𝜀p33 = −1

2
(𝜀 − 𝜀e)

The lateral {em total} stain components prior to yield are 𝜀22 = 𝜀33 = −𝜈𝜀. After yield they are

𝜀22 = 𝜀33 = −𝜈𝜀e − 1
2
𝜀𝑝

where 𝜀e = 𝜎/𝐸 .

Results are shown in Fig. 4.18.

4.7.3.2 Pure Shear

The shear stress calculated by the elastic-plastic model in Adagio is compared to analytical
solutions. Considering pure shear with respect to the 𝑥1-𝑥2 axes, the only non-zero shear stress is
𝜎12, and the only non-zero shear strain will be 𝜀12 For pure shear with respect to the 𝑥1-𝑥2 axes,
the effective stress is

𝜙 =
√

3𝜎12

If the stress state is on the yield surface, then 𝜙 = 𝜎̄ (𝜀𝑝), so the shear stress is

𝜎12 =
𝜎̄ (𝜀𝑝)
√

3
(4.30)

Using this, the pure shear stress state can be calculated from the hardening law and the anisotropy
parameters.
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Fig. 4.17 Axial stress for loading in the 𝑥1 direction for the elastic-plasticmodel with linear hardening.
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Fig. 4.18 Lateral strains for uniaxial stress loading in the 𝑥1 direction for the elastic-plastic model
with linear hardening.
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To evaluate the shear stress we need the equivalent plastic strain as a function of the shear strain.
If we equate the rate of plastic work we get

𝜎̄ ¤̄𝜀𝑝 = 2𝜎12
(
¤𝜀12 − ¤𝜀𝑒12

)
→ ¤̄𝜀𝑝 = 2

√
3

(
¤𝜀12 − ¤𝜀𝑒12

)
which, when integrated, gives us an implicit equation for the equivalent plastic strain

𝜀𝑝 =
2
√

3

(
𝜀12 −

𝜎̄ (𝜀𝑝)
√

3𝐺

)
The equivalent plastic strain can now be used to find the shear stress.

Boundary Conditions for Pure Shear

The deformation gradient that gives pure shear for loading relative to the 𝑥1-𝑥2 axes is

[F] =



1
2
(
𝜆 + 𝜆−1) 1

2
(
𝜆 − 𝜆−1) 0

1
2
(
𝜆 − 𝜆−1) 1

2
(
𝜆 + 𝜆−1) 0

0 0 1


→ [𝜺] =


0 𝜀 0

𝜀 0 0

0 0 0


; 𝜀 = ln𝜆

For loading relative to the 𝑥2-𝑥3 axes and the 𝑥3-𝑥1 axes the boundary conditions are modified
appropriately.

Results

The results for the elastic-plastic model loaded in pure shear are shown in Fig. 4.19. We see that
the stress strain curves in pure shear as calculated by Adagio follow the expected stress strain
curves. All other stress and strain components for the three problems are zero.

4.7.4 User Guide

BEGIN PARAMETERS FOR MODEL ELASTIC_PLASTIC
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>

(continues on next page)
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Fig. 4.19 Results are for shear in the 𝑥1-𝑥2 plane, 𝑥2-𝑥3 plane, and 𝑥3-𝑥1 plane.
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(continued from previous page)
TWO MU = <real>
#
# Hardening Behavior
#
YIELD STRESS = <real>
BETA = <real>
HARDENING MODULUS = <real>

END [PARAMETERS FOR MODEL ELASTIC_PLASTIC]

In the above command blocks:

• The elastic constants describe both the pre-yield behavior of the model and the slope of post
yield unloading.

• The yield stress, the stress at which yield first initiates, is defined with the YIELD STRESS
command line.

• The hardening modulus, the slope of the post yield hardening curve, is defined with the
HARDENING MODULUS command line.

• The beta parameter defines if hardening is isotropic or kinematic.

Output variables available for this model are listed in Table 4.5 and Table 4.6. For information
about the elastic-plastic model, consult [101].

Table 4.5 State Variables for ELASTIC PLASTIC Model
Name Description
EQPS equivalent plastic strain, 𝜀𝑝
RADIUS radius of the yield surface, 𝑅
BACK_STRESS back stress (symmetric tensor), 𝛼𝑖 𝑗

Table 4.6 State Variables for ELASTIC PLASTIC Model for Shells
Name Description
EQPS equivalent plastic strain, 𝜀𝑝
TEN-
SILE_EQPS

equivalent plastic strain only accumulated when the material is in tension (trace
of stress tensor is positive)

RADIUS radius of the yield surface, 𝑅
BACK_STRESSback stress (symmetric tensor), 𝛼𝑖 𝑗
ITERA-
TIONS

radial return iterations

ERROR error in plane stress iterations
PS_ITER plane stress iterations
TSTRAIN integrated thickness strain
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4.8 Elastic-Plastic Power Law Hardening Model

4.8.1 Theory

The elastic-plastic power law hardening model is a hypoelastic, rate-independent plasticity model
with power law hardening [100]. The rate form of the constitutive equation assumes an additive
split of the rate of deformation into an elastic and plastic part

𝐷𝑖 𝑗 = 𝐷
e
𝑖 𝑗 + 𝐷

p
𝑖 𝑗

The stress rate only depends on the elastic strain rate in the problem
◦
𝜎𝑖 𝑗= C𝑖 𝑗 𝑘𝑙𝐷

e
𝑘𝑙

where C𝑖 𝑗 𝑘𝑙 are the components of the fourth-order, isotropic elasticity tensor.

The key to integrating the model is finding the plastic rate of deformation. For associated flow the
plastic rate of deformation is in a direction normal to the yield surface. The yield surface is given
by

𝑓
(
𝜎𝑖 𝑗 , 𝜀

𝑝 ) = 𝜙 (
𝜎𝑖 𝑗

)
− 𝜎̄ (𝜀𝑝) = 0 (4.31)

where 𝜙 is the equivalent stress and 𝜎̄ is the hardening function which is a function of the
equivalent plastic strain 𝜀𝑝. For this model the hardening function uses a power law

𝜎̄ (𝜀𝑝) = 𝜎𝑦 + 𝐴 〈𝜀𝑝 − 𝜀𝐿〉𝑛

which is shown in Fig. 4.20. The yield stress is 𝜎𝑦, the hardening constant is 𝐴, the hardening
exponent is 𝑛, and the Lüders strain is 𝜀𝐿 . The bracket < · > is the Macaulay bracket defined as

〈𝑥〉 =
{

0, if 𝑥 ≤ 0
𝑥, if 𝑥 > 0.

By assuming associated plastic flow, the plastic rate of deformation can be written as

𝐷
p
𝑖 𝑗 = ¤𝛾

𝜕𝜙

𝜕𝜎𝑖 𝑗
. (4.32)

For this model the yield surface is chosen to be a von Mises yield surface, so

𝜙
(
𝜎𝑖 𝑗

)
=

√
3
2
𝑠𝑖 𝑗 𝑠𝑖 𝑗

where 𝑠𝑖 𝑗 are the components of the deviatoric stress

𝑠𝑖 𝑗 = 𝜎𝑖 𝑗 −
1
3
𝛿𝑖 𝑗𝜎𝑘𝑘

Unlike the elastic-plastic model Section 4.7, the power-law hardening model does not allow for
kinematic hardening, so there is no back stress.
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Fig. 4.20 Typical stress-strain response for the power-law hardening model.
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4.8.2 Implementation

The elastic-plastic power-law hardening model is implemented using a predictor-corrector
algorithm. First, an elastic trial stress state is calculated. This is done by assuming that the rate of
deformation is completely elastic

𝑇 𝑡𝑟𝑖 𝑗 = 𝑇
𝑛
𝑖 𝑗 + Δ𝑡

(
𝜆𝛿𝑖 𝑗𝑑𝑘𝑘 + 2𝜇𝑑𝑖 𝑗

)
The trial stress state is decomposed into a pressure and a deviatoric stress

𝑝𝑡𝑟 =
1
3
𝑇 𝑡𝑟𝑘𝑘 ; 𝑠𝑡𝑟𝑖 𝑗 = 𝑇

𝑡𝑟
𝑖 𝑗 − 𝑝𝑡𝑟𝛿𝑖 𝑗

The effective trial stress is calculated and and used in the yield function (4.31).

𝑓
(
𝑠𝑡𝑟𝑖 𝑗 , 𝜀

𝑝
)
= 𝜙

(
𝑠𝑡𝑟𝑖 𝑗

)
− 𝜎̄ (𝜀𝑝)

If 𝑓 ≤ 0 then the strain rate is elastic and the stress update is finished. If 𝑓 > 0 then plastic
deformation has occurred and a radial return algorithm determines the extent of plastic
deformation.

The normal to the yield surface is assumed to lie in the direction of the trial stress state. This gives
us the following expression for 𝑁𝑖 𝑗

𝑁𝑖 𝑗 =
𝑠𝑡𝑟𝑖 𝑗

‖𝑠𝑡𝑟𝑖 𝑗 ‖

Using a backward Euler algorithm, the final deviatoric stress state is

𝑠𝑛+1𝑖 𝑗 = 𝑠𝑡𝑟𝑖 𝑗 − Δ 𝑡2𝜇𝑑
p
𝑖 𝑗

where the plastic strain increment is

Δ𝑑p𝑖 𝑗 =

√
3
2
Δ𝜀𝑝𝑁𝑖 𝑗

The equation for the change in the equivalent plastic strain over the load step is found as the
solution to

3𝜇Δ𝜀𝑝 + 𝜎̄ (𝜀𝑛 + Δ𝜀𝑝) − 𝜙𝑡𝑟 + 𝑓𝑛 = 0

4.8.3 Verification

The elastic-plastic power-law hardening model is verified for uniaxial stress and pure shear. The
elastic properties used in these analyses are 𝐸 = 70 GPa and 𝜈 = 0.25. The hardening law used for
the model is

𝜎̄ (𝜀𝑝) = 𝜎𝑦 + 𝐴 〈𝜀𝑝 − 𝜀𝐿〉𝑛

For these calculations 𝜎𝑦 = 200 MPa, 𝐴 = 400 MPa, 𝑛 = 0.25, and 𝜀𝐿 = 0.008.
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4.8.3.1 Uniaxial Stress

The elastic-plastic power-law hardening model is tested in uniaxial tension. The test looks at the
axial stress and the lateral strain and compares these values against analytical results for the same
problem. In this verification problem only the normal strains/stresses are needed, and the shear
terms are not exercised.

For the uniaxial stress problem, the only non-zero stress component is 𝜎11. In the analysis that
follows 𝜎11 = 𝜎. There are three non-zero strain components, 𝜀11, 𝜀22, and 𝜀33. In the analysis
that follows 𝜀11 = 𝜀 and 𝜀22 = 𝜀33. Furthermore, the axial elastic strain, 𝜀e11 = 𝜎/𝐸 will be
denoted by 𝜀e.

The equivalent plastic strain, 𝜀p, for this model is equivalent to 𝜀p11, and is

𝜀p = 𝜀 − 𝜎̄ (𝜀
p)

𝐸

This allows us, after yield, to parameterize the problem with the equivalent plastic strain.

For the lateral strains we need the lateral plastic strain. Plastic incompressibility (𝜀p𝑘𝑘 = 0) gives
us

𝜀
p
22 = −1

2
𝜀p

Combined with the lateral elastic strains we have the lateral strain as a function of the equivalent
plastic strain

𝜀22 = −𝜈 𝜎̄ (𝜀
p)

𝐸
− 1

2
𝜀p

The results are shown in Fig. 4.21 and Fig. 4.22 and show agreement between the model in
Adagio and the analytical results.

4.8.3.2 Pure Shear

The elastic-plastic power-law hardening model is tested in pure shear. The test looks at the shear
stress as a function of the shear strain and compares these values against analytical results for the
same problem. For the pure shear problem, the only non-zero strain component is 𝜀12 and the only
non-zero stress component is 𝜎12.

After yield, the shear stress as a function of the hardening curve is 𝜎12 = 𝜎̄ (𝜀p) /
√

3. The elastic
shear strain is 𝜀e12 = 𝜎12/2𝐺; the plastic shear strain is 𝜀p12 =

√
3𝜀p/2. Using this, the shear stress

and strain are given as functions of the equivalent plastic strain

𝜎12 =
𝜎̄ (𝜀p)
√

3
; 𝜀12 =

√
3

2
𝜀p + 1
√

3
𝜎̄ (𝜀p)

2𝜇
This allows us, after yield, to parameterize the problem with 𝜀p.

The results are shown in Fig. 4.23 and show agreement between the model in Adagio and the
analytical results.
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Fig. 4.21 The axial stress as a function of axial strain for the elastic-plastic power-law hardening
model.
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Fig. 4.22 The lateral strain as a function of axial strain for the elastic-plastic power-law hardening
model.
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Fig. 4.23 The shear stress as a function of shear strain for the elastic-plastic power-law hardening
model.
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4.8.4 User Guide

BEGIN PARAMETERS FOR MODEL EP_POWER_HARD
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>
#
# Hardening behavior
#
YIELD STRESS = <real>
HARDENING CONSTANT = <real>
HARDENING EXPONENT = <real>
LUDERS STRAIN = <real>

END [PARAMETERS FOR MODEL EP_POWER_HARD]

In the above command blocks:

• The YIELD STRESS is the stress at which the plastic power law yielding and hardening
model takes effect. See Fig. 4.20.

• The LUDERS STRAIN defines a regime of zero hardening modulus prior to onset of the
power law hardening. A small Luder band is seen in the hardening behavior or many
metals. See Fig. 4.20 for details.

• The HARDENING CONSTANT command line and HARDENING EXPONENT command
define the power law hardening curve. Past the Luder strain the hardened yield surface
radius is given by the HARDENING CONSTANT times plastic strain to the HARDENING
EXPONENT power.

Output variables available for this model are listed in Table 4.7 and Table 4.8. For information
about the elastic-plastic power-law hardening model, consult [101].

Table 4.7 State Variables for EP POWER HARD Model
Name Description
EQPS equivalent plastic strain, 𝜀𝑝
TEN-
SILE_EQPS

equivalent plastic strain only accumulated when the material is in tension (trace
of stress tensor is positive)

RADIUS radius of yield surface, 𝑅
ITERA-
TIONS

number of radial return iterations
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Table 4.8 State Variables for EP POWER HARD Model for Shells
Name Description
EQPS equivalent plastic strain, 𝜀𝑝
TEN-
SILE_EQPS

equivalent plastic strain only accumulated when the material is in tension (trace
of stress tensor is positive)

RADIUS radius of yield surface, 𝑅
ITERA-
TIONS

number of radial return iterations

ERROR error in plane stress iterations
PS_ITER plane stress iterations

4.9 Ductile Fracture Model

4.9.1 Theory

The ductile fracture model is identical to the elastic-plastic power-law hardening model with the
addition of a failure criterion and an isotropic decay of the stress to zero during the failure process
within the constitutive model. To accomplish this task, the tearing parameter, 𝑡𝑝, proposed by
Wellman [108] is introduced and the functional form as given as

𝑡𝑝 =
∫ 𝜀

0

〈 2𝜎max
3 (𝜎max − 𝜎𝑚)

〉4
𝑑𝜀𝑝 (4.33)

where 𝜎max is the maximum principal stress, and 𝜎𝑚 is the mean stress. It can also be noted that
the tearing parameter evolves during the plastic deformation regime as indicated by integrating
over the effective plastic strain, 𝜀𝑝. The angle brackets denoting the Macaulay brackets, where

〈𝑥〉 =
{

0 if 𝑥 ≤ 0
𝑥 if 𝑥 > 0

,

are used to ensure that the failure process occurs only with tensile stress states and prevent
“damage healing”. The failure process then initiates at a critical tearing parameter, 𝑡crit𝑝 , and the
corresponding stress decay occurs over a strain interval corresponding to the critical crack
opening strain, 𝜀ccos. Importantly, the 𝜀ccos serves a dual role in that it may also be used to control
the energy dissipated during failure. With respect to the latter point, careful selection of the
critical crack opening strain may be used to ensure consistent energy is dissipated through
different meshes. This decay process is isotropic and linear with the current damage value being
equivalent to the ratio of crack opening strain in the direction of the maximum principal stress to
the critical value.
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4.9.2 Implementation

The ductile fracture model seeks to capture both the nonlinear elastic-plastic and fracture
responses of a ductile metal. Independently, each of these requirements necessitates the use of a
nonlinear solution algorithm and the combination of the two is even more complex. This
consideration is compounded by the relaxation and softening observed during the failure process
that introduces additional complications for the global finite element solver. For this discussion,
however, the focus is solely on the underlying numerical treatment of the failure process at the
constitutive level. The solution of the elastic-plastic constitutive problem was discussed in detail
in Section 4.8.2 while details of the implications at the global finite element problem are found in
the Sierra/SM User’s Manual [113]. With respect to the latter, it is important to note that in
quasistatic cases the ductile fracture model is tightly integrated with the multilevel CONTROL
FAILURE capabilities although details of this coupling are left to [108], [113].

Prior to fracture initiation – while 𝑡𝑛+1𝑝 < 𝑡crit𝑝 – the ductile fracture model is exactly that of the
elastic-plastic power law. Through this process the tearing parameter is continually calculated at
the plastically converged state. When fracture initiation is first detected – 𝑡𝑛+1𝑝 ≥ 𝑡crit𝑝 – the
direction of the maximum principal stress, denoted by the normalized vector 𝑛𝑐𝑟𝑖 , is determined
and stored. Regardless of loading path, this vector does not change during the unloading process.
Additionally, for this first initial failure step, the unrotated stress tensor, 𝑇𝑖 𝑗 must be set equal to its
maximum value, 𝑇crit

𝑖 𝑗 before any unloading may be performed. This maximum value is simply
given by,

𝑇crit
𝑖 𝑗 = 𝑇𝑛𝑖 𝑗 +

(
𝑇 𝑡𝑟𝑖 𝑗 − 𝑇𝑛𝑖 𝑗

) 𝑡crit𝑝 − 𝑡𝑛𝑝
𝑡𝑛+1𝑝 − 𝑡𝑛𝑝

with 𝑇 𝑡𝑟𝑖 𝑗 being the elastic trial stress. As alluded to in the prior section, a linear decay based on the
crack opening strain in the direction of maximum stress, 𝜀cos, is utilized. To determine this decay
value, the crack opening strain increment is first found via

𝑑𝜀𝑛+1cos =< 𝛽𝑛𝑐𝑟𝑖 𝑑
𝑛+1
𝑖 𝑗 𝑛

𝑐𝑟
𝑗 >,

where 𝑑𝑛+1𝑖 𝑗 is the total unrotated rate of deformation and 𝛽 is a partitioning factor between plastic
and crack opening strains and takes the value of 1 for all loading steps emph{except} the initiation
step. The < · > are the Macaulay brackets. During the first fracture step,

𝛽 =
𝑡𝑛+1𝑝 − 𝑡crit𝑝

𝑡𝑛+1𝑝 − 𝑡𝑛𝑝
.

The current crack opening strain is then simply,

𝜀𝑛+1cos = 𝜀𝑛cos + 𝑑𝜀𝑛+1cos Δ𝑡

and the decay value, 𝛼𝑛+1, is then found as,

𝛼𝑛+1 = max
[
0,
𝜀ccos − 𝜀𝑛+1cos

𝜀ccos

]
.
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To perform the actual stress decay, the hardening and yield values are proportionally decayed
via,

𝜎̄𝑛+1 (𝜀𝑝) = 𝛼𝑛+1𝜎̄ 𝑓 ; 𝛽𝑛+1𝑖 𝑗 = 𝛼𝑛+1𝛽𝑛𝑖 𝑗 ,

with 𝜎̄ 𝑓 = 𝜙
(
𝑇crit
𝑖 𝑗

)
being the critical yield stress associated with the yield surface, 𝜙, and 𝛽𝑖 𝑗 is

the backstress tensor used with kinematic hardening. The decayed stress is then found by radially
returning to the reduced yield stress, 𝜎̄𝑛+1 (𝜀). As a 𝐽2 deviatoric yield stress is used for the
plastic response, the hydrostatic component of the stress tensor is similarly decayed.

4.9.3 Verification

The ductile fracture model is tested in uniaxial stress and pure shear. For these test problems, the
Young’s modulus and Poisson’s ratio are 𝐸 = 70 GPa and 𝜈 = 0.25. The yield stress is taken to be
𝜎𝑦 = 200 MPa while the hardening constant and exponent are 𝐴 = 400 MPa and 𝑛 = 0.25,
respectively, and the Luders strain is 0.008. To describe failure, the critical tearing parameter is
𝑡crit𝑝 = 0.025 and the critical crack opening strain is 𝜀ccos = 0.001.

4.9.3.1 Uniaxial Stress

For loading in uniaxial stress the only non-zero stress component is 𝜎11. All other stress
components are zero. If the stress state is on the yield surface then this stress is

𝜎11 = 𝜎̄(𝜀𝑝),

with 𝜎̄ being the yield stress including any hardening effects associated with the evolution of the
effective plastic strain, 𝜀𝑝. To evaluate the axial stress we need the equivalent plastic strain as a
function of the axial strain, 𝜀11. If we equate the rate of plastic work we get

𝜎̄ ¤̄𝜀𝑝 = 𝜎11
(
¤𝜀11 − ¤𝜀e11

)
→ ¤̄𝜀𝑝 = ¤𝜀11 − ¤𝜀e11 = ¤𝜀𝑝11

which, when integrated, gives us an implicit equation for the equivalent plastic strain

𝜀𝑝 =

(
𝜀11 −

𝜎̄(𝜀𝑝)
𝐸

)
.

Alternatively, we write the axial strain as a function of the equivalent plastic strain, which allows
us to parameterize the problem with 𝜀𝑝

𝜀11 = 𝜀𝑝 + 𝜎̄(𝜀
𝑝)

𝐸
.

In uniaxial stress the pressure is 𝜎11/3 and the maximum principal stress is 𝜎max = 𝜎11. Using
this in (4.33) we get

𝑡𝑝 = 𝜀
𝑝
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i.e. the tearing parameter is equal to the equivalent plastic strain. This result is shown in Fig.
4.24(a). The final value for the tearing parameter is a function of the number of steps, or the step
size. The smaller the step size the closer the final value is to 𝑡crit𝑝 .

The axial stress as a function of axial strain is shown in Fig. 4.24(b). The axial stress depends on
the elastic-plastic response until the critical tearing parameter is reached. As with the tearing
parameter results, this point is time step dependent. Once the critical tearing parameter is reached
the stress decay occurs over the critical crack opening strain.

(a) Tearing parameter (b) Axial stress

Fig. 4.24 The (a) tearing parameter, 𝑡𝑝 , and (b) axial stress-strain response for the ductile fracture
model in uniaxial stress. The post failure reduction in stress depends on the time discretization or
step size.

4.9.3.2 Pure Shear

For loading in pure shear the only non-zero stress component is 𝜎12. All other stress components
are zero. If the stress state is on the yield surface then the shear stress is

𝜎12 =
𝜎̄(𝜀𝑝)
√

3
.

To evaluate the shear stress we need the equivalent plastic strain as a function of the shear strain.
If we equate the rate of plastic work we get

𝜎̄ ¤̄𝜀𝑝 = 2𝜎12
(
¤𝜀12 − ¤𝜀e12

)
→ ¤̄𝜀𝑝 = 2

√
3

(
¤𝜀12 − ¤𝜀e12

)
which, when integrated, gives us an implicit equation for the equivalent plastic strain

𝜀𝑝 =
2
√

3

(
𝜀12 −

𝜎̄(𝜀𝑝)
√

3𝐺

)
.
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Alternatively, we write the shear strain, 𝜀12 as a function of the equivalent plastic strain, which
allows us to parameterize the problem with 𝜀𝑝

𝜀12 =

√
3

2
𝜀𝑝 + 𝜎̄(𝜀

𝑝)
√

3𝐺
.

In pure shear the pressure is zero, and the maximum principal stress is 𝜎max = 𝜎12. Using this in
(4.33) we get

𝑡𝑝 =

(
2
3

)4
𝜀𝑝 .

This result is shown in Fig. 4.25, where the tearing parameter is a function of the shear strain. The
final value for the tearing parameter is a function of the number of steps, or the step size. The
smaller the step size the closer the final value is to 𝑡crit𝑝 .

The shear stress as a function of shear strain is shown in Fig. 4.26. The shear stress depends on
the elastic-plastic response until the critical tearing parameter is reached. As with the tearing
parameter results, this point is time step dependent. Once the critical tearing parameter is reached
the stress decay occurs over the critical crack opening strain.

4.9.4 User Guide

BEGIN PARAMETERS FOR MODEL DUCTILE_FRACTURE
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>
#
# Yield surface parameters
#
YIELD STRESS = <real>
HARDENING CONSTANT = <real>
HARDENING EXPONENT = <real>
LUDERS STRAIN = <real>
#
# Failure parameters
#
CRITICAL TEARING PARAMETER = <real>
CRITICAL CRACK OPENING STRAIN = <real>

END [PARAMETERS FOR MODEL DUCTILE_FRACTURE]
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Fig. 4.25 The tearing parameter, 𝑡𝑝 , in pure shear. The maximum tearing parameter depends on the
time discretization or step size.
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Fig. 4.26 Shear stress vs. shear strain for the ductile fracture model in pure shear. The post failure
reduction in stress depends on the time discretization or step size.
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In the above command blocks:

• The YIELD STRESS is the stress at which the plastic power load yielding and hardening
model takes effect. See Fig. 4.20.

• The LUDERS STRAIN defines a regime of zero hardening modulus prior to onset of the
power law hardening. A small Luder band is seen in the hardening behavior or many
metals. See Fig. 4.20 for details.

• The HARDENING CONSTANT command line and HARDENING EXPONENT command
define the power law hardening curve. Past the Luder strain the hardened yield surface
radius is given by the HARDENING CONSTANT times plastic strain to the HARDENING
EXPONENT power.

• CRITICAL TEARING PARAMETER defines the 𝑡𝑝 value at which fracture and
subsequent decay of stress will occur.

• When the model undergoes additionally strain after reaching the critical tearing parameter
the stress in the model will decay to zero. The amount strain over which the stress decays to
zero is defined with the CRITICAL CRACK OPENING STRAIN command line. The
relevant opening strain is the component of strain that is aligned with the
maximum-principal-stress direction at initial failure.

Output variables available for this model are listed in Table 4.9. For information about the ductile
fracture material model, consult [108].

Table 4.9 State Variables for DUCTILE FRACTURE Model
Name Description
EQPS equivalent plastic strain, 𝜀𝑝
RADIUS radius of yield surface, 𝑅
BACK_STRESS back stress - tensor 𝛼𝑖 𝑗
TEAR-
ING_PARAMETER

Current value of the integrated tearing parameter

CRACK_OPENING_STRAINCurrent value of the crack opening strain. Will be zero prior to reaching
the maximum tearing parameter.

FAIL-
URE_DIRECTION

Crack opening direction (maximum principal stress direction at failure)
- vector

DF_STRAIN_XX XX component of current strain
DF_STRAIN_YY YY component of current strain
DF_STRAIN_ZZ ZZ component of current strain
DF_STRAIN_XY XY component of current strain
DF_STRAIN_YZ YZ component of current strain
DF_STRAIN_ZX ZX component of current strain
MAX_RADIUS Yield surface radius at failure
MAX_PRESS Stress pressure norm at failure
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4.10 Multilinear Elastic-Plastic Model

4.10.1 Theory

The multilinear elastic-plastic model is a generalization of the standard rate independent plasticity
models already presented - the linear and power law hardening models. However, rather than
having a specific functional form, the multilinear hardening model allows the user to input a
piecewise linear function for the hardening curve. The rate form of the constitutive equation
assumes an additive split of the rate of deformation into an elastic and plastic part such that

𝐷𝑖 𝑗 = 𝐷
e
𝑖 𝑗 + 𝐷

p
𝑖 𝑗 .

The stress rate only depends on the elastic strain rate so that,
◦
𝜎𝑖 𝑗= C𝑖 𝑗 𝑘𝑙𝐷

e
𝑘𝑙 ,

where C𝑖 𝑗 𝑘𝑙 are the components of the fourth-order, isotropic elasticity tensor.

The key to the model is finding the plastic rate of deformation. For associated flow, the plastic rate
of deformation is in the direction normal to the yield surface. With a yield surface given by

𝜙
(
𝜎𝑖 𝑗

)
− 𝜎̄ (𝜀𝑝) = 0

then the plastic rate of deformation can be written as

𝐷
p
𝑖 𝑗 = ¤𝛾

𝜕𝜙

𝜕𝜎𝑖 𝑗
. (4.34)

For this model the yield surface is taken to be a von Mises yield surface, such that

𝜙
(
𝜎𝑖 𝑗

)
=

√
3
2
𝑠𝑖 𝑗 𝑠𝑖 𝑗

where 𝑠𝑖 𝑗 are the components of the deviatoric stress

𝑠𝑖 𝑗 = 𝜎𝑖 𝑗 −
1
3
𝛿𝑖 𝑗𝜎𝑘𝑘 .

For simplicity it is easier to write (4.34) in terms of the normal to the yield surface

𝐷
p
𝑖 𝑗 = ¤𝛾𝑁𝑖 𝑗 ; 𝑁𝑖 𝑗 =

𝜕𝜙

𝜕𝜎𝑖 𝑗
/




 𝜕𝜙𝜕𝜎𝑖 𝑗






The model also incorporates temperature dependence in that the elastic properties and the yield
stress can be functions of temperature. This is not as general as having the yield curves depend on
temperature. For that behavior the thermoelastic-plastic model can be used.

An example stress vs. plastic strain hardening curve is shown in Fig. 4.27. This curve was
generated for a loading case of uniaxial strain. In this case, the effective stress is the same as the
uniaxial. Therefore, for use with the multilinear elastic-plastic model this curve would simply
have to be discretized and used as input.
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Fig. 4.27 An example of a multilinear elastic-plastic stress-strain curve.
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4.10.2 Implementation

The multilinear elastic-plastic model is implemented using a predictor-corrector algorithm. First,
an elastic trial stress state is calculated. This is done in the unrotated configuration (see Section
4.1) by assuming that the rate of deformation is completely elastic

𝑇 𝑡𝑟𝑖 𝑗 = 𝑇
𝑛
𝑖 𝑗 + Δ𝑡

(
𝜆𝛿𝑖 𝑗𝑑𝑘𝑘 + 2𝜇𝑑𝑖 𝑗

)
.

The trial stress state is decomposed into a pressure and a deviatoric stress

𝑝𝑡𝑟 =
1
3
𝑇 𝑡𝑟𝑘𝑘 ; 𝑠𝑡𝑟𝑖 𝑗 = 𝑇

𝑡𝑟
𝑖 𝑗 − 𝑝𝑡𝑟𝛿𝑖 𝑗

The effective trial stress is calculated and used with the yield function (4.31),

𝑓
(
𝑠𝑡𝑟𝑖 𝑗 , 𝜀

𝑝
)
= 𝜙

(
𝑠𝑡𝑟𝑖 𝑗

)
− 𝜎̄ (𝜀𝑝) .

If 𝑓 ≤ 0 then the response is elastic and the stress update is finished. If 𝑓 > 0 then plastic
deformation has occurred and a radial return algorithm is used to determine the extent of this
behavior.

The model assumes associated flow such that the normal to the yield surface lies in the direction
of the trial stress state. This leads to the following expression for the normal, 𝑁𝑖 𝑗 ,

𝑁𝑖 𝑗 =
𝑠𝑡𝑟𝑖 𝑗

‖𝑠𝑡𝑟𝑖 𝑗 ‖
.

Using a backward Euler algorithm, the final deviatoric stress state may be written as

𝑠𝑛+1𝑖 𝑗 = 𝑠𝑡𝑟𝑖 𝑗 − Δ 𝑡2𝜇𝑑
p
𝑖 𝑗

where the plastic strain increment, Δ𝑑p𝑖 𝑗 , is

Δ𝑑p𝑖 𝑗 =

√
3
2
Δ𝜀𝑝𝑁𝑖 𝑗 .

Thus, to determine the response of the material the increment of the effective plastic strain, Δ𝜀𝑝,
needs to be determined. This may be done by solving the linearized consistency equation over the
load step that is written as,

3𝜇Δ𝜀𝑝 + 𝜎̄ (𝜀𝑛 + Δ𝜀𝑝) − 𝜙𝑡𝑟 + 𝑓𝑛 = 0.

4.10.3 Verification

The multilinear elastic-plastic material model is verified for uniaxial stress and pure shear. The
elastic properties used in these analyses are 𝐸 = 70 GPa and 𝜈 = 0.25. In order to appropriately
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verify this model, the hardening curve must have a functional form to appropriately determine an
analytical solution. Here, the hardening law used for the model is a Voce law with the following
form

𝜎̄ (𝜀𝑝) = 𝜎𝑦 + 𝐴 (1 − exp(−𝑛𝜀𝑝)) .

In the numerical analyses, this expression is discretized at a series of plastic strain values and used
as input. For these calculations 𝜎𝑦 = 200 MPa, 𝐴 = 200 MPa, and 𝑛 = 20.

4.10.3.1 Uniaxial Stress

The multilinear elastic-plastic model is tested in uniaxial tension. The test looks at the axial stress
and the lateral strain and compares these values against analytical results for the same problem. In
this verification problem only the normal strains/stresses are needed, and the shear terms are not
exercised.

For the uniaxial stress problem, the only non-zero stress component is 𝜎11. In the analysis that
follows 𝜎11 = 𝜎. There are three non-zero strain components, 𝜀11, 𝜀22, and 𝜀33. In the analysis
that follows 𝜀11 = 𝜀 and 𝜀22 = 𝜀33. Furthermore, the axial elastic strain, 𝜀e11 = 𝜎/𝐸 will be
denoted by 𝜀e.

The equivalent plastic strain, 𝜀p, for this model is equivalent to 𝜀p11, and is

𝜀p = 𝜀 − 𝜎̄ (𝜀
p)

𝐸

This allows us, after yield, to parameterize the problem with the equivalent plastic strain.

For the lateral strains we need the lateral plastic strain. Incompressibility gives us

𝜀
p
22 = −1

2
𝜀p

Combined with the lateral elastic strains we have the lateral strain as a function of the equivalent
plastic strain

𝜀22 = −𝜈 𝜎̄ (𝜀
p)

𝐸
− 1

2
𝜀p

The results are shown in Fig. 4.28 and Fig. 4.29 and show agreement between the model in
Adagio and the analytical results.

4.10.3.2 Pure Shear

The multilinear elastic-plastic model is tested in pure shear. The test looks at the shear stress as a
function of the shear strain and compares these values against analytical results for the same
problem. For the pure shear problem, the only non-zero strain component is 𝜀12 and the only
non-zero stress component is 𝜎12.
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Fig. 4.28 The axial stress as a function of axial strain for the multilinear elastic-plastic model with
an analytical Voce law for the hardening model.
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Fig. 4.29 The lateral strain as a function of axial strain for the multilinear elastic-plastic model with
an analytical Voce law for the hardening model.
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After yield, the shear stress as a function of the hardening curve is 𝜎12 = 𝜎̄ (𝜀p) /
√

3. The elastic
shear strain is 𝜀e12 = 𝜎12/2𝐺; the plastic shear strain is 𝜀p12 =

√
3𝜀p/2. Using this, the shear stress

and strain are given as functions of the equivalent plastic strain

𝜎12 =
𝜎̄ (𝜀p)
√

3
; 𝜀12 =

√
3

2
𝜀p + 1
√

3
𝜎̄ (𝜀p)

2𝐺

This allows us, after yield, to parameterize the problem with 𝜀p.

The results are shown in Fig. 4.30 and show agreement between the model in Adagio and the
analytical results.

Fig. 4.30 The shear stress as a function of shear strain for the multilinear elastic-plastic model with
an analytical Voce law for the hardening model.
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4.10.4 User Guide

BEGIN PARAMETERS FOR MODEL MULTILINEAR_EP
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>
#
# Hardening behavior
#
YIELD STRESS = <real>
BETA = <real> (1.0)
HARDENING FUNCTION = <string> hardening_function_name
#
# Functions
#
YOUNGS MODULUS FUNCTION = <string> ym_function_name
POISSONS RATIO FUNCTION = <string> pr_function_name
YIELD STRESS FUNCTION = <string> yield_stress_function_name

END [PARAMETERS FOR MODEL MULTILINEAR_EP]

In the above command blocks:

• The beta parameter defines if hardening is isotropic or kinematic.

• YIELD STRESS defines the stress where plastic yielding first occurs.

• The HARDENING FUNCTION command line references the name of a function defined in
a FUNCTION command line in the SIERRA scope. The function describes the hardening
behavior of the material as stress versus equivalent plastic strain. The x values of the
function should be values of equivalent plastic strain while the y values of the function can
be either the increment of stress over the yield stress or the actual stress at the
corresponding equivalent plastic strain. Note the hardening function can have its first point
defined at (0,0), or at (0, YIELD_STRESS). Either function definition behaves the same as
only the slope of the hardening function between two strains is used by the model.

• The YOUNGS MODULUS FUNCTION command line references the name of a function
defined in a FUNCTION command line in the SIERRA scope that describes a scale factor
on Young’s modulus as a function of temperature.

• The POISSONS RATIO FUNCTION command line references the name of a function
defined in a FUNCTION command line in the SIERRA scope that describes a scale factor
on Poisson’s ratio as a function of temperature.
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• The YIELD STRESS FUNCTION command line references the name of a function
defined in a FUNCTION command line in the SIERRA scope that describes a scale factor
on the yield stress as a function of temperature.

Output variables available for this model are listed in Table 4.10 and Table 4.11.

Table 4.10 State Variables for MULTILINEAR EP Model
Name Description
EQPS equivalent plastic strain
TEN-
SILE_EQPS

equivalent plastic strain only accumulatedwhen thematerial is in tension (trace
of stress tensor is positive)

RADIUS radius of yield surface
BACK_STRESS back stress (symmetric tensor)
YOUNGS_MODULUSthe current Young’s modulus as a function of temperature
POIS-
SONS_RATIO

the current Poisson’s ratio as a function of temperature

YIELD_STRESSthe current yield stress as a function of temperature
ITERATIONS radial return iterations
YIELD_FLAG inside (0) or on (1) the yield surface

Table 4.11 State Variables for MULTILINEAR EP Model for Shells
Name Description
EQPS equivalent plastic strain
TEN-
SILE_EQPS

equivalent plastic strain only accumulatedwhen thematerial is in tension (trace
of stress tensor is positive)

RADIUS radius of yield surface
BACK_STRESS back stress (symmetric tensor)
YOUNGS_MODULUSthe current Young’s modulus as a function of temperature
POIS-
SONS_RATIO

the current Poisson’s ratio as a function of temperature

YIELD_STRESSthe current yield stress as a function of temperature
ITERATIONS radial return iterations
ERROR error in plane stress iterations
PS_ITER plane stress iterations
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4.11 Multilinear Elastic-Plastic Fail Model

4.11.1 Theory

Like the ductile fracture model, the multilinear elastic-plastic fail model is an extension of an
existing plasticity model (multilinear elastic-plastic) to include a ductile failure criteria. Again,
the tearing parameter criterion and failure propagation model of Wellman [108] is selected.
Specifically, this approach uses a failure criterion (the tearing parameter, 𝑡𝑝) that is based on the
history of the plastic strain and stress states. Most failure criteria for ductile failure involve some
form of the stress triaxiality, or the ratio of the pressure and the effective (shear) stress. The
tearing parameter, however, is slightly different in that it depends on the pressure and the
maximum principal stress and is given as,

𝑡𝑝 =
∫ 𝜀

0

〈
2𝜎max

3 (𝜎max − 𝜎𝑚)

〉𝑚
𝑑𝜀𝑝, (4.35)

with 𝜎max and 𝜎𝑚 being the maximum principal and mean stresses, respectively. The exponent 𝑚
is typically taken to be 4 while the 〈·〉 are Macaulay brackets defined as,

〈𝑥〉 =
{

0 𝑥 ≤ 0
𝑥 𝑥 > 0 ,

and introduced so that failure only occurs and propagates under tensile stress states. Failure then
initiates when the tearing parameter, 𝑡𝑝, reaches a critical value, 𝑡crit𝑝 . After this point, the stress
decays (to 0) in a linear fashion according to the ratio of the crack opening strain in the maximum
principal stress direction to its critical value, 𝜀ccos. Modification and control of this latter
parameter is important as it may be used to ensure consistent energy is dissipated through
different meshes.

4.11.2 Implementation

The multilinear elastic-plastic fail model seeks to capture both the nonlinear elastic-plastic and
fracture responses of a ductile metal. Independently, each of these requirements necessitates the
use of a nonlinear solution algorithm and the combination of the two is even more complex. This
consideration is compounded by the relaxation and softening observed during the failure process
that introduces additional complications for the global finite element solver. For this discussion,
however, the focus is solely on the underlying numerical treatment of the failure process at the
constitutive level. The solution of the elastic-plastic constitutive problem was discussed in detail
in Section 4.10.2 while details of the implications at the global finite element problem are found
in the Sierra/SM User’s Manual [113]. With respect to the latter, it is important to note that the
ductile fracture model is tightly integrated with the multilevel CONTROL FAILURE capabilities
although details of this coupling are left to [108], [113].

Prior to fracture initiation – while 𝑡𝑛+1𝑝 < 𝑡crit𝑝 – the multilinear elastic-plastic fail model is the
same as the “normal” multilinear elastic-plastic model. Through this process the tearing
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parameter is continually calculated at the plastically converged state. When fracture initiation is
first detected – 𝑡𝑛+1𝑝 ≥ 𝑡crit𝑝 – the crack direction (assumed aligned with the maximum principal
stress), denoted by the normalized vector 𝑛𝑐𝑟𝑖 , is determined and stored. Regardless of loading
path, this vector does not change during the unloading process. Additionally, for this first initial
failure step, the unrotated stress tensor, 𝑇𝑖 𝑗 must be updated to its maximum value, 𝑇crit

𝑖 𝑗 before any
unloading may be performed. This is done simply by,

𝑇crit
𝑖 𝑗 = 𝑇𝑛𝑖 𝑗 +

(
𝑇 𝑡𝑟𝑖 𝑗 − 𝑇𝑛𝑖 𝑗

) 𝑡crit𝑝 − 𝑡𝑛𝑝
𝑡𝑛+1𝑝 − 𝑡𝑛𝑝

,

with 𝑇 𝑡𝑟𝑖 𝑗 being the elastic trial stress. As alluded to in the prior section, a linear decay based on the
crack opening strain in the direction of maximum stress, 𝜀cos, is utilized. To determine this decay
value, the crack opening strain increment is first found via

𝑑𝜀𝑛+1cos =< 𝛾𝑛𝑐𝑟𝑖 𝑑
𝑛+1
𝑖 𝑗 𝑛

𝑐𝑟
𝑗 >,

where 𝑑𝑛+1𝑖 𝑗 is the unrotated rate of deformation and 𝛾 is a partitioning factor between plastic and
crack opening strains and takes the value of 1 for all loading steps except the initiation step and the
“< · >” are the Macaulay brackets. During the first fracture step,

𝛾 =
𝑡𝑛+1𝑝 − 𝑡crit𝑝

𝑡𝑛+1𝑝 − 𝑡𝑛𝑝
.

The current crack opening strain is then simply,

𝜀𝑛+1cos = 𝜀𝑛cos + 𝑑𝜀𝑛+1cos Δ𝑡.

and the decay factor, 𝛼, may be written as

𝛼𝑛+1 = max
[
0,
𝜀ccos − 𝜀𝑛+1cos

𝜀ccos

]
.

Given the temperature dependence, stress decay is slightly more complicated than in the ductile
fracture case. This task is primarily accomplished by decreasing the yield stress (radius)
proportionally with the decay factor,

𝜎̄𝑛+1 (𝜀p) = 𝛼𝑛+1𝜎̄ 𝑓 ,

where 𝜎̄ 𝑓 = 𝜙
(
𝑇crit) is the yield stress at failure. The decayed stress is then found by radially

returning to this reduced yield stress. Similarly, the hydrostatic and von Mises effective stress at
failure (𝜎 𝑓

𝑚 and 𝜎̄ 𝑓
𝑣𝑀 , respectively) are also calculated and stored to appropriately constrain the

stress state. An additional check is then performed to ensure (and if necessary modify) the
decayed stress to ensure that,

𝜎𝑚 ≤ 𝛼𝜎 𝑓
𝑚; 𝜎̄𝑣𝑀 ≤ 𝛼𝜎̄ 𝑓

𝑣𝑀 .
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4.11.3 Verification

The multilinear elastic-plastic model with failure has been tested with a number of verification
tests. Specifically, uniaxial stress and uniaxial strain loadings are considered. For the
elastic-plastic response, the same material properties as those in Section 4.10.3 are again
considered. To this end, the Young’s modulus and Poisson ratio are 𝐸 = 70 GPa and 𝜈 = 0.25,
respectively, and a Voce hardening model of the form,

𝜎̄ (𝜀𝑝) = 𝜎𝑦 + 𝐴 (1 − exp (−𝑛𝜀𝑝)) ,

is discretized and used. In this case, 𝜎𝑦 = 200 MPa, 𝐴 = 200 MPa, and 𝑛 = 20.

In terms of failure, the critical tearing parameter, 𝑡crit𝑝 is taken to be .04, the critical crack opening
strain, 𝜀ccos, is .005 and 𝑚 = 4.0.

4.11.3.1 Uniaxial Stress

To consider the uniaxial response, displacement controlled deformations are applied such that the
only non-zero stress is the axial component, 𝜎11. Through such a loading path, three distinct
regimes result. The first is the elastic domain with 𝑡𝑝 = 0. Second is the plastic domain. During
this stage,

𝜎11 = 𝜎̄ (𝜀𝑝) ,

and by considering the rate of plastic work and integrating yields the implicit (in terms of
equivalent plastic strain) relation,

𝜀𝑝 =

(
𝜀11 −

𝜎̄ (𝜀𝑝)
𝐸

)
.

By rearranging, the axial strain may be found in terms of the plastic strain as,

𝜀11 = 𝜀𝑝 + 𝜎̄ (𝜀
𝑝)

𝐸
.

With this stress state (𝜎𝑖 𝑗 = 𝜎11𝛿𝑖1𝛿 𝑗1), the pressure is simply 𝜎11/3 and the maximum principal
stress is 𝜎max = 𝜎11. From (4.35), the tearing parameter is then

𝑡𝑝 = 𝜀
𝑝 .

The final stage of deformation corresponds to the failure process in which the axial stress is,

𝜎11 = 𝛼𝜎peak,

and

𝛼 =
𝜀ccos −

(
𝜀11 − 𝜀peak

)
𝜀ccos

.
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In the preceding relations, 𝜎peak and 𝜀peak are the axial stress and strain, respectively, at failure
initiation. The former is simply 𝜎peak = 𝜎̄

(
𝑡crit𝑝

)
and 𝜀peak = 𝑡crit𝑝 + 𝜎peak/𝐸 .

The tearing parameter and axial stress evolution as a function of axial strain are presented in Fig.
4.31(a) and Fig. 4.31(b), respectively. Good agreement is observed between the results verifying
the model capability under such a loading. Three different numerical load incrementations were
considered in this analysis and some dependence on load step is noted in the post-failure response
of Fig. 4.31(b). Even with this observation, the resulting agreement between the different
responses is still quite good.

Fig. 4.31 Analytical and numerical results of the tearing parameter and axial stress evolution through
a uniaxial tension loading path as a function of the axial strain, 𝜀11.

4.11.3.2 Pure Shear

The analysis of the pure shear loading path follows closely with that of the ductile fracture model
(Section 4.9.3.2). In this case, pure shear deformations are applied such that the only non-zero
stress and strain are 𝜎12 and 𝜀12, respectively. Therefore, during plastic loading

𝜎12 =
𝜎̄
√

3
,

and by comparing the plastic rate of work,

𝜀12 =

√
3

2
𝜀𝑝 + 𝜎̄ (𝜀

𝑝)
√

3𝜇
.

Additionally, as the stress state is purely in shear there is no hydrostatic stress and the maximum
principal stress is simply 𝜎max = 𝜎12 leading to an expression for the tearing parameter of the
form,

𝑡𝑝 =

(
2
3

)4
𝜀𝑝 .
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The stress then simply decays after the critical tearing parameter is reached. Numerical (from
Adagio) and analytical results are presented in Fig. 4.32. Specifically, the tearing parameter and
shear stress evolutions are presented in Fig. 4.32(a) and Fig. 4.32(b), respectively. Clear
agreement is noted indicating the ability of the model to capture the response over a variety of
loading paths.

Fig. 4.32 Analytical and numerical results of the tearing parameter and shear stress evolution
through a pure shear loading path as a function of the shear strain, 𝜀12.

4.11.4 User Guide

BEGIN PARAMETERS FOR MODEL ML_EP_FAIL
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>
#
# Hardening behavior
#
YIELD STRESS = <real>
BETA = <real> (1.0)
HARDENING FUNCTION = <string> hardening_function_name
#
# Functions
#
YOUNGS MODULUS FUNCTION = <string> ym_function_name

(continues on next page)
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(continued from previous page)
POISSONS RATIO FUNCTION = <string> pr_function_name
YIELD STRESS FUNCTION = <string> yield_stress_function_name
#
# Failure parameters
#
CRITICAL TEARING PARAMETER = <real>
CRITICAL CRACK OPENING STRAIN = <real>
CRITICAL BIAXIALITY RATIO = <real> critical_ratio(0.0)
FAILURE EXPONENT = <real> (4.0)

END [PARAMETERS FOR MODEL ML_EP_FAIL]

In the above command blocks:

• The beta parameter defines if hardening is isotropic or kinematic.

• YIELD STRESS defines the stress for onset of yielding and plasticity.

• The HARDENING FUNCTION command line references the name of a function defined in
a FUNCTION command line in the SIERRA scope. The function describes the hardening
behavior of the material as stress versus equivalent plastic strain. The x values of the
function should be values of equivalent plastic strain while the y values of the function can
be either the increment of stress over the yield stress or the actual stress at the
corresponding equivalent plastic strain. Note the hardening function can have its first point
defined at (0,0), or at (0, YIELD_STRESS). Either function definition behaves the same as
only the slope of the hardening function between two strains is used by the model.

• The YOUNGS MODULUS FUNCTION command line references the name of a function
defined in a FUNCTION command line in the SIERRA scope that describes a scale factor
on Young’s modulus as a function of temperature.

• The POISSONS RATIO FUNCTION command line references the name of a function
defined in a FUNCTION command line in the SIERRA scope that describes a scale factor
on Poisson’s ratio as a function of temperature.

• The YIELD STRESS FUNCTION command line references the name of a function
defined in a FUNCTION command line in the SIERRA scope that describes a scale factor
on the yield stress as a function of temperature.

• CRITICAL TEARING PARAMETER defines the 𝑡𝑝 value at which fracture and
subsequent decay of stress will occur.

• When the model undergoes additionally strain after reaching the critical tearing parameter
the stress in the model will decay to zero. The amount strain over which the stress decays to
zero is defined with the CRITICAL CRACK OPENING STRAIN command line. The
relevant opening strain is the component of strain that is aligned with the
maximum-principal-stress direction at initial failure.

• The CRITICAL BIAXIALITY RATIO command line should only be used under highly
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specific conditions and with extreme caution. It is intended only for the special case where
the stress state is nearly biaxial, resulting in nearly identical principal strains. In this case,
the eigenvector computation can give unreliable results for the direction vectors for the
principal strains. If the ratio of the difference between two principal strains divided by their
magnitude is less that the value specified by the CRITICAL BIAXIALITY RATIO
command, the direction of the vector defining the crack opening strain will be given equal
weight in each of the principal directions associated with those strains. The default value for
the critical ratio is 0.0, which means that the principal directions will be accepted directly
from the eigenvector computation. This command should only be used as a last resort if the
loading is nearly biaxial and the default value has been demonstrated to lead to elements
with high strains that are not failing long after reaching the critical tearing parameter.

• The FAILURE EXPONENT command line specifies the exponent on the tearing parameter,
the m parameter in (4.35). This exponent defaults to 4.0.

Output variables available for this model are listed in Table 4.12 and Table 4.13.

Table 4.12 State Variables for ML EP FAIL Model
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Name Description
EQPS Equivalent plastic strain
RADIUS Radius of yield surface
BACK_STRESS back stress - tensor
BACK_STRESS_XX back stress - xx component
BACK_STRESS_YY back stress - yy component
BACK_STRESS_ZZ back stress - zz component
BACK_STRESS_XY back stress - xy component
BACK_STRESS_YZ back stress - yz component
BACK_STRESS_ZX back stress - zx component
YOUNGS_MODULUS Current Young’s modulus as a function of temperature
POISSONS_RATIO Current Poisson’s ratio as a function of temperature
YIELD_STRESS Current Yield stress as a function of temperature
TENSILE_EQPS equivalent plastic strain only accumulated when the material is in

tension (trace of stress tensor is positive)
ITERATIONS radial return iterations
YIELD_FLAG inside(0) or on(1) yield surface
TEARING_PARAMETER Current integrated value of the tearing parameter. Zero until yield

is reached
CRACK_OPENING_STRAINCurrent value of the crack opening strain. Zero until the critical

tearing parameter is reached
FAILURE_DIRECTION crack opening direction at failure - vector
FAIL-
URE_DIRECTION_X

crack opening direction at failure - x component

FAIL-
URE_DIRECTION_Y

crack opening direction at failure - y component

FAIL-
URE_DIRECTION_Z

crack opening direction at failure - z component

MAX_RADIUS maximum radius at initial failure
MAX_PRESSURE maximum stress pressure norm at initial failure
CRITI-
CAL_CRACK_OPENING_STRAIN
CRITI-
CAL_TEARING_PARAMETER

Table 4.13 State Variables for ML EP FAIL Model for Shells
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Name Description
EQPS equivalent plastic strain
RADIUS radius of yield surface
BACK_STRESS back stress - tensor
BACK_STRESS_XX back stress - xx component
BACK_STRESS_YY back stress - yy component
BACK_STRESS_ZZ back stress - zz component
BACK_STRESS_XY back stress - xy component
BACK_STRESS_YZ back stress - yz component
BACK_STRESS_ZX back stress - zx component
YOUNGS_MODULUS Current Young’s modulus as a function of temperature
POIS-
SONS_RATIO

Current Poisson’s ratio as a function of temperature

YIELD_STRESS Current Yield stress as a function of temperature
ITER radial return iterations
ERROR Error in plane stress iterations
PS_ITER Plane stress iterations
TEAR-
ING_PARAMETER

Current integrated value of the tearing parameter. Zero until yield is
reached

CRACK_OPENING_STRAINCurrent value of the crack opening strain. Zero until the critical tearing
parameter is reached

FAIL-
URE_DIRECTION

crack opening direction at failure - vector

FAIL-
URE_DIRECTION_X

crack opening direction at failure - x component

FAIL-
URE_DIRECTION_Y

crack opening direction at failure - y component

FAIL-
URE_DIRECTION_Z

crack opening direction at failure - z component

RADIUS_MAX maximum radius at initial failure
TENSILE_EQPS equivalent plastic strain only accumulated when the material is in tension

(trace of stress tensor is positive)

4.12 Johnson-Cook Model

4.12.1 Theory

The Johnson-Cook model [48], [49] is an isotropic, hypoelastic plasticity model. Unlike the
previously discussed models, the Johnson-Cook formulation is rate-dependent and as such is often
considered for high-rate, finite strain simulations like those for impact. The viscoplastic response
is phenomenological in that the form of the model is not derived from any physical mechanisms
like other viscoplastic models, e.g. Zerilli-Armstrong [112], Steinberg-Guinan-Lund [94], [95],
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BCJ [16], and the MTS model [30], [31] to name a few. Like most other rate-dependent models,
the current formulation utilizes an effective plastic strain rate, ¤̄𝜀𝑝, to capture rate dependence.

As with other hypoelastic plasticity models, an additive decomposition of of the total rate of
deformation such that,

𝐷𝑖 𝑗 = 𝐷
e
𝑖 𝑗 + 𝐷

p
𝑖 𝑗 ,

is used such that an objective stress rate of the form,

◦
𝜎𝑖 𝑗= C𝑖 𝑗 𝑘𝑙𝐷

e
𝑘𝑙 ,

with C𝑖 𝑗 𝑘𝑙 being the fourth-order, isotropic elasticity tensor, may be used.

With respect to the yield behavior, the Johnson-Cook model incorporates both strain rate and
temperature, 𝜃, dependence. This leads to a yield function of the form,

𝑓
(
𝜎𝑖 𝑗 , 𝜀

𝑝, ¤̄𝜀𝑝, 𝜃
)
= 𝜙

(
𝜎𝑖 𝑗

)
− 𝜎̄

(
𝜀𝑝, ¤̄𝜀𝑝, 𝜃

)
,

in which 𝜙
(
𝜎𝑖 𝑗

)
is the effective stress – the von Mises effective stress is used – and 𝜎̄ is the

isotropic hardening function. Incorporating the temperature and rate dependency, the hardening
function is written as,

𝜎̄
(
𝜀𝑝, ¤̄𝜀𝑝, 𝜃

)
=

[
𝐴 + 𝐵 (𝜀𝑝)𝑁

] [
1 + 𝐶

〈
ln ¤̄𝜀𝑝∗

〉] [
1 − 𝜃∗𝑀

]
(4.36)

where 𝜀𝑝 is the equivalent plastic strain, ¤̄𝜀𝑝∗ = ¤̄𝜀𝑝/ ¤̄𝜀0 is a dimensionless plastic strain rate, and 𝜃∗
is the homologous temperature. The quantities 𝐴, 𝐵, 𝐶, ¤̄𝜀0, 𝑁 , and 𝑀 are material parameters.
The Macaulay brackets in (4.36) ensure that 𝜎̄ is equal to the static flow stress
𝜎̄s =

[
𝐴 + 𝐵 (𝜀𝑝)𝑁

] [
1 − 𝜃∗𝑀

]
when ¤̄𝜀𝑝 < ¤̄𝜀0. The homologous temperature is defined as,

𝜃∗ =
𝜃 − 𝜃ref

𝜃melt − 𝜃ref
, (4.37)

with 𝜃, 𝜃ref, and 𝜃melt being the current, reference, and melt temperatures. Note, the temperature
used internal to the Johnson-Cook model is NOT the standard prescribed “temperature” field.
Instead, the material temperature is initialized by a model input as 𝜃0. By assuming adiabatic
thermal conditions, subsequent plastic work raises the material temperature via,

Δ𝜃 =
𝛽

𝜌𝐶𝑣
𝜎̄ ¤̄𝜀𝑝,

where 𝜌 is the materials density, 𝐶𝑣 is the specific heat, and 𝛽 (0 ≤ 𝛽 ≤ 1) is the fraction of plastic
work that is converted to heat.

The Johnson-Cook model also has a failure criterion. The Johnson-Cook damage model [49] has
a failure strain that is given by:

𝜀 𝑓 = (𝐷1 + 𝐷2 exp (𝐷3𝜂))
(
1 + 𝐷4 ln ¤̄𝜀𝑝∗

)
(1 + 𝐷5𝜃

∗)
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with 𝐷1, 𝐷2, 𝐷3, 𝐷4, and 𝐷5 being material parameters and 𝜂 is the triaxiality
(𝜂 = (1/3) 𝜎𝑘𝑘/𝜎̄𝑣𝑀). The damage in the model is accumulated over time using:

𝐷 =
∫ 𝑡

0

¤̄𝜀𝑝
𝜀 𝑓
𝑑𝑡. (4.38)

When 𝐷 = 1, the material has failed. For the default behavior of the Johnson-Cook model, the
fracture behavior is not active.

4.12.2 Implementation

The implementation of the Johnson-Cook model requires the effective strain rate to be used for
calculating the rate effects on yield. This is done through a predictor-corrector return mapping
algorithm. In what follows the temperature dependence is not included; this will be addressed
later.

The initial response is assumed to be elastic and a trial stress state is calculated

𝑇 tr
𝑖 𝑗 = 𝑇

𝑛
𝑖 𝑗 + C𝑖 𝑗 𝑘𝑙 Δ 𝑡𝑑𝑘𝑙

Since the plastic response is independent of pressure we can use the deviatoric stress

𝑠𝑖 𝑗 = 𝑇𝑖 𝑗 −
1
3
𝛿𝑖 𝑗𝑇𝑘𝑘

𝑠tr𝑖 𝑗 = 𝑠
𝑛
𝑖 𝑗 + 2𝜇Δ 𝑡𝑑′𝑖 𝑗 ,

with 𝑑′𝑖 𝑗 being the total deviatoric rate of deformation – 𝑑′𝑖 𝑗 = 𝑑𝑖 𝑗 − (1/3) 𝛿𝑖 𝑗𝑑𝑘𝑘 .

If this gives a von Mises stress that is greater then the effective stress, i.e.

𝜙tr =

√
3
2
𝑠tr𝑖 𝑗 𝑠

tr
𝑖 𝑗 > 𝐴 + 𝐵

(
𝜀𝑝(𝑛)

)𝑁
,

then plastic deformation occurs and we solve the following nonlinear equation for ¤̄𝜀𝑝,[
𝐴 + 𝐵

(
𝜀𝑝(𝑛) + Δ𝑡 ¤̄𝜀𝑝

)𝑁 ] [
1 + 𝐶 ln

(
max

(
1, ¤̄𝜀𝑝/ ¤̄𝜀0

) ) ]
= 𝜙tr − 3𝜇Δ𝑡 ¤̄𝜀𝑝 . (4.39)

This simple equation comes from the radial return algorithm

𝑠𝑛+1𝑖 𝑗 = 𝑠tr𝑖 𝑗 − 3𝜇Δ𝑡 ¤̄𝜀𝑝
𝑠tr𝑖 𝑗

𝜙tr
→ 𝑠𝑛+1𝑖 𝑗 =

(
𝜙tr − 3𝜇Δ𝑡 ¤̄𝜀𝑝

) 𝑠tr𝑖 𝑗
𝜙tr

Taking the inner product of both sides gives (4.39).
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4.12.3 Verification

The Johnson-Cook model is verified through a series of uniaxial stress and pure shear tests. Given
the emphasis on the strain-rate and temperature dependent nature of the model a series of these
tests are performed at different loading conditions. The material properties and model parameters
used for these tests are given in Table 4.14 and come from the work of Corona and Orient [26].
Note, in this case a modified reference plastic strain rate is used ( ¤̄𝜀0 = 1 × 10−4s−1) as the one
reported in [26] was selected based on calibration conditions. Here the value is selected to better
investigate and highlight strain rate dependency.

Table 4.14 The material properties and model parameters of the Johnson-Cook model used for
verification testing

𝐸 71.7 GPa 𝜈 0.33
𝐴 217 MPa 𝐵 405 MPa
𝐶 0.0075 ¤̄𝜀0 1 ×10−4 s−1

𝜃ref 293 K 𝜃melt 750 K
𝑁 0.41 𝑀 1.1
𝜌 2810 kg/m 3 𝐶𝑣 960 J/(kg-K)
𝐷1 0.015 𝐷2 0.24
𝐷3 -1.5 𝐷4 -0.039
𝐷5 8.0

4.12.3.1 Uniaxial Stress

To determine a (semi)-analytical expression of the Johnson-Cook model, the equivalency of
plastic work for uniaxial loading is recalled such that,

𝜎̄ ¤̄𝜀𝑝 = 𝜎 ( ¤𝜀 − ¤𝜀e) , (4.40)

with 𝜎, ¤𝜀, and ¤𝜀e being the uniaxial stress, total strain rate, and elastic strain rate, respectively.
Assuming ¤̄𝜀𝑝 ≥ ¤̄𝜀0, and noting that ¤𝜀𝑝 = ¤𝜀 − ¤𝜀e, the expression for the flow stress (4.36), the
definition of the homologous temperature (4.37), and the dimensionless strain rate, the plastic
work expression (4.40) may be rearranged as

¤̄𝜀𝑝 = ¤̄𝜀0 exp

[
𝜎

𝐶
[
𝐴 + 𝐵 (𝜀𝑝)𝑁

] [
1 − 𝜃∗𝑀

] − 1
𝐶

]
. (4.41)

Given the implicit nature (in terms of effective plastic strain) of (4.41), a semi-analytical approach
is used to evaluate the Johnson-Cook model. Specifically, a simple forward Euler integration
scheme is adopted to solve (4.41) and then update the remaining state variables. Using such an
approach, Fig. 4.33 presents the stress-strain and corresponding damage evolution of the
Johnson-Cook determined at three strain rates. A constant total logarithmic strain rate is applied
by utilizing an applied displacement of the form,

𝑢𝑖 (𝑡) =
(
e𝜔𝑡 − 1

)
𝛿𝑖1,
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where 𝜔 is the considered strain rate. Here rates corresponding to a slow quasistatic
(𝜔 = 1 × 10−3s−1), medium (𝜔 = 1s−1), and high rate (𝜔 = 1 × 103s−1) loading are considered to
explore a variety of regimes. Temperature effects are not addressed in Fig. 4.33 (𝛽 = 0) to first
investigate the purely mechanical response. The damage evolution is evaluated by simply
integrating expression (4.38) and noting that for a uniaxial loading 𝜂 = 1/3. In this case, as the
constitutive behavior is being probed the material does not degrade when 𝐷 ≥ 1.

(a) Stress-strain (b) Damage

Fig. 4.33 Semi-analytical and numerical (a) stress-strain and (b) damage evolutions of the Johnson-
Cook model subjected to a uniaxial loading at three different applied strain rates. In these results,
𝛽 = 0.

From the results of Fig. 4.33 clear agreement is observed between the numerical and
semi-analytical response verifying the model behavior in a variety of conditions. Next, to explore
the thermomechanical coupling, three different plastic work conversion ratios (𝛽 = 0.00, 0.50 and
1.0) are considered for the medium strain rate (𝜔 = 1s−1). The stress, damage, and temperature
evolutions are all presented in Fig. 4.34 as a function of axial strains.

From Fig. 4.34 the influence of the thermomechanical coupling may be clearly observed. For
instance, a roughly 50 K increase in material temperature over the loading range may be seen in
the 𝛽 = 1 case leading to a roughly 25% decrease in the damage metric and approximately 10%
drop in final stress. Additionally, clear agreement between the semi-analytical and numerical
responses providing additional verification of the coupled capabilities of the model.

4.12.3.2 Pure Shear

For the pure shear case, a loading like that described in Appendix A is utilized. Specifically,
displacements producing a deformation gradient of,

𝐹𝑖 𝑗 =
1
2

(
𝜆 + 𝜆−1

) (
𝛿𝑖1𝛿 𝑗1 + 𝛿𝑖2𝛿 𝑗2

)
+ 1

2

(
𝜆 − 𝜆−1

) (
𝛿𝑖1𝛿 𝑗2 + 𝛿𝑖2𝛿 𝑗1

)
+ 𝛿𝑖3𝛿 𝑗3,

are considered with 𝜆 = 𝜆 (𝑡) = e𝜔𝑡 . This loading leads to a logarithmic shear strain rate of
¤𝜀12 = 𝜔 that is constant in time enabling the study of strain rate effects.
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(a) Stress-strain (b) Damage

(c) Temperature

Fig. 4.34 Semi-analytical and numerical (a) stress-strain (b) damage and (c) temperature evolutions
of the Johnson-Cook model subjected to a uniaxial loading with three different plastic work con-
version ratios, 𝛽. The strain rate for all three cases is ¤𝜀 = 1s−1.
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In the shear stress case, the plastic work equivalency is written as,

𝜎̄ ¤̄𝜀𝑝 = 2𝜎12 ¤𝜀𝑝12.

Like the uniaxial stress case, the definition of the effective stress may be used with the fact that
¤𝜀𝑝12 =

√
3

2
¤̄𝜀𝑝 to find the following form of the effective plastic strain rate when ¤̄𝜀p > ¤̄𝜀0,

¤̄𝜀𝑝 = ¤̄𝜀0 exp

[ √
3𝜎12

𝐶
[
𝐴 + 𝐵 (𝜀𝑝)𝑁

] [
1 − 𝜃∗𝑀

] − 1
𝐶

]
.

A simple forward Euler scheme is then used to integrate the model at three different strain rates –
𝜔 = .001s−1, 1s−1 and 1000s−1. The stress-strain and damage evolution responses of these cases
are presented in Fig. 4.35 for the purely mechanical case (𝛽 = 0). With respect to the damage
evolution, it is noted that for pure shear responses 𝜂 = 0.

(a) Stress-strain (b) Damage

Fig. 4.35 Semi-analytical and numerical (a) stress-strain and (b) damage evolutions of the Johnson-
Cookmodel subjected to a pure shear loading at three different applied strain rates. In these results,
𝛽 = 0.

The effect of plastic work is considered for 𝜔 = 1s−1 in Fig. 4.36. Similar influences like those
reported in the uniaxial stress case are observed. A larger increase in temperature through plastic
loading is noted however. Regardless in both the results of Figures Fig. 4.35 and Fig. 4.36 clear
agreement between numerical and semi-analytical is observed further verifying the current
implementation of the Johnson-Cook model.

116



(a) Stress-strain (b) Damage

(c) Temperature

Fig. 4.36 Semi-analytical and numerical (a) stress-strain (b) damage and (c) temperature evolutions
of the Johnson-Cook model subjected to a pure shear loading with three different plastic work
conversion ratios, 𝛽. The strain rate for all three cases is ¤𝜀 = 1s−1.
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4.12.4 User Guide

BEGIN PARAMETERS FOR MODEL JOHNSON_COOK
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>
#
# Yield surface parameters
#
YIELD STRESS = <real>
HARDENING CONSTANT = <real>
HARDENING EXPONENT = <real>
RATE CONSTANT = <real>
REFERENCE RATE = <real> (0.001)
EDOT_REF = <real> (0.0)
#
# Failure strain parameters
#
D1 = <real> (0.0)
D2 = <real> (0.0)
D3 = <real> (0.0)
D4 = <real> (0.0)
D5 = <real> (0.0)
#
# Temperature softening commands
#
RHOCV = <real>
BETA = <real>
THERMAL EXPONENT = <real>
REFERENCE TEMPERATURE = <real>
MELT TEMPERATURE = <real>
INITIAL TEMPERATURE = <real>
#
FORMULATION = <int> (0)
#

END [PARAMETERS FOR MODEL JOHNSON_COOK]

In the command blocks that define the Johnson-Cook model:

• The YIELD STRESS defines the stress for onset of yield and the plasticity.

• The HARDENING CONSTANT command line defines 𝐵.
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• The HARDENING EXPONENT command line defines 𝑁

• The RHOCV command line defines 𝜌𝐶𝑣 which is the product of material density and
specific heat.

• The material initial temperature is defined by the INITIAL TEMPERATURE command
line. Note, the Johnson Cook material model temperature is NOT linked to the standard
model “temperature” field that is set from BEGIN PRESCRIBED TEMPERATURE
command blocks.

• The thermal exponent 𝑀 is defined with the THERMAL EXPONENT command line. This
exponent must be greater than zero.

• The reference temperature 𝜃𝑟𝑒 𝑓 is defined with the REFERENCE TEMPERATURE
command line.

• The melt temperature 𝜃𝑚𝑒𝑙𝑡 is defined with the MELT TEMPERATURE command line.

• The reference strain rate, ¤𝜀0, is defined with the REFERENCE RATE command line. The
default is 0.001 𝑠−1.

• The fraction of plastic work that is converted to heat, 𝛽, is defined with the BETA command
line. The default is 0.95.

• The fracture coefficient 𝐷1 is defined with the D1 command line. The default is 0.0.

• The fracture coefficient 𝐷2 is defined with the D2 command line. The default is 0.0.

• The fracture coefficient 𝐷3 is defined with the D3 command line. The default is 0.0.

• The fracture coefficient 𝐷4 is defined with the D4 command line. The default is 0.0.

• The fracture coefficient 𝐷5 is defined with the D5 command line. The default is 0.0.

• The failure model – and corresponding coefficients – are only valid for solid (3D) elements.
Specifying the values for 2D elements (e.g. shell) will result in an error as the damage
model is not implemented. A possible alternative is the 𝐽2 Plasticity Model specified with
Johnson-Cook hardening and failure.

• FORMULATION controls the strain rate source term. A FORMULATION of 0 is the default
which is to use the total strain rate. A FORMULATION of 1 means use the plastic strain
rate. The plastic strain rate is monotonic and changes a much lower frequency than the total
strain rate, thus use of the plastic strain rate may be more stable.
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4.12.4.1 Warnings and Usage Guidelines

Warning: Strongly rate dependent models may fare poorly in implicit quasistatic solution. In
implicit the rate term used to evaluate the current load step is the rate seen by the model in the
previous load step. Potentially this can cause the solution to jump back and forth between a
high right and low rate equilibrium state from step to step.

Output variables available for this model are listed in Table 4.15.

Table 4.15 State Variables for JOHNSON COOK Model
Name Description
RADIUS radius of yield surface
EQPS equivalent plastic strain
THETA temperature
EQDOT effective total strain rate
ITER

EFAIL failure strain, 𝜀 𝑓
DAMAGE damage, 𝐷
YIELD_STRESS yield stress

4.13 J2 Plasticity Model

4.13.1 Theory

The 𝐽2 plasticity model is a generic implementation of a von Mises yield surface with kinematic
and isotropic hardening features. Unlike other models (e.g. Elastic-Plastic, Elastic-Plastic Power
Law) more flexible, general hardening forms are implemented enabling different isotropic
hardening descriptions and some rate and/or temperature dependence.

As is common to other plasticity models in LAMÉ, the 𝐽2 plasticity model uses a hypoelastic
formulation. As such, the total rate of deformation is additively decomposed into an elastic and
plastic part such that

𝐷𝑖 𝑗 = 𝐷
e
𝑖 𝑗 + 𝐷

p
𝑖 𝑗 .

The objective stress rate, depending only on the elastic deformation, may then be written as,

◦
𝜎𝑖 𝑗= C𝑖 𝑗 𝑘𝑙𝐷

e
𝑘𝑙 ,

where C𝑖 𝑗 𝑘𝑙 is the fourth-order elastic, isotropic stiffness tensor.
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The yield surface for the 𝐽2 plasticity model, 𝑓 , may be written,

𝑓
(
𝜎𝑖 𝑗 , 𝛼𝑖 𝑗 , 𝜀

𝑝, ¤̄𝜀𝑝, 𝜃
)
= 𝜙

(
𝜎𝑖 𝑗 , 𝛼𝑖 𝑗

)
− 𝜎̄

(
𝜀𝑝, ¤̄𝜀𝑝, 𝜃

)
, (4.42)

in which 𝛼𝑖 𝑗 , 𝜀𝑝, ¤̄𝜀𝑝, and 𝜃 are the kinematic backstress, equivalent plastic strain, equivalent
plastic strain rate, and absolute temperature, respectively, while 𝜙 and 𝜎̄ are the effective stress
and a generic form of the flow stress. Broadly speaking, the effective stress describes the shape of
the yield surface and kinematic effects while the flow stress gives the size of the current yield
surface. It should also be noted that in writing the yield surface in this way, the dependence on the
state variables is split between the effective stress and flow stress functions.

For 𝐽2 plasticity, the effective stress is given as,

𝜙2 (
𝜎𝑖 𝑗 , 𝛼𝑖 𝑗

)
=

3
2

(
𝑠𝑖 𝑗 − 𝛼𝑖 𝑗

) (
𝑠𝑖 𝑗 − 𝛼𝑖 𝑗

)
,

with 𝑠𝑖 𝑗 being the deviatoric stress defined as 𝑠𝑖 𝑗 = 𝜎𝑖 𝑗 − (1/3)𝜎𝑘𝑘𝛿𝑖 𝑗 . For the flow stress, a
general representation of the form,

𝜎̄
(
𝜀𝑝, ¤̄𝜀𝑝, 𝜃

)
= 𝜎𝑦𝜎̂y

( ¤̄𝜀𝑝 ) 𝜎̆y (𝜃) + 𝐾 (𝜀𝑝) 𝜎̂h
( ¤̄𝜀𝑝 ) 𝜎̆h (𝜃) ,

is allowed. In this fashion, the effects of rate (𝜎̂y,h) and temperature (𝜎̆y,h) dependence on yield
(𝜎𝑦) and isotropic hardening (𝐾 (𝜀𝑝)) are decomposed. Separate temperature and rate
dependencies may be be specified for yield (subscript y) and hardening (h). This assumption is an
extension of the multiplicative decomposition of the Johnson-Cook model [48], [49]. It should be
noted that not all effects need to be included and the default parameterization of the hardening
classes is such that the response is rate and temperature independent. The following section on
plastic hardening will go into more detail on possible choices for functional representations.

An associated flow rule is utilized such that the plastic rate of deformation is normal to the yield
surface and is given by,

𝐷
p
𝑖 𝑗 = ¤𝛾

𝜕𝜙

𝜕𝜎𝑖 𝑗
= ¤𝛾 3

2𝜙
𝑠𝑖 𝑗 ,

where ¤𝛾 is the consistency multiplier enforcing 𝑓 = 0 during plastic deformation. Given the form
of 𝑓 , it can also be shown that ¤𝛾 = ¤̄𝜀𝑝.

Additional discussion on options for failure models and adiabatic heating may be found in [61],
[62] and [60], respectively.

4.13.1.1 Plastic Hardening

Plastic hardening refers to increases in the flow stress, 𝜎̄, with plastic deformation. As such,
hardening is described via a functional relationship between the flow stress and isotropic
hardening variable (effective plastic strain), 𝜎̄ (𝜀𝑝). Over the course of nearly a century of work in
metal plasticity, a variety of relationships have been proposed to describe the interactions
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associated with different physical interpretations, deformation mechanisms, and materials. To
enable the utilization of the same plasticity models for different material systems, a modular
implementation of plastic hardening has been adopted such that the analyst may select different
hardening models from the input deck thereby avoiding any code changes or user subroutines. In
this section, additional details are given for the different models to enable the user to select the
appropriate choice of model. Note, the models being discussed here are only for isotropic
hardening in which the yield surface expands. Kinematic hardening in which the yield surface
translates in stress-space with deformation and distortional hardening where the shape of the yield
surface changes shape with deformation are not treated. For a larger discussion of the
phenomenology and history of different hardening types, the reader is referred to [42], [57],
[64].

Given the ubiquitous nature of these hardening laws in computational plasticity, some (if not
most) of this material may be found elsewhere in this manual. Nonetheless, the discussion is
repeated here for the convenience of the reader.

Linear

Linear hardening is conceptually the simplest model available in LAMÉ. As the name implies, a
linear relationship is assumed between the hardening variable, 𝜀𝑝, and flow stress. The hardening
modulus, 𝐻′, is a constant giving the rate of change of flow stress with plastic flow. The flow
stress expression may therefore be written,

𝜎̄ = 𝜎𝑦 + 𝐻′𝜀𝑝 .

The simplicity of the model is its main feature as the constant slope,

𝑑𝜎̄

𝑑𝜀𝑝
= 𝐻′,

makes the model attractive for analytical models and cheap for computational implementations
(e.g. radial return algorithms require only a single correction step). Unfortunately, the simplicity
of the representation also means that it has limited predictive capabilities and can lead to overly
stiff responses.

Power Law

Another common expression for isotropic hardening is the power-law hardening model. Due to its
prevalence, a dedicated ELASTIC-PLASTIC POWER LAW HARDENING model may be found
in LAMÉ (see Section 4.8.1). This expression is given as,

𝜎̄ = 𝜎𝑦 + 𝐴 < 𝜀𝑝 − 𝜀𝐿 >𝑛,

in which < · > are Macaulay brackets, 𝜀𝐿 is the Luders strain, 𝐴 is a fitting constant, and 𝑛 is an
exponent typically taken such that 0 < 𝑛 ≤ 1. The Luders strain is a positive, constant strain value
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(defaulted to zero) giving an initially perfectly plastic response in the plastic deformation domain
(see Fig. 4.20). The derivative is then simply,

𝑑𝜎̄

𝑑𝜀𝑝
= 𝑛𝐴 < 𝜀𝑝 − 𝜀𝐿 >(𝑛−1) .

Note, one difficulty in such an implementation is that when the effective equivalent plastic strain is
zero, numerical difficulties may arise in evaluating the derivative and necessitate special treatment
of the case.

Voce

The Voce hardening model (sometimes referred to as a saturation model) uses a decaying
exponential function of the equivalent plastic strain such that the hardening eventually saturates to
a specified value (thus the name). Such a relationship has been observed in some structural metals
giving rise to the popularity of the model. The hardening response is given as,

𝜎̄ = 𝜎𝑦 + 𝐴 (1 − exp (−𝑛𝜀𝑝)) ,

in which 𝐴 is a fitting constant and 𝑛 is a fitting exponent controlling how quickly the hardening
saturates. Importantly, the derivative is written as,

𝑑𝜎̄

𝑑𝜀𝑝
= 𝑛𝐴 exp (−𝑛𝜀𝑝) ,

and is well defined everywhere giving the selected form an advantage over the aforementioned
power law model.

Johnson-Cook

The Johnson-Cook hardening model is a variant of the classical Johnson-Cook [48], [49]
expression. In this instance, the temperature-dependence is neglected to focus on the
rate-dependent capabilities while allowing for arbitrary isotropic hardening forms via the use of a
user-defined hardening function. With these assumptions, the flow stress may be written as,

𝜎̄ = 𝜎̃𝑦 (𝜀𝑝)
[
1 + 𝐶

〈
ln

( ¤̄𝜀𝑝
¤𝜀0

)〉]
,

in which 𝜎̃𝑦 (𝜀𝑝) is the user-specified rate-independent hardening function, 𝐶 is a fitting constant
and ¤𝜀0 is a reference strain rate. The Macaulay brackets ensure the material behaves in a rate
independent fashion when ¤̄𝜀𝑝 < ¤𝜀0.
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Power Law Breakdown

Like the Johnson-Cook formulation, the power-law breakdown model is also rate-dependent.
Again, a multiplicative decomposition is assumed between isotropic hardening and the
corresponding rate-dependence dependent. In this case, however, the functional form is derived
from the analysis of Frost and Ashby [33] in which power-law relationships like those of the
Johnson-Cook model cease to appropriately capture the physical response. The form used here is
similar to the expression used by Brown and Bammann [16] and is written as,

𝜎̄ = 𝜎̃𝑦 (𝜀𝑝)
[
1 + asinh

(( ¤̄𝜀𝑝
𝑔

) (1/𝑚))]
,

with 𝜎̃𝑦 (𝜀𝑝) being the user supplied rate independent expression, 𝑔 is a model parameter related
to the activation energy required to transition from climb to glide-controlled deformation, and 𝑚
dictates the strength of the dependence.

4.13.1.2 Flow Stress

Unlike the previously described models, the flow-stress hardening method is less a specific
physical representation and more a generalization of hardening behaviors to allow greater
flexibility in separately describing isotropic hardening, rate-dependence, and temperature
dependence. As such, the generic flow-stress definition of

𝜎̄
(
𝜀𝑝, ¤̄𝜀𝑝, 𝜃

)
= 𝜎̃𝑦 (𝜀𝑝) 𝜎̂

( ¤̄𝜀𝑝 ) 𝜎̆ (𝜃) ,
is used in which 𝜎̂ and 𝜎̆ are rate and temperature multipliers, respectively, that by default are
unity (such that the response is rate and temperature independent). The isotropic hardening
component, 𝜎̃𝑦, is specified as,

𝜎̃𝑦 = 𝜎𝑦 + 𝐾 (𝜀𝑝) ,

with 𝜎𝑦 being the constant yield stress and 𝐾 is the isotropic hardening that is initially zero and a
function of the equivalent plastic strain. A multiplicative decomposition such as this mirrors the
general structure used by Johnson and Cook [48], [49] although greater flexibility is allowed in
terms of the specific form of the rate and temperature multipliers.

Given the aforementioned defaults for rate and temperature dependence, the corresponding
multipliers need not be specified. A representation for the isotropic hardening, however, must be
specified and can be defined via linear, power-law, Voce, or user-defined representations. For the
user-defined case, an isotropic hardening function is required and it must be highlighted that the
interpretation differs from the general user-defined hardening model. In this case, as the specified
function represents the isotropic hardening, it should start from zero – not yield.

Although the flow-stress hardening model defaults to rate and temperature independent, a
multiplier may be defined for either (or both) of the terms. For rate-dependence, either the
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previously discussed Johnson-Cook or power-law breakdown models or a user-defined multiplier
may be used. For the user-defined capability, the multiplier should be input as a strictly positive
function of the equivalent plastic strain rate with a value of one in the rate-independent limit.

In terms of temperature dependence, the multiplier may be specified given a Johnson-Cook
dependency [48], [49],

𝜎̆ (𝜃) = 1 −
(
𝜃 − 𝜃ref

𝜃melt − 𝜃ref

)𝑀
,

with 𝜃ref, 𝜃melt and 𝑀 being the reference temperature, melting temperature, and temperature
exponent. The temperature multiplier may also be specified via a user defined function.

4.13.1.3 Decoupled Flow Stress

Like the flow-stress hardening method, the decoupled flow-stress hardening implementation is a
generalization of the hardening behaviors to allow greater flexibility. In differentiating the two, for
the decoupled model the rate and temperature dependence may be separately specified for the
yield and hardening portions of the flow stress. As such, the generic flow-stress definition of

𝜎̄
(
𝜀𝑝, ¤̄𝜀𝑝, 𝜃

)
= 𝜎𝑦𝜎̂y

( ¤̄𝜀𝑝 ) 𝜎̆y (𝜃) + 𝐾 (𝜀𝑝) 𝜎̂h
( ¤̄𝜀𝑝 ) 𝜎̆h (𝜃) ,

is used in which 𝜎̂ and 𝜎̆ are rate and temperature multipliers, respectively, that by default are
unity (such that the response is rate and temperature independent) with subscripts y and h
denoting functions associated with yield and hardening. The isotropic hardening is described by
𝐾 (𝜀𝑝) and 𝜎𝑦 is the constant initial yield stress. It may also be seen that if the yield and hardening
dependencies are the same (𝜎̂y = 𝜎̂h and 𝜎̆y = 𝜎̆h) the decoupled flow stress model reduces to that
of the flow stress case and mirrors the general structure of the Johnson-Cook model [48], [49].

Given the aforementioned defaults for rate and temperature dependence, the corresponding
multipliers need not be specified. A representation for the isotropic hardening, however, must be
specified and can be defined via linear, power-law, Voce, or user-defined representations. For the
user-defined case, an isotropic hardening function should be used and it must be highlighted that
the interpretation differs from the general user-defined hardening model. In this case, as the
specified function represents the isotropic hardening, it should start from zero – not yield.

Although the decoupled flow-stress hardening model defaults to rate and temperature
independent, a multiplier may be defined for any of the terms. For rate-dependence, either the
previously discussed Johnson-Cook or power-law breakdown models or a user-defined multiplier
may be used. For the user-defined capability, the multiplier should be input as a strictly positive
function of the equivalent plastic strain rate with a value of one in the rate-independent limit.

In terms of temperature dependence, the multiplier may be specified given a Johnson-Cook
dependency [48], [49],

𝜎̆ (𝜃) = 1 −
(
𝜃 − 𝜃ref

𝜃melt − 𝜃ref

)𝑀
,

125



where 𝜃ref, 𝜃melt, and 𝑀 are the reference temperature, melting temperature, and temperature
exponent. A temperature multiplier may also be specified via a user defined function.

4.13.2 Implementation

The 𝐽2 plasticity model is implemented using a radial return predictor-corrector algorithm. First,
an elastic trial stress state is calculated. This is done by assuming that the rate of deformation is
completely elastic,

𝑇 𝑡𝑟𝑖 𝑗 = 𝑇
𝑛
𝑖 𝑗 + Δ𝑡

(
𝜆𝛿𝑖 𝑗𝑑𝑘𝑘 + 2𝜇𝑑𝑖 𝑗

)
.

The trial stress state is decomposed into a pressure and a deviatoric stress

𝑝𝑡𝑟 =
1
3
𝑇 𝑡𝑟𝑘𝑘 ; 𝑠𝑡𝑟𝑖 𝑗 = 𝑇

𝑡𝑟
𝑖 𝑗 − 𝑝𝑡𝑟𝛿𝑖 𝑗 .

A trial yield function value, 𝑓 𝑡𝑟 , is calculated by assuming purely thermoelastic deformations
( ¤̄𝜀𝑝 = 0, 𝜀𝑝𝑡𝑟 = 𝜀

𝑝
𝑛 ) such that,

𝑓 𝑡𝑟
(
𝑠𝑡𝑟𝑖 𝑗 , 𝛼

𝑛
𝑖 𝑗 , 𝜀

𝑝
𝑛 , ¤̄𝜀𝑝𝑡𝑟 = 0, 𝜃𝑛+1

)
= 𝜙𝑡𝑟

(
𝑠𝑡𝑟𝑖 𝑗 , 𝛼

𝑛
𝑖 𝑗

)
− 𝜎̄

(
𝜀
𝑝
𝑛 , ¤̄𝜀𝑝𝑡𝑟 = 0, 𝜃𝑛+1

)
.

If 𝑓 𝑡𝑟 ≤ 0 then the strain rate is elastic and the stress update is finished. If 𝑓 𝑡𝑟 > 0 then plastic
deformation has occurred and a radial return algorithm determines the extent of plastic
deformation.

The normal to the yield surface is assumed to lie in the direction of the trial stress state. This gives
the following expression for 𝑁𝑖 𝑗 ,

𝑁𝑖 𝑗 =

(
𝑠𝑡𝑟𝑖 𝑗 − 𝛼𝑛𝑖 𝑗

)
‖
(
𝑠𝑡𝑟𝑖 𝑗 − 𝛼𝑛𝑖 𝑗

)
‖
.

Using a backward Euler algorithm, the final deviatoric stress state is

𝑠𝑛+1𝑖 𝑗 = 𝑠𝑡𝑟𝑖 𝑗 − Δ 𝑡2𝜇𝑑
p
𝑖 𝑗 ,

where the plastic strain increment is

Δ𝑑p𝑖 𝑗 =

√
3
2
Δ𝜀𝑝𝑁𝑖 𝑗 .

The equation for the change in the equivalent plastic strain over the load step is found as the
solution to

3𝜇Δ𝜀𝑝 + 𝜎̄ (𝜀𝑛 + Δ𝜀𝑝,Δ𝑡, 𝜃𝑛+1) − 𝜙𝑡𝑟 + 𝑓𝑛 = 0,

in which the plastic strain rate is approximated as, ¤̄𝜀𝑝 = Δ𝜀𝑝/Δ𝑡.
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4.13.3 Verification

The 𝐽2 plasticity model is verified through a series of uniaxial stress and pure shear tests
considering a variety of hardening models. Specifically, the boundary value problems of
Appendix A are used. Throughout these tests, the elastic properties are maintained as 𝐸 = 70 GPa
and 𝜈 = 0.25.

Additional verification exercises for the various failure models and adiabatic heating capabilities
may be found in [61], [62] and [60], respectively.

4.13.3.1 Plastic Hardening

For the verification of the 𝐽2 model, a series of tests using different rate independent, rate
dependent, and combinations of these hardening models are investigated for both uniaxial stress
and pure shear. For these cases, by imposing a constant plastic strain rate as described in
Appendix A the model response may be analytically determined as a function of time. For the rate
independent cases, a constant rate of ¤̄𝜀𝑝 = 1 × 10−4s−1 is used to replicate quasi-static
conditions.

The various rate dependent and rate independent hardening coefficients are found in Table 4.16
while the remaining model parameters are unchanged from the previous verification exercises.
For the current verification exercises, the rate independent hardening models (linear, Voce, and
power-law) and rate dependent forms (Johnson-Cook, power-law breakdown) are examined.

Table 4.16 The model parameters for the hardening verification tests used with the 𝐽2 plasticity
model during verification tests. Parameters for the rate independent hardening functions, 𝜎̃𝑦 , are
also given and denoted with a ·̃ while the subscript refers to the functional form.

𝐶 0.1 ¤𝜀0 1 × 10−4 s−1

𝑔 0.21 s−1 𝑚 16.4
𝐻̃Linear 200 MPa
𝐴̃PL 400 MPa 𝑛̃PL 0.25
𝐴̃Voce 200 MPa 𝑛̃Voce 20
𝜎𝑦 200 MPa

Rate-Independent

First, the ability of the built-in rate independent hardening models is assessed in both uniaxial
stress and pure shear. Specifically, the linear, power-law, and Voce hardening models are
considered and the results determined analytically and numerically via Sierra are presented in Fig.
4.37. As expected, excellent agreement is noted between the two sets of results. Importantly, as
the responses of all three rate independent isotropic hardening models are presented in the same
figures, the corresponding behaviors can be seen. Note, the given parameterizations are not
selected for any form of equivalency. Nonetheless, the linear post-yielding behavior of the linear
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model can be seen and compared to the non-linear responses of the Voce and power-law
implementations. The critical difference between the latter two being that the Voce response
saturates at a stress level while the power-law continues to grow.

(a) Uniaxial Stress (b) Pure Shear

Fig. 4.37 Analytical and numerical (Sierra) (a) uniaxial stress-strain and (b) pure shear responses
of the 𝐽2 plasticity model with linear, power-law, and Voce rate independent isotropic hardening.
Solid lines are analytical while open symbols are numerical.

Rate-Dependent

With the performance of the model under rate independent conditions established, next the
capabilities of the rate dependent (Johnson-Cook and power-law breakdown) formulations are
considered. Note, the flow-stress and decoupled flow-stress models that incorporate more flexible
descriptions of isotropic hardening and rate and temperature dependence are left to later sections.
With the current Johnson-Cook and power-law breakdown models, user-defined analytic functions
are used for each of the specified rate independent hardening functions.

The uniaxial stress-strain responses are interrogated for the Johnson-Cook and power-law
breakdown rate dependent hardening models considering linear, power-law, and Voce isotropic
hardening in Fig. 4.38. Five decades of plastic strain rates ¤̄𝜀𝑝 = 1 × 10−3 → 1 × 101s−1 are
considered. In comparing the analytical and numerical results between all of the cases exceptional
agreement is noted between every case.

Similarly, the pure shear responses of the six hardening combinations over the five plastic strain
rates are given in Fig. 4.39 for both analytical and numerical approaches. As with the normal
cases, outstanding agreement is noted between the various results. Thus, between the plethora of
problems presented in Fig. 4.38 and Fig. 4.39 the performance of the rate-dependent models may
be considered verified.
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(a) Linear, Johnson-Cook (b) Linear, Power-Law Breakdown

(c) Power-Law, Johnson-Cook (d) Power-Law, Power-Law Breakdown

(e) Voce, Johnson-Cook (f) Voce, Power-Law Breakdown

Fig. 4.38 Uniaxial stress-strain responses of the 𝐽2 plasticity model with (a,b) linear, (c,d) power-law,
and (e,f) Voce isotropic hardening with the (a,c,e) Johnson-Cook and (b,d,f) Power-law breakdown
rate dependent hardening models. Solid lines are analytical while open symbols are numerical
(Sierra).
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(a) Linear, Johnson-Cook (b) Linear, Power-Law Breakdown

(c) Power-Law, Johnson-Cook (d) Power-Law, Power-Law Breakdown

(e) Voce, Johnson-Cook (f) Voce, Power-Law Breakdown

Fig. 4.39 Pure shear responses of the 𝐽2 plasticity model with (a,b) linear, (c,d) power-law, and (e,f)
Voce isotropic hardening with the (a,c,e) Johnson-Cook and (b,d,f) Power-law breakdown rate de-
pendent hardening models. Solid lines are analytical while open symbols are numerical (Sierra).
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Flow Stress

As a next step in verification, the capabilities of the flow-stress hardening model incorporating
rate- and temperature-dependence is assessed. To this end, Fig. 4.40 presents uniaxial stress-strain
responses considering linear, power-law, and Voce isotropic hardening models with both
Johnson-Cook and power-law breakdown rate dependent multipliers and Johnson-Cook type
temperature dependence. Five decades of strain rates along with temperatures spanning 180 K are
considered in the various figures. In all of the results, agreement is noted between analytical and
numerical results.

To complement the uniaxial results, pure shear results are given in Fig. 4.41. These results
consider the same combinations of linear, power-law, and Voce isotropica hardening multiplier,
Johnson-Cook and power-law breakdown rate multipliers, and Johnson-Cook temperature
dependence. The same ranges of rates and temperatures are considered. As with the uniaxial
cases, good agreement is noted between the analytical and numerical results.

Decoupled Flow Stress

As a further extension, the verification of the decoupled flow-stress model is explored. To this
end, Fig. 4.42 and Fig. 4.43 present uniaxial stress-strain results of various combinations of linear,
power-law, and Voce isotropic hardening functions with rate-independent, Johnson-Cook, and
power-law breakdown rate multipliers applied in different combinations to yield and hardening.
Hardening is taken to be temperature-independent while yield has a Johnson-Cook temperature
multiplier. The considered cases span five decades of applied strain rates and a range of
temperatures. In these cases, the various analytical and numerical results are in agreement.

While the previous results considered temperature-dependence on yield only, the temperature
dependence on hardening is examined in Fig. 4.44 and Fig. 4.45. As with the previous case,
linear, power-law, and Voce isotropic hardening laws are considered in conjunction with different
combinations of Johnson-Cook, power-law breakdown, and rate-independent rate multipliers
spanning large ranges of strain rates and temperatures. Once again, excellent agreement is noted
between analytical and numerical results.

4.13.4 User Guide

BEGIN PARAMETERS FOR MODEL J2_PLASTICITY
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>

(continues on next page)
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(a) Linear, Johnson-Cook (b) Linear, Power-Law Breakdown

(c) Power-Law, Johnson-Cook (d) Power-Law, Power-Law Breakdown

(e) Voce, Johnson-Cook (f) Voce, Power-Law Breakdown

Fig. 4.40 Uniaxial stress-strain responses of the 𝐽2 plasticity model using the flow-stress hardening
model comprised of (a,b) linear, (c,d) power-law, and (e,f) Voce isotropic hardening, (a,c,e) Johnson-
Cook and (b,d,f) power-law breakdown rate multipliers, and (a-f) Johnson-Cook temperature multi-
pliers. Solid lines are analytical while open symbols are numerical (Sierra).
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(a) Linear, Johnson-Cook (b) Linear, Power-Law Breakdown

(c) Power-Law, Johnson-Cook (d) Power-Law, Power-Law Breakdown

(e) Voce, Johnson-Cook (f) Voce, Power-Law Breakdown

Fig. 4.41 Pure shear responses of the 𝐽2 plasticity model using the flow-stress hardening model
comprised of (a,b) linear, (c,d) power-law, and (e,f) Voce isotropic hardening, (a,c,e) Johnson-Cook
and (b,d,f) Power-law breakdown rate multipliers and (a-f) Johnson-Cook temperature multipliers.
Solid lines are analytical while open symbols are numerical (Sierra).
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(a) (L), Yield (JC) Hardening (PLB) (b) (L), Yield (-) Hardening (JC)

(c) (L), Yield (PLB) Hardening (-) (d) (PL), Yield (JC) Hardening (PLB)

(e) (PL), Yield (-) Hardening (JC) (f) (PL), Yield (PLB) Hardening (-)

Fig. 4.42 Uniaxial stress-strain responses of the 𝐽2 plasticity model using the decoupled flow-
stress hardening model comprised of (a-c) linear (“L”) and (d-f) power-law (“PL”), (a-f) temperature
independent hardening, (a-f) Johnson-Cook type temperature multiplier for yield, (a,d) Johnson-
Cook (“JC”) and power-law breakdown (“PLB”) type yield and hardening rate multipliers, respec-
tively, (b,e) rate-independent (-) yield with Johnson-Cook type hardening rate dependence, and (c,f)
power-law breakdown yield rate dependence with rate-independent hardening. Solid lines are an-
alytical while open symbols are numerical (Sierra).
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(a) (V), Yield (JC) Hardening (PLB) (b) (V), Yield (-) Hardening (JC)

(c) (V), Yield (PLB) Hardening (i)

Fig. 4.43 Uniaxial stress-strain responses of the 𝐽2 plasticity model using the decoupled flow-stress
hardening model comprised of (a-c) Voce isotropic hardening (“V”), (a-c) temperature indepen-
dent hardening, (a-c) Johnson-Cook type temperature multiplier for yield, (a) Johnson-Cook (“JC”)
and power-law breakdown (“PLB”) type yield and hardening rate multipliers, respectively, (b) rate-
independent (-) yield with Johnson-Cook type hardening rate dependence, and (c) power-law break-
down yield rate dependence with rate-independent hardening. Solid lines are analytical while open
symbols are numerical (Sierra).
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(a) (L), Yield (JC) Hardening (PLB) (b) (L), Yield (-) Hardening (JC)

(c) (L), Yield (PLB) Hardening (-) (d) (PL), Yield (JC) Hardening (PLB)

(e) (PL), Yield (-) Hardening (JC) (f) (PL), Yield (PLB) Hardening (-)

Fig. 4.44 Uniaxial stress-strain responses of the 𝐽2 plasticity model using the decoupled flow-stress
hardening model comprised of (a-c) linear (“L”) and (d-f) power-law (“PL”) hardening, (a-f) tempera-
ture independent yield, (a-f) Johnson-Cook type temperature multiplier for hardening, (a,d) power-
law breakdown (“PLB”) and Johnson-Cook (“JC”) rate multipliers for yield and hardening, respec-
tively (b,e) rate-independent (-)hardening with Johnson-Cook type yield rate dependence, and (c,f)
power-law breakdown hardening rate dependence with rate-independent yield. Solid lines are an-
alytical while open symbols are numerical (Sierra).

136



(a) (V), Yield (JC) Hardening (PLB) (b) (V), Yield (-) Hardening (JC)

(c) (V), Yield (PLB) Hardening (i)

Fig. 4.45 Uniaxial stress-strain responses of the 𝐽2 plasticity model using the decoupled flow-stress
hardening model comprised of (a-c) Voce (“V”) isotropic hardening, (a-c) temperature indepen-
dent yield, (a-c) Johnson-Cook type temperature multiplier for hardening, (a) power-law breakdown
(“PLB”) and Johnson-Cook (“JC”) rate multipliers for yield and hardening, respectively (b) rate-
independent (-)hardening with Johnson-Cook type yield rate dependence, and (c) power-law break-
down hardening rate dependence with rate-independent yield. Solid lines are analytical while open
symbols are numerical (Sierra).
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(continued from previous page)
LAMBDA = <real>
TWO MU = <real>
#
# Yield surface parameters
#
YIELD STRESS = <real>
BETA = <real> (1.0)

#
#
# Hardening model
#
HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED |
FLOW_STRESS | DECOUPLED_FLOW_STRESS | JOHNSON_COOK |
POWER_LAW_BREAKDOWN
#
# Linear hardening
#
HARDENING MODULUS = <real>
#
# Power-law hardening
#
HARDENING CONSTANT = <real>
HARDENING EXPONENT = <real> (0.5)
LUDERS STRAIN = <real> (0.0)
#
# Voce hardening
#
HARDENING MODULUS = <real>
EXPONENTIAL COEFFICIENT = <real>
#
# Johnson-Cook hardening
#
HARDENING FUNCTION = <string>hardening_function_name
RATE CONSTANT = <real>
REFERENCE RATE = <real>
#
# Power law breakdown hardening
#
HARDENING FUNCTION = <string>hardening_function_name
RATE COEFFICIENT = <real>
RATE EXPONENT = <real>
# User defined hardening
#
HARDENING FUNCTION = <string>hardening_function_name

(continues on next page)
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(continued from previous page)
#

#
#
# Following Commands Pertain to Flow_Stress Hardening Model
#
# - Isotropic Hardening model
#
ISOTROPIC HARDENING MODEL = LINEAR | POWER_LAW | VOCE |

USER_DEFINED
#
# Specifications for Linear, Power-law, and Voce same as above
#
# User defined hardening
#
ISOTROPIC HARDENING FUNCTION = <string>iso_hardening_fun_name
#
# - Rate dependence
#
RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)
#
# Specifications for Johnson-Cook, Power-law-breakdown
# same as before EXCEPT no need to specify a
# hardening function
#
# User defined rate multiplier
#
RATE MULTIPLIER FUNCTION = <string> rate_mult_function_name
#
# - Temperature dependence
#
TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |

TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)
#
# Johnson-Cook temperature dependence
#
MELTING TEMPERATURE = <real>
REFERENCE TEMPERATURE = <real>
TEMPERATURE EXPONENT = <real>
#
# User-defined temperature dependence
TEMPERATURE MULTIPLIER FUNCTION = <string>temp_mult_function_name
#
# Following Commands Pertain to Decoupled_Flow_Stress Hardening Model

(continues on next page)
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(continued from previous page)
#
# - Isotropic Hardening model
#
ISOTROPIC HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED
#
# Specifications for Linear, Power-law, and Voce same as above
#
# User defined hardening
#
ISOTROPIC HARDENING FUNCTION = <string>isotropic_hardening_function_

↩→name
#
# - Rate dependence
#
YIELD RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)
#
# Specifications for Johnson-Cook, Power-law-breakdown same as before
# EXCEPT no need to specify a hardening function
# AND should be preceded by YIELD
#
# As an example for Johnson-Cook yield rate dependence,
#
YIELD RATE CONSTANT = <real>
YIELD REFERENCE RATE = <real>
#
# User defined rate multiplier
#
YIELD RATE MULTIPLIER FUNCTION = <string>yield_rate_mult_function_

↩→name
#
HARDENING_RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)
#
# Syntax same as for yield parameters but with a HARDENING prefix
#
# - Temperature dependence
#
YIELD TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |

TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)
#
# Johnson-Cook temperature dependence
#
YIELD MELTING TEMPERATURE = <real>
YIELD REFERENCE TEMPERATURE = <real>

(continues on next page)
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(continued from previous page)
YIELD TEMPERATURE EXPONENT = <real>
#
# User-defined temperature dependence
YIELD TEMPERATURE MULTIPLIER FUNCTION = <string>yield_temp_mult_fun_

↩→name
#
HARDENING TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |

TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)
#
# Syntax for hardening constants same as for yield but
# with HARDENING prefix

#
#
# Optional Failure Definitions
# Following only need to be defined if intend to use failure model
#
FAILURE MODEL = TEARING_PARAMETER | JOHNSON_COOK_FAILURE | WILKINS

| MODULAR_FAILURE | MODULAR_BCJ_FAILURE

CRITICAL FAILURE PARAMETER = <real>
#
# TEARING_PARAMETER Failure model definitions
#
TEARING PARAMETER EXPONENT = <real>
#
# JOHNSON_COOK_FAILURE Failure model definitions
#
JOHNSON COOK D1 = <real>
JOHNSON COOK D2 = <real>
JOHNSON COOK D3 = <real>
JOHNSON COOK D4 = <real>
JOHNSON COOK D5 = <real>
#
#Following Johnson-Cook parameters can only be defined once. As␣

↩→such, only
# needed if not previously defined via Johnson-Cook multipliers
# w/ flow-stress hardening. Does need to be defined
# w/ Decoupled Flow Stress
#
REFERENCE RATE = <real>
REFERENCE TEMPERATURE = <real>
MELTING TEMPERATURE = <real>
#
# WILKINS Failure model definitions

(continues on next page)
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(continued from previous page)
#
WILKINS ALPHA = <real>
WILKINS BETA = <real>
WILKINS PRESSURE = <real>
#
# MODULAR_FAILURE Failure model definitions
#
PRESSURE MULTIPLIER = PRESSURE_INDEPENDENT | WILKINS

| USER_DEFINED (PRESSURE_INDEPENDENT)
LODE ANGLE MULTIPLIER = LODE_ANGLE_INDEPENDENT |

WILKINS (LODE_ANGLE_INDEPENDENT)
TRIAXIALITY MULTIPLIER = TRIAXIALITY_INDEPENDENT | JOHNSON_COOK

| USER_DEFINED (TRIAXIALITY_
↩→INDEPENDENT)
RATE FAIL MULTIPLIER = RATE_INDEPENDENT | JOHNSON_COOK

| USER_DEFINED (RATE_INDEPENDENT)
TEMPERATURE FAIL MULTIPLIER = TEMPERATURE_INDEPENDENT | JOHNSON_COOK

| USER_DEFINED (TEMPERATURE_
↩→INDEPENDENT)
#
# Individual multiplier definitions
#
PRESSURE MULTIPLIER = WILKINS
WILKINS ALPHA = <real>
WILKINS PRESSURE = <real>
#
PRESSURE MULTIPLIER = USER_DEFINED
PRESSURE MULTIPLIER FUNCTION = <string> pressure_multiplier_fun_name
#
LODE ANGLE MULTIPLIER = WILKINS
WILKINS BETA = <real>
#
TRIAXIALITY MULTIPLIER = JOHNSON_COOK
JOHNSON COOK D1 = <real>
JOHNSON COOK D2 = <real>
JOHNSON COOK D3 = <real>
#
TRIAXIALITY MULTIPLIER = USER_DEFINED
TRIAXIALITY MULTIPLIER FUNCTION = <string> triaxiality_multiplier_

↩→fun_name
#
RATE FAIL MULTIPLIER = JOHNSON_COOK
JOHNSON COOK D4 = <real>
# REFERENCE RATE should only be added if not previously defined
REFERENCE RATE = <real>

(continues on next page)
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(continued from previous page)
#
RATE FAIL MULTIPLIER = USER_DEFINED
RATE FAIL MULTIPLIER FUNCTION = <string> rate_fail_multiplier_fun_

↩→name
#
TEMPERATURE FAIL MULTIPLIER = JOHNSON_COOK
JOHNSON COOK D5 = <real>
# JC Temperatures should only be defined if not previously given
REFERENCE TEMPERATURE = <real>
MELTING TEMPERATURE = <real>
#
TEMPERATURE FAIL MULTIPLIER = USER_DEFINED
TEMPERATURE FAIL MULTIPLIER FUNCTION = <string> temp_multiplier_fun_

↩→name
#
# MODULAR_BCJ_FAILURE Failure model definitions
#
INITIAL DAMAGE = <real>
INITIAL VOID SIZE = <real>
DAMAGE BETA = <real> (0.5)
GROWTH MODEL = COCKS_ASHBY | NO_GROWTH (NO_GROWTH)
NUCLEATION MODEL = HORSTEMEYER_GOKHALE | CHU_NEEDLEMAN_STRAIN

| NO_NUCLEATION (NO_NUCLEATION)
#
GROWTH RATE FAIL MULTIPLIER = JOHNSON_COOK | USER_DEFINED

| RATE_INDEPENDENT
(RATE_INDEPENDENT)

GROWTH TEMPERATURE FAIL MULTIPLIER = JOHNSON_COOK | USER_DEFINED
| TEMPERATURE_INDEPENDENT
(TEMPERATURE_INDEPENDENT)

#
NUCLEATION RATE FAIL MULTIPLIER = JOHNSON_COOK | USER_DEFINED

| RATE_INDEPENDENT
(RATE_INDEPENDENT)

NUCLEATION TEMPERATURE FAIL MULTIPLIER = JOHNSON_COOK | USER_DEFINED
| TEMPERATURE_INDEPENDENT
(TEMPERATURE_INDEPENDENT)

#
# Definitions for individual growth and nucleation models
#
GROWTH MODEL = COCKS_ASHBY
DAMAGE EXPONENT = <real> (0.5)
#
NUCLEATION MODEL = HORSTEMEYER_GOKHALE
NUCLEATION PARAMETER1 = <real> (0.0)

(continues on next page)
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(continued from previous page)
NUCLEATION PARAMETER2 = <real> (0.0)
NUCLEATION PARAMETER3 = <real> (0.0)
#
NUCLEATION MODEL = CHU_NEEDLEMAN_STRAIN
NUCLEATION AMPLITUDE = <real>
MEAN NUCLEATION STRAIN = <real>
NUCLEATION STRAIN STD DEV = <real>
#
# Definitions for rate and temperature fail multiplier
# Note: only showing definitions for growth.
# Nucleation terms are the same just with NUCLEATION instead
# of GROWTH
#
GROWTH RATE FAIL MULTIPLIER = JOHNSON_COOK
GROWTH JOHNSON COOK D4 = <real>
GROWTH REFERENCE RATE = <real>
#
GROWTH RATE FAIL MULTIPLIER = USER_DEFINED
GROWTH RATE FAIL MULTIPLIER FUNCTION = <string> growth_rate_fail_

↩→mult_func
#
GROWTH TEMPERATURE FAIL MULTIPLIER = JOHNSON_COOK
GROWTH JOHNSON COOK D5 = <real>
GROWTH REFERENCE TEMPERATURE = <real>
GROWTH MELTING TEMPERATURE = <real>
#
GROWTH TEMPERATURE FAIL MULTIPLIER = USER_DEFINED
GROWTH TEMPERATURE FAIL MULTIPLIER FUNCTION = <string> temp_fail_

↩→mult_func
#

#
#
# Optional Adiabatic Heating/Thermal Softening Definitions
# Following only need to be defined if intend to use failure model
#
THERMAL SOFTENING MODEL = ADIABATIC | COUPLED
#
SPECIFIC HEAT = <real> # not needed for COUPLED
BETA_TQ = <real>

END [PARAMETERS FOR MODEL J2_PLASTICITY]

In the command blocks that define the 𝐽2 plasticity model:

• The reference nominal yield stress, 𝜎̄, is defined with the YIELD STRESS command line.
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• The beta parameter defines if hardening is isotropic.

• The type of hardening law is defined with the HARDENING MODEL command line, other
hardening commands then define the specific shape of that hardening curve.

• The hardening modulus for a linear hardening model is defined with the HARDENING
MODULUS command line.

• The hardening constant for a power law hardening model is defined with the HARDENING
CONSTANT command line.

• The hardening exponent for a power law hardening model is defined with the HARDENING
EXPONENT command line.

• The Luders strain for a power law hardening model is defined with the LUDERS STRAIN
command line.

• The hardening function for a user defined hardening model is defined with the HARDENING
FUNCTION command line.

• The shape of the spline for the spline based hardening is defined by the CUBIC SPLINE
TYPE, CARDINAL PARAMETER, KNOT EQPS, and KNOT STRESS command lines.

• The isotropic hardening model for the flow stress hardening model is defined with the
ISOTROPIC HARDENING MODEL command line.

• The function name of a user-defined isotropic hardening model is defined via the
ISOTROPIC HARDENING FUNCTION command line.

• The optional rate multiplier for the flow stress hardening model is defined with the RATE
MULTIPLIER command line.

• The optional temperature multiplier for the flow stress hardening model is defined via the
TEMPERATURE MULTIPLIER command line.

• The function name of a user-defined temperature multiplier is defined with the
TEMPERATURE MULTIPLIER FUNCTION command line.

• For a Johnson-Cook temperature multiplier, the melting temperature, 𝜃melt, is defined via
the MELTING TEMPERATURE command line.

• For a Johnson-Cook temperature multiplier, the reference temperature, 𝜃ref, is defined via
the REFERENCE TEMPERATURE command line.

• For a Johnson-Cook temperature multiplier, the temperature exponent, 𝑀 , is defined via the
TEMPERATURE EXPONENT command line.

• The optional rate multiplier for the yield stress for the decoupled flow stress hardening
model is defined with the YIELD RATE MULTIPLIER command line.

• The optional rate multiplier for the hardening for the decoupled flow stress hardening model
is defined with the HARDENING RATE MULTIPLIER command line.
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• The optional temperature multiplier for the yield stress for the decoupled flow stress
hardening model is defined with the YIELD TEMPERATURE MULTIPLIER command
line.

• The optional temperature multiplier for the hardening for the decoupled flow stress
hardening model is defined via the HARDENING TEMPERATURE MULTIPLIER
command line.

Output variables available for this model are listed in Table 4.17.

Table 4.17 State Variables for J2 PLASTICITY Model
Name Description
EQPS equivalent plastic strain, 𝜀𝑝
EQDOT equivalent plastic strain rate, ¤̄𝜀𝑝
SEFF effective stress, 𝜙
TENSILE_EQPS tensile equivalent plastic strain, 𝜀𝑝𝑡
DAMAGE damage, 𝜙
VOID_COUNT void count, 𝜂
VOID_SIZE void size, 𝜐
DAMAGE_DOT damage rate, ¤𝜙
VOID_COUNT_DOT void count rate, ¤𝜂
PLASTIC_WORK_HEAT_RATE plastic work heat rate, ¤𝑄𝑝

4.14 Hosford Plasticity Model

4.14.1 Theory

Like other elastic-plastic models in LAMÉ, the Hosford plasticity model is a rate-independent
hypoelastic formulation. Unlike the Hill and other more complex plasticity models, it is isotropic.
In a similar fashion to those models, the total rate of deformation is additively decomposed into an
elastic and plastic part such that

𝐷𝑖 𝑗 = 𝐷
e
𝑖 𝑗 + 𝐷

p
𝑖 𝑗 .

The objective stress rate, depending only on the elastic deformation, may then be written as,

◦
𝜎𝑖 𝑗= C𝑖 𝑗 𝑘𝑙𝐷

e
𝑘𝑙 .

The Hosford plasticity model utilizes a yield surface first put forth by W. F. Hosford in the 1970’s
[45] that is isotropic but non-quadratic. This specific form was proposed due to experimental
observations of biaxial stretching in which neither the Tresca or 𝐽2 yield surfaces could describe
the results. In contrast to many of the yield surfaces proposed for similar purposes, only two
parameters are utilized. Even with these limited terms, the developed model is quite versatile and
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can be reduced to von Mises or Tresca conditions as well as capturing responses in between. This
yield surface is given as,

𝑓
(
𝜎𝑖 𝑗 , 𝜀

𝑝 ) = 𝜙 (
𝜎𝑖 𝑗

)
− 𝜎̄ (𝜀𝑝) = 0,

in which 𝜙
(
𝜎𝑖 𝑗

)
is the Hosford effective stress and 𝜎̄ (𝜀𝑝) is the current yield stress that may

depend on rate and/or temperature. The Hosford effective stress is a non-quadratic function of the
principal stresses (𝜎𝑖, 𝑖 = 1, 2, 3) and is given as

𝜙
(
𝜎𝑖 𝑗

)
=

[
|𝜎1 − 𝜎2 |𝑎 + |𝜎2 − 𝜎3 |𝑎 + |𝜎1 − 𝜎3 |𝑎

2

]1/𝑎

in which 𝑎 is the yield surface exponent. Interestingly, if 𝑎 = 2 or 4 the yield surface reduces to
that of a 𝐽2 von Mises surface while 𝑎 = 1 or as 𝑎 →∞ produces a Tresca like shape. If the value
of 𝑎 is above 4 the yield surface takes a position between the Tresca and 𝐽2 limits. Typical values
are 𝑎 = 6 or 𝑎 = 8 for bcc and fcc metals, respectively [37]. To highlight this variability the yield
surface is plotted below in Fig. 4.46 for three values of 𝑎 – 𝑎 = 4, 8, and 100.

Fig. 4.46 Example Hosford yield surfaces, 𝑓 (
𝜎𝑖 𝑗 , 𝜀

𝑝 = 0; 𝑎
) , presented in the deviatoric 𝜋-plane. The

presented surfaces correspond to the different yield exponents 𝑎 = 4, 8, and 100.
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For the hardening function, 𝜎̄ (𝜀𝑝), a variety of forms including linear, power law, or a more
general user defined function may be used.

An associated flow rule is utilized such that the plastic rate of deformation is normal to the yield
surface and is given by,

¤𝐷p
𝑖 𝑗 = ¤𝛾

𝜕𝜙

𝜕𝜎𝑖 𝑗
,

where ¤𝛾 is the consistency multiplier enforcing 𝑓 = 0 during plastic deformation. Given the form
of 𝑓 , it can also be shown that ¤𝛾 = ¤̄𝜀𝑝.

For details on the plasticity model, please see [86]. Additional details on failure models and
adiabatic heating capabilities may be found in [61], [62] and [60], respectively.

4.14.1.1 Plastic Hardening

Plastic hardening refers to increases in the flow stress, 𝜎̄, with plastic deformation. As such,
hardening is described via a functional relationship between the flow stress and isotropic
hardening variable (effective plastic strain), 𝜎̄ (𝜀𝑝). Over the course of nearly a century of work in
metal plasticity, a variety of relationships have been proposed to describe the interactions
associated with different physical interpretations, deformation mechanisms, and materials. To
enable the utilization of the same plasticity models for different material systems, a modular
implementation of plastic hardening has been adopted such that the analyst may select different
hardening models from the input deck thereby avoiding any code changes or user subroutines. In
this section, additional details are given for the different models to enable the user to select the
appropriate choice of model. Note, the models being discussed here are only for isotropic
hardening in which the yield surface expands. Kinematic hardening in which the yield surface
translates in stress-space with deformation and distortional hardening where the shape of the yield
surface changes shape with deformation are not treated. For a larger discussion of the
phenomenology and history of different hardening types, the reader is referred to [42], [57],
[64].

Given the ubiquitous nature of these hardening laws in computational plasticity, some (if not
most) of this material may be found elsewhere in this manual. Nonetheless, the discussion is
repeated here for the convenience of the reader.

Linear

Linear hardening is conceptually the simplest model available in LAMÉ. As the name implies, a
linear relationship is assumed between the hardening variable, 𝜀𝑝, and flow stress. The hardening
modulus, 𝐻′, is a constant giving the rate of change of flow stress with plastic flow. The flow
stress expression may therefore be written,

𝜎̄ = 𝜎𝑦 + 𝐻′𝜀𝑝 .
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The simplicity of the model is its main feature as the constant slope,

𝑑𝜎̄

𝑑𝜀𝑝
= 𝐻′,

makes the model attractive for analytical models and cheap for computational implementations
(e.g. radial return algorithms require only a single correction step). Unfortunately, the simplicity
of the representation also means that it has limited predictive capabilities and can lead to overly
stiff responses.

Power Law

Another common expression for isotropic hardening is the power-law hardening model. Due to its
prevalence, a dedicated ELASTIC-PLASTIC POWER LAW HARDENING model may be found
in LAMÉ (see Section 4.8.1). This expression is given as,

𝜎̄ = 𝜎𝑦 + 𝐴 < 𝜀𝑝 − 𝜀𝐿 >𝑛,

in which < · > are Macaulay brackets, 𝜀𝐿 is the Luders strain, 𝐴 is a fitting constant, and 𝑛 is an
exponent typically taken such that 0 < 𝑛 ≤ 1. The Luders strain is a positive, constant strain value
(defaulted to zero) giving an initially perfectly plastic response in the plastic deformation domain
(see Fig. 4.20). The derivative is then simply,

𝑑𝜎̄

𝑑𝜀𝑝
= 𝑛𝐴 < 𝜀𝑝 − 𝜀𝐿 >(𝑛−1) .

Note, one difficulty in such an implementation is that when the effective equivalent plastic strain is
zero, numerical difficulties may arise in evaluating the derivative and necessitate special treatment
of the case.

Voce

The Voce hardening model (sometimes referred to as a saturation model) uses a decaying
exponential function of the equivalent plastic strain such that the hardening eventually saturates to
a specified value (thus the name). Such a relationship has been observed in some structural metals
giving rise to the popularity of the model. The hardening response is given as,

𝜎̄ = 𝜎𝑦 + 𝐴 (1 − exp (−𝑛𝜀𝑝)) ,

in which 𝐴 is a fitting constant and 𝑛 is a fitting exponent controlling how quickly the hardening
saturates. Importantly, the derivative is written as,

𝑑𝜎̄

𝑑𝜀𝑝
= 𝑛𝐴 exp (−𝑛𝜀𝑝) ,

and is well defined everywhere giving the selected form an advantage over the aforementioned
power law model.
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Johnson-Cook

The Johnson-Cook hardening model is a variant of the classical Johnson-Cook [48], [49]
expression. In this instance, the temperature-dependence is neglected to focus on the
rate-dependent capabilities while allowing for arbitrary isotropic hardening forms via the use of a
user-defined hardening function. With these assumptions, the flow stress may be written as,

𝜎̄ = 𝜎̃𝑦 (𝜀𝑝)
[
1 + 𝐶

〈
ln

( ¤̄𝜀𝑝
¤𝜀0

)〉]
,

in which 𝜎̃𝑦 (𝜀𝑝) is the user-specified rate-independent hardening function, 𝐶 is a fitting constant
and ¤𝜀0 is a reference strain rate. The Macaulay brackets ensure the material behaves in a rate
independent fashion when ¤̄𝜀𝑝 < ¤𝜀0.

Power Law Breakdown

Like the Johnson-Cook formulation, the power-law breakdown model is also rate-dependent.
Again, a multiplicative decomposition is assumed between isotropic hardening and the
corresponding rate-dependence dependent. In this case, however, the functional form is derived
from the analysis of Frost and Ashby [33] in which power-law relationships like those of the
Johnson-Cook model cease to appropriately capture the physical response. The form used here is
similar to the expression used by Brown and Bammann [16] and is written as,

𝜎̄ = 𝜎̃𝑦 (𝜀𝑝)
[
1 + asinh

(( ¤̄𝜀𝑝
𝑔

) (1/𝑚))]
,

with 𝜎̃𝑦 (𝜀𝑝) being the user supplied rate independent expression, 𝑔 is a model parameter related
to the activation energy required to transition from climb to glide-controlled deformation, and 𝑚
dictates the strength of the dependence.

4.14.2 Implementation

The Hosford plasticity model is implicitly integrated using a closest point projection (CPP) return
mapping algorithm (RMA). The resulting nonlinear equations are solved via a line search
augmented Newton-Raphson method and the stress update routine is very similar to that of the
Hill plasticity model. The key difference between the two is the isotropy. Specifically, given that
the Hosford yield surface is isotropic and the functional form is given in terms of principal
stresses, the stress update routine is performed in principal stress space and then converted to
global Cartesian values.

For a loading step, a trial stress state, 𝑇 𝑡𝑟𝑖 𝑗 , may be computed by knowing the rate of deformation,
𝑑𝑖 𝑗 , and time step as,

𝑇 𝑡𝑟𝑖 𝑗 = 𝑇
𝑛
𝑖 𝑗 + Δ𝑡C𝑖 𝑗 𝑘𝑙𝑑𝑘𝑙 .
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The principal stresses, 𝑇 𝑡𝑟𝑖 , may then be used to determine the trial yield function value,
𝜙𝑡𝑟 = 𝜙

(
𝑇 𝑡𝑟𝑖 , 𝜀

𝑝(𝑛)
)
. If 𝜙𝑡𝑟 < 0, the elastic trial solution is acceptable. On the other hand, if the

trial solution is inadmissible, the aforementioned CPP-RMA problem is solved in principal stress
space. The crux of this algorithm is the simultaneous solution of two nonlinear equations – (i) the
flow rule and (ii) consistency condition. The former leads to a residual, 𝑅𝑖, of the form (again in
principal stress space),

𝑅𝑖 = Δ𝑑𝑝𝑖 − Δ𝛾
𝜕𝜙

𝜕𝑇𝑖
= 0,

while the latter is enforced by the yield function,

𝑓 = 𝜙 (𝑇𝑖) − 𝜎̄ (𝜀𝑝) = 0,

and its derivative ( ¤𝑓 ) being zero. This system is solved via a Newton-Raphson type approach in
which the state variables (stress, 𝑇𝑖, and consistency multiplier, 𝛾) are iteratively corrected until
the residuals are satisfied. Using (𝑘 + 1) and (𝑘) to denote the next and current iterations, this
updating takes the form,

Δ𝛾 (𝑘+1) = Δ𝛾 (𝑘) + Δ (Δ𝛾) ,
𝑇 (𝑘+1)𝑖 = 𝑇 (𝑘)𝑖 + Δ𝑇𝑖,

in which 𝑇 (0) = 𝑇 𝑡𝑟𝑖 and Δ𝛾 (0) = 0. Consistent linearization of the two equations can be solved to
give correction increments of the form,

Δ (Δ𝛾) =
𝑓 (𝑘) − 𝑅(𝑘)𝑖 L

(𝑘)
𝑖 𝑗

𝜕𝜙 (𝑘 )

𝜕𝑇 𝑗

𝜕𝜙 (𝑘 )

𝜕𝑇𝑖
L (𝑘)𝑖 𝑗

𝜕𝜙 (𝑘 )

𝜕𝑇 𝑗
+ 𝐻 ′ (𝑘)

,

Δ𝑇𝑖 = −L (𝑘)𝑖 𝑗
(
𝑅(𝑘)𝑗 + Δ (Δ𝛾)

𝜕𝜙(𝑘)

𝜕𝑇𝑗

)
,

with L (𝑘)𝑖 𝑗 being the Hessian of the CPP-RMA problem and 𝐻 ′ (𝑘) is the slope of the hardening
curve.

Previous studies have indicated that the Newton-Raphson method alone may be insufficient to
guarantee convergence with arbitrary stress states in the case of non-quadratic yield surfaces [5],
[81], [86]. To address this, a line search method is adopted. In such an approach, the
incrementation rule (4.43) is modified such that,

Δ𝛾 (𝑘+1) = Δ𝛾 (𝑘) + 𝛼Δ (Δ𝛾) ,
𝑇 (𝑘+1)𝑖 = 𝑇 (𝑘)𝑖 + 𝛼Δ𝑇𝑖,

where 𝛼 ∈ (0, 1] is the step magnitude. This parameter enforces that the solution be converging
and is determined via various convergence criteria. The 𝛼 = 1 case corresponds to the
Newton-Raphson method. Utilization of this approach has been shown to greatly increase the
robustness of this algorithm under large trial stresses [86].
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Finally, upon convergence of the algorithm, the Cartesian stress are found from the principal
stresses via,

𝑇𝑛+1𝑖 𝑗 =
3∑
𝑘=1

𝑇𝑛+1𝑘 𝑒𝑘𝑖 𝑒
𝑘
𝑗 ,

in which 𝑒𝑘𝑖 is the eigenvector of the 𝑘 𝑡ℎ principal stress.

Details of this implementation and the line search algorithm may be found in the work of
Scherzinger [86].

4.14.3 Verification

The Hosford plasticity material model is verified through a variety of loading and material
conditions. For these cases, the elastic properties corresponding to 2090-T3 aluminum [9] given
in Section 4.15.3 are utilized. Additional verification exercises for the various failure models and
adiabatic heating capabilities may be found in [61], [62] and [60], respectively.

The elastic properties are 𝐸 = 70 GPa and 𝜈 = 0.25 while a linear hardening law of the form,

𝜎̄ (𝜀𝑝) = 𝜎𝑦 + 𝐾𝜀𝑝,

with 𝜎𝑦 = 200 MPa and 𝐾 = 𝐸/200 is assumed. For these studies, two different yield surface
exponents will be used, 𝑎 = 4, 8. The former corresponds to the 𝐽2 surface while the latter is a
common value for aluminum.

4.14.3.1 Uniaxial Stress

In the case of uniaxial stress (𝜎), it is trivial to note that the corresponding principal stress state is
simply 𝜎1 = 𝜎, 𝜎2 = 𝜎3 = 0. As such, regardless of 𝑎,

𝜙 = |𝜎1 |.

With the aforementioned linear hardening, this case reduces to that discussed in Section 4.7.3.1.
Corresponding analytical and numerical results (both with 𝑎 = 4 and 8) of the axial stress and
lateral strain are presented in Fig. 4.47(a) and Fig. 4.47(b), respectively. In these figures, the
invariance of response on yield surface exponent through this loading is clearly observed.

4.14.3.2 Pure Shear

To explore the impact of the yield exponent 𝑎, the case of pure shear is considered. Specifically,
the only shear component shall be in the Cartesian 𝑒1 − 𝑒2 direction such that 𝜎12 = 𝜏 and 𝜀12 are
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(a) Uniaxial Stress (b) Lateral Strain

Fig. 4.47 Axial stress-strain (a) and lateral strain (b) results of the Hosford plasticity model deter-
mined analytically and numerically for the case of yield surface exponents 𝑎 = 4, 8.

the only non-zero components. Noting that the three principal stresses are 𝜏, 0,−𝜏, the yield
condition simplifies to

𝜙 =
[
1 + 2𝑎−1]1/𝑎

𝜏.

The equivalent plastic strain may then be found as a function of 𝜀12 in the same way as presented
in Section 4.15.3.2. Shear stress-strain results for both 𝑎 = 4, 8 are presented in Fig. 4.48 as
determined both by adagio and analytically. The boundary conditions for this loading are given in
Appendix A. In these results, the effect of the yield surface exponent, 𝑎, may clearly be seen.

4.14.3.3 Plastic Hardening

To verify the capabilities of the hardening models, rate independent and rate dependent alike, the
constant equivalent plastic strain rate, ¤̄𝜀𝑝, uniaxial stress and pure shear verification tests
described in Appendix A are utilized. In these simplified loading cases, the material state may be
found explicitly as a function of time knowing the prescribed equivalent strain rate. For the rate
independent cases, a strain rate of ¤̄𝜀𝑝 = 1 × 10−4s−1 is used for ease in simulations although the
selected rate does not affect the results. Through this testing protocol, the hardening models are
not only tested at different rates but also different yield surface shapes. In the current Hosford
case, multiple yield surface exponents, 𝑎, are considered to probe this effect. Additionally, the rate
dependent models are tested for a wide range of strain rates (over five decades) and with all three
rate independent hardening functions (𝜎̃𝑦 in the previous theory section). Although linear, Voce,
and power-law rate independent representations are utilized in the rate dependent tests, in those
cases the hardening models are prescribed via user-defined analytic functions. The rate
independent verification exercises, on the other hand, examine the built-in hardening models. This
distinction necessitates the different considerations and treatments.

The various rate dependent and rate independent hardening coefficients are found in Table 4.18
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Fig. 4.48 Shear stress-strain results of the Hosford plasticity model determined analytically and
numerically for the case of yield surface exponents 𝑎 = 4, 8.

while the remaining model parameters are unchanged from the previous verification exercises.
For the current verification exercises, the rate independent hardening models (linear, Voce, and
power-law) will first be considered and then the rate dependent forms (Johnson-Cook, power-law
breakdown).

Table 4.18 The model parameters for the hardening verification tests used with the Hosford plas-
ticity model during verification tests. Parameters for the rate independent hardening functions, 𝜎̃𝑦 ,
are also given and denoted with a ·̃ while the subscript refers to the functional form.

𝐶 0.1 ¤𝜀0 1 × 10−4 s−1

𝑔 0.21 s−1 𝑚 16.4
𝐻̃Linear 200 MPa
𝐴̃PL 400 MPa 𝑛̃PL 0.25
𝐴̃Voce 200 MPa 𝑛̃Voce 20
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Linear

The aforementioned verification exercises from Appendix A are used to investigate the numerical
implementation of the rate independent linear hardening model. Results from uniaxial stress and
pure shear exercises determined analytically and numerically are given in Fig. 4.49 for three
different exponents 𝑎 = 4, 8, and 20. The first exponent produces a 𝐽2 like response with the
latter increasing the curvature of the yield surface. As discussed in Section 4.14.3.1, a purely
uniaxial response is independent of exponent thus producing the collapsed results in Fig. 4.49. In
both the uniaxial stress and pure shear cases, clear agreement is noted between the two sets of
results. The linear slope (tangent modulus) giving the model its name is also observable in the
results of Fig. 4.49.

(a) Uniaxial Stress (b) Pure Shear

Fig. 4.49 Uniaxial stress-strain (a) and pure shear (b) responses of the Hosford plasticity model with
rate independent, linear hardening. Solid line are analytical while open symbols are numerical.

Power-Law

To consider the performance of the common power-law hardening model with the Hosford yield
surface, the uniaxial stress and pure shear exercises of Appendix A are solved analytically and
numerically. These results are presented in Fig. 4.50 for three different Hosford exponents –
𝑎 = 4, 8 and 20. As expected from previous discussions the uniaxial stress results in Fig. 4.50(a)
are independent of 𝑎. For both the uniaxial stress and pure shear results, the desired agreement
between analytical and numerical solutions is apparent. These results also highlight the initial
curved response during plastic-deformation eventually transitioning into a more linear type
response.
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(a) Uniaxial Stress (b) Pure Shear

Fig. 4.50 Uniaxial stress-strain (a) and pure shear (b) responses of the Hosford plasticity model with
rate independent, power-law hardening. Solid line are analytical while open symbols are numerical.

Voce

For the rate independent Voce hardening model, the problems of Appendix A are used to verify the
model response. Specifically, results for the uniaxial stress and pure shear analyses are presented
in Fig. 4.51 as determined analytically and numerically for three different values of 𝑎 – 𝑎 = 4, 8,
and 20. From these results, clear agreement is noted between the two sets of results; including the
invariance of the uniaxial stress case to 𝑎 (Fig. 4.51a). Additionally, the results of Fig. 4.51 also
exemplify the saturation nature of the Voce hardening model as the stress-strain response
eventually asymptotes.

(a) Uniaxial Stress (b) Pure Shear

Fig. 4.51 Uniaxial stress-strain (a) and pure shear (b) responses of the Hosford plasticity model with
rate independent, Voce hardening. Solid line are analytical while open symbols are numerical.
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Johnson-Cook

As noted in Section 4.14.3.1, the uniaxial stress response is independent of 𝑎. This is also
reflected Appendix A in which the stress weighting coefficients (Γ) for the Hosford uniaxial case
are one. As such in Fig. 4.52 the results of the constant equivalent plastic strain rate uniaxial stress
test are presented with 𝑎 = 8 and using the linear (Fig. 4.52a), power-law (Fig. 4.52b), and Voce
(Fig. 4.52c) rate independent hardening models for five different rates –
¤̄𝜀𝑝 = 1 × 10−3, 1 × 10−2, 1 × 10−1, 1 × 100 and 1 × 101 s−1. In all cases in Fig. 4.52 excellent
agreement is observed between the results.

(a) Linear Hardening (b) Power-Law Hardening

(c) Voce Hardening

Fig. 4.52 Uniaxial stress-strain response of the Hosford plasticity model (𝑎 = 8) with rate dependent,
Johnson-Cook type hardening with (a) linear (b) power-law and (c) Voce rate independent harden-
ing. Solid lines are analytical results while open symbols are numerical.

Unlike the uniaxial stress case, for pure shear the response depends on the exponent 𝑎. Therefore,
in addition to the three hardening models, results are also presented for three different exponent
values – 𝑎 = 4, 8, and 20. The results for all nine cases are presented in Fig. 4.53 and Fig. 4.54
and again excellent agreement is noted in all instances.
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(a) Linear Hardening a=4 (b) Linear Hardening, a=8

(c) Linear Hardening, a=20 (d) Power-Law Hardening, a=4

(e) Power-Law Hardening, a=8 (f) Power-Law Hardening, a=20

Fig. 4.53 Stress-strain response of the Hosford plasticity model with rate dependent, Johnson-Cook
type hardening in pure shear with (a-c) linear (d-f) and power-law rate independent hardening. Solid
lines are analytical results while open symbols are numerical.
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(a) Power-Law Hardening, a=4 (b) Power-Law Hardening, a=8

(c) Power-Law Hardening, a=20

Fig. 4.54 Stress-strain response of the Hosford plasticity model with rate dependent, Johnson-Cook
type hardening in pure shear with (a-c) Voce rate independent hardening. Solid lines are analytical
results while open symbols are numerical.
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Power-Law Breakdown

As mentioned in the previous Johnson-Cook section, for the Hosford model under uniaxial stress
the response is independent of yield surface exponent, 𝑎. Therefore, Fig. 4.55 presents the results
of the constant equivalent plastic strain rate verification test of Appendix A for strain rates
spanning five decades – ¤̄𝜀𝑝 = 1 × 10−3, 1 × 10−2, 1 × 10−1, 1 × 100 and 1 × 101 s−1. The tests are
performed for each rate- independent hardening model. In all fifteen cases excellent agreement is
noted between numerical and analytical results.

(a) Linear Hardening (b) Power-Law Hardening

(c) Voce Hardening

Fig. 4.55 Uniaxial stress-strain response of the Hosford plasticity model (𝑎 = 8) with rate dependent,
power-law breakdown type hardening with (a) linear (b) power-law and (c) Voce rate independent
hardening. Solid lines are analytical results while open symbols are numerical.

Similarly, Fig. 4.56 and Fig. 4.57 gives the results of the pure shear variant of the constant
equivalent plastic strain rate verification test of Appendix A. The same five rates used in the
uniaxial stress case are again utilized although in this instance as the pure shear response does
depend on 𝑎 the results are given for three yield surface exponents – 𝑎 = 4, 8 and 20. In the
forty-five cases shown in Fig. 4.56 and Fig. 4.57 quite acceptable agreement is noted verifying the
capabilities of the rate dependent Hosford implementation.
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(a) Linear Hardening, a=4 (b) Linear Hardening, a=8

(c) Linear Hardening, a=20 (d) Power-Law Hardening, a=4

(e) Power-Law Hardening, a=8 (f) Power-Law Hardening, a=20

Fig. 4.56 Stress-strain response of the Hosford plasticity model with rate dependent, power-law
breakdown type hardening in pure shear with (a-c) linear and (d-f) power-law rate independent hard-
ening. Solid lines are analytical results while open symbols are numerical.
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(a) Power-Law Hardening, a=4 (b) Power-Law Hardening, a=8

(c) Power-Law Hardening, a=20

Fig. 4.57 Stress-strain response of the Hosford plasticity model with rate dependent, power-law
breakdown type hardening in pure shear with (a-c) Voce rate independent hardening. Solid lines
are analytical results while open symbols are numerical.
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4.14.4 User Guide

BEGIN PARAMETERS FOR MODEL HOSFORD_PLASTICITY
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>
#
# Yield surface parameters
#
YIELD STRESS = <real>
A = <real> (4.0)

#
#
# Hardening model
#
HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED |
FLOW_STRESS | DECOUPLED_FLOW_STRESS | JOHNSON_COOK |
POWER_LAW_BREAKDOWN
#
# Linear hardening
#
HARDENING MODULUS = <real>
#
# Power-law hardening
#
HARDENING CONSTANT = <real>
HARDENING EXPONENT = <real> (0.5)
LUDERS STRAIN = <real> (0.0)
#
# Voce hardening
#
HARDENING MODULUS = <real>
EXPONENTIAL COEFFICIENT = <real>
#
# Johnson-Cook hardening
#
HARDENING FUNCTION = <string>hardening_function_name
RATE CONSTANT = <real>
REFERENCE RATE = <real>

(continues on next page)
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(continued from previous page)
#
# Power law breakdown hardening
#
HARDENING FUNCTION = <string>hardening_function_name
RATE COEFFICIENT = <real>
RATE EXPONENT = <real>
# User defined hardening
#
HARDENING FUNCTION = <string>hardening_function_name
#

#
#
# Following Commands Pertain to Flow_Stress Hardening Model
#
# - Isotropic Hardening model
#
ISOTROPIC HARDENING MODEL = LINEAR | POWER_LAW | VOCE |

USER_DEFINED
#
# Specifications for Linear, Power-law, and Voce same as above
#
# User defined hardening
#
ISOTROPIC HARDENING FUNCTION = <string>iso_hardening_fun_name
#
# - Rate dependence
#
RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)
#
# Specifications for Johnson-Cook, Power-law-breakdown
# same as before EXCEPT no need to specify a
# hardening function
#
# User defined rate multiplier
#
RATE MULTIPLIER FUNCTION = <string> rate_mult_function_name
#
# - Temperature dependence
#
TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |

TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)
#
# Johnson-Cook temperature dependence

(continues on next page)
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(continued from previous page)
#
MELTING TEMPERATURE = <real>
REFERENCE TEMPERATURE = <real>
TEMPERATURE EXPONENT = <real>
#
# User-defined temperature dependence
TEMPERATURE MULTIPLIER FUNCTION = <string>temp_mult_function_name
#
# Following Commands Pertain to Decoupled_Flow_Stress Hardening Model
#
# - Isotropic Hardening model
#
ISOTROPIC HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED
#
# Specifications for Linear, Power-law, and Voce same as above
#
# User defined hardening
#
ISOTROPIC HARDENING FUNCTION = <string>isotropic_hardening_function_

↩→name
#
# - Rate dependence
#
YIELD RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)
#
# Specifications for Johnson-Cook, Power-law-breakdown same as before
# EXCEPT no need to specify a hardening function
# AND should be preceded by YIELD
#
# As an example for Johnson-Cook yield rate dependence,
#
YIELD RATE CONSTANT = <real>
YIELD REFERENCE RATE = <real>
#
# User defined rate multiplier
#
YIELD RATE MULTIPLIER FUNCTION = <string>yield_rate_mult_function_

↩→name
#
HARDENING_RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)
#
# Syntax same as for yield parameters but with a HARDENING prefix
#

(continues on next page)
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(continued from previous page)
# - Temperature dependence
#
YIELD TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |

TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)
#
# Johnson-Cook temperature dependence
#
YIELD MELTING TEMPERATURE = <real>
YIELD REFERENCE TEMPERATURE = <real>
YIELD TEMPERATURE EXPONENT = <real>
#
# User-defined temperature dependence
YIELD TEMPERATURE MULTIPLIER FUNCTION = <string>yield_temp_mult_fun_

↩→name
#
HARDENING TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |

TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)
#
# Syntax for hardening constants same as for yield but
# with HARDENING prefix

#
#
# Optional Failure Definitions
# Following only need to be defined if intend to use failure model
#
FAILURE MODEL = TEARING_PARAMETER | JOHNSON_COOK_FAILURE | WILKINS

| MODULAR_FAILURE | MODULAR_BCJ_FAILURE

CRITICAL FAILURE PARAMETER = <real>
#
# TEARING_PARAMETER Failure model definitions
#
TEARING PARAMETER EXPONENT = <real>
#
# JOHNSON_COOK_FAILURE Failure model definitions
#
JOHNSON COOK D1 = <real>
JOHNSON COOK D2 = <real>
JOHNSON COOK D3 = <real>
JOHNSON COOK D4 = <real>
JOHNSON COOK D5 = <real>
#
#Following Johnson-Cook parameters can only be defined once. As␣

↩→such, only

(continues on next page)
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(continued from previous page)
# needed if not previously defined via Johnson-Cook multipliers
# w/ flow-stress hardening. Does need to be defined
# w/ Decoupled Flow Stress
#
REFERENCE RATE = <real>
REFERENCE TEMPERATURE = <real>
MELTING TEMPERATURE = <real>
#
# WILKINS Failure model definitions
#
WILKINS ALPHA = <real>
WILKINS BETA = <real>
WILKINS PRESSURE = <real>
#
# MODULAR_FAILURE Failure model definitions
#
PRESSURE MULTIPLIER = PRESSURE_INDEPENDENT | WILKINS

| USER_DEFINED (PRESSURE_INDEPENDENT)
LODE ANGLE MULTIPLIER = LODE_ANGLE_INDEPENDENT |

WILKINS (LODE_ANGLE_INDEPENDENT)
TRIAXIALITY MULTIPLIER = TRIAXIALITY_INDEPENDENT | JOHNSON_COOK

| USER_DEFINED (TRIAXIALITY_
↩→INDEPENDENT)
RATE FAIL MULTIPLIER = RATE_INDEPENDENT | JOHNSON_COOK

| USER_DEFINED (RATE_INDEPENDENT)
TEMPERATURE FAIL MULTIPLIER = TEMPERATURE_INDEPENDENT | JOHNSON_COOK

| USER_DEFINED (TEMPERATURE_
↩→INDEPENDENT)
#
# Individual multiplier definitions
#
PRESSURE MULTIPLIER = WILKINS
WILKINS ALPHA = <real>
WILKINS PRESSURE = <real>
#
PRESSURE MULTIPLIER = USER_DEFINED
PRESSURE MULTIPLIER FUNCTION = <string> pressure_multiplier_fun_name
#
LODE ANGLE MULTIPLIER = WILKINS
WILKINS BETA = <real>
#
TRIAXIALITY MULTIPLIER = JOHNSON_COOK
JOHNSON COOK D1 = <real>
JOHNSON COOK D2 = <real>
JOHNSON COOK D3 = <real>

(continues on next page)
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#
TRIAXIALITY MULTIPLIER = USER_DEFINED
TRIAXIALITY MULTIPLIER FUNCTION = <string> triaxiality_multiplier_

↩→fun_name
#
RATE FAIL MULTIPLIER = JOHNSON_COOK
JOHNSON COOK D4 = <real>
# REFERENCE RATE should only be added if not previously defined
REFERENCE RATE = <real>
#
RATE FAIL MULTIPLIER = USER_DEFINED
RATE FAIL MULTIPLIER FUNCTION = <string> rate_fail_multiplier_fun_

↩→name
#
TEMPERATURE FAIL MULTIPLIER = JOHNSON_COOK
JOHNSON COOK D5 = <real>
# JC Temperatures should only be defined if not previously given
REFERENCE TEMPERATURE = <real>
MELTING TEMPERATURE = <real>
#
TEMPERATURE FAIL MULTIPLIER = USER_DEFINED
TEMPERATURE FAIL MULTIPLIER FUNCTION = <string> temp_multiplier_fun_

↩→name
#
# MODULAR_BCJ_FAILURE Failure model definitions
#
INITIAL DAMAGE = <real>
INITIAL VOID SIZE = <real>
DAMAGE BETA = <real> (0.5)
GROWTH MODEL = COCKS_ASHBY | NO_GROWTH (NO_GROWTH)
NUCLEATION MODEL = HORSTEMEYER_GOKHALE | CHU_NEEDLEMAN_STRAIN

| NO_NUCLEATION (NO_NUCLEATION)
#
GROWTH RATE FAIL MULTIPLIER = JOHNSON_COOK | USER_DEFINED

| RATE_INDEPENDENT
(RATE_INDEPENDENT)

GROWTH TEMPERATURE FAIL MULTIPLIER = JOHNSON_COOK | USER_DEFINED
| TEMPERATURE_INDEPENDENT
(TEMPERATURE_INDEPENDENT)

#
NUCLEATION RATE FAIL MULTIPLIER = JOHNSON_COOK | USER_DEFINED

| RATE_INDEPENDENT
(RATE_INDEPENDENT)

NUCLEATION TEMPERATURE FAIL MULTIPLIER = JOHNSON_COOK | USER_DEFINED
| TEMPERATURE_INDEPENDENT

(continues on next page)

168
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(TEMPERATURE_INDEPENDENT)

#
# Definitions for individual growth and nucleation models
#
GROWTH MODEL = COCKS_ASHBY
DAMAGE EXPONENT = <real> (0.5)
#
NUCLEATION MODEL = HORSTEMEYER_GOKHALE
NUCLEATION PARAMETER1 = <real> (0.0)
NUCLEATION PARAMETER2 = <real> (0.0)
NUCLEATION PARAMETER3 = <real> (0.0)
#
NUCLEATION MODEL = CHU_NEEDLEMAN_STRAIN
NUCLEATION AMPLITUDE = <real>
MEAN NUCLEATION STRAIN = <real>
NUCLEATION STRAIN STD DEV = <real>
#
# Definitions for rate and temperature fail multiplier
# Note: only showing definitions for growth.
# Nucleation terms are the same just with NUCLEATION instead
# of GROWTH
#
GROWTH RATE FAIL MULTIPLIER = JOHNSON_COOK
GROWTH JOHNSON COOK D4 = <real>
GROWTH REFERENCE RATE = <real>
#
GROWTH RATE FAIL MULTIPLIER = USER_DEFINED
GROWTH RATE FAIL MULTIPLIER FUNCTION = <string> growth_rate_fail_

↩→mult_func
#
GROWTH TEMPERATURE FAIL MULTIPLIER = JOHNSON_COOK
GROWTH JOHNSON COOK D5 = <real>
GROWTH REFERENCE TEMPERATURE = <real>
GROWTH MELTING TEMPERATURE = <real>
#
GROWTH TEMPERATURE FAIL MULTIPLIER = USER_DEFINED
GROWTH TEMPERATURE FAIL MULTIPLIER FUNCTION = <string> temp_fail_

↩→mult_func
#

#
#
# Optional Adiabatic Heating/Thermal Softening Definitions
# Following only need to be defined if intend to use failure model
#

(continues on next page)
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THERMAL SOFTENING MODEL = ADIABATIC | COUPLED
#
SPECIFIC HEAT = <real> # not needed for COUPLED
BETA_TQ = <real>

END [PARAMETERS FOR MODEL HOSFORD_PLASTICITY]

In the command blocks that define the Hosford plasticity model:

• The reference nominal yield stress, 𝜎̄, is defined with the YIELD STRESS command line.

• The yield surface exponent, 𝑎, is defined with the A command line.

• The type of hardening law is defined with the HARDENING MODEL command line, other
hardening commands then define the specific shape of that hardening curve.

• The hardening modulus for a linear hardening model is defined with the HARDENING
MODULUS command line.

• The hardening constant for a power law hardening model is defined with the HARDENING
CONSTANT command line.

• The hardening exponent for a power law hardening model is defined with the HARDENING
EXPONENT command line.

• The Luders strain for a power law hardening model is defined with the LUDERS STRAIN
command line.

• The hardening function for a user defined hardening model is defined with the HARDENING
FUNCTION command line.

• The shape of the spline for the spline based hardening is defined by the CUBIC SPLINE
TYPE, CARDINAL PARAMETER, KNOT EQPS, and KNOT STRESS command lines.

Output variables available for this model are listed in Table 4.19.

Table 4.19 State Variables for HOSFORD PLASTICITY Model
Name Description
EQPS equivalent plastic strain, 𝜀𝑝
EQDOT equivalent plastic strain rate, ¤̄𝜀𝑝
SEFF effective stress, 𝜙
TENSILE_EQPS tensile equivalent plastic strain, 𝜀𝑝𝑡
DAMAGE damage, 𝜙
VOID_COUNT void count, 𝜂
VOID_SIZE void size, 𝜐
DAMAGE_DOT damage rate, ¤𝜙
VOID_COUNT_DOT void count rate, ¤𝜂
PLASTIC_WORK_HEAT_RATE plastic work heat rate, ¤𝑄𝑝
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4.15 Hill Plasticity Model

4.15.1 Theory

The Hill plasticity model is similar to other plasticity models except that it is not isotropic. It is a
hypoelastic, rate-independent plasticity model. The rate form of the equation assumes an additive
split of the rate of deformation into an elastic and plastic part

𝐷𝑖 𝑗 = 𝐷
e
𝑖 𝑗 + 𝐷

p
𝑖 𝑗

The stress rate only depends on the elastic rate of deformation

◦
𝜎𝑖 𝑗= C𝑖 𝑗 𝑘𝑙𝐷

e
𝑘𝑙

where C𝑖 𝑗 𝑘𝑙 are the components of the fourth-order, isotropic elasticity tensor.

The Hill plasticity model has an orthotropic yield surface that assumes orthogonal principal
material directions. An example of this yield surface is presented below in Fig. 4.58 along with
examples of two isotropic surfaces – the von Mises (𝐽2) and Hosford (with 𝑎 = 8). The various
surface parameters correspond to 2090-T3 aluminum and the specific Hill strengths are found in
[86]. By comparing the Hill surface to the two isotropic surfaces, the impact of the anisotropy is
clear. Additionally, substantial differences to the normals of the yield surfaces at points of
intersection highlight the impact of the yield function selection on the resulting flow directions.

Like other plasticity models, the Hill yield surface, 𝑓 , is written,

𝑓
(
𝜎𝑖 𝑗 , 𝜀

𝑝 ) = 𝜙 (
𝜎𝑖 𝑗

)
− 𝜎̄ (𝜀𝑝) = 0,

with 𝜙 being the effective stress and 𝜎̄ is the current yield stress that may be dependent on rate
and/or temperature. The Hill effective stress is essentially an orthotropic extension of the von
Mises function. After accounting for plastic incompressibility and related constraints, there are
six individual yield stresses: 𝜎𝑦11, 𝜎

𝑦
22, 𝜎

𝑦
33, 𝜏

𝑦
12, 𝜏

𝑦
23, and 𝜏

𝑦
31. These yield stresses correspond to 3

normal and 3 shear yield stresses. Written in terms of the components, the effective stress has the
form,

𝜙2 (
𝜎𝑖 𝑗

)
= 𝐹 (𝜎̂22 − 𝜎̂33)2 + 𝐺 (𝜎̂33 − 𝜎̂11)2 + 𝐻 (𝜎̂11 − 𝜎̂22)2

+ 2𝐿𝜎̂2
23 + 2𝑀𝜎̂2

31 + 2𝑁𝜎̂2
12.

The coefficients 𝐹, 𝐺, 𝐻, 𝐿, 𝑀 , and 𝑁 were introduced by Hill. In terms of the yield stresses they
are:

𝐹 =
(𝜎̄)2

2


1(
𝜎
𝑦
22

)2 +
1(
𝜎
𝑦
33

)2 −
1(
𝜎
𝑦
11

)2

 ; 𝐿 =
(𝜎̄)2

2


1(
𝜏
𝑦
23

)2


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Fig. 4.58 Example anisotropic Hill yield surface, 𝑓𝐻𝑖𝑙𝑙
(
𝜎𝑖 𝑗 , 𝜀

𝑝 = 0
) , presented in the deviatoric 𝜋-plane

fit to 2090-T3 aluminum. Comparison von Mises (𝐽2) and Hosford (with 𝑎 = 8) surfaces are also
presented.
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𝐺 =
(𝜎̄)2

2


1(
𝜎
𝑦
33

)2 +
1(
𝜎
𝑦
11

)2 −
1(
𝜎
𝑦
22

)2

 ; 𝑀 =
(𝜎̄)2

2


1(
𝜏
𝑦
31

)2

 (4.43)

𝐻 =
(𝜎̄)2

2


1(
𝜎
𝑦
11

)2 +
1(
𝜎
𝑦
22

)2 −
1(
𝜎
𝑦
33

)2

 ; 𝑁 =
(𝜎̄)2

2


1(
𝜏
𝑦
12

)2

 .
where 𝜎̄ is a reference yield stress.

Rather than input the six independent yield stresses, the ratios of the yield stresses to some
reference yield stress are generally used as input. These ratios are

𝑅11 =
𝜎
𝑦
11
𝜎̄

; 𝑅12 =
√

3
𝜏
𝑦
12
𝜎̄

𝑅22 =
𝜎
𝑦
22
𝜎̄

; 𝑅23 =
√

3
𝜏
𝑦
23
𝜎̄

(4.44)

𝑅33 =
𝜎
𝑦
33
𝜎̄

; 𝑅31 =
√

3
𝜏
𝑦
31
𝜎̄
.

These ratios are set up so that if 𝑅𝑖 𝑗 = 1 then the yield surface is isotropic.

The orientation of the principal material axes with respect to the global Cartesian axes may be
specified by the user. First, a rectangular or cylindrical reference coordinate system is defined.
Spherical coordinate systems are not currently implemented for the Hill model. The material
coordinate system can then be defined through two successive rotations about axes in the
reference rectangular or cylindrical coordinate system. In the case of the cylindrical coordinate
system this allows the principal material axes to vary point-wise in a given element block.

The plastic rate of deformation, as with the isotropic models, assumes associated flow

𝐷
p
𝑖 𝑗 = ¤𝛾

𝜕𝜙

𝜕𝜎𝑖 𝑗
.

Given the form for 𝜙, the consistency parameter, ¤𝛾 is equal to the rate of the equivalent plastic
strain, ¤̄𝜀𝑝.

For more information about the Hill plasticity model, consult [42]. Additional discussion on
options for failure models and adiabatic heating may be found in [61], [62] and [60],
respectively.
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4.15.1.1 Plastic Hardening

Plastic hardening refers to increases in the flow stress, 𝜎̄, with plastic deformation. As such,
hardening is described via a functional relationship between the flow stress and isotropic
hardening variable (effective plastic strain), 𝜎̄ (𝜀𝑝). Over the course of nearly a century of work in
metal plasticity, a variety of relationships have been proposed to describe the interactions
associated with different physical interpretations, deformation mechanisms, and materials. To
enable the utilization of the same plasticity models for different material systems, a modular
implementation of plastic hardening has been adopted such that the analyst may select different
hardening models from the input deck thereby avoiding any code changes or user subroutines. In
this section, additional details are given for the different models to enable the user to select the
appropriate choice of model. Note, the models being discussed here are only for isotropic
hardening in which the yield surface expands. Kinematic hardening in which the yield surface
translates in stress-space with deformation and distortional hardening where the shape of the yield
surface changes shape with deformation are not treated. For a larger discussion of the
phenomenology and history of different hardening types, the reader is referred to [42], [57],
[64].

Given the ubiquitous nature of these hardening laws in computational plasticity, some (if not
most) of this material may be found elsewhere in this manual. Nonetheless, the discussion is
repeated here for the convenience of the reader.

Linear

Linear hardening is conceptually the simplest model available in LAMÉ. As the name implies, a
linear relationship is assumed between the hardening variable, 𝜀𝑝, and flow stress. The hardening
modulus, 𝐻′, is a constant giving the rate of change of flow stress with plastic flow. The flow
stress expression may therefore be written,

𝜎̄ = 𝜎𝑦 + 𝐻′𝜀𝑝 .

The simplicity of the model is its main feature as the constant slope,

𝑑𝜎̄

𝑑𝜀𝑝
= 𝐻′,

makes the model attractive for analytical models and cheap for computational implementations
(e.g. radial return algorithms require only a single correction step). Unfortunately, the simplicity
of the representation also means that it has limited predictive capabilities and can lead to overly
stiff responses.
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Power Law

Another common expression for isotropic hardening is the power-law hardening model. Due to its
prevalence, a dedicated ELASTIC-PLASTIC POWER LAW HARDENING model may be found
in LAMÉ (see Section 4.8.1). This expression is given as,

𝜎̄ = 𝜎𝑦 + 𝐴 < 𝜀𝑝 − 𝜀𝐿 >𝑛,

in which < · > are Macaulay brackets, 𝜀𝐿 is the Luders strain, 𝐴 is a fitting constant, and 𝑛 is an
exponent typically taken such that 0 < 𝑛 ≤ 1. The Luders strain is a positive, constant strain value
(defaulted to zero) giving an initially perfectly plastic response in the plastic deformation domain
(see Fig. 4.20). The derivative is then simply,

𝑑𝜎̄

𝑑𝜀𝑝
= 𝑛𝐴 < 𝜀𝑝 − 𝜀𝐿 >(𝑛−1) .

Note, one difficulty in such an implementation is that when the effective equivalent plastic strain is
zero, numerical difficulties may arise in evaluating the derivative and necessitate special treatment
of the case.

Voce

The Voce hardening model (sometimes referred to as a saturation model) uses a decaying
exponential function of the equivalent plastic strain such that the hardening eventually saturates to
a specified value (thus the name). Such a relationship has been observed in some structural metals
giving rise to the popularity of the model. The hardening response is given as,

𝜎̄ = 𝜎𝑦 + 𝐴 (1 − exp (−𝑛𝜀𝑝)) ,

in which 𝐴 is a fitting constant and 𝑛 is a fitting exponent controlling how quickly the hardening
saturates. Importantly, the derivative is written as,

𝑑𝜎̄

𝑑𝜀𝑝
= 𝑛𝐴 exp (−𝑛𝜀𝑝) ,

and is well defined everywhere giving the selected form an advantage over the aforementioned
power law model.

Johnson-Cook

The Johnson-Cook hardening model is a variant of the classical Johnson-Cook [48], [49]
expression. In this instance, the temperature-dependence is neglected to focus on the
rate-dependent capabilities while allowing for arbitrary isotropic hardening forms via the use of a
user-defined hardening function. With these assumptions, the flow stress may be written as,

𝜎̄ = 𝜎̃𝑦 (𝜀𝑝)
[
1 + 𝐶

〈
ln

( ¤̄𝜀𝑝
¤𝜀0

)〉]
,
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in which 𝜎̃𝑦 (𝜀𝑝) is the user-specified rate-independent hardening function, 𝐶 is a fitting constant
and ¤𝜀0 is a reference strain rate. The Macaulay brackets ensure the material behaves in a rate
independent fashion when ¤̄𝜀𝑝 < ¤𝜀0.

Power Law Breakdown

Like the Johnson-Cook formulation, the power-law breakdown model is also rate-dependent.
Again, a multiplicative decomposition is assumed between isotropic hardening and the
corresponding rate-dependence dependent. In this case, however, the functional form is derived
from the analysis of Frost and Ashby [33] in which power-law relationships like those of the
Johnson-Cook model cease to appropriately capture the physical response. The form used here is
similar to the expression used by Brown and Bammann [16] and is written as,

𝜎̄ = 𝜎̃𝑦 (𝜀𝑝)
[
1 + asinh

(( ¤̄𝜀𝑝
𝑔

) (1/𝑚))]
,

with 𝜎̃𝑦 (𝜀𝑝) being the user supplied rate independent expression, 𝑔 is a model parameter related
to the activation energy required to transition from climb to glide-controlled deformation, and 𝑚
dictates the strength of the dependence.

4.15.1.2 Flow Stress

Unlike the previously described models, the flow-stress hardening method is less a specific
physical representation and more a generalization of hardening behaviors to allow greater
flexibility in separately describing isotropic hardening, rate-dependence, and temperature
dependence. As such, the generic flow-stress definition of

𝜎̄
(
𝜀𝑝, ¤̄𝜀𝑝, 𝜃

)
= 𝜎̃𝑦 (𝜀𝑝) 𝜎̂

( ¤̄𝜀𝑝 ) 𝜎̆ (𝜃) ,
is used in which 𝜎̂ and 𝜎̆ are rate and temperature multipliers, respectively, that by default are
unity (such that the response is rate and temperature independent). The isotropic hardening
component, 𝜎̃𝑦, is specified as,

𝜎̃𝑦 = 𝜎𝑦 + 𝐾 (𝜀𝑝) ,

with 𝜎𝑦 being the constant yield stress and 𝐾 is the isotropic hardening that is initially zero and a
function of the equivalent plastic strain. A multiplicative decomposition such as this mirrors the
general structure used by Johnson and Cook [48], [49] although greater flexibility is allowed in
terms of the specific form of the rate and temperature multipliers.

Given the aforementioned defaults for rate and temperature dependence, the corresponding
multipliers need not be specified. A representation for the isotropic hardening, however, must be
specified and can be defined via linear, power-law, Voce, or user-defined representations. For the
user-defined case, an isotropic hardening function is required and it must be highlighted that the
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interpretation differs from the general user-defined hardening model. In this case, as the specified
function represents the isotropic hardening, it should start from zero – not yield.

Although the flow-stress hardening model defaults to rate and temperature independent, a
multiplier may be defined for either (or both) of the terms. For rate-dependence, either the
previously discussed Johnson-Cook or power-law breakdown models or a user-defined multiplier
may be used. For the user-defined capability, the multiplier should be input as a strictly positive
function of the equivalent plastic strain rate with a value of one in the rate-independent limit.

In terms of temperature dependence, the multiplier may be specified given a Johnson-Cook
dependency [48], [49],

𝜎̆ (𝜃) = 1 −
(
𝜃 − 𝜃ref

𝜃melt − 𝜃ref

)𝑀
,

with 𝜃ref, 𝜃melt and 𝑀 being the reference temperature, melting temperature, and temperature
exponent. The temperature multiplier may also be specified via a user defined function.

4.15.1.3 Decoupled Flow Stress

Like the flow-stress hardening method, the decoupled flow-stress hardening implementation is a
generalization of the hardening behaviors to allow greater flexibility. In differentiating the two, for
the decoupled model the rate and temperature dependence may be separately specified for the
yield and hardening portions of the flow stress. As such, the generic flow-stress definition of

𝜎̄
(
𝜀𝑝, ¤̄𝜀𝑝, 𝜃

)
= 𝜎𝑦𝜎̂y

( ¤̄𝜀𝑝 ) 𝜎̆y (𝜃) + 𝐾 (𝜀𝑝) 𝜎̂h
( ¤̄𝜀𝑝 ) 𝜎̆h (𝜃) ,

is used in which 𝜎̂ and 𝜎̆ are rate and temperature multipliers, respectively, that by default are
unity (such that the response is rate and temperature independent) with subscripts y and h
denoting functions associated with yield and hardening. The isotropic hardening is described by
𝐾 (𝜀𝑝) and 𝜎𝑦 is the constant initial yield stress. It may also be seen that if the yield and hardening
dependencies are the same (𝜎̂y = 𝜎̂h and 𝜎̆y = 𝜎̆h) the decoupled flow stress model reduces to that
of the flow stress case and mirrors the general structure of the Johnson-Cook model [48], [49].

Given the aforementioned defaults for rate and temperature dependence, the corresponding
multipliers need not be specified. A representation for the isotropic hardening, however, must be
specified and can be defined via linear, power-law, Voce, or user-defined representations. For the
user-defined case, an isotropic hardening function should be used and it must be highlighted that
the interpretation differs from the general user-defined hardening model. In this case, as the
specified function represents the isotropic hardening, it should start from zero – not yield.

Although the decoupled flow-stress hardening model defaults to rate and temperature
independent, a multiplier may be defined for any of the terms. For rate-dependence, either the
previously discussed Johnson-Cook or power-law breakdown models or a user-defined multiplier
may be used. For the user-defined capability, the multiplier should be input as a strictly positive
function of the equivalent plastic strain rate with a value of one in the rate-independent limit.
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In terms of temperature dependence, the multiplier may be specified given a Johnson-Cook
dependency [48], [49],

𝜎̆ (𝜃) = 1 −
(
𝜃 − 𝜃ref

𝜃melt − 𝜃ref

)𝑀
,

where 𝜃ref, 𝜃melt, and 𝑀 are the reference temperature, melting temperature, and temperature
exponent. A temperature multiplier may also be specified via a user defined function.

4.15.2 Implementation

The Hill plasticity model uses a predictor-corrector algorithm for integrating the constitutive
model. Given a rate of deformation, ifindex 𝑑𝑖 𝑗else dfi, and a time step, Δ 𝑡, a trial stress state is
calculated based on an elastic response

𝑇 𝑡𝑟𝑖 𝑗 = 𝑇
𝑛
𝑖 𝑗 + Δ 𝑡 C𝑖 𝑗 𝑘𝑙𝑑𝑘𝑙

If the trial stress state lies outside the yield surface, i.e. if ifindex 𝜙(𝑇 𝑡𝑟𝑖 𝑗 ) > 𝜎̄else 𝜙(T𝑡𝑟) > 𝜎̄fi,
then the model uses a backward Euler algorithm to return the stress to the yield surface. There are
two equations that need to be solved. To ensure that the plastic strain increment is in the correct
direction we have

𝑅
𝑝
𝑖 𝑗 = Δ𝑡 𝑑𝑝𝑖 𝑗 − Δ𝛾

𝜕𝜙

𝜕𝑇𝑖 𝑗
= 0

while to ensure that the stress state is on the yield surface we require

𝑓 = 𝜙
(
𝑇𝑖 𝑗

)
− 𝜎̄ (𝜀𝑝) = 0

The primary algorithm for solving these equations is a Newton-Raphson algorithm. Using Δ𝛾
(which is equal to Δ𝜀𝑝) and ifindex 𝑇𝑖 𝑗else Tfi as the solution variables, we set up an iterative
algorithm where

Δ𝛾 (𝑘+1) = Δ𝛾 (𝑘) + Δ (Δ𝛾)

𝑇 (𝑘+1)𝑖 𝑗 = 𝑇 (𝑘)𝑖 𝑗 + Δ𝑇𝑖 𝑗

where Δ𝛾 (0) = 0 and ifindex 𝑇 (0)𝑖 𝑗 = 𝑇 𝑡𝑟𝑖 𝑗 else T(0) = T𝑡𝑟fi and

Δ𝑡 𝑑𝑝𝑖 𝑗 = C
−1
𝑖 𝑗 𝑘𝑙

(
𝑇 𝑡𝑟𝑘𝑙 − 𝑇𝑘𝑙

)
The Newton-Raphson algorithm gives

Δ (Δ𝛾) =
𝑓 (𝑘) − 𝑅(𝑘)𝑖 𝑗 L

(𝑘)
𝑖 𝑗 𝑘𝑙

𝜕𝜙(𝑘)

𝜕𝑇𝑘𝑙

𝜕𝜙(𝑘)

𝜕𝑇𝑖 𝑗
L (𝑘)𝑖 𝑗 𝑘𝑙

𝜕𝜙(𝑘)

𝜕𝑇𝑘𝑙
+ 𝐻′ (𝑘)

Δ𝑇𝑖 𝑗 = −L (𝑘)𝑖 𝑗 𝑘𝑙
(
𝑅(𝑘)𝑘𝑙 + Δ (Δ𝛾)

𝜕𝜙(𝑘)

𝜕𝑇𝑘𝑙

)
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A straightforward Newton-Raphson algorithm does not always converge, so the return mapping
algorithm is augmented with a line search algorithm

Δ𝛾 (𝑘+1) = Δ𝛾 (𝑘) + 𝛼Δ (Δ𝛾)

𝑇 (𝑘+1)𝑖 𝑗 = 𝑇 (𝑘)𝑖 𝑗 + 𝛼Δ𝑇𝑖 𝑗

where 𝛼 ∈ (0, 1] is the line search parameter which is determined from certain convergence
considerations. If 𝛼 = 1 then the Newton-Raphson algorithm is recovered. The line search
algorithm greatly increases the reliability of the return mapping algorithm.

4.15.3 Verification

The Hill plasticity material model is verified for a number of loading conditions.

Additional verification exercises for the various failure models and adiabatic heating capabilities
may be found in [61], [62] and [60], respectively.

The elastic properties used in these analyses are 𝐸 = 70 GPa and 𝜈 = 0.25. The parameters that
are used to define the yield surface are

𝑅11 = 1.000680 ; 𝑅12 = 0.909194

𝑅22 = 0.906397 ; 𝑅23 = 0.851434

𝑅33 = 1.027380 ; 𝑅31 = 0.799066

These parameters correspond to a parameterization of the Barlat model for 2090-T3 aluminum [9]
that is fit to the Hill model. The hardening law used for the model is a Voce law with the following
form

𝜎̄ (𝜀𝑝) = 𝜎𝑦 + 𝐴 (1 − exp(−𝑛𝜀𝑝))

For these calculations 𝜎𝑦 = 200 MPa, 𝐴 = 200 MPa, and 𝑛 = 20. Finally, the coordinate system
used in these calculations is a rectangular coordinate system with the 𝑒1, 𝑒2, 𝑒3 axes aligned with
the 𝑥, 𝑦, 𝑧 axes.

4.15.3.1 Uniaxial Stress

The Hill plasticity model is tested in uniaxial tension along the three orthogonal principal material
directions. The tests looks at the stress, the strain, and the equivalent plastic strain and compares
these values against analytical results for the same problem. In this verification problem only the
normal stresses are needed, and the shear terms are not exercised. Therefore, the parameters 𝑅12,
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𝑅23, and 𝑅31 are not used in the problem and a separate verification test will be needed for shear
response.

The model is tested in uniaxial stress in the 𝑥, 𝑦, and 𝑧 directions, giving three test problems. Each
problem can be formulated exactly the same. For the description of the test we will only look at
loading in the 𝑥 direction (𝑥1 direction).

For the uniaxial stress problem, the only non-zero stress component is 𝜎11. In the analysis that
follows 𝜎11 = 𝜎. There are three non-zero strain components, 𝜀11, 𝜀22, and 𝜀33. In the analysis
that follows 𝜀11 = 𝜀. Furthermore, the axial elastic strain, 𝜀e11 = 𝜎/𝐸 will be denoted by 𝜀e.

Axial Stresses

The uniaxial stress calculated by the model in Adagio is compared to analytical solutions. For
uniaxial loading in the 𝑒1 direction, the effective stress is

𝜙 =
𝜎

𝑅11

If the stress state is on the yield surface, then 𝜙 = 𝜎̄ (𝜀𝑝), so the axial stress, as a function of the
hardening function, is

𝜎 = 𝑅𝑘𝑘 𝜎̄ (𝜀𝑝) (4.45)

This shows that the stress state can be calculated from the hardening law and the anisotropy
parameters.

To evaluate the axial stress we need the equivalent plastic strain as a function of the axial strain. If
we equate the rate of plastic work we get

𝜎̄ ¤̄𝜀𝑝 = 𝜎 ( ¤𝜀 − ¤𝜀e) → ¤̄𝜀𝑝 = 𝑅11 ( ¤𝜀 − ¤𝜀e)

which, when integrated, gives us an implicit equation for the equivalent plastic strain

𝜀𝑝 = 𝑅11

(
𝜀 − 𝑅11

𝜎̄(𝜀𝑝)
𝐸

)
(4.46)

The equivalent plastic strain can then be used in (4.45) to find the axial stress, 𝜎.

The axial stresses for loading in the other directions can be found the same way. The axial stresses
for loading in the 𝑒1, 𝑒2, and 𝑒3 directions are shown in Fig. 4.59.

Lateral Strains

For the lateral strains we need the plastic strains and therefore the normal to the yield surface. The
components of the normal to the yield surface are

𝜕𝜙

𝜕𝜎11
=

1
𝑅11

;
𝜕𝜙

𝜕𝜎22
= −𝐻𝑅11 ;

𝜕𝜙

𝜕𝜎33
= −𝐺𝑅11
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The elastic axial and lateral strain components are

𝜀e11 =
𝜎

𝐸
= 𝜀e ; 𝜀e22 = 𝜀e33 = −𝜈𝜎

𝐸
= −𝜈𝜀e

The plastic axial strain component is

𝜀
p
11 = 𝜀11 −

𝜎

𝐸
= 𝜀 − 𝜀e

which comes from the additive decomposition of the strain rates. Using the equivalent plastic
strain (4.46) we can find the lateral plastic strain components

𝜀
p
22 = − (𝜀 − 𝜀e) 𝐻𝑅2

11 ; 𝜀
p
33 = − (𝜀 − 𝜀e)𝐺𝑅2

11

The lateral total stain components prior to yield are 𝜀22 = 𝜀33 = −𝜈𝜀. After yield they are

𝜀22 = −𝜈𝜀e − 𝐻𝑅11𝜀
𝑝

𝜀33 = −𝜈𝜀e − 𝐺𝑅11𝜀
𝑝

where 𝜀e = 𝜎/𝐸 .

For loading in the 𝑦 direction, a similar analysis leads to the lateral strains, after yield

𝜀33 = −𝜈𝜀e − 𝐹𝑅22𝜀
𝑝

𝜀11 = −𝜈𝜀e − 𝐻𝑅22𝜀
𝑝

For loading in the 𝑧 direction, a similar analysis leads to the lateral strains, after yield

𝜀11 = −𝜈𝜀e − 𝐺𝑅33𝜀
𝑝

𝜀22 = −𝜈𝜀e − 𝐹𝑅33𝜀
𝑝

Results for all three loadings are shown in Fig. 4.60, Fig. 4.61, and Fig. 4.62.

4.15.3.2 Pure Shear

The shear stress calculated by the Hill plasticity model in Adagio is compared to analytical
solutions. Without loss of generality we will look at solutions for pure shear with respect to the
𝑒1-𝑒2 axes. Solutions for shear with respect to the other axes will be similar. In what follows, the
only non-zero shear stress will be 𝜎12, and the only non-zero shear strain will be 𝜀12 In general,
for pure shear with respect to the 𝑒1-𝑒2 axes, the effective stress is

𝜙 =
√

3
𝜎12
𝑅12
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Fig. 4.59 Stresses when loading in the 𝑒1, 𝑒2, and 𝑒3-directions using the Hill model with a Voce
hardening law.
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Fig. 4.60 Lateral strain as a function of axial strain for the Hill model of 2090-T3 aluminum. Loading
is in the 𝑒1-direction and the hardening law is a Voce law.
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Fig. 4.61 Lateral strain as a function of axial strain for the Hill model of 2090-T3 aluminum. Loading
is in the 𝑒2-direction and the hardening law is a Voce law.
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Fig. 4.62 Lateral strain as a function of axial strain for the Hill model of 2090-T3 aluminum. Loading
is in the 𝑒3-direction and the hardening law is a Voce law.
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If the stress state is on the yield surface, then 𝜙 = 𝜎̄ (𝜀𝑝), so the shear stress is

𝜎12 =
𝑅12√

3
𝜎̄ (𝜀𝑝) (4.47)

This shows that the pure shear stress state can be calculated from the hardening law and the
anisotropy parameters.

To evaluate the shear stress we need the equivalent plastic strain as a function of the shear strain.
If we equate the rate of plastic work we get

𝜎̄ ¤̄𝜀𝑝 = 2𝜎12
(
¤𝜀12 − ¤𝜀e12

)
→ ¤̄𝜀𝑝 = 2𝑅12√

3
(
¤𝜀12 − ¤𝜀e12

)
which, when integrated, gives us an implicit equation for the equivalent plastic strain

𝜀𝑝 =
2𝑅12√

3

(
𝜀12 −

𝑅12√
3
𝜎̄ (𝜀𝑝)

2𝐺

)
If we define 𝑅̂12 = 𝑅12/

√
3 then we get a form similar to what we had for uniaxial stress

𝜀𝑝 = 2𝑅̂12

(
𝜀12 − 𝑅̂12

𝜎̄ (𝜀𝑝)
2𝐺

)
The equivalent plastic strain can now be used to find the shear stress.

Boundary Conditions for Pure Shear

The deformation gradient that gives pure shear for loading relative to the 𝑒1-𝑒2 axes is

[F] =



1
2
(
𝜆 + 𝜆−1) 1

2
(
𝜆 − 𝜆−1) 0

1
2
(
𝜆 − 𝜆−1) 1

2
(
𝜆 + 𝜆−1) 0

0 0 1


→ [𝜺] =


0 𝜀 0

𝜀 0 0

0 0 0


; 𝜀 = ln𝜆

For loading relative to the 𝑒2-𝑒3 axes and the 𝑒3-𝑒1 axes the boundary conditions are modified
appropriately.

Results

The results for the Hill plasticity model loaded in pure shear are shown in Fig. 4.63. We see that
the stress strain curves in pure shear as calculated by Adagio follow the expected stress strain
curves. All other stress and strain components for the three problems are zero.

186



Fig. 4.63 Shear stress versus shear strain using the Hill model with a Voce hardening law. Results
are for shear in the three orthogonal planes of the material coordinate system.
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4.15.3.3 Plastic Hardening

To verify the capabilities of the hardening models, rate independent and rate dependent alike, the
constant equivalent plastic strain rate, ¤̄𝜀𝑝, uniaxial stress and pure shear verification tests
described in Appendix A are utilized. In these simplified loading cases, the material state may be
found explicitly as a function of time knowing the prescribed equivalent strain rate. For the rate
independent cases, a strain rate of ¤̄𝜀𝑝 = 1 × 10−4s−1 is used for ease in simulations although the
selected rate does not affect the results. Through this testing protocol, the hardening models are
not only tested at different rates but also in different principal material directions to consider the
anisotropy of the Hill yield surface. Additionally, the rate dependent models are tested for a wide
range of strain rates (over five decades) and with all three rate independent hardening functions
(𝜎̃𝑦 in the previous theory section). Although linear, Voce, and power-law rate independent
representations are utilized in the rate dependent tests, in those cases the hardening models are
prescribed via user-defined analytic functions. The rate independent verification exercises, on the
other hand, examine the built in hardening models. This distinction necessitates the different
considerations and treatments.

The various rate dependent and rate independent hardening coefficients are found in Table 4.20
while the remaining model parameters are unchanged from the previous verification exercises.
For the current verification exercises, the rate independent hardening models (linear, Voce, and
power-law) will first be considered and then the rate dependent forms (Johnson-Cook, power-law
breakdown).

Table 4.20 The model parameters for the hardening verification tests used with the Hill plasticity
model during verification tests. Parameters for the rate independent hardening functions, 𝜎̃𝑦 , are
also given and denoted with a ·̃ while the subscript refers to the functional form.

𝐶 0.1 ¤𝜀0 1 × 10−4 s−1

𝑔 0.21 s−1 𝑚 16.4
𝐻̃Linear 200 MPa
𝐴̃PL 400 MPa 𝑛̃PL 0.25
𝐴̃Voce 200 MPa 𝑛̃Voce 20

Linear

To examine the performance of the rate independent linear hardening model, the verification
exercises from Appendix A are used. In this case, as the Hill yield surface is being considered, the
responses are determined numerically and analytically in the uniaxial stress case with loading in
three different principal material directions and three different shear planes for the pure shear case.
These results are presented in Fig. 4.64. From these responses, superb agreement between the
analytical and numerical results is noted. Additionally, the constant linear stress-strain response
during plastic deformations clearly demonstrates the behavior giving this model its name.
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(a) Uniaxial Stress (b) Pure Shear

Fig. 4.64 Uniaxial stress-strain (a) and pure shear (b) responses of the Hill plasticity model with rate
independent, linear hardening. Solid lines are analytical while open symbols are numerical.

Power-Law

The rate independent power-law hardening model is verified by using the uniaxial stress and pure
shear problems of Appendix A. Results of these endeavors determined analytically and
numerically are presented in Fig. 4.65 in which the uniaxial stress problem is presented for
loading aligned with the three different principal material directions and three different shear
planes for the pure shear case. From these results, outstanding agreement is noted between both
numerical and analytical results sets verifying the model. Also, the initially stiff hardening
decreasing to a lower linear tangent modulus characteristic of power-law hardening models is
clearly evident in the various result sets of Fig. 4.65.

(a) Uniaxial Stress (b) Pure Shear

Fig. 4.65 Uniaxial stress-strain (a) and pure shear (b) responses of the Hill plasticity model with rate
independent, power-law hardening. Solid lines are analytical while open symbols are numerical.
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Voce

Verification of the rate independent Voce hardening model is pursued by considering both the
uniaxial stress and pure shear approaches of Appendix A. The results of these investigations
determined analytically and numerically are shown in Fig. 4.66. For the uniaxial stress cases,
loadings in each of the three principal material directions is presented while complementary
results from the three shear planes are shown for the pure shear case. In each of these six
instances, exemplary agreement is observed between the different results sets. Additionally, such
stress-strain results also show the saturation behavior associated with Voce models in which at
some equivalent plastic strain the material no longer hardens.

(a) Uniaxial Stress (b) Pure Shear

Fig. 4.66 Uniaxial stress-strain (a) and pure shear (b) responses of the Hill plasticity model with rate
independent, Voce hardening. Solid lines are analytical while open symbols are numerical.

Johnson-Cook

As noted in Appendix A, the uniaxial stress response depends on the yield surface anisotropy
coefficients (for the Hill model the 𝑅′𝑠). The respective coefficients are given in the
aforementioned appendix while Fig. 4.67 and Fig. 4.68 present the results of forty-five different
verification exercises corresponding to different combinations of the three material principal
directions (𝑒1, 𝑒2, and 𝑒3), five equivalent plastic strain
rates(1 × 10−3, 1 × 10−2, 1 × 10−1, 1 × 100 and 1 × 101 s−1), and three rate independent
hardening models (linear, power-law, and Voce). For each combination, the analytical and
numerical results match to within acceptably small numerical differences.

For the pure shear case, the problem discussed in Appendix A is considered. The results still
depend on the Hill 𝑅 coefficients and forty-five different loadings are presented in Fig. 4.69 and
Fig. 4.70. In this instance, three different shearing planes are used in lieu of the principal
directions. Nonetheless, for these results the key result remains the same – analytical matches
numerical further verifying rate dependent capabilities.
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(a) Linear Hardening -- 11 (b) Linear Hardening -- 22

(c) Linear Hardening -- 33 (d) Power-Law Hardening -- 11

(e) Power-Law Hardening -- 22 (f) Power-Law Hardening -- 33

Fig. 4.67 Uniaxial stress-strain response of the Hill plasticity model with rate dependent, Johnson-
Cook type hardening with (a-c) linear and (d-f) power-law rate independent hardening. Solid lines
are analytical results while open symbols are numerical.
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(a) Voce Hardening -- 11 (b) Voce Hardening -- 22

(c) Voce Hardening -- 33

Fig. 4.68 Uniaxial stress-strain response of the Hill plasticity model with rate dependent, Johnson-
Cook type hardening with (a-c) Voce rate independent hardening. Solid lines are analytical results
while open symbols are numerical.

192



(a) Linear Hardening -- 11 (b) Linear Hardening -- 22

(c) Linear Hardening -- 33 (d) Power-Law Hardening -- 11

(e) Power-Law Hardening -- 22 (f) Power-Law Hardening -- 33

Fig. 4.69 Stress-strain response of the Hill plasticity model with rate dependent, Johnson-Cook type
hardening in pure shear with (a-c) linear and (d-f) power-law rate independent hardening. Solid lines
are analytical results while open symbols are numerical.
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(a) Voce Hardening -- 11 (b) Voce Hardening -- 22

(c) Voce Hardening -- 33

Fig. 4.70 Stress-strain response of the Hill plasticity model with rate dependent, Johnson-Cook
type hardening in pure shear with (a-c) Voce rate independent hardening. Solid lines are analytical
results while open symbols are numerical.
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Power-Law Breakdown

For the power-law breakdown model, the same forty-five cases discussed in the previous section
(three directions, five rates, three hardening models) are again solved via the approach of
Appendix A in Fig. 4.71 and Fig. 4.72. Although the impact of rate on the responses differs due to
the assumed representation of the rate-dependent hardening, excellent agreement is still noted
between analytical and numerical results.

To expand on the uniaxial stress results, the response through pure shear is also probed via the
method of Appendix A. Again forty-five different cases are investigated and their results are
presented in Fig. 4.73 and Fig. 4.74. Once again, the results aligning thereby verifying the
capability of the model and producing additional credibility.

4.15.4 User Guide

BEGIN PARAMETERS FOR MODEL HILL_PLASTICITY
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>
#
# Material coordinates system definition
#
COORDINATE SYSTEM = <string> coordinate_system_name
DIRECTION FOR ROTATION = <real> 1|2|3
ALPHA = <real> (degrees)
SECOND DIRECTION FOR ROTATION = <real> 1|2|3
SECOND ALPHA = <real> (degrees)
#
# Yield surface parameters
#
YIELD STRESS = <real>
R11 = <real> (1.0)
R22 = <real> (1.0)
R33 = <real> (1.0)
R12 = <real> (1.0)
R23 = <real> (1.0)
R31 = <real> (1.0)
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(a) Linear Hardening -- 11 (b) Linear Hardening -- 22

(c) Linear Hardening -- 33 (d) Power-Law Hardening -- 11

(e) Power-Law Hardening -- 22 (f) Power-Law Hardening -- 33

Fig. 4.71 Uniaxial stress-strain response of the Hill plasticity model with rate dependent, power-
law breakdown type hardening in with (a-c) linear and (d-f) power-law rate independent hardening.
Solid lines are analytical results while open symbols are numerical.
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(a) Voce Hardening -- 11 (b) Voce Hardening -- 22

(c) Voce Hardening -- 33

Fig. 4.72 Uniaxial stress-strain response of the Hill plasticity model with rate dependent, power-law
breakdown type hardening in with (a-c) Voce rate independent hardening. Solid lines are analytical
results while open symbols are numerical.
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(a) Linear Hardening -- 11 (b) Linear Hardening -- 22

(c) Linear Hardening -- 33 (d) Power-Law Hardening -- 11

(e) Power-Law Hardening -- 22 (f) Power-Law Hardening -- 33

Fig. 4.73 Stress-strain response of the Hill plasticity model with rate dependent, power-law break-
down type hardening in pure shear with (a-c) linear and (d-f) power-law rate independent hardening.
Solid lines are analytical results while open symbols are numerical.
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(a) Voce Hardening -- 11 (b) Voce Hardening -- 22

(c) Voce Hardening -- 33

Fig. 4.74 Stress-strain response of the Hill plasticity model with rate dependent, power-law break-
down type hardening in pure shear with (a-c) Voce rate independent hardening. Solid lines are
analytical results while open symbols are numerical.
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#
#
# Hardening model
#
HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED |
FLOW_STRESS | DECOUPLED_FLOW_STRESS | JOHNSON_COOK |
POWER_LAW_BREAKDOWN
#
# Linear hardening
#
HARDENING MODULUS = <real>
#
# Power-law hardening
#
HARDENING CONSTANT = <real>
HARDENING EXPONENT = <real> (0.5)
LUDERS STRAIN = <real> (0.0)
#
# Voce hardening
#
HARDENING MODULUS = <real>
EXPONENTIAL COEFFICIENT = <real>
#
# Johnson-Cook hardening
#
HARDENING FUNCTION = <string>hardening_function_name
RATE CONSTANT = <real>
REFERENCE RATE = <real>
#
# Power law breakdown hardening
#
HARDENING FUNCTION = <string>hardening_function_name
RATE COEFFICIENT = <real>
RATE EXPONENT = <real>
# User defined hardening
#
HARDENING FUNCTION = <string>hardening_function_name
#

#
#
# Following Commands Pertain to Flow_Stress Hardening Model
#
# - Isotropic Hardening model
#
ISOTROPIC HARDENING MODEL = LINEAR | POWER_LAW | VOCE |

(continues on next page)
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(continued from previous page)
USER_DEFINED

#
# Specifications for Linear, Power-law, and Voce same as above
#
# User defined hardening
#
ISOTROPIC HARDENING FUNCTION = <string>iso_hardening_fun_name
#
# - Rate dependence
#
RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)
#
# Specifications for Johnson-Cook, Power-law-breakdown
# same as before EXCEPT no need to specify a
# hardening function
#
# User defined rate multiplier
#
RATE MULTIPLIER FUNCTION = <string> rate_mult_function_name
#
# - Temperature dependence
#
TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |

TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)
#
# Johnson-Cook temperature dependence
#
MELTING TEMPERATURE = <real>
REFERENCE TEMPERATURE = <real>
TEMPERATURE EXPONENT = <real>
#
# User-defined temperature dependence
TEMPERATURE MULTIPLIER FUNCTION = <string>temp_mult_function_name
#
# Following Commands Pertain to Decoupled_Flow_Stress Hardening Model
#
# - Isotropic Hardening model
#
ISOTROPIC HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED
#
# Specifications for Linear, Power-law, and Voce same as above
#
# User defined hardening
#

(continues on next page)
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(continued from previous page)
ISOTROPIC HARDENING FUNCTION = <string>isotropic_hardening_function_

↩→name
#
# - Rate dependence
#
YIELD RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)
#
# Specifications for Johnson-Cook, Power-law-breakdown same as before
# EXCEPT no need to specify a hardening function
# AND should be preceded by YIELD
#
# As an example for Johnson-Cook yield rate dependence,
#
YIELD RATE CONSTANT = <real>
YIELD REFERENCE RATE = <real>
#
# User defined rate multiplier
#
YIELD RATE MULTIPLIER FUNCTION = <string>yield_rate_mult_function_

↩→name
#
HARDENING_RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)
#
# Syntax same as for yield parameters but with a HARDENING prefix
#
# - Temperature dependence
#
YIELD TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |

TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)
#
# Johnson-Cook temperature dependence
#
YIELD MELTING TEMPERATURE = <real>
YIELD REFERENCE TEMPERATURE = <real>
YIELD TEMPERATURE EXPONENT = <real>
#
# User-defined temperature dependence
YIELD TEMPERATURE MULTIPLIER FUNCTION = <string>yield_temp_mult_fun_

↩→name
#
HARDENING TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |

TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)
#

(continues on next page)
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(continued from previous page)
# Syntax for hardening constants same as for yield but
# with HARDENING prefix

#
#
# Optional Failure Definitions
# Following only need to be defined if intend to use failure model
#
FAILURE MODEL = TEARING_PARAMETER | JOHNSON_COOK_FAILURE | WILKINS

| MODULAR_FAILURE | MODULAR_BCJ_FAILURE

CRITICAL FAILURE PARAMETER = <real>
#
# TEARING_PARAMETER Failure model definitions
#
TEARING PARAMETER EXPONENT = <real>
#
# JOHNSON_COOK_FAILURE Failure model definitions
#
JOHNSON COOK D1 = <real>
JOHNSON COOK D2 = <real>
JOHNSON COOK D3 = <real>
JOHNSON COOK D4 = <real>
JOHNSON COOK D5 = <real>
#
#Following Johnson-Cook parameters can only be defined once. As␣

↩→such, only
# needed if not previously defined via Johnson-Cook multipliers
# w/ flow-stress hardening. Does need to be defined
# w/ Decoupled Flow Stress
#
REFERENCE RATE = <real>
REFERENCE TEMPERATURE = <real>
MELTING TEMPERATURE = <real>
#
# WILKINS Failure model definitions
#
WILKINS ALPHA = <real>
WILKINS BETA = <real>
WILKINS PRESSURE = <real>
#
# MODULAR_FAILURE Failure model definitions
#
PRESSURE MULTIPLIER = PRESSURE_INDEPENDENT | WILKINS

| USER_DEFINED (PRESSURE_INDEPENDENT)

(continues on next page)
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(continued from previous page)
LODE ANGLE MULTIPLIER = LODE_ANGLE_INDEPENDENT |

WILKINS (LODE_ANGLE_INDEPENDENT)
TRIAXIALITY MULTIPLIER = TRIAXIALITY_INDEPENDENT | JOHNSON_COOK

| USER_DEFINED (TRIAXIALITY_
↩→INDEPENDENT)
RATE FAIL MULTIPLIER = RATE_INDEPENDENT | JOHNSON_COOK

| USER_DEFINED (RATE_INDEPENDENT)
TEMPERATURE FAIL MULTIPLIER = TEMPERATURE_INDEPENDENT | JOHNSON_COOK

| USER_DEFINED (TEMPERATURE_
↩→INDEPENDENT)
#
# Individual multiplier definitions
#
PRESSURE MULTIPLIER = WILKINS
WILKINS ALPHA = <real>
WILKINS PRESSURE = <real>
#
PRESSURE MULTIPLIER = USER_DEFINED
PRESSURE MULTIPLIER FUNCTION = <string> pressure_multiplier_fun_name
#
LODE ANGLE MULTIPLIER = WILKINS
WILKINS BETA = <real>
#
TRIAXIALITY MULTIPLIER = JOHNSON_COOK
JOHNSON COOK D1 = <real>
JOHNSON COOK D2 = <real>
JOHNSON COOK D3 = <real>
#
TRIAXIALITY MULTIPLIER = USER_DEFINED
TRIAXIALITY MULTIPLIER FUNCTION = <string> triaxiality_multiplier_

↩→fun_name
#
RATE FAIL MULTIPLIER = JOHNSON_COOK
JOHNSON COOK D4 = <real>
# REFERENCE RATE should only be added if not previously defined
REFERENCE RATE = <real>
#
RATE FAIL MULTIPLIER = USER_DEFINED
RATE FAIL MULTIPLIER FUNCTION = <string> rate_fail_multiplier_fun_

↩→name
#
TEMPERATURE FAIL MULTIPLIER = JOHNSON_COOK
JOHNSON COOK D5 = <real>
# JC Temperatures should only be defined if not previously given
REFERENCE TEMPERATURE = <real>

(continues on next page)
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(continued from previous page)
MELTING TEMPERATURE = <real>
#
TEMPERATURE FAIL MULTIPLIER = USER_DEFINED
TEMPERATURE FAIL MULTIPLIER FUNCTION = <string> temp_multiplier_fun_

↩→name
#
# MODULAR_BCJ_FAILURE Failure model definitions
#
INITIAL DAMAGE = <real>
INITIAL VOID SIZE = <real>
DAMAGE BETA = <real> (0.5)
GROWTH MODEL = COCKS_ASHBY | NO_GROWTH (NO_GROWTH)
NUCLEATION MODEL = HORSTEMEYER_GOKHALE | CHU_NEEDLEMAN_STRAIN

| NO_NUCLEATION (NO_NUCLEATION)
#
GROWTH RATE FAIL MULTIPLIER = JOHNSON_COOK | USER_DEFINED

| RATE_INDEPENDENT
(RATE_INDEPENDENT)

GROWTH TEMPERATURE FAIL MULTIPLIER = JOHNSON_COOK | USER_DEFINED
| TEMPERATURE_INDEPENDENT
(TEMPERATURE_INDEPENDENT)

#
NUCLEATION RATE FAIL MULTIPLIER = JOHNSON_COOK | USER_DEFINED

| RATE_INDEPENDENT
(RATE_INDEPENDENT)

NUCLEATION TEMPERATURE FAIL MULTIPLIER = JOHNSON_COOK | USER_DEFINED
| TEMPERATURE_INDEPENDENT
(TEMPERATURE_INDEPENDENT)

#
# Definitions for individual growth and nucleation models
#
GROWTH MODEL = COCKS_ASHBY
DAMAGE EXPONENT = <real> (0.5)
#
NUCLEATION MODEL = HORSTEMEYER_GOKHALE
NUCLEATION PARAMETER1 = <real> (0.0)
NUCLEATION PARAMETER2 = <real> (0.0)
NUCLEATION PARAMETER3 = <real> (0.0)
#
NUCLEATION MODEL = CHU_NEEDLEMAN_STRAIN
NUCLEATION AMPLITUDE = <real>
MEAN NUCLEATION STRAIN = <real>
NUCLEATION STRAIN STD DEV = <real>
#
# Definitions for rate and temperature fail multiplier

(continues on next page)
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(continued from previous page)
# Note: only showing definitions for growth.
# Nucleation terms are the same just with NUCLEATION instead
# of GROWTH
#
GROWTH RATE FAIL MULTIPLIER = JOHNSON_COOK
GROWTH JOHNSON COOK D4 = <real>
GROWTH REFERENCE RATE = <real>
#
GROWTH RATE FAIL MULTIPLIER = USER_DEFINED
GROWTH RATE FAIL MULTIPLIER FUNCTION = <string> growth_rate_fail_

↩→mult_func
#
GROWTH TEMPERATURE FAIL MULTIPLIER = JOHNSON_COOK
GROWTH JOHNSON COOK D5 = <real>
GROWTH REFERENCE TEMPERATURE = <real>
GROWTH MELTING TEMPERATURE = <real>
#
GROWTH TEMPERATURE FAIL MULTIPLIER = USER_DEFINED
GROWTH TEMPERATURE FAIL MULTIPLIER FUNCTION = <string> temp_fail_

↩→mult_func
#

#
#
# Optional Adiabatic Heating/Thermal Softening Definitions
# Following only need to be defined if intend to use failure model
#
THERMAL SOFTENING MODEL = ADIABATIC | COUPLED
#
SPECIFIC HEAT = <real> # not needed for COUPLED
BETA_TQ = <real>

END [PARAMETERS FOR MODEL HILL_PLASTICITY]

In the command blocks that define the Hill plasticity model:

• The reference nominal yield stress, 𝜎̄, is defined with the YIELD STRESS command line.

• The ratio of the normal yield stress in the ē1ē1 material direction is defined with the R11
command line. The default is 1.0.

• The ratio of the normal yield stress in the ē2ē2 material direction is defined with the R22
command line. The default is 1.0.

• The ratio of the normal yield stress in the ē3ē3 material direction is defined with the R33
command line. The default is 1.0.
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• The ratio of the shear yield stress in the ē1ē2 material direction is defined with the R12
command line. The default is 1.0.

• The ratio of the shear yield stress in the ē2ē3 material direction is defined with the R23
command line. The default is 1.0.

• The ratio of the shear yield stress in the ē3ē1 material direction is defined with the R31
command line. The default is 1.0.

• The type of hardening law is defined with the HARDENING MODEL command line, other
hardening commands then define the specific shape of that hardening curve.

• The hardening modulus for a linear hardening model is defined with the HARDENING
MODULUS command line.

• The hardening constant for a power law hardening model is defined with the HARDENING
CONSTANT command line.

• The hardening exponent for a power law hardening model is defined with the HARDENING
EXPONENT command line.

• The Luders strain for a power law hardening model is defined with the LUDERS STRAIN
command line.

• The hardening function for a user defined hardening model is defined with the HARDENING
FUNCTION command line.

• The shape of the spline for the spline based hardening is defined by the CUBIC SPLINE
TYPE, CARDINAL PARAMETER, KNOT EQPS, and KNOT STRESS command lines.

Output variables available for this model are listed in Table 4.21.

Table 4.21 State Variables for HILL PLASTICITY Model
Name Description
EQPS equivalent plastic strain, 𝜀𝑝
EQDOT equivalent plastic strain rate, ¤̄𝜀𝑝
SEFF effective stress, 𝜙
TENSILE_EQPS tensile equivalent plastic strain, 𝜀𝑝𝑡
DAMAGE damage, 𝜙
VOID_COUNT void count, 𝜂
VOID_SIZE void size, 𝜐
DAMAGE_DOT damage rate, ¤𝜙
VOID_COUNT_DOT void count rate, ¤𝜂
PLASTIC_WORK_HEAT_RATE plastic work heat rate, ¤𝑄𝑝
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4.16 Barlat Plasticity Model

4.16.1 Theory

The Barlat plasticity model is a hypoelastic, rate-independent plasticity model. The underlying
yield surface is both anisotropic and non-quadratic [9]. With respect to the former, linear
transformations of the deviatoric stress are used to capture texture and anisotropy effects. The rate
form of this model assumes an additive split of the rate of deformation into an elastic and plastic
part

𝐷𝑖 𝑗 = 𝐷
e
𝑖 𝑗 + 𝐷

p
𝑖 𝑗 .

The stress rate only depends on the elastic rate of deformation
◦
𝜎𝑖 𝑗= C𝑖 𝑗 𝑘𝑙𝐷

e
𝑘𝑙

where C𝑖 𝑗 𝑘𝑙 are the components of the fourth-order, isotropic elasticity tensor.

To describe anisotropy in the yield-behavior, two linear transformation tensors, 𝐶′𝑖 𝑗 𝑘𝑙 and 𝐶
′′
𝑖 𝑗 𝑘𝑙 , are

introduced such that,

𝑠′𝑖 𝑗 = 𝐶
′
𝑖 𝑗 𝑘𝑙𝑠𝑘𝑙 ; 𝑠′′𝑖 𝑗 = 𝐶

′′
𝑖 𝑗 𝑘𝑙𝑠𝑘𝑙 ,

with 𝑠𝑖 𝑗 being the deviatoric stress tensor (𝑠𝑖 𝑗 = 𝜎𝑖 𝑗 − 1/3𝜎𝑘𝑘𝛿𝑖 𝑗 ) and 𝑠′𝑖 𝑗 and 𝑠′′𝑖 𝑗 being
transformed stresses. Two transformations are used to capture both the anisotropy of the yield
surface and flow rule. In Voigt notation the two transformation tensors are given as,

[𝐶′] =



0 −𝑐′12 −𝑐′13 0 0 0
−𝑐′21 0 −𝑐′23 0 0 0
−𝑐′31 −𝑐′32 0 0 0 0

0 0 0 𝑐′44 0 0
0 0 0 0 𝑐′55 0
0 0 0 0 0 𝑐′66


[𝐶′′] =



0 −𝑐′′12 −𝑐′′13 0 0 0
−𝑐′′21 0 −𝑐′′23 0 0 0
−𝑐′′31 −𝑐′′32 0 0 0 0

0 0 0 𝑐′′44 0 0
0 0 0 0 𝑐′′55 0
0 0 0 0 0 𝑐′′66


.

Alternatively, the transformed stresses may be written in terms of the Cauchy stress tensor as,

𝑠′𝑖 𝑗 = 𝐿
′
𝑖 𝑗 𝑘𝑙𝜎𝑘𝑙 ; 𝑠′′𝑖 𝑗 = 𝐿

′′
𝑖 𝑗 𝑘𝑙𝜎𝑘𝑙 ,

where 𝐿′𝑖 𝑗 𝑘𝑙 = 𝐶
′
𝑖 𝑗𝑚𝑛𝐼𝑚𝑛𝑘𝑙 and 𝐿

′′
𝑖 𝑗 𝑘𝑙 = 𝐶

′′
𝑖 𝑗𝑚𝑛𝐼𝑚𝑛𝑘𝑙 . In this case, 𝐼𝑖 𝑗 𝑘𝑙 is the symmetric deviatoric

projection tensor and takes the form of,

𝐼𝑖 𝑗 𝑘𝑙 =
1
2

(
𝛿𝑖𝑘𝛿 𝑗 𝑙 + 𝛿𝑖𝑙𝛿 𝑗 𝑘

)
− 1

3
𝛿𝑖 𝑗𝛿𝑘𝑙 .
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In reduced form,

[𝐿′] = 1
3



𝑐′12 + 𝑐′13 −2𝑐′12 + 𝑐′13 𝑐′12 − 2𝑐′13 0 0 0
−2𝑐′21 + 𝑐′23 𝑐′21 + 𝑐′23 𝑐′21 − 2𝑐′23 0 0 0
−2𝑐′31 + 𝑐′32 𝑐′31 − 2𝑐′32 𝑐′31 + 𝑐′32 0 0 0

0 0 0 3𝑐′44 0 0
0 0 0 0 3𝑐′55 0
0 0 0 0 0 3𝑐′66


,

and an analogous expression may be written for 𝐿′′𝑖 𝑗 𝑘𝑙 .

The yield surface, 𝑓 , is given as,

𝑓
(
𝜎𝑖 𝑗 , 𝜀

𝑝 ) = 𝜙 (
𝜎𝑖 𝑗

)
− 𝜎̄ (𝜀𝑝) = 0,

in which 𝜙
(
𝜎𝑖 𝑗

)
is the effective stress and 𝜎̄ (𝜀𝑝) is the current yield stress that may depend on

rate and/or temperature. The effective stress is written in terms of the principal transformed
stresses (𝑠′𝑖 and 𝑠

′′
𝑖 , respectively) and the yield surface exponent, 𝑎, as,

𝜙
(
𝜎𝑖 𝑗

)
=

{
1
4

[
|𝑠′1 − 𝑠′′1 |𝑎 + |𝑠′1 − 𝑠′′2 |𝑎 + |𝑠′1 − 𝑠′′3 |𝑎

+ |𝑠′2 − 𝑠′′1 |𝑎 + |𝑠′2 − 𝑠′′2 |𝑎 + |𝑠′2 − 𝑠′′3 |𝑎

+ |𝑠′3 − 𝑠′′1 |𝑎 + |𝑠′3 − 𝑠′′2 |𝑎 + |𝑠′3 − 𝑠′′3 |𝑎
]}1/𝑎

.

An example of such a yield surface is given in Fig. 4.75 along with examples of previously
presented (von Mises, Hosford, Hill) surfaces. The presented Barlat surface corresponds to that of
2090-T3 aluminum first characterized by Barlat et al. [9]. In Fig. 4.75, both the anisotropy and
non-quadratic nature of the yield surface is evident leading to differing strengths and flow
directions at various stresses from any of the other models.

The orientation of the principal material axes with respect to the global Cartesian axes may be
specified by the user. First, a rectangular or cylindrical reference coordinate system is defined.
Spherical coordinate systems are not currently implemented for the Barlat model. The material
coordinate system can then be defined through two successive rotations about axes in the
reference rectangular or cylindrical coordinate system. In the case of the cylindrical coordinate
system this allows the principal material axes to vary point-wise in a given element block.

The plastic rate of deformation, as with the isotropic models, assumes associated flow

𝐷
p
𝑖 𝑗 = ¤𝛾

𝜕𝜙

𝜕𝜎𝑖 𝑗
,

in which ¤𝛾 is the consistency multiplier. Given the form for 𝜙, ¤𝛾 is equal to the rate of the
equivalent plastic strain, ¤̄𝜀𝑝. As the yield surface is cast in transformed stress space, determining
the flow direction in Cartesian space may be done via the chain rule (details may be found in [86])
leading to an expression of the form,

𝜕𝜙

𝜕𝜎𝑖 𝑗
=

3∑
𝑘=1

(
𝜕𝜙

𝜕𝑠′𝑘

𝜕𝑠′𝑘
𝜕𝑠′𝑚𝑛

𝐿′𝑚𝑛𝑖 𝑗 +
𝜕𝜙

𝜕𝑠′′𝑘

𝜕𝑠′′𝑘
𝜕𝑠′′𝑚𝑛

𝐿′′𝑚𝑛𝑖 𝑗

)
. (4.48)
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Fig. 4.75 Example Barlat yield surface, 𝑓𝐵𝑎𝑟𝑙𝑎𝑡
(
𝜎𝑖 𝑗 , 𝜀

𝑝 = 0
) , of 2090-T3 aluminum presented in the

deviatoric 𝜋-plane. Comparison von Mises (𝐽2), Hosford (with 𝑎 = 8), and Hill surfaces are also
presented for comparison.
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For more information about the Barlat plasticity model, consult [9], [86]. Additional discussion
on options for failure models and adiabatic heating may be found in [61], [62] and [60],
respectively.

4.16.1.1 Plastic Hardening

Plastic hardening refers to increases in the flow stress, 𝜎̄, with plastic deformation. As such,
hardening is described via a functional relationship between the flow stress and isotropic
hardening variable (effective plastic strain), 𝜎̄ (𝜀𝑝). Over the course of nearly a century of work in
metal plasticity, a variety of relationships have been proposed to describe the interactions
associated with different physical interpretations, deformation mechanisms, and materials. To
enable the utilization of the same plasticity models for different material systems, a modular
implementation of plastic hardening has been adopted such that the analyst may select different
hardening models from the input deck thereby avoiding any code changes or user subroutines. In
this section, additional details are given for the different models to enable the user to select the
appropriate choice of model. Note, the models being discussed here are only for isotropic
hardening in which the yield surface expands. Kinematic hardening in which the yield surface
translates in stress-space with deformation and distortional hardening where the shape of the yield
surface changes shape with deformation are not treated. For a larger discussion of the
phenomenology and history of different hardening types, the reader is referred to [42], [57],
[64].

Given the ubiquitous nature of these hardening laws in computational plasticity, some (if not
most) of this material may be found elsewhere in this manual. Nonetheless, the discussion is
repeated here for the convenience of the reader.

Linear

Linear hardening is conceptually the simplest model available in LAMÉ. As the name implies, a
linear relationship is assumed between the hardening variable, 𝜀𝑝, and flow stress. The hardening
modulus, 𝐻′, is a constant giving the rate of change of flow stress with plastic flow. The flow
stress expression may therefore be written,

𝜎̄ = 𝜎𝑦 + 𝐻′𝜀𝑝 .

The simplicity of the model is its main feature as the constant slope,

𝑑𝜎̄

𝑑𝜀𝑝
= 𝐻′,

makes the model attractive for analytical models and cheap for computational implementations
(e.g. radial return algorithms require only a single correction step). Unfortunately, the simplicity
of the representation also means that it has limited predictive capabilities and can lead to overly
stiff responses.
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Power Law

Another common expression for isotropic hardening is the power-law hardening model. Due to its
prevalence, a dedicated ELASTIC-PLASTIC POWER LAW HARDENING model may be found
in LAMÉ (see Section 4.8.1). This expression is given as,

𝜎̄ = 𝜎𝑦 + 𝐴 < 𝜀𝑝 − 𝜀𝐿 >𝑛,

in which < · > are Macaulay brackets, 𝜀𝐿 is the Luders strain, 𝐴 is a fitting constant, and 𝑛 is an
exponent typically taken such that 0 < 𝑛 ≤ 1. The Luders strain is a positive, constant strain value
(defaulted to zero) giving an initially perfectly plastic response in the plastic deformation domain
(see Fig. 4.20). The derivative is then simply,

𝑑𝜎̄

𝑑𝜀𝑝
= 𝑛𝐴 < 𝜀𝑝 − 𝜀𝐿 >(𝑛−1) .

Note, one difficulty in such an implementation is that when the effective equivalent plastic strain is
zero, numerical difficulties may arise in evaluating the derivative and necessitate special treatment
of the case.

Voce

The Voce hardening model (sometimes referred to as a saturation model) uses a decaying
exponential function of the equivalent plastic strain such that the hardening eventually saturates to
a specified value (thus the name). Such a relationship has been observed in some structural metals
giving rise to the popularity of the model. The hardening response is given as,

𝜎̄ = 𝜎𝑦 + 𝐴 (1 − exp (−𝑛𝜀𝑝)) ,

in which 𝐴 is a fitting constant and 𝑛 is a fitting exponent controlling how quickly the hardening
saturates. Importantly, the derivative is written as,

𝑑𝜎̄

𝑑𝜀𝑝
= 𝑛𝐴 exp (−𝑛𝜀𝑝) ,

and is well defined everywhere giving the selected form an advantage over the aforementioned
power law model.

Johnson-Cook

The Johnson-Cook hardening model is a variant of the classical Johnson-Cook [48], [49]
expression. In this instance, the temperature-dependence is neglected to focus on the
rate-dependent capabilities while allowing for arbitrary isotropic hardening forms via the use of a
user-defined hardening function. With these assumptions, the flow stress may be written as,

𝜎̄ = 𝜎̃𝑦 (𝜀𝑝)
[
1 + 𝐶

〈
ln

( ¤̄𝜀𝑝
¤𝜀0

)〉]
,
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in which 𝜎̃𝑦 (𝜀𝑝) is the user-specified rate-independent hardening function, 𝐶 is a fitting constant
and ¤𝜀0 is a reference strain rate. The Macaulay brackets ensure the material behaves in a rate
independent fashion when ¤̄𝜀𝑝 < ¤𝜀0.

Power Law Breakdown

Like the Johnson-Cook formulation, the power-law breakdown model is also rate-dependent.
Again, a multiplicative decomposition is assumed between isotropic hardening and the
corresponding rate-dependence dependent. In this case, however, the functional form is derived
from the analysis of Frost and Ashby [33] in which power-law relationships like those of the
Johnson-Cook model cease to appropriately capture the physical response. The form used here is
similar to the expression used by Brown and Bammann [16] and is written as,

𝜎̄ = 𝜎̃𝑦 (𝜀𝑝)
[
1 + asinh

(( ¤̄𝜀𝑝
𝑔

) (1/𝑚))]
,

with 𝜎̃𝑦 (𝜀𝑝) being the user supplied rate independent expression, 𝑔 is a model parameter related
to the activation energy required to transition from climb to glide-controlled deformation, and 𝑚
dictates the strength of the dependence.

4.16.2 Implementation

Like the Hill and Hosford models, the Barlat plasticity model uses a elastic predictor-inelastic
corrector closest point projection (CPP) return mapping algorithm (RMA) for integration. Details
of the numerical scheme and forms of the necessary derivatives may be found in the work of
Scherzinger [86]. For this approach, given a rate of deformation, 𝑑𝑖 𝑗 , and a time step, Δ𝑡, a trial
stress state is calculated based on an elastic response

𝑇 𝑡𝑟𝑖 𝑗 = 𝑇
𝑛
𝑖 𝑗 + Δ𝑡 C𝑖 𝑗 𝑘𝑙𝑑𝑘𝑙 .

If the trial stress state lies outside the yield surface, i.e. if 𝜙(𝑇 𝑡𝑟𝑖 𝑗 ) > 𝜎̄, then the model uses an
implicit, backward Euler algorithm to return the stress to the yield surface. To perform this task,
two nonlinear equations need to be solved. The first is associated with the satisfaction of the
flow-rule and ensures that the plastic strain increment is in the correct direction. Such a relation
leads to a residual of the form,

𝑅𝑖 𝑗 = Δ𝑑p𝑖 𝑗 − Δ𝛾
𝜕𝜙

𝜕𝑇𝑖 𝑗
= 0. (4.49)

while the second equation to be addressed enforces that the converged stress state is on the yield
surface and is written as,

𝑓 = 𝜙
(
𝑇𝑖 𝑗

)
− 𝜎̄ (𝜀𝑝) = 0. (4.50)
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The primary method for solving these equations is a Newton-Raphson algorithm. With Δ𝛾 (which
is equal to Δ𝜀𝑝) and 𝑇𝑖 𝑗 being the solution variables, an iterative algorithm is utilized such that

Δ𝛾 (𝑘+1) = Δ𝛾 (𝑘) + Δ (Δ𝛾)

𝑇 (𝑘+1)𝑖 𝑗 = 𝑇 (𝑘)𝑖 𝑗 + Δ𝑇𝑖 𝑗 ,

with Δ𝛾 (0) = 0 and 𝑇 (0)𝑖 𝑗 = 𝑇 𝑡𝑟𝑖 𝑗 . The plastic rate of deformation correction is then simply

Δ𝑑p𝑖 𝑗 = C
−1
𝑖 𝑗 𝑘𝑙

(
𝑇 𝑡𝑟𝑘𝑙 − 𝑇𝑘𝑙

)
.

After linearizing the residual and consistency equations (Equations (4.49) and (4.50)), the set of
nonlinear equations may be solved for the correction increments leading to expressions of the
form,

Δ (Δ𝛾) =
𝑓 (𝑘) − 𝑅(𝑘)𝑖 𝑗 L

(𝑘)
𝑖 𝑗 𝑘𝑙

𝜕𝜙(𝑘)

𝜕𝑇𝑘𝑙

𝜕𝜙(𝑘)

𝜕𝑇𝑖 𝑗
L (𝑘)𝑖 𝑗 𝑘𝑙

𝜕𝜙(𝑘)

𝜕𝑇𝑘𝑙
+ 𝐻′ (𝑘)

Δ𝑇𝑖 𝑗 = −L (𝑘)𝑖 𝑗 𝑘𝑙
(
𝑅(𝑘)𝑘𝑙 + Δ (Δ𝛾)

𝜕𝜙(𝑘)

𝜕𝑇𝑘𝑙

)
,

and L (𝑘)𝑖 𝑗 𝑘𝑙 is the Hessian of the RMA problem (not the yield surface) and is given as,

L (𝑘)𝑖 𝑗 𝑘𝑙 =
(
S𝑖 𝑗 𝑘𝑙 + Δ𝛾 (𝑘)

𝜕2𝜙(𝑘)

𝜕𝜎𝑖 𝑗𝜕𝜎𝑘𝑙

)−1

,

and S𝑖 𝑗 𝑘𝑙 = C−1
𝑖 𝑗 𝑘𝑙 .

Unfortunately, a straightforward Newton-Raphson algorithm does not always converge, so the
RMA is augmented with a line search algorithm producing modified incrementation relations
with

Δ𝛾 (𝑘+1) = Δ𝛾 (𝑘) + 𝛼Δ (Δ𝛾) ,

𝑇 (𝑘+1)𝑖 𝑗 = 𝑇 (𝑘)𝑖 𝑗 + 𝛼Δ𝑇𝑖 𝑗 ,

where 𝛼 ∈ (0, 1] is the line search parameter which is determined from certain convergence
considerations. If 𝛼 = 1 then the Newton-Raphson algorithm is recovered. The line search
algorithm greatly increases the reliability of the return mapping algorithm.
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4.16.3 Verification

To verify the Barlat plasticity model a similar approach to that used for the Hill plasticity model
(Section 4.15.3) is utilized.

Additional verification exercises for the various failure models and adiabatic heating capabilities
may be found in [61], [62] and [60], respectively.

Specifically, both uniaxial stress and pure shear loadings are considered. To this end, the response
of a 2090-T3 aluminum [9] with Voce hardening of the form,

𝜎̄ (𝜀𝑝) = 𝜎𝑦 + 𝐴 (1 − exp (−𝑏𝜀𝑝)) ,

is used. The corresponding elastic, plastic, and anisotropy model parameters are given in Table
4.22.

Table 4.22 The material and model parameters for the Barlat plasticity model used for verification
testing. The anisotropy coefficients correspond to 2090-T3 aluminum.

𝐸 70 GPa 𝜈 0.25
𝑎 8 𝜎𝑦 200 MPa
𝐴 200 MPa 𝑏 20
𝑐′12 -0.069888 𝑐′′12 0.981171
𝑐′13 0.936408 𝑐′′13 0.476741
𝑐′21 0.079143 𝑐′′21 0.575316
𝑐′23 1.003060 𝑐′′23 0.866827
𝑐′31 0.524741 𝑐′′31 1.145010
𝑐′32 1.363180 𝑐′′32 -0.079294
𝑐′44 1.023770 𝑐′′44 1.051660
𝑐′55 1.069060 𝑐′′55 1.147100
𝑐′66 0.954322 𝑐′′66 1.404620

Finally, the coordinate system used in these calculations is a rectangular coordinate system with
the 𝑒1

𝑖 , 𝑒
2
𝑖 , 𝑒

3
𝑖 axes aligned with the 𝑥, 𝑦, 𝑧 axes.

4.16.3.1 Uniaxial Stress

First, the response of the material subject to a uniaxial stress is considered. As such, the Cauchy
stress tensor takes the form 𝜎𝑖 𝑗 = 𝜎𝛿𝑖1𝛿 𝑗1. In the transformed stress space, this uniaxial tensor
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becomes,

𝑠′𝑖 𝑗 =
1
3
𝜎


𝑐′12 + 𝑐′13 0 0

0 −2𝑐′21 + 𝑐′23 0
0 0 −2𝑐′31 + 𝑐′32


𝑠′′𝑖 𝑗 =

1
3
𝜎


𝑐′′12 + 𝑐′′13 0 0

0 −2𝑐′′21 + 𝑐′′23 0
0 0 −2𝑐′′31 + 𝑐′′32

 .
It is noted from (4.51) the that two transformed stress tensors are purely diagonal and therefore in
a principal state. The actual ordering of the components into the corresponding principal stresses
depends on the anisotropy coefficients. By inspection of Table 4.22 it is clear in this instance that
tensors are already ordered (𝑠′1 = 𝑠′11, 𝑠

′′
1 = 𝑠′′11 etc.). With this observation, the effective stress

may be reduced to,

𝜙
(
𝜎𝑖 𝑗

)
= 𝜔 |𝜎 |,

where 𝜔 is a constant dependent on model parameters and is written as,

𝜔 =
1
3

{
1
4

[
|𝑐′12 + 𝑐′13 − 𝑐′′12 − 𝑐′′13 |𝑎 + |𝑐′12 + 𝑐′13 + 2𝑐′′21 − 𝑐′′23 |𝑎 + |𝑐′12 + 𝑐′13 + 2𝑐′′31 − 𝑐′′32 |𝑎

+ |𝑐′23 − 2𝑐′21 − 𝑐′′12 − 𝑐′′13 |𝑎 + |𝑐′23 − 2𝑐′21 + 2𝑐′′21 − 𝑐′′23 |𝑎 + |𝑐′23 − 2𝑐′21 + 2𝑐′′31 − 𝑐′′32 |𝑎

+ |𝑐′32 − 2𝑐′31 − 𝑐′′12 − 𝑐′′13 |𝑎 + |𝑐′32 − 2𝑐′31 + 2𝑐′′21 − 𝑐′′23 |𝑎 + |𝑐′32 − 2𝑐′31 + 2𝑐′′31 − 𝑐′′32 |𝑎
]}1/𝑎

.

Axial Stresses

To determine the axial stress, it is first noted that during plastic deformation,

𝜙
(
𝜎𝑖 𝑗

)
= 𝜔𝜎 = 𝜎̄ (𝜀𝑝) ,

where the fact that a tensile loading will be investigated (𝜎 > 0) is leveraged. The stress is then
simply,

𝜎 =
𝜎̄ (𝜀𝑝)
𝜔

. (4.51)

This shows that during plastic deformation the stress state can be calculated from the hardening
law and anisotropy parameters.

To evaluate the axial stress, a relationship between the equivalent plastic strain and axial strain is
needed. By noting the uniaxial stress state and equating the rate of plastic work, it is evident
that,

𝜎̄ ¤̄𝜀𝑝 = 𝜎 ( ¤𝜀 − ¤𝜀e) → ¤̄𝜀𝑝 = 1
𝜔
( ¤𝜀 − ¤𝜀e)
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which, when integrated, gives an implicit equation for the equivalent plastic strain that is written
as

𝜀𝑝 =
1
𝜔

(
𝜀 − 𝜎̄(𝜀

𝑝)
𝜔𝐸

)
. (4.52)

The equivalent plastic strain can then be used in (4.51) to find the axial stress, 𝜎. Corresponding
stress-strain results determined analytically in this fashion and numerically via Adagio are
presented below in Fig. 4.76.

Fig. 4.76 Axial stress-strain response determined analytically and numerically for 2090-T3 aluminum
using the Barlat plasticity model with Voce hardening.
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Lateral Strains

To determine the plastic strain, the derivatives of the yield surface with respect to the Cauchy
stress (𝜕𝜙/𝜕𝜎𝑖 𝑗 ) are needed. From (4.48) it can be seen that these relations are quite complex and
the reader is referred to [86] for a detailed discussion of how to rigorously evaluate these
derivatives under arbitrary conditions. In this effort, the fact that the principal directions of the
transformed stresses (𝑒𝑘′𝑖 and 𝑒𝑘′′𝑖 ) are aligned with the global coordinate system (𝑒1′

𝑖 = 𝑒1
𝑖 etc.)

simplifies the problem sufficiently to allow for an analytical treatments. In this case,

𝜕𝑠′𝑘
𝜕𝑠′𝑖 𝑗

= 𝑒𝑘𝑖 𝑒
𝑘
𝑗 .

With this observation, the lateral flow directions may be written as,

𝜕𝜙

𝜕𝜎22
=

1
3

[ 𝜕𝜙
𝜕𝑠′1

(
𝑐′13 − 2𝑐′12

)
+ 𝜕𝜙
𝜕𝑠′2

(
𝑐′21 + 𝑐′23

)
+ 𝜕𝜙
𝜕𝑠′3

(
𝑐′31 − 2𝑐′32

)
+ 𝜕𝜙
𝜕𝑠′′1

(
𝑐′′13 − 2𝑐′′12

)
+ 𝜕𝜙
𝜕𝑠′′2

(
𝑐′′21 + 𝑐′′23

)
+ 𝜕𝜙
𝜕𝑠′′3

(
𝑐′′31 − 2𝑐′′32

) ]
𝜕𝜙

𝜕𝜎33
=

1
3

[ 𝜕𝜙
𝜕𝑠′1

(
𝑐′12 − 2𝑐′13

)
+ 𝜕𝜙
𝜕𝑠′2

(
𝑐′21 − 2𝑐′23

)
+ 𝜕𝜙
𝜕𝑠′3

(
𝑐′31 + 𝑐′32

)
+ 𝜕𝜙
𝜕𝑠′′1

(
𝑐′′12 − 2𝑐′′13

)
+ 𝜕𝜙
𝜕𝑠′′2

(
𝑐′′21 − 2𝑐′′23

)
+ 𝜕𝜙
𝜕𝑠′′3

(
𝑐′′31 + 𝑐′′32

) ]
,

in which the various 𝜕𝜙/𝜕𝑠′𝑖 derivatives are functions of the anisotropy coefficients and explicit
forms may be found in [86].

The total strain is written simply as,

𝜀𝑖 𝑗 = 𝜀
e
𝑖 𝑗 + 𝜀

p
𝑖 𝑗 ,

with the elastic strain being

𝜀e22 = 𝜀e33 = −𝜈𝜎
𝐸
,

and the plastic strains found via the flow rules as,

𝜀
p
22 = 𝜀𝑝

𝜕𝜙

𝜕𝜎22
; 𝜀

p
33 = 𝜀𝑝

𝜕𝜙

𝜕𝜎33
.

The flow directions were given previously in (4.53) and (4.53) while the equivalent plastic strain
may be found via (4.52). Fig. 4.77 presents the lateral strains as a function of the axial. Clear
agreement may be observed both in Fig. 4.76 and Fig. 4.77 verifying the model. Additionally, the
effect of the anisotropy is plainly evident in Fig. 4.77 in which the two lateral strains differ by
approximately a factor of four.

To test the other directions and further examine the anisotropic character of the model, the
coordinate system rotation input options are used to align the 2 and 3 directions of the material
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Fig. 4.77 Lateral strain as a function of axial strain of 2090-T3 aluminum with Voce hardening as
determined by the Barlat plasticity model both analytically and numerically.
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with the applied load. Analytical expressions may be determined by similarly rotating the
coefficients in the previous expressions, although these are not repeated here for brevity. The
corresponding results for the loading aligned with the 2 and 3 directions are presented in Fig. 4.78
and Fig. 4.79, respectively. All of the results are given with respect to the original coordinate
system to avoid confusion. Clear agreement between analytical and simulation results is noted in
both cases further verifying the capabilities of the model. Importantly, by comparing the various
stress-strain and lateral strain curves, the influence of the material and model anisotropy on the
responses may readily be observed.

(a) Stress-strain (b) Lateral strains

Fig. 4.78 Stress-strain (a) and lateral strain (b) responses of 2090-T3 aluminum with Voce hardening
and the Barlat plasticity model. The material is rotated such that the loading is aligned with the 2
direction.

(a) Stress-strain (b) Lateral strains

Fig. 4.79 Stress-strain (a) and lateral strain (b) responses of 2090-T3 aluminum with Voce hardening
and the Barlat plasticity model. The material is rotated such that the loading is aligned with the 3
direction.
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4.16.3.2 Pure Shear

In this section, the pure shear response of the Barlat model is interrogated to assess its
performance under such conditions. Before proceeding, it is important to recall the ordering of
the shear stresses in Sierra/SM. Specifically, the 𝜎12, 𝜎23, and 𝜎31 stresses are associated with the
44, 55, and 66, respectively, anisotropy coefficients.

To explore the shear performance of the Barlat plasticity model, a stress tensor of the form
𝜎𝑖 𝑗 = 𝜏

(
𝛿𝑖1𝛿 𝑗2 + 𝛿𝑖2𝛿 𝑗1

)
is considered. The ordered principal stresses of the transformed stress

tensors are,

𝑠′𝑖 =


𝑐′44𝜏

0
−𝑐′44𝜏

 ; 𝑠′′𝑖 =


𝑐′′44𝜏

0
−𝑐′′44𝜏

 , (4.53)

thereby simplifying the effective stress to,

𝜙
(
𝜎𝑖 𝑗

)
= 𝜏𝜁,

with

𝜁 =

{
1
2

[
|𝑐′44 − 𝑐′′44 |𝑎 + |𝑐′44 + 𝑐′′44 |𝑎 + |𝑐′44 |𝑎 + |𝑐′′44 |𝑎

]}1/𝑎
.

During plastic flow,

𝜙 = 𝜏𝜁 = 𝜎̄ (𝜀𝑝) ,

producing an expression for the stress in terms of equivalent plastic strain as,

𝜏 =
1
𝜁
𝜎̄ (𝜀𝑝) .

A relationship between the equivalent plastic and axial strains may be determined by first
considering the equivalency of plastic work,

𝜎̄ ¤̄𝜀𝑝 = 2𝜏
(
¤𝜀12 − ¤𝜀e12

)
→ ¤̄𝜀𝑝 = 2

𝜁
( ¤𝜀12 − ¤𝜀e) .

Integrating leads to an implicit expression of the form,

𝜀𝑝 =
2
𝜁

(
𝜀12 −

𝜎̄ (𝜀𝑝)
𝜁𝐺

)
. (4.54)

The preceding relations may be used to analytically determine the shear stress-strain response.
Corresponding results, along with those produced by Adagio, are presented in Fig. 4.80. Shear
responses are also presented for stress tensors of the form 𝜎𝑖 𝑗 = 𝜏

(
𝛿2𝑖𝛿3 𝑗 + 𝛿3𝑖𝛿2 𝑗

)
(23) and

𝜎𝑖 𝑗 = 𝜏
(
𝛿1𝑖𝛿3 𝑗 + 𝛿3𝑖𝛿1 𝑗

)
(31). Analytically, these results were determined by substituting the

relevant anisotropy coefficients in (4.53)-(4.54). For the results from Adagio, the coordinate
system input commands were used to rotate the material coordinate system accordingly.

In all the cases presented in Fig. 4.80 excellent agreement is noted. This not only verifies the
performance of the current model under pure shear loadings but also demonstrates the impact of
the anisotropy and exercises the coordinate system rotation capabilities.
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Fig. 4.80 Shear stress-strain results for 2090-T3 aluminum determined analytically and numerically
by the Barlat plasticity model with Voce Hardening
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4.16.3.3 Plastic Hardening

To verify the capabilities of the hardening models, rate independent and rate dependent alike, the
constant equivalent plastic strain rate, ¤̄𝜀𝑝, uniaxial stress and pure shear verification tests
described in Appendix A are utilized. In these simplified loading cases, the material state may be
found explicitly as a function of time knowing the prescribed equivalent strain rate. For the rate
independent cases, a strain rate of ¤̄𝜀𝑝 = 1 × 10−4s−1 is used for ease in simulations although the
selected rate does note affect the results. Through this testing protocol, the hardening models are
not only tested at different rates but also in different principal material directions to consider the
anisotropy of the Barlat yield surface. Additionally, the rate dependent models are tested for a
wide range of strain rates (over five decades) with all three rate independent hardening functions
(𝜎̃𝑦 in the previous theory section). Although linear, Voce, and power-law rate independent
representations are utilized in the rate dependent tests, in those cases the hardening models are
prescribed via user-defined analytic functions. The rate independent verification exercises, on the
other hand, examine the built-in hardening models. This distinction necessitates the different
considerations and treatments.

The rate dependent and rate independent hardening coefficients are found in Table 4.23 while the
remaining model parameters are unchanged from the previous verification exercises. For the
current verification exercise, the rate independent hardening models (linear, Voce, and power-law)
will first be considered and then the rate dependent forms (Johnson-Cook, power-law
breakdown).

Table 4.23 The model parameters for the hardening verification tests used with the Barlat plasticity
model during verification tests. Parameters for the rate independent hardening functions, 𝜎̃𝑦 , are
also given and denoted with a ·̃ while the subscript refers to the functional form.
𝐶 0.1 ¤𝜀0 1 × 10−4 s−1

𝑔 0.21 s−1 𝑚 16.4
𝐻̃Linear 200 MPa • •

𝐴̃PL 400 MPa 𝑛̃PL 0.25
𝐴̃Voce 200 MPa 𝑛̃Voce 20

Linear

For the rate independent linear hardening model, verification is considered via the uniaxial stress
and pure shear exercises of Appendix A. As the anisotropic Barlat yield surface is being used for
this examination, the uniaxial stress response is determined for loading in three different principal
material planes while the pure shear response is found along three shear planes. Results
determined analytically and numerically are presented in Fig. 4.81. Clear agreement is evident
between the dual solution approaches. Additionally, the linear response and constant tangent
modulus during plastic deformation highlights the characteristic feature of the current model.
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(a) Stress-strain (b) Lateral strains

Fig. 4.81 Uniaxial stress-strain (a) and pure shear (b) responses of the Barlat plasticity model with
rate independent, linear hardening. Solid lines are analytical while open symbols are numerical

Power-Law

To probe the power-law rate independent hardening model, analytical and numerical results to the
uniaxial stress and pure shear problems of Appendix A are determined. Given the anisotropic
nature of the current model, responses are determined along the three principal and three shearing
planes for the uniaxial stress and pure shear cases and all six cases are shown in Fig. 4.82. In
considering Fig. 4.82, it is apparent that the numerical and analytical responses agree quite well
verifying this specific response. These cases also highlight the initially stiff plastic response that
eventually evolves into a more compliant linear like response that is associated with a power-law
hardening model.

Voce

Verifying the Voce model is addressed through the methods of Appendix A. To this end, analytical
and numerical uniaxial stress and pure shear responses are determined along three different
principal directions and shear planes, respectively. The results for these various cases are
presented in Fig. 4.83 and unambiguous agreement is readily seen between the analytical and
numerical results providing further credence to hardening model capabilities. Responses in Fig.
4.83 also exhibit the clear saturation of hardening with sufficient plastic strain that is usually
associated with the Voce model.
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(a) Stress-strain (b) Lateral strains

Fig. 4.82 Uniaxial stress-strain (a) and pure shear (b) responses of the Barlat plasticity model with
rate independent, power-law hardening. Solid lines are analytical while open symbols are numeri-
cal.

(a) Stress-strain (b) Lateral strains

Fig. 4.83 Uniaxial stress-strain (a) and pure shear (b) responses of the Barlat plasticity model with
rate independent, Voce hardening. Solid lines are analytical while open symbols are numerical.
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Johnson-Cook

To investigate the uniaxial response of the Johnson-Cook rate dependent hardening model, the
problem discussed in Appendix A is considered. In this analysis, the response depends only on
time and the various 𝑐′𝑖 and 𝑐

′′
𝑖 Barlat yield surface coefficients. For a full-spectrum verification,

forty-five different cases are evaluated using three different material principal directions (𝑒1, 𝑒2,
and 𝑒3), five different rates ( ¤̄𝜀𝑝 = 1 × 10−3, 1 × 10−2, 1 × 10−1, 1 × 100 and 1 × 101 s−1), and
three different rate independent hardening models (linear, Voce, and power-law). All forty-five
analytical and numerical results are presented in Fig. 4.84 and Fig. 4.85 and quite notable
agreement is observed in each instance.

For the pure shear case, the forty-five different permutations are again explored. The same five
rates and three hardening models are used although three different shearing planes are used instead
of the three principal directions. The solution of the pure shear problem is described in Appendix
A and the analytical and numerical results are presented in Fig. 4.86 and Fig. 4.87. As with the
uniaxial stress response excellent correspondence is noted between the two sets of results.

Power-Law Breakdown

In the case of the power-law Breakdown model, verification is again pursued through the problem
of Appendix A and using the same forty-five cases discussed with the Johnson-Cook model.
Corresponding results are given in Fig. 4.88 and Fig. 4.89 and as with the preceding results
substantial convergence is noted between the analytical and numerical results giving further
credence to the hardening models.

As with the uniaxial stress case, the pure shear capabilities are interrogated through the procedure
of Appendix A using the same forty-five cases outlined in the Johnson-Cook discussion. The
analytical and numerical results are presented in Fig. 4.90 and Fig. 4.91. Again, the two result sets
align beautifully enabling further capability credibility.

4.16.4 User Guide

BEGIN PARAMETERS FOR MODEL BARLAT_PLASTICITY
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>
#

(continues on next page)
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(a) Linear Hardening -- 11 (b) Linear Hardening -- 22

(c) Linear Hardening -- 33 (d) Power-Law Hardening -- 11

(e) Power-Law Hardening -- 22 (f) Power-Law Hardening -- 33

Fig. 4.84 Uniaxial stress-strain response of the Barlat plasticity model (𝑎 = 8) with rate dependent,
Johnson-Cook type hardening with (a-c) linear and (d-f) power-law rate independent hardening.
Solid lines are analytical results while open symbols are numerical.
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(a) Voce Hardening -- 11 (b) Voce Hardening -- 22

(c) Voce Hardening -- 33

Fig. 4.85 Uniaxial stress-strain response of the Barlat plasticity model (𝑎 = 8) with rate dependent,
Johnson-Cook type hardeningwith (a-c) Voce rate independent hardening. Solid lines are analytical
results while open symbols are numerical.
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(a) Linear Hardening -- 11 (b) Linear Hardening -- 22

(c) Linear Hardening -- 33 (d) Power-Law Hardening -- 11

(e) Power-Law Hardening -- 22 (f) Power-Law Hardening -- 33

Fig. 4.86 Stress-strain response of the Barlat plasticity model (𝑎 = 8) with rate dependent, Johnson-
Cook type hardening in pure shear with (a-c) linear and (d-f) power-law rate independent hardening.
Solid lines are analytical results while open symbols are numerical.
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(a) Voce Hardening -- 11 (b) Voce Hardening -- 22

(c) Voce Hardening -- 33

Fig. 4.87 Stress-strain response of the Barlat plasticity model (𝑎 = 8) with rate dependent, Johnson-
Cook type hardening in pure shear with (a-c) Voce rate independent hardening. Solid lines are
analytical results while open symbols are numerical.

230



(a) Linear Hardening -- 11 (b) Linear Hardening -- 22

(c) Linear Hardening -- 33 (d) Power-Law Hardening -- 11

(e) Power-Law Hardening -- 22 (f) Power-Law Hardening -- 33

Fig. 4.88 Uniaxial stress-strain response of the Barlat plasticity model (𝑎 = 8) with rate dependent,
power-law breakdown type hardening with (a-c) linear and (d-f) power-law rate independent hard-
ening. Solid lines are analytical while open symbols are numerical.

231



(a) Voce Hardening -- 11 (b) Voce Hardening -- 22

(c) Voce Hardening -- 33

Fig. 4.89 Uniaxial stress-strain response of the Barlat plasticity model (𝑎 = 8) with rate dependent,
power-law breakdown type hardening with (a-c) Voce rate independent hardening. Solid lines are
analytical while open symbols are numerical.
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(a) Linear Hardening -- 11 (b) Linear Hardening -- 22

(c) Linear Hardening -- 33 (d) Power-Law Hardening -- 11

(e) Power-Law Hardening -- 22 (f) Power-Law Hardening -- 33

Fig. 4.90 Stress-strain response of the Barlat plasticity model (𝑎 = 8) with rate dependent, power-
law breakdown type hardening in pure shear with (a-c) linear and (d-f) power-law rate independent
hardening. Solid lines are analytical results while open symbols are numerical.
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(a) Voce Hardening -- 11 (b) Voce Hardening -- 22

(c) Voce Hardening -- 33

Fig. 4.91 Stress-strain response of the Barlat plasticity model (𝑎 = 8) with rate dependent, power-law
breakdown type hardening in pure shear with (a-c) Voce rate independent hardening. Solid lines
are analytical results while open symbols are numerical.
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(continued from previous page)
# Material coordinates system definition
#
COORDINATE SYSTEM = <string> coordinate_system_name
DIRECTION FOR ROTATION = <real> 1|2|3
ALPHA = <real> (degrees)
SECOND DIRECTION FOR ROTATION = <real> 1|2|3
SECOND ALPHA = <real> (degrees)
#
# Yield surface parameters
#
YIELD STRESS = <real>
A = <real> (4.0)
CP12 = <real> (1.0)
CP13 = <real> (1.0)
CP21 = <real> (1.0)
CP23 = <real> (1.0)
CP31 = <real> (1.0)
CP32 = <real> (1.0)
CP44 = <real> (1.0)
CP55 = <real> (1.0)
CP66 = <real> (1.0)
CPP12 = <real> (1.0)
CPP13 = <real> (1.0)
CPP21 = <real> (1.0)
CPP23 = <real> (1.0)
CPP31 = <real> (1.0)
CPP32 = <real> (1.0)
CPP44 = <real> (1.0)
CPP55 = <real> (1.0)
CPP66 = <real> (1.0)

#
#
# Hardening model
#
HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED |
FLOW_STRESS | DECOUPLED_FLOW_STRESS | JOHNSON_COOK |
POWER_LAW_BREAKDOWN
#
# Linear hardening
#
HARDENING MODULUS = <real>
#
# Power-law hardening
#

(continues on next page)
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(continued from previous page)
HARDENING CONSTANT = <real>
HARDENING EXPONENT = <real> (0.5)
LUDERS STRAIN = <real> (0.0)
#
# Voce hardening
#
HARDENING MODULUS = <real>
EXPONENTIAL COEFFICIENT = <real>
#
# Johnson-Cook hardening
#
HARDENING FUNCTION = <string>hardening_function_name
RATE CONSTANT = <real>
REFERENCE RATE = <real>
#
# Power law breakdown hardening
#
HARDENING FUNCTION = <string>hardening_function_name
RATE COEFFICIENT = <real>
RATE EXPONENT = <real>
# User defined hardening
#
HARDENING FUNCTION = <string>hardening_function_name
#

#
#
# Following Commands Pertain to Flow_Stress Hardening Model
#
# - Isotropic Hardening model
#
ISOTROPIC HARDENING MODEL = LINEAR | POWER_LAW | VOCE |

USER_DEFINED
#
# Specifications for Linear, Power-law, and Voce same as above
#
# User defined hardening
#
ISOTROPIC HARDENING FUNCTION = <string>iso_hardening_fun_name
#
# - Rate dependence
#
RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)
#

(continues on next page)
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(continued from previous page)
# Specifications for Johnson-Cook, Power-law-breakdown
# same as before EXCEPT no need to specify a
# hardening function
#
# User defined rate multiplier
#
RATE MULTIPLIER FUNCTION = <string> rate_mult_function_name
#
# - Temperature dependence
#
TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |

TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)
#
# Johnson-Cook temperature dependence
#
MELTING TEMPERATURE = <real>
REFERENCE TEMPERATURE = <real>
TEMPERATURE EXPONENT = <real>
#
# User-defined temperature dependence
TEMPERATURE MULTIPLIER FUNCTION = <string>temp_mult_function_name
#
# Following Commands Pertain to Decoupled_Flow_Stress Hardening Model
#
# - Isotropic Hardening model
#
ISOTROPIC HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED
#
# Specifications for Linear, Power-law, and Voce same as above
#
# User defined hardening
#
ISOTROPIC HARDENING FUNCTION = <string>isotropic_hardening_function_

↩→name
#
# - Rate dependence
#
YIELD RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)
#
# Specifications for Johnson-Cook, Power-law-breakdown same as before
# EXCEPT no need to specify a hardening function
# AND should be preceded by YIELD
#
# As an example for Johnson-Cook yield rate dependence,

(continues on next page)
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(continued from previous page)
#
YIELD RATE CONSTANT = <real>
YIELD REFERENCE RATE = <real>
#
# User defined rate multiplier
#
YIELD RATE MULTIPLIER FUNCTION = <string>yield_rate_mult_function_

↩→name
#
HARDENING_RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)
#
# Syntax same as for yield parameters but with a HARDENING prefix
#
# - Temperature dependence
#
YIELD TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |

TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)
#
# Johnson-Cook temperature dependence
#
YIELD MELTING TEMPERATURE = <real>
YIELD REFERENCE TEMPERATURE = <real>
YIELD TEMPERATURE EXPONENT = <real>
#
# User-defined temperature dependence
YIELD TEMPERATURE MULTIPLIER FUNCTION = <string>yield_temp_mult_fun_

↩→name
#
HARDENING TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |

TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)
#
# Syntax for hardening constants same as for yield but
# with HARDENING prefix

#
#
# Optional Failure Definitions
# Following only need to be defined if intend to use failure model
#
FAILURE MODEL = TEARING_PARAMETER | JOHNSON_COOK_FAILURE | WILKINS

| MODULAR_FAILURE | MODULAR_BCJ_FAILURE

CRITICAL FAILURE PARAMETER = <real>
#

(continues on next page)
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(continued from previous page)
# TEARING_PARAMETER Failure model definitions
#
TEARING PARAMETER EXPONENT = <real>
#
# JOHNSON_COOK_FAILURE Failure model definitions
#
JOHNSON COOK D1 = <real>
JOHNSON COOK D2 = <real>
JOHNSON COOK D3 = <real>
JOHNSON COOK D4 = <real>
JOHNSON COOK D5 = <real>
#
#Following Johnson-Cook parameters can only be defined once. As␣

↩→such, only
# needed if not previously defined via Johnson-Cook multipliers
# w/ flow-stress hardening. Does need to be defined
# w/ Decoupled Flow Stress
#
REFERENCE RATE = <real>
REFERENCE TEMPERATURE = <real>
MELTING TEMPERATURE = <real>
#
# WILKINS Failure model definitions
#
WILKINS ALPHA = <real>
WILKINS BETA = <real>
WILKINS PRESSURE = <real>
#
# MODULAR_FAILURE Failure model definitions
#
PRESSURE MULTIPLIER = PRESSURE_INDEPENDENT | WILKINS

| USER_DEFINED (PRESSURE_INDEPENDENT)
LODE ANGLE MULTIPLIER = LODE_ANGLE_INDEPENDENT |

WILKINS (LODE_ANGLE_INDEPENDENT)
TRIAXIALITY MULTIPLIER = TRIAXIALITY_INDEPENDENT | JOHNSON_COOK

| USER_DEFINED (TRIAXIALITY_
↩→INDEPENDENT)
RATE FAIL MULTIPLIER = RATE_INDEPENDENT | JOHNSON_COOK

| USER_DEFINED (RATE_INDEPENDENT)
TEMPERATURE FAIL MULTIPLIER = TEMPERATURE_INDEPENDENT | JOHNSON_COOK

| USER_DEFINED (TEMPERATURE_
↩→INDEPENDENT)
#
# Individual multiplier definitions
#

(continues on next page)
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(continued from previous page)
PRESSURE MULTIPLIER = WILKINS
WILKINS ALPHA = <real>
WILKINS PRESSURE = <real>
#
PRESSURE MULTIPLIER = USER_DEFINED
PRESSURE MULTIPLIER FUNCTION = <string> pressure_multiplier_fun_name
#
LODE ANGLE MULTIPLIER = WILKINS
WILKINS BETA = <real>
#
TRIAXIALITY MULTIPLIER = JOHNSON_COOK
JOHNSON COOK D1 = <real>
JOHNSON COOK D2 = <real>
JOHNSON COOK D3 = <real>
#
TRIAXIALITY MULTIPLIER = USER_DEFINED
TRIAXIALITY MULTIPLIER FUNCTION = <string> triaxiality_multiplier_

↩→fun_name
#
RATE FAIL MULTIPLIER = JOHNSON_COOK
JOHNSON COOK D4 = <real>
# REFERENCE RATE should only be added if not previously defined
REFERENCE RATE = <real>
#
RATE FAIL MULTIPLIER = USER_DEFINED
RATE FAIL MULTIPLIER FUNCTION = <string> rate_fail_multiplier_fun_

↩→name
#
TEMPERATURE FAIL MULTIPLIER = JOHNSON_COOK
JOHNSON COOK D5 = <real>
# JC Temperatures should only be defined if not previously given
REFERENCE TEMPERATURE = <real>
MELTING TEMPERATURE = <real>
#
TEMPERATURE FAIL MULTIPLIER = USER_DEFINED
TEMPERATURE FAIL MULTIPLIER FUNCTION = <string> temp_multiplier_fun_

↩→name
#
# MODULAR_BCJ_FAILURE Failure model definitions
#
INITIAL DAMAGE = <real>
INITIAL VOID SIZE = <real>
DAMAGE BETA = <real> (0.5)
GROWTH MODEL = COCKS_ASHBY | NO_GROWTH (NO_GROWTH)
NUCLEATION MODEL = HORSTEMEYER_GOKHALE | CHU_NEEDLEMAN_STRAIN

(continues on next page)
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(continued from previous page)
| NO_NUCLEATION (NO_NUCLEATION)

#
GROWTH RATE FAIL MULTIPLIER = JOHNSON_COOK | USER_DEFINED

| RATE_INDEPENDENT
(RATE_INDEPENDENT)

GROWTH TEMPERATURE FAIL MULTIPLIER = JOHNSON_COOK | USER_DEFINED
| TEMPERATURE_INDEPENDENT
(TEMPERATURE_INDEPENDENT)

#
NUCLEATION RATE FAIL MULTIPLIER = JOHNSON_COOK | USER_DEFINED

| RATE_INDEPENDENT
(RATE_INDEPENDENT)

NUCLEATION TEMPERATURE FAIL MULTIPLIER = JOHNSON_COOK | USER_DEFINED
| TEMPERATURE_INDEPENDENT
(TEMPERATURE_INDEPENDENT)

#
# Definitions for individual growth and nucleation models
#
GROWTH MODEL = COCKS_ASHBY
DAMAGE EXPONENT = <real> (0.5)
#
NUCLEATION MODEL = HORSTEMEYER_GOKHALE
NUCLEATION PARAMETER1 = <real> (0.0)
NUCLEATION PARAMETER2 = <real> (0.0)
NUCLEATION PARAMETER3 = <real> (0.0)
#
NUCLEATION MODEL = CHU_NEEDLEMAN_STRAIN
NUCLEATION AMPLITUDE = <real>
MEAN NUCLEATION STRAIN = <real>
NUCLEATION STRAIN STD DEV = <real>
#
# Definitions for rate and temperature fail multiplier
# Note: only showing definitions for growth.
# Nucleation terms are the same just with NUCLEATION instead
# of GROWTH
#
GROWTH RATE FAIL MULTIPLIER = JOHNSON_COOK
GROWTH JOHNSON COOK D4 = <real>
GROWTH REFERENCE RATE = <real>
#
GROWTH RATE FAIL MULTIPLIER = USER_DEFINED
GROWTH RATE FAIL MULTIPLIER FUNCTION = <string> growth_rate_fail_

↩→mult_func
#
GROWTH TEMPERATURE FAIL MULTIPLIER = JOHNSON_COOK

(continues on next page)
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(continued from previous page)
GROWTH JOHNSON COOK D5 = <real>
GROWTH REFERENCE TEMPERATURE = <real>
GROWTH MELTING TEMPERATURE = <real>
#
GROWTH TEMPERATURE FAIL MULTIPLIER = USER_DEFINED
GROWTH TEMPERATURE FAIL MULTIPLIER FUNCTION = <string> temp_fail_

↩→mult_func
#

#
#
# Optional Adiabatic Heating/Thermal Softening Definitions
# Following only need to be defined if intend to use failure model
#
THERMAL SOFTENING MODEL = ADIABATIC | COUPLED
#
SPECIFIC HEAT = <real> # not needed for COUPLED
BETA_TQ = <real>

END [PARAMETERS FOR MODEL BARLAT_PLASTICITY]

In the command blocks that define the Barlat plasticity model:

• The reference nominal yield stress, 𝜎̄, is defined with the YIELD STRESS command line.

• The exponent for the yield surface description, 𝑎, is defined with the A command line.

• The transformation coefficient, 𝑐′12, is defined with the CP12 command line. It is defaulted
to 1.0.

• The transformation coefficient, 𝑐′13, is defined with the CP13 command line. It is defaulted
to 1.0.

• The transformation coefficient, 𝑐′21, is defined with the CP21 command line. It is defaulted
to 1.0.

• The transformation coefficient, 𝑐′23, is defined with the CP23 command line. It is defaulted
to 1.0.

• The transformation coefficient, 𝑐′31, is defined with the CP31 command line. It is defaulted
to 1.0.

• The transformation coefficient, 𝑐′32, is defined with the CP32 command line. It is defaulted
to 1.0.

• The transformation coefficient, 𝑐′44, is defined with the CP44 command line. It is defaulted
to 1.0.
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• The transformation coefficient, 𝑐′55, is defined with the CP55 command line. It is defaulted
to 1.0.

• The transformation coefficient, 𝑐′66, is defined with the CP66 command line. It is defaulted
to 1.0.

• The transformation coefficient, 𝑐′′12, is defined with the CPP12 command line. It is
defaulted to 1.0.

• The transformation coefficient, 𝑐′′13, is defined with the CPP13 command line. It is
defaulted to 1.0.

• The transformation coefficient, 𝑐′′21, is defined with the CPP21 command line. It is
defaulted to 1.0.

• The transformation coefficient, 𝑐′′23, is defined with the CPP23 command line. It is
defaulted to 1.0.

• The transformation coefficient, 𝑐′′31, is defined with the CPP31 command line. It is
defaulted to 1.0.

• The transformation coefficient, 𝑐′′32, is defined with the CPP32 command line. It is
defaulted to 1.0.

• The transformation coefficient, 𝑐′′44, is defined with the CPP44 command line. It is
defaulted to 1.0.

• The transformation coefficient, 𝑐′′55, is defined with the CPP55 command line. It is
defaulted to 1.0.

• The transformation coefficient, 𝑐′′66, is defined with the CPP66 command line. It is
defaulted to 1.0.

• The type of hardening law is defined with the HARDENING MODEL command line, other
hardening commands then define the specific shape of that hardening curve.

• The hardening modulus for a linear hardening model is defined with the HARDENING
MODULUS command line.

• The hardening constant for a power law hardening model is defined with the HARDENING
CONSTANT command line.

• The hardening exponent for a power law hardening model is defined with the HARDENING
EXPONENT command line.

• The Luders strain for a power law hardening model is defined with the LUDERS STRAIN
command line.

• The hardening function for a user defined hardening model is defined with the HARDENING
FUNCTION command line.

• The shape of the spline for the spline based hardening is defined by the CUBIC SPLINE
TYPE, CARDINAL PARAMETER, KNOT EQPS, and KNOT STRESS command lines.
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Output variables available for this model are listed in Table 4.24.

Table 4.24 State Variables for BARLAT PLASTICITY Model
Name Description
EQPS equivalent plastic strain, 𝜀𝑝
EQDOT equivalent plastic strain rate, ¤̄𝜀𝑝
SEFF effective stress, 𝜙
TENSILE_EQPS tensile equivalent plastic strain, 𝜀𝑝𝑡
DAMAGE damage, 𝜙
VOID_COUNT void count, 𝜂
VOID_SIZE void size, 𝜐
DAMAGE_DOT damage rate, ¤𝜙
VOID_COUNT_DOT void count rate, ¤𝜂
PLASTIC_WORK_HEAT_RATE plastic work heat rate, ¤𝑄𝑝

4.17 Plane Stress Rate Plasticity Model

4.17.1 Theory

The plane stress rate plasticity model is the plane stress formulation of a 𝐽2 plasticity model given
by Simo and Taylor [90] (and described again in Simo and Hughes [91]) extended to include
rate-dependent hardening and a failure model for use with shell elements.

Like other plasticity models, the components of the objective stress rate,
◦
𝜎𝑖 𝑗 , are written as,

◦
𝜎𝑖 𝑗= C𝑖 𝑗 𝑘𝑙𝐷

e
𝑘𝑙

where C𝑖 𝑗 𝑘𝑙 are the components of the fourth-order, isotropic elasticity tensor and 𝐷e
𝑖 𝑗 are the

components of the elastic part of the total rate of deformation tensor. An additive split of the total
rate of deformation tensor into elastic and plastic contributions is assumed such that,

𝐷𝑖 𝑗 = 𝐷
e
𝑖 𝑗 + 𝐷

p
𝑖 𝑗 .

The plane stress formulation recasts the three-dimensional problem into a constrained subspace
with plane stress conditions acting as the constraints. To do this, the plane stress rate plasticity
model follows the approach of Simo and Taylor [90] to enforce 𝜎13 = 𝜎23 = 𝜎33 = 0 and related
conditions.

For the plasticity portion of the model, the formulation of Simo and Taylor [90] is used (In the
work of Simo and Taylor [90] and later Simo and Hughes [91], hardening is assumed to be rate
and temperature independent. Here, such terms are included but do not materially change the
formulation. Similarly, the earlier works also introduce kinematic hardening which is not used in
the current model.) in which a traditional three-dimensional 𝐽2 plasticity model is recast in
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reduced subspace. To do this, it is recalled that in three-dimensions the von Mises effective stress,
𝜙, is written,

𝜙2 =
3
2
𝑠𝑖 𝑗 𝑠𝑖 𝑗 ,

with 𝑠𝑖 𝑗 = 𝜎𝑖 𝑗 − (1/3)𝜎𝑘𝑘𝛿𝑖 𝑗 the deviatoric stress. To write an equivalent expression in the
reduced subspace, the vector, 𝜎, and matrix, 𝑃̄, are introduced as (Note, here the 𝑥 and 𝑋
notations are introduced for vector and matrix objects, respectively, to clearly distinguish that
these variables are not tensors. This results from operating in the constrained stress subspace and
means that these terms do not have properties of a tensor and act on each other as traditional
matrices and vectors.),

𝜎 =


𝜎11
𝜎22
𝜎12

 , ; 𝑃̄ =
1
3


2 −1 0
−1 2 0
0 0 3

 ,
such that,

𝑠 =


𝑠11
𝑠22
𝑠12

 = 𝑃̄ 𝜎.

In the reduced plane-stress subspace, an alternative effective stress, 𝜙, is given as,

𝜙2 = 𝜎𝑇𝑃 𝜎 =
2
3
𝜙2,

where

𝑃 =
1
3


2 −1 0
−1 2 0
0 0 6

 ,
in which 𝑃 and 𝑃̄ differ by a two in the shear term to reflect Voigt corrections.

A yield function, 𝑓 , is introduced as,

𝑓 = 𝜙2 − 𝑅2, (4.55)

with,

𝑅 =

√
2
3
𝜎̄

(
𝜀𝑝, ¤̄𝜀𝑝, 𝜃

)
,

where 𝜀𝑝 and ¤̄𝜀𝑝 are the equivalent plastic strain (isotropic hardening variable) and its rate,
respectively. Various hardening options may be used with this model. In general, the current flow
stress is written as,

𝜎̄
(
𝜀𝑝, ¤̄𝜀𝑝, 𝜃

)
=

(
𝜎𝑦 + 𝐾 (𝜀𝑝)

)
𝜎̂

( ¤̄𝜀𝑝 ) (
1 −

(
𝜃 − 𝜃ref

𝜃melt − 𝜃ref

)𝑀 )
, (4.56)
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in which 𝜎𝑦 is the original yield stress, 𝐾 is the isotropic hardening function that may take linear,
power-law, or multilinear form, 𝜎̂ the rate multiplier whose specification will be defined later, and
the right-most term is the Johnson-Cook temperature dependence term that may be optionally
used to give temperature dependence of the flow-stress.

To complete the theoretical formulation, the flow rules are specified as,

𝑑𝜀𝑝 = 𝜆𝑃 𝜎,

𝑑𝜀𝑝 = ¤̄𝜀𝑝Δ𝑡 = 𝜆
√

2
3
𝜙,

where 𝜆 is the consistency multiplier enforcing 𝑓 = 0 during plastic deformation and 𝑑𝜀𝑝 is the
plastic strain increment in the constrained subspace. It is emphasized here that the yield surface
described in (4.55) is not homogeneous of degree one like in other three-dimensional
formulations presented in this manual. As such, the consistency multiplier and equivalent plastic
strain increment are not equivalent. As an example of this, by consideration of the preceding
relations, it is apparent that 𝜆 has units of one over stress.

The specification of the rate dependence, 𝜎̂, is important as it enables the consideration of two
different model responses. These behaviors are controlled via the USER RATE DEPENDENCE
command. If this input parameter is zero, then either an analytical or user-defined
rate-dependence may be given. Importantly, in this case failure is not modeled. For the analytical
case, the Johnson-Cook [48], [49] rate-multiplier is used such that,

𝜎̂
( ¤̄𝜀𝑝 ) = {

1 + 𝐶 ln
(
¤̄𝜀𝑝
¤̄𝜀0

)
¤̄𝜀𝑝 > ¤̄𝜀0

1 ¤̄𝜀𝑝 ≤ ¤̄𝜀0
,

with 𝐶 being the rate dependence multiplier and ¤̄𝜀0 is a reference rate. Note, while other models
allow user specification of the reference rate, the plane stress rate plasticity model uses the value
set in the original work of Johnson-Cook [48] such that ¤̄𝜀0 = 1s−1. Alternatively, a user function
may be specified for the rate multiplier, 𝜎̂.

If USER RATE DEPENDENCE is set to one, both rate dependence and failure may be modeled.
With respect to the rate dependence, (4.56) is rewritten,

𝜎̄
(
𝜀𝑝, ¤̄𝜀𝑝, 𝜃

)
= 𝜎̃

(
𝜀𝑝, ¤̄𝜀𝑝

) (
1 −

(
𝜃 − 𝜃ref

𝜃melt − 𝜃ref

)𝑀 )
,

in which both isotropic hardening and rate dependence are described via definition of 𝜎̃. In this
case, 𝜎̃ cannot be specified through analytical expressions and must instead be given as a series of
isotropic hardening curves; each at a different strain rate. For rates not explicitly given,
interpolation is performed between relevant curves. Note, no extrapolation is performed with
respect to the rates. If a rate is determined outside any specified curves, the hardening is
calculated with respect to the bounding curve.

For failure, a failure parameter, 𝛼, is calculated as

𝛼 =
∫ 𝑡

0

1
𝜀 𝑓

(
𝜂, ¤̄𝜀𝑝

) ¤̄𝜀𝑝𝑑𝑡 = 𝑡∑
𝑡0

𝑑𝜀𝑝

𝜀 𝑓
(
𝜂, ¤̄𝜀𝑝

) , (4.57)
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in which the summation is used to imply the discrete calculation of the damage variable over a
series of loadsteps and 𝜀 𝑓 is the rate and triaxiality, 𝜂, dependent failure strain. The failure strain,
𝜀 𝑓 , is specified in a fashion similar to 𝜎̃. Specifically, a series of triaxiality dependent functions
are defined each at a given strain rate. Interpolation is used at rates between those specified.
Extrapolation outside the defined bounds is not done and the extremum curves are instead used.

The onset of damage is assumed to occur when 𝛼 = 1 and the current failure strain is taken to be
the critical one such that 𝜀𝑐𝑟𝑓 = 𝜀 𝑓 (𝑡 = 𝑡𝑐𝑟) with 𝑡𝑐𝑟 being the time at which 𝛼 = 1. Subsequent
damage calculation is performed via,

𝛼 (𝑡 > 𝑡𝑐𝑟) =
∫ 𝑡𝑐𝑟

0

1
𝜀 𝑓

(
𝜂, ¤̄𝜀𝑝

) ¤̄𝜀𝑝𝑑𝑡 + ∫ 𝑡

𝑡𝑐𝑟

1
𝜀𝑐𝑟𝑓
¤̄𝜀𝑝𝑑𝑡. (4.58)

After the critical failure parameter has been reached, an exponential decay relation is used to
decrease the strength of the material. In this fashion, a decay relation of the form,

𝜎̄ = 𝜎̄𝑒𝐶1 (1−𝛼) , (4.59)

is used in which 𝐶1 is the decay coefficient.

For more information about the plane stress rate plasticity model, consult [90], [91].

4.17.2 Implementation

The plane stress rate plasticity model encapsulates both a plasticity and failure model. These
features are implemented in a decoupled, sequential sense. As such, the implementation of these
features will also be presented and discussed in a sequential fashion.

For the plasticity portion, the approach of Simo and Taylor [90] (and Simo and Hughes [91]) in
developing a single scalar equation to solve is adopted. As will be discussed, a slightly different
approach will be used to solve this equation versus that used previously. To get to this single
scalar equation, an elastic-predictor inelastic corrector scheme is adopted. In this scheme, an
elastic predictor is calculated by assuming all deformation is elastic such that,

𝜎𝑡𝑟 = 𝜎𝑛 + Δ𝑡𝐶̄ 𝑑𝜀𝑛+1, (4.60)

in which n and n+1 denote the material states at 𝑡 = 𝑡𝑛 and 𝑡 = 𝑡𝑛+1, respectively, with
Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛. The plane stress stiffness matrix, 𝐶̄, is given as,

𝐶̄ =
𝐸

1 − 𝜈2


1 𝜈 0
𝜈 1 0
0 0 1−𝜈

2

 ,
with 𝐸 and 𝜈 being the Youngs Modulus and Poisson’s ratio, respectively, and 𝑑𝜀𝑛+1 is the plane
stress total strain increment that is written,

𝑑𝜀 = Δ𝑡


𝑑11
𝑑22
2𝑑12

 ,
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where 𝑑𝑖 𝑗 are the components of the rate of deformation tensor.

The stress at time 𝑡 = 𝑡𝑛+1 may be given as,

𝜎𝑛+1 = 𝐶̄
[
𝜀𝑛+1 − 𝜀p

]
,

which noting the definition of the trial stress in (4.60) may be implicitly rewritten,

𝜎𝑛+1 = 𝜎𝑡𝑟 − 𝜆 𝐶̄ 𝑃 𝜎𝑛+1.

Rearranging yields, [
𝐼 + 𝜆 𝐶̄ 𝑃

]
𝜎𝑛+1 = 𝜎𝑡𝑟 , (4.61)

with 𝐼 the identity matrix. Importantly, by noting that 𝜎𝑡𝑟 is known it is clear that (4.61) is an
equation for the updated stress vector in terms of only the unknown scalar consistency parameter,
𝜆. To further simplify the problem, it can be shown that 𝐶̄ and 𝑃 share the same principal
subspaces such that (see Simo and Hughes [91] for details),

𝑃 = 𝑄 Λ𝑃𝑄𝑇 , ; 𝐶̄ = 𝑄 Λ𝐶𝑄𝑇 ,

where 𝑄𝑇 is an orthogonal matrix such that 𝑄𝑇 = 𝑄−1 and the matrices 𝑄, Λ𝑃 and Λ𝐶 are given
as,

Λ𝑃 =


1/3 0 0
0 1 0
0 0 2

 , ; Λ𝐶 =


𝐸/(1 − 𝜈) 0 0

0 2𝜇 0
0 0 2𝜇


𝑄 =

1
√

2


1 −1 0
1 1 0
0 0

√
2

 .
By introducing a transformed stress vector in the principal space of 𝐶̄ and 𝑃, 𝜂, such that,

𝜂 =


𝜂11
𝜂12
𝜂12

 = 𝑄𝑇𝜎,

the effective stress may be rewritten,

𝜙2 = 𝜂𝑇Λ𝑃𝜂.

By rewriting (4.61) in the transformed space the premultiplying matrix on the left-hand side can
be analytically inverted such that,

𝜂𝑛+1 =


𝜂𝑡𝑟11

1+𝜆 𝐸
3(1−𝜈)
𝜂𝑡𝑟22

1+𝜆2𝜇
𝜂𝑡𝑟12

1+𝜆2𝜇


,
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and the effective stress may be written as a scalar function of 𝜆,

𝜙2 (𝜆) =
1
3
(
𝜂𝑡𝑟11

)2[
1 + 𝜆 𝐸

2(1−𝜈)

]2

(
𝜂𝑡𝑟22

)2 + 2
(
𝜂𝑡𝑟12

)2

[1 + 𝜆2𝜇]2
.

Noting that the equivalent plastic strain and rate may be written,

𝜀𝑝(𝑛+1) = 𝜀𝑝(𝑛) + 𝜆
√

2
3
𝜙, ; ¤̄𝜀𝑝 = 𝜆

Δ𝑡

√
2
3
𝜙,

means determining the updated states reduces to solving the scalar consistency equation,

𝑓 (𝜆) = 𝜙2 (𝜆) − 𝜎̄ (𝜆) ,

for 𝜆. This is done iteratively by using a line-search augmented Newton-Raphson method like that
described in [86].

Failure is handled separately from plasticity and in a straight-forward fashion. Specifically, if
𝛼𝑛 > 1 (above the critical value) then a decay coefficient, 𝛽𝑛+1, is calculated via

𝛽𝑛+1 = 𝑒𝐶1 (1−𝛼𝑛) ,

and the yield stress is scaled accordingly such that,

𝜎̄ = 𝛽𝜎̄.

Such corrections are done prior to performing the plasticity calculation. Updating the damage
variable, 𝛼𝑛+1, is done via relations (4.57) (or (4.58)) after convergence is achieved for the
inelastic correction.

4.17.3 User Guide

BEGIN PARAMETERS FOR MODEL PLANE_STRESS_RATE_PLASTICITY
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>
#
# Optional parameters related to inelastic correction criteria
#

(continues on next page)
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(continued from previous page)
TOLERANCE = <real> tolerance (1.0e-10)
MAX_INEL_CORR_ITER = <int> maximum_correction_iterations (100)
MAX_LS_CORR_ITER = <int> maximum_line_search_cutbacks (20)
#
USER RATE DEPENDENCE = 0|1(0)
YIELD STRESS = <real>
#
FORMULATION = <int> formulation (1)
#
# Input Options for USER RATE DEPENDENCE = 0
#
# linear hardening
HARDENING MODULUS = <real> hardening_modulus
# power law hardening
HARDENING CONSTANT = <real> hardening_constant
HARDENING EXPONENT = <real> hardening_exponent (0.5)
# multilinear hardening
HARDENING FUNCTION = <string>
#
# Rate dependence
#
# Johnson-Cook rate dependence
RATE CONSTANT = <real>
# multilinear rate dependence
RATE FUNCTION = <string> rate_function_name
#
# Input Options for USER RATE DEPENDENCE = 1
#
# rate-dependent yield
YIELD STRAIN RATES = <real_list> yield_strain_rates
YIELD CURVES = <string_list> yield_function_names
# rate-dependent damage
FRACTURE STRAIN RATES = <real_list> fracture_strain_rates
FRACTURE CURVES = <string_list> fracture_function_names
DECAY COEFFICIENT = <real> (1.0)
#
# Thermal softening commands (Johnson-Cook)
INITIAL TEMPERATURE = <real>
MELT TEMPERATURE = <real>
REFERENCE TEMPERATURE = <real>
THERMAL EXPONENT = <real>
#

END [PARAMETERS FOR MODEL PLANE_STRESS_RATE_PLASTICITY]

In the command blocks that define the Plane Stress Rate Plasticity model:
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• TOLERANCE specifies the numerical value used for assessing convergence of the plastic
correction routine.

• Optionally, the user can specify the maximum number of inelastic correction iterations for
the plasticity inelastic correction routines. By default this value is 100.

• Optionally, the user can specify the maximum number of line search cutbacks in the
plasticity correction routine. By default this value is 20 and only impacts the formulation
not equal to 0 (plastic strain rate) case.

• The reference nominal yield stress, 𝜎̄, is defined with the YIELD STRESS command line.

• The formulation parameter defines whether the total strain rate (formulation = 0) or
equivalent plastic strain rate (anything else) is used for calculating rate dependence.

• INITIAL TEMPERATURE defines the initial temperature at 𝑡 = 0.

• MELT TEMPERATURE defines 𝑇𝑚𝑒𝑙𝑡 in (4.56).

• REFERENCE TEMPERATURE defines 𝑇𝑟𝑒 𝑓 in (4.56).

• THERMAL EXPONENT defines 𝑀 in (4.56).

• The USER RATE DEPENDENCE is used to control the way hardening may be specified
and whether or not failure is calculated.

– For USER RATE DEPENDENCE = 0, plastic hardening may be specified as linear,
power-law, OR multilinear. Failure cannot be used with USER RATE DEPENDENCE
= 0:

∗ For linear hardening, a non-zero HARDENING MODULUS should be specified.
Do not give if using power-law or multilinear hardening.

∗ For power-law hardening, the HARDENING CONSTANT should be specified.
Optionally, the HARDENING EXPONENT parameter should be specified if the
default value (0.5) is not to be used. Do not give for linear or multilinear
hardening.

∗ For multilinear hardening, a function name should be given for HARDENING
FUNCTION command. Do not specify for linear or power-law hardening.

∗ For Johnson-Cook rate-dependence, a rate constant must be specified via the
RATE CONSTANT command. Do not use if using functionally specified
rate-dependence.

∗ For functionally defined rate-dependence, a function name should be given via
the RATE FUNCTION command. Do not specify if using Johnson-Cook type
rate dependence.

– For USER RATE DEPENDENCE = 1, plastic hardening is specified through a series
of user functions. Failure can be modeled
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∗ Rate-dependent plastic hardening is specified jointly via the YIELD STRAIN
RATES and YIELD CURVES commands. YIELD STRAIN RATES is a list of
strain rates corresponding one-to-one to functions specified in the YIELD
CURVES list of strings giving user-defined function names. Each YIELD
CURVES function should give the plastic isotropic plastic hardening curve at the
corresponding rate given in YIELD STRAIN RATES.

∗ Failure strains used in calculating damage are specified via the FRACTURE
STRAIN RATES and FRACTURE CURVES commands. Similarly to the plastic
hardening, a list of strain rates should be given with the FRACTURE STRAIN
RATES input. Each rate should correspond one-to-one with a user function listed
via FRACTURE CURVES. These functions are specified as a function of
triaxiality and should give the failure strain at the specified rate.

∗ The decay coefficient, 𝐶1, that controls the exponential decay of the yield stress
related to failure should be specified via the DECAY COEFFICIENT command.

Output variables available for this model are listed in Table 4.25.

Table 4.25 State Variables for PLANE STRESS RATE PLASTICITY Model
Name Description
EQPS equivalent plastic strain, 𝜀𝑝
EQDOT equivalent plastic strain rate, ¤̄𝜀𝑝
SEFF effective stress, 𝜙

4.18 Modular Plane Stress Plasticity Model

4.18.1 Theory

Like the plane stress plasticity model of Section 4.17, the modular plane stress plasticity (MPSP)
model is a plane stress implementation of a 𝐽2 plasticity formulation largely following and
motivated by the works of Simo and Taylor [90] and Simo and Hughes [91]. However, the
modular plane stress plasticity model differs from those prior works and the aforementioned plane
stress plasticity formulation via its specification of the hardening. Specifically, in the current case
kinematic hardening is neglected and expanded isotropic hardening and rate-dependence are
considered by leveraging various modular hardening capabilities used with a variety of solid
plasticity models (i.e. the 𝐽2 plasticity model in Section 4.13).

Like other plasticity models, the components of the objective stress rate,
◦
𝜎𝑖 𝑗 , are written as,

◦
𝜎𝑖 𝑗= C𝑖 𝑗 𝑘𝑙𝐷

e
𝑘𝑙

where C𝑖 𝑗 𝑘𝑙 are the components of the fourth-order, isotropic elasticity tensor and 𝐷e
𝑖 𝑗 are the

components of the elastic part of the total rate of deformation tensor. An additive split of the total
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rate of deformation tensor into elastic and plastic contributions is assumed such that,

𝐷𝑖 𝑗 = 𝐷
e
𝑖 𝑗 + 𝐷

p
𝑖 𝑗 .

With a 𝐽2 plasticity model, the effective stress measure, 𝜙, may be written,

𝜙2 =
3
2
𝑠𝑖 𝑗 𝑠𝑖 𝑗 ; 𝑠𝑖 𝑗 = 𝜎𝑖 𝑗 −

1
3
𝜎𝑘𝑘𝛿𝑖 𝑗 ,

with 𝑠𝑖 𝑗 begin the deviatoric stress tensor. After enforcing the plane-stress conditions
(𝜎13 = 𝜎23 = 𝜎33 = 0), there are only three non-zero stress components. As such, the problem
may be simplified by introducing the projection matrix, 𝑃̄, of Simo and Taylor [90],

𝑃̄ =
1
3


2 −1 0
−1 2 0
0 0 3

 ,
so that,

𝑠 = 𝑃̄ 𝜎

where,

𝜎 =


𝜎11
𝜎22
𝜎12

 ; 𝑠 =


𝑠11
𝑠22
𝑠12

 .
Note, in the previous and following relations an explicit matrix notation is used to denote
variables in the projected stress space to reinforce that these terms are not tensors. To this end, a
single underline (𝑥) is used for a vector while a twice underlined variable (𝑋) is a matrix.

The projected effective stress measure, 𝜙, may then be taken to be,

𝜙2 = 𝜎𝑇𝑃 𝜎,

in which a superscript T denotes transpose and,

𝑃 =
1
3


2 −1 0
−1 2 0
0 0 6

 .
Written in this fashion, there is a small difference between the projected effective stress (𝜙) and
the traditional 3D form (𝜙) associated with a constant premultiplier. This is due to subtle
differences in notation used by the plane-stress references [90], [91] and is accounted for in the
definition of the yield surface radius, 𝑅, ensuring equivalence in forms.

A corresponding yield function, 𝑓 , is introduced such that,

𝑓 = 𝜙
(
𝜎
)
− 𝑅2 (

𝜀𝑝, ¤̄𝜀𝑝
)
,

253



where 𝑅 is the yield surface radius in the deviatoric 𝜋-plane that isotropically hardens via
dependencies on the equivalent plastic strain (isotropic hardening variable) and its rate that are
denoted 𝜀𝑝 and ¤̄𝜀𝑝, respectively. The radius may be related to the current yield stress, 𝜎̄, via,

𝑅 =

√
2
3
𝜎̄

(
𝜀𝑝, ¤̄𝜀𝑝

)
.

The distinguishing feature of the modular plane stress plasticity model is a flexible definition of
the isotropic hardening in which the current yield stress is generically written,

𝜎̄ = 𝜎𝑦𝜎̂𝑦
( ¤̄𝜀𝑝 ) + 𝐾 (𝜀𝑝) 𝜎̂ℎ ( ¤̄𝜀𝑝 ) ,

with 𝜎𝑦, 𝐾 , and 𝜎̂𝑦,ℎ being the constant initial yield stress, isotropic hardening, and separate rate
multipliers for yield and hardening, respectively. A variety of different forms may be assumed as
described below.

To complete the theoretical formulation, the flow rules are specified as,

𝑑𝜀𝑝 = 𝜆𝑃 𝜎,

𝑑𝜀𝑝 = 𝜆

√
2
3
𝜙,

where 𝜆 is the consistency multiplier enforcing 𝑓 = 0 during plastic deformation and 𝑑𝜀𝑝 is the
plastic strain increment in the constrained subspace. It is emphasized here that the current yield
function described in is not homogeneous of degree one like in other three-dimensional
formulations presented in this manual. As such, the consistency multiplier and equivalent plastic
strain increment are not equivalent. As an example of this, by consideration of the preceding
relations, it is apparent that 𝜆 has units of one over stress.

For more information about the modular plane stress plasticity model, consult [90], [91].

4.18.1.1 Plastic Hardening

Plastic hardening refers to increases in the flow stress, 𝜎̄, with plastic deformation. As such,
hardening is described via a functional relationship between the flow stress and isotropic
hardening variable (effective plastic strain), 𝜎̄ (𝜀𝑝). Over the course of nearly a century of work in
metal plasticity, a variety of relationships have been proposed to describe the interactions
associated with different physical interpretations, deformation mechanisms, and materials. To
enable the utilization of the same plasticity models for different material systems, a modular
implementation of plastic hardening has been adopted such that the analyst may select different
hardening models from the input deck thereby avoiding any code changes or user subroutines. In
this section, additional details are given for the different models to enable the user to select the
appropriate choice of model. Note, the models being discussed here are only for isotropic
hardening in which the yield surface expands. Kinematic hardening in which the yield surface
translates in stress-space with deformation and distortional hardening where the shape of the yield
surface changes shape with deformation are not treated. For a larger discussion of the
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phenomenology and history of different hardening types, the reader is referred to [42], [57],
[64].

Given the ubiquitous nature of these hardening laws in computational plasticity, some (if not
most) of this material may be found elsewhere in this manual. Nonetheless, the discussion is
repeated here for the convenience of the reader.

Linear

Linear hardening is conceptually the simplest model available in LAMÉ. As the name implies, a
linear relationship is assumed between the hardening variable, 𝜀𝑝, and flow stress. The hardening
modulus, 𝐻′, is a constant giving the rate of change of flow stress with plastic flow. The flow
stress expression may therefore be written,

𝜎̄ = 𝜎𝑦 + 𝐻′𝜀𝑝 .

The simplicity of the model is its main feature as the constant slope,

𝑑𝜎̄

𝑑𝜀𝑝
= 𝐻′,

makes the model attractive for analytical models and cheap for computational implementations
(e.g. radial return algorithms require only a single correction step). Unfortunately, the simplicity
of the representation also means that it has limited predictive capabilities and can lead to overly
stiff responses.

Power Law

Another common expression for isotropic hardening is the power-law hardening model. Due to its
prevalence, a dedicated ELASTIC-PLASTIC POWER LAW HARDENING model may be found
in LAMÉ (see Section 4.8.1). This expression is given as,

𝜎̄ = 𝜎𝑦 + 𝐴 < 𝜀𝑝 − 𝜀𝐿 >𝑛,

in which < · > are Macaulay brackets, 𝜀𝐿 is the Luders strain, 𝐴 is a fitting constant, and 𝑛 is an
exponent typically taken such that 0 < 𝑛 ≤ 1. The Luders strain is a positive, constant strain value
(defaulted to zero) giving an initially perfectly plastic response in the plastic deformation domain
(see Fig. 4.20). The derivative is then simply,

𝑑𝜎̄

𝑑𝜀𝑝
= 𝑛𝐴 < 𝜀𝑝 − 𝜀𝐿 >(𝑛−1) .

Note, one difficulty in such an implementation is that when the effective equivalent plastic strain is
zero, numerical difficulties may arise in evaluating the derivative and necessitate special treatment
of the case.
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Voce

The Voce hardening model (sometimes referred to as a saturation model) uses a decaying
exponential function of the equivalent plastic strain such that the hardening eventually saturates to
a specified value (thus the name). Such a relationship has been observed in some structural metals
giving rise to the popularity of the model. The hardening response is given as,

𝜎̄ = 𝜎𝑦 + 𝐴 (1 − exp (−𝑛𝜀𝑝)) ,

in which 𝐴 is a fitting constant and 𝑛 is a fitting exponent controlling how quickly the hardening
saturates. Importantly, the derivative is written as,

𝑑𝜎̄

𝑑𝜀𝑝
= 𝑛𝐴 exp (−𝑛𝜀𝑝) ,

and is well defined everywhere giving the selected form an advantage over the aforementioned
power law model.

Johnson-Cook

The Johnson-Cook hardening model is a variant of the classical Johnson-Cook [48], [49]
expression. In this instance, the temperature-dependence is neglected to focus on the
rate-dependent capabilities while allowing for arbitrary isotropic hardening forms via the use of a
user-defined hardening function. With these assumptions, the flow stress may be written as,

𝜎̄ = 𝜎̃𝑦 (𝜀𝑝)
[
1 + 𝐶

〈
ln

( ¤̄𝜀𝑝
¤𝜀0

)〉]
,

in which 𝜎̃𝑦 (𝜀𝑝) is the user-specified rate-independent hardening function, 𝐶 is a fitting constant
and ¤𝜀0 is a reference strain rate. The Macaulay brackets ensure the material behaves in a rate
independent fashion when ¤̄𝜀𝑝 < ¤𝜀0.

Power Law Breakdown

Like the Johnson-Cook formulation, the power-law breakdown model is also rate-dependent.
Again, a multiplicative decomposition is assumed between isotropic hardening and the
corresponding rate-dependence dependent. In this case, however, the functional form is derived
from the analysis of Frost and Ashby [33] in which power-law relationships like those of the
Johnson-Cook model cease to appropriately capture the physical response. The form used here is
similar to the expression used by Brown and Bammann [16] and is written as,

𝜎̄ = 𝜎̃𝑦 (𝜀𝑝)
[
1 + asinh

(( ¤̄𝜀𝑝
𝑔

) (1/𝑚))]
,

with 𝜎̃𝑦 (𝜀𝑝) being the user supplied rate independent expression, 𝑔 is a model parameter related
to the activation energy required to transition from climb to glide-controlled deformation, and 𝑚
dictates the strength of the dependence.
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4.18.1.2 Flow Stress

Unlike the previously described models, the flow-stress hardening method is less a specific
physical representation and more a generalization of the hardening behaviors to allow greater
flexibility in separately describing isotropic hardening and rate-dependence. As such, the generic
flow-stress definition of

𝜎̄
(
𝜀𝑝, ¤̄𝜀𝑝

)
= 𝜎̃𝑦 (𝜀𝑝) 𝜎̂

( ¤̄𝜀𝑝 ) ,
is used in which 𝜎̂ is the rate multiplier that by default is unity (such that the response is rate
independent) and 𝜎̃𝑦 is the isotropic hardening component that may also be specified as,

𝜎̃𝑦 = 𝜎𝑦 + 𝐾 (𝜀𝑝) ,

with 𝜎𝑦 being the constant yield stress and 𝐾 is the isotropic hardening that is initially zero and a
function of the equivalent plastic strain. A multiplicative decomposition such as this mirrors the
general structure used by Johnson and Cook [48], [49] although greater flexibility is allowed in
terms of the specific form of the rate multiplier.

Given the aforementioned default for rate-dependence, the corresponding multiplier need not be
specified. A representation for the isotropic hardening, however, must be specified and can be
defined via linear, power-law, Voce, or user-defined representations. For the user-defined case, an
isotropic hardening function is required and it must be highlighted that the interpretation differs
from the general user-defined hardening model. In this case, as the specified function represents
the isotropic hardening, it should start from zero – not yield.

Although the flow-stress hardening model defaults to rate independent, a multiplier may be
defined. For rate-dependence, either the previously discussed Johnson-Cook or power-law
breakdown models or a user-defined multiplier may be used. For the user-defined capability, the
multiplier should be input as a strictly positive function of the equivalent plastic strain rate with a
value of one in the rate-independent limit.

4.18.1.3 Decoupled Flow Stress

Like the flow-stress hardening method, the decoupled flow-stress hardening implementation is a
generalization of the hardening behaviors to allow greater flexibility. In differentiating the two, for
the decoupled model the rate dependence may be separately specified for the yield and hardening
portions of the flow stress. As such, the generic flow-stress definition of

𝜎̄
(
𝜀𝑝, ¤̄𝜀𝑝

)
= 𝜎𝑦𝜎̂y

( ¤̄𝜀𝑝 ) + 𝐾 (𝜀𝑝) 𝜎̂h
( ¤̄𝜀𝑝 ) ,

is used in which 𝜎̂ are rate multipliers that by default are unity (such that the response is rate
independent) with subscripts y and h denoting functions associated with yield and hardening. The
isotropic hardening is described by 𝐾 (𝜀𝑝) and 𝜎𝑦 is the constant initial yield stress. It may also
be seen that if the yield and hardening dependencies are the same (𝜎̂y = 𝜎̂h) the decoupled flow
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stress model reduces to that of the flow stress case and mirrors the general structure of the
Johnson-Cook model [48], [49].

Given the aforementioned default to rate dependence, the corresponding multiplier need not be
specified. A representation for the isotropic hardening, however, must be specified and can be
defined via linear, power-law, Voce, or user-defined representations. For the user-defined case, an
isotropic hardening function should be used and it must be highlighted that the interpretation
differs from the general user-defined hardening model. In this case, as the specified function
represents the isotropic hardening, it should start from zero – not yield.

Although the decoupled flow-stress hardening model defaults to rate independent, a multiplier
may be defined. For rate-dependence, either the previously discussed Johnson-Cook or power-law
breakdown models or a user-defined multiplier may be used. For the user-defined capability, the
multiplier should be input as a strictly positive function of the equivalent plastic strain rate with a
value of one in the rate-independent limit.

4.18.2 Implementation

The integration approach for the modular plane stress plasticity model follows largely from the
elastic-predictor/inelastic-corrector radial return approaches of Simo and Taylor [90] (and Simo
and Hughes [91]) with the exception of an extra line-search step and slightly modified treatment
for the hardening. To this end, the total strain increment 𝑑𝜀 = ¤𝜀Δ𝑡 is given as,

𝑑𝜀 = Δ𝑡


𝑑11
𝑑22
2𝑑12


where Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛 in which 𝑡 = 𝑡𝑛 and 𝑡 = 𝑡𝑛+1 are a completely known state and the state to be
determined. The trial stress may then be written,

𝜎𝑡𝑟 = 𝐶̄
[
𝜀𝑛 + 𝑑𝜀 − 𝜀

p
𝑛

]
(4.62)

with

𝐶̄ =
𝐸

1 − 𝜈2


1 𝜈 0
𝜈 1 0
0 0 1−𝜈

2


and 𝐸 and 𝜈 being the elastic modulus and Poisson’s ratio, respectively. The trial yield function is
then simply,

𝑓 𝑡𝑟 = 𝜙2 (
𝜎𝑡𝑟

)
− 𝑅2 (

𝜀
p
𝑛, 0

)
.

For the case of plastic loading, if a fully implicit backward Euler scheme is adopted the plastic
strain flow rules are,

𝜀
p
𝑛+1 = 𝜀p𝑛 + 𝜆𝑃 𝜎𝑛+1, (4.63)
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𝜀
p
𝑛+1 = 𝜀p𝑛 + 𝜆

√
2
3
𝜙𝑛+1. (4.64)

By introducing,

𝜎𝑛+1 = 𝐶̄
(
𝜀𝑛+1 − 𝜀

p
𝑛+1

)
,

and using relations (4.62) and (4.63), the updated stress may be shown to be,[
𝐼 + 𝜆𝐶̄ 𝑃

]
𝜎𝑛+1 = 𝜎𝑡𝑟 , (4.65)

with 𝐼 being the identity matrix. As noted by Simo and Taylor [90], 𝐶̄ and 𝑃 share characteristic
subspaces 𝑄 enabling a principle decomposition such that,

𝑃 = 𝑄 ΛP𝑄𝑇 , ; 𝐶̄ = 𝑄 ΛC𝑄𝑇 ,

in which,

𝑄𝑇 =
1
√

2


1 1 0
−1 1 0
0 0

√
2

 ; ΛP =


1
3 0 0
0 1 0
0 0 2

 ; ΛC =


𝐸

1−𝜈 0 0
0 2𝜇 0
0 0 𝜇

 .
In this space, a transformed stress, 𝜂, may be given as,

𝜂 = 𝑄𝑇 𝜎,

which, when substituted into (4.65) yields,[
𝐼 + 𝜆ΛC ΛP

]
𝜂
𝑛+1 = 𝜂𝑡𝑟 . (4.66)

Importantly, in (4.66) the matrix on the left-hand side is diagonal and easily inverted. The updated
transformed stress is thus a function of the consistency multiplier alone. Substituting the
corresponding evaluation of the stress into the definition of the effective stress produces a scalar
function of 𝜆 such that,

𝜙2 =
1
3
(
𝜂𝑡𝑟11

)2[
1 + 𝜆 𝐸

3(1−𝜈)

]2 +
(
𝜂𝑡𝑟22

)2 + 2
(
𝜂𝑡𝑟12

)2

[1 + 𝜆2𝜇]2
.

With the effective stress written as a function of 𝜆 alone and the flow rules in (4.63) and (4.64)
only an appropriate approximation for the effective plastic strain rate is needed to arrive at the
single scalar consistency equation to be solve. To that end, using (4.64), the effective plastic strain
rate is taken to be,

¤̄𝜀p (𝜆) ≈
𝜀
p
𝑛+1 − 𝜀

p
𝑛

Δ𝑡
=
𝜆

Δ𝑡

√
2
3
𝜙𝑛+1 (𝜆) .
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The updated yield function is now written as,

𝑓𝑛+1 (𝜆) = 𝜙2
𝑛+1 (𝜆) − 𝑅2 (𝜆) = 0.

This non-linear equation may be readily solved via a line-search augmented Newton-Raphson
approach (see [86]) by recasting the consistency condition as a residual,

𝑟 𝑓 (𝜆) = 𝑓 (𝜆) = 0.

Which, when linearized as,

𝑟
𝑓
𝑘+1 = 𝑟 𝑓𝑘 +

𝑑𝑓

𝑑𝜆
Δ𝜆,

with k being the non-linear correction iteration and Δ𝜆 is the consistency increment yields the
solution (with 𝑟 𝑓𝑘+1 = 0),

Δ𝜆 =
−𝑟 𝑓𝑘
𝑑𝑓
𝑑𝜆

.

The derivative is simply given as,

𝑑𝑓

𝑑𝜆
=
𝑑

𝑑𝜆

(
𝜙2

)
− 𝑑

𝑑𝜆

(
𝑅2

)
,

where

𝑑

𝑑𝜆

(
𝜙2

)
= −2


𝐸

3 (1 − 𝜈)

1
3
(
𝜂𝑡𝑟11

)2[
1 + 𝜆 𝐸

3(1−𝜈)

]3 + 2𝜇
(
𝜂𝑡𝑟22

)2 + 2
(
𝜂𝑡𝑟12

)2

[1 + 𝜆2𝜇]3

 ,
and

𝑑

𝑑𝜆

(
𝑅2

)
=

4
3

(
𝜎𝑦𝜎̂𝑦 + 𝐾𝜎̂ℎ

) [
𝜎̂ℎ
𝑑𝐾

𝑑𝜀p
𝑑𝜀p

𝑑𝜆
+ 𝑑
¤̄𝜀p
𝑑𝜆

(
𝜎𝑦
𝑑𝜎̂𝑦

𝑑 ¤̄𝜀p
+ 𝐾 𝑑𝜎̂ℎ

𝑑 ¤̄𝜀p

)]
,

in which

𝑑𝜀p

𝑑𝜆
=

√
2
3

(
𝜙 + 𝜆𝑑𝜙

𝑑𝜆

)
,

𝑑 ¤̄𝜀p
𝑑𝜆

=
1
Δ𝑡

√
2
3

(
𝜙 + 𝜆𝑑𝜙

𝑑𝜆

)
.

As only a single equation needs to be solved, a merit function, 𝜓, is simply given as,

𝜓 (𝜆) = 1
2

(
𝑟 𝑓

𝜎2
𝑦

)2

which may be solved via the quadratic approximation line-search scheme of [86].
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4.18.3 Verification

Given the modular nature of the modular plane stress plasticity (MPSP) model, a variety of tests
are constructed to ascertain performance under different loadings and and combinations of
hardening models. The model parameters needed for such tests are given below in Table 4.26.
While a large number of combinations of the hardening and/or rate multipliers have been tested
under different conditions (>100 tests), here, for brevity only a sampling of these tests are
presented.

Table 4.26 Model parameters for verification tests used with the modular plane stress plasticity
(MPSP) model.

𝐸 70 GPa 𝜈 0.33 (-)
𝜎𝑦 200 MPa 𝐻′ 500 MPa
𝐴PL 400 MPa 𝑛PL 0.25 (-)
𝐴Voce 200 MPa 𝑛Voce 20 (-)
𝐶 0.1 (-) ¤𝜀0 1 × 10−4 s−1

𝑔 0.21 s−1 𝑚 16.4 (-)

4.18.3.1 Uniaxial stress

For the uniaxial stress tests, the constant equivalent plastic strain boundary value problem of
Appendix A is used. Although that discussion is for 3D formulations, the plane stress assumptions
agree with the assumed boundary conditions (e.g. traction free out-of-plane stress) enabling the
same results to be used here. Results for such tests and their corresponding analytical solutions
are shown in Fig. 4.92 for constant strain rates of ¤̄𝜀𝑝 = 1 × 10−3s−1 (Fig. 4.92(a)) and ¤̄𝜀𝑝 = 1s−1

(Fig. 4.92(b)).

4.18.3.2 Balanced Biaxial

To assess performance of the model with multiple stress components, a constant equivalent plastic
strain rate balanced biaxial test is considered. For this test, a stress-state (in the projected plane
stress space) of

𝜎 (𝑡) =

𝜎 (𝑡)
−𝜎 (𝑡)

0


is assumed. Note, such a loading is equivalent to a pure shear loading in a rotated frame of
reference. As such, many of the pure shear results of Appendix A may be leveraged. To that end, if
elasticity effects are included the total strain, 𝜀 (𝑡), may be found to be

𝜀 (𝑡) = 1
√

3
𝜎𝑦 + 𝜎̂ℎ𝐾

( ¤̄𝜀𝑝 (
𝑡 − 𝑡el

) )
2𝜇

+
√

3
2
¤̄𝜀𝑝

(
𝑡 − 𝑡el

)
,
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Fig. 4.92 Analytical and numerical constant equivalent plastic strain rate verification tests of the
modular plane stress plasticity models with a uniaxial stress state and strain rates of (a) ¤𝜀𝑝 =
1 × 10−3s−1 and (b) ¤𝜀𝑝 = 1s−1 with linear, power-law, and voce isotropic hardening and power-law
breakdown rate-dependence. Solid lines are analytical and open symbols are from finite element
calculations.

with 𝑡el being the time at yield (elastic limit). To produce the desired stress state, the
corrresponding displacements are 𝑢1 (𝑡) = exp (𝜀 (𝑡)) − 1 and 𝑢2 (𝑡) = exp (−𝜀 (𝑡)) − 1. Results of
such tests and their corresponding analytical solutions are presented below in Fig. 4.93 with
constant strain rates of ¤̄𝜀𝑝 = 1 × 10−3s−1 (Fig. 4.93(a)) and ¤̄𝜀𝑝 = 1s−1 (Fig. 4.93(b)).

Fig. 4.93 Analytical and numerical constant equivalent plastic strain rate verification tests of the
modular plane stress plasticity models with a balanced biaxial stress state and strain rates of (a)
¤𝜀𝑝 = 1×10−3s−1 and (b) ¤𝜀𝑝 = 1s−1 with linear, power-law, and voce isotropic hardening and power-law
breakdown rate-dependence. Solid lines are analytical and open symbols are from finite element
calculations. Positive valued stresses correspond to 𝜎11 while negative values are 𝜎22.
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4.18.3.3 Biaxial Shear

As a final set of tests, the pure shear response is probed. To accomplish this loading, the previous
balanced biaxial test is reconsidered with the geometry rotated 45◦ about the out of plane
direction producing a stress state of,

𝜎 (𝑡) =


0
0

𝜎𝑥𝑦 (𝑡)

 .
The previous results from Section 4.18.3.2 regarding the solution for the balanced biaxial problem
may again be used with 𝜎𝑥𝑦 (𝑡) = 𝜎 (𝑡). Result for this case, both analytical and finite element, are
given in Fig. 4.93 with constant applied strain rates of ¤̄𝜀𝑝 = 1 × 10−3s−1 and ¤̄𝜀𝑝 = 1s−1 in Fig.
4.94(a) and Fig. 4.94(b), respectively.

Fig. 4.94 Analytical and numerical constant equivalent plastic strain rate verification tests of the
modular plane stress plasticity models with a pure shear stress state and strain rates of (a) ¤𝜀𝑝 =
1 × 10−3s−1 and (b) ¤𝜀𝑝 = 1s−1 with linear, power-law, and voce isotropic hardening and power-law
breakdown rate-dependence. Solid lines are analytical and open symbols are from finite element
calculations.

4.18.4 User Guide

BEGIN PARAMETERS FOR MODEL MODULAR_PLANE_STRESS_PLASTICITY
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>

(continues on next page)
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(continued from previous page)
TWO MU = <real>
#
YIELD STRESS = <real>
#

#
#
# Hardening model
#
HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED |
FLOW_STRESS | DECOUPLED_FLOW_STRESS | JOHNSON_COOK |
POWER_LAW_BREAKDOWN
#
# Linear hardening
#
HARDENING MODULUS = <real>
#
# Power-law hardening
#
HARDENING CONSTANT = <real>
HARDENING EXPONENT = <real> (0.5)
LUDERS STRAIN = <real> (0.0)
#
# Voce hardening
#
HARDENING MODULUS = <real>
EXPONENTIAL COEFFICIENT = <real>
#
# Johnson-Cook hardening
#
HARDENING FUNCTION = <string>hardening_function_name
RATE CONSTANT = <real>
REFERENCE RATE = <real>
#
# Power law breakdown hardening
#
HARDENING FUNCTION = <string>hardening_function_name
RATE COEFFICIENT = <real>
RATE EXPONENT = <real>
# User defined hardening
#
HARDENING FUNCTION = <string>hardening_function_name
#
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#
#
# Following Commands Pertain to Flow_Stress Hardening Model
#
# - Isotropic Hardening model
#
ISOTROPIC HARDENING MODEL = LINEAR | POWER_LAW | VOCE |

USER_DEFINED
#
# Specifications for Linear, Power-law, and Voce same as above
#
# User defined hardening
#
ISOTROPIC HARDENING FUNCTION = <string>iso_hardening_fun_name
#
# - Rate dependence
#
RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

RATE_INDEPENDENT (RATE_INDEPENDENT)
#
# Specifications for Johnson-Cook, Power-law-breakdown
# same as before EXCEPT no need to specify a
# hardening function
#
# User defined rate multiplier
#
RATE MULTIPLIER FUNCTION = <string> rate_mult_function_name
#
#
# Following Commands Pertain to Decoupled_Flow_Stress Hardening Model
#
# - Isotropic Hardening model
#
ISOTROPIC HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED
#
# Specifications for Linear, Power-law, and Voce same as above
#
# User defined hardening
#
ISOTROPIC HARDENING FUNCTION = <string>isotropic_hardening_function_

↩→name
#
# - Rate dependence
#
YIELD RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

RATE_INDEPENDENT (RATE_INDEPENDENT)

(continues on next page)
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(continued from previous page)
#
# Specifications for Johnson-Cook, Power-law-breakdown same as before
# EXCEPT no need to specify a hardening function
# AND should be preceded by YIELD
#
# As an example for Johnson-Cook yield rate dependence,
#
YIELD RATE CONSTANT = <real>
YIELD REFERENCE RATE = <real>
#
# User defined rate multiplier
#
YIELD RATE MULTIPLIER FUNCTION = <string>yield_rate_mult_function_

↩→name
#
HARDENING_RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

RATE_INDEPENDENT (RATE_INDEPENDENT)
#
# Syntax same as for yield parameters but with a HARDENING prefix
#

END [PARAMETERS FOR MODEL MODULAR_PLANE_STRESS_PLASTICITY]

In the command blocks that define the Modular Plane Stress Plasticity model:

• The reference nominal yield stress, 𝜎̄, is defined with the YIELD STRESS command line.

• The type of hardening law is defined with the HARDENING MODEL command line, other
hardening commands then define the specific shape of that hardening curve.

• The hardening modulus for a linear hardening model is defined with the HARDENING
MODULUS command line.

• The hardening constant for a power law hardening model is defined with the HARDENING
CONSTANT command line.

• The hardening exponent for a power law hardening model is defined with the HARDENING
EXPONENT command line.

• The Luders strain for a power law hardening model is defined with the LUDERS STRAIN
command line.

• The hardening function for a user defined hardening model is defined with the HARDENING
FUNCTION command line.

• The shape of the spline for the spline based hardening is defined by the CUBIC SPLINE
TYPE, CARDINAL PARAMETER, KNOT EQPS, and KNOT STRESS command lines.
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• The isotropic hardening model for the flow stress hardening model is defined with the
ISOTROPIC HARDENING MODEL command line.

• The function name of a user-defined isotropic hardening model is defined via the
ISOTROPIC HARDENING FUNCTION command line.

• The optional rate multiplier for the flow stress hardening model is defined with the RATE
MULTIPLIER command line.

• The optional rate multiplier for the yield stress for the decoupled flow stress hardening
model is defined with the YIELD RATE MULTIPLIER command line.

• The optional rate multiplier for the hardening for the decoupled flow stress hardening model
is defined with the HARDENING RATE MULTIPLIER command line.

Output variables available for this model are listed in Table 4.27.

Table 4.27 State Variables for MODULAR PLANE STRESS PLASTICITY Model
Name Description
RADIUS yield surface radius in deviatoric 𝜋-plane, 𝑅
EQPS equivalent plastic strain, 𝜀𝑝
EQDOT equivalent plastic strain rate, ¤̄𝜀𝑝
TENSILE_EQPS tensile equivalent plastic strain, 𝜀𝑝𝑡

4.19 Power Law Creep Model

4.19.1 Theory

The power law creep model describes the secondary (or steady-state) creep and is useful in
capturing the time-dependent behavior of metals, brazes, or solder at high homologous
temperatures. It may also be used as a simple model for the time-dependent behavior of geologic
materials such as salt. A general discussion of such creep behaviors and the associated modeling
may be found in the texts of [57], [77] while the specific implementation used here is discussed in
[101].

In the power law creep model, the effective creep strain rate is taken to be explicitly a function of
stress and temperature. A power law relation is used for the stress dependence while an Arrhenius
like expression is used to capture thermal effects. As such, the effective creep strain rate is written
as,

¤̄𝜀c = 𝐴𝜎̄𝑚𝑣𝑀 exp
(
−𝑄
𝑅𝜃

)
, (4.67)

where ¤̄𝜀c is the effective creep strain rate, 𝜎̄𝑣𝑀 is the von Mises stress, 𝐴 is the creep constant, 𝑚
is the creep exponent, 𝑄 is the activation energy, 𝑅 is the universal gas constant (1.987 cal/mole
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K), and 𝜃 is the absolute temperature. As a slip based mechanism, it is assumed that the creep
strains are deviatoric leading to a 3D evolution law of the form,

𝐷c
𝑖 𝑗 = ¤̄𝜀c

3
2
𝑠𝑖 𝑗

𝜎̄𝑣𝑀
,

with 𝑠𝑖 𝑗 being the deviatoric stress. The corresponding incremental constitutive equation for this
model is then given as,

◦
𝜎𝑖 𝑗= C𝑖 𝑗 𝑘𝑙

(
𝐷𝑘𝑙 − 𝐷c

𝑘𝑙

)
. (4.68)

4.19.2 Implementation

Given the time-dependent nature of the model response, an explicit, forward Euler scheme is used
to integrate the routine. Prior analysis [101] has shown that this implementation is conditionally
stable and found an expression of the form

Δ𝑡st <
4 (1 + 𝜈)

3𝐸𝐴 exp
(
−𝑄
𝑅𝜃

)
𝑚𝜎̄𝑚−1

𝑣𝑀

for the critical time step for stability, Δ𝑡𝑠𝑡 . This time step is calculated using the previously
determined material state (state 𝑛) and compared to the input time step. If necessary, the time step
is cut back to meet this critical limit.

To determine the updated material state (state 𝑛 + 1) it is first noted that the creep process is purely
deviatoric. Therefore, the stress may be decomposed as,

𝑇𝑛𝑖 𝑗 = −𝑝𝑛𝛿𝑖 𝑗 + 𝑠𝑛𝑖 𝑗

where 𝑝 is the pressure (𝑝𝑛 = − (1/3) 𝑇𝑛𝑘𝑘 ) and 𝑇𝑖 𝑗 is the unrotated stress. Given the decoupled
nature of the hydrostatic and deviatoric components, the updated pressure may be found as,

𝑝𝑛+1 = 𝑝𝑛 − 𝐾𝑑𝑘𝑘Δ𝑡,

with 𝑑𝑖 𝑗 being the unrotated rate of deformation. By similarly decomposing the rate of
deformation,

𝑑𝑖 𝑗 =
1
3
𝑑𝑘𝑘𝛿𝑖 𝑗 + 𝑑𝑖 𝑗 ,

with 𝑑𝑖 𝑗 being the deviatoric part of the rate of deformation, the updated deviatoric stress is

𝑠𝑛+1𝑖 𝑗 = 𝑠𝑛𝑖 𝑗 + 2𝜇
(
𝑑𝑖 𝑗 −

3
2
𝐴 exp

(
−𝑄
𝑅𝜃𝑛

) (
𝜎̄𝑛𝑣𝑀

)𝑚−1
𝑠𝑛𝑖 𝑗

)
.

The updated stress is then simply,

𝑇𝑛+1𝑖 𝑗 = −𝑝𝑛+1𝛿𝑖 𝑗 + 𝑠𝑛+1𝑖 𝑗 .
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4.19.3 Verification

The power law creep model is verified through two, time-dependent tests – creep and stress
relaxation. It is noted that given the strong time dependency and form of the differential
constitutive equations, a closed form analytical expression for the response is not readily available.
Semi-analytical approaches in which simple numerical integration is used to solve the underlying
differential equation, however, are well suited to such efforts and are used here to verify the
numerical responses. The set of material properties and model parameters used for these tests are
taken from [89] and are given in Table 4.28 and it is assumed that there are no thermal strains.

Table 4.28 The material properties and model parameters for the power law creep model used for
the verification testing.

𝐸 90.68 MPa 𝜈 0.39
𝐴 5.12 x 10−5 𝑚 4.51
𝑄/𝑅 19,853.50 K 𝜃 673.00 K

4.19.3.1 Creep

To consider the creep response, the model response is determined both numerically and
semi-analytically. Through such a response, the stress tensor is 𝜎𝑖 𝑗 = 𝜎 (𝑡) 𝛿𝑖1𝛿 𝑗1 where 𝜎 (𝑡) is a
prescribed boundary condition. For this investigation, 𝜎 (𝑡) ramps linearly from 0 to 𝜎𝑚𝑎𝑥 over
the interval 𝑡 = [0, 100 s] and 𝜎𝑚𝑎𝑥 = 300 MPa. The stress is then held constant ( ¤𝜎 = 0) for the
next 900 s. Inverting the constitutive law (4.68) for the strain rate yields,

𝐷𝑖 𝑗 = S𝑖 𝑗 𝑘𝑙 ¤𝜎𝑘𝑙 + 𝐷c
𝑖 𝑗 .

Furthermore, given the stress tensor form above, the creep deformation rate is,

𝐷c
𝑖 𝑗 = 𝐴𝜎̄

𝑚
𝑣𝑀 exp

(
−𝑄
𝑅𝜃

) [
𝛿𝑖1𝛿 𝑗1 −

1
2

(
𝛿𝑖2𝛿 𝑗2 + 𝛿𝑖3𝛿 𝑗3

) ]
, (4.69)

and

S𝑖 𝑗 𝑘𝑙 ¤𝜎𝑘𝑙 = ¤𝜎S𝑖 𝑗11.

The total deformation rate may then be determined and easily integrated to find an analytical
response for the strain. To this end, both the semi-analytical and numerical strain and stress
responses (as a function of time) are presented in Fig. 4.95(a) and Fig. 4.95(b), respectively.
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(a) Strain (b) Stress

Fig. 4.95 Semi-analytical and numerical results of (a) strain and (b) stress evolution during a creep
test.

4.19.3.2 Stress Relaxation

The stress relaxation response of the considered model is evaluated both numerically and
semi-analytically. Specifically, a displacement controlled loading of 𝑢1 = 𝜆 (𝑡) is investigated.
The other displacement degrees of freedom are not constrained so that a uniaxial stress state
results – 𝜎𝑖 𝑗 (𝑡) = 𝜎 (𝑡) 𝛿𝑖1𝛿 𝑗1. The displacement is prescribed such that it scales linearly from
𝑢1 = 0 at 𝑡 = 0 to 𝑢1 = .01 at 𝑡 = 100 s and then held fixed for 900 s. Initially the considered
element is of unit length.

To determine the material response, it is noted that: (emph{i}) 𝜎22 = 𝜎33 = 0; (emph{ii})
𝐷e

22 = 𝐷e
33 due to isotropy; and (emph{iii}) the creep deformation rate takes the form (4.69).

With these observations, the elastic deformation rate in the direction of loading (𝐷e
11) becomes,

𝐷e
11 =

¤𝜆 (𝑡)
1 + 𝜆 (𝑡) − 𝐴𝜎̄

𝑚
𝑣𝑀 exp

(
−𝑄
𝑅𝜃

)
. (4.70)

Additionally, from (emph{i}) and (emph{ii}) above, it may be found that,

𝐷e
22 = 𝐷e

33 = −𝜈𝐷e
11, (4.71)

leading to an equation for the stress in the direction of loading of,

¤𝜎11 = (C1111 − 2𝜈C1122) 𝐷e
11.

Additionally, as 𝐷𝑖 𝑗 = 𝐷e
𝑖 𝑗 + 𝐷c

𝑖 𝑗 the strains may easily integrated by using relations (4.69), (4.70),
and (4.71). The resultant numerical and semi-analytical strain and stress responses are shown in
Fig. 4.96(a) and Fig. 4.96(b), respectively.
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(a) Strain (b) Stress

Fig. 4.96 Semi-analytical and numerical results of the (a) strain and (b) stress evolution during a
stress relaxation test.

4.19.4 User Guide

BEGIN PARAMETERS FOR MODEL POWER_LAW_CREEP
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>
#
# Viscoplastic parameters
#
CREEP CONSTANT = <real>
CREEP EXPONENT = <real>
THERMAL CONSTANT = <real>
MAX SUBINCREMENTS = <integer> (100)

END [PARAMETERS FOR MODEL POWER_LAW_CREEP]

In the above command blocks:

• The creep constant, 𝐴, in (4.67) is defined with the CREEP CONSTANT command line.

• The creep exponent, 𝑚, in (4.67) is defined with the CREEP EXPONENT command line.

• The thermal constant, 𝑄/𝑅 in (4.67) is defined with the THERMAL CONSTANT command
line.
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• Time step sub incrementation within the material model may be used to accurately calculate
the true creep stress. The maximum sub-increments in a load step is defined with the MAX
SUBINCREMENTS command line. The default is 100. A larger number of steps can
potentially improve accuracy if a large amount of creep happens in a single step. A smaller
number of steps can sometimes improve analysis speed.

Output variables available for this model are listed in Table 4.29.

Table 4.29 State Variables for POWER LAW CREEP Model
Name Description
ECREEP equivalent creep strain
SEQDOT equivalent stress rate

4.20 Viscoplastic Model

4.20.1 Theory

The viscoplastic model is a rate dependent plasticity model that is useful for modeling solders and
brazes and was developed by Neilsen et al. [74]. This model is formulated in terms of the stress
rate for the material. Like many inelastic models, the rate of deformation, 𝐷𝑖 𝑗 , is additively
decomposed into an elastic, 𝐷e

𝑖 𝑗 , and an inelastic, 𝐷in
𝑖 𝑗 part such that,

𝐷𝑖 𝑗 = 𝐷
e
𝑖 𝑗 + 𝐷in

𝑖 𝑗 .

The elastic rate of deformation is the only part that contributes to the stress rate and it does so
through the elastic moduli, C𝑖 𝑗 𝑘𝑙 , in a linear fashion leading to the relation,

◦
𝜎𝑖 𝑗= C𝑖 𝑗 𝑘𝑙𝐷

e
𝑘𝑙 , (4.72)

where C𝑖 𝑗 𝑘𝑙 are the components of the fourth-order, isotropic elasticity tensor. The stress rate is
arbitrary, as long as it is objective. Two objective stress rates are commonly used: the Jaumann
rate and the Green-McInnis rate. For problems with fixed principal axes of deformation, these two
rates give the same answers. For problems where the principal axes of deformation rotate during
the deformation, the two rates can give different answers. Generally speaking there is no reason to
pick one objective rate over another.

The inelastic strain rate is a function of the stress state, 𝜎𝑖 𝑗 , the temperature, 𝜃, and a number of
internal state variables including both scalar isotropic, 𝐷, and tensorial kinematic, 𝐵𝑖 𝑗 , hardening
variables. With these dependencies defined, a general form for the evolution of the inelastic
deformation may be given by,

𝐷in
𝑖 𝑗 =

3
2
𝛾

(
𝜎𝑖 𝑗 , 𝜃;𝐷, 𝐵𝑖 𝑗

)
𝑛𝑖 𝑗 ,
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where 𝑛𝑖 𝑗 is the direction of inelastic deformation and is defined as,

𝑛𝑖 𝑗 =
1
𝜏

(
𝑠𝑖 𝑗 −

2
3
𝐵𝑖 𝑗

)
, (4.73)

and

𝜏 =

√
3
2

(
𝑠𝑖 𝑗 −

2
3
𝐵𝑖 𝑗

) (
𝑠𝑖 𝑗 −

2
3
𝐵𝑖 𝑗

)
,

with 𝑠𝑖 𝑗 being the deviatoric stress tensor. The inelastic strain rate, 𝛾, is defined via a hyperbolic
sin law,

𝛾 = 𝑓 (𝜃)
[
sinh

(
𝜏

𝛼(𝜃)𝐷

)] 𝑝(𝜃)
, (4.74)

where 𝑓 (𝜃) = exp(𝑔(𝜃)). The expressions 𝑔(𝜃), 𝛼(𝜃), and 𝑝(𝜃) are model parameters that are
functions of temperature.

The evolution laws for the state variables 𝐷 and 𝐵𝑖 𝑗 are,

¤𝐷 =
𝐴1

(𝐷 − 𝐷0)𝐴3
𝛾 − 𝐴2 (𝐷 − 𝐷0)2 , (4.75)

and

¤𝐵𝑖 𝑗 =
𝐴4

𝑏𝐴6
𝐷in
𝑖 𝑗 − 𝐴5𝑏𝐵𝑖 𝑗 , (4.76)

where

𝑏 =

√
2
3
𝐵𝑖 𝑗𝐵𝑖 𝑗 .

The parameters 𝐷0, 𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5 and 𝐴6 are model parameters. The parameters 𝐴1, 𝐴2, 𝐴4
and 𝐴5 are also functions of temperature. The model can be simplified with the appropriate choice
of these parameters.

The following material parameters are functions of temperature and have the following form

𝐺 (𝜃) = 𝐺0ℎ𝐺 (𝜃) ; 𝐾 (𝜃) = 𝐾0ℎ𝐾 (𝜃)

𝑔(𝜃) = 𝑔0ℎ𝑔 (𝜃) ; 𝑝(𝜃) = 𝑝0ℎ𝑝 (𝜃) ; 𝛼(𝜃) = 𝛼0ℎ𝛼 (𝜃)

𝐴1(𝜃) = 𝐴0
1ℎ1(𝜃) ; 𝐴2(𝜃) = 𝐴0

2ℎ2(𝜃)

𝐴4(𝜃) = 𝐴0
4ℎ4(𝜃) ; 𝐴5(𝜃) = 𝐴0

5ℎ5(𝜃)

where the functions ℎ∗(𝜃) are normalized functions of temperature and the values (∗)0 or (∗)0 are
the reference values that are input in the command block.
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4.20.2 Implementation

An explicit, forward Euler scheme is used to integrate the viscoplastic model. First, during
initialization, the isotropic hardening variable 𝐷 is set to 1.001𝐷0. This is done to avoid a
singularity in (4.75). Additionally, the kinematic variable is set to zero (𝐵𝑖 𝑗 = 0).

Like the power law creep model that is integrated in a similar fashion, the chosen numerical
scheme is conditionally stable. As detailed in [74], a critical stability time step of,

Δ𝑡𝑛+1 ≤
2𝛼 (𝜃) 𝐷

3𝐺 𝑓 (𝜃) 𝑝 (𝜃) sinh𝑝(𝜃)−1
(

𝜏
𝛼(𝜃)𝐷

)
cosh

(
𝜏

𝛼(𝜃)𝐷

) ,
may be determined. For convince, in the following the dependence of 𝑓 , 𝑝, and 𝛼 will be
assumed and not explicitly written. Instead, 𝑓 𝑛+1 will be used to refer to 𝑓

(
𝜃𝑛+1

)
. Two additional

limits are also imposed to ensure accurate integration of the state variables. Specifically,

Δ𝑡𝑛+1 ≤
√

2𝛿𝐷0Δ𝑡𝑛
| ¤𝐷𝑛 − ¤𝐷𝑛−1 |

,

and

Δ𝑡𝑛+1 ≤
√

2𝛿𝐷0Δ𝑡𝑛
| ¤𝑏𝑛 − ¤𝑏𝑛−1 |

,

where 𝛿 is an allowable error measure (here, 1.0𝑥10−3) and ¤𝑥𝑛 refers to the time rate of change of
variable 𝑥 at time step 𝑛. The current time step is checked to ensure it meets those criteria or else
it is scaled back to ensure accurate integration.

After assessing the acceptability of the time step, the new material state at time 𝑡 = 𝑡𝑛+1 is
determined. If the time step needs to be cut back, multiple sub-increments are used. To elaborate,
let 𝑘 denote a specific sub-increment and 𝑁 represent the total number of sub-increments. Each
𝑘 𝑡ℎ interval evaluates the numerical routine over a step size 𝛿𝑡𝑘 where Δ𝑡 =

∑𝑁
𝑘=0 𝛿𝑡

𝑘 . In such
cases, temperature dependent variables are linearly interpolated between their values at 𝑡𝑛 and
𝑡𝑛+1. For example,

𝐺𝑘 = 𝐺𝑛 +
Δ𝑡𝑘

Δ𝑡
(𝐺𝑛+1 − 𝐺𝑛) ,

where Δ𝑡𝑘 is the current sub-increment time, Δ𝑡𝑘 =
∑𝑘
𝑟=0 𝛿𝑡

𝑟 . For simplicity and clarity of
presentation, in the discussion below it is assumed that the input time step is acceptable and only a
single increment is needed. If additional sub-increments were needed, the below steps would be
repeated 𝑁 times with time intervals of 𝛿𝑡𝑘 .

It is first noted that the unrotated stress, 𝑇𝑖 𝑗 , and deformation rate, 𝑑𝑖 𝑗 , may be decomposed as,

𝑇𝑛𝑖 𝑗 = −𝑝𝑛𝛿𝑖 𝑗 + 𝑠𝑛𝑖 𝑗 ,

𝑑𝑛𝑖 𝑗 =
1
3
𝑑𝑛𝑘𝑘𝛿𝑖 𝑗 + 𝑑

𝑛
𝑖 𝑗 ,
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with 𝑝 being the pressure (𝑝 = −1
3𝑇𝑘𝑘 ) and 𝑑𝑖 𝑗 being the rate of deviatoric deformation. As the

inelastic deformation flows in a deviatoric direction, the hydrostatic and deviatoric components
may be evaluated separately. With this in mind, the pressure may be easily integrated via,

𝑝𝑛+1 = 𝑝𝑛
𝐾𝑛+1

𝐾𝑛
+ 1

2

(
𝐾𝑛 + 𝐾𝑛+1

)
𝑑𝑘𝑘Δ𝑡,

where 𝐾𝑛 is abbreviated notation for 𝐾 (𝜃𝑛). The inelastic deformation rate is then determined
as,

𝐷in
𝑖 𝑗 =

3
2
𝛾

(
𝜎𝑛𝑖 𝑗 , 𝜃

𝑛;𝐷𝑛, 𝐵𝑛𝑖 𝑗

)
𝑛𝑛𝑖 𝑗 ,

by evaluating expressions (4.73)-(4.74) at 𝑡 = 𝑡𝑛 and 𝜃 = 𝜃𝑛. The internal state variables may then
be similar evolved via (4.75) and (4.76). With the inelastic state determined, the updated
deviatoric stress may be found via,

𝑠𝑛+1𝑖 𝑗 =
𝐺𝑛+1

𝐺𝑛
𝑠𝑛𝑖 𝑗 + 2Δ𝑡𝐺𝑛

(
𝑑𝑖 𝑗 − 𝐷in

𝑖 𝑗

)
,

with the updated stress being,

𝑇𝑛+1𝑖 𝑗 = −𝑝𝑛+1𝛿𝑖 𝑗 + 𝑠𝑛+1𝑖 𝑗 .

4.20.3 Verification

The viscoplastic model is verified through two, time-dependent tests – creep and stress relaxation.
To simplify the problem for verification purposes, the isothermal response only considering
isotropic hardening and recovery is investigated. It is noted, however, that given the stress
dependence and evolving internal state variable in the inelastic strain rate, a closed-form analytical
solution may not be found. Semi-analytical approaches numerically integrating the differential
equations are easily obtainable and used for comparison purposes. The considered test
temperature is 450◦‘𝐶 (: 𝑚𝑎𝑡ℎ : ‘723 K) and material properties and model parameters are those
of CusilABA taken from Table 3 of [74] and are reproduced for convenience below in Table
4.30.

Table 4.30 Material properties and model parameters used for isothermal, isotropic harden-
ing/recovery creep and stress

𝐸 77.8 GPa 𝜈 0.375
𝑔 -13.88 𝑝 2.589
𝐴1 3𝑥104 MPa𝐴3+1 𝐴2 2.07𝑥10−5 1

MPa s
𝐴3 1.746 𝐷0 50.0 MPa
𝐴4 0 MPa𝐴6+1 𝐴5 0.0 1

MPa s
𝐴6 0.0 𝛼 1.0
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4.20.3.1 Creep

The creep response of the viscoplastic model is investigated both numerically and
semi-analytically. For such a loading, the stress tensor is 𝜎𝑖 𝑗 = 𝜎 (𝑡) 𝛿𝑖1𝛿 𝑗1 with 𝜎 (𝑡) being a
prescribed quantity. For this study, 𝜎 (𝑡) ramps linearly from 0 to 𝜎𝑚𝑎𝑥 over the interval
𝑡 = [0, 100 s] with 𝜎𝑚𝑎𝑥 = 300 MPa. That magnitude is then maintained for the next 900 s.

To analytically determine the model response, the constitutive law (4.72) is inverted to yield

𝐷𝑖 𝑗 = S𝑖 𝑗 𝑘𝑙 ¤𝜎𝑘𝑙 + 𝐷in
𝑖 𝑗 , (4.77)

and it is trivial to determine that

S𝑖 𝑗 𝑘𝑙 ¤𝜎𝑘𝑙 = ¤𝜎S11𝑘𝑙 . (4.78)

For the inelastic response, for the purely isotropic case it is noted that 𝜏 = 𝜎 (𝑡) and therefore
𝑛𝑖 𝑗 = 2

3
[
𝛿𝑖1𝛿 𝑗1 − 1

2
(
𝛿𝑖2𝛿 𝑗2 + 𝛿𝑖3𝛿 𝑗3

) ]
. Additionally, the inelastic strain rate reduces to,

𝛾 = 𝑓

[
sinh

(
𝜎 (𝑡)
𝛼𝐷

)] 𝑝
(4.79)

producing a rate of inelastic deformation of,

𝐷in
𝑖 𝑗 = 𝛾

[
𝛿𝑖1𝛿 𝑗1 −

1
2

(
𝛿𝑖2𝛿 𝑗2 + 𝛿𝑖3𝛿 𝑗3

) ]
. (4.80)

Expressions (4.77), (4.78), (4.80), and (4.75) can be easily integrated (via forward Euler or
Runge-Kutta) to determine a semi-analytical response. Both the numerical and semi-analytical
responses of the strain and stress (including flow stress, 𝐷) are presented below in Fig. 4.97(a)
and Fig. 4.97(b), respectively.

4.20.3.2 Stress Relaxation

The model response through a stress relaxation type loading is considered here both numerically
and semi-analytically. For this purpose, a displacement controlled loading, 𝑢1 = 𝜆 (𝑡), is
employed. The other displacement degrees of freedom are not prescribed to ensure that a uniaxial
stress state (𝜎𝑖 𝑗 = 𝜎 (𝑡) 𝛿𝑖1𝛿 𝑗1) develops. Specifically, the displacement is set to scale linearly over
100 s (from 𝑡 = 0 to 𝑡 = 100 s) obtaining a maximum of 𝑢1 = 0.01 at 𝑡 = 100 s. Initially, a unit
length is assumed. This displacement is held fixed over the next 900 s to investigate the stress
relaxation characteristics of the model.

A similar procedure to the power law creep model (Section 4.19.3.2) is employed here.
Specifically, by noting the elastic isotropy, uniaxial stress state, and (4.80) the elastic deformation
rate in the direction of loading (𝐷e

11) is found to be,

𝐷e
11 =

¤𝜆 (𝑡)
1 + 𝜆 (𝑡) − 𝛾,

where an expression for 𝛾 is given in (4.79). By noting ¤𝜎𝑖 𝑗 = C𝑖 𝑗 𝑘𝑙𝐷e
𝑘𝑙 and 𝐷𝑖 𝑗 = 𝐷

e
𝑖 𝑗 + 𝐷in

𝑖 𝑗 , the
material state may easily be found via numerical integration. The result strain and stress
evolutions are given in Fig. 4.98(a) and Fig. 4.98(b), respectively.
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(a) Strain (b) Stress

Fig. 4.97 Semi-analytical and numerical results of (a) strain and (b) external and internal, (𝐷), stress
evolution during a creep test with the viscoplastic model.

(a) Strain (b) Stress

Fig. 4.98 Semi-analytical and numerical results of (a) strain and (b) external and internal (𝐷) stress
evolution during a stress relaxation test with the viscoplastic model.
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4.20.4 User Guide

BEGIN PARAMETERS FOR MODEL VISCOPLASTIC
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>

FLOW RATE = <real>
SINH EXPONENT = <real>
ALPHA = <real>
ISO HARDENING = <real>
ISO RECOVERY = <real>
ISO EXPONENT = <real>
KIN HARDENING = <real>
KIN RECOVERY = <real>
KIN EXPONENT = <real>
FLOW STRESS = <real>

SHEAR FUNCTION = <string>
BULK FUNCTION = <string>
RATE FUNCTION = <string>
EXPONENT FUNCTION = <string>
ALPHA FUNCTION = <string>
IHARD FUNCTION = <string>
IREC FUNCTION = <string>
KHARD FUNCTION = <string>
KREC FUNCTION = <string>
MAX SUBINCREMENTS = <int> itmax (2000)

END [PARAMETERS FOR MODEL VISCOPLASTIC]

In the above command blocks:

• Since the model requires functions to describe the temperature dependence of the bulk and
shear modulus, it is recommended that one inputs the bulk and shear modulus at some
reference temperature. However, any two of the elastic constants can be used for input.

• The reference value in the equation for the flow rate, ln 𝑓0, is defined with the FLOW RATE
command line.

• The reference value for the exponent on the sinh function, 𝑝0, is defined with the SINH
EXPONENT command line.
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• The reference value 𝑎𝑙 𝑝ℎ𝑎0 is defined with the ALPHA command line.

• The reference value for the isotropic hardening parameter, 𝐴0
1, is defined with the ISO

HARDENING command line.

• The reference value for the isotropic recovery parameter, 𝐴0
2, is defined with the ISO

RECOVERY command line.

• The value for the isotropic hardening exponent parameter, 𝐴3, is defined with the ISO
EXPONENT command line.

• The reference value for the kinematic hardening parameter, 𝐴0
4, is defined with the KIN

HARDENING command line.

• The reference value for the kinematic recovery parameter, 𝐴0
5, is defined with the KIN

RECOVERY command line.

• The value for the kinematic hardening exponent parameter, 𝐴6, is defined with the KIN
EXPONENT command line.

• The value for the flow stress, 𝐷0, is defined with the FLOW STRESS command line.

• The user-defined and normalized function that gives the shear modulus as a function of
temperature, ℎ𝐺 (𝜃), is defined with the SHEAR FUNCTION command line.

• The user-defined and normalized function that gives the bulk modulus as a function of
temperature, ℎ𝐾 (𝜃), is defined with the BULK FUNCTION command line.

• The user-defined and normalized function that gives the flow rate as a function of
temperature, ℎ𝑔 (𝜃), is defined with the RATE FUNCTION command line.

• The user-defined and normalized function that gives the sinh exponent as a function of
temperature, ℎ𝑝 (𝜃), is defined with the EXPONENT FUNCTION command line.

• The user-defined and normalized function that gives 𝛼 as a function of temperature, ℎ𝛼 (𝜃),
is defined with the ALPHA FUNCTION command line.

• The user-defined and normalized function that gives 𝐴1 as a function of temperature, ℎ1(𝜃),
is defined with the IHARD FUNCTION command line.

• The user-defined and normalized function that gives 𝐴2 as a function of temperature, ℎ2(𝜃),
is defined with the IREC FUNCTION command line.

• The user-defined and normalized function that gives 𝐴4 as a function of temperature, ℎ4(𝜃),
is defined with the KHARD FUNCTION command line.

• The user-defined and normalized function that gives 𝐴5 as a function of temperature, ℎ5(𝜃),
is defined with the KREC FUNCTION command line.

• The Viscoplastic model may need to take sub-increments to solve for the plastic flow over
the current time step. The maximum number of steps that may be taken on a step prior to
issuing an error can be set by the MAX SUBINCREMENTS command line. This value
defaults to 2000.
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Output variables available for this model are listed in Table 4.31.

More information on the model can be found in the report by Neilsen, et. al. [74].

Table 4.31 State Variables for VISCOPLASTIC Model
Name Description
EQPS equivalent plastic strain
SVB kinematic hardening variable, B
SVB_XX kinematic hardening variable - xx component, 𝐵𝑥𝑥
SVB_YY kinematic hardening variable - yy component, 𝐵𝑦𝑦
SVB_ZZ kinematic hardening variable - zz component, 𝐵𝑧𝑧
SVB_XY kinematic hardening variable - xy component, 𝐵𝑥𝑦
SVB_YZ kinematic hardening variable - yz component, 𝐵𝑦𝑧
SVB_ZX kinematic hardening variable - zx component, 𝐵𝑧𝑥
SVD isotropic hardening variable, 𝐷
EQDOT inelastic strain rate, 𝛾
COUNT number of sub-increments
SHEAR shear modulus, 𝐺 (𝜃)
BULK bulk modulus, 𝐾 (𝜃)
RATE 𝑔(𝜃) (see (4.74))
EXP 𝑝(𝜃) (see (4.74))
ALPHA 𝛼(𝜃) (see (4.74))
A1 isotropic hardening parameter, 𝐴1(𝜃)
A2 isotropic recovery parameter, 𝐴2(𝜃)
A4 kinematic hardening parameter, 𝐴4(𝜃)
A5 kinematic recovery parameter, 𝐴5(𝜃)

4.21 Munson-Dawson Viscoplastic Model

4.21.1 Theory

The Munson-Dawson (MD) model was originally defined in [69], [70], [71], but several changes
were made in [84]. This section presents the current model in a small strain setting. (Section
4.21.2 briefly mentions how the model is extended into the finite deformation realm.) Note that
compressive stresses and strains are treated as positive in this section, as is common in the
geomechanics literature.

The MD model is an isotropic, hypoelastic, unified viscoplastic, material model. The total strain
rate ¤𝜀𝑖 𝑗 is decomposed into an elastic strain rate ¤𝜀el

𝑖 𝑗 , a thermal strain rate ¤𝜀th
𝑖 𝑗 , and a viscoplastic

strain rate ¤𝜀vp
𝑖 𝑗 :

¤𝜀𝑖 𝑗 = ¤𝜀el
𝑖 𝑗 + ¤𝜀th

𝑖 𝑗 + ¤𝜀
vp
𝑖 𝑗 . (4.81)
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The elastic portion of the MD model utilizes the following simple linear relationship between ¤𝜀el
𝑘𝑙

and the stress rate ¤𝜎𝑖 𝑗 ,

¤𝜎𝑖 𝑗 = C𝑖 𝑗 𝑘𝑙 ¤𝜀el
𝑘𝑙 = C𝑖 𝑗 𝑘𝑙

(
¤𝜀𝑘𝑙 − ¤𝜀th

𝑘𝑙 − ¤𝜀
vp
𝑘𝑙

)
(4.82)

C𝑖 𝑗 𝑘𝑙 = (𝐵 − 2/3 𝜇) 𝛿𝑖 𝑗 𝛿𝑘𝑙 + 𝜇
(
𝛿𝑖𝑘 𝛿 𝑗 𝑙 + 𝛿𝑖𝑙 𝛿 𝑗 𝑘

)
, (4.83)

where C𝑖 𝑗 𝑘𝑙 is the elastic stiffness, which is composed of the bulk modulus 𝐵, the shear modulus
𝜇, and the Kronecker Delta 𝛿𝑖 𝑗 . The thermal strain portion of the model is simply

¤𝜀th
𝑖 𝑗 = −𝛼 ¤𝜃 𝛿𝑖 𝑗 (4.84)

where 𝛼 is the coefficient of thermal expansion, and 𝜃 is the temperature. Sierra/SM also offers
thermal strain functions for adding thermal strain effects to any given model. If 𝛼 ≠ 0, then MD
model users should not specify a thermal strain function, otherwise thermal strains will be applied
twice.

Plastic deformation is assumed to be isochoric and only occurs in the presence of shear stress.
The MD model utilizes the Hosford stress as its equivalent shear stress measure 𝜎̄. The Hosford
stress is

𝜎̄ =

{
1
2
[|𝜎1 − 𝜎2 |𝑎 + |𝜎2 − 𝜎3 |𝑎 + |𝜎1 − 𝜎3 |𝑎]

}1/𝑎
, (4.85)

where 𝜎𝑖 are the principal stresses and 𝑎 is a material parameter. This definition for 𝜎̄ was
proposed in [45] because it encompasses the Tresca stress (𝑎 = 1), the von Mises stress (𝑎 = 2),
and a range of behaviors in-between (1 < 𝑎 < 2). One can also reproduce the Tresca stress with
𝑎 = ∞, the von Mises stress with 𝑎 = 4, and behaviors in-between with 4 < 𝑎 < ∞. This second
range avoids potential singularities in the first and second derivatives of (4.85), so the exponent is
restricted to 𝑎 ≥ 4.

The viscoplastic strain evolves according to an associated flow rule

¤𝜀vp
𝑖 𝑗 = ¤̄𝜀vp 𝜕𝜎̄

𝜕𝜎𝑖 𝑗
, (4.86)

where ¤̄𝜀vp is the equivalent viscoplastic strain rate. It can be decomposed into two components
¤̄𝜀vp = ¤̄𝜀tr + ¤̄𝜀ss, (4.87)

where ¤̄𝜀tr is the transient equivalent viscoplastic strain rate and ¤̄𝜀ss is the steady state equivalent
viscoplastic strain rate.

The MD model decomposes the steady state behavior into four mechanisms:

¤̄𝜀ss =
3∑
𝑖=0

¤̄𝜀ss𝑖

¤̄𝜀ss𝑖 =𝐴𝑖 exp
(
− 𝑄𝑖
𝑅 𝜃

) (
𝜎̄

𝜇

)𝑛𝑖
for 𝑖 = 0, 1, and 2

¤̄𝜀ss3 =𝐻 (𝜎̄ − 𝜎̄g)
2∑
𝑖=0

𝐵𝑖 exp
(
− 𝑄𝑖
𝑅 𝜃

)
sinh

(
𝑞
(𝜎̄ − 𝜎̄g)

𝜇

)
,
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The variables 𝐴𝑖, 𝐵𝑖, 𝑄𝑖, 𝑛𝑖, 𝜎̄g, and 𝑞 are all model parameters. All four mechanisms have an
Arrhenius temperature dependence, where 𝑄𝑖 is an activation energy and 𝑅 = 8.314J/(K mol) is
the universal gas constant. Mechanism 3 is only activated when 𝜎̄ exceeds 𝜎̄g, as reflected in the
heaviside function 𝐻 (𝜎̄ − 𝜎̄g). Typically, the parameters 𝐵𝑖 are chosen to produce a smooth
transition to mechanism 3 at 𝜎̄g.

The simple functional forms of (4.88) suffice for the steady-state behavior, but the transient
behavior is somewhat more complex. During work hardening under constant stress, ¤̄𝜀tr

approaches the transient strain limit ¤̄𝜀tr∗ from below, and the total viscoplastic strain rate slows
down over time. During recovery under constant stress, ¤̄𝜀tr approaches ¤̄𝜀tr∗ from above, and the
total viscoplastic strain rate speeds up over time. The rate that ¤̄𝜀tr approaches ¤̄𝜀tr∗ is governed by

¤̄𝜀tr = (𝐹 − 1) ¤̄𝜀ss, (4.88)

where

𝐹 = exp

[
sign ( ¤̄𝜀tr∗ − ¤̄𝜀tr) 𝜅

(
1 −
¤̄𝜀tr

¤̄𝜀tr∗

)2
]
. (4.89)

and 𝜅 is a quantity that depends on whether the material is work hardening or recovering. These
two behaviors are captured in the following equations

𝜅 =


𝛼h + 𝛽h log10

(
𝜎̄

𝜇

)
¤̄𝜀tr ≤ ¤̄𝜀tr∗

𝛼r + 𝛽r log10

(
𝜎̄

𝜇

)
¤̄𝜀tr > ¤̄𝜀tr∗.

(4.90)

where 𝛼 𝑗 and 𝛽 𝑗 are model parameters. Note that the parameter 𝜅 must be non-negative,
otherwise (4.88) produces a negative/positive ¤̄𝜀tr when ¤̄𝜀tr is below/above ¤̄𝜀tr∗. (Such behavior
occurs during reverse creep, but the MD model is only designed to model forward creep.) To
enforce this, (4.90) is calculated first, and then

𝜅 ← max(𝜅, 0)

is applied.

The MD model uses two mechanisms to endow ¤̄𝜀tr∗ with stress and temperature dependence:

¤̄𝜀tr∗ =
1∑
𝑖=0

¤̄𝜀tr∗
𝑖

¤̄𝜀tr∗
𝑖 = 𝐾𝑖 exp(𝑐𝑖 𝜃)

(
𝜎̄

𝜇

)𝑚𝑖
,

where 𝐾𝑖, 𝑐𝑖, and 𝑚𝑖 are parameters to be calibrated against experimental results.
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4.21.2 Implementation

The full details of the MD model’s numerical implementation are published in [84]. This section
discusses several salient points for the typical MD model user and to define all the input
parameters in Section 4.21.4.

• As discussed in Section 4.21.3, one can obtain an analytical solution to the MD model’s
ordinary differential equations if the exponent in (4.89) is changed from 2 to 1, and
sign ( ¤̄𝜀tr∗ − ¤̄𝜀tr) = 1. To accommodate this possibility, (4.89) is numerically implemented as

𝐹 = exp
[
sign ( ¤̄𝜀tr∗ − ¤̄𝜀tr)𝜒−1 𝜅

(
1 −
¤̄𝜀tr

¤̄𝜀tr∗

) 𝜒]
(4.91)

where 𝜒 is a user specified integer that is equal to 2 by default, but one can set 𝜒 = 1 for
verification testing.

• Each steady state creep mechanism is implemented with a viscoplastic rate scale factor 𝑠,
such that (4.88) becomes

¤̄𝜀ss =
3∑
𝑖=0

¤̄𝜀ss𝑖

¤̄𝜀ss𝑖 =𝑠 𝐴𝑖 exp
(
− 𝑄𝑖
𝑅 𝜃

) (
𝜎̄

𝜇

)𝑛𝑖
for𝑖 = 0, 1, 𝑎𝑛𝑑2

¤̄𝜀ss3 =𝑠 𝐻 (𝜎̄ − 𝜎̄g)
2∑
𝑖=0

𝐵𝑖 exp
(
− 𝑄𝑖
𝑅 𝜃

)
sinh

(
𝑞
(𝜎̄ − 𝜎̄g)

𝜇

)
.

This scale factor can be used to speed up or slow down the equivalent steady-state strain rate and
the total equivalent viscoplastic strain rate, because ¤̄𝜀vp = ¤̄𝜀tr + ¤̄𝜀ss = 𝐹 ¤̄𝜀ss. The default value is
𝑠 = 1, but it can be useful to set 𝑠 to some small value to “freeze” the material’s viscoplasticity for
a period of time, or increase 𝑠 to larger values to squeeze hundreds of years into a few seconds.
Speeding up the viscoplasticity can allow one to make quasi-static simulations using explicit
dynamics, provided inertial effects are kept to a minimum. The variable 𝑠 is implemented as an
internal state variable, rather than a material parameter, so a user can modify it in the middle of a
simulation. Internal state variables can be altered by creating a user variable with the same name
as the internal state variable (viscoplastic_rate_scale_factor in this case) in a Sierra
input deck and modifying the user variable with a user function or user subroutine (see Sections
2.3 and A.2.1 in [85]).

• The MD model is extended into the finite-deformation realm using hypoelasticity.
Consistent with the Green-McInnis stress rate, the infinitesimal strain rates are replaced
with the corresponding unrotated rates of deformation (i.e. ¤𝜀𝑖 𝑗 → 𝐷𝑖 𝑗 ) and the stress is
replaced with the unrotated Cauchy stress (𝜎𝑖 𝑗 → 𝑇𝑖 𝑗).

• Following the lead of Scherzinger [86], the model’s time derivatives are discretized using
the backwards Euler method, and the resulting non-linear algebraic equations are solved
with a line search augmented Newton-Raphson method.
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A typical user of the model should not need to adjust the routine’s default numerical parameters,
but the parameters are briefly mentioned here should adjustment become necessary.

• The implementation has some expressions where 𝜎̄ is in the denominator of a fraction. If
an initial calculation of the Hosford stress results in 𝜎̄ < 𝜎̄min, then the initial value is
replaced with 𝜎̄min. The value of 𝜎̄min should be small enough to have negligible impact,
yet still avoid 𝜎̄ = 0.

• Each iteration of the implicit integration routine updates the merit function
𝜔(𝑘) = 1/2

(
R (𝑘)𝑖 𝑗 R

(𝑘)
𝑖 𝑗 + 𝑟 (𝑘)

2
)
for iteration 𝑘 , where R (𝑘)𝑖 𝑗 and 𝑟 (𝑘) are the residuals

associated with the differential equations in (4.86) and (4.88), respectively. An iteration is
considered converged when

√
𝜔(𝑘) <

√
𝜔max. The value of √𝜔max should be a small

positive value close to zero.

• If a Newton iteration (or a line search iteration) does not produce sufficient decrease in 𝜔(𝑘) ,
a line search iteration is performed. The line search algorithm selects 𝜁 ( 𝑗) , for each iteration
𝑗 , to search for a sufficient decrease in 𝜔(𝑘) (𝜁 ( 𝑗)) along the search direction provided by the
Newton iteration. The start and end of the last Newton iteration are 𝜁 ( 𝑗) = 0 and 𝜁 ( 𝑗) = 1,
respectively. A decrease in 𝜔(𝑘) (𝜁 ( 𝑗)) is considered sufficient if
𝜔(𝑘) (𝜁 ( 𝑗)) < (1 − 2 𝜉 𝜁 ( 𝑗−1)) 𝜔(𝑘) (0), where 𝜉 is a positive value usually set close to zero.

• The minimum allowed value of 𝜁 ( 𝑗) is 𝛾.

• The maximum number of Newton iterations is 𝑘max.

• The maximum number of line search iterations is 𝑗max.

See [84] for further discussion of these numerical parameters.

4.21.3 Verification

The MD model contains ordinary differential equations ((4.86) and (4.88)) that make it non-trivial
to verify. A straightforward analytical solution, however, can be constructed to these equations if
𝜒 = 1 in (4.91) and if the stresses and temperatures remain piecewise constant in time.

Temporally constant stresses and temperatures allow (4.82), (4.83), (4.84), (4.85), (4.86), (4.87),
and (4.88) to be integrated to

𝜀𝑘𝑙 − 𝜀𝑘𝑙 (𝑡 𝑗 ) = C−1
𝑘𝑙𝑚𝑛

(
𝜎𝑚𝑛 − 𝜎𝑚𝑛 (𝑡 𝑗 )

)
− 𝛼

(
𝜃 − 𝜃 (𝑡 𝑗 )

)
𝛿𝑘𝑙 + 𝜀vp

𝑘𝑙 − 𝜀
vp
𝑘𝑙 (𝑡 𝑗 ) (4.92)

𝜀
vp
𝑘𝑙 − 𝜀

vp
𝑘𝑙 (𝑡 𝑗 ) =

[ ¤̄𝜀tr − ¤̄𝜀tr(𝑡 𝑗 ) + ¤̄𝜀ss (𝑡 − 𝑡 𝑗 )
] 𝜕𝜎̄

𝜕𝜎𝑘𝑙
(4.93)

where 𝑡 𝑗 is the time at the end of the previous time period 𝑗 . The quantities from the previous
time period (𝜀𝑘𝑙 (𝑡 𝑗 ), 𝜎𝑚𝑛 (𝑡 𝑗 ), 𝜃 (𝑡 𝑗 ), 𝜀vp

𝑘𝑙 (𝑡 𝑗 ), and ¤̄𝜀
tr(𝑡 𝑗 )) are assumed to be known. Setting 𝜒 = 1

in (4.91) enables the following general analytical solution to (4.88):

¤̄𝜀tr =
¤̄𝜀tr∗

𝜅
ln

{
exp(𝜅) + exp

[ 𝜅
¤̄𝜀tr∗ (𝐶1 − ¤̄𝜀ss𝑡)

]}
. (4.94)
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One can solve for the integration constant 𝐶1 using the initial condition ¤̄𝜀tr = ¤̄𝜀tr(𝑡 𝑗 ) at 𝑡 = 𝑡 𝑗 .
After substituting the result back into (4.94), one obtains

¤̄𝜀tr =
¤̄𝜀tr∗

𝜅
ln

{
exp(𝜅) +

[
exp

( ¤̄𝜀tr(𝑡 𝑗 ) 𝜅
¤̄𝜀tr∗

)
− exp(𝜅)

]
exp

[
− 𝜅
¤̄𝜀tr∗
¤̄𝜀ss (𝑡 − 𝑡 𝑗 )

]}
. (4.95)

Combining (4.92), (4.93), and (4.95) produces the following closed form expression for the total
strain change over a time period

𝜀𝑘𝑙 − 𝜀𝑘𝑙 (𝑡 𝑗 ) = C−1
𝑘𝑙𝑚𝑛

(
𝜎𝑚𝑛 − 𝜎𝑚𝑛 (𝑡 𝑗 )

)
− 𝛼

(
𝜃 − 𝜃 (𝑡 𝑗 )

)
𝛿𝑘𝑙+[

¤̄𝜀tr∗

𝜅
ln

{
exp(𝜅) +

[
exp

( ¤̄𝜀tr(𝑡 𝑗 ) 𝜅
¤̄𝜀tr∗

)
− exp(𝜅)

]
exp

[
− 𝜅
¤̄𝜀tr∗
¤̄𝜀ss (𝑡 − 𝑡 𝑗 )

]}
− ¤̄𝜀tr(𝑡 𝑗 ) + ¤̄𝜀ss (𝑡 − 𝑡 𝑗 )

]
𝜕𝜎̄

𝜕𝜎𝑘𝑙
.

The next three subsections compare numerical solutions against analytical solutions for
axisymmetric compression, pure shear, and unequal biaxial compression. In each case, the
numerical solution for the total strain is denoted as 𝜀𝑖 𝑗 , while the analytical solution for the total
strain in (4.96) is denoted as 𝜀𝑖 𝑗 . All the verification tests only involve principal deformations, so
hypoelasticity simply reinterprets the stress and strain in Section 4.21.1 as the Cauchy stress and
logarithmic strain, respectively. As a reminder, compressive stresses and strains are treated as
positive.

All the verification tests utilize Calibration 3B of the MD model. The full parameter set can be
found in [84], but Fig. 4.99, Fig. 4.100 and Fig. 4.101 depict much of the calibration graphically.
Fig. 4.99 shows the shape of the Hosford equivalent stress surface for 𝑎 = 16. The Hosford surface
and the angle 𝜙 of its normal 𝑛𝑖 𝑗 depend on the Lode angle 𝜙 of the deviatoric stress
𝜎dev
𝑖 𝑗 = 𝜎𝑖 𝑗 − 1/3𝜎𝑘𝑘 𝛿𝑖 𝑗 . Fig. 4.100 and Fig. 4.101 show the individual mechanisms ¤̄𝜀tr∗

𝑖 and ¤̄𝜀ss𝑖 ,
as well as the sums ¤̄𝜀tr∗ =

∑1
𝑖=0 ¤̄𝜀tr∗

𝑖 and ¤̄𝜀ss = ∑3
𝑖=0
¤̄𝜀ss𝑖 , so that one can visualize where each

mechanism dominates the total behavior.

4.21.3.1 Triaxial Compression

Triaxial compression tests are frequently used to characterize the creep and strength behavior of
geomaterials, such as rock salt. Cylindrical specimens are subjected to a radial confining pressure
𝜎rr and an axial stress 𝜎zz. Axisymmetric compression is perhaps a more appropriate name for
these tests, because the hoop stress 𝜎𝜗𝜗 is equal to 𝜎rr, but triaxial compression is the common
name.

The applied stress and temperature histories for the test are shown in the top two plots in Fig.
4.102. The test begins with an isothermal, 20 MPa hydrostatic, hold period for 10 days, where the
strain is purely elastic. At 𝑡 = 0, 𝜎zz is increased to 35 MPa, while the other stresses are held fixed,
causing a 15 MPa equivalent stress. This stress state is held for the next 50 days. The strain
evolves quickly at first, but slows down to the steady-state rate as the material work hardens. At
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Fig. 4.99 Hosford equivalent stress surface in the 𝜋-plane.

(a) Stress Dependence at 27 C (b) Temperature Dependence at 8 MPa

Fig. 4.100 Stress and temperature dependence of the transient strain limit for Calibration 3B.
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(a) Stress Dependence at 27 C (b) Temperature Dependence at 8 MPa

Fig. 4.101 Stress and temperature dependence of the steady-state strain rate for Calibration 3B.

𝑡 = 50, 𝜎zz is decreased to 33 MPa, while the other stresses are held fixed. The 2 MPa drop in 𝜎̄
causes the strain rate to slow down markedly, but it gradually builds to a new steady-state rate as
the material recovers over the next 50 days.

In summary, the numerical and analytical solutions for the total strain match very well throughout
the test, which verifies:

• Linear elasticity under triaxial compression

• Zero viscoplastic strain evolution under hydrostatic loading

• Viscoplastic strain evolution for 𝜓 = −30◦

• Work hardening ( ¤̄𝜀tr < ¤̄𝜀tr∗) dominated by transient strain limit mechanism 1

• Recovery ( ¤̄𝜀tr > ¤̄𝜀tr∗) dominated by transient strain limit mechanism 1

• Steady-state strain accumulation dominated by transient strain limit mechanism 2.

4.21.3.2 Pure Shear

The Hosford equivalent stress depends on 𝑎 for −30 deg < 𝜓 < 30 deg, but it is independent of 𝑎
for 𝜓 = −30◦ (triaxial compression) and 𝜓 = 30◦ (triaxial extension). Pure shear is a simple stress
state that exercises the Hosford stress at a Lode angle other than 𝜓 = ±30◦. Pure shear can be
expressed in the principal frame as 𝜎3 = −𝜎1 and 𝜎2 = 0. In addition to exercising the model
under pure shear, this test also varies the temperature to verify thermal expansion and creep at
elevated temperatures.

The applied stress and temperature histories for the test are shown in the top two plots in Fig.
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Fig. 4.102 Triaxial Compression Verification Test
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Fig. 4.103 Pure Shear Verification Test
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4.103. The test begins with a 0 MPa hydrostatic hold period for 10 days while the temperature is
linearly ramped from 27◦C to 57◦C. Some thermal strains develop during this time. At 𝑡 = 0 , the
temperature ramp stops, 𝜎1 is increased to 5 MPa, 𝜎2 is held at zero, and 𝜎3 is reduced to -5 MPa.
This state is held for the next 50 days, while the material creeps. At 𝑡 = 50, 𝜃 is increased to
112◦C, but the stresses remain fixed. The sharp increase in 𝜃 causes a step change in thermal
strain, and then accelerated creep is observed over the over the next 50 days.

In summary, the numerical and analytical solutions for the total strain match very well throughout
the test, which verifies:

• Linear elasticity under pure shear

• Thermal expansion

• Viscoplastic strain evolution for 𝜓 = 0◦

• Temperature dependence of transient strain limit mechanism 1

• Steady-state strain accumulation dominated by mechanism 1

• Steady-state strain accumulation dominated by mechanism 2.

4.21.3.3 Unequal Biaxial Compression

Unequal biaxial compression is another stress state that exercises the Hosford stress at a Lode
angle other than 𝜓 = ±30◦. Unequal compressive stresses 𝜎xx and 𝜎yy are applied to two faces of
a cube, while 𝜎zz = 0. This stress state is slightly more complex than triaxial compression or pure
shear because all three stress magnitudes are unequal. This test also alters the stress component
ratios after 50 days of creep to verify the model’s ability to change Lode angle.

The applied stress and temperature histories for the test are shown in the top two plots in Fig.
4.104. The test begins with a stress free hold period for 10 days. At 𝑡 = 0, 𝜎xx is increased to 3.5
MPa, 𝜎yy is increased to 5 MPa, and 𝜎zz is held at zero. In this stress state, 𝜓 = 13.0◦ and the
intermediate principal stress is 𝜎xx. The intermediate principal strain rate ¤𝜀xx ≈ 0 and ¤𝜀yy ≈ − ¤𝜀zz
because the flow rule (4.86) causes ¤𝜀vp to be coaxial with the flow potential normal 𝑛𝑖 𝑗 , and 𝑛𝑖 𝑗 is
nearly horizontal at 𝜙 = 13.0◦ in Calibration 3B (see Fig. 4.99). At 𝑡 = 50, 𝜎xx is increased to 6.0
MPa, while the other stresses remain fixed. The sharp increase in 𝜎xx causes a step change in
elastic strain that is visible because the viscoplastic strains are small at these low values of 𝜎̄. In
this stress state, 𝜓 = 21.1◦ and the intermediate principal stress is 𝜎yy. Accordingly, ¤𝜀yy ≈ 0 and
¤𝜀xx ≈ − ¤𝜀zz. If one looks more closely, however, ¤𝜀yy is slightly positive and ¤𝜀xx > − ¤𝜀zz because
𝜓 = 21.1◦ is beginning to approach the corner of the Tresca hexagon (see again Fig. 4.99).

In summary, the numerical and analytical solutions for the total strain match very well throughout
the test, which verifies:

• Linear elasticity under unequal biaxial compression

• Viscoplastic strain evolution for 𝜓 = 13.0◦ and a subsequent change to 𝜓 = 21.1◦

• Transient strain accumulation dominated by transient strain limit mechanism 0
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Fig. 4.104 Unequal Biaxial Compression Verification Test
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• Steady-state strain accumulation dominated by mechanism 0.

4.21.4 User Guide

BEGIN PARAMETERS FOR MODEL MD_VISCOPLASTIC
# Elastic constants
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>
# Steady-state creep parameters
A0 = <real> (0.0)
A1 = <real> (0.0)
A2 = <real> (0.0)
Q0oR = <real> (0.0)
Q1oR = <real> (0.0)
Q2oR = <real> (0.0)
n0 = <real> (0.0)
n1 = <real> (0.0)
n2 = <real> (0.0)
sigma_g = <real>
B0 = <real> (0.0)
B1 = <real> (0.0)
B2 = <real> (0.0)
q = <real> (0.0)
# Transient creep parameters
K0 = <real> (0.0)
K1 = <real> (0.0)
c0 = <real> (0.0)
c1 = <real> (0.0)
m0 = <real> (0.0)
m1 = <real> (0.0)
alpha_h = <real> (0.0)
alpha_r = <real> (0.0)
beta_h = <real> (0.0)
beta_r = <real> (0.0)
# Other parameters
alpha = <real> (0.0)
a = <real> (1000.0)
# Numerical implementation parameters
_chi = <real> (2.0)
_sigma_min = <real> (1e-10 * SHEAR_MODULUS)
_sqrt_omega_max = <real> (1e-11)

(continues on next page)
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(continued from previous page)
_xi = <real> (1e-4)
_gamma = <real> (0.1)
_k_max = <real> (100)
_j_max = <real> (10)

END [PARAMETERS FOR MODEL MD_VISCOPLASTIC]

Output variables available for this model are listed in Table 4.32.

Table 4.32 State Variables for MD_VISCOPLASTIC Model
Name Description
EQ_TR_STRAIN equivalent transient viscoplastic strain, 𝜀tr

EQ_VP_STRAIN equivalent viscoplastic strain, 𝜀vp

EQ_STRESS equivalent stress, 𝜎̄
VP_RATE_SCALE_FACTOR viscoplastic rate scale factor, 𝑠

4.22 Hyperfoam Model

4.22.1 Theory

The hyperfoam model is a hyperelastic model that can be used for modeling elastomeric foams. It
is based on a strain energy with a form given by Storakers [93] which is similar to a form
presented by Ogden [78]. The strain energy depends on the principal stretch ratios of the material
and is given by

𝑊 (𝜆𝑘 ) =
𝑁∑
𝑖=1

2𝜇𝑖
𝛼2
𝑖

[
𝜆𝛼𝑖1 + 𝜆

𝛼𝑖
2 + 𝜆

𝛼𝑖
3 − 3 + 1

𝛽𝑖

(
𝐽−𝛼𝑖𝛽𝑖 − 1

)]
(4.96)

where 𝜇𝑖 and 𝛼𝑖 are input parameters and 𝐽 is the determinant of the deformation gradient. The
value of 𝛽𝑖 is calculated from the parameters 𝜈𝑖 via

𝛽𝑖 =
𝜈𝑖

1 − 2𝜈𝑖
.

The 𝜈𝑖 can be thought of as Poisson’s ratios, however in the context of the summation in (4.96) it
is best to consider them as fitting parameters.

The strain energy (4.96) is a sum of 𝑁 contributions. The principal Kirchoff stresses for the
hyperfoam model, 𝜏𝑘 , can be calculated as

𝜏𝑘 = 𝜆𝑘
𝜕𝑊

𝜕𝜆𝑘

which can be used to calculate the components of the Kirchoff stress, 𝜏𝑖 𝑗 , through

𝜏𝑖 𝑗 =
3∑
𝑘=1

𝜏𝑘𝑒
𝑘
𝑖 𝑒

𝑘
𝑗 .
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where 𝑒𝑘𝑖 are the components of the 𝑘 th eigenvector of the left stretch tensor in the global
Cartesian coordinate system. The components of the Cauchy stress are then

𝜎𝑖 𝑗 =
1
𝐽
𝜏𝑖 𝑗 . (4.97)

Finally, it should be noted that the Hyperfoam model is also capable of reproducing the Blatz-Ko
model [10, 11]. If only one term is chosen, 𝑁 = 1, and 𝜇1 = 𝜇, 𝛼1 = −2, and 𝜈1 = 0.25 we get the
Blatz-Ko strain energy density

𝑊 =
𝜇

2

(
𝐼2
𝐼3
+ 2

√
𝐼3 − 5

)
,

where 𝐼2 and 𝐼3 are the second and third invariants of the right Cauchy-Green tensor.

4.22.2 Implementation

The hyperfoam model is evaluated using the left stretch tensor, 𝑉𝑖 𝑗 . Given the left stretch, the
eigenvalues, 𝜆𝑘 , and eigenvectors, 𝑒𝑘𝑖 , of the stretch are calculated

𝑉𝑖 𝑗𝑒
𝑘
𝑗 = 𝜆𝑘𝑒

𝑘
𝑖 ; 𝑉𝑖 𝑗 =

3∑
𝑘=1

𝜆𝑘𝑒
𝑘
𝑖 𝑒

𝑘
𝑗 .

Next, the determinant of the deformation gradient is calculated

𝐽 = 𝜆1𝜆2𝜆3.

Then the contribution of each term in the expansion is added to the Kirchoff stress

𝜏𝑛𝑖 𝑗 = 𝜏
𝑛−1
𝑖 𝑗 + 𝜆1

𝜕𝑊 (𝑛)

𝜕𝜆1
𝑒1
𝑖 𝑒

1
𝑗 + 𝜆2

𝜕𝑊 (𝑛)

𝜕𝜆2
𝑒2
𝑖 𝑒

2
𝑗 + 𝜆3

𝜕𝑊 (𝑛)

𝜕𝜆3
𝑒3
𝑖 𝑒

3
𝑗

where 𝜏0
𝑖 𝑗 = 0 and

𝜆𝑘
𝜕𝑊 (𝑛)

𝜕𝜆𝑘
=

2𝜇𝑛
𝛼𝑛

(
𝜆𝛼𝑛𝑘 − 𝐽

−𝛼𝑛𝛽𝑛
)
. (4.98)

After summing the terms 𝑛 = 1, ..., 𝑁 the Kirchoff stress is converted to the Cauchy stress using
(4.97). If necessary the Cauchy stress is transformed back into an unrotated configuration to be
returned to the host code.

4.22.3 Verification

The hyperfoam model is verified for four loading paths: uniaxial strain, biaxial strain, pure shear,
and simple shear. The material parameters used for the verification tests are shown in Table 4.33.
For these problems 𝑁 = 3.
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Table 4.33 The material properties for the hyperfoam model tested in uniaxial strain.
EQPS equivalent plastic strain
SVB kinematic hardening variable, B
SVB_XX kinematic h

𝜇𝑖 25.8 MPa -21.9 MPa 0.0814 MPa
𝛼𝑖 2.536 2.090 -8.807
𝜈𝑖 0.5630 0.5507 0.3662

4.22.3.1 Uniaxial Strain

Since the hyperfoam model is formulated in terms of principal stretches, a uniaxial strain problem
is a very simple verification problem that can be run.

In uniaxial strain, the stretch ratio in the direction of straining is 𝜆 = exp(𝜀), where 𝜀 is the
applied strain. In a direction orthogonal to the direction of straining the stretch ratios are equal to
one. The determinant of the deformation gradient is 𝐽 = 𝜆.

Since the deformation is aligned with the global coordinate axes, the eigenvectors of the left
stretch are also aligned with the global coordinate axes. Using the derivatives of the strain energy
density given in (4.98), the non-zero stress components are

𝜎11 =
1
𝜆

𝑁∑
𝑖=1

2𝜇𝑖
𝛼𝑖

(
𝜆𝛼𝑖 − 𝜆−𝛼𝑖𝛽𝑖

)

𝜎22 = 𝜎33 =
1
𝜆

𝑁∑
𝑖=1

2𝜇𝑖
𝛼𝑖

(
1 − 𝜆−𝛼𝑖𝛽𝑖

)
The results of the analysis in tension are shown in Fig. 4.105 to Fig. 4.107.

For the results in Fig. 4.105, a single element is strained to 𝜀 = 0.6 which, in uniaxial strain in
tension, is very large for this model. At some point the stresses begin to increase rapidly. Since
the axial stress and the lateral stresses are both very large, the pressure in uniaxial strain in tension
is also very large. For this extreme loading the model in Adagio shows agreement with the
analytical solution.

The model is also loaded in uniaxial compression. These results are shown in Fig. 4.106. The
model again shows agreement with the analytical solution. The behavior in compression is very
different than tension. The maximum stress is an order of magnitude less at a strain of 𝜀 = −0.6,
where the axial stress is just over 9 MPa, compared to 𝜀 = 0.6 in tension where the axial and lateral
stresses are nearly 450 MPa. The lateral stresses reach a plateau while the axial stress increases.
The stresses in compression also have a different nonlinear form than the stresses in tension.
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Finally, both the tension and compression responses are shown in Fig. 4.107. Here the continuity
of the behavior at 𝜀 = 0 can be seen along with the very different responses in tension and
compression.

Fig. 4.105 The axial and lateral stresses for uniaxial strain in tension using the hyperfoam model.
The results show agreement with the analytical results. The material properties for the model are
given in Table 4.33

4.22.3.2 Biaxial Strain

Another simple verification problem for the hyperfoam model is biaxial strain.

In biaxial strain, the stretch ratios are prescribed in two orthogonal directions. For this
𝜆1 = exp(𝜀1) and 𝜆2 = exp(𝜀2), where 𝜀𝑖 are the applied strains in the 𝑥1 and 𝑥2 directions. In the
third direction orthogonal to the first two, the stretch ratio is one. The determinant of the
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Fig. 4.106 The axial and lateral stresses for uniaxial strain in compression using the hyperfoam
model. The results show agreement with the analytical results. The material properties for the
model are given in Table 4.33.
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Fig. 4.107 The axial and lateral stresses for uniaxial strain in both tension and compression using
the hyperfoammodel. The results show agreement with the analytical results and that the response
of the material is very different in tension and compression. The material properties for the model
are given in Table 4.33.
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deformation gradient is 𝐽 = 𝜆1𝜆2.

𝜎11 =
1

𝜆1𝜆2

𝑁∑
𝑖=1

2𝜇𝑖
𝛼𝑖

[
𝜆𝛼𝑖1 − (𝜆1𝜆2)−𝛼𝑖𝛽𝑖

]
; 𝜎22 =

1
𝜆1𝜆2

𝑁∑
𝑖=1

2𝜇𝑖
𝛼𝑖

[
𝜆𝛼𝑖2 − (𝜆1𝜆2)−𝛼𝑖𝛽𝑖

]

𝜎33 =
1

𝜆1𝜆2

𝑁∑
𝑖=1

2𝜇𝑖
𝛼𝑖

[
1 − (𝜆1𝜆2)−𝛼𝑖𝛽𝑖

]
The results of the analysis in tension are shown in Fig. 4.108 to Fig. 4.110.

For the results in Fig. 4.108, a single element is strained with 𝜀1 = 0.4 and 𝜀2 = 0.2 which, in
biaxial strain in tension, is very large for this model. At some point the normal stresses begin to
increase rapidly. Since the normal stresses are very large, the hydrostatic pressure is also very
large. For this extreme loading the model in Adagio shows agreement with the analytical
solution.

The model is also loaded in biaxial compression. These results are shown in Fig. 4.109. The
model again shows agreement with the analytical solution. The behavior in compression is very
different than tension. The maximum stress is orders of magnitude less at a strain of 𝜀1 = −0.4
and 𝜀2 = −0.3, where the maximum normal stress is just over 4.5 MPa, compared to 𝜀1 = 0.4 and
𝜀2 = 0.3 in tension where the normal stresses from the model are nearly 1.3 GPa. The lateral
stress 𝜎𝑧𝑧 reaches a plateau while the other two stress increase with increased straining The
stresses in compression also have a different nonlinear form than the stresses in tension.

Finally, both the tension and compression responses are shown in Fig. 4.110. Here the continuity
of the behavior at 𝜀 = 0 can be seen along with the very different responses in tension and
compression.

4.22.3.3 Pure Shear

The hyperfoam model is is also tested in pure shear in strain. Note that this is different from pure
shear in stress.

In pure shear, the principal stretch ratios are 𝜆1 = 𝜆, 𝜆2 = 1, and 𝜆3 = 𝜆−1. The determinant of the
deformation gradient is 𝐽 = 1, which means the Kirchhoff and Cauchy stress measures are the
same.

The principal stresses are

𝜎1 =
𝑁∑
𝑖=1

2𝜇𝑖
𝛼𝑖
(𝜆𝛼𝑖 − 1) ; 𝜎2 = 0 ; 𝜎3 =

𝑁∑
𝑖=1

2𝜇𝑖
𝛼𝑖
(𝜆−𝛼𝑖 − 1)

The principal axes of deformation are aligned at 45◦ to the coordinate axes. In the global
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Fig. 4.108 The normal stresses for biaxial strain in tension using the hyperfoam model. The results
show agreement with the analytical results. Thematerial properties for themodel are given in Table
4.33.
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Fig. 4.109 The normal stresses for biaxial strain in compression using the hyperfoam model. The
results show agreement with the analytical results. The material properties for the model are given
in Table 4.33.
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Fig. 4.110 The normal stresses for biaxial strain in both tension and compression using the hyper-
foam model. The results show agreement with the analytical results and that the response of the
material is very different in tension and compression. The material properties for the model are
given in Table 4.33.
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coordinate system the non-zero stress components are

𝜎11 = 𝜎22 =
𝑁∑
𝑖=1

2𝜇𝑖
𝛼𝑖
(𝜆𝛼𝑖 + 𝜆−𝛼𝑖 − 2)

𝜎12 =
𝑁∑
𝑖=1

2𝜇𝑖
𝛼𝑖
(𝜆𝛼𝑖 − 𝜆−𝛼𝑖 )

The results of the analysis in pure shear are shown in Fig. 4.111. A single element is strained to a
shear strain of 𝜀 = 0.4. The model in Adagio shows agreement with the analytical solution
presented above. It is interesting to note that pure shear strain produces not only normal stresses
with the hyperfoam model, but a non-zero pressure. The deviatoric/volumetric split so often used
with our constitutive model does not occur with the hyperfoam model.

Fig. 4.111 The shear and normal stresses for the hyperfoam model in pure shear. The material
properties for the model are given in Table 4.33.
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4.22.3.4 Simple Shear

The hyperfoam model is is also tested in simple shear. Note that this is a different deformation
path than pure shear. In simple shear the deformation gradient is

[
𝐹𝑖 𝑗

]
=


1 𝛾 0
0 1 0
0 0 1


The principal stretch ratios are 𝜆1 = 𝜆, 𝜆2 = 1, and 𝜆3 = 𝜆−1. The determinant of the deformation
gradient is 𝐽 = 1, which means the Kirchhoff and Cauchy stress measures are the same. This gives
the {em same} principal stresses as in pure shear when written in terms of the principal stretch
ratio, 𝜆. The principal stresses are

𝜎1 =
𝑁∑
𝑖=1

2𝜇𝑖
𝛼𝑖
(𝜆𝛼𝑖 − 1) ; 𝜎2 = 0 ; 𝜎3 =

𝑁∑
𝑖=1

2𝜇𝑖
𝛼𝑖
(𝜆−𝛼𝑖 − 1)

The principal stretch ratio is

𝜆 =
1 + sin 𝜃

cos 𝜃
; 𝜃 = tan−1

(𝛾
2

)
The principal axes of deformation in the current configuration, i.e. the eigenvectors of the left
stretch, are given by

𝑒1
𝑖 = cos 𝜙 𝑒1

𝑖 + sin 𝜙 𝑒2
𝑖 ; 𝑒2

𝑖 = 𝑒
3
𝑖 ; 𝑒3

𝑖 = − sin 𝜙 𝑒1
𝑖 + cos 𝜙 𝑒2

𝑖

where 𝜙 = 𝜋/4 − 𝜃/2.

The results of the analysis in simple shear are shown in Fig. 4.112. A single element is strained to
a shear parameter of 𝛾 = 0.4. The model in Adagio shows agreement with the analytical solution
presented above. It is interesting to note that simple shear with the hyperfoam model produces
different normal stresses than simple shear, i.e. the two non-zero normal stresses are not equal.
The difference arises from the fact that the principal axes of deformation in pure shear are fixed,
while in simple shear the principal axes rotate. There is still a non-zero pressure which again
shows that the deviatoric/volumetric split does not occur with the hyperfoam model.

4.22.4 User Guide

BEGIN PARAMETERS FOR MODEL HYPERFOAM
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>

(continues on next page)
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Fig. 4.112 The shear and normal stresses for the hyperfoam model in simple shear. The material
properties for the model are given in Table 4.33.
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(continued from previous page)
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>
#
# Strain energy density
#
N = <integer>
SHEAR = <real_list>
ALPHA = <real_list>
POISSON = <real_list>

END [PARAMETERS FOR HYPERFOAM]

• The number of terms in the expansion of the strain energy is defined with the N command
line.

• The shear terms in the expansion of the strain energy, 𝜇𝑖, are defined with the SHEAR
command line.

• The alpha terms in the expansion of the strain energy, 𝛼𝑖, are defined with the ALPHA
command line.

• The Poisson ratio terms in the expansion of the strain energy, 𝜈𝑖, are defined with the
POISSON command line.

There are no output variables available for this model.

4.23 Hyperelastic Damage Model

4.23.1 Theory

The hyperelastic damage model is an isotropic, strain rate and temperature independent
continuum damage formulation. In this case, the specific form is that discussed by Holzapfel [43]
and proposed primarily for particulate reinforced (filled) rubber-like materials exhibiting the so
called Mullins effect. Specifically, this model utilizes a Kachanov-like effective stress concept to
propose an effective Helmholtz free energy,𝑊 , of the form

𝑊 = (1 − 𝜁)𝑊0
(
𝐶𝑖 𝑗

)
,

in which 𝜁 = [0, 1] is the isotropic damage variable and𝑊0 is the Helmholtz free energy of the
undamaged material and 𝐶𝑖 𝑗 is the right Cauchy-Green tensor (𝐶𝑖 𝑗 = 𝐹𝑘𝑖𝐹𝑘 𝑗 with 𝐹𝑖 𝑗 the
deformation gradient). The free energy expression of the neo-Hookean model (Section 4.5) is
used to describe the undamaged strain energy and is given as,

𝑊0
(
𝐶𝑖 𝑗

)
=

1
2
𝐾

[
1
2

(
𝐽2 − 1

)
− ln 𝐽

]
+ 1

2
𝜇

(
𝐶̄𝑘𝑘 − 3

)
,
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with 𝐾 and 𝜇 the bulk and shear moduli, 𝐽 the determinant of the deformation gradient and 𝐶̄𝑘𝑘
the isochoric part of the deformation – 𝐶̄𝑖 𝑗 = 𝐹̄𝑘𝑖 𝐹̄𝑘 𝑗 and 𝐹̄𝑖 𝑗 = 𝐽−1/3𝐹𝑖 𝑗 . In the undamaged
configuration, the second Piola-Kirchoff stress, 𝑆0

𝑖 𝑗 , is the energetic conjugate of the right
Cauchy-Green strain such that

𝑆0
𝑖 𝑗 = 2

𝜕𝑊0
𝜕𝐶𝑖 𝑗

,

leading to a damaged stress of the form,

𝑆𝑖 𝑗 = (1 − 𝜁) 𝑆0
𝑖 𝑗 .

To describe the softening process, two damage related variables are needed. The first is the
previously mentioned smooth, continuous effective damage variable, 𝜁 , while the second is the
so-called discontinuous damage variable, 𝛼. In essence, this second variable may be considered to
be the maximum strain energy in the undamaged material throughout the entire loading history.
This statement may be expressed as,

𝛼 = max
𝑠∈[0,𝑡]

𝑊0 (𝑠) , (4.99)

in which 𝑠 is a history variable representing any time in the loading history and the dependence on
𝑠 in (4.99) is used to indicate the loading history and not an explicit dependence on time or strain
rate. The two damage terms are related by assuming 𝜁 = 𝜁 (𝛼). To ascertain this dependence, it is
noted that 𝜁 (0) = 0 and 𝜁 (∞) = 1 the former explicitly stating that the material is initially
undamaged and the latter noting in the limit the material is completely damaged the strain energy
will go to∞. These observations lead to an expression of the form,

𝜁 (𝛼) = 𝜁∞ [1 − exp (−𝛼/𝜏)] , (4.100)

with 𝜏 being a constant referred to as the damage saturation parameter and 𝜁∞ being the
maximum value of the damage parameter that may be achieved.

The evolution of the damage process is governed by a so-called damage function, 𝑓
(
𝐶𝑖 𝑗 , 𝛼

)
(analogous to the yield function in plasticity), postulated as,

𝑓
(
𝐶𝑖 𝑗 , 𝛼

)
= 𝜙

(
𝐶𝑖 𝑗

)
− 𝛼,

where 𝜙 is the thermodynamic driving of the damage process. In this case, the thermodynamic
conjugate of the damage variable 𝜁 is the undamaged strain energy,𝑊0, such that
𝜙

(
𝐶𝑖 𝑗

)
= 𝑊0

(
𝐶𝑖 𝑗

)
. By enforcing the consistency condition during damage ( ¤𝑓 = 0), it can be

shown that,

¤𝛼 = ¤𝜙 =
𝜕𝑊0
𝜕𝐶𝑖 𝑗

¤𝐶𝑖 𝑗 =
1
2
𝑆0
𝑖 𝑗
¤𝐶𝑖 𝑗 .
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4.23.2 Implementation

For the hyperelastic damage model, the first step is to calculate the undamaged second
Piola-Kirchoff stress, 𝑆0(𝑛+1)

𝑖 𝑗 of the current (𝑛 + 1)𝑡ℎ time step. To this end, the deformation
gradient, 𝐹 (𝑛+1)𝑖 𝑗 , is calculated based on the input stretch, 𝑉 (𝑛+1)𝑖 𝑗 , and rotation, 𝑅(𝑛+1)𝑖 𝑗 , tensors via
the polar decomposition. The second Piola-Kirchoff stress may then be determined as,

𝑆0(𝑛+1)
𝑖 𝑗 =

[
1
2
𝐾

((
𝐽 (𝑛+1)

)2
− 1

)
𝐼𝑖𝑙 + 𝜇

(
𝐽 (𝑛+1)

)−2/3
(
𝐶 (𝑛+1)𝑖𝑙 − 1

3
𝐶 (𝑛+1)𝑘𝑘 𝐼𝑖𝑙

)] (
𝐶 (𝑛+1)𝑗 𝑙

)−1
.

To determine the damage state, the undamaged strain energy𝑊 (𝑛+1)0 , is first calculated as,

𝑊 (𝑛+1)0 =
1
2
𝐾

(
1
2

((
𝐽 (𝑛+1)

)2
− 1

)
− ln 𝐽 (𝑛+1)

)
+ 1

2
𝜇

[(
𝐽 (𝑛+1)

)−2/3
𝐶 (𝑛+1)𝑘𝑘 − 3

]
.

The current discrete damage variable, 𝛼(𝑛+1) , may then be determined via,

𝛼(𝑛+1) = max
[
𝛼(𝑛) ,𝑊 (𝑛+1)0

]
,

so that the current continuous damage variable, 𝜁 (𝑛+1) , is,

𝜁 (𝑛+1) = 𝜁∞
[
1 − exp

(
𝛼(𝑛+1)/𝜏

)]
.

Finally, these expressions lead to an unrotated Cauchy stress of the form,

𝑇 (𝑛+1)𝑖 𝑗 =
1

𝐽 (𝑛+1)

(
1 − 𝜁 (𝑛+1)

)
𝑅(𝑛+1)𝑘𝑖 𝐹 (𝑛+1)𝑘𝑚 𝑆0(𝑛+1)

𝑚𝑛 𝐹 (𝑛+1)𝑟𝑛 𝑅(𝑛+1)𝑟 𝑗 .

4.23.3 Verification

Given the hyperelastic formulation of the hyperelastic damage model, it is possible to find closed
form solutions for simple loadings. Two such instances (uniaxial strain and simple shear) are
considered here to evaluate and verify the response of this implementation. In this case, the
results explored here are extensions of the neo-Hookean verification tests previously discussed in
Section 4.5.3 and [89]. One set of material properties was used for all tests and they are given in
Table 4.34. The damage parameters are taken from [43].

Table 4.34 The material properties for the hyperelastic damage model used for both the uniaxial
and simple shear tests.

Name Description
𝐾 0.5 MPa 𝜇 0.375 MPa
𝜁∞ 0.8 𝜏 0.3 MPa
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4.23.3.1 Uniaxial Strain

First, utilizing a displacement condition corresponding to uniaxial strain results in a deformation
gradient of the form,

𝐹𝑖 𝑗 = 𝜆𝛿1𝑖𝛿1 𝑗 + 𝛿2𝑖𝛿2 𝑗 + 𝛿3𝑖𝛿3 𝑗 . (4.101)

As the undamaged material is neo-Hookean, it is noted that the under these loading conditions the
stress field is found by evaluating relation (4.10) and may be written as

𝜎0
11 =

1
2
𝐾

(
𝜆 − 1

𝜆

)
+ 2

3
𝜇

(
𝜆2 − 1

)
𝜆−5/3,

𝜎0
22 = 𝜎0

33 =
1
2
𝐾

(
𝜆 − 1

𝜆

)
− 1

3
𝜇

(
𝜆2 − 1

)
𝜆−5/3,

𝜎0
12 = 𝜎0

23 = 𝜎0
31 = 0.

The damaged, effective stresses are then simply 𝜎𝑖 𝑗 = (1 − 𝜁) 𝜎0
𝑖 𝑗 and the problem reduces to the

determination of 𝜁 . In this case, given the deformation gradient in (4.101), 𝐽 = 𝜆 and

𝑊0 =
1
2
𝐾

[
1
2

(
𝜆2 − 1

)
− ln𝜆

]
+ 1

2
𝜇

[
𝜆−2/3

(
𝜆2 + 2

)
− 3

]
.

During loading, 𝛼 = 𝑊0 while during unloading 𝛼 = 𝑊0 (𝜆max) and 𝜁 can be determined from
(4.100).

Both the corresponding analytical and numerical solutions are presented in Fig. 4.113 for a
complete loading and unloading cycle. Note, the damage parameter, 𝜁 , increases during loading
but remains constant during unloading verifying the irreversibility of the proposed model.

4.23.3.2 Simple Shear

For the simple shear case, a deformation gradient of the form,

𝐹𝑖 𝑗 = 𝛿𝑖 𝑗 + 𝛾𝛿1𝑖𝛿2 𝑗 ,

is prescribed. Again, from the neo-Hookean model definitions the undamaged stresses may be
determined via (4.10) and noting this is a volume preserving definition (𝐽 = 1) leading to
expressions of the form,

𝜎0
11 =

2
3
𝜇𝛾2,

𝜎0
22 = 𝜎33 = −1

3
𝜇𝛾2,

𝜎0
12 = 𝜇𝛾,

𝜎0
23 = 𝜎0

31 = 0.
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Fig. 4.113 Analytical and numerical results of the stress and damage state for the uniaxial stretch
case.
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In this case, the undamaged strain energy is simply,

𝑊0 =
1
2
𝜇𝛾2,

and 𝜁 may be evaluated via (4.100). The effective stresses are then 𝜎𝑖 𝑗 = (1 − 𝜁) 𝜎0
𝑖 𝑗

Both the corresponding analytical and numerical solutions are presented in Figure. Fig. 4.114 for
a complete loading and unloading cycle. Note, the damage parameter, 𝜁 , increases during loading
but remains constant during unloading given the irreversible form of the damage process.

Fig. 4.114 Analytical and numerical results of the stress and damage state for the simple shear case.

4.23.4 User Guide

BEGIN PARAMETERS FOR MODEL HYPERELASTIC_DAMAGE
#
# Elastic constants
#

(continues on next page)
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(continued from previous page)
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>
#
DAMAGE MAX = <real>
DAMAGE SATURATION = <real>

END [PARAMETERS FOR MODEL HYPERELASTIC_DAMAGE]

Output variables available for this model are listed in Table 4.35. For information about the
hyperelastic damage model, consult [43].

Table 4.35 State Variables for HYPERELASTIC DAMAGE Model
Name Description
DAMAGE continuous isotropic damage variable, 𝜁
ALPHA discontinuous damage variable, 𝛼
PRESSURE reference undamaged tensile pressure, (1/3) (1 − 𝜁) 𝑆𝑘𝑘

4.24 Soil and Foam Model

4.24.1 Theory

The soil and crushable foam model is a plasticity model that can be used for modeling soil,
crushable foam, or other highly compressible materials. Given the right input, the model is a
Drucker-Prager model.

For the soil and crushable foam model, the yield surface is a surface of revolution about the
hydrostat in principal stress space. A planar end cap is assumed for the yield surface so that the
yield surface is closed. The yield stress 𝜎𝑦𝑑 is specified as a polynomial in pressure 𝑝. The yield
stress is given as:

𝜎𝑦𝑑 = 𝑎0 + 𝑎1𝑝 + 𝑎2𝑝
2 , (4.102)

where the pressure 𝑝 is positive in compression. The determination of the yield stress from
(4.102) places severe restrictions on the admissible values of 𝑎0, 𝑎1, and 𝑎2. There are three valid
cases for the yield surface. In the first case, there is an elastic–perfectly plastic deviatoric
response, and the yield surface is a cylinder oriented along the hydrostat in principal stress space.
In this case, 𝑎0 is positive, and 𝑎1 and 𝑎2 are zero. In the second case, the yield surface is conical.
A conical yield surface is obtained by setting 𝑎2 to zero and using appropriate values for 𝑎0 and
𝑎1. In the third case, the yield surface has a parabolic shape. For the parabolic yield surface, all
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three coefficients in (4.102) are nonzero. The coefficients are checked to determine that a valid
negative tensile-failure pressure can be derived based on the specified coefficients.

For the case of the cylindrical yield surface (e.g., 𝑎0 > 0 and 𝑎1 = 𝑎2 = 0), there is no
tensile-failure pressure. For the other two cases, the computed tensile-failure pressure may be too
low. To handle the situations where there is no tensile-failure pressure or the tensile-failure
pressure is too low, a pressure cutoff can be defined. If a pressure cutoff is defined, the
tensile-failure pressure is the larger of the computed tensile-failure pressure and the defined cutoff
pressure.

The plasticity theories for the volumetric and deviatoric parts of the material response are
completely uncoupled. The volumetric response is computed first. The mean pressure 𝑝 is
assumed to be positive in compression, and a yield function 𝜙𝑝 is written for the volumetric
response as:

𝜙𝑝 = 𝑝 − 𝑓𝑝 (𝜀𝑉 ) , (4.103)

where 𝑓𝑝 (𝜀𝑉 ) defines the volumetric stress-strain curve for the pressure. The yield function 𝜙𝑝
determines the motion of the end cap along the hydrostat.

4.24.2 Implementation

The soil and crushable foam model is a rate-independent, hypoelastic model that splits and
sequentially evaluates the volumetric and deviatoric response. To determine the inelastic flow, an
elastic predictor-inelastic corrector approach is adopted for each of the aforementioned
responses.

For the volumetric response, an updated logarithmic volume strain, 𝜀𝑛+1𝑣 , is computed by,

𝜀𝑛+1𝑣 = 𝜀𝑛𝑣 − Δ𝑡𝑑𝑘𝑘 .

Note, in this case, the volume strain is defined such that it is positive in compression. This strain
value is then used to evaluate the volumetric yield function defined in (4.103) and determine the
appropriate pressure, 𝑝, the material is subject to.

To evaluate the deviatoric response, a trial deviatoric stress, 𝑠𝑡𝑟𝑖 𝑗 , is defined as,

𝑠𝑡𝑟𝑖 𝑗 = 𝑠
𝑛
𝑖 𝑗 + 2𝜇𝑑𝑖 𝑗Δ𝑡,

with 𝑑𝑖 𝑗 being the deviatoric part of the unrotated rate of deformation. The deviatoric yield
function, 𝑓 , is then used to evaluate if any deviatoric plastic flow is occurring and is written as,

𝑓
(
𝑠𝑖 𝑗 , 𝑝

)
= 𝜙

(
𝑠𝑖 𝑗

)
− 𝜎𝑦𝑑 (𝑝) ,

where 𝜎𝑦𝑑 is the yield stress given in (4.102) and 𝜙
(
𝑠𝑖 𝑗

)
the effective stress given as,

𝜙
(
𝑠𝑖 𝑗

)
=

√
3
2
𝑠𝑖 𝑗 𝑠𝑖 𝑗 .
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If an elastic response is evident ( 𝑓 ≤ 0), then the final stress is simply,

𝑇𝑛+1𝑖 𝑗 = 𝑠𝑡𝑟𝑖 𝑗 − 𝑝𝛿𝑖 𝑗 .

Otherwise, if a plastic response is observed, a radial return approach like that discussed in Section
4.7.2 is utilized to find the equivalent plastic strain increment, Δ𝜀𝑝. Unlike that case, given the
decoupling between the volumetric and deviatoric behaviors, the hardening component of the
yield surface does not change leading to an expression of the form,

Δ𝜀𝑝 =
𝑓

3𝜇
,

and the final stress is,

𝑇𝑛+1𝑖 𝑗 = 𝑠𝑡𝑟𝑖 𝑗 − 3𝜇Δ𝜀𝑝
𝑠𝑡𝑟𝑖 𝑗

𝜙
− 𝑝𝛿𝑖 𝑗 .

4.24.3 Verification

The soil and foam model is verified for a triaxial compression load path. First the material is
biaxially loaded in plane strain using load control, then the prescribed loads are released while the
material is compressed in displacement control.

4.24.3.1 Triaxial Compression

The soil and foam model is tested in triaxial compression. For this problem, both lateral stresses,
𝜎11 and 𝜎33, are prescribed along with the axial strain, 𝜀22. Furthermore, the lateral stresses are
equal, 𝜎11 = 𝜎33. For the elastic response, the axial stress is

𝜎22 = 𝐸𝜀22 + 2𝜈𝜎11

where 𝐸 is the elastic modulus and 𝜈 is the Poisson’s ratio. The lateral strains are

𝜀11 = −𝜈 (𝜀22 − 𝜎11/𝜆)

where 𝜆 is the Lame constant.

4.24.4 User Guide

BEGIN PARAMETERS FOR MODEL SOIL_FOAM
#
# Elastic constants
#

(continues on next page)
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Fig. 4.115 Lateral strain, 𝜀11 and 𝜀33, over the course of the prescribed triaxial loading path.
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Fig. 4.116 Axial stress, 𝜎22, over the course of the prescribed triaxial loading path.
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(continued from previous page)
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>
#
# Yield surface parameters
#
A0 = <real>
A1 = <real>
A2 = <real>
PRESSURE CUTOFF = <real>
PRESSURE FUNCTION = <string>

END [PARAMETERS FOR MODEL SOIL_FOAM]

In the above command blocks:

• The constant coefficient in the equation for the yield surface ( (4.102)) is defined with the
A0 command line.

• The coefficient for the linear term in the equation for the yield surface ( (4.102)) is defined
with the A1 command line.

• The coefficient for the quadratic term in the equation for the yield surface ( (4.102)) is
defined with the A2 command line.

• The user-defined maximum tensile-failure pressure is defined with the PRESSURE
CUTOFF command line.

• The pressure as a function of volumetric strain is defined with the function named on the
PRESSURE FUNCTION command line.

For information about the soil and crushable foam model, see the PRONTO3D document listed as
Reference [104]. The soil and crushable foam model is the same as the soil and crushable foam
model in PRONTO3D. The PRONTO3D model is based on a material model developed by Krieg
[52]. The Krieg version of the soil and crushable foam model was later modified by Swenson and
Taylor [102]. The soil and crushable foam model developed by Swenson and Taylor is the model
in PRONTO3D and is also the shared model for Presto and Adagio.

Output variables available for this model are listed in Table 4.36.

Table 4.36 State Variables for SOIL FOAM Model
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Name Description
EVOL_MAX maximum volumetric strain seen by the material point
EVOL_FRAC volumetric strain for tensile fracture
EVOL current volumetric strain
EQPS equivalent plastic strain

4.25 Shape Memory Alloy Model

4.25.1 Theory

The shape memory alloy (SMA) model is used to describe the thermomechanical response of
intermetallics (e.g. NiTi, NiTiCu, NiTiPd, NiTiPt) that can undergo a reversible, diffusionless,
solid-to-solid martensitic transformation. Specifically, the materials have a high-symmetry
(typically cubic) austenitic crystallographic structure at high temperature and/or low stress. At
lower-temperatures and/or high stress the crystallographic structure is transformed to a lower
symmetry (typically orthorhombic or monoclinic) martensitic phase. The change in structure and
symmetry may be taken advantage of to produce large inelastic strains of ≈ 1-8%. Importantly,
this class of materials differentiates itself from TRIP steels in that the transformation is reversible
and a variety of thermomechanical loading paths have been conceived of to take advantage of this
behavior. A notable application of these materials is as an actuator in smart, morphing
structures.

Phenomenologically, the macroscopic behavior of SMAs is typically discussed in effective
stress-temperature space via a phase diagram like in Fig. 4.117. The four lines denoted
𝑀𝑠, 𝑀 𝑓 , 𝐴𝑠, and 𝐴 𝑓 indicate the martensitic start, martensitic finish, austenitic start, and
austenitic finish transformation surfaces. Forward transformation (from an austenitic to a
martensitic state) is described by the martensitic start and finish surfaces. Specifically, the former
refers to the thermomechanical conditions at which transformation will initiate while the latter
corresponds to complete transformation. The difference between the two surfaces is associated
with internal hardening effects due to microstructure (i.e. texture, back stresses). Transformation
from martensite to austenite is referred to as reverse and is characterized by the austenitic start
and finish surfaces. Detailed discussion of the crystallography and phenomenology may be found
in [55], [80] (In the martensitic configuration, the crystallographic structure can either
self-accommodate in a twinned configuration producing no macroscopic inelastic strain or an
internal or external stress field may be used to detwin the microstructure thereby producing the
desired inelastic strain. For simplicity, this distinction is bypassed in this brief text and the
interested reader should consult the referenced works.).

Two responses characteristic of SMAs may also be represented via the phase diagram. These are
the actuation response and the pseudoelastic (often referred to as superelastic in the literature)
responses. The first (actuation) is indicated by path 𝐴 in Fig. 4.117. In this case, a mechanical
bias load is applied to the SMA and the material is then thermally cycled through forward and
reverse transformation. The resulting transformation first produces and then removes the large
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Fig. 4.117 Representative phase diagramof shapememory alloys highlighting characteristic loading
paths ((𝐴) and (𝐵)), transformation surfaces, and phases.
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transformation strains of SMAs and is commonly used for (surprisingly) actuation applications.
At higher temperatures (𝑇 > 𝐴 𝑓 ), mechanical loading may be used induce forward and, upon
unloading, reverse transformation as indicated in path 𝐵 of Fig. 4.117. Through such a cycle, a
distinctive flag shape in the stress strain response is observed through which large amounts of
energy may be dissipated while producing no permanent deformations. As such, this loading path
is often considered for vibration isolation or damping applications.

In LAME, the response of SMAs is described by the phenomenological model of Lagoudas and
coworkers [54]. This model was motivated by actuator applications and it describes the inelastic
deformation associated with martensitic transformation through two internal state variables – the
scalar martensitic volume fraction, 𝜉, and tensorial transformation strain tensor, 𝜀tr𝑖 𝑗 . Before
proceeding it should be noted that the structural response of SMA specimens and components
exhibit a rate dependency associated with the strong thermomechanical coupling of SMAs.
Specifically, the transformation process gives off/absorbs large amounts of energy via the latent
heat of transformation. The rate dependence observed is a result of the characteristic time scale
associated with thermal transport of this heat. In pure mechanical analyses (like Sierra/SM), this
means quasistatics loadings are typically considered (a strain rate of ≈ 1𝑥10−4 and/or
heating/cooling rate of ≈ 2◦𝐶/min). Formulations accounting for the full coupling have been
developed but require more complex implementations.

To begin, the model assumes an additive decomposition of the total, elastic, thermal, and
transformation deformation (strain) rates respectively denoted by 𝐷𝑖 𝑗 , 𝐷e

𝑖 𝑗 , 𝐷
th
𝑖 𝑗 and 𝐷

tr
𝑖 𝑗

producing a total deformation rate of the form,

𝐷𝑖 𝑗 = 𝐷
e
𝑖 𝑗 + 𝐷th

𝑖 𝑗 + 𝐷tr
𝑖 𝑗 .

With respect to the thermoelastic deformations, it is noted that the different crystallographic
phases have different thermoelastic constants. Previous studies have demonstrated that a rule of
mixtures on the compliance and other material properties of the form,

S𝑖 𝑗 𝑘𝑙 = S
𝐴
𝑖 𝑗 𝑘𝑙 + 𝜉

(
S𝑀𝑖 𝑗 𝑘𝑙 − S𝐴𝑖 𝑗 𝑘𝑙

)
= S𝐴𝑖 𝑗 𝑘𝑙 + 𝜉ΔS𝑖 𝑗 𝑘𝑙 ,

𝛼𝑖 𝑗 = 𝛼
𝐴𝛿𝑖 𝑗 + 𝜉

(
𝛼𝑀𝛿𝑖 𝑗 − 𝛼𝐴𝛿𝑖 𝑗

)
= 𝛼𝐴𝛿𝑖 𝑗 + 𝜉Δ𝛼𝛿𝑖 𝑗 ,

in which S𝑖 𝑗 𝑘𝑙 and 𝛼𝑖 𝑗 are the current effective compliance and coefficient of thermal expansion
and the superscripts 𝐴 and 𝑀 denote thermoelastic properties in the austenitic and martensitic
configuration. The symbol Δ is used to indicate the difference in a property between the
martensitic and austenitic phases while 𝛿𝑖 𝑗 is the Kronecker delta. Isotropy is assumed for all
these properties and the compliances are determined via the definition of elastic moduli and
Poisson’s ratio of the two phases – 𝐸 𝐴, 𝐸𝑀 , 𝜈𝑀 , and 𝜈𝑀 . The two Poisson ratios are often the
same and take typical values for metals (𝜈𝐴 ≈ 𝜈𝑀 ≈ 0.3) while the elastic moduli can differ by a
factor of more than two. For instance the austenitic modulus of NiTi is typically given as ≈ 70
GPa while the martensitic one is ≈ 30 GPa (Given the lower symmetry of the martensitic phase
the determination of an isotropic elastic modulus can vary with characterization methodology. In
this case, the apparent elastic modulus measured from macroscopic thermoelastic tests should be
used.). Importantly, this difference means that the thermoelastic properties and corresponding
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deformations vary with transformation. As such, the corresponding rates of deformation are given
as,

𝐷e
𝑖 𝑗 = ¤𝜉ΔS𝑖 𝑗 𝑘𝑙𝜎𝑘𝑙 + S𝑖 𝑗 𝑘𝑙

◦
𝜎𝑘𝑙 ,

𝐷th
𝑖 𝑗 = ¤𝜉Δ𝛼𝛿𝑖 𝑗 (𝜃 − 𝜃0) + 𝛼𝛿𝑖 𝑗 ¤𝜃,

where 𝜃 and 𝜃0 are the current and reference temperature and 𝜎𝑖 𝑗 is the symmetric Cauchy stress.
Note, in using the SMA model a temperature field must be defined. The stress rate may then be
shown to be,

◦
𝜎𝑖 𝑗= C𝑖 𝑗 𝑘𝑙

(
𝐷𝑘𝑙 − 𝛼𝛿𝑘𝑙 ¤𝜃 − ¤𝜉 (ΔS𝑘𝑙𝑚𝑛𝜎𝑚𝑛 + Δ𝛼𝛿𝑘𝑙 (𝜃 − 𝜃0)) − 𝐷tr

𝑘𝑙

)
,

with C𝑖 𝑗 𝑘𝑙 being the current stiffness tensor defined as C𝑖 𝑗 𝑘𝑙 = S−1
𝑖 𝑗 𝑘𝑙 .

To describe the transformation strain evolution, it is assumed that these deformations evolve with
(and only with) the martensitic volume fraction, 𝜉. The corresponding flow rule is given as,

𝐷tr
𝑖 𝑗 = ¤𝜉Λ𝑖 𝑗 ,

and Λ𝑖 𝑗 is the transformation direction tensor assumed to be of the form,

Λ𝑖 𝑗 =

{
𝐻cur (𝜎̄𝑣𝑀) 3

2
𝑠𝑖 𝑗
𝜎̄𝑣𝑀

¤𝜉 ≥ 0
𝜀tr−𝑟𝑒𝑣𝑖 𝑗

𝜉𝑟𝑒𝑣
¤𝜉 < 0

. (4.104)

In (4.104), 𝐻cur is the transformation strain magnitude that is dependent on the von Mises
effective stress, 𝜎̄𝑣𝑀 , and 𝑠𝑖 𝑗 is the deviatoric stress. With forward transformation defined in this
way, it is assumed that deformation is shear-based and follows a 𝐽2 like flow direction. For reverse
transformation ( ¤𝜉 < 0), the postulated form is utilized to ensure complete recovery of
transformation strains with martensitic volume fraction. In other words, all transformation strain
components are zero-valued at 𝜉 = 0. Without enforcing this condition in this way,
non-proportional loading paths could be constructed producing a non-zero transformation strain
when the material is austenitic. The transformation strain at load reversal, 𝜀tr−𝑟𝑒𝑣𝑖 𝑗 , and martensitic
volume fraction at load reversal, 𝜉𝑟𝑒𝑣, are then tracked (via the implementation) and used for this
purpose.

The transformation strain magnitude, 𝐻cur, is a function of the von Mises effective stress (𝜎̄𝑣𝑀)
and is introduced to incorporate detwinning effects without introducing an additional internal
state variable complicating the model. Specifically, at low stress values, this function returns a
minimum value. If the microstructure is self-accommodated this value will be zero. A decaying
exponential is used such that as the stress increases the value of the strain magnitude becomes that
of the maximum value incorporating both crystallographic and texture effects. The given
functional form is,

𝐻cur =

{
𝐻min 𝜎̄𝑣𝑀 ≤ 𝜎crit

𝐻min + (𝐻sat − 𝐻min) (1 − exp (−𝑘 (𝜎̄𝑣𝑀 − 𝜎crit))) 𝜎̄𝑣𝑀 > 𝜎crit
,

where 𝐻min, 𝐻sat, 𝑘, and 𝜎crit are model parameters giving the minimum transformation strain
magnitude, maximum transformation strain magnitude, exponential fitting parameter governing
the transition zone, and critical stress values (in some ways analogous to the detwinning stress).
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The evolution of martensitic transformation process is governed by a transformation function
serving an analogous role to the yield function in plasticity. This function is given by,

𝑓
(
𝜎𝑖 𝑗 , 𝜃, 𝜉

)
= ±𝜙

(
𝜎𝑖 𝑗 , 𝜃, 𝜉

)
− 𝜎̄

(
𝜎𝑖 𝑗

)
,

with 𝜙 begin the thermodynamic driving force for transformation and 𝜎̄ the critical value. The ±
is used to denote either forward (+) or reverse (−) transformation. This transformation function
and the associated forms are derived from continuum thermodynamic considerations and the
details of that process are neglected here for brevity but may be found in [54]. The functional
forms of these variables are given as,

𝜙
(
𝜎𝑖 𝑗 , 𝜃, 𝜉

)
= 𝜎𝑖 𝑗Λ𝑖 𝑗 +

1
2
𝜎𝑖 𝑗ΔS𝑖 𝑗 𝑘𝑙𝜎𝑘𝑙 + 𝜎𝑖 𝑗Δ𝛼𝛿𝑖 𝑗 (𝜃 − 𝜃0) + 𝜌Δ𝑠0𝜃 − 𝜌Δ𝑢0 − 𝑓 𝑡 (𝜉) ,

𝜎̄
(
𝜎𝑖 𝑗

)
= 𝜎0 + 𝐷𝜎𝑖 𝑗Λ𝑖 𝑗 ,

in which 𝜌Δ𝑠0 and 𝜌Δ𝑢0 are the differences in reference entropy and internal energy of the two
phases, 𝐷 is a calibration parameter intended to capture variations in dissipation with stress, and
𝑓 𝑡 (𝜉) is the hardening function. With respect to this latter term, empirical observations were used
to arrive at a postulated form of,

𝑓 𝑡 (𝜉) =
{ 1

2𝑎1 (1 + 𝜉𝑛1 − (1 − 𝜉)𝑛2) + 𝑎3 ¤𝜉 ≥ 0
1
2𝑎2 (1 + 𝜉𝑛3 − (1 − 𝜉)𝑛4) − 𝑎3 ¤𝜉 < 0 ,

with 𝑎1, 𝑎2, and 𝑎3 being fitting parameters and 𝑛1, 𝑛2, 𝑛3, and 𝑛4 are exponents fit to match the
smooth transformation from elastic to inelastic deformations at the start of forward, end of
forward, start of reverse, and end of reverse transformation respectively.

Before proceeding, one final note should be given in regards to calibration. Specifically, some of
the model parameters just listed (𝑎1, 𝑎2, 𝑎3, 𝐷, 𝜎0, 𝜌Δ𝑠0 and 𝜌Δ𝑢0) are not easily identified or
conceptualized in terms of common thermomechanical experiments. Some easily identifiable
parameters (𝑀𝑠, 𝑀 𝑓 , 𝐴𝑠, and 𝐴 𝑓 ), however, are not evident in the theoretical formulation.
Conditions associated with these terms and some physical constraints may be used to determine
the model parameters in terms of these more accessible properties. These relations are,

𝜌Δ𝑠0 =
−2

(
𝐶𝑀𝐶𝐴

) [
𝐻cur (𝜎) + 𝜎 𝜕𝐻cur

𝜕𝜎 + 𝜎
(

1
𝐸𝑀
− 1

𝐸𝐴

)]
𝐶𝑀 + 𝐶𝐴

|𝜎=𝜎∗ ,

𝐷 =

(
𝐶𝑀 − 𝐶𝐴

) [
𝐻cur (𝜎) + 𝜎 𝜕𝐻cur

𝜕𝜎 + 𝜎
(

1
𝐸𝑀
− 1

𝐸𝐴

)]
(
𝐶𝑀 + 𝐶𝐴

) [
𝐻cur (𝜎) + 𝜎 𝜕𝐻cur

𝜕𝜎

] |𝜎=𝜎∗ ,

𝑎1 = 𝜌Δ𝑠0
(
𝑀 𝑓 − 𝑀𝑠

)
, 𝑎2 = 𝜌Δ𝑠0

(
𝐴𝑠 − 𝐴 𝑓

)
,

𝑎3 = −𝑎1
4

(
1 + 1

𝑛1 + 1
− 1
𝑛2 + 1

)
+ 𝑎2

4

(
1 + 1

𝑛3 + 1
− 1
𝑛4 + 1

)
,

𝜌Δ𝑢0 =
𝜌Δ𝑠0

2
(
𝑀𝑠 + 𝐴 𝑓

)
, 𝜎0 =

𝜌Δ𝑠0
2

(
𝑀𝑠 − 𝐴 𝑓

)
− 𝑎3,

(4.105)

in which 𝜎∗ is the scalar stress measure in which the calibration is performed at. For additional
discussion on the characterization of SMAs and calibration of this model, the user is referred to
[40], [41].
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4.25.2 Implementation

Similar to the various plasticity models in LAMÉ, an elastic predictor-inelastic corrector approach
is used to perform the stress updating routine. Unlike the other models, however, in the shape
memory alloy routine a convex cutting plane (CCP) return mapping algorithm (RMA) is used in
lieu of the closest point projection. This difference essentially simplifies the integration of flow
rule and the corresponding problem at the cost of some algorithmic stability. Prior studies [83]
have shown that this implementation is sufficient for convergence in most cases while providing a
substantial savings in cost. The specific implementation used here is that of [54].

To compute an elastic trial state, a trial stress is determined assuming purely thermoelastic
deformations such that,

𝑇 𝑡𝑟𝑖 𝑗 = C𝑖 𝑗 𝑘𝑙 (𝜉𝑛) (𝑑𝑘𝑙Δ𝑡 − 𝛼𝑘𝑙 (𝜉𝑛) Δ𝜃) , Δ𝜃 = 𝜃𝑛+1 − 𝜃𝑛.

In this case, it is assumed that the temperature fields are known at 𝑡𝑛+1 and 𝑡𝑛 (denoted 𝜃𝑛+1 and
𝜃𝑛, respectively) and the thermoelastic properties are computed using the martensitic volume
fraction at the previous time step 𝜉𝑛. At this stage, a perturbation stress (𝑇 𝑝𝑒𝑟𝑖 𝑗 = 𝑇𝑛𝑖 𝑗 + 𝛽

(
𝑇 𝑡𝑟𝑖 𝑗 − 𝑇𝑛𝑖 𝑗

)
with 𝛽 << 1) is computed and used to determine local variations of the thermodynamic driving
force, 𝜙. This is necessary to determine the direction of transformation (forward or reverse).
Using the full trial stress to this end can produce spurious results in some thermally-driven cases.
The trial yield function value is then computed as,

𝑓 𝑡𝑟 = 𝑓
(
𝑇 𝑡𝑟𝑖 𝑗 , 𝜃

𝑛+1, 𝜉𝑛
)
= ±𝜙

(
𝑇 𝑡𝑟𝑖 𝑗 , 𝜃

𝑛+1, 𝜉𝑛
)
− 𝜎̄

(
𝑇 𝑡𝑟𝑖 𝑗

)
.

If 𝑓 𝑡𝑟 < 0, no nonlinear deformation occurs and the trial solution is accepted as the material state
at 𝑡 = 𝑡𝑛+1. When this condition is not satisfied, the CCP-RMA routine is used to correct the trial
state and return it to the yield surface.

To perform the inelastic correction, the Newton-Raphson method is iteratively used to update the
material state (𝑇𝑖 𝑗 and 𝜉) until convergence is achieved. Denoting the current and next iteration by
(𝑘) and (𝑘 + 1), respectively, produces updating expressions of the form,

𝑇 (𝑘+1)𝑖 𝑗 = 𝑇 (𝑘)𝑖 𝑗 + Δ𝑇𝑖 𝑗 ,
𝜉 (𝑘+1) = 𝜉 (𝑘) + Δ𝜉,

with 𝜉 (0) and 𝑇 (0)𝑖 𝑗 initialized to 𝜉𝑛 and 𝑇 𝑡𝑟𝑖 𝑗 , respectively. The key difference between the CCP and
closest point projection (CPP) methods is associated with how the inelastic strain flow rules are
integrated. In the former method, an explicit evaluation of the flow direction is utilized while the
latter is associated with a fully implicit expression. For the CPP algorithms, this implicit
expression means the flow rule must be solved in a nonlinear system of equations with the
consistency equation. Relaxing this assumption via the CCP method, however, produces an
explicitly evaluated flow rule of,

𝜀𝑡 (𝑘+1)𝑖 𝑗 = 𝜀𝑡 (𝑘)𝑖 𝑗 + Δ𝜉Λ
(𝑘)
𝑖 𝑗 .
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Importantly, this means that the only nonlinear equation to be solved is the scalar consistency
equation ( 𝑓 = 0) which can be linearized such that,

Δ𝜉 = − 𝑓 (𝑘)

𝜕 𝑓 (𝑘 )

𝜕𝜉 −
𝜕 𝑓 (𝑘 )

𝜕𝑇𝑖 𝑗
C𝑖 𝑗 𝑘𝑙

(
𝜉 (𝑘)

) (
ΔS𝑘𝑙𝑚𝑛𝑇

(𝑘)
𝑚𝑛 + Δ𝛼𝑘𝑙Δ𝜃 + Λ(𝑘)𝑘𝑙

) ,
and the stress increment is then found as,

Δ𝑇 (𝑘) = −C𝑖 𝑗 𝑘𝑙
(
𝜉 (𝑛)

) (
ΔS𝑘𝑙𝑚𝑛𝑇

(𝑘)
𝑚𝑛 + Δ𝛼𝑘𝑙Δ𝜃 + Λ(𝑘)𝑘𝑙

)
Δ𝜉.

4.25.3 Verification

The shape memory alloy model is verified through a series of thermomechanical loadings. The
material properties and model parameters for these investigations are given in Table 4.37. These
properties correspond to those given in Table 3.4 in [55] with all
𝑛′‘𝑠𝑎𝑠𝑠𝑢𝑚𝑒𝑑𝑡𝑜𝑏𝑒1𝑎𝑛𝑑𝑠𝑒𝑡𝑡𝑖𝑛𝑔 : 𝑚𝑎𝑡ℎ : ‘𝐸𝑀 = 𝐸 𝐴.

Table 4.37 The material and model parameters for the shape memory alloy model used during ver-
ification test.

𝐸 𝐴 55 GPa 𝐸𝑀 55 GPa
𝜈𝐴 0.33 𝜈𝑀 0.33
𝛼𝐴 22.0𝑥10−6 1

K 𝛼𝑀 22.0𝑥10−6 1
K

𝑀𝑠 245 K 𝐴𝑠 270 K
𝑀 𝑓 230 K 𝐴 𝑓 280 K
𝐶𝑀 7.4 MPa

K 𝐶𝐴 7.4 MPa
K

𝐻min 0.056 𝐻sat 0.056

It should also be clear that because 𝐻min = 𝐻sat the model response is independent of the values of
𝜎crit and 𝑘 . For convenience, values of 𝑘 = 1.0𝑥106 and 𝜎crit = 0 will be used. Additionally, 𝜎∗
will be taken to be zero although inspection of (4.105) and consideration of the relative
magnitudes of the transformation strain and the difference in elastic strain similarly indicates an
invariance in the model response to this parameter with constant 𝐻cur. The default prestrain
values are also utilized such that the SMA is initially austenitic.

4.25.3.1 Uniaxial Stress – Pseudoelasticity

First, the isothermal (𝜃 > 𝐴 𝑓 ) pseudoelastic response through a uniaxial stress loading is
explored. Importantly, the simplifications and model parameters described above (𝐸 𝐴 = 𝐸𝑀 = 𝐸 ,
𝐻cur (𝜎̄𝑣𝑀) = 𝐻, 𝐶𝐴 = 𝐶𝑀 = 𝐶, 𝑛𝑖 = 1) allow for a simple analytical description of the
pseudoelastic response (essentially trilinear). For instance, given the constant slopes of the
transformation surfaces, the stresses needed to induce or complete transformation are simply
given by,

𝜎𝛽 (𝜃) = 𝐶 (𝜃 − 𝛽) , 𝛽 = 𝑀𝑠, 𝑀 𝑓 , 𝐴𝑠, 𝐴 𝑓 ,
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where 𝜎𝑀𝑠 (𝜃) is the stress needed to start forward transformation at temperature, 𝜃. Given a stress
value, the strain and material state may be completely determined by knowing the martensitic
volume fraction, 𝜉. Specifically, the axial (here taken to be the 1 direction) strain is simply,

𝜀11 =
𝜎

𝐸
+ 𝜉𝐻,

and the lateral strains are

𝜀22 = 𝜀33 = −𝜈𝜎
𝐸
− 1

2
𝜉𝐻,

in which the fact that the transformation strain tensor is deviatoric is being leveraged. The
martensitic volume fraction may then simply be found by noting that 𝑓 = 0 during transformation.
Therefore, for forward transformation,

𝜉 =


0 𝜎 ≤ 𝜎𝑀𝑠

1
𝑎1
(𝜎𝐻 + 𝜌Δ𝑠0𝜃 − 𝜌Δ𝑢0 − 𝑎3 − 𝜎0) 𝜎𝑀𝑠 < 𝜎 < 𝜎𝑀 𝑓

1 𝜎 ≥ 𝜎𝑀 𝑓

. (4.106)

A comparable expression is easily determined for reverse transformation.

The results of this simple analytical expression and those determined by Adagio are presented in
Fig. 4.118 for three different temperatures. Fig. 4.118(a) presents the stress-strain response under
these conditions while Fig. 4.118(b) presents the evolution of the martensitic volume fraction.

(a) Axial stress-strain (b) MVF

Fig. 4.118 Axial stress-strain response (a) and martensitic volume fraction (b), 𝜉, evolution deter-
mined analytically and via adagio for three different ambient temperatures 𝜃 = 300, 320 and 340 K.
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4.25.3.2 Constant Stress Actuation

To consider thermally driven transformation, the constant stress actuation response is investigated.
In such a loading, a mechanical load is applied at high temperature (𝜃 > 𝐴 𝑓 ) and held constant
while the specimen is cooled through forward transformation and then heated back to its initial
state. Given the aforementioned simplifications to the model parameters, the analytical response is
determined in a very similar fashion to that of pseudoelasticity. In this instance, critical
temperatures needed for transformation are first determined by

𝛽𝜎 = 𝛽 + 𝜎
𝐶
, 𝛽 = 𝑀𝑠, 𝑀 𝑓 , 𝐴𝑠, 𝐴 𝑓 ,

with 𝑀𝜎
𝑠 being the temperature needed to start forward transformation at an effective stress, 𝜎.

The zero-stress value is 𝑀𝑠. Similarly, the axial and lateral strains may be adjusted as,

𝜀11 =
𝜎

𝐸
+ 𝜉𝐻 + 𝛼 (𝜃 − 𝜃0) ,

𝜀22 = 𝜀33 = −𝜈𝜎
𝐸
− 1

2
𝜉𝐻 + 𝛼 (𝜃 − 𝜃0) .

The martensitic volume fraction is found through relations (4.106) albeit with the piecewise
intervals defined in terms of temperature (e.g 𝜎𝑀𝑠 < 𝜎 < 𝜎𝑀 𝑓 ↔ 𝑀𝜎

𝑓 < 𝜃 < 𝑀
𝜎
𝑠 ). Results for

the axial strain-temperature, lateral strain-temperature, and martensitic volume
fraction-temperature as determined analytically and via adagio are presented below in Fig.
4.119(a), Fig. 4.119(b), and Fig. 4.119(c), respectively.

4.25.4 User Guide

BEGIN PARAMETERS FOR MODEL SHAPE_MEMORY_ALLOY
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>
#
# Thermoelastic properties of two crystallographic phases
#
ELASTIC MODULUS AUSTENITE = <real>
POISSON RATIO AUSTENITE = <real>
CTE AUSTENITE = <real>
ELASTIC MODULUS MARTENSITE = <real>
POISSON RATIO MARTENSITE = <real>

(continues on next page)
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(a) Axial stress-strain (b) Laterial Strain

(c) MVF

Fig. 4.119 Axial stress-strain (a), lateral strain (b), and martensitic volume fraction (c), 𝜉, evolution
as a function of temperature as determined analytically and numerically (Sierra/SM). Results are
presented for three different applied bias stresses 𝜎 = 100, 200 and 300 MPa.

(continued from previous page)
CTE MARTENSITE = <real>
#
# Phase diagram parameters
#
MARTENSITE START = <real>
MARTENSITE FINISH = <real>
AUSTENITE START = <real>
AUSTENITE FINISH = <real>
STRESS INFLUENCE COEFF MARTENSITE = <real>
STRESS INFLUENCE COEFF AUSTENITE = <real>
#
# Transformation strain magnitude parameters
#
H_MIN = <real>
H_SAT = <real>
KT = <real>
SIGMA_CRITICAL = <real>
#
# Calibration parameters
#
N1 = <real>

(continues on next page)
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(continued from previous page)
N2 = <real>
N3 = <real>
N4 = <real>
SIGMA STAR = <real>
T0 = <real>
#
# Initial phase conditions
#
XI0 = <real> (0.0)
PRESTRAIN_DIRECTION = <int> (0)
PRESTRAIN_MAGNITUDE = <real> (0.0)
#

END [PARAMETERS FOR MODEL SHAPE_MEMORY_ALLOY]

In the command blocks that define the Shape Memory Alloy model:

• Although the thermoelastic constants of the phases are defined separately, the definition of
these constants in this form is necessary for the global solver. Typical values of the phases
should be applied.

• The isotropic elastic moduli of the austenitic (𝐸 𝐴) and martensitic phases (𝐸𝑀) are defined
with the ELASTIC MODULUS AUSTENITE and ELASTIC MODULUS MARTENSITE
command lines, respectively. Note, alternative elastic constants (e.g. bulk or shear moduli)
may not be used.

• The isotropic Poisson’s ratio of the austenitic (𝜈𝐴) and martensitic phases (𝜈𝑀) are defined
with the POISSON RATIO AUSTENITE and POISSON RATIO MARTENSITE
command lines, respectively. Note, alternative elastic constants (e.g. lame constant) may
not be used.

• The isotropic coefficient of thermal expansion of the austenitic (𝛼𝐴) and martensitic phases
(𝛼𝑀) are defined with the CTE AUSTENITE and CTE MARTENSITE command lines,
respectively. Note, given the phase and history dependence of the material thermal
expansion, the use of artificial or thermal strain functions may not lead to desired results.
The use of these constants in encouraged instead.

• The zero stress, smooth transformation temperatures corresponding to the start and end of
forward transformation (martensitic start 𝑀𝑠 and finish 𝑀 𝑓 , respectively) and start and end
of reverse transformation (austenitic start 𝐴𝑠 and finish 𝐴 𝑓 , respectively) are given by the
(in order) command lines MARTENSITE START, MARTENSITE FINISH, AUSTENITE
START, and AUSTENITE FINISH.

• The stress influence coefficients giving the slope of the forward and reverse transformation
surfaces (𝐶𝑀 and 𝐶𝐴, respectively) are given by the STRESS INFLUENCE COEFF
MARTENSITE and STRESS INFLUENCE COEFF AUSTENITE, respectively.

• The stress dependence of the transformation strain magnitude requires four coefficients.
These are the minimum transformation strain magnitude (𝐻min), the saturation (or
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maximum) magnitude (𝐻sat), exponential fitting coefficient (𝑘), and critical effective stress
value below which the magnitude is minimum (𝜎crit). These parameters are defined via the
H_MIN, H_SAT, KT, and SIGMA_CRITICAL command lines, respectively.

• The smooth hardening fitting constants 𝑛1, 𝑛2, 𝑛3, and 𝑛4 correspond to the degree of
smoothness (essentially how gradual the transformation is) of the martensitic start,
martensitic finish, austenitic start, and austenitic finish transformation surfaces. They are
given by the N1, N2, N3, and N4 command lines, respectively, and should take values
0 < 𝑛𝑖 ≤ 1.

• The stress level of transformation at which calibration is performed is denoted by 𝜎∗ and
given by the command line SIGMA STAR. For thermally induced transformation this
corresponds to the bias stress level while in pseudo-elastic loadings it corresponds to the
stress level at which the material is roughly evenly split between martensite and austenite.

• The zero-strain reference temperature is denoted 𝜃0 and prescribed via the T0 command
line.

• Three optional parameters describing the initial state of the material may be input. These
parameters are intended for the case in which the material is initially martensite to allow for
initial heating and transformation recovery. The first is the initial martensitic volume
fraction, 𝜉 (𝑡 = 0), input via the XI0 command line. If this parameter is not specified the
default value is 0.0 representative of an austenitic material. A value between 0.0 and 1.0
may be entered to initialize the material to partially (or fully) martensitic. Corresponding
initial transformation strains may be entered via the PRESTRAIN_DIRECTION (𝑛ps) and
PRESTRAIN_MAGNITUDE

(
| |𝜀tr𝑖 𝑗 (𝑡 = 0) | |

)
commands. The first (an integer between one

and three) gives the direction of transformation (in global Cartesian space) and the
magnitude of the inelastic strain in that direction is given by a fraction (between 0 and 1) of
𝐻sat via the second PRESTRAIN_MAGNITUDE line. As the transformation strain tensor is
deviatoric, the other two directions are specified by preserving that the tensor be trace less.
Note, the PRESTRAIN_DIRECTION and PRESTRAIN_MAGNITUDE cannot be specified
without a non-zero XI0 definition.

• Thermal strains functions and commands in Sierra should not be used in conjunction with
the shape_memory_alloy model.

• In order for this material model to function a temperature must be defined on every block
that uses the model.

Output variables available for this model are listed in Table 4.38.

Table 4.38 State Variables for SHAPE MEMORY ALLOY Model
Name Description
MVF martensitic volume fraction, 𝜉
TransStrain transformation strain tensor, 𝜀tr𝑖 𝑗
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4.26 Low Density Foam Model

4.26.1 Theory

The low density foam material model is a phenomenological model for rigid, low density
polyurethane foams. Development of this model followed extensive characterization efforts at
Sandia National Laboratory with special emphasis placed on hydrostatic and triaxial compression
tests [75]. A key observation of this investigation was the impact of trapped air inside the foam on
the load bearing capabilities of the material.

In constructing a model describing the response of the low-density foams, Neilsen et al. [75]
decomposed the response into that of the polymeric skeleton and the air such that,

𝜎𝑖 𝑗 = 𝜎
sk
𝑖 𝑗 + 𝜎air𝛿𝑖 𝑗 , (4.107)

where the super script sk is used to refer to variables relating to the skeleton and air to the air. The
contribution of the air component is only present, however, in constrained cases when the internal
gases are trapped and not allowed to escape. If the foam material in not encased or encapsulated
in someway, the air may escape and 𝜎air = 0. A model parameter, 𝑁air, is included to distinguish
between these cases. If 𝑁air is set to 0, the air pressure term is set to zero. For any other value, it is
included.

Using the ideal gas law, it can be found that for an isothermal case,

𝜎air =
𝑝0𝜀V

𝜀V + 1 − 𝜙 , (4.108)

where 𝑝0, 𝜀V, and 𝜙 are the initial air pressure, volumetric strain, and the volume fraction of the
solid (skeleton) material. Knowing the total stress of the material volume and air contribution, the
skeleton stress may be found via (4.107). Furthermore, it should be noted that the foam (total) and
skeleton strains are the same.

Based on their experimental observations, Neilsen et al. [75] noted a decoupling between the
skeleton principal stresses. Therefore, the Poisson’s ratio of the skeleton is zero and that the
yielding behavior in each principal direction is independent. A yield function of the form,

𝑓𝑖 = 𝜎
sk
𝑖 − 𝜎̄,

where 𝑓𝑖 and 𝜎sk
𝑖 are the 𝑖𝑡ℎ yield function and skeleton principal stress, respectively, and

𝜎̄ = 𝐴
〈
𝐼′2

〉
+ 𝐵 (1.0 + 𝐶𝜀𝑉 ) (4.109)

with A, B, and C are material parameters, and 〈·〉 denoting the Heaviside step function where

〈𝑥〉 =
{

0 if 𝑥 ≤ 0
1 if 𝑥 > 0

, (4.110)

was proposed. Additionally, 𝐼′2 is the second invariant of the deviatoric strain. If a skeleton
principal stress indicates yielding, it is set to the effective yield stress value, 𝜎̄.
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4.26.2 Implementation

The low density foam material model is implemented in a hypoelastic fashion. Therefore, a trial
material state of,

𝑇 sk−𝑡𝑟
𝑖 𝑗 = 𝑇 sk−𝑛

𝑖 𝑗 + 𝐸Δ𝑡𝑑𝑖 𝑗 ,
𝜀𝑛+1𝑖 𝑗 = 𝜀𝑛𝑖 𝑗 + Δ𝑡𝑑𝑖 𝑗 ,

(4.111)

with 𝑑𝑖 𝑗 , 𝑇 sk
𝑖 𝑗 , and 𝜀𝑖 𝑗 are the unrotated rate of deformation, unrotated skeleton stress, and foam

strain, respectively, is calculated. The superscript 𝑡𝑟 denotes a trial stress while 𝐸 is the Young’s
Modulus and (4.111) leverages the fact that the Poisson’s ratio of the skeleton is zero. The
principal stresses of the trial skeleton stress state, 𝑇 sk−𝑡𝑟

𝑖 , are then computed via the algorithm of
Scherzinger and Dohrmann [87].

To check the yielding behavior, the (logarithmic) volumetric strain, 𝜀𝑛+1V , and second invariant of
the deviatoric strain, 𝐼′2, are needed. These values are simply calculated as,

𝜀𝑛+1V = exp
(
𝜀𝑛+1𝑘𝑘

)
− 1,

𝐼′𝑛+12 = 𝜀𝑛+111 𝜀
𝑛+1
22 + 𝜀

𝑛+1
11 𝜀

𝑛+1
33 + 𝜀

𝑛+1
22 𝜀

𝑛+1
33 −

[(
𝜀𝑛+112

)2
+

(
𝜀𝑛+123

)2
+

(
𝜀𝑛+131

)2
]
,

with 𝜀𝑛+1𝑖 𝑗 being the deviatoric strain tensor. The effective yield stress, 𝜎̄𝑛+1, may be written as,

𝜎̄𝑛+1 = 𝐴
〈
𝐼′𝑛+12

〉
+ 𝐵

(
1 + 𝐶𝜀𝑛+1V

)
.

It should also be noted that a steep sinusoidal approximation of the Heaviside step function to
alleviate numerical issues associated with the sharp discontinuity inherit to the use of the
Heaviside function. The updated principal stresses may then be determined as,

𝑇 sk−𝑛+1
𝑖 =

{
𝑇 sk−𝑡𝑟
𝑖 , |𝑇 sk−𝑡𝑟

𝑖 | ≤ |𝜎̄ |
sgn

(
𝑇 sk−𝑡𝑟
𝑖

)
𝜎̄, |𝑇 sk−𝑡𝑟

𝑖 | > |𝜎̄ | ,

where sgn (𝑥) denotes the sign of 𝑥. An updated air pressure is then computed from (4.108) and
the current stress is found to be,

𝑇𝑛+1𝑖 𝑗 =
3∑
𝑘=1

𝑇 sk−𝑛+1
𝑘 𝑒𝑘𝑖 𝑒

𝑘
𝑗 + 𝜎air−𝑛+1

(
𝜀𝑛+1V

)
𝛿𝑖 𝑗 ,

where 𝑒𝑘𝑖 is the eigenvector associated with the 𝑘 𝑡ℎ principal skeleton stress.

4.26.3 Verification

The low density foam model is implemented through two compression tests – uniaxial and
hydrostatic. Cases both including (𝑁air = 1.0) and excluding (𝑁air = 0.0) the contribution of the
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air are investigated. The rest of the properties and parameters used for these tests are given in
Table 4.39 and are originally from [89].

Table 4.39 Material properties and model parameters for the low density foam model used during
verification testing.

𝐸 3010 psi 𝜈 0.0
𝐴 49.2 psi 𝐵 60.8 psi
𝐶 -0.517 𝑝0 14.7 psi
𝜙 0.09

4.26.3.1 Uniaxial Compression

First, a uniaxial compression test under displacement control is considered with and without the
contribution of air. In this case, a displacement of the form 𝑢1 = 𝜆 is applied while the other two
directions are left traction free. When air pressure does not play a role, the model response
reduces to that of the skeleton and the problem becomes one-dimensional. The deformation rate
can be easily integrated to find that 𝜀11 = ln (1 + 𝜆) and 𝜀V = 𝜆. Additionally, the uniaxial
compression loading considered here is obviously deviatoric in nature leading to

〈
𝐼′2

〉
evaluating

to 1. Therefore,

𝜎̄ = 𝐴 + 𝐵 (1 + 𝐶𝜆) ,

𝜎11 =

{
𝐸𝜀11 |𝜎11 | ≤ |𝜎̄ |

sgn (𝜀11) 𝜎̄ |𝜎11 | > |𝜎̄ |
.

(4.112)

The corresponding stress and strain results are presented in Fig. 4.120(a) and Fig. 4.120(b).

(a) Skeleton stress (b) Skeleton strain

Fig. 4.120 Skeleton (a) stress and (b) strain determined analytically and numerically (with 𝑁air = 0)
with the low density foam model during a displacement controlled uniaxial compression test.

The case of internal air pressure is also considered by setting 𝑁air = 1. This, however, complicates
the response and turns it into a three-dimensional case given the pressure components in the

332



off-loading directions. Specifically, it can be found trivially that, 𝜀22 = 𝜀33 = −𝜎air/𝐸 . The
complication arises as the volumetric strain is now,

𝜀V = (1 + 𝜆) exp
(
−2𝜎air/𝐸

)
− 1,

leading to an implicit expression for 𝜎air. By evaluating 𝜎air in a forward Euler fashion, noting
𝜎̄ = 𝐴 + 𝐵 (1 + 𝐶𝜀V), and treating (4.112) as an expression for 𝜎sk

11 the stress and strain responses
may be found as given in Fig. 4.121(a) and Fig. 4.121(b). The impact of the air on the model
response is clear by comparing the two sets of figures.

(a) Skeleton stress (b) Skeleton strain

Fig. 4.121 Foam (a) stress and (b) strain determined analytically and numerically (with 𝑁air = 1) with
the load density foam model during a displacement controlled uniaxial compression test.

4.26.3.2 Hydrostatic Compression

The volumetric deformation capabilities of the model are also investigated through displacement
controlled hydrostatic compression. Specifically, an imposed displacement of the form 𝑢𝑖 = 𝜆 is
considered. The resultant strain field is 𝜀11 = 𝜀22 = 𝜀33 = ln (1 + 𝜆) leading to a volumetric strain
of the form 𝜀V = (1 + 𝜆)3 − 1. As there is no deviatoric deformation it is apparent that

〈
𝐼′2

〉
= 0.

Therefore, the effective yield stress is 𝜎̄ = 𝐵 (1 + 𝐶𝜀V). Also noting that 𝜎 = 𝜎11 = 𝜎22 = 𝜎33,
the foam response through such a loading may easily be determined. The foam stress for both the
with and without air case is presented in Fig. 4.122 along with 𝜎air for the appropriate case.
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Fig. 4.122 Foam stress determined analytically and numerically for both 𝑁air = 0.0 and 𝑁air = 1.0
cases for the low density foam model during displacement controlled hydrostatic compression
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4.26.4 User Guide

BEGIN PARAMETERS FOR MODEL LOW_DENSITY_FOAM
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>
#
A = <real>
B = <real>
C = <real>
NAIR = <real>
P0 = <real>
PHI = <real>

END [PARAMETERS FOR MODEL LOW_DENSITY_FOAM]

State variables for this model are listed in Table 4.40. For more information on the low density
foam material model, see [75].

Table 4.40 State Variables for LOW DENSITY FOAM Model
Name Description
PAIR Air pressure

4.27 Foam Plasticity Model

4.27.1 Theory

The foam plasticity model was developed to describe the response of porous materials (like
closed-cell polyurethane foams) exhibiting irreversible, elastic-plastic like responses through large
deformations. Such foams can exhibit significant plastic deviatoric and volumetric strains leading
to permanent shape and volume changes, respectively. The former behavior is quite typical of
metals and corresponding theories are well established. The latter response, however, is not
typical of metals and a theory combining these two behaviors is needed. Given these responses of
interest, the foam plasticity model is well suited to use with metal foams and many closed-cell
polymeric foams (e.g. polyurethane, polystyrene bead, etc.) subjected to large deformations. As
permanent strains are of interest, this model is not appropriate for use with flexible foams that
return to their undeformed shape after loads are removed.

Specifically, the model developed by Neilsen et al. [72] seeks to capture the response associated
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with three distinct deformation regimes. First, when foams are initially compressed, they typically
exhibit an elastic response. After sufficient load is applied, a plateau of nearly constant stress over
a large deformation region is noted as pores start to compress and cell walls undergo substantial
deformation. Eventually, the various collapsed cells and walls begin to interact and a densification
response with substantial hardening is observed. Details of these deformation processes may be
found in the text of Gibson and Ashby [36].

Like other plasticity-based models, the incremental constitutive law for the foam plasticity model
is written as,

◦
𝜎𝑖 𝑗= C𝑖 𝑗 𝑘𝑙𝐷

e
𝑘𝑙 ,

where an additive decomposition of the strain rates such that 𝐷𝑖 𝑗 = 𝐷e
𝑖 𝑗 + 𝐷

p
𝑖 𝑗 is assumed. To

describe the inelastic response of the foams of interest, Neilsen and coworkers [72] proposed a
yield function of the form

𝑓 =
𝜎̄2

𝑎2 +
𝑝2

𝑏2 − 1, (4.113)

where 𝜎̄ is the von Mises effective stress (𝜎̄ =
√
(3/2) 𝑠𝑖 𝑗 𝑠𝑖 𝑗 with 𝑠𝑖 𝑗 being the deviatoric stress)

and 𝑝 being the hydrostatic pressure (𝑝 = (1/3) 𝜎𝑘𝑘 ). In such a form, the initial yield surface
forms an ellipsoid about the hydrostat. The two denominators, 𝑎 and 𝑏, are state variables
capturing hardening effects and have the functional form of,

𝑎 = 𝐴0 + 𝐴1𝜙
𝐴2 , (4.114)

𝑏 =

{
𝐵0 + 𝐵1𝜙

𝐵2 𝑝 ≥ 0
𝐵0 𝑝 < 0 , (4.115)

with 𝐴0, 𝐴1, 𝐴2, 𝐵0, 𝐵1, and 𝐵2 being model parameters and 𝜙 being the maximum volume
fraction of solid material obtained through the loading history and is defined as,

𝜙 = max (𝜙𝑐)

where,

𝜙𝑐 = 𝜙0
𝑉0
𝑉
,

in which 𝜙0 is the initial volume fraction of solid material and 𝑉0 and 𝑉 are the initial volume and
current volume, respectively, of the foam. Put in terms of the deformation,

𝜙𝑐 = 𝜙0
1

1 + 𝜀V
,

where 𝜀V is the engineering volume strain.

To describe the inelastic plastic deformation, a non-associated flow rule is used. Specifically,

𝐷
p
𝑖 𝑗 = ¤𝛾𝑔𝑖 𝑗 ,
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where ¤𝛾 is the consistency multiplier found by enforcing the corresponding condition and

𝑔𝑖 𝑗 =
(1 − 𝛽) 𝑔a𝑖 𝑗 + 𝛽𝑔r𝑖 𝑗
| (1 − 𝛽) 𝑔a𝑖 𝑗 + 𝛽𝑔r𝑖 𝑗 |

, (4.116)

with the superscripts a and r being used to denote associated and radial flow directions,
respectively. The model parameter 𝛽 is introduced in (4.116) to enable associated (𝛽 = 0), radial
(𝛽 = 1), or a linear combination of the two flow rules (0 < 𝛽 < 1) to be used. The two direction
vectors may written as,

𝑔a𝑖 𝑗 =

𝜕 𝑓
𝜕𝜎𝑖 𝑗

| 𝜕 𝑓𝜕𝜎𝑘𝑙
|
=

3
𝑎2 𝑠𝑖 𝑗 + 2

3𝑏2 𝑝𝛿𝑖 𝑗

| 3
𝑎2 𝑠𝑖 𝑗 + 2

3𝑏2 𝑝𝛿𝑖 𝑗 |
, (4.117)

𝑔r𝑖 𝑗 =
𝜎𝑖 𝑗

|𝜎𝑘𝑙 |
=

𝜎𝑖 𝑗√
𝜎𝑘𝑙𝜎𝑘𝑙

. (4.118)

In alternative models of foam plasticity, the yield function is offset in the 𝜎̄ − 𝑝 plane along the
pressure axis. To generalize the model, an offset yield surface centered at pressure 𝑝0 may be used
in the form

𝑓 =
𝜎̄2

𝑎2 +
(𝑝 − 𝑝0)2

𝑏2 − 1. (4.119)

Note that with this form of the yield function, the component of the flow direction 𝑔𝑎𝑖 𝑗 is now
non-associative. This component is associative to the yield surface centered at the origin, but
non-associative to the yield surface centered at 𝑝0.

4.27.2 Implementation

Like other more classical rate-independent plasticity models (e.g. Section 4.7.2), the foam
plasticity model is implemented in a hypoelastic fashion using an elastic predictor-inelastic
corrector scheme. As such, a trial material state is calculated by assuming purely elastic
deformations. The trial stress is given by,

𝑇 𝑡𝑟𝑖 𝑗 = 𝑇
𝑛
𝑖 𝑗 + Δ𝑡

(
𝜆𝛿𝑖 𝑗𝑑𝑘𝑘 + 2𝜇𝑑𝑖 𝑗

)
,

and an updated logarithmic volume strain is given by,

𝜀𝑛+1𝑘𝑘 = 𝜀𝑛𝑘𝑘 + Δ𝑡𝑑𝑘𝑘 .

The engineering volume strain may then be readily computed via 𝜀𝑛+1V = exp
(
𝜀𝑛+1𝑘𝑘

)
− 1. A trial

solid volume fraction is then calculated, 𝜙𝑡𝑟 = 𝜙0
1

1+𝜀𝑛+1V
, and compared to the previous maximum

to obtain the maximum solid volume fraction over the loading history,

𝜙𝑛+1𝑐 = max
(
𝜙𝑛, 𝜙𝑡𝑟

)
. (4.120)
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Equations (4.114) and (4.115) are evaluated using the volume fraction found in (4.120). Using
invariants of the trial stress state, the yield function (4.113) is calculated. If 𝑓 ≤ 0, the loading is
elastic and the trial solution is correct. On the other hand, if 𝑓 > 0 a correction scheme is
necessary to iterate and determine the inelastic solution. To that end, by noting
Δ𝑇𝑖 𝑗 = −C𝑖 𝑗 𝑘𝑙Δ𝑑P𝑘𝑙 = −Δ𝛾C𝑖 𝑗 𝑘𝑙𝑔𝑘𝑙 (with Δ being a correction increment), the consistency
condition may be used to find,

Δ𝛾 =
𝑓

𝜕 𝑓
𝜕𝜎𝑖 𝑗
C𝑖 𝑗 𝑘𝑙𝑔𝑘𝑙

,

where the fact that the strain (and therefore 𝑎 and 𝑏) do not change over an increment. The
correction is repeated until 𝑓 < tol.

4.27.3 Verification

The foam plasticity model is verified through a hydrostatic compression tests. Material properties
used for this test are presented in Table 4.41 and correspond to room temperature properties of the
PMDI20 rigid polyurethane foam characterized in [72].

Table 4.41 Material properties and model parameters for the foam plasticity model used during
verification testing.

𝐸 22,600 psi 𝜈 0.343
𝐴0 513.3 psi 𝐴1 4,629 psi
𝐴2 2.90 𝜙0 0.238
𝐵0 971 psi 𝐵1 7,377.5 psi
𝐵2 4.89 𝛽 0.95

4.27.3.1 Hydrostatic Compression

The response of the foam plasticity model to hydrostatic compression is investigated here.
Specifically, a displacement of the form 𝑢𝑖 = 𝜆 is imposed resulting in a total strain field of
𝜀11 = 𝜀22 = 𝜀33 = ln (1 + 𝜆) and the engineering volume strain is simply 𝜀V = (1 + 𝜆)3 − 1.
Furthermore, the maximum solid volume fraction monotonically increases and may be found to
be 𝜙 = 𝜙0

1
(1+𝜆)3 . The stress state undergoes a similar reduction and is given to 𝜎𝑖 𝑗 = −𝑝𝛿𝑖 𝑗 and

𝑠𝑖 𝑗 = 0. Note, in the theory section pressure is defined positive in tension whereas in the current
exercise compression is positive. There is no practical impact of this selection and it is done for
simplicity of presentation. This simplification leads to a reduced yield function of the form,

𝑓 =
𝑝2

𝑏2 − 1,

where 𝑏 is evaluated via (4.115) and is a function of the strain. The model may then be simply
solved as,

𝑝 =

{
−3𝐾 ln (1 + 𝜆) 𝑓 ≤ 0

𝑏 𝑓 > 0 .
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The elastic strains then reduce to 𝜀e𝑖 𝑗 = −
𝑝

3𝐾 𝛿𝑖 𝑗 and the plastic strains computed as
𝜀
p
𝑖 𝑗 =

(
ln (1 + 𝜆) + 𝑝

3𝐾
)
𝛿𝑖 𝑗 . The resulting engineering strain vs. pressure results determined

numerically and analytically are presented in Fig. 4.123.

Fig. 4.123 Pressure vs. engineering volume strain (𝜀V) response of the foamplasticitymodel through
a hydrostatic compression cycle. For convenience, pressure is defined as positive in compression
in the figure.

4.27.4 User Guide

BEGIN PARAMETERS FOR MODEL FOAM_PLASTICITY
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>

(continues on next page)
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(continued from previous page)
LAMBDA = <real>
TWO MU = <real>
#
#
#
PHI = <real>
SHEAR STRENGTH = <real>
SHEAR HARDENING = <real>
SHEAR EXPONENT = <real>
HYDRO STRENGTH = <real>
HYDRO HARDENING = <real>
HYDRO EXPONENT = <real>
BETA = <real>
P0 = <real>

END [PARAMETERS FOR MODEL FOAM_PLASTICITY]

In the above command blocks:

• The initial volume fraction of solid material in the foam, 𝜑, is defined with the PHI
command line. For example, solid polyurethane weighs 75 pounds per cubic foot (pcf);
uncompressed 10 pcf polyurethane foam would have a 𝜑 of 0.133 = 10/75.

• The shear (deviatoric) strength of uncompressed foam is defined with the SHEAR
STRENGTH command line.

• The shear hardening modulus for the foam is defined with the SHEAR HARDENING
command line.

• The shear hardening exponent is defined with the SHEAR EXPONENT command line. The
deviatoric strength is given by (SHEAR STRENGTH) + (SHEAR HARDENING) *
PHI**(SHEAR EXPONENT).

• The hydrostatic (volumetric) strength of the uncompressed foam is defined with the HYDRO
STRENGTH command line.

• The hydrodynamic hardening modulus is defined with the HYDRO HARDENING command
line.

• The hydrodynamic hardening exponent is defined with the HYDRO EXPONENT command
line. The hydrostatic strength is given by (HYDRO STRENGTH) + (HYDRO
HARDENING) * PHI**(HYDRO EXPONENT).

• The prescription for non associated flow, 𝛽, is defined with the BETA command line. When
𝛽 = 0.0, the flow direction is given by the normal to the yield surface (associated flow).
When 𝛽 = 1.0, the flow direction is given by the stress tensor. It is recommended that
associated flow 𝛽 = 0.0 be used for most analyses.

Output variables available for this model are listed in Table 4.42.
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Table 4.42 State Variables for FOAM PLASTICITY Model
Name Description
ITER iterations
EVOL volumetric strain
PHI phi, 𝜙
EQPS equivalent plastic strain, 𝜀𝑝
PA 𝐴
PB 𝐵

4.28 Viscoplastic Foam Model

4.28.1 Theory

The viscoplastic foam model is used to model the rate (and temperature) dependent crushing of
foams [72]. It is based on an additive split of the rate of deformation into an elastic and plastic
portion

𝐷𝑖 𝑗 = 𝐷
e
𝑖 𝑗 + 𝐷

p
𝑖 𝑗 .

The stress in the material is due strictly to the elastic portion of the rate of deformation so that

◦
𝜎𝑖 𝑗= C𝑖 𝑗 𝑘𝑙𝐷

e
𝑘𝑙 ,

where C𝑖 𝑗 𝑘𝑙 are the components of the fourth-order, isotropic elasticity tensor. The stress rate is
arbitrary, as long as it is objective. Two objective stress rates are commonly used: the Jaumann
rate and the Green-McInnis rate. For problems with fixed principal axes of deformation, these two
rates give the same answers. For problems where the principal axes of deformation rotate during
deformation, the two rates can give different answers.

To describe the rate-dependent response, an over-stress-type yield function is used. Specifically,
the rate-independent foam plasticity yield function

𝑓 =
𝜎̄2

𝑎2 +
𝑝2

𝑏2 − 1 (4.121)

where 𝜎∗ is the effective stress given by

𝜎∗ =

√
𝜎̄2 + 𝑎

2

𝑏2 𝑝
2. (4.122)

In (4.122), 𝜎̄ is the von Mises effective stress (𝜎̄ =
√

3
2 𝑠𝑖 𝑗 𝑠𝑖 𝑗 ) and 𝑝 is the pressure resulting from

a stress decomposition of the form,

𝑠𝑖 𝑗 = 𝜎𝑖 𝑗 − 𝑝𝛿𝑖 𝑗 .
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Furthermore, 𝑎 and 𝑏 are state variables that are functions of the absolute temperature, 𝜃, and
maximum solid volume fraction, 𝜙, and are defined as

𝑎 (𝜃, 𝜙) =
(
𝐴0 (𝜃) + 𝐴1 (𝜃) 𝜙𝐴2

)
𝑓𝑎 (𝜙) , (4.123)

𝑏 (𝜃, 𝜙) =
(
𝐵0 (𝜃) + 𝐵1 (𝜃) 𝜙𝐵2

)
𝑓𝑏 (𝜙) . (4.124)

In (4.123) and (4.124), the functional forms are chosen to provide flexibility in terms of
representation. To this end, 𝑓𝑎 and 𝑓𝑏 default to constant values of one and the expression reduce
to legacy analytical functions. This both provides for backward compatibility with previous user
input decks while allowing for user defined definitions. Further, if 𝐴1 (𝜃) = 0,
𝑎 (𝜃, 𝜙) = 𝐴0 (𝜃) 𝑓𝑎 (𝜙); a multiplicative decomposition of dependencies.

The temperature dependent material properties in the preceding relations are all defined as,
𝐴0 (𝜃) = 𝐴0ℎ𝐴0 (𝜃) where 𝐴0 is the reference material parameter and ℎ𝐴0 (𝜃) is the relative value
as a function of temperature. In addition to the 𝑎 and 𝑏 state variables, the Young’s modulus and
Poisson’s ratio are also functions of the absolute temperature. The latter may be written as
𝜈 (𝜃) = 𝜈ℎ𝜈 (𝜃) while the former is also dependent on the maximum volume fraction of solid
material and is given as 𝐸 (𝜃, 𝜙) = 𝐸ℎ𝐸 (𝜃) 𝑓𝐸 (𝜙).

The maximum volume fraction of solid material, 𝜙, is given by

𝜙 = max
𝑡>0

𝜙 (𝑡)

where 𝜙 (𝑡) is the current volume fraction of solid material and is defined as,

𝜙 (𝑡) = 𝜙0

exp
(
𝜀
p
𝑣

)
with 𝜙0 being the initial solid volume fraction and 𝜀p𝑣 is

𝜀
p
𝑣 =

∫ 𝑡

0
𝐷

p
𝑘𝑘𝑑𝑡.

During inelastic deformation ( 𝑓 > 0), the corresponding rate of plastic deformation is given in a
Perzyna-type form as,

𝐷
p
𝑖 𝑗 =


exp (ℎ (𝜃))

(
𝜎∗

𝑎
− 1

)𝑛(𝜃)
𝑔𝑖 𝑗 if 𝑓 > 0

0 if 𝑓 ≤ 0

where ℎ (𝜃) and 𝑛 (𝜃) are the flow rate and power exponent respectively. The inelastic flow
direction, 𝑔𝑖 𝑗 , is given as a linear combination of the associated (with respect to (4.121)), 𝑔a𝑖 𝑗 , and
radial, 𝑔r𝑖 𝑗 ,

𝑔𝑖 𝑗 =
(1 − 𝛽) 𝑔a𝑖 𝑗 + 𝛽𝑔r𝑖 𝑗
| (1 − 𝛽) 𝑔a𝑘𝑙 + 𝛽𝑔r𝑘𝑙 |

(4.125)
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The directions 𝑔a𝑖 𝑗 and 𝑔
r
𝑖 𝑗 are given by

𝑔a𝑖 𝑗 =

𝜕 𝑓
𝜕𝜎𝑖 𝑗

| 𝜕 𝑓𝜕𝜎𝑘𝑙
|
=

3
𝑎2 𝑠𝑖 𝑗 − 2

3𝑏2 𝑝𝛿𝑖 𝑗

| 3
𝑎2 𝑠𝑖 𝑗 − 2

3𝑏2 𝑝𝛿𝑖 𝑗 |
,

𝑔r𝑖 𝑗 =
𝜎𝑖 𝑗

|𝜎𝑘𝑙 |
=

𝜎𝑖 𝑗√
𝜎𝑘𝑙𝜎𝑘𝑙

,

in Equations (4.117) and (4.118),

respectively. In this model, the flow rule weight, 𝛽, may be specified as either a constant value or
as a function of the maximum solid volume fraction (𝛽 = 𝛽0 𝑓𝛽 (𝜙)).

4.28.2 Implementation

As the viscoplastic foam model is a time-dependent, hypoelastic model it is integrated using an
explicit, forward Euler scheme. Given this approach, a critical time step for stability is computed
based on the shear strength, current modulus, and deviatoric deformation rate. If the input time
step is acceptable, the new material state at time 𝑡 = 𝑡𝑛+1 is computed. On the other hand, if the
time step is too large a series of sub-increments are used. In this case, the total time step Δ𝑡 is
subdivided into 𝑁 sub-increments. Each such sub-interval (denoted by 𝑘) has a time increment
𝛿𝑡𝑘 such that Δ𝑡 =

∑𝑁
𝑘=1 𝛿𝑡

𝑘 and the forward Euler time stepping scheme is performed over each
sub-interval until the desired material state at time 𝑡𝑛+1 is determined. For the case of temperature
dependent variables (e.g. the Poisson’s ratio 𝜈), the value at the start of the sub-increment is
determined by linearly interpolating over the total time step,

𝜈𝑘 = 𝜈𝑛 +
Δ𝑡𝑘

Δ𝑡
(𝜈𝑛+1 − 𝜈𝑛) ,

where Δ𝑡𝑘 is the current sub-increment time, Δ𝑡𝑘 =
∑𝑘
𝑟=1 𝛿𝑡

𝑟 . For simplicity, in the remainder of
this section it is assumed that the input time step is acceptable and only a single increment is
needed. If additional sub-increments are needed, the below steps would be repeated 𝑁 times with
time intervals of 𝛿𝑡𝑘 .

Noting the forward Euler approach adopted in this formulation, the first step is to determine the
temperature (and solid volume fraction) dependent model parameters (𝐸, 𝜈, 𝐴0, 𝐴1, 𝐵0, 𝐵1, ℎ
and 𝑛). With the parameters established, state variables 𝑎 and 𝑏 are easily determined through
(4.123) and (4.124), respectively, enabling the calculation of the effective stress via (4.122). The
effective inelastic (plastic) strain rate, ¤̄𝜀𝑝, is then given as,

¤̄𝜀𝑝 = exp (ℎ (𝜃𝑛))
〈
𝜎∗𝑛
𝑎𝑛
− 1

〉𝑛(𝜃𝑛)
,

with 〈〉 being the Macaulay brackets such that,

〈𝑥〉 =
{
𝑥 𝑥 ≥ 0
0 𝑥 < 0 .
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Knowing the magnitude of the rate of inelastic deformation, the change in deviatoric and
hydrostatic stresses is simply,

¤𝑠𝑖 𝑗 = 2𝜇 (𝜃𝑛, 𝜙𝑛)
(
𝑑𝑖 𝑗 − 𝑑p𝑖 𝑗

)
,

¤𝑝 = 𝐾 (𝜃𝑛, 𝜙𝑛)
(
𝑑𝑘𝑘 − 𝑑p𝑘𝑘

)
,

where 𝑑𝑖 𝑗 is the total unrotated rate of deformation, 𝑥𝑖 𝑗 denotes the deviatoric portion of tensor
𝑥𝑖 𝑗 , and 𝑑p𝑖 𝑗 is the plastic rate of deformation given by,

𝑑
p
𝑖 𝑗 = ¤̄𝜀

𝑝𝑔𝑛𝑖 𝑗 . (4.126)

In (4.126), 𝑔𝑖 𝑗 is the inelastic flow direction and can be calculated via (4.125).

An additional comment is needed with respect to accounting for temperature and solid volume
fraction dependence in the shear and bulk moduli. This careful consideration is necessary due to
the fact that the temperature dependence is only given with respect to the elastic moduli and
Poisson’s ratio. As such, the shear and bulk moduli inherit the associated dependencies and are
calculated for isotropic elastic relations. For the bulk moduli, this leads to an expression of the
form,

𝐾 (𝜃, 𝜙) = 𝐸ℎ𝐸 (𝜃) 𝑓𝐸 (𝜙)
3 (1 − 2𝜈ℎ𝜈 (𝜃))

.

The updated stress state is then easily computed by explicitly integrating the established
expressions. Specifically,

𝑠𝑛+1𝑖 𝑗 =
𝜇𝑛+1
𝜇𝑛

𝑠𝑛𝑖 𝑗 + ¤𝑠𝑖 𝑗Δ𝑡,

𝑝𝑛+1 =
𝐾𝑛+1
𝐾𝑛

𝑝𝑛 + ¤𝑝Δ𝑡,

𝑇𝑛+1𝑖 𝑗 = 𝑠𝑛+1𝑖 𝑗 + 𝑝𝑛+1𝛿𝑖 𝑗 ,

with 𝜇𝑛 and 𝐾𝑛 representing 𝜇 (𝜃𝑛, 𝜙𝑛) and 𝐾 (𝜃𝑛, 𝜙𝑛), respectively, and 𝑇𝑖 𝑗 being the unrotated
stress.

4.28.3 Verification

The viscoplastic foam model was verified in both uniaxial and hydrostatic compression. The
material properties and model parameters for both of these investigations are given in Table 4.43.
As both loadings are isothermal, temperature dependence is neglected in the relevant model
parameters. Furthermore, analytical solutions could not be found directly, so semi-analytical
solutions were found.

344



Table 4.43 The material properties for the viscoplastic foam model tested in uniaxial stress.
𝐸 4,807 psi 𝐴0 63.03 psi
𝜈 0.33 𝐴1 7000 psi
ℎ -8.12 𝐴2 3.7878
𝑛 2 𝐵0 93 psi
𝛽 0.9 𝐵1 1483.4 psi
𝜙0 0.1148 𝐵2 3.7878

4.28.3.1 Uniaxial Compression

To obtain a semi-analytical solution for the uniaxial compression test, the model was reduced to a
one-dimensional form and then numerically integrated. The results obtained from the
implemented model and the semi-analytical solution are shown below in Fig. 4.124.

Fig. 4.124 Verification of the viscoplastic foam model in uniaxial compression showing the axial
stress as a function of thelogarithmic strain
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4.28.3.2 Hydrostatic Compression

The response of the model through hydrostatic compression. To this end, a displacement of the
form 𝑢𝑖 = 𝜆 (𝑡) is considered. The applied displacement scales linearly from 𝜆 = 0 at 𝑡 = 0.0 to
𝜆 = −0.7 at 𝑡 = 𝑡max. Rate-dependent effects are considered through the use of two cases each
with a different 𝑡max. Creatively denoted Fast and Slow, the two cases correspond to 𝑡max = 1 s and
𝑡max = 100 s, respectively. With such a displacement field, the engineering volume strain, 𝜀V, is
simply 𝜀V = (1 + 𝜆)3 − 1. Additionally, the stress state reduces trivially to 𝜎𝑖 𝑗 = −𝑝𝛿𝑖 𝑗 .

Given the rate-dependent overstress form of the constitutive model, an analytical solution is not
readily available. Therefore, a semi-analytical analysis using a model reduction specialized for
hydrostatic loadings is considered. Specifically, noting 𝑠𝑖 𝑗 = 0, the overstress reduces to,

𝜎∗ =
𝑎

𝑏
|𝑝 |.

Furthermore, the associated and radial flow direction vectors simplify to the same form and are
given as,

𝑔a𝑖 𝑗 = 𝑔
r
𝑖 𝑗 = −

1
√

3
sgn (𝑝) 𝛿𝑖 𝑗 ,

where sgn (𝑝) is the sign of 𝑝. The semi-analytical (integrated in a forward Euler fashion) and
numerical results are presented in Fig. 4.125.

Fig. 4.125 Pressure-engineering volume strain results of viscoplastic foam model subjected to a
hydrostatic loading at both fast and slow rates determined semi-analytically and numerically.
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4.28.4 User Guide

BEGIN PARAMETERS FOR MODEL VISCOPLASTIC_FOAM
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>

FLOW RATE = <real>
POWER EXPONENT = <real>
BETA = <real> (1.0)
PHI = <real>

SHEAR STRENGTH = <real> (1.0)
SHEAR HARDENING = <real> (0.0)
SHEAR EXPONENT = <real> (1.0)
HYDRO STRENGTH = <real> (1.0)
HYDRO HARDENING = <real> (0.0)
HYDRO EXPONENT = <real> (1.0)

YOUNGS FUNCTION = <string>
POISSONS FUNCTION = <string>
SS FUNCTION = <string>
SH FUNCTION = <string>
HS FUNCTION = <string>
HH FUNCTION = <string>
RATE FUNCTION = <string>
EXPONENT FUNCTION = <string>
STIFFNESS FUNCTION = <string>

SHEAR HARDENING FUNCTION = <string>
HYDRO HARDENING FUNCTION = <string>
BETA FUNCTION = <string>

END [PARAMETERS FOR MODEL VISCOPLASTIC_FOAM]

In the above command blocks:

• Since the model requires functions to describe the temperature dependence of the elastic
modulus and Poisson’s ratio, it is recommended that one inputs these properties at some
reference temperature. However, any two of the elastic constants can be used for input.

• The reference value for the flow rate, ℎ, is defined with the FLOW RATE command line.
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• The reference value of the over-stress exponent, 𝑛, is defined with the POWER EXPONENT
command line.

• The user-defined scalar scaling between associated and radial flow, 𝛽, is defined with the
BETA command line.

• The initial volume fraction of solid material, 𝜙0, is defined with the PHI command line.

• The reference value for the shear strength, 𝐴0, is defined with the SHEAR STRENGTH
command line.

• The reference value for the shear hardening modulus, 𝐴1, is defined with the SHEAR
HARDENING command line.

• The shear hardening exponent, 𝐴2, is defined with the SHEAR EXPONENT command line.

• The reference value for the hydrostatic strength, 𝐵0, is defined with the HYDRO
STRENGTH command line.

• The reference value for the hydrostatic hardening modulus, 𝐵1, is defined with the HYDRO
HARDENING command line.

• The hydrostatic hardening exponent, 𝐵2, is defined with the HYDRO EXPONENT command
line.

• The user-defined and normalized function that gives the elastic modulus as a function of
temperature, ℎ𝐸 (𝜃), is defined with the YOUNGS FUNCTION command line.

• The user-defined and normalized function that gives the Poisson’s ratio as a function of
temperature, ℎ𝜈 (𝜃), is defined with the POISSONS FUNCTION command line.

• The user-defined and normalized function that gives the shear strength as a function of
temperature, ℎ𝐴0 (𝜃), is defined with the SS FUNCTION command line.

• The user-defined and normalized function that gives the shear hardening modulus as a
function of temperature, ℎ𝐴1 (𝜃), is defined with the SH FUNCTION command line.

• The user-defined and normalized function that gives the hydrostatic strength as a function
of temperature, ℎ𝐵0 (𝜃), is defined with the HS FUNCTION command line.

• The user-defined and normalized function that gives the hydrostatic hardening modulus as a
function of temperature, ℎ𝐵1 (𝜃), is defined with the HH FUNCTION command line.

• The user-defined and normalized function that gives the flow rate as a function of
temperature, ℎℎ (𝜃), is defined with the RATE FUNCTION command line.

• The user-defined and normalized function that gives the over-stress exponent as a function
of temperature, ℎ𝑛 (𝜃), is defined with the EXPONENT FUNCTION command line.

• The user-defined and normalized function that gives the elastic modulus as a function of
maximum solid volume fraction, 𝑓𝐸 (𝜙), is defined with the STIFFNESS FUNCTION
command line.
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• The optional user-defined function that gives the shear strength as a function of the
maximum solid volume fraction, 𝑎 (𝜙), is defined with the SHEAR HARDENING
FUNCTION command line. Note, if this function is defined the SHEAR STRENGTH,
SHEAR HARDENING, and SHEAR EXPONENT values should not be specified.

• The optional user-defended function that gives the hydrostatic strength as a function of the
maximum solid volume fraction, 𝑏 (𝜙), is defined with the HYDRO HARDENING
FUNCTION command line. Note, if this function is defined the HYDRO STRENGTH,
HYDRO HARDENING, and HYDRO EXPONENT values should not be specified.

• The optional user-defined function that gives the scaling between associated and radial flow
as a function of maximum solid volume fraction, 𝛽 (𝜙), is defined with the BETA
FUNCTION command line. Note, if this function is defined the BETA value should not be
specified.

Output variables available for this model are listed in Table 4.44.

Table 4.44 State Variables for VISCOPLASTIC FOAM Model
Name Description
ITER number of sub-increments
EPVOL inelastic volumetric strain, 𝜀p𝑣
EDOT effective inelastic strain rate, ¤̄𝜀𝑝
PHI maximum volume fraction of solid material, 𝜙
FA shear strength, 𝑎
FB hydrostatic strength, 𝑏
STIF elastic stiffness as a function of 𝜙

4.29 Foam Damage Model

4.29.1 Theory

The foam damage model was developed at Sandia National Laboratories to model the behavior of
rigid polyurethane foams under a variety of loading conditions [73]. For instance, temperature,
rate, and tension-compression dependencies are all built into this model. This model, leverages
previous efforts and experience with other foam models (e.g. low density foam Section 4.26, foam
plasticity Section 4.27, and viscoplastic foam Section 4.28). Like those past efforts, this model
utilizes an additive decomposition of the strain rates into elastic and inelastic parts,

𝐷𝑖 𝑗 = 𝐷
e
𝑖 𝑗 + 𝐷in

𝑖 𝑗 .

It is also assumed that the elastic response is linear and isotropic such that the stress rate for
isothermal conditions is given by the following equation

◦
𝜎𝑖 𝑗= C𝑖 𝑗 𝑘𝑙𝐷

e
𝑘𝑙 = C𝑖 𝑗 𝑘𝑙

(
𝐷𝑘𝑙 − 𝐷in

𝑘𝑙

)
,
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with C𝑖 𝑗 𝑘𝑙 being the fourth-order, isotropic elasticity tensor. The specific stress rate considered is
arbitrary as long as it is object. Two common rates satisfying that constraint are the Jaumann and
Green-McInnis rates.

The initial yield surface is assumed to be an ellipsoid about the hydrostat and is described by the
function

𝑓 =
𝜎̄2

𝑎2 +
𝑝2

𝑏2 − 1 = 0, (4.127)

where 𝑎 and 𝑏 are state variables that define the current deviatoric and volumetric strengths,
respectively, of the foam. The von Mises effective stress, 𝜎̄ is a scalar measure of the deviatoric
stress given by

𝜎̄ =

√
3
2
𝑠𝑖 𝑗 𝑠𝑖 𝑗 ,

while 𝑝 is the pressure, or mean stress, and is defined as

𝑝 =
1
3
𝜎𝑘𝑘 ,

with 𝜎𝑖 𝑗 and 𝑠𝑖 𝑗 being the components of the Cauchy and deviatoric stress. This latter tensor may
be written as,

𝑠𝑖 𝑗 = 𝜎𝑖 𝑗 − 𝑝𝛿𝑖 𝑗 ,

where 𝛿𝑖 𝑗 are the components of the identity tensor - 𝛿𝑖 𝑗 = 1 if 𝑖 = 𝑗 , 𝛿𝑖 𝑗 = 0 if 𝑖 ≠ 𝑗 .

For this model, the yield function (4.127) is re-written as

𝑓 = 𝜎∗ − 𝑎 = 0

with the effective stress, 𝜎∗, being a function of the von Mises effective stress, 𝜎̄, and the
pressure, 𝑝, as follows

𝜎∗ =

√
𝜎̄2 + 𝑎

2

𝑏2 𝑝
2.

Next, using a Perzyna-type formulation, the following expression for the inelastic strain rate, 𝐷in
𝑖 𝑗 ,

is developed

𝐷in
𝑖 𝑗 =


¤̄𝜀𝑝 𝑔𝑖 𝑗 = 𝑒ℎ

(
𝜎∗

𝑎
− 1

)𝑛
𝑔𝑖 𝑗 if

𝜎∗

𝑎
− 1 > 0

0 if
𝜎∗

𝑎
− 1 ≤ 0,

where 𝑔𝑖 𝑗 are the components of a symmetric, second-order tensor that defines the orientation of
the inelastic flow. This type of model is sometimes referred to as an over-stress model because the
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inelastic rate is a function of the over-stress - the distance outside the yield surface. For associated
flow, 𝑔𝑖 𝑗 is simply normal to the yield surface and is given by

𝑔a𝑖 𝑗 =

𝜕 𝑓

𝜕𝜎𝑖 𝑗���� 𝜕 𝑓𝜕𝜎𝑘𝑙

���� =
3
𝑎2 𝑠𝑖 𝑗 +

2
3𝑏2 𝑝 𝛿𝑖 𝑗���� 3

𝑎2 𝑠𝑘𝑙 +
2

3𝑏2 𝑝 𝛿𝑘𝑙

���� . (4.128)

When lower density foams are subjected to a simple load path like uniaxial compression, the
inelastic flow direction at moderate strains appears nearly uniaxial. In other words, the flow
direction is given by the normalized stress tensor as follows

𝑔r𝑖 𝑗 =
𝜎𝑖 𝑗

|𝜎𝑘𝑙 |
.

This type of flow is called radial flow. The foam damage model has another parameter, 𝛽, which
allows for the flow direction to be prescribed as a linear combination of associated and radial flow
such that,

𝑔𝑖 𝑗 =
(1 − 𝛽) 𝑔a𝑖 𝑗 + 𝛽 𝑔r𝑖 𝑗��(1 − 𝛽) 𝑔a𝑘𝑙 + 𝛽 𝑔r𝑘𝑙 �� . (4.129)

Rigid polyurethane foams have little ductility when they are subjected to tensile stress. For this
loading case, the materials behave more like brittle materials and even for uniaxial compression
the foams often show cracking at large strains.

The damage surfaces for the foam damage model are simply three orthogonal planes with the
normals given by the positive principal stress axes. The damage surfaces are given by the
following equation

𝑓 𝑖dam = 𝜎̂𝑖 − 𝑐 (1 − 𝑤) , ; 𝑖 = 1, 2, 3

where 𝜎̂𝑖 is a principal stress, 𝑐 is the initial tensile strength which is a material parameter, and 𝑤
is a scalar measure of the damage. As damage occurs, the damage surface will collapse toward the
origin and the foam will lose tensile strength. The foam will, however, still have compressive
strength.

Damage is taken to be a positive, monotonically increasing function of the damage strain, 𝜀dam,
and the damage strain is a function of the maximum principal strain, 𝜀max, and the plastic volume
strain, 𝜀p𝑣 , such that

𝑤 = 𝑤 (𝜀dam) ; 𝜀dam = 𝑎dam𝜀max + 𝑏dam𝜀p𝑣 ,

with the material parameters 𝑎dam and 𝑏dam controlling the rate at which damage is generated in
tension and compression, respectively. The model does not allow healing, so the damage never
decreases even if the damage strain decreases.

To fully capture temperature, strain rate, and lock-up effects, several material parameters are
defined as functions of temperature, 𝜃, and/or some measure of the amount of compaction, e.g.
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the maximum volume fraction of the solid material obtained during any prior loading, 𝜙. For
instance,

𝐸 (𝜃, 𝜙) = 𝐸 ℎ𝐸 (𝜃) 𝑓𝐸 (𝜙) ,

𝜈 (𝜃, 𝜙) = 𝜈 ℎ𝜈 (𝜃) 𝑓𝜈 (𝜙) ,

and the natural logarithm of the reference flow rate, ℎ, and the power law exponent, 𝑛 are also
functions of temperature

ℎ (𝜃) = ℎ ℎℎ (𝜃)

𝑛 (𝜃) = 𝑛 ℎ𝑛 (𝜃) .

The current deviatoric and volumetric strengths are hardening functions of the maximum volume
fraction of the solid material obtained during any prior loading, 𝜙, as is the parameter that defines
the fraction of associated and radial flow, 𝛽. Therefore,

𝑎 = 𝑎 (𝜙) ; 𝑏 = 𝑏 (𝜙)

𝛽 = 𝛽 (𝜙) .

Through the loading cycle, the maximum volume fraction of solid material is written as,

𝜙 = max
𝑡>0

𝜙 (𝑡)

where 𝜙 (𝑡) is the current volume faction of solid material defined as

𝜙 (𝑡) = 𝜙0

exp
(
𝜀
p
𝑣

) ,
with 𝜙0 and 𝜀p𝑣 being the initial solid volume fraction and plastic volumetric strain, respectively.

The foam damage model, as presented, provides a phenomenological model with enough
flexibility to model the observed deformation and failure of rigid polyurethane foams.

4.29.2 Implementation

Like the other foam models, the foam damage model is integrated using an explicit forward Euler
scheme. Essentially, this specific form is a combination of a rate-dependent viscoplastic
mechanism and a distinct damage element. At the highest level, these two responses are
considered independently and sequentially with the viscoplastic behavior being evaluated first.
Initially, the damage parameter is set to 0 and is limited to a maximum value of 0.99 to prevent the
tensile strength from going to zero or negative due to numerical round-off. Foam material
elements that are completely damaged can be removed using element death based approaches in
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the case of the damage variable reaching a value close to 1, say 0.99. This topic, however, will not
be discussed here as the focus is on the constitutive behavior of the foam model.

To ensure integration stability, an allowable strain increment is first calculated so that a critical
time step may be found. Essentially, such a maximum is given by the ratio of shear strength to
elastic modulus. If the input time step is sufficiently small to meet this requirement, the material
state at time 𝑡 = 𝑡𝑛+1 is calculated directly. For unsuitably large time steps, a series of
sub-increments are used such that the integration may proceed in a stable fashion. Specifically, a
total time step of Δ𝑡 is subdivided into 𝑁 sub-increments with the 𝑘 𝑡ℎ such sub-increment having
a time interval of 𝛿𝑡𝑘 so that Δ𝑡 =

∑𝑁
𝑘=1 𝛿𝑡

𝑘 . In this case, the same forward Euler scheme is used to
integrate successively over the sub-increments. For temperature dependent properties (e.g. the
power law exponent 𝑛), the value at the start of the sub-increment is determined by linearly
interpolating over the total time step,

𝑛𝑘 = 𝑛𝑛 +
Δ𝑡𝑘

Δ𝑡
(𝑛𝑛+1 − 𝑛𝑛) ,

with Δ𝑡𝑘 begin the current sub-increment time step, Δ𝑡𝑘 =
∑𝑘
𝑟=1 𝛿𝑡

𝑟 . For simplicity, in the
remainder of this section it is assumed that the input time step is acceptable and only a single
increment is needed. If additional sub-increments are needed, the below steps would be repeated
𝑁 times with time intervals of 𝛿𝑡𝑘 .

The rate-dependent plastic response is then calculated in a fashion very similar to that of the
viscoplastic foam model (Section 4.28.2). The key differences are primarily the additional, and
more complex, dependencies of 𝜈, 𝛽, 𝑎, and 𝑏 on the solid volume fraction. As such, first the
various material properties and model parameters that are dependent on temperature, 𝜃, or solid
volume fraction, 𝜙, are determined based on the respective values at 𝑡 = 𝑡𝑛. The effective plastic
strain rate, ¤̄𝜀𝑝, is readily found as,

¤̄𝜀𝑝 = 𝑒ℎ(𝜃𝑛)
〈
𝜎∗𝑛

𝑎 (𝜙𝑛)
− 1

〉𝑛(𝜃𝑛)
,

where 𝜎∗𝑛 is given by,

𝜎∗𝑛 =

√
𝜎̄2
𝑛 +

𝑎2 (𝜙𝑛)
𝑏2 (𝜙𝑛)

𝑝2
𝑛,

and 〈𝑥〉 are the Macaulay brackets evaluated as,

〈𝑥〉 =
{
𝑥, 𝑥 ≥ 0
0, 𝑥 < 0 .

Knowing the effective plastic strain increment, corresponding stress increments may be
determined. Specifically, the rates of change of the deviatoric stress, ¤𝑠𝑖 𝑗 , and pressure, ¤𝑝, are given
for isothermal conditions by

¤𝑠𝑖 𝑗 = 2𝜇𝑛
(
𝑑𝑖 𝑗 − 𝑑p𝑖 𝑗

)
,

¤𝑝 = 𝐾𝑛
(
𝑑𝑘𝑘 − 𝑑p𝑘𝑘

)
,
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with 𝑑𝑖 𝑗 and 𝑑p𝑖 𝑗 being the the total and plastic, respectively, rates of deformation, and the symbol
𝑥𝑖 𝑗 denoting the deviatoric part of the tensor 𝑥𝑖 𝑗 . The plastic strain rate is given by,

𝑑
p
𝑖 𝑗 = ¤̄𝜀

𝑝𝑔𝑛𝑖 𝑗 ,

where 𝑔𝑛𝑖 𝑗 is evaluated via relation (4.128)-(4.129) using state variable at time 𝑡 = 𝑡𝑛 and it is noted
that 𝛽 = 𝛽 (𝜙𝑛). Elastic constants 𝐾𝑛 and 𝜇𝑛 are found through isotropic relations using the values
𝐸𝑛 and 𝜈𝑛 so the temperature and solid volume fraction dependencies may be incorporated.

Therefore, after accounting for plastic deformation and any associated temperature changes,

𝑠𝑖 𝑗 =
𝜇𝑛+1
𝜇𝑛

𝑠𝑛𝑖 𝑗 + ¤𝑠𝑖 𝑗Δ𝑡,

𝑝𝑖 𝑗 =
𝐾𝑛+1
𝐾𝑛

𝑝𝑛 + ¤𝑝Δ𝑡,

𝑇𝑖 𝑗 = 𝑠𝑖 𝑗 + 𝑝𝛿𝑖 𝑗 ,
where the tilde, 𝑥, is used to distinguish the fact that the damage response has not yet been
evaluated and these are temporary variables. Updated expressions for the state variables are also
given as,

𝜀
p−𝑛+1
𝑣 = 𝜀p−𝑛𝑣 + 𝑑p𝑘𝑘Δ𝑡,

𝜙𝑛+1 = max


𝜙0

exp
(
𝜀
p−𝑛+1
𝑣

) , 𝜙𝑛 .
With the plastic deformations determined, the damage state of the material is evaluated. As a first
step, the eigenvalues, 𝜎̂𝑖, and vectors, 𝑒𝑘𝑖 (where 𝑘 denotes the corresponding eigenvalue) of the
stress state, 𝑇𝑖 𝑗 , and eigenvalues, 𝜀𝑖 of the total strain state are determined. Of particular interest is
the maximum eigenvalue of the strain tensor, 𝜀max. The damage strain, 𝜀𝑛+1dam, is

𝜀𝑛+1dam =
〈
𝑎dam𝜀max + 𝑏dam𝜀p−𝑛+1𝑣

〉
,

with 〈〉 being Macaulay brackets. This value of the damage strain is then used to evaluate the
current value of the damage, 𝑤𝑛+1, and a check is also imposed to insure that the damage does not
decrease. An effective tensile strength, 𝜎dam, may then be calculated as

𝜎dam = 𝑐
(
1 − 𝑤𝑛+1

)
,

leading to a damage surface of the form,

𝑓 𝑖dam = 𝜎̂𝑖 − 𝜎dam.

The eigenvalues of the updated stress tensor may be written as,

𝜎̂𝑖𝑛+1 =

{
𝜎̂𝑖, 𝑓 𝑖dam ≤ 0
𝜎dam, 𝑓 𝑖dam > 0 ,

producing a final updated stress state of the form,

𝑇𝑛+1𝑖 𝑗 =
3∑
𝑘=1

𝜎̂𝑘𝑛+1𝑒
𝑘
𝑖 𝑒

𝑘
𝑗 .
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4.29.3 Verification

Given the complexity and variety of response and features of the foam damage model, a series of
verification analyses are performed. Common material properties and model parameters used for
these investigations are given in Table 4.45. For these initial studies, isothermal loadings are
considered and the solid volume fraction dependence of the elastic properties is neglected
( 𝑓𝐸 (𝜙) = 1, 𝑓𝜈 (𝜙) = 1). Properties used correspond to those of a FR3712 foam from [73]. In the
case of the elastic modulus, flow rate, and exponent, the values correspond those at a temperature
of 18.30◦C.

Table 4.45 Common material properties and model parameters for the foam damage model used
during verification testing.

𝐸 9,240 psi 𝑐 280 psi
𝜈 0.25 𝑎dam 1.0
ℎ 2.60 𝑏dam 0.55
𝑛 14.0 𝜙0 0.160

The shear strength, hydrostatic strength, and damage function all require user defined functional
forms. For purposes of these tests, simple linear forms are considered for use in the analytical
evaluations. Using the data same FR3712 data as before, simplified expressions of the form,

𝑎 (𝜙) = 160 + 2400𝜙,
𝑏 (𝜙) = 160 + 3266.67𝜙,

𝑤 (𝜀dam) =
10
3
𝜀dam,

are considered.

4.29.3.1 Uniaxial Compression

First, the behavior of the model subject to a uniaxial compression load is considered. As the
loading is purely compressive, no tensile stress is generated and the damage surface is not
violated. Therefore, only the rate-dependent plasticity is considered in this section. Given the
rate-dependent nature, no analytical solution is readily available and and a semi-analytical
approach is developed by specializing the equations to uniaxial compression. Additionally, it is
noted that the flow parameter, 𝛽, is not specified above and is enabled in this model to be an
user-defined function of the solid volume fraction 𝜙. Here, to isolate the impact of this parameter,
the two extreme cases are considered – fully associated or radial flow with 𝛽 = 0, 1,
respectively.

To induce the uniaxial stress state of interest, a displacement of the form 𝑢1 = 𝜆1 is applied while
the remaining degrees of freedom (2 and 3) are left traction free. The applied displacement scales
linearly from 𝜆1 = 0 at 𝑡 = 0.0 to 𝜆1 = −0.7 at 𝑡 = 1.0. In this case, the stress state is simply
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𝜎𝑖 𝑗 = 𝜎11𝛿𝑖1𝛿 𝑗1 leading to an overstress of the form 𝜎∗ = |𝜎11 |
√

1 + 𝑎2

9𝑏2 . For both associated and
radial flow, the inelastic flow rate simplifies to,

𝐷in
𝑖 𝑗 = 𝑒

ℎ

〈
|𝜎11 |
3𝑎𝑏

√
𝑎2 + 9𝑏2 − 1

〉𝑛
𝑔𝑖 𝑗 ,

with 〈·〉 being Macaulay brackets. The total strains may then be written as,

𝜀11 = ln (1 + 𝜆1) ,

𝜀22 = 𝜀33 = −𝜈
(
ln (1 + 𝜆1) − 𝜀in11

)
+ 𝜀in22,

where 𝜀in𝑖 𝑗 =
∫ 𝑡

0 𝐷
in
𝑖 𝑗𝑑𝜏. The associated and radial flow cases are distinguished by the form of 𝑔𝑖 𝑗 .

In the latter case, 𝑔𝑖 𝑗 reduces simply to 𝑔r𝑖 𝑗 = 𝛿𝑖1𝛿 𝑗1. The former case, on the other hand, produces
a flow direction of the form,

𝑔̂ =
1

3
√

2
3
(
2𝑎4 + 81𝑏4) ,

𝑔r11 = 𝑔̂2
(
𝑎2 + 9𝑏2

)
,

𝑔r22 = 𝑔r33 = 𝑔̂
(
2𝑎2 − 9𝑏2

)
.

The stress evolution for both of these flow cases determined numerically (adagio) and
semi-analytically is presented in Fig. 4.126.

(a) Axial stress (b) Solid volume fraction

Fig. 4.126 Axial stress (a) andmaximum solid volume fraction (b), 𝜙, evolution obtained as a function
of applied compressive displacement and determined via the foam damagemodel considering both
associated (𝛽 = 0) and radial(𝛽 = 1) flow assumptions semi-analytically and numerically.

From these results, the impact of the flow direction choice can be observed to have a large impact
on the model response. Specifically, in the radial case more substantial hardening is seen
throughout the entire plastic domain. As the hardening results from the solid volume fraction
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(which is a function of volumetric plastic deformation), such a difference may be anticipated.
Specifically, given the uniaxial plastic flow in the radial case more pronounced volumetric strains
are to be expected. The associated case, on the other hand, has a more deviatoric character leading
to lower plastic volume strains. This difference may also be more readily observed in the total
strain evolutions of the associated and radial cases in Fig. 4.127(a) and Fig. 4.127(b),
respectively.

(a) Associated Flow, beta=0 (b) Radial Flow, beta=1

Fig. 4.127 Diagon strain evolution through a uniaxial displacement loading of the foam damage
model considering (a) associated (𝛽 = 0) and (b) radial (𝛽 = 1) flow determined semi-analytically and
numerically.

Specifically, in the radial case, only small off-axis strains are observed while in the associated
results much more substantial strains are noted. This difference produces a large impact on the
plastic volumetric strain and therefore on the maximum solid volume fraction, 𝜙, whose evolution
through loading in both cases is presented in Fig. 4.127. To emphasize this point, the radial solid
volume fraction is more than double the associated case at the end of loading.

4.29.3.2 Uniaxial Tension

As the compressive and tensile behaviors of the model are different (due to the activation of the
damage mechanism), the uniaxial tensile response is also investigated. To this end, a uniaxial
displacement is applied, 𝑢1 = 𝜆1, while the other off-axis components are kept traction free. For
this test, the maximum displacement (𝜆1 = 0.2) is applied linearly from 𝑡 = 0.0 to 𝑡 = 1.0. Use of
a displacement condition is essential due to the expected stress degradation. In this case, given the
relative values of the strength (𝑎 (𝜙0) versus 𝑐) it is clear that no plastic deformations will take
place and a purely damage driven response is expected. With this simplification, it is also noted
that the rate-dependency of the problem is eliminated. As the stress state is uniaxial, it is clear that
the only non-zero eigenvalue of the stress tensor is 𝜎11 and that 𝜀dam = 𝑎dam𝜀11 = 𝑎dam ln (1 + 𝜆1)
where the fact that the plastic strain is zero is utilized. Bearing these simplifications in mind, an
analytical expression for the stress and strain may be developed. The stress in the axial direction
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may be written as,

𝜎11 =

{
(C1111 − 2𝜈C1122) ln (1 + 𝜆1) , 𝜆1 < 𝜆crit

𝑐
(
1 − 10

3 𝑎dam ln (1 + 𝜆1)
)
, 𝜆1 ≥ 𝜆crit

,

where

𝜆crit = exp

(
𝑐

C1111 − 2𝜈C1122 + 10
3 𝑎dam𝑐

)
− 1.

The analytical results along with numerical simulations from adagio are given below in Fig.
4.128.

Fig. 4.128 Response of the foam damage model through a uniaxial stress, displacement controlled
tension simulation. Stress in the loading direction, 𝜎11, and damagemeasure, 𝑤, against the applied
displacement, 𝜆1, are shown.
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4.29.3.3 Hydrostatic Compression

To consider the pressure dependence, the response of this model subject to a hydrostatic
compression loading is determined. Specifically, a displacement of the form 𝑢𝑖 = 𝜆 (𝑡) is
considered. The applied displacement scales linearly from 𝜆 = 0 at 𝑡 = 0.0 to 𝜆 = −0.7 at 𝑡 = 𝑡max.
Two cases are considered to incorporate rate-dependent effects into the analysis. The two tests are
denoted fast and slow and are distinguished via 𝑡max values of 1.0 and 100.0, respectively. With
this displacement field the engineering volume strain, 𝜀V, is simply 𝜀V = (1 + 𝜆)3 − 1. The stress
state reduces trivially to 𝜎𝑖 𝑗 = −𝑝𝛿𝑖 𝑗 and the corresponding (repeated) eigenvalue is compressive.
Therefore, damage does not play a role in this analysis.

No direct analytical solution to this problem is readily obtainable. Therefore, a semi-analytical
analysis is used. Reducing the foam damage model for the loading described in this section leads
to an expression for the overstess of,

𝜎∗ =
𝑎

𝑏
|𝑝 |,

where the fact that 𝑠𝑖 𝑗 = 0 is leveraged. Additionally, given this stress state, 𝛽 becomes an
unnecessary parameter as,

𝑔𝑖 𝑗 = 𝑔
a
𝑖 𝑗 = 𝑔

r
𝑖 𝑗 = −

1
√

3
sgn (𝑝) 𝛿𝑖 𝑗 ,

with sgn (𝑝) being the sign of 𝑝. Both the numerical (adagio) and semi-analytical (evaluated in a
forward Euler fashion) results are presented in Fig. 4.129.

4.29.3.4 Hydrostatic Tension

A tensile hydrostatic loading provides an interesting possibility for investigating the damage
response. Specifically, with the model parameters defined above the damage tensile strength is
always less than the hydrostatic strength - 𝑐 < 𝑏 (𝜙0). Additionally, given the tensile loading
𝜙 (𝑡) = 𝜙0 and no plastic deformation occurs. This also removes the rate-dependency form the
model enabling an analytical solution to be obtained.

Through a hydrostatic loading, the only stress eigenvalue is −𝑝 (noting the convention of 𝑝
positive in compression) and the corresponding strain eigenvalue is 𝜀max = ln (1 + 𝜆). As no
plastic deformation is occurring, the damage is simply a function of the deformation and is given
by,

𝑤 (𝜀dam) = 𝑤 (𝜆) =
10
3
𝑎dam ln (1 + 𝜆) .

The pressure is then simply given as,

𝑝 =

{
3𝐾 ln (1 + 𝜆) 𝜆 < 𝜆crit

𝑐
(
1 − 10

3 𝑎 ln (1 + 𝜆)
)
𝜆 ≥ 𝜆crit

,
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Fig. 4.129 Pressure-engineering volume strain results of the foam damage model subjected to a
hydrostatic loading at both fast and slow rates determined semi-analytically and numerically.
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where,

𝜆crit = exp
(

3𝑐
9𝐾 + 10𝑐

)
− 1.

In the preceding relations, the fact that 𝜀dam = 𝑎𝜀max is used. The analytical and numerical results
are given below for a loading of 𝜆 = 0 to 𝜆 = 0.2 through the time period 𝑡 = [0, 1] in Fig.
4.130.

Fig. 4.130 Pressure and damage evolutions as function of engineering volume strain results of the
foam damage model subject to a tensile hydrostatic loading determined analytically and numeri-
cally. Note, conventionally with this model pressure is defined positive in compression.

4.29.4 User Guide

BEGIN PARAMETERS FOR MODEL FOAM_DAMAGE
#
# Elastic constants
#

(continues on next page)
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(continued from previous page)
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>
#
# Yield behavior
#
PHI = <real>
FLOW RATE = <real>
POWER EXPONENT = <real>
TENSILE STRENGTH = <real>
ADAM = <real>
BDAM = <real>
#
# Functions
#
YOUNGS FUNCTION = <string>
POISSONS FUNCTION = <string>
RATE FUNCTION = <string>
EXPONENT FUNCTION = <string>
SHEAR HARDENING FUNCTION = <string>
HYDRO HARDENING FUNCTION = <string>
BETA FUNCTION = <string>
YOUNGS PHI FUNCTION = <string>
POISSONS PHI FUNCTION = <string>
DAMAGE FUNCTION = <string>

END [PARAMETERS FOR FOAM_DAMAGE]

Output variables available for this model are listed in Table 4.46. For information about the foam
damage model, consult [73].

Table 4.46 State Variables for FOAM DAMAGE Model
Name Description
ITER number of sub-increments taken in subroutine
EPVOL plastic volume strain
PHI maximum volume fraction of solid material
EQPS equivalent plastic strain
FA shear strength - 𝑎
FB hydrostatic strength - 𝑏
DAMAGE damage
EMAX maximum tensile strain
PWORK plastic work rate
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4.30 Orthotropic Crush Model

4.30.1 Theory

The orthotropic crush model in LAMÉ is designed to model the energy absorbing capability of
crushable orthotropic materials, e.g. aluminum honeycomb, and is empirically based. The
formulation follows that used for metallic honeycomb materials in LS-DYNA [109]. Three
response regimes are assumed for this material: (i) orthotropic elastic, (ii) crush, and (iii)
complete compaction (fully crushed). During the elastic regime, the model exhibits the response
of an elastic, orthotropic material with all Poisson’s ratio equal to zero. After full compaction, the
response is taken to be that of an isotropic, perfectly plastic material and the response between
these two stages is tailored to smoothly transition between the two extremes. Crushing,
incorporating both nonlinear elastic and plastic-like behaviors, is taken to begin as soon as
volumetric contraction is noted (𝐽 = det

(
𝐹𝑖 𝑗

)
< 1). As such, the purely elastic response is

primarily seen during cyclic loadings in which the material is unloaded. An internal state
variable, 𝐽𝑐, is introduced to track the crushed state of the material and is defined as the minimum
𝐽 over the entire deformation history such that,

𝐽𝑐 = min
𝑡>0
[𝐽 (𝑡)] .

The crushing process manifests through two distinct behaviors: (i) the elastic properties scale
linearly with the crush state from the initial orthotropic state to the of the final isotropic
completely compacted material; and (ii) a plastic-like response is observed associated with
corresponding crush curves (analogous to hardening curves).

Before complete compaction, the incremental constitutive relation may be written in terms of the
rate of deformation tensor, 𝐷𝑖 𝑗 , as,

◦
𝜎11
◦
𝜎22
◦
𝜎33
◦
𝜎12
◦
𝜎23
◦
𝜎31


=



𝐸̂11 0 0 0 0 0
0 𝐸̂22 0 0 0 0
0 0 𝐸̂33 0 0 0
0 0 0 2𝐺̂12 0 0
0 0 0 0 2𝐺̂23 0
0 0 0 0 0 2𝐺̂31





𝐷11
𝐷22
𝐷33
𝐷12
𝐷23
𝐷31


(4.130)

where 𝐸̂11, 𝐸̂22, and 𝐸̂33 are the normal stiffness and 𝐺̂12, 𝐺̂23, and 𝐺̂31 are the shear stiffness. A
clear decoupling between the different directional components is evident in (4.130). All six
stiffness components are assumed to be functions of the current compaction level which may be
defined as 1 − 𝐽𝑐 and the evolution of these terms is responsible for crushing behavior (∗𝑖∗)
alluded to previously.

The functional forms of the stiffness are given by,

𝐸̂𝛽 = 𝐸𝛽 + 𝛼
(
𝐸 − 𝐸𝛽

)
𝛽 = 11, 22, 33

𝐺̂𝛾 = 𝐺𝛾 + 𝛼
(
𝐺 − 𝐺𝛾

)
𝛾 = 12, 23, 31,
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where 𝐸 and 𝐺 are the Young’s and shear moduli, respectively, of the fully compacted material
while 𝐸𝛽 and 𝐺𝛾 are the input orthotropic elastic stiffness components of the virgin, uncompacted
material. It is assumed that these stiffness vary linearly between the pre- and post-compacted
material such that,

𝛼 =
(1 − 𝐽𝑐)
𝑉𝑚𝑖𝑛

,

with 𝑉𝑚𝑖𝑛 being the minimum relative volume (or maximum compaction).

With respect to the second behavior observed during crushing, a plastic-like response governed by
crush curves is observed. Given the decoupling between the different stresses and deformations, a
crush curve needs to be defined for each of the six normal and shear stresses. An example of such
a curve is presented in Fig. 4.131, and three distinct regions are evident. Initially, at low
compaction levels, a plateau is observed. This plateau is essentially an initial crush strength and
prior to this stress level all nonlinear deformations associated with material compaction manifest
through changes in the respective moduli. When the stress reaches the specified levels, however,
the curves play a role analogous to the hardening curve and the material stress follows the curve.
Physically, the plateau is associated with crushing the internal honeycomb or foam structure of the
material. As the material approaches full compaction and microstructural contact effects become
important, a sharp rise in the stress is noted (see ≈ 0.6 ≤ 1 − 𝐽𝑐 ≤ 0.7 = 𝑉𝑚𝑖𝑛 in Fig. 4.131). After
complete compaction another plateau corresponding to perfect plasticity is evident.

Fig. 4.131 An example of an input crush curve for an aluminum honeycomb.

Above some value of compaction (1 − 𝐽𝑐 = 𝑉𝑚𝑖𝑛), the material will be fully compacted and behave
as an elastic, perfectly plastic material. The fully compacted response is given by the Young’s
modulus, 𝐸 , Poisson’s ratio, 𝜈, and the yield stress, 𝜎𝑦. Details of this response may be found in
previous sections on the various elastic-plastic models (e.g. Section 4.7.1).
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4.30.2 Implementation

Implementation of the orthotropic crush model involves addressing two cases: before and after
complete compaction. When the material is fully crushed, the model reduces to that of an
isotropic perfectly plastic response. As corresponding isotropic elastic-plastic models with
various hardenings have been extensively explored in prior sections, this response will not be
discussed here and the reader is referred to those sections (e.g. Section 4.7.2). The two cases are
distinguished by the previous compaction state variable, 𝐽𝑛𝑐 , where 𝐽𝑛+1𝑐 = min

[
𝐽𝑛𝑐 , 𝐽

𝑛+1] with
𝐽𝑛+1 = det

(
𝐹𝑛+1𝑖 𝑗

)
= det

(
𝑉𝑛+1𝑖 𝑗

)
. If 𝐽𝑛𝑐 > 1 −𝑉𝑚𝑖𝑛, the material has not yet fully crushed and the

response is evaluated as discussed in the following.

To determine the material state prior to complete compaction, the current values of orthogonal
stiffness must be determined via (4.131) noting

𝛼𝑛+1 =
1 − 𝐽𝑛𝑐
𝑉𝑚𝑖𝑛

.

By assuming completely elastic deformation, trial stresses may then be computed as,

𝜎𝑡𝑟11 = 𝜎𝑛11 + Δ𝑡𝐸̂11

(
𝛼𝑛+1

)
𝑑𝑛+111 ,

𝜎𝑡𝑟22 = 𝜎𝑛22 + Δ𝑡𝐸̂22

(
𝛼𝑛+1

)
𝑑𝑛+122 ,

𝜎𝑡𝑟33 = 𝜎𝑛33 + Δ𝑡𝐸̂33

(
𝛼𝑛+1

)
𝑑𝑛+133 ,

𝜎𝑡𝑟12 = 𝜎𝑛12 + 2Δ𝑡𝐺̂12

(
𝛼𝑛+1

)
𝑑𝑛+112 ,

𝜎𝑡𝑟23 = 𝜎𝑛23 + 2Δ𝑡𝐺̂23

(
𝛼𝑛+1

)
𝑑𝑛+123 ,

𝜎𝑡𝑟31 = 𝜎𝑛31 + 2Δ𝑡𝐺̂31

(
𝛼𝑛+1

)
𝑑𝑛+131 ,

with 𝑑𝑛+1𝑖 𝑗 being the unrotated rate of deformation tensor. Given the decoupling between the
different stress components, the various trial stresses are considered individually. Specifically,
each trial stress must be compared to the crush stress for the current compaction level. Denoting
𝜎𝑐𝑟𝑢𝑠ℎ𝛽 = 𝜎̂𝛽

(
1 − 𝐽𝑛+1𝑐

)
(with 𝛽 = 11, 22, 33, 12, 23, or 31) to be the current crush stress

specified by the crush curve, the current stress of interest is,

𝜎𝑛+1𝛽 =

{
𝜎𝑡𝑟𝛽 , |𝜎𝑡𝑟𝛽 | ≤ 𝜎𝑐𝑟𝑢𝑠ℎ𝛽

sgn
(
𝜎𝑡𝑟𝛽

)
𝜎𝑐𝑟𝑢𝑠ℎ𝛽 , |𝜎𝑡𝑟𝛽 | > 𝜎𝑐𝑟𝑢𝑠ℎ𝛽 ,

where sgn (𝑥) returns the sign of the argument and is used as 𝜎𝑐𝑟𝑢𝑠ℎ𝛽 is entered as a positive
number.
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4.30.3 Verification

The orthotropic crush model was verified through a series of uniaxial compression tests. Given
the lack of coupling between the different directions, such a variety of tests were performed to test
each loading component. One set of material properties was used for all tests and they are given in
Table 4.47.

Table 4.47 The material properties for the orthotropic crush model used for the uniaxial crush tests.
𝐸11 50.0 ksi 𝐸 1000.0 ksi
𝐸22 220.0 ksi 𝜈 0.25
𝐸33 10.0 ksi 𝜎𝑦 2.0 ksi
𝐺12 110.0 ksi
𝐺23 5.0 ksi 𝑉𝑚𝑖𝑛 0.7
𝐺31 25.0 ksi

The crush curves used as input for these tests are given in Fig. 4.132.

Fig. 4.132 Input crush curves used for uniaxial crush analysis.

To test this model, both the anisotropic nature and different deformation regimes need to be tested.
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Therefore, given the decoupled directional nature prior to complete compaction, each component
will be tested. For the diagonal stress components, a simple uniaxial displacement of the form,

𝑢𝑖 = −𝜆𝛿𝑖𝛽,

where 𝛽 = 1, 2, or 3 corresponding to the directional component being tested is applied. In such
cases (with a monotonically increasing 𝜆), 𝐽𝑐 = 1 − 𝜆. The model described in the prior to
sections can be easily evaluated analytically under such conditions, and the corresponding
analytical and numerical results are presented in Fig. 4.133.

Fig. 4.133 Analytical and numerical results for uniaxial crush cases.

4.30.4 User Guide

BEGIN PARAMETERS FOR MODEL ORTHOTROPIC_CRUSH
#
# Elastic constants - Post lock-up
YOUNGS MODULUS = <real>

(continues on next page)
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(continued from previous page)
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>
#
# Orthotropic Elastic properties - Pre-Crush
#
EX = <real>
EY = <real>
EZ = <real>
GXY = <real>
GYZ = <real>
GZX = <real>
#
# Crush properties
#
CRUSH XX = <string>
CRUSH YY = <string>
CRUSH ZZ = <string>
CRUSH XY = <string>
CRUSH YZ = <string>
CRUSH ZX = <string>
VMIN = <real>
#
# Post lock-up yield properties
#
YIELD STRESS = <real>
#

END [PARAMETERS FOR MODEL ORTHOTROPIC_CRUSH]

In the above command blocks:

• The EX, EY, EZ, GXY, GYZ, and GZX command lines define, respectively, the initial,
pre-crush directional moduli 𝐸𝑥𝑥 , 𝐸𝑦𝑦, 𝐸𝑧𝑧, 𝐺𝑥𝑦, 𝐺𝑦𝑧, and 𝐺𝑧𝑥 from (4.130).

• CRUSH XX, YY, ZZ, XY, YZ, and ZX inputs require the name of a function defined via a
FUNCTION command line in the SIERRA scope. These functions describe the directional
crush characteristics of the material and give the current stress value (in a direction) as a
function of the current compaction (1 − 𝐽𝑐).

• The command VMIN defines the minimum relative volume of the material that is achieved
when the material is completely crushed. This parameter may also be considered as the
maximum compaction.

• The elastic constant commands refer to the post lock-up, fully compacted isotropic response
of the material.
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• YIELD STRESS refers to the plateau stress of the material after lock-up when the response
is perfectly plastic.

Output variables available for this model are listed in Table 4.48. For information about the
orthotropic crush model, consult [109].

Table 4.48 State Variables for ORTHOTROPIC CRUSH Model
Name Description
CRUSH current (unrecoverable) compaction/relative volume

4.31 Orthotropic Rate Model

4.31.1 Theory

The orthotropic rate model is an improved version of the orthotropic crush model [7] that
incorporates anisotropic elasticity, strain-rate dependence, and the ability to define the material
coordinate system. The specific form of this model is motivated by metallic honeycombs and the
material coordinate system is usually given in terms of 𝑇, 𝐿, and𝑊 directions. These directions
correspond to the strong (𝑇) and ribbon (𝐿) axes depicted in Fig. 4.134. The third component of
the coordinate system,𝑊 , is the weak direction and is simply the cross-product of the other two
directions.

Fig. 4.134 Orientation of the T, L and W vectors for 38 pc aluminum honeycomb.

In terms of expected response, and similar to the orthotropic crush model, the deformation is split
into two regimes – uncompacted and compacted. Unlike the crush model, the state of compaction
is not determined by the determinant of the deformation gradient but is instead a function of the
engineering (not logarithmic) volume strain, 𝜀V. The degree of compaction, 𝛼, is therefore
defined as,

𝛼 = min
𝑡>0

(
𝑉0 −𝑉 (𝑡)

𝑉0

)
= 1 − min𝑡>0𝑉 (𝑡)

𝑉0
= −min

𝑡>0
𝜀V (𝑡) ,

369



with 𝑉 (𝑡) and 𝑉0 being the current and original volume of the material. Complete compaction
occurs at a user specified value, 𝛼comp.

Prior to complete compaction, the elastic stiffness, C𝑖 𝑗 𝑘𝑙 , is taken to exhibit orthotropic symmetry
and depends on the compaction state of the material, C𝑖 𝑗 𝑘𝑙 = C𝑖 𝑗 𝑘𝑙 (𝛼). In the material frame and
in Voigt notation, this stiffness is represented as,

[C (𝛼)] =



𝐸𝑇𝑇𝑇𝑇 (𝛼) 𝐸𝑇𝑇𝐿𝐿 (𝛼) 𝐸𝑇𝑇𝑊𝑊 (𝛼) 0 0 0

𝐸𝑇𝑇𝐿𝐿 (𝛼) 𝐸𝐿𝐿𝐿𝐿 (𝛼) 𝐸𝐿𝐿𝑊𝑊 (𝛼) 0 0 0

𝐸𝑇𝑇𝑊𝑊 (𝛼) 𝐸𝐿𝐿𝑊𝑊 (𝛼) 𝐸𝑊𝑊𝑊𝑊 (𝛼) 0 0 0

0 0 0 𝐺𝑇𝐿𝑇𝐿 (𝛼) 0 0

0 0 0 0 𝐺𝐿𝑊𝐿𝑊 (𝛼) 0

0 0 0 0 0 𝐺𝑊𝑇𝑊𝑇 (𝛼)



.

(4.131)

Once the material is completely compacted, the elastic stiffness is taken to be isotropic and the
evolution of the initially orthotropic components (𝐸𝑇𝑇𝑇𝑇 (𝛼 = 0) = 𝐸0

𝑇𝑇𝑇𝑇 ) to final isotropic,
compacted coefficients (𝐸𝑇𝑇𝑇𝑇

(
𝛼 = 𝛼comp

)
= 𝜆 + 2𝜇 with 𝜆 and 2𝜇 being Lam’{e}’s constant and

the shear modulus) is given via a common user-defined scaling function, 𝑓𝐸 (𝛼). The mechanical
stiffness coefficients then scale as,

𝐸𝑇𝑇𝑇𝑇 (𝛼) = 𝐸0
𝑇𝑇𝑇𝑇 +

(
𝜆 + 2𝜇 − 𝐸0

𝑇𝑇𝑇𝑇

)
𝑓𝐸 (𝛼) , (4.132)

for the volumetric diagonal terms (𝐸𝑇𝑇𝑇𝑇 , 𝐸𝐿𝐿𝐿𝐿 , 𝐸𝑊𝑊𝑊𝑊 ),

𝐸𝑇𝑇𝐿𝐿 (𝛼) = 𝐸0
𝑇𝑇𝐿𝐿 +

(
𝜆 − 𝐸0

𝑇𝑇𝐿𝐿

)
𝑓𝐸 (𝛼) , (4.133)

for the off-diagonal terms (𝐸𝑇𝑇𝐿𝐿 , 𝐸𝑇𝑇𝑊𝑊 , 𝐸𝐿𝐿𝑊𝑊 ) and

𝐺𝑇𝐿𝑇𝐿 (𝛼) = 𝐺0
𝑇𝐿𝑇𝐿 +

(
2𝜇 − 𝐺0

𝑇𝐿𝑇𝐿

)
𝑓𝐸 (𝛼)

for the shear terms. From these relations, it is obvious that 𝑓𝐸 (𝛼) should be bounded such that
0 ≤ 𝑓𝐸 (𝛼) ≤ 1 with 𝑓𝐸 (0) = 0 and 𝑓𝐸

(
𝛼comp

)
= 1.

As was mentioned earlier, the deformation and model response may be readily split between two
regimes – the uncompacted and compacted. The behavior during the latter regime is simpler and
is assumed to be that of an isotropic elastic-perfectly plastic material characterized by the elastic
coefficients (𝜆, 2𝜇) and yield stress (𝜎𝑦). During the uncompacted regime the deformation is
more complex and typical responses may include elastic bending of cell structures, buckling of
cell walls, or densification (see the text of Gibson and Ashby [36] for a complete discussion of
these and other mechanisms). In this formulation, however, none of these deformation modes are
explicitly modeled. Instead, the response is defined via six independent yield functions (one for
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each stress component in the material coordinate system), 𝜙𝛽𝛾 , that are a function of the
corresponding stress, the compaction state, and the current strain rate, ¤̄𝜀 =

√
𝑑𝑖 𝑗𝑑𝑖 𝑗 . Here, 𝑑𝑖 𝑗 is

the unrotated rate of deformation in the global (𝑋,𝑌, 𝑍) coordinate system and 𝛽 and 𝛾 are being
used as subscripts to denote variables in the material coordinate system.

The six yield functions are,

𝜙𝐿𝐿 = 𝜎𝐿𝐿 − 𝑓𝐿𝐿 (𝛼) ℎ
( ¤̄𝜀)

𝜙𝑇𝑇 = 𝜎𝑇𝑇 − 𝑓𝑇𝑇 (𝛼) ℎ
( ¤̄𝜀)

𝜙𝑊𝑊 = 𝜎𝑊𝑊 − 𝑓𝑊𝑊 (𝛼) ℎ
( ¤̄𝜀)

𝜙𝐿𝑇 = 𝜎𝐿𝑇 − 𝑓𝐿𝑇 (𝛼) ℎ
( ¤̄𝜀)

𝜙𝑇𝑊 = 𝜎𝑇𝑊 − 𝑓𝑇𝑊 (𝛼) ℎ
( ¤̄𝜀)

𝜙𝑊𝐿 = 𝜎𝑊𝐿 − 𝑓𝑊𝐿 (𝛼) ℎ
( ¤̄𝜀)

,

with 𝜎𝛽𝛾 being the current symmetric Cauchy stresses in the material coordinate system, 𝑓𝛽𝛾 are
user specified hardening functions defining the maximum stress in that direction for a given
compaction state and ℎ

( ¤̄𝜀) is the strain rate sensitivity function that is common to all the yield
functions. With these forms, it is evident that the definition of the different hardening functions
dictates the model response through the uncompacted regime. All (or none) of the aforementioned
deformation mechanisms may be captured by the appropriate definition of those functions. As
such, the response is dictated by the desire of the analyst and appropriate selection of the elastic
scaling, hardening, and strain rate sensitivity function – 𝑓𝐸 (𝛼) , 𝑓𝛽𝛾 (𝛼), and ℎ

( ¤̄𝜀) .
4.31.2 Implementation

Unlike the orthotropic crush model, the rate variant considered here has couplings between the
different directional strains and cannot be evaluate numerically as easily. Therefore, the
orthotropic rate model is integrated using a hypoelastic formulation. As was discussed in the
preceding section, the model is formulated in the 𝑇, 𝐿, 𝑊 coordinate system and not the
unrotated frame. Therefore, the first step before proceeding is to map strain and stress values from
the unrotated to the material frame. To this end, an orthogonal rotation tensor 𝑄̃𝑖 𝑗 is constructed
from user input vectors 𝑡𝑖 and 𝑙𝑖 defining the strong and ribbon directions, respectively. In this
case, the ·̃ is used to differentiate this tensor from that mapping between the rotated and
unrotated configurations defined in (4.1). The stress and deformation rates in the material
coordinate system, 𝜎̃𝑖 𝑗 and 𝑑𝑖 𝑗 , are determined via,

𝜎̃𝑛𝑖 𝑗 = 𝑄̃𝑘𝑖𝑇
𝑛
𝑘𝑙𝑄̃𝑙 𝑗 ,

𝑑𝑛+1𝑖 𝑗 = 𝑄̃𝑘𝑖𝑑
𝑛+1
𝑘𝑙 𝑄̃𝑙 𝑗 ,

(4.134)

where 𝑇𝑛𝑖 𝑗 and 𝑑
𝑛+1
𝑖 𝑗 are the unrotated stress and deformation rates, respectively. For convenience,

the remainder of this discuss will neglect the ·̃ notation and all operations will be assumed to be
in the material coordinate system unless specifically noted. Additionally, after a converged stress
is achieved, the inverse mapping of (4.134) is used to determine 𝑇𝑛+1𝑖 𝑗 .
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As the strain increment is fixed for a load step, kinematically defined variables such as 𝛼𝑛+1 and
the strain rate, ¤̄𝜀𝑛+1, may first be determined. The latter term is defined as,

¤̄𝜀𝑛+1 =
√
𝑑𝑛+1𝑖 𝑗 𝑑𝑛+1𝑖 𝑗 ,

with 𝑑𝑛+1𝑖 𝑗 being the strain rate in the global coordinate system. For the former, it must first be
noted that the engineering, 𝜀V, and logarithmic, 𝜀𝑘𝑘 , volumetric strains are related via
𝜀V = exp (𝜀𝑘𝑘 ) − 1. The current state of compaction is then given as,

𝛼𝑛+1 = 1 − 𝜀𝑛+1𝑉 ,

where 𝜀𝑛+1𝑉 = min
[
𝜀𝑛𝑉 , exp

(
𝜀𝑛+1𝑘𝑘

)]
.

The material response has two distinct regimes. As discussed in the corresponding theory section,
the compacted material behaves as an elastic-plastic material. Such a response and the
corresponding numerical analysis has been described in Section 4.7.2. As such, it will not be
further presented here and instead the focus is on the behavior during the uncompacted stages.

Earlier, it was mentioned that the response during the compaction process is dictated by three
functions – the elastic scaling, hardening, and strain rate sensitivity. These three expressions are
dependent on the state of compaction and strain rate. As those kinematic properties have already
been calculated, the values of 𝑓 𝑛+1𝐸 = 𝑓𝐸

(
𝛼𝑛+1

)
, 𝑓 𝑛+1𝑖 𝑗 = 𝑓𝑖 𝑗

(
𝛼𝑛+1

)
, and ℎ𝑛+1 = ℎ

( ¤̄𝜀𝑛+1) may easily
be calculated. In the remainder of this section, the functional dependencies of these terms will not
be explicitly presented for ease and brevity. Similarly, the superscript 𝑛 + 1 will be dropped and it
should be assumed that unless specifically denoted the variable is evaluated at the 𝑛 + 1 step. With
𝑓𝐸 (and 𝑓 𝑛𝐸 ) defined, the elastic stiffness, C𝑖 𝑗 𝑘𝑙 and C𝑛𝑖 𝑗 𝑘 , and compliance, S𝑖 𝑗 𝑘𝑙 and S𝑛𝑖 𝑗 𝑘𝑙 , tensors
may also be calculated.

To determine the updated material state, the change in elastic stiffness (associated with the change
in compaction) must be determined. To this end,

𝜎̂𝑛𝑖 𝑗 = C𝑖 𝑗 𝑘𝑙𝜀
e−𝑛
𝑘𝑙

where

𝜀e−𝑛𝑖 𝑗 = S𝑛𝑖 𝑗 𝑘𝑙𝜎
𝑛
𝑘𝑙 .

In the previous two relations, it is noted that the respective mechanical tensors are determined at
different load steps thus leading to the altered stress state. The tensor 𝜎𝑛𝑖 𝑗 refers to the stress
determined and stored from the previous load step while 𝜎̂𝑛𝑖 𝑗 incorporates the change in
mechanical stiffness. A trial stress state may be calculated as,

𝜎𝑡𝑟𝑖 𝑗 = 𝜎̂
𝑛
𝑖 𝑗 + C𝑖 𝑗 𝑘𝑙𝑑𝜀e−𝑡𝑟𝑘𝑙 ,

with the trial elastic strain increment, 𝑑𝜀e−𝑡𝑟𝑖 𝑗 being that of the total strain increment, 𝑑𝑖 𝑗Δ𝑡. The
flow (yield) functions, 𝑓 𝑡𝑟𝑖 𝑗 , are then calculated. If all 𝑓 𝑡𝑟𝑖 𝑗 < 0, the solution is elastic and the trial
state is accepted. On the other hand, if any 𝑓 𝑡𝑟𝑖 𝑗 > 0 a correction scheme is needed. This poses a
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more complex problem than in the orthotropic crush model given the multiple (six) yield
surfaces.

To perform the plastic correction, an approach similar in principle to the return-mapping schemes
heavily used in metal plasticity (e.g. Section 4.7.2). Here, however, there is no internal state
variable and associated evolution equations to evolve the state. Instead, in this case the elastic
strain is iterated over until all the yield conditions are satisfied. Specifically, for the 𝑘-th iteration,
the stress is calculated as

𝜎𝑘𝑖 𝑗 = 𝜎̂
𝑛
𝑖 𝑗 + C𝑖 𝑗 𝑘𝑙𝑑𝜀e−𝑘𝑘𝑙 .

Updated yield functions, 𝑓 𝑘𝑖 𝑗 , are then calculated and the active flow directions (those with 𝑓𝑖 𝑗 > 0)
determined. A tangent modulus is then constructed (essentially by turning off components
corresponding to inactive directions) and a plastic flow tensor is determined using the tangent
compliance and the value of the yield functions. The updated elastic strain increment, 𝑑𝜀e−𝑘+1𝑖 𝑗 , is
then found by removing the calculated strain. This process is repeated until satisfaction of all the
yield functions.

4.31.3 Verification

To verify the orthotropic crush model, a series of uniaxial compression tests are performed. Given
the multiple salient features in this model (e.g. strain rate dependence, user-defined coordinate
system), the test sequence is constructed to investigate and probe each of the different features to
gain confidence in all of the anticipated capabilities. Additionally, the analyzed loading paths
correspond to those in which the kinematics are fully prescribed. This is done so that analytical
expressions may be found due to the strong coupling between the kinematics and constitutive
response through the compaction state, 𝛼. The common model parameters used for these tests are
given in Table 4.49 and the functional forms of the input strength/hardening curves, 𝑓𝛽𝛾 , are
presented in Fig. 4.135. It is noted, however, that these properties will take various values during
the verification tests to activate and deactivate different responses. Additionally, in Fig. 4.135, two
sets of curves are given – the full, complex set of six distinct functions (Fig. 4.135a) and a simpler
set (Fig. 4.135b). In the latter, only one curve common to the three diagonal strengths are shown.
The other three strength functions are all set artificially high to enable the study of a simpler
case.
Table 4.49 Material and model parameters for the orthotropic rate model used for verification

𝐸0
𝑇𝑇𝑇𝑇 2,322.0 ksi 𝐸 4000.0 ksi
𝐸0
𝑇𝑇𝐿𝐿 485.8 ksi 𝜈 0.3
𝐸0
𝑇𝑇𝑊𝑊 68.8 ksi 𝜎𝑦 15.0 ksi
𝐸0
𝐿𝐿𝐿𝐿 1,348.0 ksi 𝑡𝑥 1.0

𝐸0
𝐿𝐿𝑊𝑊 121.8 ksi 𝑡𝑦 0.0

𝐸0
𝑊𝑊𝑊𝑊 85.0 ksi 𝑡𝑧 0.0
𝐺0
𝑇𝐿𝑇𝐿 1,345.0 ksi 𝑙𝑥 0.0

𝐺0
𝐿𝑊𝐿𝑊 67.0 ksi 𝑙𝑦 1.0

𝐺0
𝑊𝑇𝑊𝑇 260.0 ksi 𝑙𝑧 0.0

ℎ
( ¤̄𝜀) 1.0 𝑓𝐸 (𝛼) 𝛼

373



(a) Complex case (b) Simple case

Fig. 4.135 Input strength/hardening curves, 𝑓𝛽𝛾 , for use in verification tests of the orthotropic rate
model.

4.31.3.1 Uniaxial Strain - Isotropic

First, the response of the model with through a uniaxial strain loading is explored. In this case, the
prescribed displacement is 𝑢𝑖 = 𝜆̂𝛿𝑖1. For this initial study, isotropic elastic constants are assumed
leading to 𝐸0

𝐿 = 𝐸0
𝐿𝐿𝐿𝐿 = 𝐸0

𝑇𝑇𝑇𝑇 = 𝐸0
𝑊𝑊𝑊𝑊 = 5, 384.6 ksi and

𝐸0
𝑇 = 𝐸0

𝑇𝑇𝐿𝐿 = 𝐸0
𝑇𝑇𝑊𝑊 = 𝐸0

𝐿𝐿𝑊𝑊 = 2, 307.7 ksi. These properties are chosen to match the
compacted state and 𝑓𝐸 (𝛼) is set to zero. In this way, the elastic properties are constant
throughout loading. The shear moduli are scaled accordingly and the remaining properties are left
unchanged from Table 4.49. In this case, the model response simplifies to

𝛼 = −𝜆̂,

and

𝜎11 =

{
𝜎̂ 𝜎̂ ≤ 𝑓𝑇𝑇 (𝛼)
𝑓𝑇𝑇 𝜎̂ > 𝑓𝑇𝑇 (𝛼)

(4.135)

𝜎22 = 𝜎33 =

{
𝜆 ln

(
1 + 𝜆̂

)
𝜎̂ ≤ 𝑓𝑇𝑇 (𝛼)

𝜆
𝜆+2𝜇𝜎11 𝜎̂ > 𝑓𝑇𝑇 (𝛼) ,

where

𝜎̂ = (𝜆 + 2𝜇) ln
(
1 + 𝜆̂

)
.

The single linear hardening crush curve given in Fig. 4.135(b) is used for this analysis. The
resulting stresses as a function of applied displacement, 𝜆̂, are given in Fig. 4.136 and good
agreement is noted.
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Fig. 4.136 Axial and off-axis stresses determined analytically and numerically via the orthotropic
rate model with constant, isotropic elastic properties.

4.31.3.2 Uniaxial Strain - Orthotropic

The uniaxial problem described in the previous section is again studied – although this time using
the orthotropic elastic properties listed in Table 4.49. To test the material coordinate system
capabilities two cases are considered – essentially with the 𝑥1 axis aligned with the 𝑇 and 𝐿 axes.
The first case corresponds to the definition of the 𝑡𝑖 and 𝑙𝑖 vectors in Table 4.49. Alternatively, the
second case is defined by setting the 𝐿 direction aligned with the 𝑥1 axis
(𝑙𝑥 = 1.0, 𝑙𝑦 = 0.0, 𝑙𝑧 = 0.0 and 𝑡𝑥 = 0.0, 𝑡𝑦 = 0.0, 𝑡𝑧 = 1.0). The stress state evolutions
determined via adagio and analytically for the two considered orientations are shown in Fig.
4.137(a) and Fig. 4.137(b), respectively. The analytical solutions are found in the same fashion as
(4.135) with the moduli changed for the orthotropic case. Good agreement is observed.

4.31.4 User Guide

BEGIN PARAMETERS FOR MODEL ORTHOTROPIC_RATE
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>

(continues on next page)
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(a) Loading aligned with the T direction (b) Loading aligned with the W direction

Fig. 4.137 Axial and off-axis stresses determined analytically and numerically via the orthotropic
rate model with constant, orthotropic elastic constants. The material coordinate systems is rotated
in two different directions with the loading direction always aligned with 𝑥1

(continued from previous page)
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>
#
YIELD STRESS = <real>
#
MODULUS TTTT = <real>
MODULUS TTLL = <real>
MODULUS TTWW = <real>
MODULUS LLLL = <real>
MODULUS LLWW = <real>
MODULUS WWWW = <real>
MODULUS TLTL = <real>
MODULUS LWLW = <real>
MODULUS WTWT = <real>
#
TX = <real>
TY = <real>
TZ = <real>
LX = <real>
LY = <real>
LZ = <real>
#
MODULUS FUNCTION = <string>
RATE FUNCTION = <string>
#

(continues on next page)

376



(continued from previous page)
T FUNCTION = <string>
L FUNCTION = <string>
W FUNCTION = <string>
TL FUNCTION = <string>
LW FUNCTION = <string>
WT FUNCTION = <string>

END [PARAMETERS FOR MODEL ORTHOTROPIC_RATE]

The orthotropic rate model extends the functionality of the orthotropic crush constitutive model
described in Section 4.30. The orthotropic rate model has been developed to describe the behavior
of an aluminum honeycomb subjected to large deformation. The orthotropic rate model, like the
original orthotropic crush model, has six independent yield functions that evolve with volume
strain. Unlike the orthotropic crush model, the orthotropic rate model has yield functions that also
depend on strain rate. The orthotropic rate model also uses an orthotropic elasticity tensor with
nine elastic moduli in place of the orthotropic elasticity tensor with six elastic moduli used in the
orthotropic crush model.

A honeycomb orientation capability is included with the orthotropic rate model, allowing users to
prescribe initial honeycomb orientations that are not aligned with the original global coordinate
system. The three material directions are defined as follows: The T-direction is usually associated
with the generator axis for the honeycomb, the L-direction is in the ribbon plane (defined by flat
sheets used in reinforced honeycomb) orthogonal to the generator axis, and the W-direction is
orthogonal to the ribbon plane.

In the above command blocks:

• For the ORTHOTROPIC_RATE model, only YOUNGS MODULUS needs to be defined; this
is the Young’s modulus in the fully compacted state. If two other elastic constants are
provided, they will be used to define the fully compacted Young’s modulus.

• The YIELD STRESS command line defines the yield stress of the fully compacted
honeycomb.

• The nine elastic moduli for the orthotropic, uncompacted honeycomb are defined with
respect to each material direction using the MODULUS TTTT, MODULUS TTLL,
MODULUS TTWW, MODULUS LLLL, MODULUS LLWW, MODULUS WWWW, MODULUS
TLTL, MODULUS LWLW, and MODULUS WTWT command lines.

• The components of vectors defining the T- and L-directions of the honeycomb are specified
using the TX, TY, and TZ, and LX, LY, and LZ command lines, respectively. The vector
component values tx, ty, and tz define the orientation of the honeycomb’s T-direction
(generator axis), while lx, ly, and lz define the orientation of the L-direction. The
vectors T and L are defined in the global coordinate system and must be orthogonal.

• The function describing the variation in moduli with compaction is given by the MODULUS
FUNCTION command line. The moduli vary continuously from their initial orthotropic
values to isotropic values when full compaction is obtained.
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• The function describing the change in strength with strain rate is given by the RATE
FUNCTION command line. Note that all strengths are scaled with the multiplier obtained
from this function.

• The function describing the T-normal strength of the honeycomb as a function of
compressive volumetric strain is given by the T FUNCTION command line.

• The function describing the L-normal strength of the honeycomb as a function of
compressive volumetric strain is given by the L FUNCTION command line.

• The function describing the W-normal strength of the honeycomb as a function of
compressive volumetric strain is given by the W FUNCTION command line.

• The function describing the TL-normal strength of the honeycomb as a function of
compressive volumetric strain is given by the TL FUNCTION command line.

• The function describing the LW-normal strength of the honeycomb as a function of
compressive volumetric strain is given by the LW FUNCTION command line.

• The function describing the WT-normal strength of the honeycomb as a function of
compressive volumetric strain is given by the WT FUNCTION command line.

Note that several of the command lines in this command block reference functions. These
functions must be defined in the SIERRA scope.

Output variables for this model are listed in Table 4.50.

Table 4.50 State Variables for ORTHOTROPIC RATE Model
Name Description
1 CRUSH minimum volume ratio, crush is unrecoverable (𝜀𝑉 )

4.32 Universal Polymer Model

4.32.1 Theory

The Universal Polymer Model (UPM) is a phenomenological, non-linear viscoelastic (NLVE)
model that is, in the literature, named the Simplified Potential Energy Clock (SPEC) [3]. The
UPM model is considerably simpler than the parent model, the Potential Energy Clock (PEC)
model, labeled the NLVE polymer model in SIERRA, which itself is not phenomenological but
requires extensive data and experience to calibrate [21].

The UPM model is suitable for modeling the finite deformation, thermal-mechanical behavior of
glassy materials, both organic and inorganic. Successful usage of the model is widespread. Some
examples include the modeling of amorphous, thermosetting polymers across and through the
glass transition such as epoxies [2]. It is also suitable for modeling thermoplastics from within the
melt state and down into the glass transition from polystyrene to polycarbonate. Finally, it has
been used to represent inorganic glasses for glass-to-metal seals. The UPM model was developed
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for production analyses of encapsulated components. It predicts a full range of behavior including
yielding, stress relaxation, volume relaxation, and physical aging.

The key physical principal behind the UPM model is that there exists a material time scale
(material clock) separate from the laboratory time scale. If the material time scale is fast, such as
in the rubbery state of a polymer, then the UPM model responds instantly to changes in
temperature and strain such that the user would observe rate-independent behavior. However, if
the material clock is slow relative to the laboratory time scale, viscoelastic memory builds with
any process, which causes acute history and thermodynamic path dependent behavior.

The model response is derived from a Helmholtz Free Energy density and takes as an input the
unrotated rate of deformation, 𝑑𝑖 𝑗 , the temperature at the start and end of the time step (𝜃𝑛 and
𝜃𝑛+1, and the time step, Δ 𝑡. From these inputs, the hereditary integrals within the model are
updated, and the unrotated Cauchy stress tensor is returned.

For the UPM model, the strain measure is approximated from the integrated unrotated rate of
deformation tensor, which we label 𝜖𝑖 𝑗 ,

𝜖𝑖 𝑗 =
∫ ∞

0

(
𝑅𝑚𝑖𝐷𝑚𝑛𝑅𝑛 𝑗

)
𝑑𝑠, 𝐷𝑖 𝑗 =

1
2

(
𝐿𝑖 𝑗 + 𝐿 𝑗𝑖

)
, 𝐹𝑖 𝑗 = 𝑅𝑖𝑚𝑈𝑚 𝑗 . (4.136)

Here, 𝐹𝑖 𝑗 , 𝑅𝑖 𝑗 ,𝑈𝑖 𝑗 , 𝐿𝑖 𝑗 , and 𝐷𝑖 𝑗 are the deformation gradient, rotation, material stretch, velocity
gradient, and rate of deformation tensors standard in Lagrangian continuum mechanics.

The UPM model allows the user to initiate an analysis from a stress-free temperature, 𝜃sf , that is
different from the reference temperature, 𝜃ref , at which all material properties are defined. Here
we briefly summarize the constitutive equations. The model is derived from a Helmholtz Free
Energy, but we begin directly with the (unrotated) Cauchy Stress and refer the reader to reference
[3] for more detail:

𝜎𝑖 𝑗 = (𝐾𝐺 (𝜃) − 𝐾∞ (𝜃))
∫ 𝑡

0
𝑓𝑣 (𝑡′ − 𝑠′)

𝑑𝐼1
𝑑𝑠
𝑑𝑠𝛿𝑖 𝑗

− (𝐾𝐺 (𝜃) 𝛿𝐺 (𝜃) − 𝐾∞ (𝜃) 𝛿∞ (𝜃))
∫ 𝑡

0
𝑓𝑣 (𝑡′ − 𝑠′)

𝑑𝜃

𝑑𝑠
𝑑𝑠𝛿𝑖 𝑗

+2 (𝐺𝐺 (𝜃) − 𝐺∞ (𝜃))
∫ 𝑡

0
𝑓𝑠 (𝑡′ − 𝑠′)

𝑑
(
dev𝜖𝑖 𝑗

)
𝑑𝑠

𝑑𝑠

+ (𝐾∞ (𝜃) 𝐼1 − 𝐾∞ (𝜃) 𝛿∞ (𝜃) (𝜃 − 𝜃sf)) 𝛿𝑖 𝑗 + 2𝐺∞ (𝜃) dev𝜖𝑖 𝑗 .

(4.137)

The first three lines of terms in (4.137) represent the time-dependent and dissipative
(non-equilibrium) response of the model to volumetric, thermal, and shear deformation histories.
Accordingly, 𝐾 , 𝛿, and 𝐺 represent a bulk modulus, volumetric thermal expansion coefficient, and
shear modulus while subscripts 𝐺 or ∞ denote a glassy or rubbery, respectively, properties. The
last collection of terms in (4.137) furnish the time-independent rubbery (equilibrium) response.
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The variables in (4.137) are:

𝐼1 = 𝛿𝑖 𝑗𝜖𝑖 𝑗 = tr𝜖𝑖 𝑗 , dev𝜖𝑖 𝑗 = 𝜖𝑖 𝑗 −
𝐼1
3
𝛿𝑖 𝑗 ,

𝐺𝐺 (𝜃) = 𝐺ref
𝐺 +

𝑑𝐺𝐺

𝑑𝜃
(𝜃 − 𝜃ref) , 𝐺∞ (𝜃) = 𝐺ref

∞ +
𝑑𝐺∞
𝑑𝜃
(𝜃 − 𝜃ref) ,

𝐾𝐺 (𝜃) = 𝐾 ref
𝐺 +

𝑑𝐾𝐺
𝑑𝜃
(𝜃 − 𝜃ref) , 𝐾∞ (𝜃) = 𝐾 ref

∞ +
𝑑𝐾∞
𝑑𝜃
(𝜃 − 𝜃ref) ,

𝛿𝐺 (𝜃) = 𝛿ref
𝐺 +

𝑑𝛿𝐺
𝑑𝜃
(𝜃 − 𝜃ref) , 𝛿∞ (𝜃) = 𝛿ref

∞ +
𝑑𝛿∞
𝑑𝜃
(𝜃 − 𝜃ref) .

(4.138)

The first three terms in (4.137) represent the material’s viscoelastic response to changes in volume
strain, temperature, and shear deformation. Two relaxation functions are used to characterize the
thermal/volumetric ( 𝑓𝑣) and shear ( 𝑓𝑣) relaxation responses. The model assumes the thermal and
volumetric relaxation responses are identical. Otherwise, 𝑓𝑣 and 𝑓𝑠 are typically quite different
and are expressed as a Prony series (Note: to distinguish between indices used with conventional
summation convention and those related to Prony series terms, all Prony series summations shall
be explicitly written with the relevant index given parenthetically in a superscript.):

𝑓𝑣 (𝑥) =
𝑁∑
𝑘=1

𝑤 (𝑘) exp
(
− 𝑥

𝜏(𝑘)

)
, 𝑓𝑠 (𝑥) =

𝑀∑
𝑙=1

𝑤 (𝑙) exp
(
− 𝑥

𝜏(𝑙)

)
. (4.139)

These relaxation functions describe the material’s response to a suddenly applied
volumetric/thermal or shear perturbation at the reference temperature where, under certain
conditions, the material and laboratory time scales are equivalent. In (4.137), the viscous terms
(non-rubbery) involve hereditary integrals over the difference in material time from 𝑠 = 0 to 𝑠 = 𝑡,
which is the current laboratory time.

An increment in material time, 𝑑𝑡′, and the laboratory time, 𝑑𝑡, are related through the (highly)
history dependent shift factor, 𝑎, such that the difference in material time, 𝑡′ − 𝑠′, is related to the
corresponding difference in laboratory time, 𝑡 − 𝑠 through:

𝑎𝑑𝑡′ = 𝑑𝑡, 𝑡′ − 𝑠′ =
∫ 𝑢=𝑡

𝑢=𝑠

𝑑𝑢

𝑎 (𝑢) .
(4.140)

If the material time scale is very slow compared to the laboratory time, then 𝑎 >> 1, which is
often the case inside and below the glass transition for typically glassy materials.

The shift factor is instantaneously defined through:

log10𝑎 =
−𝐶1𝑁

𝐶2 + 𝑁
,

𝑁 (𝑡) = 𝜃 − 𝜃ref −
∫ 𝑡

0
𝑓𝑣 (𝑡′ − 𝑠′)

𝑑𝜃

𝑑𝑠
𝑑𝑠

+ 𝐶3

(
𝐼1 −

∫ 𝑡

0
𝑓𝑣 (𝑡′ − 𝑠′)

𝑑𝐼1
𝑑𝑠
𝑑𝑠

)
+ 𝐶4

∫ 𝑢=𝑡

𝑢=0

∫ 𝑠=𝑡

𝑠=0

(
𝑓𝑠 (𝑡′ − 𝑠′, 𝑡′ − 𝑢′)

𝑑
(
dev𝜖𝑖 𝑗

)
𝑑𝑠

𝑑
(
dev𝜖𝑖 𝑗

)
𝑑𝑢

𝑑𝑠𝑑𝑢

)
.

(4.141)
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The key physics in the model comes from (4.141). Temperature rise (generally) causes 𝑁 to
increase, and hence the material shift factor shrinks (the material time scale speeds up). Shrinking
the volume generally causes the shift factor to increase as if the temperature had been decreased.
Mechanistically, this feature is the manifestation of the trade-off between between mobility and
free volume available to polymer chains. Finally, shear deformation can greatly speed up the
material clock through the last term. This phenomenon is a direct manifestation of deformation
induced mobility, a key mechanism for glassy materials.

Since the shift factor involves hereditary integrals, even at a constant temperature and state of
deformation, the material clock will change over time. Under stress-free conditions, the material
will creep and densify if the model is out of equilibrium (when any viscous term is non-zero).
These phenomena are the model’s manifestations of physical aging, time-dependent material
change without a change in composition or microstructure. 𝐶1, 𝐶2, 𝐶3, and 𝐶4 are all material
constants. We note that the double relaxation function appearing in the last term takes on a
slightly different form from 𝑓𝑠:

𝑓𝑠 (𝑥, 𝑦) =
𝑁∑
𝑘=1

𝑤 (𝑘) exp
(
− 𝑥

𝜏(𝑘)

)
exp

(
− 𝑦

𝜏(𝑘)

)
(4.142)

It is desirable to relate a special case of the model to the Williams-Landel-Ferry (WLF) form
because of how time-temperature superposition fitting is typically performed. Specifically, one
can show that the clock parameters, 𝐶1 and 𝐶2, relate to the WLF parameters, 𝐶̂1 and 𝐶̂2, through
the following relationships: 𝐶̂1 = 𝐶1 and 𝐶̂2 = 𝐶2/

(
1 + 𝐶3𝛿

ref
∞

)
.

For more information about the universal polymer model, consult [3].

4.32.2 Implementation

The hereditary integrals in (4.137) and (4.141) are difficult to evaluate directly. Instead a rate form
is pursued than can be integrated straightforwardly over each time step. Consider a typical
hereditary integral after the Prony series for its specific relaxation function has been substituted
into it. Differentiate the integral with respect to the current time, 𝑡, and use the Leibnitz rule to
arrive at:∫ 𝑠=𝑡

𝑠=0
𝑓𝑣 (𝑡′ − 𝑠′)

𝑑𝜃

𝑑𝑠
𝑑𝑠 =

𝑁∑
𝑘=0

𝑤 (𝑘)
∫ 𝑠=𝑡

𝑠=0
exp

(
− 𝑡
′ − 𝑠′
𝜏(𝑘)

)
𝑑𝜃

𝑑𝑠
𝑑𝑠 =

𝑁∑
𝑘=0

𝑤 (𝑘)𝐽 (𝑘) (4.143)

𝑑𝐽 (𝑘)

𝑑𝑡
=

∫ 𝑠=𝑡

𝑠=0

𝑑

𝑑𝑡

(
exp

(
− 𝑡
′ − 𝑠′
𝜏(𝑘)

)
𝑑𝜃

𝑑𝑠

)
𝑑𝑠 +

(
exp

(
− 𝑡
′ − 𝑠′
𝜏(𝑘)

)
𝑑𝜃

𝑑𝑠

)
𝑠=𝑡

𝑑 (𝑡)
𝑑𝑡

=
∫ 𝑠=𝑡

𝑠=0
exp

(
− 𝑡
′ − 𝑠′
𝜏(𝑘)

)
𝑑𝜃

𝑑𝑠

(
−1
𝜏(𝑘)

)
𝑑𝑡′

𝑑𝑡
𝑑𝑠 + 𝑑𝜃

𝑑𝑡

= − 1
𝑎𝜏(𝑘)

𝐽 (𝑘) + 𝑑𝜃
𝑑𝑡
.

Notice this rate form involves a memory term which decays as well as input from new history, in
this case a change in temperature. To integrate this easily, we approximate this rate as constant
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over the time step in a constitutive equation update and use the mid-step evaluation to determine
the rate. Consider a process in which the temperature changes from 𝜃𝑛 at time 𝑡𝑛 to 𝜃𝑛+1 at 𝑡𝑛+1 so
that Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛. Then,

𝑑𝐽 (𝑘)

𝑑𝑡
|𝑡𝑛+1/2 ≈

𝐽 (𝑘) (𝑡𝑛+1) − 𝐽 (𝑘) (𝑡𝑛)
𝑡𝑛+1 − 𝑡𝑛

= − 1
𝑎𝑡𝑛+1/2𝜏

(𝑘)
𝐽 (𝑘) |𝑛+1 + 𝐽 (𝑘) |𝑛

2
+ 𝜃𝑛+1 − 𝜃𝑛
𝑡𝑛+1 − 𝑡𝑛

, (4.144)

yielding,

𝐽 (𝑘) |𝑛+1 =

(
2𝑎𝑛+1/2𝜏(𝑘) − Δ𝑡
2𝑎𝑛+1/2𝜏(𝑘) + Δ𝑡

)
𝐽 (𝑘) |𝑛 +

(
2𝑎𝑛+1/2𝜏(𝑘)

2𝑎𝑛+1/2𝜏(𝑘) + Δ𝑡

)
(𝜃𝑛+1 − 𝜃𝑛) .

Stability of (4.144) requires that the first term to remain positive. Hence, the change in time for
the purposes of updating these hereditary integrals is:

Δ𝑡 = MIN
(
𝑡𝑛+1 − 𝑡𝑛, 2𝑎𝑛+1/2𝜏(𝑘)

)
. (4.145)

The collection of 𝐽 (𝑘) from 𝑘 = 1, 𝑁 are internal state variables associated with this particular
hereditary integral. Each Prony term for each distinct hereditary integral must be stored as an
internal state variable.

Fortunately, changing from a scalar field to a tensor field (𝜃 to 𝜖𝑖 𝑗 ) does not alter the above time
integration except that for each Prony term, each component of the tensor must be stored and
updated as a state variable. For example, the hereditary integrals associated with deviatoric strain
history may be updated by letting,

𝐻𝑖 𝑗 =
∫ 𝑡

0
𝑑𝑠 𝑓𝑠 (𝑡′ − 𝑠′)

𝑑
(
dev𝜖𝑖 𝑗

)
𝑑𝑠

𝑑𝑠 =
𝑁∑
𝑘=1

𝑤 (𝑘)𝐻 (𝑘)𝑖 𝑗 , (4.146)

and approximating the time rate of change at the midstep as,

𝑑𝐻 (𝑘)𝑖 𝑗
𝑑𝑡
|𝑡𝑛+1/2 ≈

𝐻 (𝑘)𝑖 𝑗 (𝑡𝑛+1) − 𝐻
(𝑘)
𝑖 𝑗 (𝑡𝑛)

𝑡𝑛+1 − 𝑡𝑛
= − 1

𝑎𝑡𝑛+1/2𝜏
(𝑘)

𝐻 (𝑘)𝑖 𝑗 |𝑛+1 + 𝐻
(𝑘)
𝑖 𝑗 |𝑛

2
+
𝐻𝑛+1
𝑖 𝑗 − 𝐻𝑛

𝑖 𝑗

𝑡𝑛+1 − 𝑡𝑛
,

resulting in,

𝐻 (𝑘)𝑖 𝑗 |𝑛+1 =

(
2𝑎𝑛+1/2𝜏(𝑘) − Δ𝑡
2𝑎𝑛+1/2𝜏(𝑘) + Δ𝑡

)
𝐻 (𝑘)𝑖 𝑗 |𝑛 +

(
2𝑎𝑛+1/2𝜏(𝑘)

2𝑎𝑛+1/2𝜏(𝑘) + Δ𝑡

) (
𝐻𝑛+1
𝑖 𝑗 − 𝐻𝑛

𝑖 𝑗

)
.

Here, 𝐻 (𝑘)𝑖 𝑗 is a collection of six state variables that compose the 𝑘 th Prony term deviatoric strain
history hereditary integral as in (4.137). The superscripts refer to the Prony term number, and
each component of these tensors much be updated and stored.

Because of the double hereditary integral in (4.141) associated with shear deformation and shift
factor acceleration, a rate form for this kind of term is also needed. Again, differentiate the
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integral with respect to the current time, 𝑡, and use the Leibnitz rule to arrive at:∫ 𝑢=𝑡

𝑢=0

∫ 𝑠=𝑡

𝑠=0

(
𝑓𝑠 (𝑡′ − 𝑠′, 𝑡′ − 𝑢′)

𝑑
(
dev𝜖𝑖 𝑗

)
𝑑𝑠

𝑑
(
dev𝜖𝑖 𝑗

)
𝑑𝑢

𝑑𝑠 𝑑𝑢

)
=

𝑁∑
𝑘=1

𝑤 (𝑘)
∫ 𝑢=𝑡

𝑢=0

∫ 𝑠=𝑡

𝑠=0

(
exp

(
− 𝑡
′ − 𝑠′
𝜏(𝑘)

)
exp

(
− 𝑡
′ − 𝑢′
𝜏(𝑘)

)
𝑑

(
dev𝜖𝑖 𝑗

)
𝑑𝑠

𝑑
(
dev𝜖𝑖 𝑗

)
𝑑𝑢

𝑑𝑠 𝑑𝑢

)
=

𝑁∑
𝑘=0

𝑤 (𝑘)𝑄 (𝑘) .

𝑑𝑄 (𝑘)

𝑑𝑡
=
−2𝑄 (𝑘)

𝑎𝜏(𝑘)
+ 2

𝑑
(
dev𝜖𝑖 𝑗

)
𝑑𝑡

∫ 𝑠=𝑡

𝑠=0

(
exp

(
− 𝑡
′ − 𝑢′
𝜏(𝑘)

)
𝑑

(
dev𝜖𝑖 𝑗

)
𝑑𝑢

𝑑𝑢

)
=
−2𝑄 (𝑘)

𝑎𝜏(𝑘)
+ 2

𝑑
(
dev𝜖𝑖 𝑗

)
𝑑𝑡

𝐻 (𝑘)𝑖 𝑗 .

The variables 𝐽 (𝑘) , 𝑄 (𝑘) , and all six components of 𝐻 (𝑘)𝑖 𝑗 are state variables that are stored and
updated through the midstep algorithm presented above.

The actual update of the constitutive equations involves finding the shift factor at 𝑡𝑛+1/2, which
requires Newton’s method on (4.141). Using the techniques from (4.143) through (4.147), it is
straightforward to chain rule differentiate the term 𝑁 in (4.141), and that analysis is not
reproduced here for brevity.

4.32.3 Verification

Verification for the full non-linear viscoelastic features of the universal polymer model is difficult
because analytic solutions are not available. Here we verify that two key parts of the model are
working correctly, but at this time not all non-linearities in the material clock are verified. First,
we verify that the material clock (shift factor) follows the Williams-Landel-Ferry behavior near
and above the glass transition (reference temperature). Then, as the material is cooled below the
glass transition, we verify that the thermal hereditary integral in the material clock is working
properly. Finally, the specimen is reheated through the glass transition, and the shift factor is again
compared between the UPM model and a semi-analytic solution.

Second, with the non-linear portions of the clock turned off and the temperature held fixed, an
analytic solution to the uniaxial strain boundary value problem is pursued at three different strain
rates. This latter verification exercise demonstrates that the hereditary integrals are updated
correctly and that the stress response may be calculated using both the shear and bulk relaxation
responses simultaneously even when they have different relaxation functions.
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4.32.3.1 Shift Factor During Traction-Free Cooling and Heating

The WLF equation (considering temperature only) provides a simple means of performing
time-temperature superposition. It relates the shift factor, 𝑎, to the current temperature through,

log10 𝑎 = − 𝐶1 (𝜃 − 𝜃ref)
𝐶2 + (𝜃 − 𝜃ref)

. (4.147)

Near and above 𝜃ref, the UPM model limits to the WLF model, and below the glass transition, the
hereditary integral in the clock freezes out further evolution of the shift factor with temperature.

A single element boundary value problem is analyzed in Sierra/SM with the UPM model. A
simple temperature sweep is executed under traction free conditions through the glass transition
starting from above it at a constant rate of 1◦C per minute. The material is then immediately
reheated at 1◦C per minute to well above the glass transition. The material properties used for this
analysis as well as the uniaxial strain problem below are provided in Table 4.51 and reflect a
simplified version of the material properties used to represent 828DGEBA / DEA (often called
828DEA) [3].

Table 4.51 The material and model parameters for the Universal Polymer Model used for verifica-
tion testing. Parameters are approximately based on a fit for 828DEA, but they represent a lin-
ear thermal-viscoelastic representation of the model. Both the shear and volumetric Prony series
weights come from fitting these 4 relaxation times to stretched exponential series as discussed in
that paper. The thermal relaxation and volumetric relaxation functions are the same in the UPM
model. All other material and model parameters are unused and set to zero.
𝜃ref 75◦C 𝜃sf 125◦C
𝐶̂1 16.5 𝐶̂2 54.5◦C
𝐾𝐺 4.9 GPa 𝐾∞ 3.2 GPa
𝐺𝐺 0.75 GPa 𝐺∞ 4.5 MPa
{ 𝑓1} {2.99149 × 10−3, 6.42966 × 10−2, 6.49783 × 10−1, 2.82929 × 10−1}
{ 𝑓2} {1.00305 × 10−2, 2.11421 × 10−1, 7.01534 × 10−1, 7.70145 × 10−2}
{𝜏} {1.0 × 10−11, 1.0 × 10−6, 1.0 × 10−1, 1.0 × 104} (s)

For the verification of the time-temperature shift behavior, the model is expected to exactly match
the WLF behavior above 𝜃ref, but as the material is cooled below this point, the temperature
hereditary integral in the material shift factor definition (4.141) slows further evolution of the shift
factor. WLF behavior is observed in the model, which confirms this elementary behavior of the
model in Fig. 4.138. Then, as the model is further cooled below the glass transition, the UPM
model is compared against a custom Newton-Raphson scheme for this boundary value problem
(outside Sierra), and agreement is perfect. During reheat, one sees that the shift factor does not
retrace the path through temperature space, and a large hysteresis is observed.

Changing the cooling rate changes the temperature at which the UPM model will depart from
WLF behavior with the behavior remaining WLF like at colder temperatures for slower cooling
rates and departing at warming temperatures for faster cooling rates.
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(a) Applied Temperature History (b) Shift Factor Vs. Temperature

Fig. 4.138 Time-temperature dependence of the shift factor, 𝑎, during cooling through the glass
transition and then reheating back through it. The cooling/heating rate is 1◦C per minute. FEA
(circles) show the expectedWLF (blue dashed line) behavior for 𝜃−𝜃ref > 0. The UPMmodel departs
from WLF behavior below the reference temperature as expected, and continues to agree with an
external to Sierra numerical scheme (solid line) to simulate this boundary value problem.

4.32.3.2 Uniaxial Strain

The second verification problem considered is uniaxial strain under isothermal conditions wherein
the non-linear clock terms are set to zero (𝐶3 = 0 and 𝐶4 = 0). Here, the temperature is set to the
reference temperature, 𝜃 = 𝜃ref, and a two stage boundary value problem is simulated. A material
point (single 8-node hexahedral element with selective deviatoric spatial integration) is loaded at
a constant logarithmic strain rate in uniaxial strain up to a prescribed logarithmic strain
(characterized by a loading time, 𝑡L). Then, the logarithmic strain rate is fixed to zero. The stress
responses in the axial and transverse directions are output over time during this load and hold
process. Three logarithmic strain rates are considered: 0.001, 1, and 1000 per second which
activate the rubbery, mixed, and glassy responses respectively. For all three cases, the specimen is
loaded to 10% axial logarithmic strain, and then the specimen is held for 10 seconds. Uniaxial
strain involves finite volume and shape change, and so this boundary value problem tests both
relaxation processes simultaneously.

Next we develop the analytic solution for linear thermal-viscoelasticity based on the UPM model.
Note that the temperature is fixed to the reference temperature such that the shift factor is 1.0
always. We prescribe the following logarithmic strain rate history on a material point (in a
Cartesian frame). Since both the spherical and deviatoric parts of the logarithmic strain history
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are needed for the model, we derive them too:

for 0 ≤ 𝑡 ≤ 𝑡L, ¤𝐻𝑖 𝑗 = ¤𝜖

1 0 0
0 0 0
0 0 0

 , ¤𝐻dev
𝑖 𝑗 =

¤𝜖
3


2 0 0
0 −1 0
0 0 −1

 ,
otherwise ¤𝐻𝑖 𝑗 = ¤𝐻dev

𝑖 𝑗 =


0 0 0
0 0 0
0 0 0

 ,
and the associated strain invariants needed for the model are:

𝐼1, 𝐼2 :



for 0 ≤ 𝑡 ≤ 𝑡L,
𝐼1 = 𝛿𝑖 𝑗𝐻𝑖 𝑗 = ¤𝜖𝑡
¤𝐼1 = ¤𝜖
𝐼2 = 𝐻dev

𝑖 𝑗 𝐻
dev
𝑖 𝑗 = 2

3 ¤𝜖2𝑡2

¤𝐼2 = 4
3 ¤𝜖2𝑡

for 𝑡L ≤ 𝑡,
𝐼1 = ¤𝜖𝑡L
¤𝐼1 = 0
𝐼2 = 2

3 ¤𝜖2𝑡2L
¤𝐼2 = 0

(4.148)

Now, the motion involves a finite volume change, and the Jacobian of the deformation gradient
will be needed. It is:

𝐽 =


for 0 ≤ 𝑡 ≤ 𝑡L,

exp ( ¤𝜖𝑡)
for 𝑡L ≤ 𝑡,

exp ( ¤𝜖𝑡L)

(4.149)

The derivation of the linear viscoelastic response proceeds directly with the stress integral from
(4.137) with equivalent laboratory and material time scales since 𝜃 = 𝜃ref. Using the prescribed
strain history from (4.148) and the Jacobian of the deformation gradient (4.149), the Cauchy stress
response is given below. Again, there are only two non-zero stress components: the axial stress
(𝜎11) and the transverse stresses (𝜎22 = 𝜎33), which we will label with under score 𝜎𝐴 and 𝜎𝑇
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respectively. These are:

for 0 ≤ 𝑡 ≤ 𝑡L :



𝐽𝜎𝐴 = exp (− ¤𝜖𝑡){
4(𝐺𝑔−𝐺∞) ¤𝜖

3
∑𝑁
𝑘=1 𝑤

(𝑘)𝜏(𝑘)
(
1 − exp

(
− 𝑡
𝜏 (𝑘 )

))
+

(
𝐾𝑔 − 𝐾∞

)
¤𝜖 ∑𝑀

𝑙=1 𝑞
(𝑙)𝜏(𝑙)

(
1 − exp

(
− 𝑡
𝜏 (𝑙)

))}
+

(
𝐾∞ + 4

3𝐺∞
)
¤𝜖𝑡,

𝐽𝜎𝑇 = exp (− ¤𝜖𝑡){
−2(𝐺𝑔−𝐺∞) ¤𝜖

3
∑𝑁
𝑘=1 𝑤

(𝑘)𝜏(𝑘)
(
1 − exp

(
− 𝑡
𝜏 (𝑘 )

))
+

(
𝐾𝑔 − 𝐾∞

)
¤𝜖 ∑𝑀

𝑙=1 𝑞
(𝑙)𝜏(𝑙)

(
1 − exp

(
− 𝑡
𝜏 (𝑙)

))}
+

(
𝐾∞ − 2

3𝐺∞
)
¤𝜖𝑡,

(4.150)

for 𝑡L ≤ 𝑡 :



𝐽𝜎𝐴 = exp (− ¤𝜖𝑡L){
4(𝐺𝑔−𝐺∞) ¤𝜖

3
∑𝑁
𝑘=1 𝑤

(𝑘)𝜏(𝑘)
(
exp

(
− 𝑡−𝑡L
𝜏 (𝑘 )

)
− exp

(
− 𝑡
𝜏 (𝑘 )

))
+

(
𝐾𝑔 − 𝐾∞

)
¤𝜖 ∑𝑀

𝑙=1 𝑞
(𝑙)𝜏(𝑙)

(
exp

(
− 𝑡−𝑡L
𝜏 (𝑙)

)
− exp

(
− 𝑡
𝜏 (𝑙)

))}
+

(
𝐾∞ + 4

3𝐺∞
)
¤𝜖𝑡L,

𝐽𝜎𝑇 = exp (− ¤𝜖𝑡L){
−2(𝐺𝑔−𝐺∞) ¤𝜖

3
∑𝑁
𝑘=1 𝑤

(𝑘)𝜏(𝑘)
(
exp

(
− 𝑡−𝑡L
𝜏 (𝑘 )

)
− exp

(
− 𝑡
𝜏 (𝑘 )

))
+

(
𝐾𝑔 − 𝐾∞

)
¤𝜖 ∑𝑀

𝑙=1 𝑞
(𝑙)𝜏(𝑙)

(
exp

(
− 𝑡−𝑡L
𝜏 (𝑙)

)
− exp

(
− 𝑡
𝜏 (𝑙)

))}
+

(
𝐾∞ − 2

3𝐺∞
)
¤𝜖𝑡L,

(4.151)

Using the two Prony series in Table 4.51, and the three strain rates (0.1, 1, and 10 per second), the
analytic model and UPM are directly compared in Fig. 4.139.

4.32.4 User Guide

The UPM model is commonly used in one of two ways. The most general use case is portrayed in
full in the following syntax in which the user specifies both Prony series explicitly. That is, the
user specifies all Prony relaxation times (𝜏) and weights for both the thermal/volumetric ( 𝑓𝑣) and
shear ( 𝑓𝑠) relaxation functions. Note that in the UPM model, only a single set of Prony relaxation
times can be specified and acts as the basis for both relaxation spectra. In other words, a single set
of relaxation times is specified, and both functions use their own (distinct) weights.

Default parameters are not set. Any system of units can be used with the model. There are no
internal units assumptions.
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(a) Applied Strain History (b) Axial Stress History

Fig. 4.139 Linear viscoelastic response to a two stage uniaxial strain boundary value problem with
material and loading properties specified in Table 4.51. Symbols represent FEA simulations with
the UPM model while solid lines are the analytic results. The three logarithmic strain rates of 0.1,
1.0, and 10.0 per second are shown, and all cease at 10% strain, and all cases are isothermal at the
reference temperature so that the shift factor is unity.

BEGIN PARAMETERS FOR MODEL UNIVERSAL_POLYMER
#
# Elastic constants: These Should be Set to the Glassy Moduli
# for robustness considerations
#
SHEAR MODULUS = <real>
BULK MODULUS = <real>
#
## Reference Temperature and Material CLOCK Parameters
#
REFERENCE TEMPERATURE = <real> # Temperature
STRESS FREE TEMPERATURE = <real> # Temperature
#
WLF C1 = <real>
WLF C2 = <real> # Temperature
CLOCK C3 = <real> # Temperature
CLOCK C4 = <real> # Temperature
#
## Glassy and Rubbery Moduli
# and CTE Definitions at the Reference Temperature
#
BULK GLASSY 0 = <real> # Units of Pressure
BULK RUBBERY 0 = <real> # Units of Pressure
SHEAR GLASSY 0 = <real> # Units of Pressure
SHEAR RUBBERY 0 = <real> # Units of Pressure

(continues on next page)
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(continued from previous page)
VOLCTE glassy 0 = <real> # Units of Inverse Temperature
VOLCTE rubbery 0 = <real> # Units of Inverse Temperature
#
FILLER VOL FRACTION = <real>
#
## Relaxation Time Spectra Definitions
#
WWBETA 1 = <real>
WWTAU 1 = <real> # Units of time
WWBETA 2 = <real>
WWTAU 2 = <real> # Units of time
#
SPECTRUM START TIME = <real> # Units of time
SPECTRUM END TIME = <real> # Units of time
LOG TIME INCREMENT = <real> # Units of time
#
## Direct Prony Spectra Inputs
#
RELAX TIME 1 = <real> # Unit of time
RELAX TIME 2 = <real>
.
RELAX TIME 30 = <real>
#
## Thermal/Volumetric Relaxation Spectrum Prony Weights
#
F1 1 = <real>
F1 2 = <real>
.
F1 30 = <real>
#
## Shear Relaxation Spectrum Prony Weights
#
F2 1 = <real>
F2 2 = <real>
.
F2 30 = <real>

END [PARAMETERS FOR MODEL UNIVERSAL_POLYMER]

Not all Prony spectra/weight parameter pairs (1-30) need to be specified. Only those specified will
be used, and the ones not specified will be set to zero. Prony weights for each relaxation function
should sum to 1.0, or the model will rescale the weights so that they do sum to one. This rescaling
will change the underlying relaxation response.

When the model is used with both relaxation functions being specified directly, then the
parameters: SPECTRUM START TIME, SPECTRUM END TIME, LOG TIME INCREMENT,
WW TAU (1,2), and WW BETA (1,2) must be specified as 0 to avoid errors during the model
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property check. Note (1) is associated with the thermal/volumetric function, and (2) is associated
with the shear relaxation function.

Another common usage of the UPM model is to specify the Williams-Watts (KWW) stretched
exponential 𝜏, 𝛽 parameters for either or both relaxation functions (1 and/or 2) corresponding to
the function 𝑓 = exp(−(𝑡/𝜏)𝛽). That is, a set of Prony weights, 𝑤𝑖 corresponding to a specific set
of Prony times, 𝜏𝑖, will be found during the model property check routine. If the other relaxation
function is directly specified as above, then the Prony times from the directly specified relaxation
spectrum are used. In this case, the Prony weights for the relaxation function being fit to the
KWW function are found through a Least-Squared Error minimization routine built into the UPM
model over a discretely sampled set of times between the minimum and maximum Prony times.

When neither Prony spectrum is directly specified (both will be fit to KWW functions), then the
Prony times (for both relaxation functions) are determined from an evenly logarithmically spaced
set of Prony times beginning with the SPECTRUM START TIME and ending with the
SPECTRUM END TIME and spaced with the (base 10) LOG TIME INCREMENT. For each
relaxation function that is fit with the UPM model to a KWW function, the WW TAU (1,2) and
WW BETA (1,2) parameters must be specified. However, if the user specifies both a KWW form
and the same Prony series directly, the model will error out during the property check.

There are many useful optional parameters for the UPM model that generally allow for:
temperature dependence of moduli, coefficients of thermal expansion, deformation dependence of
moduli, and/or alternative material clock parameter specifications. These parameters may
optionally be added to the material input block, but are defaulted to 0.0:

### OPTIONAL parameters for the universal_polymer model
CLOCK C1 = <real> # CLOCK Coef. 1 instead of ”WLF C1”
CLOCK C2 = <real> # CLOCK Coef. 1 instead of ”WLF C2”
BULK GLASSY 1 = <real> # Pressure per Temperature
BULK RUBBERY 1 = <real> # Pressure per Temperature
SHEAR GLASSY 1 = <real> # Pressure per Temperature
SHEAR RUBBERY 1 = <real> # Pressure per Temperature
VOLCTE GLASSY 1 = <real> # Inverse Temperature Squared
VOLCTE RUBBERY 1 = <real> # Inverse Temp. Squared

Finally, we note that the UPM model may be reduced to a finite deformation, linear
thermoviscoelastic model by choosing 𝐶3 = 0 and 𝐶4 = 0. Under these conditions the material
clock is only temperature (history) dependent but involves no deformation dependence. Moreover,
if one wants to fix the laboratory and material time scales to be the same, then one should set
WLF 𝐶1 = 0.

Output variables available for this model are listed in Table 4.52. The user should always output
the shift factor 𝑎𝑒𝑛𝑑 or log10𝑎 as this variable is critical for interpreting the material behavior.
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Table 4.52 State Variables for Universal Polymer Model
Name Description
aend The shift factor relating increments of material to laboratory time, 𝑎 𝑑𝑡∗ = 𝑑𝑡lab
loga log10 of the shift factor, log10𝑎
epsxx xx component of the integrated unrotated rate of deformation, 𝜖𝑥𝑥
epsyy yy component of the integrated unrotated rate of deformation, 𝜖𝑦𝑦
epszz zz component of the integrated unrotated rate of deformation, 𝜖𝑧𝑧
epsxy xy component of the integrated unrotated rate of deformation, 𝜖𝑥𝑦
epsyz yz component of the integrated unrotated rate of deformation, 𝜖𝑦𝑧
epszx zx component of the integrated unrotated rate of deformation, 𝜖𝑧𝑥
effi2 second (non-Cayley Hamilton) invariant of 𝜖 providing shear deformation, 𝐼2
if1p1-30 volumetric hereditary integrals 1-30
ikat1-30 thermal hereditary integrals 1-30
igxx1-30 xx component shear hereditary integrals 1-30
igyy1-30 yy component shear hereditary integrals 1-30
igzz1-30 zz component shear hereditary integrals 1-30
igxy1-30 xy component shear hereditary integrals 1-30
igyz1-30 yz component shear hereditary integrals 1-30
igzx1-30 zx component shear hereditary integrals 1-30

4.33 Linear Thermoviscoelastic Model

4.33.1 Theory

The linear thermoviscoelastic model (LTVE for short) is, as the name implies, a
phenomenological thermoviscoelasticity model. This formulation seeks to provide a similar,
albeit simpler and more adaptable, form versus the complexity of models like the
UNIVERSAL_POLYMER_MODEL based on the potential energy clock (PEC) or simplified
potential energy clock (SPEC). Further, to aid in the adaptability of the new model a modular shift
factor capability is added.

For a general perspective, the LTVE model is a continuum thermodynamics based, hereditary
integral viscoelastic formulation. The basic theory is quite similar to that found in Christensen
[23] with some extra observations and assumptions found in the PEC/SPEC formalisms [21], [3].
To begin, external state variables of the total strain, 𝜀𝑖 𝑗 , absolute temperature, 𝜃, and time, 𝑡, are
used. No additional internal state variables are needed. A Helmholtz free energy, 𝜓, is introduced
such that

𝜓
(
𝜀𝑖 𝑗 , 𝜃, 𝑡

)
= 𝜓∞

(
𝜀𝑖 𝑗 , 𝜃

)
+ 𝜓neq (

𝜀𝑖 𝑗 , 𝜃, 𝑡
)
,

with 𝜓∞ and 𝜓neq being the equilibrium energy describing the free-energy of the equilibrium
phase and non-equilibrium energy associated with the additional energy of the glassy phase yet to
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be relaxed, respectively. The former term may be given as,

𝜓∞ =
1

2𝜌
(
𝜀𝑖 𝑗 − 𝛼̄∞ (𝜃 − 𝜃0) 𝛿𝑖 𝑗

)
C̄∞𝑖 𝑗 𝑘𝑙 (𝜀𝑘𝑙 − 𝛼̄∞ (𝜃 − 𝜃0) 𝛿𝑘𝑙) + 𝜓∞𝜃 (𝑇) ,

where 𝜌, 𝛼̄∞, 𝜃0, and C̄∞𝑖 𝑗 𝑘𝑙 are, respectively, the material density, current linear coefficient of
thermal expansion, reference temperature, and current equilibrium stiffness tensor. A purely
thermal contribution, 𝜓∞𝜃 , is also included in the free energy but does not contribute to the
mechanical response and as such is not explicitly defined at this point. In the previous and
following relations, an overbar, ·̄ , denotes a temperature dependent quantity such that 𝑥 = 𝑥 𝑓 𝑥 (𝜃)
with 𝑥 being the reference constant value and 𝑓 𝑥 (𝜃) being a temperature dependent multiplier that
should be order one. To capture the non-equilibrium contribution, the corresponding free-enery
term is written,

𝜓neq =
Δ𝐾̄
2𝜌

∫ 𝑡

0

∫ 𝑡

0
𝑓𝑣 (𝑡∗ − 𝑠∗, 𝑡∗ − 𝑢∗)

𝜕𝜀𝑘𝑘
𝜕𝑠

𝜕𝜀𝑚𝑚
𝜕𝑢

𝑑𝑠𝑑𝑢

+ Δ𝜇̄
𝜌

∫ 𝑡

0

∫ 𝑡

0
𝑓𝑠 (𝑡∗ − 𝑠∗, 𝑡∗ − 𝑢∗)

𝜕𝜀′𝑖 𝑗
𝜕𝑠

𝜕𝜀′𝑖 𝑗
𝜕𝑢

𝑑𝑠𝑑𝑢

−
3Δ

(
𝛼̄𝐾̄

)
𝜌

∫ 𝑡

0

∫ 𝑡

0
𝑓𝑣 (𝑡∗ − 𝑠∗, 𝑡∗ − 𝑢∗)

𝜕𝜃

𝜕𝑠

𝜕𝜀𝑘𝑘
𝜕𝑢

𝑑𝑠𝑑𝑢

+ 𝜓neq
𝜃 (𝜃, 𝑡) ,

in which Δ denotes the difference in a glassy and equilibirium property (Δ𝑥 = 𝑥𝑔 − 𝑥∞), 𝐾 and 𝜇
are bulk and shear moduli, and 𝜓neq

𝜃 is a purely thermal term that does not currently impact the
mechanical theory. The prior relation also included two terms related to viscoelastic spectra – 𝑓𝑣
and 𝑓𝑠 – with the former being related to volumetric terms and the later shear. Further, a ∗
indicates a quantity taken in the material time that is shifted from the laboratory time. These two
scales are related via a shift factor, 𝑎, such that,

𝑡∗ =
∫ 𝑡

0

𝑑𝑠

𝑎 (𝑠) .

While different shift factors are allowed via the modular framework, it should be noted they are
restricted to those that are a function of temperature (and potentially time) alone. Non-linear shift
factors involving things like deformation measures are not permitted.

Following conventional continuum thermodynamic arguments, the Cauchy stress may be
determined to be,

𝜎𝑖 𝑗 = 𝐾̄
∞ (𝜀𝑘𝑘 − 3𝛼̄∞ (𝜃 − 𝜃0)) 𝛿𝑖 𝑗 + 2𝜇̄∞𝜀′𝑖 𝑗

+ Δ𝐾̄𝐽1𝛿𝑖 𝑗 − 3Δ
(
𝛼̄𝐾̄

)
𝐽3𝛿𝑖 𝑗 + 2Δ𝜇̄𝐽2

𝑖 𝑗 ,
(4.152)
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where 𝐽1, 𝐽2
𝑖 𝑗 , and 𝐽

3 are representations of the hereditary integrals given by,

𝐽1 =
∫ 𝑡

0
𝑓𝑣 (𝑡∗ − 𝑠∗)

𝜕𝜀𝑘𝑘
𝜕𝑠

𝑑𝑠,

𝐽2
𝑖 𝑗 =

∫ 𝑡

0
𝑓𝑠 (𝑡∗ − 𝑠∗)

𝜕𝜀′𝑖 𝑗
𝜕𝑠

𝑑𝑠,

𝐽3 =
∫ 𝑡

0
𝑓𝑣 (𝑡∗ − 𝑠∗)

𝜕𝜃

𝜕𝑠
𝑑𝑠.

4.33.1.1 Modular Shift Factor

To provide enhanced flexibility to the user, the shift factor was implemented in a modular fashion
such that four different functional forms can be used. The first two are well-established analytical
forms – Williams-Landel-Ferry (WLF) [111] and Arrhenius. These forms are given by,

log10𝑎
WLF =

−𝐶1 (𝜃 − 𝜃ref)
𝐶2 + (𝜃 − 𝜃ref)

,

log10𝑎
Arr =

𝐸𝑎
𝑅

(
log10e

) (
1
𝜃
− 1
𝜃ref

)
,

with 𝐶1, 𝐶2, and 𝜃ref being fit parameters for the WLF expression and 𝐸𝑎 and 𝑅 are the activation
energy and gas constant for the Arrhenius energy, respectively. To enable direct utilization of
experimental determination of the shift factor, the third option is a user-defined shift factor that is
explicitly a function of temperature such that,

𝑎 = 𝑎ud (𝜃) ,

in which 𝑎ud is any user-defined Sierra scope function. Additionally, to be clear, the Sierra
function should define the actual shift factor and not its logarithm.

Finally, the fourth option for the modular shift factor is defined to introduce history dependence in
the cooling rate. This shift factor is referred to as WLF_LAG and is the WLF term with an extra
thermal history dependence integral and is equivalent to the SPEC shift factor with 𝐶3 = 𝐶4 = 0
and is written,

log10𝑎
WLF_LAG =

−𝐶1

(
𝜃 − 𝜃ref −

∫ 𝑡 𝑓𝑣
0 (𝑡∗ − 𝑠∗) 𝜕𝜃𝜕𝑠 𝑑𝑠

)
𝐶2 +

(
𝜃 − 𝜃ref −

∫ 𝑡 𝑓𝑣
0 (𝑡∗ − 𝑠∗) 𝜕𝜃𝜕𝑠 𝑑𝑠

) .
For more details please see [59]
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4.33.2 Implementation

To implement the LTVE model, a fully implicit, backward Euler hypoelastic approach is utilized
to integrate the model from a time 𝑡𝑛 to a new time 𝑡𝑛+1 with Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛. The material state at
time 𝑡𝑛 is taken to be completely known. Loading is prescribed via a total strain rate, ¤𝜀𝑛+1𝑖 𝑗 , such
that 𝜀𝑛+1𝑖 𝑗 = 𝜀𝑛𝑖 𝑗 + Δ𝑡 ¤𝜀𝑛+1𝑖 𝑗 , and prescribed temperature history such that 𝜃𝑛+1 = 𝜃 (𝑡𝑛+1) is known.
Objectivity is satisfied through the standard approaches described in Section 4.1.

In such an implicit form, the updated stress is written

𝜎𝑛+1𝑖 𝑗 = 𝜎𝑛𝑖 𝑗 + Δ𝑡 ¤𝜎𝑛+1𝑖 𝑗 .

The rate of change of the stress, ¤𝜎𝑖 𝑗 , may be found by differentiating (4.152) and written as,

¤𝜎𝑖 𝑗 = 𝐾̄∞ ¤𝜀𝑘𝑘𝛿𝑖 𝑗 + 2𝜇̄∞ ¤𝜀′𝑖 𝑗 + Δ𝐾̄ ¤𝐽1𝛿𝑖 𝑗 − 3Δ
(
𝛼̄𝐾̄

) ¤𝐽3𝛿𝑖 𝑗 − 3𝐾̄∞𝛼̄∞ ¤𝜃𝛿𝑖 𝑗 + 2Δ𝜇̄ ¤𝐽2
𝑖 𝑗

− 3 ¤𝜃𝛿𝑖 𝑗
((
𝜕𝐾̄∞

𝜕𝜃
𝛼̄∞ + 𝐾̄∞ 𝜕𝛼̄

∞

𝜕𝜃

)
(𝜃 − 𝜃0) +

𝜕
(
Δ𝛼̄𝐾̄

)
𝜕𝜃

𝐽3 − 1
3
𝜕𝐾̄∞

𝜕𝜃
𝜀𝑘𝑘 −

1
3
𝜕

(
Δ𝐾̄

)
𝜕𝜃

𝐽1
)

+ 2 ¤𝜃
(
𝜕𝜇̄∞

𝜕𝜃
𝜀′𝑖 𝑗 +

𝜕 (Δ𝜇̄)
𝜕𝜃

𝐽2
𝑖 𝑗

)
In the preceeding relation, the latter two lines pertain purely to changes in temperature dependent
thermoelastic properties. With the strain rate, current strain, and current temperature prescribed
as inputs, expressions for the temperature rate, hereditary integral rates, and current values of the
hereditary integral are needed. The first may be simply numerically approximated via,

¤𝜃𝑛+1 ≈ 𝜃
𝑛+1 − 𝜃𝑛
Δ𝑡

.

The actual expression for the hereditary integral has not been defined to this point. The choice and
selection of these functions has long been studied as the ability to accurately and efficiently
numerically integrate them is essential for making the models tractable. This problem has been
tackled previously through the judicious use of exponential functions. To this end, the forms
proposed by Caruthers et al. [21] are used and are written,

𝑓𝑣,𝑠 (𝑡∗ − 𝑠∗, 𝑡∗ − 𝑢∗) =
𝑛𝑣,𝑠∑
𝑘=1

𝑤𝑣,𝑠𝑘 exp
(
− 𝑡
∗ − 𝑠∗
𝜏𝑣,𝑠𝑘

)
exp

(
− 𝑡
∗ − 𝑢∗
𝜏𝑣,𝑠𝑘

)
,

where 𝑣, 𝑠 indicate either the volumetric or shear spectra and 𝑤𝑘 and 𝜏𝑘 are the corresponding
charastic weight and time, respecitvely, of the 𝑘 − th prony term. The number of prony terms is
denoted 𝑛𝑣,𝑠.

The first herediatry integral term may be written,

𝐽1 =
𝑛𝑣∑
𝑛=1

𝑤𝑣𝑘𝐽
1(𝑘) , 𝐽1(𝑘) =

∫ 𝑡

0
exp

(
− 𝑡
∗ − 𝑠∗
𝜏𝑣𝑘

)
𝜕𝜀𝑚𝑚
𝜕𝑠

𝑑𝑠. (4.153)
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For simplicity in what follows, only the integration of 𝐽1 is presented although similar approaches
may be followed for 𝐽2

𝑖 𝑗 and 𝐽
3. Differentiating the two expressions in (4.153) yields,

¤𝐽1 =
𝑛𝑣∑
𝑘=1

𝑤𝑣𝑘
¤𝐽1(𝑘) , (4.154)

¤𝐽1(𝑘) = ¤𝜀𝑚𝑚 −
1
𝜏𝑣𝑘

𝑑𝑡∗

𝑑𝑡

∫ 𝑡

0
exp

(
− 𝑡
∗ − 𝑠∗
𝜏𝑣𝑘

)
𝜕𝜀𝑚𝑚
𝜕𝑠

𝑑𝑠 = ¤𝜀𝑚𝑚 −
1
𝑎𝜏𝑣𝑘

𝐽1(𝑘) . (4.155)

With these expressions, it is clear that first step in updating 𝐽1 is updating the various
characteristic components. Each of these may be integrated implicitly via,

𝐽1(𝑘)
𝑛+1 = 𝐽1(𝑘)

𝑛 + Δ𝑡 ¤𝐽1(𝑘)
𝑛+1 .

Using (4.155), the updated characteristic component of the hereditary integral is written,

𝐽1(𝑘)
𝑛+1 =

𝑎𝑛+1𝜏𝑣𝑘
𝑎𝑛+1𝜏𝑣𝑘 + Δ𝑡

(
𝐽1(𝑘)
𝑛 + Δ𝑡 ¤𝜀𝑛+1𝑚𝑚

)
.

With all of the components identified, the updated stress becomes,

𝜎𝑛+1𝑖 𝑗 = 𝜎𝑛𝑖 𝑗 + 𝐾̂𝑑𝜀𝑘𝑘𝛿𝑖 𝑗 + 2𝜇̂𝑑𝜀′𝑖 𝑗 − 3
(
𝐾𝛼

)
𝑑𝜃𝛿𝑖 𝑗

− Δ𝐾̄
𝑛𝑣∑
𝑘=1

𝑤𝑣𝑘Δ𝑡

𝑎𝜏𝑣𝑘 + Δ𝑡
(
𝐽1(𝑘)
𝑛 + 𝑑𝜀𝑚𝑚

)
𝛿𝑖 𝑗 − 2Δ𝜇̄

𝑛𝑠∑
𝑘=1

𝑤𝑠𝑘Δ𝑡

𝑎𝜏𝑠𝑘 + Δ𝑡
(
𝐽2(𝑘)(𝑛)
𝑖 𝑗 + 𝑑𝜀′𝑖 𝑗

)
+ 3Δ

(
𝛼̄𝐾̄

) 𝑛𝑣∑
𝑘=1

𝑤𝑣𝑘Δ𝑡

𝑎𝜏𝑣𝑘 + Δ𝑡
(
𝐽3(𝑘)
𝑛 + 𝑑𝜃

)
− 3𝑑𝜃𝛿𝑖 𝑗

(
(𝜃 − 𝜃0)

(
𝜕𝐾̄∞

𝜕𝜃
𝛼̄∞ + 𝐾̄∞ 𝜕𝛼̄

𝜕𝜃

)
+
𝜕

(
Δ𝛼̄𝐾̄

)
𝜕𝜃

𝑛𝑣∑
𝑘=1

𝑤𝑣𝑘

(
𝑎𝜏𝑣𝑘

𝑎𝜏𝑣𝑘 + Δ𝑡

) (
𝑑𝜃 + 𝐽3(𝑘)

𝑛

))
+ 𝑑𝜃

(
𝜕𝐾̄∞

𝜕𝜃
𝜀𝑛+1𝑘𝑘 𝛿𝑖 𝑗 + 2

𝜕𝜇̄∞

𝜕𝜃
𝜀′(𝑛+1)𝑖 𝑗 +

𝜕
(
Δ𝐾̄

)
𝜕𝜃

𝛿𝑖 𝑗

𝑛𝑣∑
𝑘=1

𝑤𝑣𝑘

(
𝑎𝜏𝑣𝑘

𝑎𝜏𝑣𝑘 + Δ𝑡

) (
𝐽1(𝑘)
𝑛 + 𝑑𝜀𝑚𝑚

)
+2𝜕Δ𝜇̄

𝜕𝜃

𝑛𝑠∑
𝑘=1

𝑤𝑠𝑘

(
𝑎𝜏𝑠𝑘

𝑎𝜏𝑠𝑘 + Δ𝑡

) (
𝐽2(𝑘)(𝑛)
𝑖 𝑗 + 𝑑𝜀′𝑖 𝑗

))
,

with 𝑑𝜃 = 𝜃𝑛+1 − 𝜃𝑛, 𝑑𝜀𝑖 𝑗 = ¤𝜀𝑖 𝑗Δ𝑡, and

𝐾̂ :=𝐾̄∞ + Δ𝐾̄
𝑛𝑣∑
𝑘=1

𝑤𝑣𝑘 ,

𝜇̂ :=𝜇̄∞ + Δ𝜇̄
𝑛𝑠∑
𝑘=1

𝑤𝑠𝑘 ,

( ˆ𝛼𝐾
)

:=𝐾̄∞𝛼̄∞ + Δ
(
𝛼̄𝐾̄

) 𝑛𝑣∑
𝑘=1

𝑤𝑣𝑘 .
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4.33.3 Verification

To verify the LTVE model, a series of verification exercises have been pursued. For these
activities the viscoelastic parameterization provided by Kuether [53] are used in which model
parameters are given in Table 4.53 and the viscoelastic spectra in Table 4.54. Given the
rate-dependent nature of the viscoelastic models, analytical solutions are generally not available.
As such, semi-analytic approaches are generally pursued through a variety of loadings.

Table 4.53 Model parameters for the linear thermoviscoelastic model from Kuether.
𝐾∞ 3.2 GPa 𝐾𝑔 4.9 GPa
𝐺∞ 4.5 MPa 𝐺𝑔 752 MPa
𝐶1 16.5 (-) 𝐶2 54.3 (𝑜C)
𝑇ref 75 (𝑜C) 𝐸𝑎/𝑅 3928 (𝑜C)

Table 4.54 Viscoelastic strectra for the linear thermoviscoelastic model from Kuether.term 𝜏𝑣𝑘 (s) 𝑤𝑣𝑘 (-) 𝜏𝑠𝑘 (s) 𝑤𝑠𝑘 (-)
1 1.0 × 10−10 1.06 × 10−2 1.0 × 10−10 4.96 × 10−3

2 1.0 × 10−9 1.14 × 10−2 1.0 × 10−9 6.85 × 10−3

3 1.0 × 10−8 1.64 × 10−2 1.0 × 10−8 1.14 × 10−2

4 1.0 × 10−7 2.27 × 10−2 1.0 × 10−7 1.97 × 10−2

5 1.0 × 10−6 2.63 × 10−2 1.0 × 10−6 2.64 × 10−2

6 3.16 × 10−6 8.85 × 10−3 3.16 × 10−6 1.13 × 10−2

7 1.0 × 10−5 2.52 × 10−2 1.0 × 10−5 2.98 × 10−2

8 3.16 × 10−5 1.94 × 10−2 3.16 × 10−5 2.75 × 10−2

9 1.0 × 10−4 2.80 × 10−2 1.0 × 10−4 4.02 × 10−2

10 3.16 × 10−4 2.83 × 10−2 3.16 × 10−4 4.58 × 10−2

11 1.0 × 10−3 3.41 × 10−2 1.0 × 10−3 5.76 × 10−2

12 3.16 × 10−3 3.70 × 10−2 3.16 × 10−3 6.74 × 10−2

13 1.0 × 10−2 4.19 × 10−2 1.0 × 10−2 7.90 × 10−2

14 3.16 × 10−2 4.58 × 10−2 3.16 × 10−2 8.85 × 10−2

15 1.0 × 10−1 5.02 × 10−2 1.0 × 10−1 9.56 × 10−2

16 3.16 × 10−1 5.39 × 10−2 3.16 × 10−1 9.72 × 10−2

17 1.0 × 100 5.71 × 10−2 1.0 × 100 9.17 × 10−2

18 3.16 × 100 5.93 × 10−2 3.16 × 100 7.79 × 10−2

19 1.0 × 101 6.03 × 10−2 1.0 × 101 5.75 × 10−2

20 3.16 × 101 5.97 × 10−2 3.16 × 101 3.49 × 10−2

21 1.0 × 102 5.72 × 10−2 1.0 × 102 1.63 × 10−2

22 3.16 × 102 5.30 × 10−2 3.16 × 102 5.26 × 10−3

23 1.0 × 103 4.66 × 10−2 1.0 × 103 1.05 × 10−3

24 3.16 × 103 3.95 × 10−2 3.16 × 103 8.72 × 10−5

25 1.0 × 104 3.03 × 10−2 1.0 × 104 1.29 × 10−5

continues on next page
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Table 4.54 – continued from previous page
26 3.16 × 104 2.34 × 10−2 1.0 × 105 2.67 × 10−6

27 1.0 × 105 1.34 × 10−2 1.0 × 106 4.17 × 10−7

28 3.16 × 105 1.12 × 10−2

29 1.0 × 106 1.56 × 10−2

30 3.16 × 106 4.84 × 10−3

4.33.3.1 Balanced Biaxial Creep

For the first test of the LTVE model, the creep response under a balanced biaxial load is
investigated. For this case, the stress state reduces to,

𝜎𝑖 𝑗 (𝑡) =

𝜎 (𝑡) 0 0

0 −𝜎 (𝑡) 0
0 0 0

 .
Under a constant temperature, 𝜃 (𝑡) = 𝜃 (𝑡0), the stress state remains deviatoric through loading
such that 𝜎′𝑖 𝑗 (𝑡) = 𝜎𝑖 𝑗 (𝑡) thereby reducing the stress tensor to

𝜎𝑖 𝑗 = 2𝜇∞𝜀𝑖 𝑗 + 2Δ𝜇𝐽2
𝑖 𝑗 . (4.156)

With these prescribed, only the strain remains unknown to be determined. Given the assumed
stress state, the strains may also be related via 𝜀𝑦𝑦 = −𝜀𝑥𝑥 reducing the problem to a single
unknown. Following the implicit integration approaches discussed in the numerical
implementation section, a semi-analytic expression for the strain is written,

𝜀𝑛+1𝑥𝑥 =
𝜎𝑛+1𝑥𝑥 − 2Δ𝜇

∑𝑛𝑠
𝑖=1 𝑤

𝑠
𝑘

𝑎𝑛+1𝜏𝑠
𝑘

𝑎𝑛+1𝜏𝑠
𝑘
+Δ𝑡

(
𝐽2(𝑘) (𝑛+1)
𝑥𝑥 − 𝜀𝑛𝑥𝑥

)
2
(
𝜇∞ + Δ𝜇∑𝑛𝑠

𝑖=1 𝑤
𝑠
𝑘

𝑎𝑛+1𝜏𝑠
𝑘

𝑎𝑛+1𝜏𝑠
𝑘
+Δ𝑡

) (4.157)

This problem is run with 𝜃 (𝑡 = 0) = 65◦C and 75◦C and a mechanical load initially at
𝜎 (𝑡 = 0) = 0 increasing to 10 MPa in 10 seconds. The load is then held for two hours. To
consider the user-defined shift factor, an analytical function of the WLF shift factor is defined and
used for the tests. Both the semi-analytic expression of (4.157) and equivalent responses of the
LTVE model are considered. As a further test, the UNIVERSAL_POLYMER model is reduced to
the same response and is also presented in Fig. 4.140. For a final comparison, the viscoelastic
capabilities of Sierra/StructuralDynamics (the Linear Viscoelastic model) are also
considered. However, the shift factor form used in that model uses the WLF expression above 𝜃ref
and a different expression below. Therefore, results from that model are only given for the case of
𝜃 (𝑡 = 0) = 75◦C case.

Results for the various WLF shift factor cases are given in Fig. 4.140(a) while Arrhenius shift
factors are found in Fig. 4.140(b). In all of the analyses, 1000 time steps are used. In all instance,
agreement is observed between all the results.
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(a) WLF (b) Arr

Fig. 4.140 Verification results for the balanced biaxial creep problem for models with (𝑎) WLF and
(𝑏) Arrhenius shift factors at 65◦C and 75◦C. Results labelled with (A), (UPM), and (SD) reflect solu-
tions obtained from (4.157), the UNIVERSAL_POLYMER model, and Sierra/SD, respectively. Results
from the LTVE model with user-defined, WLF, WLF_LAG, and Arrhenius shift factors are denoted,
respectively, (UD), (WLF), (WLF-L), and (Arr).

4.33.3.2 Hydrostatic Creep

As the previous balanced biaxial loading produced a purely deviatoric stress state it
correspondingly tested only the deviatoric spectra. To probe the volumetric response, a pure
hydrostatic creep test is now investigated. For this purpose, a stress state of the form,

𝜎𝑖 𝑗 (𝑡) =
1
3


𝑝 (𝑡) 0 0

0 𝑝 (𝑡) 0
0 0 𝑝 (𝑡)

 ,
is assumed. Taking the temperature history to be constant (𝜃 (𝑡) = 𝜃 (𝑡 = 0)) yields a stress state of
the form,

𝜎𝑖 𝑗 = 𝐾
∞𝜀𝑘𝑘𝛿𝑖 𝑗 + Δ𝐾𝐽1𝛿𝑖 𝑗 . (4.158)

Integrating (4.158) implicitly yields the semi-analytical relation,

𝜀𝑛+1𝑚𝑚 =
𝑝𝑛+1 − 3Δ𝐾

∑𝑛𝑣
𝑘=1 𝑤

𝑣
𝑘

𝑎𝑛+1𝜏𝑣
𝑘

𝑎𝑛+1𝜏𝑣
𝑘
+Δ𝑡

(
𝐽1(𝑘)
𝑛 − 𝜀𝑛𝑚𝑚

)
3
(
𝐾∞ + Δ𝐾 ∑𝑛𝑣

𝑘=1 𝑤
𝑣
𝑘

𝑎𝑛+1𝜏𝑣
𝑘

𝑎𝑛+1𝜏𝑣
𝑘
+Δ𝑡

) . (4.159)

To verify the LTVE model response, the creep problem is solved for temperatures of
𝜃 (𝑡 = 0) = 65◦C and 75◦C with an applied pressure of -30 MPa applied via a linear ramp over 10
s and then held constant for two hours. Results for the semi-analytical model, LTVE model with
the WLF, WLF_LAG (WLF-L), and user-defined (UD) shift factors as well as the
UNIVERSAL_POLYMER model at both temperatures as well as the Sierra/StructuralDynamics
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(SD) response at 75◦C are presented in Fig. 4.141(a). Semi-analytical expressions and LTVE
results with the Arhhenius shift factor are given in Fig. 4.141(b). In both figures, semi-analytical
results are indicated by an (𝐴) and all simulations use 1,000 time steps during the hold portion of
the creep loading.

(a) WLF (b) Arr

Fig. 4.141 Verification results for the hydrostatic creep problem for models with (𝑎) WLF and (𝑏)
Arrhenius shift factors at 65◦C and 75◦C. Results labelled with (A), (UPM), and (SD) reflect solutions
obtained from (4.159), the UNIVERSAL_POLYMER model, and Sierra/SD, respectively. Results from
the LTVE model with user-defined, WLF, WLF_LAG, and Arrhenius shift factors are denoted, respec-
tively, (UD), (WLF), (WLF-L), and (Arr).

From the results in Fig. 4.141, clear agreement is noted across all of the results verifying the
implementation of the volumetric hereditary integrals.

4.33.3.3 Pure Shear

The two prior investigations probed the model response under various creep loadings. Such cases
neglect to consider regimes with evolving mechanical loads. Further, while both the volumetric
and deviatoric spectra were tested, the resulting stress states only had normal components.
Therefore, to test both of these limitations, verification exercises with an isothermal, constant
strain rate pure shear mechanical loadings are pursued. For these studies, 𝜀𝑥𝑦 (𝑡) = ¤̄𝜀𝑡 and all other
strains are zero. With the isothermal profile and pure shear mechanical loadings the volumetric
contributions are zero and may be neglected. The only non-zero stress is 𝜎𝑥𝑦 which may be
described via (4.156). Unlike the previous cases in which the stress was known and the strain
found, the current study has a prescribed strain path in which the stress must be determined.
Using the previous assumptions and an implicit integration scheme, a semi-analytic expression for
the updated stress is given by,

𝜎𝑥𝑦 = 2𝜇∞𝜀𝑛+1𝑥𝑦 + 2Δ𝜇
𝑛shear∑
𝑖=1

𝑤𝑠𝑘

(
𝑎𝑛+1𝜏𝑠𝑘

𝑎𝑛+1𝜏𝑠𝑘 + Δ𝑡

) (
𝐽2(𝑘) (𝑛)
𝑥𝑦 + ¤𝜀𝑥𝑦Δ𝑡

)
. (4.160)
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To enable comparing the responses across shift factors, the loading is simulated for three different
strain rates at 𝑇 (𝑡) = 𝑇ref = 75◦C. Responses are presented for the semi-analytical in (4.160) as
well as via the LTVE model with various shift factors and the UNIVERSAL_POLYMER model in
Fig. 4.142. For every case presented in Fig. 4.142, agreement is noted across all responses.

4.33.3.4 No-Load Cooling

All of the previous cases considered isothermal temperature profiles. Differences in the shift
factors were introduced via the use of varying constant temperatures and applied strain rates.
However, the hereditary integral in the WLF_Lag shift factor does not play a role in such cases
and therefore is not tested. To alleviate this, a no-load cooling profile is investigated. Specifically,
a problem previously considered in [58] is studied here. It consists of cooling a representative
inorganic glass (Schott 8061) extensively characterized by Chambers et al. [22] from 510◦C
(𝑇ref + 50◦C) to 150◦C (783 K to 423K) at different constant cooling rates. The model
parameterizations used in this study may be found in corresponding references [58], [22] and are
not repeated here for brevity (for the Arrhenius shift factor, a value of 𝐸𝑎/𝑅 = 23, 670 was found
by doing a best fit to the WLF expression). For this test, temperature dependence of thermoelastic
constants is neglected to simplify the restrict the impact of cooling to the shift factor. A constant
cooling rate of ¤𝑇 = 2◦C/min is used for all shift factors while additional rates of ¤𝑇 = 0.2 and
20◦C/min are also used to assess history dependence.

By implicitly integrating 𝐽1 and noting that the response is purely volumetric, an expression for
the volume strain may be given as,

𝜀𝑛+1𝑘𝑘 =
1

𝐾∞ + Δ𝐾 ∑𝑛bulk
𝑖=1

𝑎𝑛+1𝜏𝑣
𝑘

𝑎𝑛+1𝜏𝑣
𝑘
+Δ𝑡

[
3𝐾∞𝛼∞ (𝑇 − 𝑇0) + 3Δ (𝛼𝐾) 𝐽3

𝑛+1

−Δ𝐾
𝑛bulk∑
𝑖=1

𝑎𝑛+1𝜏𝑣𝑘
𝑎𝑛+1𝜏𝑣𝑘 + Δ𝑡

(
𝐽1(𝑘)
𝑛 − 𝜀𝑛𝑘𝑘

)]
.

The previous relation assumes that 𝐽3
𝑛+1 is known. As this term is purely temperature and history

dependent it may be integrated seperately knowing the loading history. For the WLF_Lag shift
factor this is a non-linear relation. Regardless, for all cases of interest this term is found via
implicit integration.

Fig. 4.143 presents results determined semi-analytically via (4.161) and numerically via the
LTVE model. Histories for the (𝑎) log10𝑎 (𝑏) 𝜀𝑘𝑘 (𝑐) 𝐽1 and (𝑑) 𝐽3 are presented for all of the
shift factors without history dependence. Good agreement is noted across all results.

To consider the impact of the history dependence, results at the three different cooling rates are
determined semi-analytically (A), numerically with the LTVE model (N), and numerically with
the UNIVERSAL_POLYMER model (UPM) in Fig. 4.144. Evolutions for (𝑎) log10𝑎 (𝑏) volume
strain (𝑐) 𝐽1 and (𝑑) 𝐽3. The 𝐽1 and 𝐽3 results are not presented for the UPM case as they are not
readily output. Once more, good agreement is noted across all of the results.
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(a) WLF (b) WLF Lag

(c) UD (d) ARR

(e) UPM

Fig. 4.142 Verification results for the pure shear, constant strain rate problem for LTVE model
with (𝑎) WLF, (𝑏) WLF_Lag (𝑐) user-defined (ud), (𝑑) Arrhenius (Arr) shift factors and (𝑒) UNIVER-
SAL_POLYMER model at 75◦C and shear strain rates of ¤𝜀𝑥𝑦 = 1 × 10−3, 1 × 10−1, and 1 × 101 s−1.
Solutions determined through the reduced in (4.160) are (A).
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Fig. 4.143 Verification results for the no-load cooling problem for the LTVE model exhibiting ana-
lytical and numerical results for (𝑎) log10𝑎, (𝑏) 𝜀𝑘𝑘 , (𝑐) 𝐽1, and (𝑑) 𝐽3. Results are obtained (A) semi-
analytically and with WLF, (UD) user-defined, and (Arr) Arrhenius shift factors.
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Fig. 4.144 Verification results for the no-load cooling problem for the LTVE and UNIVERSAL_POLYMER
models exhibiting analytical and numerical results for (𝑎) log10𝑎, (𝑏) 𝜀𝑘𝑘 , (𝑐) 𝐽1, and (𝑑) 𝐽3. The num-
bers in the legend indicate cooling rates of ¤𝑇 = 0.2, 2, and 20 K/min and results are obtained semi-
analytically (A), numerically with the LTVEmodel (N), and numerically with the UNIVERSAL_POLYMER
(UPM) model.
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4.33.4 User Guide

BEGIN PARAMETERS FOR MODEL LINEAR_THERMOVISCOELASTIC
#
SHEAR MODULUS = <real>
BULK MODULUS = <real>
#
BULK RUBBERY 0 = <real>
SHEAR RUBBERY 0 = <real>
ALPHA RUBBERY 0 = <real>
#
BULK GLASSY 0 = <real>
SHEAR GLASSY 0 = <real>
ALPHA GLASSY 0 = <real>
#
# - Optional temperature dependence of thermoelastic constants
#
BULK RUBBERY TEMPERATURE DEPENDENCE = <string>
SHEAR RUBBERY TEMPERATURE DEPENDENCE = <string>
ALPHA RUBBERY TEMPERATURE DEPENDENCE = <string>
#
BULK GLASSY TEMPERATURE DEPENDENCE = <string>
SHEAR GLASSY TEMPERATURE DEPENDENCE = <string>
ALPHA GLASSY TEMPERATURE DEPENDENCE = <string>
#
# - Reference temperature only needed
# if using temperature dependent parameters
#
T0 = <real>
#
SHIFT FACTOR MODEL = WLF | ARRHENIUS | USER_DEFINED | WLF_LAG
#
# - IF SHIFT FACTOR MODEL = WLF | WLF_LAG
#
WLF C1 = <real>
WLF C2 = <real>
REFERENCE TEMPERATURE = <real>
#
# - IF SHIFT FACTOR MODEL = ARRHENIUS
#
NORM ACTIVATION ENERGY = <real>
REFERENCE TEMPERATURE = <real>
#
# - IF SHIFT FACTOR MODEL = USER_DEFINED
#
SHIFT FACTOR FUNCTION = <string>

(continues on next page)
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(continued from previous page)
#
NUM BULK PRONY TERMS = <int>
#
BULK RELAX TIME 1 = <real>
BULK RELAX TIME 2 = <real>
# ...
BULK RELAX TIME 30 = <real>
#
f1 1 = <real>
f1 2 = <real>
# ...
f1 30 = <real>
#
NUM SHEAR PRONY TERMS = <int>
#
SHEAR RELAX TIME 1 = <real>
SHEAR RELAX TIME 2 = <real>
# ...
SHEAR RELAX TIME 30 = <real>
#
f2 1 = <real>
f2 2 = <real>
# ...
f2 30 = <real>
#

END [PARAMETERS FOR MODEL LINEAR_THERMOVISCOELASTIC]

In the command blocks that define the LINEAR_THERMOELASTIC model:

• The bulk and shear moduli of the equilibrium (rubbery) phase are defined by the BULK
RUBBERY 0 and SHEAR RUBBERY 0 command lines, respectively.

• The bulk and shear moduli of the glassy phase are defined by the BULK GLASSY 0 and
SHEAR GLASSY 0 command lines, respectively.

• The linear coefficients of thermal expansion of the rubbery and glassy phases are given by
the ALPHA RUBBERY 0 and ALPHA GLASSY 0 command lines, respectively. Note, the
UNIVERSAL POLYMER model uses volumetric – not linear – coefficients of thermal
expansion.

• The shift factor model is specified via the SHIFT FACTOR MODEL command line.

• For the WLF or WLF_LAG shift factor models, the 𝐶1 coefficient, 𝐶2 coefficient, and
reference temperature, 𝜃ref, are defined via the WLF C1, WLF C2, and REFERENCE
TEMPERATURE command lines.

• For the Arrhenius shift factor model, the normalized activation energy, 𝐸𝑎/𝑅, and reference
temperature, 𝜃ref, are specified via the NORM ACTIVATION ENERGY and REFERENCE
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TEMPERATURE command lines.

• For the user-defined shift factor model, the function name is specified via the SHIFT
FACTOR FUNCTION command line. Note, any Sierra scope function may be defined and
should be specified as a function of temperature. It is also emphasized the actual shift factor
– not the logarithm of it – should be directly defined. Care should be taken to ensure the
function is defined and admissible over the expected temperature domain.

• The number of terms in the Prony series of the bulk, 𝑛bulk, and shear, 𝑛shear, are given by the
NUM BULK PRONY TERMS and NUM SHEAR PRONY SERIES command lines. These
two numbers do not need to be the same and must both be defined. The maximum
permissible number is 30 although any lower number is permissible.

• The bulk relaxation spectrum is characterized by a series of times, 𝜏𝑣𝑘 , and weights, 𝑤𝑣𝑘 . The
times are defined via BULK RELAX TIME 1 through BULK RELAX TIME 𝑘 where 𝑘 is
the number of terms in the spectrum. The same times do not need to be used for the bulk
and shear terms. Weights are defined via the f1 1 through f1 𝑘 command lines. 𝑘 should
be equal to 𝑛bulk.

• The shear relaxation spectrum is characterized by a series of times, 𝜏𝑠𝑘 , and weights, 𝑤𝑠𝑘 .
The times are defined via SHEAR RELAX TIME 1 through SHEAR RELAX TIME 𝑘
where 𝑘 is the number of terms in the spectrum. The same times do not need to be used for
the bulk and shear terms. Weights are defined via the f2 1 through f2 𝑘 command lines.
𝑘 should be equal to 𝑛shear.

Output variables available for this model are listed in Table 4.55. Note, for each of the various
hereditary integral individual components may be output by specifying a hereditary integral
..._X where X is an integer term in the spectrum. For instance, the 7𝑡ℎ term of the Prony series
of the volume strain integral (𝐽1

7 ) is output by specifying J1_7.

Table 4.55 State Variables for LINEAR_THERMOVISCOELASTIC Model
Name Description
a shift factor, 𝑎
J1 volume strain hereditary integral, 𝐽1

J2_XX XX component of the deviatoric hereditary integral, 𝐽2
11

J2_YY YY component of the deviatoric hereditary integral, 𝐽2
22

J2_ZZ ZZ component of the deviatoric hereditary integral, 𝐽2
33

J2_XY XY component of the deviatoric hereditary integral, 𝐽2
12

J2_YZ YZ component of the deviatoric hereditary integral, 𝐽2
23

J2_ZX ZX component of the deviatoric hereditary integral, 𝐽2
31

J3 thermal strain hereditary integral, 𝐽3
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4.34 Wire Mesh Model

4.34.1 Theory

The wire mesh model was developed at Sandia National Laboratories for use with layered
sequences of metallic wire meshes and cloth fabric. Model development was based on an
extensive series of experiments performed on these materials (see [76]) and used an existing
model for rigid polyurethane foams as a starting point [75].

To be able to analyze the response of this material, the Cauchy stress tensor is first decomposed
into its principal components, 𝜎𝑖. Each principal stress is evaluated independently and two
behaviors are considered depending on whether or not the material is in tension or compression.
Under a tensile load, the material is taken to be perfectly plastic above a yield stress, 𝜏. For
compressive loads, it is assumed that the materials hardens functionally with the volumetric
engineering strain, 𝜀V. In this formulation, an arbitrary form of this hardening function, 𝜎̄ (𝜀V) is
assumed although in the original work [76],

𝜎̄ (𝜀V) = 𝑎𝑒−𝑏𝜀V , (4.161)

with 𝑎 and 𝑏 as material constants, was used.

With these assumptions, the yield function of the 𝑖th principal stress, 𝑓 𝑖, may be written as,

𝑓 𝑖 =

{
𝜎𝑖 − 𝜏, 𝜎𝑖 ≥ 0

−𝜎𝑖 − 𝜎̄ (𝜀V) 𝜎𝑖 < 0 .

where 𝜏 is the isotropic tensile strength of the material.

Similar to the rigid polyurethane foam model [76], the flow rule is defined as:

𝑑
p
𝑖 𝑗 = ¤𝛾

1𝑃1
𝑖 𝑗 𝑘𝑙𝜎𝑘𝑙 + ¤𝛾2𝑃2

𝑖 𝑗 𝑘𝑙𝜎𝑘𝑙 + ¤𝛾3𝑃3
𝑖 𝑗 𝑘𝑙𝜎𝑘𝑙

with ¤𝛾𝑖 being the magnitude of the 𝑖th plastic strain increment and 𝑃𝑟𝑖 𝑗 𝑘𝑙 is the fourth-order
principal projection operator defined as,

𝑃𝑟𝑖 𝑗 𝑘𝑙 = 𝑛
𝑟
𝑖 𝑛
𝑟
𝑗𝑛
𝑟
𝑘𝑛
𝑟
𝑙

in which 𝑛𝑟𝑖 is the corresponding direction vector of principal stress, 𝜎𝑟 . With this definition,

𝜎𝑟 = 𝜎𝑖 𝑗𝑃
𝑟
𝑖 𝑗 𝑘𝑙𝜎𝑘𝑙 .

4.34.2 Implementation

The wire mesh model is implemented in a hypoelastic fashion similar to the previous
elastic-plastic models. First, a trial (unrotated) stress is calculated assuming a purely elastic
deformation increment,

𝑇 𝑡𝑟𝑖 𝑗 = 𝑇
𝑛
𝑖 𝑗 + Δ𝑡

(
𝜆𝛿𝑖 𝑗𝑑𝑘𝑘 + 2𝜇𝑑𝑖 𝑗

)
.
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Corresponding principal stresses and their complementary directions are then found using the
robust, analytical algorithm put forth in [87]. The principal stresses are denoted 𝜎𝑟 and their
eigenvectors are symbolically represented by 𝑒𝑟𝑖 . Here, 𝑟 = 1, 2, or 3 refer to the respective
eigenvalue/vector pair and are not summed unless explicitly indicated. Before evaluating the
respective yield functions, the current volumetric engineering strain, 𝜀𝑛+1V , must be determined.
To this end, the current strain tensor, 𝜀𝑖 𝑗 , is determined via,

𝜀𝑛+1𝑖 𝑗 = 𝜀𝑛𝑖 𝑗 + Δ𝑡𝑑𝑖 𝑗 ,

and the volumetric engineering strain is,

𝜀𝑛+1V = exp
(
𝜀𝑛+1𝑘𝑘

)
− 1.

The yield function for each principal stress, 𝑓 𝛾, may then be computed as,

𝑓 𝛾 =

{
𝜎𝛾 − 𝜏, 𝜎𝛾 ≥ 0

−𝜎𝛾 − 𝜎̄
(
𝜀𝑛+1V

)
, 𝜎𝛾 < 0 .

Principal stresses at the current load increment, 𝜎𝛾𝑛+1, are then determined via,

𝜎
𝛾
𝑛+1 =

{
𝜎𝛾 𝑓 𝛾 < 0
𝜏 𝑓 𝛾 ≥ 0 ,

for 𝜎𝛾 > 0 and,

𝜎
𝛾
𝑛+1 =

{
𝜎𝛾 𝑓 𝛾 < 0

−𝜎̄
(
𝜀𝑛+1V

)
𝑓 𝛾 ≥ 0 ,

for compressive principal stresses. The final Cartesian stress tensor may be determined via,

𝑇𝑛+1𝑖 𝑗 =
3∑
𝛾=1

𝜎
𝛾
𝑛+1𝑒

𝛾
𝑖 𝑒

𝛾
𝑗 .

4.34.3 Verification

To investigate the performance of the wire mesh model and verify its capabilities, a series
analyses are performed considering both the tensile and compressive behavior. The material
properties and model parameters come from [76] and are listed in Table Table 4.56 with one
difference. Specifically, 𝜈 ≠ 0 to better test the various code interactions. For the numerical
simulations the functional hardening form given in (4.161) (with 𝑎 and 𝑏 given in Table Table
4.56) is discretized and entered as a piecewise linear function.

Table 4.56 The material properties and model parameters of the wire mesh model used for verifica-
tion testing

𝐸 100,000 psi 𝜈 0.3
𝑎 120 psi 𝑏 8.68
𝜏 12,000 psi

408



4.34.3.1 Uniaxial Compression

First, the case of uniaxial compression is treated to investigate the hardening behavior. As a
uniaxial compressive stress state is being explored, the principal stresses are simply 𝜎1 = 𝜎2 = 0
and 𝜎3 = 𝜎11 enabling the development of analytical solutions. To this end, 𝑢1 = 𝜆1 and the
remaining surfaces are left traction free. The corresponding strain state is then,

𝜀11 = ln (1 + 𝜆1) ,
𝜀22 = 𝜀33 = −𝜈 ln (1 + 𝜆1) ,

producing a engineering volume strain of,

𝜀V = (1 + 𝜆1) (1−2𝜈) − 1.

Noting the elastic uniaxial stress, 𝜎̂11, is simply,

𝜎̂11 = [𝜆 (1 − 2𝜈) + 2𝜇] ln (1 + 𝜆1) ,

the final stress state is simply 𝜎22 = 𝜎33 = 0 and,

𝜎11 =

{
𝜎̂11 𝜎̂11 ≤ −𝑎𝑒−𝑏𝜀V
−𝑎𝑒−𝑏𝜀V 𝜎̂11 > −𝑎𝑒−𝑏𝜀V

.

The analytical and numerical solution (from adagio) of this problem are presented in Fig. 4.145
with the stress and strains given in Fig. 4.145(a) and Fig. 4.145(b), respectively. Excellent
agreement is observed verifying the compressive hardening performance.

(a) Linear, Johnson-Cook (b) Linear, Power-Law Breakdown

Fig. 4.145 Analytical and numerical results of the normal stress and strain components through a
compressive uniaxial stress loading path as a function of the applied displacement, 𝜆1
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4.34.3.2 Uniaxial Tension

To consider the tensile behavior, the response of the model under a uniaxial tensile emph{strain}
loading is interrogated. In this case the applied displacement is 𝑢𝑖 = 𝜆1𝛿𝑖1 with the remaining
displacements fixed such that 𝜀22 = 𝜀33 = 0 and the axial strain is again 𝜀11 = ln (1 + 𝜆1). Given
that the model behavior is perfectly plastic after yield, the axial and off-axis responses both reduce
to bilinear forms. As such, the applied deformation necessary to induce the perfectly plastic
response in the axial direction, 𝜆crit1 , is simply

𝜆crit1 = 𝑒𝜏/(𝜆+2𝜇) − 1,

leading to an expression for the axial stress as,

𝜎11 =

{
(𝜆 + 2𝜇) ln (1 + 𝜆1) 𝜆1 < 𝜆

crit
1

𝜏 𝜆1 ≥ 𝜆crit1
.

For the off-axis behavior, the critical displacement, 𝜆off-crit1 , is

𝜆off-crit1 = 𝑒𝜏/𝜆 − 1,

producing stresses of the form,

𝜎22 = 𝜎33 =

{
𝜆 ln (1 + 𝜆1) 𝜆1 < 𝜆

off-crit
1

𝜏 𝜆1 ≥ 𝜆off-crit1
.

The stress and strain responses (both numerical and analytical) are presented below in Fig.
4.146(a) and Fig. 4.146(b), respectively, and excellent agreement is observed verifying this
behavior in this deformation mode.

(a) Linear, Johnson-Cook (b) Linear, Power-Law Breakdown

Fig. 4.146 Analytical and numerical results of the normal stress and strain components through a
tension uniaxial strain loading path as a function of the applied displacement, 𝜆1.
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4.34.3.3 Hydrostatic Compression

To further explore the compressive response, the models behavior under a hydrostatic
(compressive) loading is investigated. In this instance, the corresponding stress state produces a
single, repeated, principal stress associated with the pressure, 𝑝 = − (1/3) 𝜎𝑘𝑘 (here defined
positively in compression). Details of this loading may be found in Appendix A, although in this
instance it is important to point out that,

𝜀V = (1 + 𝜆1)3 − 1,

and the stress state reduces to,

𝑝 = −3𝐾 ln (1 + 𝜆1)

in the elastic limit and

𝑝 = 𝑎𝑒−𝑏𝜀V ,

during plastic loading. The numerical and analytical results are presented in Fig. 4.147 and
excellent agreement in noted.

4.34.4 User Guide

BEGIN PARAMETERS FOR MODEL WIRE_MESH
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>
#
# Yield surface parameters
#
YIELD FUNCTION = <string>
TENSION = <real>

END [PARAMETERS FOR MODEL WIRE_MESH]

• The yield function in compression is defined with the YIELD FUNCTION command line.

• The tensile strength is give by the TENSION command line.

Output variables available for this model are listed in Table 4.57.

More information on the model can be found in the report by Neilsen, et. al. [76].
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Fig. 4.147 Analytical and numerical pressure-volume strain response of the wire mesh model
through a hydrostatic compression loading as a function of the applied displacement, 𝜆1.
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Table 4.57 State Variables for WIRE MESH Model
Name Description
EVOL engineering volumetric strain
YIELD current yield strength in compression

4.35 Viscoplastic-viscoSCRAM Model

4.35.1 Theory

The viscoSCRAM model is an isotropic, linear viscoelasticity model with isotropic damage for
modeling particulate composite materials. The bulk material is treated as viscoelastic while
damage is governed by a statistical crack mechanics (SCRAM) theory [28] which accounts for
material damage from the nucleation and growth of microcracks. Damage can occur from bond
breakage within the binder, between the binder and particulates, and within the particulates. The
crack growth kinetics assume non-interacting cracks and include no mechanisms for shear dilation
such as from particulate debonding and rotation. The viscoSCRAM model captures linear
viscoelastic shear rate-dependence and inelastic deformation associated with damage. The
viscoSCRAM model is based on the papers by Hackett and Bennett [39] and Buechler and
Luscher [20] with a modified implementation.

The viscoplastic-viscoSCRAM model [106] is an extension of the viscoSCRAM model to include
pressure-dependent viscoplasticity and volumetric dilation. The linear viscoelasticity and damage
mechanics of the viscoSCRAM model remain largely unaltered, but are embedded within a yield
surface plasticity model. Prior to plasticity, the model reduces identically to the viscoSCRAM
model. The viscoplastic-viscoSCRAM model draws on elements of the papers by Buechler [18],
[19] as well as standard viscoplasticity theory from Kojic and Bathe [51].

The deviatoric strain 𝑒𝑖 𝑗 is additively decomposed into a viscoelastic component 𝑒𝑣𝑒𝑖 𝑗 , a damage
component 𝑒𝐷𝑖 𝑗 , and a viscoplastic component 𝑒𝑝𝑖 𝑗 as

𝑒𝑖 𝑗 = (𝑒𝑣𝑒𝑖 𝑗 + 𝑒𝐷𝑖 𝑗 ) + 𝑒
𝑝
𝑖 𝑗 . (4.162)

The deviatoric stress 𝑠𝑖 𝑗 depends only on the viscoelastic strain through a generalized Maxwell
model as

¤𝑠𝑖 𝑗 = 2𝐺∞ ¤𝑒𝑣𝑒𝑖 𝑗 +
𝑁∑
𝜅=1

©­«2𝐺 (𝜅) ¤𝑒𝑣𝑒𝑖 𝑗 −
𝑠(𝜅)𝑖 𝑗

𝜏(𝜅)
ª®¬ (4.163)

where 𝐺∞ is the steady-state (rubbery) shear modulus and 𝐺 (𝜅) , 𝑠(𝜅)𝑖 𝑗 , 𝜏
(𝜅) are the shear modulus,

deviatoric stress, and relaxation time for the 𝜅th Maxwell element.

The damage strain is given by

𝑒𝐷𝑖 𝑗 =
1

2𝐺0

( 𝑐
𝑎

)3
𝑠𝑖 𝑗 (4.164)
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where 𝐺0 = 𝐺∞ +∑𝑁
𝜅=1𝐺

(𝜅) is the instantaneous shear modulus, 𝑐 is the damage parameter
representing an averaged microcrack size, and 𝑎 is a crack normalizing factor.

The damage parameter 𝑐 captures crack growth. It is based on brittle fracture mechanics including
stable and unstable crack growth regions. The crack growth rate is

¤𝑐 =

𝑣𝑟𝑒𝑠

(
𝐾𝐼
𝐾1

)𝑚
for 𝐾𝐼 < 𝐾′

𝑣𝑟𝑒𝑠

[
1 −

(
𝐾0𝜇
𝐾𝐼

)2
]

otherwise
(4.165)

where 𝑣𝑟𝑒𝑠 = 𝑚𝑖𝑛{𝑣𝑐 ¤̄𝜀𝑣𝑎10𝑣𝑏 , 𝑣𝑚𝑎𝑥} is an empirical relation for the crack speed with fitting
parameters 𝑣𝑎 and 𝑣𝑏 and limited by the Raleigh wave speed 𝑣𝑚𝑎𝑥 . The coefficient 𝑣𝑐 is included
for ease of unit conversion. Here, ¤̄𝜀 =

√
2
3 ¤𝜀𝑖 𝑗 ¤𝜀𝑖 𝑗 is the effective strain rate. The exponent 𝑚 is a

model parameter controlling the shape of the crack growth rate curve. The stress intensity is

𝐾𝐼 = 𝜎̄
√
𝜋𝑐 (4.166)

where the effective stress 𝜎̄ is computed as

𝜎̄ =


(

3
2 𝑠𝑖 𝑗 𝑠𝑖 𝑗

) 1
2 for 𝜎𝑚 < 0(

3
2𝜎𝑖 𝑗𝜎𝑖 𝑗

) 1
2 otherwise

(4.167)

and 𝜎𝑚 = 𝜎𝑘𝑘/3 is the mean stress. The transition stress intensity 𝐾′, marking the boundary
between stable (slow) crack growth and unstable (rapid) crack growth, is given by

𝐾′ = 𝐾0𝜇

(
1 + 2

𝑚

) 1
2

(4.168)

where 𝐾0𝜇 is the frictional threshold stress intensity. 𝐾0𝜇 reflects the frictional resistance to crack
growth under compressive loading which inhibits damage evolution. This tensile/compressive
frictional asymmetry is given by

𝐾0𝜇 = 𝐾0

[
1 + 𝜋𝜇

′〈𝑝〉√𝑐
𝐾0

(
1 + 𝜇

′〈𝑝〉√𝑐
𝐾0

)] 1
2

(4.169)

where 𝐾0 is the frictionless threshold stress intensity, a model fitting parameter, 𝜇′ is the friction
coefficient, and 𝑝 = −𝜎𝑚 is the pressure. Here, 〈·〉 are Macaulay brackets.

Finally, the normalizing stress intensity 𝐾1 is defined as

𝐾1 = 𝐾′
(
1 + 𝑚

2

) 1
𝑚
. (4.170)

The damage parameter 𝑐 captures crack growth; however, it is not normalized like a traditional
continuum mechanics damage parameter. An alternative damage parameter, 𝐷, may be defined
as

𝐷 =

(
𝑐
𝑎

)3

1 +
(
𝑐
𝑎

)3 , (4.171)
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which is 0 for the undamaged state 𝑐 = 0 and asymptotes to 1 for a fully damaged state.

In the viscoSCRAM model, there is no viscoplasticity; that is, the viscoplastic strain component
𝑒
𝑝
𝑖 𝑗 = 0 in (4.162). For the viscoplastic-viscoSCRAM model, a viscoplastic constitutive response

extends the viscoSCRAM model.

The viscoplastic model is based on an overstress assumption; that is, in stress space, the stress
point may lie outside the yield surface and move towards the yield surface with time. Viscoplastic
flow occurs until the stress point lies on the yield surface. Let 𝑓 (𝜎𝑖 𝑗 , 𝜀𝑝𝑖 𝑗 , 𝐷) be the yield surface
such that the yield condition is

𝑓 (𝜎𝑖 𝑗 , 𝜀𝑝𝑖 𝑗 , 𝐷) = 0. (4.172)

The total viscoplastic strain rate is prescribed by a Perzyna model as

¤𝜀𝑝𝑖 𝑗 = ¤𝜆
𝜕𝑔

𝜕𝜎𝑖 𝑗
, (4.173)

with

¤𝜆 = 𝛾〈𝜙[ 𝑓 ]〉, (4.174)

where 𝑔(𝜎𝑖 𝑗 , 𝜀𝑝𝑖 𝑗 , 𝐷) is the flow surface, which is, in general, non-associative. Here 𝛾 is a fluidity
parameter and 𝜙 is a functional of the yield surface. The rate of plastic flow is controlled by ¤𝜆
while the direction of plastic flow is normal to the flow surface.

For particulate composite materials, common choices for the yield surface 𝑓 and flow surface 𝑔
are Drucker-Prager forms with potentially different fitting constants. However, the theory is
general and allows for any form of yield or flow surface to be prescribed based on the
experimental data.

The implemented Drucker-Prager forms for the yield surface and flow surface are defined,
respectively, as

𝑓 (𝜎𝑖 𝑗 ) = 𝜎𝑒 + 𝐴 · 𝜎𝑚 − 𝜎𝑦 and 𝑔(𝜎𝑖 𝑗 ) = 𝜎𝑒 + 𝐵 · 𝜎𝑚 − 𝜎𝑦, (4.175)

where 𝜎𝑒 is the equivalent stress given by

𝜎𝑒 =

√
3
2
𝑠𝑖 𝑗 𝑠𝑖 𝑗 ,

𝜎𝑚 is the mean stress, 𝜎𝑦 is the yield stress, and 𝐴 and 𝐵 are fitting constants.

The flow rule is selected to be,

¤𝜆 =
1
𝜏
〈
𝑓 (𝜎𝑖 𝑗 )
𝜎0
〉𝑚̃, (4.176)

where 𝜏 is the viscoplastic relaxation time, 𝜎0 is a normalizing constant, and 𝑚̃ is a fitting
exponent.
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4.35.1.1 Time-Temperature Superposition Principle

The preceding theory embeds the standard mechanical viscoSCRAM theory. The temperature
dependent response of viscoelastic materials was not discussed; however, the theory may be
extended. The thermo-viscoelastic behavior of a polymer is related to the molecular
rearrangement of the material under loading; the speed of this rearrangement is controlled by the
temperature [65]. For the class of thermorheologically simple materials, one dominant molecular
transition controls the response. For these materials, the time-temperature superposition principle
is valid. This principle holds that long time relaxation behavior at low temperatures is equivalent
to short term relaxation behavior at high temperatures. This manifests as a simple horizontal time
shift of the relaxation modulus curve with temperature change.

The generalized Maxwell model (4.163) may be written equivalently in integral form as

𝑠𝑖 𝑗 =
∫ 𝑡

−∞
2𝐺 (𝑡 − 𝑟)

𝑑𝑒𝑣𝑒𝑖 𝑗

𝑑𝑟
𝑑𝑟, (4.177)

where 𝐺 (𝑡 − 𝑟) = 𝐺∞ +∑𝑁
𝜅=1𝐺

(𝜅)𝑒
−(𝑡−𝑟 )
𝜏 (𝜅 ) is the relaxation spectra. At a reference temperature 𝑇𝑟𝑒 𝑓 ,

the relaxation spectra in terms of logarithmic time is 𝐺 (𝑡 − 𝑟, 𝑇𝑟𝑒 𝑓 ) = 𝐺̂ (𝑙𝑜𝑔10(𝑡 − 𝑟)). For a
thermorheologically simple material, time-temperature superposition states that the relaxation
spectra at any other temperature 𝑇 is a horizontal translation of the reference relaxation spectra;
that is, 𝐺 (𝑡 − 𝑟, 𝑇) = 𝐺̂ (𝑙𝑜𝑔10(𝑡 − 𝑟) − 𝑙𝑜𝑔10(𝑎𝑇 (𝑇))) where 𝑎𝑇 (𝑇) is the shifting factor. The
deviatoric stress at any temperature is then equal to the deviatoric stress at the reference
temperature, but at a scaled time; namely, 𝑠𝑖 𝑗 (𝑡, 𝑇) = 𝑠𝑖 𝑗 ( 𝑡𝑎𝑇 , 𝑇𝑟𝑒 𝑓 ). Reverting to the differential
form, the deviatoric stress equation is

¤𝑠𝑖 𝑗 = 2𝐺∞ ¤𝑒𝑣𝑒𝑖 𝑗 +
𝑁∑
𝜅=1

©­«2𝐺 (𝜅) ¤𝑒𝑣𝑒𝑖 𝑗 −
𝑠(𝜅)𝑖 𝑗

𝜏(𝜅)
ª®¬ , (4.178)

where the relaxation times are 𝜏(𝜅) = 𝑎𝑇 (𝑇) 𝜏(𝜅)𝑟𝑒 𝑓 with 𝜏(𝜅)𝑟𝑒 𝑓 being the relaxation times at the
reference temperature.

The generalized Maxwell equations for the standard mechanical model (4.163) have identical
form and are recovered by setting the shift factor 𝑎𝑇 (𝑇) = 1. The crack growth kinetics are
assumed to be unaffected by temperature, so both formulations use the same implementation with
temperature dependence introduced solely through the shift factor.

The shift factor model is defaulted to none (𝑎𝑇 = 1). Available shift factor models are the
Williams-Landel-Ferry (WLF) model, the Arrhenius model, and a user defined model. In these
models, the shift factors are defined as

WLF: 𝑙𝑜𝑔10(𝑎𝑇 ) =
−𝐶1 (𝑇 − 𝑇𝑟𝑒 𝑓 )
𝐶2 + (𝑇 − 𝑇𝑟𝑒 𝑓 )

,

ARRHENIUS: 𝑙𝑜𝑔10(𝑎𝑇 ) =
𝐸𝑎
𝑅
(𝑙𝑜𝑔10𝑒)

(
1
𝑇
− 1
𝑇𝑟𝑒 𝑓

)
,

USER DEFINED: 𝑎𝑇 = 𝑎𝑢𝑑 (𝑇).

(4.179)
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Here, 𝐶1 and 𝐶2 are fitting constants for the WLF model. For the Arrhenius model, 𝐸𝑎 is the
activation energy and 𝑅 is the gas constant.

Note, time-temperature superposition is verified for the viscoSCRAM component of the model
with no viscoplasticity. Time-temperature superposition will run with the full
viscoplastic-viscoSCRAM model; however, the theoretical basis with viscoplasticity is still under
investigation.

4.35.2 Implementation

The viscoplastic-viscoSCRAM model discretization uses a staggered solution scheme. The
damage model has both stable and unstable crack growth branches which causes implicit
numerical solution schemes to be highly sensitive, unstable, or difficult to converge. For this
reason, the time integration of the deviatoric stress is explicit in the damage variable and implicit
in the viscoplastic strain. The solution scheme is staggered between the damage update and
viscoplastic update; that is, the damage state variable and Maxwell stresses are held fixed at their
converged values from the previous timestep, the viscoplastic strain is updated within a solution
loop, and finally, the damage state variable and Maxwell stresses are updated with the new
viscoplastic strain held fixed.

The viscoSCRAM component is evaluated with an explicit time integration scheme. Substituting
the time derivatives of (4.162) and (4.164) into (4.163), the deviatoric strain rate becomes

¤𝑠𝑖 𝑗 = 𝜓(𝑐) ( ¤𝑒𝑖 𝑗 − ¤𝑒𝑝𝑖 𝑗 ) − 𝜃 (𝑐, ¤𝑐)𝑠𝑖 𝑗 − 𝜆𝑖 𝑗 (𝑐, 𝑠
(𝜅)
𝑖 𝑗 ) (4.180)

where

𝜓(𝑐) = 2𝐺0

1 + ( 𝑐𝑎 )3
= 2𝐺0(1 − 𝐷) (4.181)

and

𝜃 (𝑐, ¤𝑐) =
3( 𝑐𝑎 )2

¤𝑐
𝑎

1 + ( 𝑐𝑎 )3
=

¤𝐷
1 − 𝐷 = (4.182)

and

𝜆𝑖 𝑗 (𝑐, 𝑠(𝜅)𝑖 𝑗 ) =
∑𝑁
𝜅=1

𝑠
(𝜅 )
𝑖 𝑗

𝜏 (𝜅 )

1 + ( 𝑐𝑎 )3
= (1 − 𝐷)

𝑁∑
𝜅=1

𝑠(𝜅)𝑖 𝑗

𝜏(𝜅)
. (4.183)

Integrating (4.180) explicitly, the deviatoric stress update becomes

(𝑠𝑖 𝑗 )𝑛+1 = (𝑠𝑖 𝑗 )𝑛 +
Δ𝑡

(1 + Δ𝑡
2 𝜃𝑛)

[
𝜓𝑛 (( ¤𝑒𝑖 𝑗 )𝑛 − ( ¤𝑒𝑝𝑖 𝑗 )𝑛) − 𝜃𝑛 (𝑠𝑖 𝑗 )𝑛 − (𝜆𝑖 𝑗 )𝑛

]
. (4.184)

The mean crack size is updated according to

𝑐𝑛+1 = 𝑐𝑛 + ¤𝑐𝑛Δ𝑡. (4.185)
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The Maxwell stress rates can be written in the form

¤𝑠(𝜅)𝑖 𝑗 = 2𝐺 (𝜅) ( ¤𝑒𝑖 𝑗 − ¤𝑒𝑝𝑖 𝑗 ) −
𝑠(𝜅)𝑖 𝑗

𝜏(𝜅)
− 𝐺

(𝜅)

𝐺0

[
3
𝑎

( 𝑐
𝑎

)2
¤𝑐𝑠𝑖 𝑗 +

( 𝑐
𝑎

)3
¤𝑠𝑖 𝑗

]
(4.186)

which, when treated as a first-order, linear, constant-coefficient ODE in 𝑠(𝜅)𝑖 𝑗 , may be solved to
provide the Maxwell stress update as

(𝑠(𝜅)𝑖 𝑗 )𝑛+1 = (𝑠(𝜅)𝑖 𝑗 )𝑛𝑒
−Δ𝑡
𝜏 (𝜅 ) +(

1 − 𝑒
−Δ𝑡
𝜏 (𝜅 )

) (
2𝐺 (𝜅)𝜏(𝜅) (( ¤𝑒𝑖 𝑗 )𝑛+1 − ( ¤𝑒𝑖 𝑗 )𝑝𝑛+1) −

𝐺 (𝜅)

𝐺0
𝜏(𝜅)

[(
3
𝑎

) (𝑐𝑛+1
𝑎

)2
¤𝑐𝑛 (𝑠𝑖 𝑗 )𝑛+1 +

(𝑐𝑛+1
𝑎

)3
( ¤𝑠𝑖 𝑗 )𝑛

] )
.

(4.187)

Here, the relaxation times are 𝜏(𝜅) = 𝑎𝑇 (𝑇𝑛+1)𝜏(𝜅)𝑟𝑒 𝑓 . These times are updated at the start of the time
step by computing the shift factor at the new temperature 𝑇𝑛+1 and then shifting the reference
relaxation times.

The mean stress is updated as

(𝜎𝑚)𝑛+1 = (𝜎𝑚)𝑛 + 𝐾 (( ¤𝑒𝑖𝑖)𝑛+1 − ( ¤𝑒𝑖𝑖)𝑝𝑛+1)Δ𝑡 (4.188)

and finally the Cauchy stress is updated as

(𝜎𝑖 𝑗 )𝑛+1 = (𝑠𝑖 𝑗 )𝑛+1 + (𝜎𝑚)𝑛+1𝛿𝑖 𝑗 . (4.189)

For the viscoSCRAM model, there is no viscoplasticity (Δ𝜀𝑝𝑖 𝑗 = Δ𝑒𝑝𝑖 𝑗 = 0); both the deviatoric
stress update (4.184) and the mean stress update (4.188) are explicit. For the
viscoplastic-viscoSCRAM model, both the deviatoric stress update and the mean stress update are
implicit in the plastic strain increment.

The viscoplastic flow rate (4.173) is integrated implicitly as

Δ𝜀𝑝𝑖 𝑗 = Δ𝜆

(
𝜕𝑔

𝜕𝜎𝑖 𝑗

)
𝑛+1

, (4.190)

where the viscoplastic flow increment is

Δ𝜆 = 𝛾〈𝜙[ 𝑓𝑛+1]〉Δ𝑡. (4.191)

The deviatoric viscoplastic flow rate is the projection

Δ𝑒𝑝𝑖 𝑗 = Δ𝜆

[(
𝜕𝑔

𝜕𝜎𝑖 𝑗

)
𝑛+1
− 1

3

(
𝜕𝑔

𝜕𝜎𝑘𝑘

)
𝑛+1

𝛿𝑖 𝑗

]
. (4.192)

Defining a trial stress as

(𝜎𝑖 𝑗 )𝑇𝑅𝑛+1 = (𝑠𝑖 𝑗 )𝑛 +
Δ𝑡

(1 + Δ𝑡
2 𝜃𝑛)

[
𝜓𝑛 ( ¤𝑒𝑖 𝑗 )𝑛 − 𝜃𝑛 (𝑠𝑖 𝑗 )𝑛 − (𝜆𝑖 𝑗 )𝑛

]
+ [(𝜎𝑚)𝑛 + 𝐾 ( ¤𝑒𝑖𝑖)𝑛+1Δ𝑡]𝛿𝑖 𝑗 ,

(4.193)
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the Cauchy stress update is then

(𝜎𝑖 𝑗 )𝑛+1 = (𝜎𝑖 𝑗 )𝑇𝑅𝑛+1 − Δ𝜆
[(

𝜓𝑛

(1 + Δ𝑡
2 𝜃𝑛)

) (
𝜕𝑔

𝜕𝜎𝑖 𝑗

)
𝑛+1
+

(
𝐾 − 𝜓𝑛

3(1 + Δ𝑡
2 𝜃𝑛)

) (
𝜕𝑔

𝜕𝜎𝑘𝑘

)
𝑛+1

𝛿𝑖 𝑗

]
.

(4.194)

The total stress update (4.194), solved in conjunction with the viscoplastic flow update (4.191),
provides seven equations in the seven unknowns {(𝜎𝑖 𝑗 )𝑛+1,Δ𝜆}. This system of equations is
solved with a Newton-Raphson scheme as part of a return map algorithm.

The time integration solution scheme outlined is implicit in the viscoplastic update. For the
Perzyna model, this implicit integration is unconditionally stable [47]. However, the time
integration is explicit for the viscoSCRAM damage update. If the critical timestep is determined
by the viscoplastic update, the unconditionally stable implicit integrator is advantageous. If the
critical timestep is determined by the damage update, the additional cost of the implicit
viscoplastic update is unnecessary and an explicit viscoplastic time integrator may be used. An
explicit viscoplastic time integrator is included as an option.

4.35.3 Verification

The viscoplastic and viscoSCRAM responses of the model are verified independently of each
other. Coupled, even simple boundary-value problems do not have analytical solutions for the
viscoplastic-viscoSCRAM model, nor is code-to-code verification available. However, given the
staggered solution scheme implemented, the viscoplastic response is updated holding fixed the
viscoSCRAM response and vice versa. For this scheme, independent verification of the individual
responses is sufficient. The viscoSCRAM component is verified for a purely viscoelastic
response, for the crack growth kinetics from a spherical loading, and for uniaxial compression.
The viscoplastic component of the model is verified for uniaxial tension and simple shear.

4.35.3.1 Viscoelasticity

Standard mechanical model The viscoSCRAM component combines standard viscoelasticity
with a crack growth damage parameter 𝑐. Zeroing the initial crack size, 𝑐 = 0, reduces the model
to a viscoelastic model. The crack growth kinetic parameters do not matter in this case. Two
Maxwell elements are used for the verification test and the material parameters used are shown in
Table 4.58.
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Table 4.58 The material properties for the viscoSCRAM model testing viscoelastic response.
𝐾 5.0 MPa
𝐺∞ 1.0 MPa
𝑐 0.0 mm
𝑎 1.0 mm
𝐾0 0.03 MPa

√
mm

𝜇′ 1.16
𝑚 10.0
𝑣𝑚𝑎𝑥 3.0e5 mm/s
𝑣𝑎 0.892
𝑣𝑏 2.28
𝑁 2
𝐺 (𝜅) (MPa) 1.0 2.5
𝜏(𝜅)𝑟𝑒 𝑓 (𝑠) 1.0 10.0
SHIFT FACTOR MODEL NONE

A unit cube is fixed in the normal directions on the sides orthogonal to the 𝑥3-axis and on the
bottom in the 𝑥3-direction. A constant logarithmic strain rate ramp load followed by a holding
period is applied to the top of the cube in the 𝑥3-direction by specifying the applied displacement
field as

𝑢𝑖 =

{
(𝑒 ¤𝜖𝑡 − 1)𝑋3𝛿𝑖3 for 𝑡 < 𝑡𝐿
(𝑒 ¤𝜖𝑡𝐿 − 1)𝑋3𝛿𝑖3 otherwise

(4.195)

where ¤𝜖 is the strain rate and 𝑡𝐿 is the ramp loading time. Here ¤𝜖 = 1 s−1 and 𝑡𝐿 = 1 s which
corresponds to a 100% logarithmic axial strain. The logarithmic deviatoric strain rate during
loading is

¤𝑒𝑖 𝑗 =
1
3
¤𝜖 (3𝛿𝑖3𝛿 𝑗3 − 𝛿𝑖 𝑗 ). (4.196)

The analytical Cauchy stress to this boundary-value problem is then

𝜎𝑖 𝑗 = 𝐾 ¤𝜖𝑡𝛿𝑖 𝑗 − 𝐾 ¤𝜖 (𝑡 − 𝑡𝐿)H (𝑡 − 𝑡𝐿)𝛿𝑖 𝑗 + 2𝐺∞𝑡 ¤𝑒𝑖 𝑗 − 2𝐺∞(𝑡 − 𝑡𝐿)H (𝑡 − 𝑡𝐿) ¤𝑒𝑖 𝑗+
𝑁∑
𝜅=1

2𝐺 (𝜅)𝜏(𝜅) (1 − 𝑒
−𝑡
𝜏 (𝜅 ) ) ¤𝑒𝑖 𝑗 −

𝑁∑
𝜅=1

2𝐺 (𝜅)𝜏(𝜅) (1 − 𝑒
−(𝑡−𝑡𝐿 )
𝜏 (𝜅 ) )H (𝑡 − 𝑡𝐿) ¤𝑒𝑖 𝑗

(4.197)

whereH is the Heaviside function.

The results of the analysis are shown in Fig. 4.148.

The axial stress 𝜎33 increases nearly linearly until the end of the ramp loading, 𝑡𝐿 = 1 s, and then
relaxes as the displacement is held fixed. Similarly, the stresses 𝜎11 = 𝜎22 increase linearly during
ramp loading and then continue to increase as the axial stress relaxes. The Adagio solution shows
agreement with the analytical solutions.

Time-Temperature Superposition
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Fig. 4.148 The axial and lateral stresses.
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The temperature dependence of the viscoelastic model, via the time-temperature superposition
principle, is verified for the same boundary-value problem, viscoelastic parameters, and crack
growth kinetic parameters. Only the shift factor model is modified. Here, all three shift factor
models are verified for isothermal loading. WLF parameters were selected and then Arrhenius
parameters calculated to provide an identical shift factor. The user defined function was defined as
the WLF equation. The shift factor model parameters used for the verification test are shown in
Table 4.59. The isothermal temperature was set to 305 K.

The results of the analysis are shown in Fig. 4.149.

The axial stress 𝜎33 increases nearly linearly until the end of the ramp loading, 𝑡𝐿 = 1 s, and then
relaxes as the displacement is held fixed. Similarly, the stresses 𝜎11 = 𝜎22 increase linearly during
ramp loading and then continue to increase as the axial stress relaxes. The Adagio solution shows
agreement with the analytical solutions.

Table 4.59 The shift factor model properties for the viscoSCRAM model testing viscoelastic re-
sponse.

SHIFT FACTOR MODEL WLF
𝐶1 17.44
𝐶2 51.6 K
𝑇𝑟𝑒 𝑓 300 K
SHIFT FACTOR MODEL ARRHENIUS
𝐸𝑎/𝑅 6.4918e4 K
𝑇𝑟𝑒 𝑓 300 K

4.35.3.2 Crack Growth Kinetics

With standard viscoelasticity verified, the second test verifies the crack growth kinetics. By
selecting a constant, tensile, volumetric strain rate, the frictional threshold stress intensity 𝐾0𝜇
(4.168) reduces to 𝐾0𝜇 = 𝐾0. Further judicious selection of the crack kinetic parameters permits
an analytical solution to the crack growth rate (4.165). Note, the volumetric loading results in a
linear elastic response, decoupling the viscoelasticity and crack growth kinetics. The Maxwell
elements do not matter in this case. The material parameters used are shown in Table 4.60.
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Fig. 4.149 The axial and lateral stresses with the shift factor models. (A) denotes the Arrhenius
model and (UD) denotes the user defined model.
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Table 4.60 The material properties for the viscoSCRAM model testing crack growth kinetics.
𝐾 3460 MPa
𝐺∞ 404 MPa
𝑐 3e-3 mm
𝑎 1.0 mm
𝐾0 6920 MPa

√
mm

𝜇′ 1.16
𝑚 2.0
𝑣𝑚𝑎𝑥 3.0e5 mm/s
𝑣𝑎 0.5
𝑣𝑏 2.5
𝑁 10
𝐺 (𝜅) (MPa) 109 108 139 170 213 267 341 434 581 726
𝜏(𝜅) (s) 1e3 1e2 1e1 1e0 1e-1 1e-2 1e-3 1e-4 1e-5 1e-6

Three faces of a unit cube intersecting at the origin are fixed in their normal directions. A constant
logarithmic strain rate is applied to the remaining three surfaces by specifying the applied
displacement field as

𝑢𝑖 = (𝑒 ¤𝜖𝑡 − 1)𝑋 𝑗𝛿𝑖 𝑗 (4.198)

where ¤𝜖 is the strain rate. Here ¤𝜖 = 0.1/
√

2 s−1. The logarithmic strain rate during loading is

¤𝜖𝑖 𝑗 = ¤𝜖𝛿𝑖 𝑗 . (4.199)

The crack growth rate (4.165) becomes

¤𝑐 =

(

9
4
𝐾
𝐾0

)2
𝜋𝑡2𝑐 for 𝐾𝐼 < 𝐾′

100 − 1
𝜋

(
200
9
𝐾0
𝐾

) (
1
𝑡2𝑐

)
otherwise.

(4.200)

During stable crack growth, the analytical solution to the first-order, separable ODE (4.200)1 is

𝑐(𝑡) = 𝑐0𝑒
1
3

(
9
4
𝐾
𝐾0

)2
𝜋𝑡3
. (4.201)

During unstable crack growth, the crack growth rate is the Chini ODE (4.200)2 which has no
general closed-form solution.

An artificially high frictionless threshold stress intensity is selected, 𝐾0 = 2𝐾 , to verify crack
growth in the stable regime. The results of the analysis are shown in Fig. 4.150.

The crack size increases exponentially and the Adagio solution shows agreement with the
analytical solution.
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Fig. 4.150 Crack size
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4.35.3.3 Uniaxial Compression

Standard viscoelasticity and crack growth during stable fracture have been verified separately.
Coupled, even simple boundary-value problems do not have analytical solutions. To verify a
general viscoelastic problem with crack growth, the viscoSCRAM model is compared to results
from the journal article by Buechler and Luscher [20]. The boundary-value problem is uniaxial
compression of a cylinder. The material parameters used for the code-to-code verification test are
taken from the article and shown in Table 4.61.

Table 4.61 The material properties for the viscoSCRAM model tested in uniaxial compression.
𝐾 3460 MPa
𝐺∞ 404 MPa
𝑐 3e-3 mm
𝑎 1.0 mm
𝐾0 0.03 MPa

√
mm

𝜇′ 1.16
𝑚 10.0
𝑣𝑚𝑎𝑥 3.0e5 mm/s
𝑣𝑎 0.892
𝑣𝑏 2.28
𝑁 10
𝐺 (𝜅) (MPa) 109 108 139 170 213 267 341 434 581 726
𝜏(𝜅) (s) 1e3 1e2 1e1 1e0 1e-1 1e-2 1e-3 1e-4 1e-5 1e-6

The results of the analysis are shown in Fig. 4.151. The axial stress increases linearly and then
begins to soften due to the accumulation of damage as crack growth occurs. The simulation is for
the curve corresponding to the time step Δ𝑡 = 0.0625 s in the journal article. The Adagio
implementation shows agreement with the journal implementation.

4.35.3.4 Viscoplasticity

Uniaxial tension
For the viscoplastic component of the viscoplastic-viscoSCRAM model, the first verification
boundary-value problem is uniaxial tension of a unit cube. Zeroing the initial crack size, 𝑐 = 0,
and setting the number of Maxwell elements to zero, reduces the model to the purely viscoplastic
model. The crack growth kinetic parameters do not matter in this case. The material parameters
used are shown in Table 4.62.

Three faces of a unit cube intersecting at the origin are fixed in their normal directions. A constant
logarithmic strain rate ramp load followed by a holding period is applied to the cube in the

426



Fig. 4.151 Uniaxial compression
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𝑥1-direction by specifying the applied displacement in this direction as

𝑢1 =

(𝑒
𝛽( 𝜎𝑦𝐸 )

(
𝑡
𝑡𝐿

)
− 1)𝑋1 for 𝑡 < 𝑡𝐿

(𝑒𝛽(
𝜎𝑦
𝐸 ) − 1)𝑋1 otherwise

(4.202)

where 𝛽 is a scaling parameter and 𝑡𝐿 is the ramp loading time. Here 𝛽 = 𝐸
𝜎𝑦

and 𝑡𝐿 = 1 s which
corresponds to a 100% logarithmic axial strain. The logarithmic strain in the applied
displacement direction is

𝜖11 =


𝛽

(
𝜎𝑦
𝐸

) (
𝑡
𝑡𝐿

)
for 𝑡 < 𝑡𝐿

𝛽
(
𝜎𝑦
𝐸

)
otherwise.

(4.203)

Table 4.62 The material properties for the viscoplastic model tested in uniaxial tension.
𝐾 5.0 MPa
𝐺∞ 1.0 MPa
𝑐 0.0 mm
𝑁 0
𝐴 1.0
𝜎𝑦 2.0 MPa
𝐵 1.0
𝜏 0.8 s
𝜎0 1.0 MPa
𝑚̃ 1.0

In the Drucker-Prager flow rule, set 𝑚̃ = 1 so that the plastic flow rate is linear in stress and given
by

¤𝜆 =
1
𝜏

(
𝑓

𝜎0

)
. (4.204)

For uniaxial tension, the analytical Cauchy stress in the loading direction is

𝜎11(𝑡) =


𝛽𝜎𝑦
𝑡𝐿
𝑡 for 𝑡 ≤ 𝑡𝑦(

𝑐2
𝑐1

)
+

(
𝑐3
𝑐1

)
+

[
3𝜎𝑦
(3+𝐴)𝑡𝐿 −

(
𝑐2
𝑐1

)
−

(
𝑐3
𝑐1

)]
𝑒−𝑐1 (𝑡−𝑡𝑦) for 𝑡𝑦 < 𝑡 < 𝑡𝐿(

𝑐2
𝑐1

)
+

(
𝑐3
𝑐1

)
𝑒−𝑐1 (𝑡−𝑡𝐿) +

[
3𝜎𝑦
(3+𝐴)𝑡𝐿 −

(
𝑐2
𝑐1

)
−

(
𝑐3
𝑐1

)]
𝑒−𝑐1 (𝑡−𝑡𝑦) for 𝑡 ≥ 𝑡𝐿 ,

(4.205)

where

𝑐1 = 𝐸

(
1
𝜏𝜎0

) [
(1 + 1

9
𝐴 · 𝐵) + 1

3
(𝐴 + 𝐵)

]
𝑐2 = 𝐸

(
1
𝜏𝜎0

)
(𝜎𝑦)(1 +

1
3
𝐵)

𝑐3 =
𝛽𝜎𝑦

𝑡𝐿
,

(4.206)
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and

𝑡𝑦 =
3𝑡𝐿

𝛽(3 + 𝐴) . (4.207)

Here, 𝑡𝑦 is the time at yielding.

The results of the analysis, using the implicit solution scheme with a timestep of Δ𝑡 = 0.025 s, are
shown in Fig. 4.152. The Adagio solition shows agreement with the analytical solution.

The time at yielding is 𝑡𝑦 = 0.5333 s. The axial stress is linear elastic until this time and then the
response is viscoplastic until the end of the loading period, 𝑡𝐿 = 1.0 s. After the loading period,
axial strain is held fixed; stress relaxes asymptotically to

𝜎∞11 = 𝜎11(𝑡 →∞) =
𝑐2
𝑐1

=

(
9 + 3𝐵

9 + 𝐴 · 𝐵 + 3(𝐴 + 𝐵)

)
𝜎𝑦, (4.208)

or, for the selected material parameters, 𝜎∞11 = 0.75𝜎𝑦.

As the relaxation time 𝜏 decreases, the stress relaxes more quickly to 𝜎∞11. In the limit, as 𝜏 → 0,
the viscoplastic stress is relaxed immediately and the solution converges to the rate independent
plastic solution. Also, as the pressure dependence of the yield surface is reduced, 𝐴→ 0, the
yield surface reduces to the von Mises yield surface where 𝜎∞11 = 𝜎𝑦. If the pressure dependence
of the flow surface is also eliminated; that is, 𝐴 = 𝐵 = 0, then the flow direction is associative von
Mises and as 𝜏 → 0, the solution converges to rate independent J2 plasticity.

Simple shear
For the viscoplastic component of the viscoplastic-viscoSCRAM model, the second verification
boundary-value problem is simple shear of a unit cube. Again, zeroing the initial crack size,
𝑐 = 0, and setting the number of Maxwell elements to zero, reduces the model to the purely
viscoplastic model. The crack growth kinetic parameters do not matter in this case. The material
parameters used are shown in Table 4.63.

The 𝑥2 = 0 face of a unit cube is fixed. The faces with 𝑥3-normals are fixed in the normal
directions. A constant strain rate ramp load followed by a holding period is applied to the cube in
the (𝑥1𝑥2)-plane by specifying the applied displacement in the 𝑥1-direction as

𝑢1 =

{
𝛽

(
𝑡
𝑡𝐿

)
𝑋2 for 𝑡 < 𝑡𝐿

𝛽𝑋2 otherwise.
(4.209)

where 𝛽 is a scaling parameter and 𝑡𝐿 is the ramp loading time. Here 𝛽 = 0.05 and 𝑡𝐿 = 1 s which
corresponds to a 2.5% shear strain. These parameters were selected to satisfy the small
deformation assumption necessary for the analytical solution. The shear strain is

𝜖12 =

{
1
2 𝛽

(
𝑡
𝑡𝐿

)
for 𝑡 < 𝑡𝐿

1
2 𝛽 otherwise.

(4.210)
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Fig. 4.152 Uniaxial tension
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Table 4.63 The material properties for the viscoplastic model tested in simple shear.
𝐾 5.0 MPa
𝐺∞ 1.0 MPa
𝑐 0.0 mm
𝑁 0
𝐴 1.0
𝜎𝑦

√
3/40 MPa

𝐵 0.0
𝜏 0.8 s
𝜎0 1.0 MPa
𝑚̃ 1.0

For simple shear, the analytical Cauchy stress in the shear plane is

𝜎12(𝑡) =


𝛽𝐺
𝑡𝐿
𝑡 for 𝑡 ≤ 𝑡𝑦(

𝑐2
𝑐1

)
+

(
𝑐3
𝑐1

)
+

[
𝜎𝑦√

3
−

(
𝑐2
𝑐1

)
−

(
𝑐3
𝑐1

)]
𝑒−𝑐1 (𝑡−𝑡𝑦) for 𝑡𝑦 < 𝑡 < 𝑡𝐿(

𝑐2
𝑐1

)
+

(
𝑐3
𝑐1

)
𝑒−𝑐1 (𝑡−𝑡𝐿) +

[
𝜎𝑦√

3
−

(
𝑐2
𝑐1

)
−

(
𝑐3
𝑐1

)]
𝑒−𝑐1 (𝑡−𝑡𝑦) for 𝑡 ≥ 𝑡𝐿 ,

(4.211)

where

𝑐1 = 3𝐺
(

1
𝜏𝜎0

)
, 𝑐2 =

√
3𝐺

(
1
𝜏𝜎0

)
(𝜎𝑦), 𝑐3 =

𝛽𝐺

𝑡𝐿
, (4.212)

and

𝑡𝑦 =
𝜎𝑦𝑡𝐿√
3𝛽𝐺

. (4.213)

Here, 𝑡𝑦 is the time at yielding.

The results of the analysis, using the implicit solution scheme, are shown in Fig. 4.153. The
Adagio solition shows agreement with the analytical solution.

The time at yielding is 𝑡𝑦 = 0.5 s. The shear stress is linear elastic until this time and then the
response is viscoplastic until the end of the loading period, 𝑡𝐿 = 1.0 s. After the loading period,
shear strain is held fixed; stress relaxes asymptotically to

𝜎∞12 = 𝜎12(𝑡 →∞) =
𝑐2
𝑐1

=
𝜎𝑦√

3
. (4.214)

As the relaxation time 𝜏 decreases, the stress relaxes more quickly to 𝜎∞12. In the limit, as 𝜏 → 0,
the viscoplastic stress is relaxed immediately and the solution converges to the rate independent
plastic solution. For the small deformation simple shear problem, with the flow direction pressure
independent (𝐵 = 0), no normal stresses are developed. The yield surface is then independent of
the pressure coefficient 𝐴 and as 𝜏 → 0, the solution converges to rate independent J2 plasticity.
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Fig. 4.153 Simple shear
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4.35.4 User Guide

BEGIN PARAMETERS FOR MODEL VISCOPLASTIC_VISCOSCRAM
#
# Elastic constants
#
BULK MODULUS = <real>
SHEAR MODULUS = <real>
#
# Crack growth kinetics
#
CRACK SIZE = <real>
CRACK NORM = <real>
STRESS INTENSITY = <real>
FRICTION = <real>
CRACK SHAPE = <real>
CRACK SPEED MAX = <real>
CRACK SPEED A = <real>
CRACK SPEED B = <real>
CRACK SPEED C = <real> (1.0)
#
# Viscoelasticity
#
NME = <integer>
SHEAR = <real_list>
TAU = <real_list>
#
# Time-temperature superposition
#
SHIFT FACTOR MODEL = <string> NONE | WLF | ARRHENIUS | USER_DEFINED␣

↩→(NONE)

SHIFT FACTOR MODEL = WLF
WLF C1 = <real>
WLF C2 = <real>
REFERENCE TEMPERATURE = <real>

SHIFT FACTOR MODEL = ARRHENIUS
NORM ACTIVATION ENERGY = <real>
REFERENCE TEMPERATURE = <real>

SHIFT FACTOR MODEL = USER_DEFINED
SHIFT FACTOR FUNCTION = <string>

#
# Viscoplasticity
#

(continues on next page)
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(continued from previous page)
VISCOPLASTIC MODEL = <string> NONE | EXPLICIT | IMPLICIT (NONE)

VISCOPLASTIC MODEL = EXPLICIT | IMPLICIT
F A = <real>
F YIELD = <real>
G B = <real>
FLOW TAU = <real>
FLOW SIGMA = <real>
FLOW M = <real>

TOLERANCE NR = <real> (1.0e-8)

END [PARAMETERS FOR VISCOPLASTIC_VISCOSCRAM]

Output variables available for this model are listed in Table 4.64.

The equivalent plastic strain 𝜖 𝑝, plastic work 𝑄, and plastic work rate ¤𝑄 output variables are
defined as:

𝜖 𝑝 =
∫ 𝑡

0

√
2
3
¤𝜀𝑝𝑖 𝑗 ¤𝜀

𝑝
𝑖 𝑗 𝑑𝑡, 𝑄 =

∫ 𝑡

0
𝜎𝑖 𝑗 ¤𝜀𝑝𝑖 𝑗 𝑑𝑡, ¤𝑄 = 𝜎𝑖 𝑗 ¤𝜀𝑝𝑖 𝑗 .

Table 4.64 State Variables for VISCOSCRAM EXPLICIT Model
Name Description
C crack size
CDOT crack velocity
CSTABILITY crack stability ratio, 𝐾𝐼/𝐾′
DAMAGE damage, 𝐷
ASHIFT shift factor, 𝑎𝑇 (𝑇)
EQPS equivalent plastic strain, 𝜀𝑝
PLASTIC_WORK plastic work, 𝑄
PLASTIC_WORK_RATE plastic work rate, ¤𝑄

4.36 Phase Field FeFp Model

Phase Field FeFp is an implementation of a cohesive variational phase-field fracture model
developed for the purpose of modeling brittle and ductile fracture. The model is based upon the
FeFp model, a hyperelastic analogue of the J2 plasticity model, and features a von-Mises yield
surface and isotropic hardening. Phase Field FeFp is meant to be used in conjunction with a
phase-field solver. The use of Sierra/SM’s reaction-diffusion solver is strongly recommended. The
model leverages several of LAMÉ’s modular hardening capabilities, specifically those for which
hardening potentials have been defined: linear, power-law, and Voce hardening. Rate-dependent
and temperature-dependent plasticity are not yet implemented for this model.
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4.36.1 Theory

4.36.1.1 Overview

An overview of the Phase Field FeFp model theory is presented in this section. For more
comprehensive analytical derivations for this model, we refer the interested reader to the following
references: [99], [98], [103].

The phase-field fracture model derives from the Griffith brittle fracture model, characterized by a
fracture energy release rate 𝐺𝑐. In that framework, the solution to the fracture mechanics problem
can be cast as the minimum of a free energy functional, with displacements 𝑢 and state variables
𝑧:

𝜓∗ = min
𝑢,𝑧,Γ

(∫
Ω
𝜓𝑚 (𝑢, 𝑧) dΩ +

∫
Γ
𝐺𝑐 dΓ

)
, (4.215)

where 𝜓𝑚 is the mechanical energy potential (traditionally elastic strain energy). The phase-field
model approximates the discrete crack on surface Γ as a smeared continuum damage field in
volume Ω using the phase field 𝜙, as illustrated in Fig. 4.154 adapted from [12].

Fig. 4.154 Approximation of sharp crack by smeared phase field.

The material coherence convention is used here, where 𝜙 = 1 refers to intact material, and 𝜙 = 0
refers to completely damaged material. The mechanical energy potential is degraded through a
degradation function 𝑔(𝜙), defined such that 𝑔(1) = 1 and 𝑔(0) = 0. Note that some references
use variable 𝑐 for this interpretation of the phase field; other references interpret the phase field as
damage, increasing from zero to one as the material degrades, 𝑑 = 1 − 𝜙.

We impose the following constraints on the phase field, representing that it remains within the
physical range and that damage is irreversible:{

0 ≤ 𝜙 ≤ 1
¤𝜙 ≤ 0

.
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The problem solution is therefore recast in terms of this approximation:

𝜓 =
∫
Ω
𝜓𝑚 (𝑢, 𝑧, 𝜙) + 𝐺𝑐𝜓

𝑓 (𝜙,∇𝜙, ℓ) dΩ , (4.216)

𝜓∗ = min
𝑢,𝑧,𝜙

𝜓, (4.217)

with 𝜓 𝑓 representing a fracture energy or damage potential that includes a regularizing length
scale ℓ. The approximation (4.216) is Γ-convergent to the original functional (4.215) in the limit
ℓ → 0. The mechanical energy is degraded through the application of individual degradation
functions for each the elastic and plastic components:

𝜓𝑚 (𝑢, 𝑧, 𝜙) = 𝜓𝑒 (𝑢, 𝑧, 𝜙) + 𝜓𝑝 (𝑧, 𝜙)
𝜓𝑒 (𝑢, 𝑧, 𝜙) = 𝑔𝑒 (𝜙)𝜓𝑒 (𝑢, 𝑧)
𝜓𝑝 (𝑧, 𝜙) = 𝑔𝑝 (𝜙)𝜓𝑝 (𝑧)

.

In order to provide an asymmetric response between tension and compression, an additional
modification is made to the elastic energy potential 𝜓𝑒, decomposing it into a positive portion 𝜓𝑒+
that can damage and a negative portion 𝜓𝑒− that cannot: 𝜓𝑒 = 𝜓𝑒+ + 𝜓𝑒−. The degradation functions
are applied only to the positive portion:

𝜓𝑒 (𝑢, 𝑧, 𝜙) = 𝑔𝑒 (𝜙)𝜓𝑒+(𝑢, 𝑧) + 𝜓𝑒−(𝑢, 𝑧).

Details of the elastic potential, plastic potentials, damage potentials, degradation functions, and
tension-compression splits are provided in subsequent sections: Section 4.36.1.2, Section 4.36.2,
Section 4.36.2.2, Section 4.36.2.3, Section 4.36.2.4.

To provide a direct energetic basis for the phase-field model, the Phase Field FeFp model is
implemented with a hyperelastic formulation. Therefore, the kinematics of plastic deformation are
written in terms of the deformation gradient 𝐹, which is multiplicatively decomposed into elastic
(𝐹𝑒) and plastic (𝐹 𝑝) components:

𝐹 = 𝐹𝑒𝐹 𝑝 .

The deformation gradient 𝐹𝑛+1 at each timestep is taken as an input for the model, while the
plastic deformation gradient 𝐹 𝑝 is initialized as identity and maintained as a state variable. These
key variables take the place of the previously-defined displacement 𝑢 and state variable 𝑧,
respectively. The elastic deformation gradient is therefore defined as 𝐹𝑒 = 𝐹𝐹 𝑝−1, and the plastic
flow rule ¤𝐹 𝑝𝐹 𝑝−1 = ¤̄𝜀𝑝𝑁 𝑝, with equivalent plastic strain rate ¤̄𝜀𝑝 and flow direction tensor 𝑁 𝑝.

The equations of motion for this material model derive from the Euler-Lagrange equations that
correspond to the stationary point of the energy Lagrangian L (given the irreversibility of
plasticity and damage, the equations of motion actually derive from finding the stationary point of
an incremental Lagrangian, (𝛿L)𝑛+1(𝑢, 𝑧, 𝜙) = L𝑛+1 − L𝑛, with L𝑛 fixed and 𝐹𝑛+1(𝑢𝑛+1) known.).
The Lagrangian is formed using the free energy functional 𝜓 and power from applied loads 𝐿 (𝑏0
refers to a prescribed body force per unit volume, 𝜒 = 𝜕𝑥

𝜕𝑋 is the deformation map, 𝑡0 is a Neumann
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traction boundary condition, and 𝜉0 is Neumann phase boundary condition [not commonly
used]):

𝐿 =
∫
Ω
𝑏0 · ¤𝜒 dΩ +

∫
𝜕𝑡Ω

𝑡0 · ¤𝜒 d𝜕Ω +
∫
𝜕𝜉Ω

𝜉0 ¤𝜙 d𝜕Ω ,

L = 𝜓 − 𝐿,
∇ · 𝜕L𝜕∇𝑢 −

𝜕L
𝜕𝑢 = 0

∇ · 𝜕L𝜕∇𝑧 −
𝜕L
𝜕𝑧 = 0

∇ · 𝜕L𝜕∇𝜙 −
𝜕L
𝜕𝜙 = 0

. (4.218)

The Euler-Lagrange equations (4.218) simplify to the usual balance of linear momentum for solid
mechanics with Piola-Kirchoff stress 𝑃 and boundary normal 𝑛0{

∇ · 𝑃 + 𝑏0 = 0 in Ω

𝑃 · 𝑛0 = 𝑡0 on 𝜕𝑡Ω
, (4.219)

a plastic yield surface that corresponds to a damaged version of the familiar 𝐽2 von-Mises yield
surface with quasistatic flow stress 𝑌 eq when corresponding constraints on the flow tensor 𝑁 𝑝 are
applied (𝑁 𝑝 : 𝑁 𝑝 = 3

2 , tr(𝑁 𝑝) = 0)
(
𝜎̄ =

√
3
2 ‖dev𝜎‖ =

√
3
2𝑔

𝑒 (𝜙)



dev 𝜕𝜓

𝑒
+

𝜕𝜀𝑒




) =
(
𝑌 eq = 𝑔𝑝 (𝜙) 𝜕𝜓

𝑝

𝜕𝜀𝑝

)
𝑁 𝑝 =

√
3
2

dev𝜎
‖dev𝜎‖

, (4.220)

and reveal the phase-field update equation{
𝜕𝜓 𝑓

𝜕∇𝜙𝐺𝑐 − 𝜕𝑔𝑒

𝜕𝜙 𝜓
𝑒
+ −

𝜕𝑔𝑝

𝜕𝜙 𝜓
𝑝 − 𝜕𝜓 𝑓

𝜕𝜙 𝐺𝑐 = 0 in Ω
𝜕𝜓 𝑓

𝜕∇𝜙 · 𝑛0 = 𝜉0 on 𝜕𝜉Ω
. (4.221)

For the classical phase-field fracture model (AT-2, e.g. [32], [13], [15]), this update equation is

2𝐺𝑐ℓΔ𝜙 − 2𝜙
(
𝜓𝑒+ + 𝜓𝑝

)
+ 𝐺𝑐

2ℓ
(1 − 𝜙) = 0, (4.222)

and for the threshold model (AT-1, e.g. [82]), the update equation is

3𝐺𝑐ℓ

4
Δ𝜙 − 2𝜙

(
𝜓𝑒+ + 𝜓𝑝

)
+ 3𝐺𝑐

8ℓ
= 0. (4.223)

The phase field update is generally a non-linear reaction-diffusion partial differential equation of
the form 𝑅(𝜙) − 𝐷Δ𝜙 = 𝑆, whereas (4.222) and (4.223) are linear: 𝑅𝜙 − 𝐷Δ𝜙 = 𝑆. Casting the
equation into this form enables solution through familiar algorithms in Sierra. This is detailed in
Section 4.36.4.2.

Details of the implemented elastic potentials, plastic potentials, damage potentials, and
degradation functions follow:
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4.36.1.2 Elastic Potential

Isotropic Hencky elasticity using logarithmic strain is selected for the elastic constitutive model.
The logarithmic strain tensor is defined from the elastic deformation gradient:

𝜀𝑒 =
1
2

log(𝐹𝑒𝑇𝐹𝑒).

The isotropic Hencky elastic potential is defined in terms of the logarithmic strain, as:

𝜓𝑒 = 𝜇dev(𝜀𝑒) : dev(𝜀𝑒) + 𝜅
2
(tr(𝜀𝑒))2 ,

and the work-conjugate Mandel stress is defined as (this expression may be later modified by a
tension-compression split)

𝜎𝑀 =
𝜕𝜓𝑒

𝜕𝜀𝑒
= 𝑔𝑒 (𝜙) (2𝜇dev(𝜀𝑒) + 𝜅tr(𝜀𝑒)) .

Cauchy stress can then be defined as:

𝜎 =
1
𝐽
𝐹𝑒−𝑇𝜎𝑀𝐹𝑒𝑇 .

4.36.2 Plastic Hardening

4.36.2.1 Rate Sensitivity

The variational model proposed by Talamini et al. [103] provides for the possibility of
rate-dependent plasticity through the inclusion of a dual kinetic potential Π∗( ¤̄𝜀𝑝, 𝜙), with the
requirement that its derivative approaches zero in the quasistatic limit ( ¤̄𝜀𝑝 → 0+). The dissipation
potential identifies two components 𝑌vis and ¤̄𝜀𝑝 that define the total dissipation density D:

D = 𝑌vis ¤̄𝜀𝑝,

𝑌vis =
𝜕Π∗

𝜕 ¤̄𝜀𝑝
.

When rate-dependence is included in the formulation, the viscous over-stress 𝑌vis would be added
to the quasistatic flow stress 𝑌 eq, replacing (4.220) with the following:(

𝜎̄ =

√
3
2
‖dev𝜎‖ =

√
3
2
𝑔𝑒 (𝜙)






dev
𝜕𝜓𝑒+
𝜕𝜀𝑒







)
=

(
𝑌 eq = 𝑔𝑝 (𝜙) 𝜕𝜓

𝑝

𝜕𝜀𝑝

)
+

(
𝑌vis = 𝑔𝑝 (𝜙) 𝜕Π

∗

𝜕 ¤̄𝜀𝑝

)
.

(4.224)

As an example, Hu et al. [46] proposes a power-law rate-sensitivity dissipation density of the
form:

Π∗ =
𝑚

𝑚 + 1
𝑌0 ¤𝜖0

( ¤̄𝜀𝑝
¤𝜖0

) (𝑚+1)/𝑚
Rate-dependent plasticity has not yet been implemented into Phase Field FeFp to date.
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4.36.2.2 Damage Potentials

The damage potential implemented for Phase Field FeFp is the so-called AT-1 potential that
includes a linear term in phase:

𝜓 𝑓 =
3
8ℓ

(
(1 − 𝜙) + ℓ2∇𝜙 · ∇𝜙

)
(4.225)

This damage potential was first proposed by Pham et al. [82] and is a critical component of the
so-called threshold models, named because this potential gives rise to a critical energy threshold
𝜓𝑐 which must be reached before damage begins evolving. The critical energy threshold can be
revealed by substituting this damage potential into (4.221):

3𝐺𝑐ℓ

4
Δ𝜙 − 𝜕𝑔

𝑒

𝜕𝜙
𝜓𝑒+ −

𝜕𝑔𝑝

𝜕𝜙
𝜓𝑝 + 3𝐺𝑐

8ℓ
= 0.

For a uniformly intact initial state, the phase field is defined as 𝜙 = 1 and Δ𝜙 = 0. The condition
required to evolve beyond this state corresponds to:

𝜕𝑔𝑒

𝜕𝜙
𝜓𝑒+ +

𝜕𝑔𝑝

𝜕𝜙
𝜓𝑝 =

3𝐺𝑐

8ℓ
. (4.226)

When combined with the common quadratic degradation function (4.228),
𝑔𝑒 (𝜙) = 𝑔𝑝 (𝜙) = 𝑔Q(𝜙), this reduces to

𝜓𝑐 =
(
𝜓𝑒+ + 𝜓𝑝

)
𝑐
=

3𝐺𝑐

16ℓ
(4.227)

4.36.2.3 Degradation Functions

The most common degradation function found in the literature is the quadratic degradation
function:

𝑔Q(𝜙) = 𝜙2 (4.228)

When combined with the linear damage potential, this gives rise to the critical energy threshold
described above (4.227). For a given load path, the critical energy threshold can be related to a
critical failure strength. For example, for an elastic material (𝜓𝑝 = 0) under uniaxial tension, the
driving energy is a function of the stress 𝜓𝑒 = 𝜎2

2𝐸 , so the failure threshold can be found to be

𝜎𝑐 =
√

3𝐺𝑐𝐸
8ℓ . Therefore, the failure threshold (𝜓𝑐 or 𝜎𝑐) depends on the phase field length scale ℓ.

The length scale ℓ serves as a numerical parameter, with the model convergent to Griffith fracture
in the limit as ℓ → 0, so the failure threshold approaches infinity. Alternatively, the length scale
can be selected so that the critical stress matches the material failure stress [82].

In contrast, when modeling ductile failure, there exists a physical yield stress R. Now, the
relationship between 𝜎𝑐 and the yield stress has consequence in terms of model physics. This can
be recast in terms of length scales: the interaction between the magnitudes of the phase-field

439



fracture length scale ℓ and the plastic zone size 𝑟𝑝. This means that the phase-field length scale is
now effectively a material parameter, rather than a numerical one.

This was the motivation for the degradation function proposed by Talamini et al. [103]. This
degradation function 𝑔R(𝜙) takes the form of a rational function and includes 𝜓𝑐 as a new
parameter:

𝑔R(𝜙) = 𝜙2

(1 + 𝛾(1 − 𝜙))2
, (4.229)

𝛾 =
3𝐺𝑐

16ℓ𝜓𝑐
− 1. (4.230)

Fig. 4.155 Effect of parameter 𝛾 in the rational degradation function. Graphs are shown for 𝛾 =
{0, 1

3 , 1, 7}. Increasing 𝛾makes the degradation function (and hence the stress) drop offmore quickly
with increasing phase value.

The effect of 𝛾 on the degradation behavior is shown in Fig. 4.155. In order to ensure convexity of
the degradation function and solution uniqueness, a bound of 𝛾 ≥ −1

3 is recommended; this
corresponds to an upper bound for the threshold parameter: 𝜓𝑐 ≤ 9𝐺𝑐

32ℓ . The quadratic degradation
function exists as a special case of this model, when 𝛾 = 0, 𝜓𝑐 = 3𝐺𝑐

16ℓ .

Repeating (4.226) and (4.227) using 𝑔R(𝜙) confirms that the new 𝜓𝑐 parameter is returned as the
effective critical energy threshold. This restores the interpretation of ℓ as a numerical parameter.
The effect of degradation function parameters 𝜓𝑐 and 𝛾, is demonstrated on uniaxial constitutive
response in Fig. 4.156.

The Lorentz degradation function is the only degradation function currently available in Phase
Field FeFp, so 𝑔𝑒 = 𝑔R. The plastic degradation function is assumed to equal the elastic one, with
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Fig. 4.156 Behavior of the model with the rational degradation function in homogeneous uniaxial
tension. Data are shown for 𝛾 = {0, 1, 2}. The solid lines are for 𝛾 = 0. (a) Damage nucleates when the
free energy density reaches the value of the model parameter 𝜓𝑐, regardless of the value of 𝛾. The
softening behavior is sensitive to 𝛾. (b) The rate of damage with strain decreases as 𝛾 increases.

an additional parameter 𝑝𝑝𝑙 , which controls the portion of plastic work that contributes to driving
fracture:

𝑔𝑝 (𝜙) = (1 − 𝑝𝑝𝑙) + 𝑝𝑝𝑙𝑔𝑒 (𝜙).

Many ductile phase-field references include the plastic work as driving energy (𝑝𝑝𝑙 = 1, 𝑔𝑝 = 𝑔𝑒),
while others do not (𝑝𝑝𝑙 = 0, 𝑔𝑝 = 1). This parameter allows for selection of either convention or
an intermediate portion.

4.36.2.4 Tension-Compression Split

Two choices of tension-compression split have been implemented so far: none and
volumetric-deviatoric. The none option includes all energy into the positive, damaging portion,
holding nothing back in the negative portion:

𝜓𝑒+ = 𝜓
𝑒

𝜓𝑒− = 0
𝜓𝑒 (𝑢, 𝑧, 𝜙) = 𝑔𝑒 (𝜙)𝜓𝑒 (𝑢, 𝑧)
𝜎𝑀 = 𝜕𝜓𝑒

𝜕𝜀𝑒 = 𝑔𝑒 (𝜙) (2𝜇dev(𝜀𝑒) + 𝜅tr(𝜀𝑒))
𝜓𝑝 (𝑧, 𝜙) = 𝑔𝑝 (𝜙)𝜓𝑝 (𝑧)

.

The second option, volumetric-deviatoric, divides the elastic potential into volumetric and
deviatoric components. The volumetric components contribute to the positive elastic potential
only if the trace of the elastic strain tensor is positive (dilatational), while the deviatoric
components always contribute. The plastic potential is not divided. The tension-compression split
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of the elastic potential also has implications for the definition of the stress:

𝜓𝑒+ =
𝜅
2 (〈tr(𝜀𝑒)〉+)

2 + 𝜇dev(𝜀𝑒) : dev(𝜀𝑒)
𝜓𝑒− =

𝜅
2 (〈tr(𝜀𝑒)〉−)

2

𝜓𝑒 (𝑢, 𝑧, 𝜙) = 𝑔𝑒 (𝜙)𝜓𝑒+(𝑢, 𝑧) + 𝜓𝑒−
𝜎𝑀 = 𝜕𝜓𝑒

𝜕𝜀𝑒 = 𝑔𝑒 (𝜙) (2𝜇dev(𝜀𝑒) + 𝜅 〈tr(𝜀𝑒)〉+) + 𝜅 〈tr(𝜀𝑒)〉−
𝜓𝑝 (𝑧, 𝜙) = 𝑔𝑝 (𝜙)𝜓𝑝 (𝑧)

,

with Macaulay brackets indicating inclusion of positive 〈·〉+ or negative 〈·〉− quantities.

A common third option, a spectral split that divides energy based on positive/negative eigenvalues
of the strain tensor, has not been implemented to date.

4.36.3 Implementation

Implementational details of Phase Field FeFp is included in this section. This includes: (a)
deviations between the theory and implementation, (b) an overview of the coupled solution
strategy, (c) an overview of the solid mechanics solution, (d) an overview of the phase-field
evolution solution.

4.36.3.1 Deviations from theory

Conditioning coefficient

For numerical stability reasons, the degradation function is implemented in the slightly modified
form

𝑔(𝜙) = 𝑔R(𝜙) (1 − 𝑘𝑐) + 𝑘𝑐, (4.231)

where 𝑘𝑐 � 1 is a small, non-negative parameter called the conditioning coefficient that helps to
avoid numerical problems such as element inversion in highly damaged material points. This
modification directly impacts the stress and the driving energies 𝑔𝑒𝜓𝑒+ + 𝑔𝑝𝜓𝑝; neither of these
drop to zero as 𝜙 approaches zero. This leaves a small residual stiffness in the material point to
resist inversion, but with driving energies still active, the damage may continue to creep outward
from fully-damaged areas. The use of conditioning coefficients is widespread throughout the
phase-field fracture literature, e.g., [14], [67], [4]. Other techniques, such as removal of highly
degraded elements using element death, could be used address this problem, though with a
different set of tradeoffs.
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Phase-field bound constraint

Examination of the phase-field update equation (4.221) in an unloaded state (i.e., {𝜓𝑒+, 𝜓𝑝} = 0)
with a uniform phase field (i.e., Δ𝜙 = 0) reveals the need for an enforcement strategy for the phase
field bound constraint 𝜙 ≤ 1 in some formulations, such as the threshold model with the AT-1
damage potential (4.225).

The classical phase-field fracture model (AT-2, unimplemented) requires no constraint
enforcement, as the solution to this case falls at the bound itself, 𝜙 = 1. In contrast, for the
threshold model (AT-1, 𝑔Q), the update equation (4.223) simplifies to the following solution for a
uniform state:

𝜙 =
3𝐺𝑐

16ℓ
(
𝜓𝑒+ + 𝜓𝑝

) . (4.232)

Clearly, when the driving energies are zero the solution of the phase field is infinite. For all values
of 𝜓𝑒+ + 𝜓𝑝 less than the critical energy 3𝐺𝑐

16ℓ will yield a phase field 𝜙 > 1, in violation of the phase
bound. Enforcement of the phase field constraint is handled by employing a max-function to
enforce a sufficient driving energy that guarantees constraint satisfaction. We replace the usage of
𝜓𝑒+ + 𝜓𝑝 with 𝜓𝐷+ , defined as:

𝜓𝐷+ = max
(
𝜓𝑒+ + 𝜓𝑝,

3𝐺𝑐

16ℓ

)
(4.233)

Generalizing this for the rational degradation function 𝑔R(𝜙) in the cohesive phase field model
yields (derivation omitted):

𝜓𝐷+ = max
(
𝜓𝑒+ + 𝜓𝑝, 𝜓𝑐

)
= 〈𝜓𝑒+ + 𝜓𝑝 − 𝜓𝑐〉 + 𝜓𝑐, (4.234)

where 〈•〉 are Macaulay brackets.

This boundary treatment is derived from the homogeneous case (𝜙 = 1); for a phase field that is
not spatially uniform, there may be small violations. This approximation is widely used in the
literature (e.g., Miehe [67]) and thought to be a reasonable approximation.

While this approach ordinarily provides for satisfaction of the phase-field bound constraint, we
note that it does affect the physics of the problem. The resulting phase-field solutions and energy
dissipation may differ from analytical solutions that enforce the bound constraint differently.

Phase-field irreversibility constraint

A longstanding strategy for addressing the phase-field irreversibility constraint is to modify the
fracture driving energies through the use of a history function, as proposed by Miehe et al. [68]:

H(𝑥, 𝑡) = max
𝑡∈[0,𝑡]

𝜓𝐷+ (𝑥, 𝑡).
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Practically, this can be enforced by maintaining the history-maximum driving energy as a state
variable on the integration points and comparing at each time step:

H(𝑥, 𝑡𝑛+1) = max
(
𝜓𝐷+ (𝑥, 𝑡𝑛+1),H(𝑥, 𝑡𝑛)

)
.

The monotonicity of the phase-field driving force approximately enforces irreversibility. Together
with the bound-constraint modification, the phase-field update equation (formerly (4.221)) now
reads:

𝜕𝜓 𝑓

𝜕∇𝜙𝐺𝑐 −
𝜕𝑔𝑒 (𝜙)
𝜕𝜙

H − 𝜕𝜓
𝑓

𝜕𝜙
𝐺𝑐 = 0. (4.235)

For the implemented damage potential implemented (AT-1), this becomes:

3𝐺𝑐ℓ

4
Δ𝜙 − 𝜕𝑔

𝑒 (𝜙)
𝜕𝜙

H + 3𝐺𝑐

8ℓ
= 0. (4.236)

Geelen et al. [34] explored the use of an augmented-Lagrangian formulation as an alternative
means of enforcing the bound and irreversibility constraints. Their finding was that the history
function causes slight increases in global energy dissipation, corresponding to widening of the
damage fields around cracks. The additional cost of the augmented-Lagrangian formulation, both
in implementation and operation, has been a barrier to its implementation in Sierra so far.

4.36.3.2 Coupled solution strategy for implicit time integration

In order to solve the Euler-Lagrange equations (4.218) for the phase-field fracture model, an
alternating minimization strategy is employed. In this approach, the conventional
balance-of-linear-momentum boundary-value problem is solved in terms of its displacement
degrees of freedom, with a return-mapping algorithm for the plastic state variables and the phase
field held constant. The phase-field Euler-Lagrange equation (4.221) is then solved with the inputs
from the displacement system (driving energies) held constant. Equilibrium between the two
fields is achieved by solving the two subproblems repeatedly in a staggered fashion until
convergence in both fields is observed. This procedure is illustrated in Fig. 4.157.

This approach is selected primarily due to its consistency with Sierra paradigm for multi-field
problems and therefore ease of implementation. Building within the framework of Sierra/SM, it is
expedient to leave the traditional displacement system solution as-is, modified only by a damage
term relating to the phase-field. This approach is very commonly used in the phase field literature
(see, e.g., [14], [68]). Solution of each sub-problem is straightforward, as each is convex; however,
with the cross-terms held fixed, the alternating coupled solve may be slow to converge at times.

The alternative approach is a monolithic solve, wherein the coupled displacement-phase system is
solved as a single matrix system. This approach has been used by several authors (e.g., [34], [46],
[103]), and exhibits improved convergence in some cases; however, the solution may stall at
saddle points as the convexity of the coupled system is not guaranteed. Monolithic solution is not
implemented in Sierra/SM.
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Fig. 4.157 Alternating minimization scheme behavior. (a) Schematic of alternating minimization
scheme. At a new time step 𝑡𝑛+1, nonlinear solves for mechanics (M) and phase field (PF) are re-
peated until convergence achieved in both fields. Solver then proceeds to the next time step. (b)
Force vs. displacement for a single element uniaxial tension problem with elastic material. The
exact solution for the problem is shown with a dotted line. the curve marked “uncoupled” is solved
with a single pass at each time step, leading to a solution that is out of equilibrium. The curve
“ControlRxnDiff” is solved until convergence, indicating equilibrium. The equilibrium result is seen
to agree with the exact solution.

4.36.4 Operator split scheme for explicit time integration

The algorithm for explicit integration is a straightforward extension of the quasi-static scheme
outlined above. The major difference is that there is no equilibrium iteration between the fields on
a given time step. Iteration is unnecessary given the small size of the time steps dictated by the
numerical stability condition. Another consequence of the small time-step size is that the phase
field need not be updated at each time step. (An exception to this may be if the loading conditions
are in the shock regime.) The phase-field balance equation is also nonlinear, incurring a greater
computational cost than an explicit time integration step, and it is therefore desirable to amortize
this cost over a number of time steps. The frequency of the phase field update has been made a
user-defined choice in the input file.
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4.36.4.1 Solid mechanics solution

The full derivation of the solid mechanics solution is provided in the cited references [99], [98],
[103]. The return mapping algorithm for the Phase Field FeFp constitutive update, which
corresponds to the solution of the state-variable Euler-Lagrange equation (4.220) will be
specifically described in this section.

The Phase Field FeFp uses a radial return predictor-corrector algorithm for the constitutive update.
First, an elastic trial stress state is calculated. This is done by assuming that the deformation
increment is completely elastic and that the phase field has remained constant:

𝐹 𝑝,𝑡𝑟 = 𝐹 𝑝𝑛
𝜀𝑝,𝑡𝑟 = 𝜀𝑝𝑛
𝐹𝑒,𝑡𝑟 = 𝐹𝑛+1𝐹 𝑝,𝑡𝑟

−1

𝜙𝑛+1 = 𝜙𝑛

.

The trial deformation state is converted to logarithmic strains to compute a conjugate Mandel trial
stress (the trial Mandel stress shall be consistent with the tension-compression split, defined in
Section 4.36.2.4. The baseline (no tension-compression case) is given here):

𝐶𝑒,𝑡𝑟 = 𝐹𝑒,𝑡𝑟𝑇𝐹𝑒,𝑡𝑟 ,

𝜀𝑒,𝑡𝑟 =
1
2

log(𝐶𝑒,𝑡𝑟),

𝜎𝑀,𝑡𝑟 = 𝑔𝑒 (𝜙𝑛+1)
(
2𝜇dev(𝜀𝑒,𝑡𝑟) + 𝜅tr(𝜀𝑒,𝑡𝑟)

)
An effective stress is calculated:

𝜎̄𝑡𝑟 =

√
3
2
| |dev𝜎𝑀,𝑡𝑟 | |,

and compared to the flow stress, determined by evaluating the hardening model with the trial
plastic strain scalar 𝜀𝑝,𝑡𝑟 and factoring by the plastic degradation function 𝑔𝑝:

𝑌 eq,𝑡𝑟 = 𝑔𝑝 (𝜙𝑛+1)𝑌 eq(𝜀𝑝,𝑡𝑟).

If 𝜎̄𝑡𝑟 ≤ 𝑌 eq,𝑡𝑟 , then the deformation increment is elastic, and the stress update is finished:
𝜎𝑚𝑛+1 = 𝜎𝑀,𝑡𝑟 , Δ𝜀𝑝 = 0. If instead 𝜎̄𝑡𝑟 > 𝑌 eq,𝑡𝑟 , then plastic deformation had occurred and a radial
return algorithm determines the extent of plastic deformation.

The normal to the yield surface is assumed to lie in the direction of the trial stress state. This gives
the following expression for the flow tensor 𝑁 𝑝

𝑛+1, with isotropic hardening assumed:

𝑁
𝑝
𝑛+1 =

√
3
2
𝜎𝑀,𝑡𝑟

| |𝜎𝑀,𝑡𝑟 | | =
3
2

dev𝜎𝑀,𝑡𝑟

𝜎̄𝑡𝑟
.

The radial return algorithm seeks to solve the following equation (The first two terms represent
the new effective stress 𝜎̄(𝜀𝑒𝑛+1) evaluated at 𝜀𝑒𝑛+1 = 𝜀𝑒,𝑡𝑟 − Δ𝜀𝑝𝑁 𝑝

𝑛+1. This corresponds to
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𝜕𝜓𝑒+
𝜕𝜀𝑝 = 𝜕𝜓𝑒+

𝜕𝜀𝑒 − 𝑁
𝑝
𝑛+1. The last term represents the new flow stress 𝑌 eq(𝜀𝑝𝑛+1) evaluated at

𝜀
𝑝
𝑛+1 = 𝜀𝑝𝑛 + Δ𝜀𝑝.):

𝜎̄ − 3𝜇𝑔𝑒 (𝜙𝑛+1)Δ𝜀𝑝 − 𝑔𝑝 (𝜙𝑛+1)𝑌 eq(𝜀𝑝𝑛 + Δ𝜀𝑝) = 0

using a Newton-Raphson algorithm, with residual 𝑅̄ and iteration denoted by superscript 𝑘:
𝑅̄ = 𝜎̄ − 3𝜇𝑔𝑒 (𝜙𝑛+1)Δ𝜀𝑝 − 𝑔𝑝 (𝜙𝑛+1)𝑌 eq(𝜀𝑝𝑛 + Δ𝜀𝑝)
𝜕𝑅̄
𝜕Δ𝜀𝑝 = −3𝜇𝑔𝑒 (𝜙𝑛+1) − 𝑔𝑝 (𝜙𝑛+1) 𝜕𝑌

eq

𝜕Δ𝜀𝑝 (𝜀
𝑝
𝑛 + Δ𝜀𝑝)

(Δ𝜀𝑝)𝑘 = 0
(Δ𝜀𝑝)𝑘+1 = (Δ𝜀𝑝)𝑘 − 𝑅̄/ 𝜕𝑅̄

𝜕Δ𝜀𝑝

.

This equation is iterated until convergence, with a line search algorithm to accelerate convergence.
The value (Δ𝜀𝑝)𝑘+1 that satisfies the convergence tolerance establishes the solution at time 𝑡𝑛+1:
Δ𝜀𝑝𝑛+1 = (Δ𝜀𝑝)𝑘+1. After the plastic update has been solved, the material state fields are updated
(the updated Mandel stress shall be consistent with the tension-compression split, defined in
Section 4.36.2.4. The baseline (no tension-compression case) is given here):

𝜀
𝑝
𝑛+1 = 𝜀𝑝𝑛 + Δ𝜀𝑝𝑛+1
𝐹 𝑝𝑛+1 = exp(Δ𝜀𝑝𝑛+1𝑁

𝑝
𝑛+1)𝐹

𝑝
𝑛

𝐹𝑒𝑛+1 = 𝐹𝑛+1𝐹 𝑝−1
𝑛+1 = 𝐹𝑒,𝑡𝑟 exp(−Δ𝜀𝑝𝑛+1𝑁

𝑝
𝑛+1)

𝐶𝑒𝑛+1 = 𝐹𝑒𝑇𝑛+1𝐹
𝑒
𝑛+1 = 𝐶𝑒,𝑡𝑟 exp(−2Δ𝜀𝑝𝑛+1𝑁

𝑝
𝑛+1)

𝜀𝑒𝑛+1 = 𝜀𝑒,𝑡𝑟 − Δ𝜀𝑝𝑁 𝑝
𝑛+1

𝜎𝑚𝑛+1 = 𝑔𝑒 (𝜙𝑛+1) (2𝜇dev(𝜀𝑒𝑛+1) + 𝜅tr(𝜀𝑒𝑛+1))
𝜎̄𝑛+1 = 𝜎̄𝑡𝑟 − 3𝜇𝑔𝑒 (𝜙𝑛+1)Δ𝜀𝑝𝑛+1
𝜎𝑛+1 = 1

| |𝐹𝑛+1 | |𝐹
𝑒−𝑇
𝑛+1𝜎

𝑚
𝑛+1𝐹

𝑒𝑇

.

These fields are then used to calculate the driving energies {𝜓𝑒+, 𝜓𝑝} for the phase-field update
solve. The elastic potential is calculated using 𝐹𝑒𝑛+1, as defined in Section 4.36.1.2; the plastic
potential is calculated using 𝜀𝑝𝑛+1, as defined in Section 4.36.2; the final driving energies are
created using these potentials, modified by the tension-compression split (Section 4.36.2.4) and
the bound-constraint and irreversibility treatments (Section 4.36.3.1).

4.36.4.2 Phase-field evolution solution

The phase-field update equation (4.236) is solved in Sierra/SM’s reaction-diffusion solver, using a
Galerkin finite element approach to solve the equation in weak form. The same finite element
mesh is used for both the displacement solve and the phase-field solve (an alternative solution
method is to use Arpeggio to couple with Aria’s reaction-diffusion solution capability. Due to the
complexity of the input file and the need to compile a custom user-plugin for the source term, this
is not recommended. This approach does, however, allow for a different mesh to be used for the
phase-field solve).
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The weak form is derived by first taking the inner product of the phase-field update equation with
a phase variation 𝜔 over the domain Ω:∫

Ω

3𝐺𝑐ℓ

4
Δ𝜙𝜔 − 𝜕𝑔

𝑒 (𝜙)
𝜕𝜙

H𝜔 + 3𝐺𝑐

8ℓ
𝜔 𝑑Ω = 0.

We linearize the degradation function term 𝜕𝑔𝑒 (𝜙)
𝜕𝜙 → 𝜕2𝑔𝑒 (𝜙)

𝜕𝜙2 𝜙 in order to accommodate the
rational degradation function 𝑔R, and then integrate by parts and rearrange to achieve a bilinear
form: ∫

Ω

3𝐺𝑐ℓ

4
∇𝜙 · ∇𝜔 + 𝜕

2𝑔𝑒 (𝜙)
𝜕𝜙2 H𝜙𝜔 𝑑Ω =

∫
Ω

3𝐺𝑐

8ℓ
𝜔 𝑑Ω +

∫
𝜕Ω

3𝐺𝑐ℓ

4
∇𝜙𝜔 · 𝑛𝜕Ω 𝑑Γ.

The last term can be omitted as the variation 𝜔 = 0 is defined to be zero on the boundary. The
phase field and phase variation are discretized using the existing mesh shape functions 𝑁𝑖:

𝜙 =
∑
𝑖 𝑁

𝐴
𝑖 (𝑥)𝜙𝑖

∇𝜙 =
∑
𝑖 ∇𝑁 𝐴

𝑖 (𝑥)𝜙𝑖
𝜔 =

∑
𝑗 𝑁

𝐵
𝑗 (𝑥)𝜔 𝑗

∇𝜔 =
∑
𝑗 ∇𝑁𝐵𝑗 (𝑥)𝜔 𝑗

,

∑
{𝑖, 𝑗}

(∫
Ω

3𝐺𝑐ℓ

4
∇𝑁 𝐴

𝑖 (𝑥)𝜙𝑖 · ∇𝑁𝐵𝑗 (𝑥)𝜔 𝑗 +
𝜕2𝑔𝑒 (𝜙)
𝜕𝜙2 H𝑁 𝐴

𝑖 (𝑥)𝜙𝑖𝑁𝐵𝑗 (𝑥)𝜔 𝑗 𝑑Ω =
∫
Ω

3𝐺𝑐

8ℓ
𝑁𝐵𝑗 (𝑥)𝜔 𝑗 𝑑Ω

)
.

The phase variation nodal field 𝜔 𝑗 can then be factored out:∑
{𝑖, 𝑗}

(
𝜙𝑖

∫
Ω

3𝐺𝑐ℓ

4
∇𝑁 𝐴

𝑖 (𝑥) · ∇𝑁𝐵𝑗 (𝑥) +
𝜕2𝑔𝑒 (𝜙)
𝜕𝜙2 H𝑁 𝐴

𝑖 (𝑥)𝑁𝐵𝑗 (𝑥) 𝑑Ω =
∫
Ω

3𝐺𝑐

8ℓ
𝑁𝐵𝑗 (𝑥) 𝑑Ω

)
.

Gaussian quadrature is used in each element to compute the shape function integrals and then the
element systems are assembled into the global system. In the spirit of the reaction-diffusion
equation template, we refer to the first term as the diffusion term 𝐷𝑖 𝑗 =

3𝐺𝑐ℓ
4 ∇𝑁 𝐴

𝑖 · ∇𝑁𝐵𝑗 , the
second as the reaction term 𝑅𝑖 𝑗 =

𝜕2𝑔𝑒 (𝜙)
𝜕𝜙2 H𝑁 𝐴

𝑖 𝑁
𝐵
𝑗 , and the right-hand side as the source term

𝑆 𝑗 =
3𝐺𝑐
8ℓ 𝑁

𝐵
𝑗 . We note that the diffusion term has the form of a stiffness matrix, while the reaction

term has the form of a mass matrix. The system of equations can then be restated as:(
𝐷𝑖 𝑗 + 𝑅𝑖 𝑗

)
𝜙𝑖 = 𝑆 𝑗 .

In fact, the phase-field update is solved incrementally; that is to say that we solve for Δ𝜙, rather
than 𝜙𝑛+1 = 𝜙𝑛 + Δ𝜙 directly. This updates the matrix system to be written as:(

𝐷𝑖 𝑗 + 𝑅𝑖 𝑗
)
(𝜙𝑛 + Δ𝜙)𝑖 = 𝑆 𝑗 .

Further, we note that the system of equations is linear for the quadratic degradation function 𝑔Q as
𝜕2𝑔Q (𝜙)
𝜕𝜙2 = 2, but is generally nonlinear for the rational degradation function 𝑔R, with 𝑅 = 𝑅(𝜙).

For linear systems (𝑔𝑒 = 𝑔Q = 𝑔R(𝛾 = 0)), we solve the system for Δ𝜙 directly, as:(
𝐷𝑖 𝑗 + 𝑅𝑖 𝑗

)
(Δ𝜙)𝑖 = 𝑆 𝑗 −

(
𝐷𝑖 𝑗 + 𝑅𝑖 𝑗

)
(𝜙𝑛)𝑖 . (4.237)
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For nonlinear systems (𝑔𝑒 = 𝑔R(𝛾 ≠ 0)), the phase-field increment is solved using an iterative
preconditioned conjugate gradient solver that minimizes the residual of (4.237). The nodal
preconditioner is established using a probing approach.

Bound constrained solve

While the approaches described in Section 4.36.3.1 tend to enforce the phase field bound and
irreversibility constraints fairly well, in practice, there are situations in which they occasionally
fail. Assuming that the phase field is properly initialized, the upper bound (𝜙 ≤ 1) will be
respected as long as the irreversibility constraint Δ𝜙 ≤ 0 is met. This leaves the irreversibility
constraint and the lower bound (𝜙 ≥ 0) as the relevant bounds.

The phase-field solve is augmented with bound-constraint methods in order to ensure that the
constraints are satisfied. For the linear solve, this is implemented by simply restricting the phase
field to bounds: 0 ≤ 𝜙𝑛+1 ≤ 𝜙𝑛 ; violating values are set to the bound. Further, for the nonlinear
solve with conjugate gradient, the conjugate-gradient step size is set to zero at nodes where the
bound constraint is active. Details of this algorithm can be found in Vollebregt [107].

While this approach appears to do an adequate job at satisfying the bound constraints on the phase
field, we retain the driving energy modifications defined in Section 4.36.3.1 until it is
demonstrated that the bound-constrained conjugate gradient solve successfully reproduces known
solutions.

4.36.5 Verification

Both single-material point unit tests and full regression tests are used to verify the Phase Field
FeFp model.

4.36.5.1 Unit testing

The Phase Field FeFp model is verified through a series of uniaxial stress test considering a
variety of load magnitudes and phase-field model forms, loosely based on the boundary value
problems of Appendix A are used. Throughout these tests, the elastic properties are maintained as
𝐸 = 200 GPa and 𝜈 = 0.3, the plasticity is defined as linear hardening with 𝑌0 = 180 MPa and
𝐻 = 180 MPa, the fracture parameters are set to 𝐺𝑐 = 6.2 J/m 2,
ℓ = 1.34‘𝑚, : 𝑚𝑎𝑡ℎ : ‘𝑘𝑐 = 1.2 · 10−4, 𝑝𝑝𝑙 = 1 , and a phase field of 𝜙 = 0.9. The phase-field
model is tested with both the threshold (AT-1) model (𝛾 = 0, 𝜓𝑐 = 3

16
𝐺𝑐
ℓ ) and the Lorentz model

(𝛾 = 2, 𝜓𝑐 = 1
16
𝐺𝑐
ℓ ) and with the two implemented tension-compression splits (none and

volumetric-deviatoric). For these tests, we compare the Cauchy stress (often in the uniaxial
component) and plastic strain 𝜀𝑝 as well as the fracture and driving energies.
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Uniaxial Tension - Elastic

For this problem, we set the following deformation state, with the applied axial strain to be half of
the yield strain to ensure elasticity:

𝜀11 = 1
2
𝑌0
𝐸

𝜀22 = 𝜀33 = −𝜈𝜀11

𝐹11 = exp(𝜀11)
𝐹22 = 𝐹33 = exp(𝜀22) = exp(−𝜈𝜀11)
∇𝜙 · ∇𝜙 = 0

This is equivalent to 𝜆 = exp( 12
𝑌0
𝐸 ) − 1. Analytical solutions for the stress, plastic strain, and

energies are derived for comparison. The phase-field models considered are the threshold (AT-1)
and Lorentz degradation functions. The tension-compression split is not tested as it would not be
active in this case. %Begin elastic, the expected stress is 𝜎 = 𝐸𝜀11

exp((1−2𝜈)𝐸𝜀11)deg(𝜙), the plastic
strain is 𝜀𝑝 = 0

Uniaxial Tension - Plastic

For this problem, we set the following deformation and phase state, with the applied axial strain to
be 150% of the yield strain to ensure plasticity:

𝜀11 = 3
2
𝑌0
𝐸

𝜀22 = 𝜀33 = −𝜈𝜀11

𝐹11 = exp(𝜀11)
𝐹22 = 𝐹33 = exp(𝜀22) = exp(−𝜈𝜀11)
∇𝜙 · ∇𝜙 = 0.1

Analytical solutions for the stress, plastic strain, and energies are derived for comparison. The
phase-field models considered are the threshold (AT-1) and Lorentz degradation functions.
Additionally, the plastic-work driving energy portion parameter 𝑝𝑝𝑙 is tested at additional values
of 𝑝𝑝𝑙 = {0, 0.5} . The tension-compression split is not tested as it would not be active in this
case.

450



Uniaxial Compression - Elastic

For this problem, we set the following deformation and phase state, with the applied axial strain to
be negative half of the yield strain to ensure elasticity:

𝜀11 = −1
2
𝑌0
𝐸

𝜀22 = 𝜀33 = −𝜈𝜀11

𝐹11 = exp(𝜀11)
𝐹22 = 𝐹33 = exp(𝜀22) = exp(−𝜈𝜀11)
∇𝜙 · ∇𝜙 = 0

Analytical solutions for the stress, plastic strain, and energies are derived for comparison. The
phase-field models considered are a matrix of degradation functions (threshold and Lorentz) and
the tension-compression splits (none and volumetric-deviatoric).

4.36.5.2 Regression testing

Several tests are implemented in Sierra/SM’s regression test library to provide regular testing of
the Phase Field FeFp in a full finite-element setting. While some of the tests have no analytical
solution and are simply compared to an accepted “gold” result file, others include solution
verification to known analytical solutions. At a minimum, the former tests include solution
verification of the phase bound constraints when the bound-constrained solver is applied.

The tests with solution verification are detailed here:

1D PhaseBC FeFp

% with dimensions 𝑥 ∈ [−0.05, 0.05], 𝑦 ∈ [−0.0005, 0.0005], 𝑧 ∈ [−0.0005, 0.0005] In this test,
a 1-D bar is subjected to a Dirichlet phase boundary condition 𝜙 = 0 at the center 𝑥 = 0,
representing an initial crack. Displacement is fixed on the entire domain, and the nonlinear
reaction-diffusion solver solves for the phase-field emanating from the center. This test checks the
phase profile against an analytical solution (4.238) both as mesh is refined (successively tighter
tolerances) and as Lorentz degradation parameter 𝛾 is varied (𝛾 = 0 and 𝛾 →∞). This is critical
as single-material-point unit tests cannot verify a spatial phase-field solution.

With no mechanical work, the driving energy relies on the critical energy threshold to satisfy the
phase boundary condition: H = 𝜓𝑐. Adapting (4.236) for this case reads:

3𝐺𝑐ℓ

4
𝜙,𝑥𝑥 −

2𝜙(1 + 𝛾)
(1 + 𝛾 − 𝜙𝛾)3

3𝐺𝑐

16ℓ(1 + 𝛾) +
3𝐺𝑐

8ℓ
= 0
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subject to 
0 ≤ 𝜙 ≤ 1
𝜙(0) = 0
𝜙(𝑥0) = 1
𝜙,𝑥 (𝑥0) = 0

.

The analytical solution for the cases above is:

𝜙(𝑥) =


1 − exp(− |𝑥 |√
2ℓ
) with 𝑥0 = ∞ for 𝛾 = 0

1 −
(
1 − |𝑥 |2ℓ

)2
with 𝑥0 = 2ℓ for 𝛾 →∞

. (4.238)

Fig. 4.158 Imagery showing the phase field solutions generated from the 1D PhaseBC FeFp verifi-
cation test, with the phase boundary condition placed at 𝑥 = 0.5 and ℓ = 0.001.

Control 1-D Extension

In this test, a cube is pulled in uniaxial tension with a displacement boundary condition through
the elastic, plastic, and damage regimes. The phase-field length scale ℓ is set to be very large
compared to the domain, so that the phase-field solution remains uniform and the gradient terms
are negligible. The phase-field model form is set to the threshold (AT-1) model with 𝛾 = 0, and
the linear reaction diffusion solver is used. The test checks against the reaction force required to
assert the boundary condition as well as the phase-field in the body. Both linear-elastic and
elastic-plastic materials are considered, each at a single-element and multiple-element mesh.
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The analytical solution for the linear-elastic case is

𝜀11 = log(1 + 𝑢/𝐿)
𝜀𝑒11 = 𝜀11

𝜓𝑒 = 1
2𝐸 (𝜀𝑒11)

2

𝜙 = min(1, 𝜓𝑐/𝜓𝑒)
𝑃 = 𝜙2 𝐸𝜀𝑒11

exp(𝜀𝑒11)
𝑓 = 𝑃𝐴0

, (4.239)

while the analytical solution for the elastic-plastic case is

𝜀11 = log(1 + 𝑢/𝐿)
𝜀𝑒11 = min(𝜀11,

𝐻𝜀11+𝑌0
𝐻𝐸 )

𝜀
𝑝
11 = 𝜀11 − 𝜀𝑒11
𝜀𝑝 = 𝜀𝑒11
𝜓𝑒 = 1

2𝐸 (𝜀𝑒11)
2

𝜓𝑝 = 1
2𝐻 (𝜀𝑝)2 + 𝑌0𝜀

𝑝

𝜙 = min(1, 𝜓𝑐/(𝜓𝑒 + 𝜓𝑝))
𝑃 = 𝜙2 𝐸𝜀𝑒11

exp(𝜀𝑒11)
𝑓 = 𝑃𝐴0

, (4.240)

where 𝑃 is the first Piola-Kirchhoff stress, 𝐴0 represents the initial cross-sectional area, 𝑢
represents axial displacement, 𝐿 represents the initial length of the cube, 𝑓 represents the reaction
force, and 𝐻 represents the linear hardening slope. The test checks against the reaction force
required to assert the boundary condition as well as the phase-field in the body.

Single Element, Linear

This test reproduces a specific case of the Control 1-D Extension test (linear-elastic, single
element), but adds consideration of the conditioning coefficient 𝑘𝑐. The phase-field model form is
set to the threshold (AT-1) model with 𝛾 = 0, and the linear reaction-diffusion solver is used. The
test checks against the reaction force required to assert the boundary condition as well as the
phase-field in the body.

The analytical solution is 

𝜀11 = log(1 + 𝑢/𝐿)
𝜀𝑒11 = 𝜀11

𝜓𝑒 = 1
2𝐸 (𝜀𝑒11)

2

𝜙 = min
(
1, 𝜓𝑐

𝜓𝑒 (1−𝑘𝑐)+𝜓𝑐𝑘𝑐

)
𝑃 = (𝜙2(1 − 𝑘𝑐) + 𝑘𝑐)

𝐸𝜀𝑒11
exp(𝜀𝑒11)

𝑓 = 𝑃𝐴0

. (4.241)
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Single Element, Nonlinear as Linear

This test reproduces a specific case of the Control 1-D Extension test (linear-elastic, single
element), but adds consideration of the nonlinear reaction diffusion solver. The phase-field model
form is set to the threshold (AT-1) model with 𝛾 = 0, but the nonlinear reaction-diffusion solver is
used. Additionally, the impact of the tension-compression split is verified by loading in uniaxial
tension (no split, volumetric-deviatoric split) and uniaxial compression (no split). The solution for
the volumetric-deviatoric split in uniaxial compression is skipped due to its complex derivation,
though it is verified numerically in the next test. The test checks against the reaction force
required to assert the boundary condition as well as the phase-field in the body. Together with
Single Element, Linear, this test verifies that the linear and nonlinear reaction-diffusion solvers
provide the same result for the linear 𝛾 = 0 case.

Single Element, Nonlinear

This test reproduces a specific case of the Control 1-D Extension test (linear-elastic, single
element), but adds consideration of the nonlinear reaction diffusion solver. The phase-field model
form is set to the Lorentz model with 𝛾 = 0.48. Additionally, the impact of the
tension-compression split is verified by loading in uniaxial tension and uniaxial compression,
while applying both no split and the volumetric-deviatoric split for each. The test checks against
the reaction force required to assert the boundary condition as well as the phase-field in the body.
The derivation of a closed-form complex, so a comparison solution has been prepared using
symbolic and numerical solution in a Matlab script solve_Lorentz.m.

4.36.6 User Guide

BEGIN PARAMETERS FOR MODEL PHASE_FIELD_FEFP
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>
#
# Phase Field parameters
#
CONDITIONING COEFFICIENT = <real>
CRITICAL ENERGY DENSITY = <real> (3.0/16.0 * GC / FLS)
FRACTURE LENGTH SCALE = <real>
GC = <real>

(continues on next page)
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(continued from previous page)
NONLOCAL SOLVER = NONE | ARIA | RXNDIFF (RXNDIFF)
PLASTIC WORK DRIVING ENERGY PORTION = <real> (1.0)
TENSION COMPRESSION SPLIT = VOLUMETRIC_DEVIATORIC | NONE␣

↩→(NONE)
#
# Yield surface parameters
#
YIELD STRESS = <real>

#
#
# Hardening model
#
HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED |
FLOW_STRESS | DECOUPLED_FLOW_STRESS | JOHNSON_COOK |
POWER_LAW_BREAKDOWN
#
# Linear hardening
#
HARDENING MODULUS = <real>
#
# Power-law hardening
#
HARDENING CONSTANT = <real>
HARDENING EXPONENT = <real> (0.5)
LUDERS STRAIN = <real> (0.0)
#
# Voce hardening
#
HARDENING MODULUS = <real>
EXPONENTIAL COEFFICIENT = <real>
#
# Johnson-Cook hardening
#
HARDENING FUNCTION = <string>hardening_function_name
RATE CONSTANT = <real>
REFERENCE RATE = <real>
#
# Power law breakdown hardening
#
HARDENING FUNCTION = <string>hardening_function_name
RATE COEFFICIENT = <real>
RATE EXPONENT = <real>
# User defined hardening
#

(continues on next page)
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HARDENING FUNCTION = <string>hardening_function_name
#

#
#
# Following Commands Pertain to Flow_Stress Hardening Model
#
# - Isotropic Hardening model
#
ISOTROPIC HARDENING MODEL = LINEAR | POWER_LAW | VOCE |

USER_DEFINED
#
# Specifications for Linear, Power-law, and Voce same as above
#
# User defined hardening
#
ISOTROPIC HARDENING FUNCTION = <string>iso_hardening_fun_name
#
# - Rate dependence
#
RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)
#
# Specifications for Johnson-Cook, Power-law-breakdown
# same as before EXCEPT no need to specify a
# hardening function
#
# User defined rate multiplier
#
RATE MULTIPLIER FUNCTION = <string> rate_mult_function_name
#
# - Temperature dependence
#
TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |

TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)
#
# Johnson-Cook temperature dependence
#
MELTING TEMPERATURE = <real>
REFERENCE TEMPERATURE = <real>
TEMPERATURE EXPONENT = <real>
#
# User-defined temperature dependence
TEMPERATURE MULTIPLIER FUNCTION = <string>temp_mult_function_name
#

(continues on next page)
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# Following Commands Pertain to Decoupled_Flow_Stress Hardening Model
#
# - Isotropic Hardening model
#
ISOTROPIC HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED
#
# Specifications for Linear, Power-law, and Voce same as above
#
# User defined hardening
#
ISOTROPIC HARDENING FUNCTION = <string>isotropic_hardening_function_

↩→name
#
# - Rate dependence
#
YIELD RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)
#
# Specifications for Johnson-Cook, Power-law-breakdown same as before
# EXCEPT no need to specify a hardening function
# AND should be preceded by YIELD
#
# As an example for Johnson-Cook yield rate dependence,
#
YIELD RATE CONSTANT = <real>
YIELD REFERENCE RATE = <real>
#
# User defined rate multiplier
#
YIELD RATE MULTIPLIER FUNCTION = <string>yield_rate_mult_function_

↩→name
#
HARDENING_RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)
#
# Syntax same as for yield parameters but with a HARDENING prefix
#
# - Temperature dependence
#
YIELD TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |

TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)
#
# Johnson-Cook temperature dependence
#
YIELD MELTING TEMPERATURE = <real>

(continues on next page)
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YIELD REFERENCE TEMPERATURE = <real>
YIELD TEMPERATURE EXPONENT = <real>
#
# User-defined temperature dependence
YIELD TEMPERATURE MULTIPLIER FUNCTION = <string>yield_temp_mult_fun_

↩→name
#
HARDENING TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |

TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)
#
# Syntax for hardening constants same as for yield but
# with HARDENING prefix

#
# Optional Adiabatic Heating / Thermal Softening definitions
#
ADIABATIC OPTION = <bool> (0)
PLASTIC WORK CONSTANT = <real> (1.0)
#
# Optional Functions
#
YOUNGS MODULUS FUNCTION = <string> ym_function_name
POISSONS RATIO FUNCTION = <string> pr_function_name

END [PARAMETERS FOR MODEL PHASE_FIELD_FEFP]

Usage of the Phase Field FeFp material requires proper usage of the Sierra/SM reaction-diffusion
solver. Instructions are located in the Sierra/SM Development Manual.

In the command blocks that define the Phase Field FeFp model:

• See the Sierra/SM User’s Manual for more information on elastic constants input.

• The reference nominal yield stress, 𝑌0, is defined with the YIELD STRESS command line.

• The type of hardening law is defined with the HARDENING MODEL command line, other
hardening commands then define the specific shape of that hardening curve.

• The hardening modulus for a linear hardening model is defined with the HARDENING
MODULUS command line.

• The hardening constant for a power law hardening model is defined with the HARDENING
CONSTANT command line.

• The hardening exponent for a power law hardening model is defined with the HARDENING
EXPONENT command line.

• The Luders strain for a power law hardening model is defined with the LUDERS STRAIN
command line.
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• The hardening function for a user defined hardening model is defined with the HARDENING
FUNCTION command line.

• The shape of the spline for the spline based hardening is defined by the CUBIC SPLINE
TYPE, CARDINAL PARAMETER, KNOT EQPS, and KNOT STRESS command lines.

• The isotropic hardening model for the flow stress hardening model is defined with the
ISOTROPIC HARDENING MODEL command line.

• The function name of a user-defined isotropic hardening model is defined via the
ISOTROPIC HARDENING FUNCTION command line.

• The optional rate multiplier for the flow stress hardening model is defined with the RATE
MULTIPLIER command line.

• The optional temperature multiplier for the flow stress hardening model is defined via the
TEMPERATURE MULTIPLIER command line.

• The function name of a user-defined temperature multiplier is defined with the
TEMPERATURE MULTIPLIER FUNCTION command line.

• For a Johnson-Cook temperature multiplier, the melting temperature, 𝜃melt, is defined via
the MELTING TEMPERATURE command line.

• For a Johnson-Cook temperature multiplier, the reference temperature, 𝜃ref, is defined via
the REFERENCE TEMPERATURE command line.

• For a Johnson-Cook temperature multiplier, the temperature exponent, 𝑀 , is defined via the
TEMPERATURE EXPONENT command line.

Output variables available for this model are listed in Table 4.65. Those marked with an asterisk *
indicates these are integration-point values which may differ from input parameters due to
temperature changes and/or random-variable assignment.

Table 4.65 State Variables for PHASE_FIELD_FEFP Model
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Name Description
YOUNGS_MODULUS Young’s modulus, ∗, 𝐸
POISSONS_RATIO Poisson’s ratio, ∗, 𝜈
MAX_DRIVING_ENERGY history-maximum driving energy exceeding threshold,H −

𝜓𝑐
FRACTURE_ENERGY fracture energy, 𝜓 𝑓

UNDAM-
AGED_STRAIN_ENERGY

undamaged elastic strain energy, 𝜓𝑒

FRACTURE_LENGTH_SCALE fracture length scale, ℓ
GC Griffith fracture energy, ∗, 𝐺𝑐

CRITI-
CAL_ENERGY_DENSITY

critical energy threshold ∗, 𝜓𝑐

PHASE phase field, 𝜙
PHASE_GRAD phase field gradient, ∇𝜙
EQPS equivalent plastic strain, 𝜀𝑝
EQDOT equivalent plastic strain, ¤̄𝜀𝑝
FP plastic deformation gradient, 𝐹 𝑝
ITERATIONS number of return mapping iterations
UNDAM-
AGED_PLASTIC_WORK

undamaged plastic work, 𝜓𝑝

DAMAGED_STRAIN_ENERGY damaged elastic strain energy, 𝜓𝑒
DAMAGED_PLASTIC_WORK damaged plastic work, 𝜓𝑝

4.37 Modular Failure

The modular failure capability consists of a suite of failure models (Tearing Parameter,
Johnson-Cook Failure, Wilkins, Modular Failure, Modular BCJ Failure) that are available to
several of modular material models. These failure models are briefly defined in this chapter, but
other references (e.g. [27], [61], [62]) provide a more complete description. Modular failure is
currently available to the following material models: J2 plasticity, Hosford plasticity, Hill
plasticity, and Barlat plasticity.

Additionally, an anisotropic failure capability has been implemented (Section 4.37.6). This is
compatible with the modular failure models listed here, plus several additional models in
development.

#
# Optional Failure Definitions
# Following only need to be defined if intend to use failure model
#
FAILURE MODEL = TEARING_PARAMETER | JOHNSON_COOK_FAILURE | WILKINS

| MODULAR_FAILURE | MODULAR_BCJ_FAILURE

(continues on next page)
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(continued from previous page)
CRITICAL FAILURE PARAMETER = <real>

4.37.1 Tearing Parameter

The tearing parameter model, proposed by Wellman [108], is implemented with the form,

𝑑 =
1
𝑑crit

∫ 𝜀𝑝

0

〈 2𝜎max
3 (𝜎max − 𝑝)

〉𝑚
𝑑𝜀𝑝, (4.242)

where 𝜎𝑖 𝑗 is the Cauchy stress tensor, 𝑝 = 1
3𝜎𝑘𝑘 is the mean hydrostatic stress, 𝜎𝑚𝑎𝑥 is the

maximum principal stress, and 𝜀𝑝 is the equivalent plastic strain. The two parameters of the
model as 𝑚, a fit exponent, and the critical failure (tearing) parameter, 𝑑crit. The angle brackets
〈·〉, denoting Macaulay brackets,

〈𝑥〉 =
{

0 if 𝑥 ≤ 0
𝑥 if 𝑥 > 0

,

are used to ensure that the failure process occurs only with tensile stress states and prevent
“damage healing”. The failure process initiates once the integral term reaches the critical tearing
parameter, such that 𝑑 = 1.

4.37.1.1 User Guide

#
# TEARING_PARAMETER Failure model definitions
#
TEARING PARAMETER EXPONENT = m

4.37.2 Johnson-Cook Failure

The Johnson-Cook model [49] is implemented with the form,

𝑑 =
∫ 𝜀𝑝

0

𝑑𝜀𝑝

(𝐷1 + 𝐷2 exp(𝐷3𝜂))
(
1 + 𝐷4〈ln ¤̄𝜀

𝑝

¤𝜀0
〉
)
(1 + 𝐷5𝑇∗)

, (4.243)

where {𝐷1, 𝐷2, 𝐷3, 𝐷4, 𝐷5} are fitting constants and ¤𝜀0 is a reference strain rate. The term 𝜂
represents stress triaxiality, the ratio of mean hydrostatic stress to von-Mises stress: 𝜂 = 𝑝

𝜎𝑣𝑚
. The

term 𝑇∗ represents the homologous temperature, given as a function of the temperature 𝑇 by,

𝑇∗ =
𝑇 − 𝑇ref
𝑇melt − 𝑇ref

,
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where 𝑇ref is a reference temperature and 𝑇melt is the melting temperature.

The Johnson-Cook failure model form (4.243) is formulated as a multiplicative combination of
triaxiality, strain-rate, and temperature effects, and the denominator may be interpreted as the
critical failure strain. The failure process initiates once the total quantity reaches 𝑑 = 1.

4.37.2.1 User Guide

#
# JOHNSON_COOK_FAILURE Failure model definitions
#
JOHNSON COOK D1 = <real>
JOHNSON COOK D2 = <real>
JOHNSON COOK D3 = <real>
JOHNSON COOK D4 = <real>
JOHNSON COOK D5 = <real>
#
#Following Johnson-Cook parameters can only be defined once. As such,␣
↩→only
# needed if not previously defined via Johnson-Cook multipliers
# w/ flow-stress hardening. Does need to be defined
# w/ Decoupled Flow Stress
#
REFERENCE RATE = <real>
REFERENCE TEMPERATURE = <real>
MELTING TEMPERATURE = <real>

4.37.3 Wilkins

The Wilkins failure model, proposed by Wilkins [110] is implemented with the form:

𝑑 =
1
𝑑crit

∫ 𝜀𝑝

0
𝑤1𝑤2𝑑𝜀

𝑝, (4.244)

where 𝑤1 represents a pressure-dependent term defined as,

𝑤1 =

(
1

1 − 𝑝
𝐵

)𝛼
,

with 𝛼 and 𝐵 as fitting parameters and 𝑝 is mean hydrostatic stress, and 𝑤2 represents a
Lode-angle-related term defined as,

𝑤2 = (2 − 𝐴)𝛽,
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with 𝛽 as fitting parameter, and 𝐴 defined as a function of deviatoric principal stresses
(𝑠1 ≥ 𝑠2 ≥ 𝑠3),

𝐴 = max
(
𝑠2
𝑠3
,
𝑠2
𝑠1

)
.

The failure process initiates once the integral term reaches the critical failure parameter, such that
𝑑 = 1.

4.37.3.1 User Guide

#
# WILKINS Failure model definitions
#
WILKINS ALPHA = <real>
WILKINS BETA = <real>
WILKINS PRESSURE = <real>

4.37.4 Modular Failure

The “modular failure” model extends the multiplicative framework set out by the Johnson-Cook
and Wilkins models to create a more customizable failure model. This model includes five
individual terms that capture effects due to pressure, Lode angle, stress triaxiality, strain rate, and
temperature. The “modular failure” model is implemented as,

𝑑 =
1
𝑑crit

∫ 𝜀𝑝

0
𝑤1(𝑝)𝑤2(𝜃)𝑤3(𝜂)𝑤4( ¤̄𝜀𝑝)𝑤5(𝑇)𝑑𝜀𝑝, (4.245)

where 𝑝 is the mean hydrostatic stress, 𝜃 is the Lode angle, 𝜂 is the stress triaxiality, and 𝑇 is
temperature. Mean hydrostatic stress 𝑝 is defined as,

𝑝 =
1
3
𝜎𝑘𝑘 .

Lode angle 𝜃 is defined in terms of deviatoric stress invariants tensor {𝐽2, 𝐽3} as,

cos 3𝜃 =

√
27
4
𝐽3

2

𝐽2
3 .

Stress triaxiality 𝜂 is defined as the ratio of mean hydrostatic stress to von-Mises stress,

𝜂 =
𝑝

𝜎𝑣𝑚
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Each of the multiplicative terms 𝑤𝑖 can be independently specified; user-defined functions can be
provided, and several presets are provided. Implemented possibilities are,

𝑤1(𝑝) = 1, 𝑤w
1 , 𝑤

ud
1 ,

𝑤2(𝜃) = 1, 𝑤w
2 ,

𝑤3(𝜂) = 1, 𝑤jc
3 , 𝑤

ud
3 ,

𝑤4( ¤̄𝜀𝑝) = 1, 𝑤jc
4 , 𝑤

ud
4 ,

𝑤5(𝑇) = 1, 𝑤jc
5 , 𝑤

ud
5 ,

where superscripts {jc,w, ud} represent Johnson-Cook model terms, Wilkins model terms, or
user-defined functions, respectively. Refer to Section 4.37.2 and Section 4.37.3 for these function
definitions. Leaving a function unspecified defines the function as 1, indicating independence
with respect to that variable. The failure process initiates once the integral term reaches the
critical failure parameter, such that 𝑑 = 1.

4.37.4.1 User Guide

#
# MODULAR_FAILURE Failure model definitions
#
PRESSURE MULTIPLIER = PRESSURE_INDEPENDENT | WILKINS

| USER_DEFINED (PRESSURE_INDEPENDENT)
LODE ANGLE MULTIPLIER = LODE_ANGLE_INDEPENDENT |

WILKINS (LODE_ANGLE_INDEPENDENT)
TRIAXIALITY MULTIPLIER = TRIAXIALITY_INDEPENDENT | JOHNSON_COOK

| USER_DEFINED (TRIAXIALITY_INDEPENDENT)
RATE FAIL MULTIPLIER = RATE_INDEPENDENT | JOHNSON_COOK

| USER_DEFINED (RATE_INDEPENDENT)
TEMPERATURE FAIL MULTIPLIER = TEMPERATURE_INDEPENDENT | JOHNSON_COOK

| USER_DEFINED (TEMPERATURE_INDEPENDENT)
#
# Individual multiplier definitions
#
PRESSURE MULTIPLIER = WILKINS
WILKINS ALPHA = <real>
WILKINS PRESSURE = <real>
#
PRESSURE MULTIPLIER = USER_DEFINED
PRESSURE MULTIPLIER FUNCTION = <string> pressure_multiplier_fun_name
#
LODE ANGLE MULTIPLIER = WILKINS
WILKINS BETA = <real>
#
TRIAXIALITY MULTIPLIER = JOHNSON_COOK

(continues on next page)
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JOHNSON COOK D1 = <real>
JOHNSON COOK D2 = <real>
JOHNSON COOK D3 = <real>
#
TRIAXIALITY MULTIPLIER = USER_DEFINED
TRIAXIALITY MULTIPLIER FUNCTION = <string> triaxiality_multiplier_fun_
↩→name
#
RATE FAIL MULTIPLIER = JOHNSON_COOK
JOHNSON COOK D4 = <real>
# REFERENCE RATE should only be added if not previously defined
REFERENCE RATE = <real>
#
RATE FAIL MULTIPLIER = USER_DEFINED
RATE FAIL MULTIPLIER FUNCTION = <string> rate_fail_multiplier_fun_name
#
TEMPERATURE FAIL MULTIPLIER = JOHNSON_COOK
JOHNSON COOK D5 = <real>
# JC Temperatures should only be defined if not previously given
REFERENCE TEMPERATURE = <real>
MELTING TEMPERATURE = <real>
#
TEMPERATURE FAIL MULTIPLIER = USER_DEFINED
TEMPERATURE FAIL MULTIPLIER FUNCTION = <string> temp_multiplier_fun_
↩→name

4.37.5 Modular BCJ Failure

The modular BCJ (Bammann-Chiesa-Johnson [8]) failure model develops the damage variable
through a micromechanical representation of the void evolution process. In this model, damage is
defined as void volume fraction as function of void size 𝑣𝑣 and count 𝑓 in a nominal unit volume
𝑉0 [50]:

𝑑 =
𝑣𝑣 𝑓 𝑉0

𝑉0 + 𝑣𝑣 𝑓 𝑉0
=

𝑣𝑣 𝑓

1 + 𝑣𝑣 𝑓
.

Void evolution is determined by incrementation of void nucleation and void growth models.
Implemented void nucleation models include Horstemeyer-Gokhale (HG) [44] and
Chu-Needleman strain distribution (CNSD) [24]:

( ¤𝑓 )HG = 𝑓 ¤̄𝜀𝑝𝑁4

(
𝑁1

[
4
27
− 𝐽3

2

𝐽2
3

]
+ 𝑁2

[
𝐽3

𝐽2
3
2

]
+ 𝑁3

[
|𝑝 |
𝜎𝑣𝑚

])
, (4.246)

where {𝑁1, 𝑁2, 𝑁3, 𝑁4} are fitting constants, {𝐽2, 𝐽3} are deviatoric stress tensor invariants, 𝑝 is
the mean hydrostatic stress, and 𝜎𝑣𝑚 is the von-Mises stress. The 𝑁1 term premultiplies a term
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indicating a shear-dominated stress state (maximal in torsion); the 𝑁2 term premultiplies a term
indicating uniaxial stress state (maximal in uniaxial tension); the 𝑁3 term premultiplies a term
indicating stress triaxiality (maximal in hydrostatic tension/compression).

( ¤𝑓 )CNSD =
1

(1 − 𝑑)2

[
𝜓

𝑠𝑣0
√

2𝜋

]
exp

(
−1

2

(
𝜀𝑝 − 𝜀𝑁

𝑠

)2
)
,

where 𝜓 is the void amplitude, 𝜀𝑁 is the mean of the nucleation strain distribution, and 𝑠 is the
standard deviation of the nucleation strain distribution.

The Cocks-Ashby (CA) model [25] is the only growth model implemented to date:

( ¤𝑣𝑣)CA =

√
2
3
¤̄𝜀𝑝

(
1 − (1 − 𝑑)𝑚+1
(1 − 𝑑)𝑚

)
sinh

[
2(2𝑚 − 1)

2𝑚 + 1
𝑝

𝜎𝑣𝑚

]
, (4.247)

where 𝑚 is the damage growth exponent.

The void nucleation and growth models are combined to develop the full expression for void
evolution,

¤𝑑 = ¤𝑣𝑣𝑤𝐺1 ( ¤̄𝜀
𝑝)𝑤𝐺2 (𝑇) + (1 − 𝑑)

2 ¤𝑓 𝑣0𝑤
𝑁
1 ( ¤̄𝜀

𝑝)𝑤𝑁2 (𝑇), (4.248)

where optional functions 𝑤𝑋𝑖 are introduced to account for strain-rate and temperature effects.
Implemented functions provide for strain-rate and temperature effects using the 𝐷4 and 𝐷5 terms
of the Johnson-Cook failure model (4.243).

Note that the void evolution equation is defined implicitly, as void nucleation and growth
expressions may each depend on damage. A model parameter 𝛽 exposes the option to control the
temporal integration of (4.248), with 𝛽 = 0 representing forward Euler integration (explicit),
𝛽 = 1 representing backward Euler integration (implicit), and 𝛽 = 0.5 (default) representing
trapezoidal integration (implicit). Other common parameters include the initial damage 𝑑0 and
initial void size 𝑣0.

4.37.5.1 User Guide

#
# MODULAR_BCJ_FAILURE Failure model definitions
#
INITIAL DAMAGE = <real>
INITIAL VOID SIZE = <real>
DAMAGE BETA = <real> (0.5)
GROWTH MODEL = COCKS_ASHBY | NO_GROWTH (NO_GROWTH)
NUCLEATION MODEL = HORSTEMEYER_GOKHALE | CHU_NEEDLEMAN_STRAIN

| NO_NUCLEATION (NO_NUCLEATION)
#
GROWTH RATE FAIL MULTIPLIER = JOHNSON_COOK | USER_DEFINED

(continues on next page)
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| RATE_INDEPENDENT
(RATE_INDEPENDENT)

GROWTH TEMPERATURE FAIL MULTIPLIER = JOHNSON_COOK | USER_DEFINED
| TEMPERATURE_INDEPENDENT
(TEMPERATURE_INDEPENDENT)

#
NUCLEATION RATE FAIL MULTIPLIER = JOHNSON_COOK | USER_DEFINED

| RATE_INDEPENDENT
(RATE_INDEPENDENT)

NUCLEATION TEMPERATURE FAIL MULTIPLIER = JOHNSON_COOK | USER_DEFINED
| TEMPERATURE_INDEPENDENT
(TEMPERATURE_INDEPENDENT)

#
# Definitions for individual growth and nucleation models
#
GROWTH MODEL = COCKS_ASHBY
DAMAGE EXPONENT = <real> (0.5)
#
NUCLEATION MODEL = HORSTEMEYER_GOKHALE
NUCLEATION PARAMETER1 = <real> (0.0)
NUCLEATION PARAMETER2 = <real> (0.0)
NUCLEATION PARAMETER3 = <real> (0.0)
#
NUCLEATION MODEL = CHU_NEEDLEMAN_STRAIN
NUCLEATION AMPLITUDE = <real>
MEAN NUCLEATION STRAIN = <real>
NUCLEATION STRAIN STD DEV = <real>
#
# Definitions for rate and temperature fail multiplier
# Note: only showing definitions for growth.
# Nucleation terms are the same just with NUCLEATION instead
# of GROWTH
#
GROWTH RATE FAIL MULTIPLIER = JOHNSON_COOK
GROWTH JOHNSON COOK D4 = <real>
GROWTH REFERENCE RATE = <real>
#
GROWTH RATE FAIL MULTIPLIER = USER_DEFINED
GROWTH RATE FAIL MULTIPLIER FUNCTION = <string> growth_rate_fail_mult_
↩→func
#
GROWTH TEMPERATURE FAIL MULTIPLIER = JOHNSON_COOK
GROWTH JOHNSON COOK D5 = <real>
GROWTH REFERENCE TEMPERATURE = <real>
GROWTH MELTING TEMPERATURE = <real>

(continues on next page)
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#
GROWTH TEMPERATURE FAIL MULTIPLIER = USER_DEFINED
GROWTH TEMPERATURE FAIL MULTIPLIER FUNCTION = <string> temp_fail_mult_
↩→func
#

4.37.6 Anisotropic Failure

4.37.6.1 Background

A common feature of many of the modular failures model available in LAMÉ is damage
accumulation through integration by a scalar equivalent plastic strain rate variable, e.g. (4.242),
(4.243), (4.244), (4.245), (4.246), (4.247). This anisotropic failure approach leverages that
common form to introduce a heuristic anisotropic dependence.

The plastic strain rate tensor ¤𝜀𝑝𝑖 𝑗 is defined through the flow rule deriving from the normality
principle of associated plasticity, by scalar plasticity rate variable ¤𝛾, effective stress 𝜎★, and stress
tensor 𝜎𝑖 𝑗 :

¤𝜀𝑝𝑖 𝑗 = ¤𝛾
𝜕𝜎★
𝜕𝜎𝑖 𝑗

This relation can be expressed equivalently as an equivalent plastic strain rate scalar ¤̄𝜀𝑝 and a flow
direction tensor 𝑁 . The LAMÉ implementation defines the flow tensor as the effective stress
derivative with respect to the stress tensor, without any further normalization:

¤𝜀𝑝𝑖 𝑗 = ¤̄𝜀
𝑝𝑁𝑖 𝑗

¤̄𝜀𝑝 = ¤𝛾, 𝑁𝑖 𝑗 =
𝜕𝜎★
𝜕𝜎𝑖 𝑗

(4.249)

¤̄𝜀𝑝 =

√
¤𝜀𝑝𝑖 𝑗 ¤𝜀

𝑝
𝑖 𝑗√

𝑁𝑖 𝑗𝑁𝑖 𝑗

(4.250)

For example, in 𝐽2 plasticity, 𝑁𝑖 𝑗 = 3
2
𝑠𝑖 𝑗
𝜎★

=
√

3
2

𝑠𝑖 𝑗
𝑠𝑖 𝑗 𝑠𝑖 𝑗

, so 𝑁𝑖 𝑗𝑁𝑖 𝑗 = 3
2 . The plastic strain rate scalar is

then the familiar ¤̄𝜀𝑝 =
√

2
3 ¤𝜀

𝑝
𝑖 𝑗 ¤𝜀

𝑝
𝑖 𝑗 .
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4.37.6.2 Anisotropic Weighting Concept

In order to create anisotropic failure behavior, the plastic strain rate scalar used for failure model
integration is weighted using an anisotropic weight tensor; the weighted equivalent plastic strain
scalar is denoted as ¤̄̂𝜀𝑝. Crucially, the weighting is not intended to modify the material
constitutive (i.e. plasticity, non-failure) model in any way.

Second-order and fourth-order anisotropic weighting is proposed, using symmetric second-order
𝐴𝑖 𝑗 or fourth-order 𝐵𝑖 𝑗 𝑘𝑙 symmetric weighting tensors [96], [97]:

2nd-order formulation:

¤̄̂𝜀𝑝 =

√
¤𝜀𝑝𝑖𝑘𝐴𝑖 𝑗 ¤𝜀

𝑝
𝑗𝑙𝛿𝑘𝑙

𝑁𝑚𝑛𝑁𝑚𝑛
= ¤̄𝜀𝑝

√
𝑁𝑖𝑘𝐴𝑖 𝑗𝑁 𝑗 𝑙𝛿𝑘𝑙

𝑁𝑚𝑛𝑁𝑚𝑛
(4.251)

4th-order formulation:

¤̄̂𝜀𝑝 =

√
¤𝜀𝑝𝑖 𝑗𝐵𝑖 𝑗 𝑘𝑙 ¤𝜀

𝑝
𝑘𝑙

𝑁𝑚𝑛𝑁𝑚𝑛
= ¤̄𝜀𝑝

√
𝑁𝑖 𝑗𝐵𝑖 𝑗 𝑘𝑙𝑁𝑘𝑙

𝑁𝑚𝑛𝑁𝑚𝑛
(4.252)

4.37.6.3 Symmetry

As stress tensors and plastic flow direction tensors are assumed to be symmetric, the anisotropic
weight tensors are constrained to have major (𝐴𝑖 𝑗 = 𝐴 𝑗𝑖; 𝐵𝑖 𝑗 𝑘𝑙 = 𝐵𝑘𝑙𝑖 𝑗 ) and minor
(𝐵𝑖 𝑗 𝑘𝑙 = 𝐵 𝑗𝑖𝑘𝑙 = 𝐵𝑖 𝑗 𝑙𝑘 = 𝐵 𝑗𝑖𝑙𝑘 ) symmetries. This reduces the number of unique parameters to six
for the 2nd-order tensor 𝐴𝑖 𝑗 and 21 for the 4th-order tensor 𝐵𝑖 𝑗 𝑘𝑙 .

4.37.6.4 Mandel Notation

It is convenient to express the fourth-order tensor 𝐵𝑖 𝑗 𝑘𝑙 in Mandel notation as a 6x6 matrix 𝐵𝐼𝐽 .
The conversion between the full forms of the flow tensor (𝑁𝑖 𝑗 ) and weight tensor (𝐵𝑖 𝑗 𝑘𝑙) to Mandel
notation {𝑁𝐼 , 𝐵𝐼𝐽} are as follows:

𝑁𝐼 =



𝑁11
𝑁22
𝑁33√
2𝑁12√
2𝑁23√
2𝑁31


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𝐵𝐼𝐽 =



𝐵1111 𝐵1122 𝐵1133
√

2𝐵1112
√

2𝐵1123
√

2𝐵1131
𝐵1122 𝐵2222 𝐵2233

√
2𝐵2212

√
2𝐵2223

√
2𝐵2231

𝐵1133 𝐵2233 𝐵3333
√

2𝐵3312
√

2𝐵3323
√

2𝐵3331√
2𝐵1112

√
2𝐵2212

√
2𝐵3312 2𝐵1212 2𝐵1223 2𝐵1231√

2𝐵1123
√

2𝐵2223
√

2𝐵3323 2𝐵1223 2𝐵2323 2𝐵2331√
2𝐵1131

√
2𝐵2231

√
2𝐵3331 2𝐵1231 2𝐵2331 2𝐵3131


The anisotropic weighting can now be expressed in terms of the Mandel-converted tensors.

¤̄̂𝜀𝑝 = ¤̄𝜀𝑝
√
𝑁𝑖 𝑗𝐵𝑖 𝑗 𝑘𝑙𝑁𝑘𝑙

𝑁𝑚𝑛𝑁𝑚𝑛
= ¤̄𝜀𝑝

√
𝑁𝐼𝐵𝐼𝐽𝑁𝐽
𝑁𝐾𝑁𝐾

(4.253)

Note that the anisotropic failure model parameters are specified as individual entries of the
fourth-order tensor - not as entries of the equivalent Mandel matrix.

4.37.6.5 Weighting Tensor Forms

Common forms for the anisotropic weighting tensors are as follows:

Isotropic, Second-Order:

𝐴𝑖𝑠𝑜𝑖 𝑗 =


1 0 0
0 1 0
0 0 1


Coordinate-Axis Aligned, Second-Order:

𝐴
𝑑𝑖𝑎𝑔
𝑖 𝑗 =


𝐴11 0 0
0 𝐴22 0
0 0 𝐴33


General (Rotated), Second-Order:

𝐴
𝑔𝑒𝑛
𝑖 𝑗 =


𝐴11 𝐴12 𝐴13
𝐴12 𝐴22 𝐴23
𝐴13 𝐴23 𝐴33

 = 𝐴𝑑𝑖𝑎𝑔𝑘𝑙 𝑅𝑖𝑘𝑅𝑙 𝑗

Note that the rotation matrix can equivalently be applied to the weighting tensor (shown here) or
to the flow direction tensor.

Fourth-Order Equivalence to Second-Order

𝐵𝐼𝐽 =



𝐴11 0 0 1√
2
𝐴12 0 1√

2
𝐴13

0 𝐴22 0 1√
2
𝐴12

1√
2
𝐴23 0

0 0 𝐴33 0 1√
2
𝐴23

1√
2
𝐴13

1√
2
𝐴12

1√
2
𝐴12 0 1

2 (𝐴11 + 𝐴22) 1
2𝐴13

1
2𝐴23

0 1√
2
𝐴23

1√
2
𝐴23

1
2𝐴13

1
2 (𝐴22 + 𝐴33) 1

2𝐴12
1√
2
𝐴13 0 1√

2
𝐴13

1
2𝐴23

1
2𝐴12

1
2 (𝐴33 + 𝐴11)


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This tensor form allows for a second-order weighting while using the fourth-order tensor. Any
deviation from this tensor form necessarily induce a fundamentally fourth-order weighting.

Isotropic, Fourth-Order:

𝐵𝑖𝑠𝑜𝐼𝐽 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


Coordinate-Axis Aligned, Fourth-Order:

𝐵
𝑑𝑖𝑎𝑔
𝐼𝐽 =



𝐴11 0 0 0 0 0
0 𝐴22 0 0 0 0
0 0 𝐴33 0 0 0
0 0 0 1

2 (𝐴11 + 𝐴22) 0 0
0 0 0 0 1

2 (𝐴22 + 𝐴33) 0
0 0 0 0 0 1

2 (𝐴33 + 𝐴11)


Coordinate-Axis Aligned Rotated, Fourth-Order:

𝐵
𝑑𝑖𝑎𝑔
𝐼𝐽 = 𝐵𝐾𝐿𝑀𝐼𝐾𝑀𝐿𝐽 = 𝐵

𝑑𝑖𝑎𝑔,𝑟𝑜𝑡
𝑖 𝑗 𝑘𝑙 = 𝐵𝑑𝑖𝑎𝑔𝑚𝑛𝑝𝑞𝑅𝑖𝑚𝑅 𝑗𝑛𝑅𝑘 𝑝𝑅𝑙𝑞

where 𝑀 is a Mandel-notation rotation tensor [1], [66].

General, Fourth-Order:

𝐵𝐼𝐽 =



𝐵1111 𝐵1122 𝐵1133
√

2𝐵1112
√

2𝐵1123
√

2𝐵1131
𝐵1122 𝐵2222 𝐵2233

√
2𝐵2212

√
2𝐵2223

√
2𝐵2231

𝐵1133 𝐵2233 𝐵3333
√

2𝐵3312
√

2𝐵3323
√

2𝐵3331√
2𝐵1112

√
2𝐵2212

√
2𝐵3312 2𝐵1212 2𝐵1223 2𝐵1231√

2𝐵1123
√

2𝐵2223
√

2𝐵3323 2𝐵1223 2𝐵2323 2𝐵2331√
2𝐵1131

√
2𝐵2231

√
2𝐵3331 2𝐵1231 2𝐵2331 2𝐵3131


4.37.6.6 Calibration

For simple loading states, it may be possible to determine the anisotropic weighting tensor entries
analytically, using experimentally observed failure strains and presumed plastic strain flow
directions for several different loading directions. Examples of this are included in references [96],
[97]. For more complex load paths or rate-dependence and temperature effects included, analytical
calibration may be intractable, and a numerical optimization approach should be used instead.
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4.37.6.7 Permissive Option

Note that the numerator of the anisotropic weighting relations (4.251) and (4.252) include a
square root of the tensor products. With no constraints imposed on 𝐴𝑖 𝑗 and 𝐵𝑖 𝑗 𝑘𝑙 , this creates the
possibility of having a negative argument to the square root, implying a weighting with imaginary
terms. By default, LAMÉ will error out if a negative argument is passed to the square root. As an
alternative, the ANISOTROPIC_EQPS_WEIGHT_PERMISSIVE = 1 option allows the failure
model to continue in these cases, by setting the argument (and weighting) to zero.

Choosing a positive-semi-definite weighting tensor would ensure that this issue is prevented.
Further, since the weighting tensors are contracted with traceless flow direction tensors rather than
vectors, the positive-semi-definite requirement can be weakened. For second-order tensors, it is
only required for tensor invariant 𝐼1(𝐴) ≥ 0 and 𝐼2(𝐴) ≥ 0, but 𝐼3(𝐴) may be negative. LAMÉ
returns a warning when the minimum eigenvalue of 𝐴𝑖 𝑗 is negative and returns an error if 𝐼2(𝐴) is
negative.

This approach is difficult to generalize for the fourth-order weighting tensor, so no warnings or
errors based on the structure of 𝐵𝑖 𝑗 𝑘𝑙 are provided.

4.37.6.8 Material Coordinate Rotation

When performing the anisotropic weighting, the failure model first rotates the flow direction
tensors from the global coordinate system to a material coordinate system, if one is provided. This
is the same material coordinate system used by anisotropic plasticity models like Hill Plasticity.
This is performed by applying the rotation matrices to the plastic flow direction tensor:
𝑁matl = 𝑅𝑇𝑁global𝑅. The weighting is then done using 𝑁matl and anisotropic weight tensors,
which are presumed to be in the material coordinates (i.e. 𝐴 = 𝐴matl).

Equivalently, the rotation matrices could be applied to the weighting tensor, e.g.
𝐴global = 𝑅𝐴matl𝑅𝑇 , which could be done either every timestep or even during user parameter
specification. While the latter would be more efficient, it limits the use cases to those where the
coordinate transformation is invariant in time and space (e.g. not a cylindrical coordinate
system).

4.37.6.9 User Guide

#
# Anisotropic Failure model definitions
#
ANISOTROPIC_EQPS_WEIGHT_ORDER = <int> 0 | 2 | 4 (0)
ANISOTROPIC_EQPS_WEIGHT_PERMISSIVE = <bool> 0 | 1 (0)
#
# Definitons for second-order anisotropic weighting
# (symmetric, 6 unique)

(continues on next page)
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(continued from previous page)
ANISOTROPIC_EQPS_WEIGHT_XX = <real> (1.0)
ANISOTROPIC_EQPS_WEIGHT_YY = <real> (1.0)
ANISOTROPIC_EQPS_WEIGHT_ZZ = <real> (1.0)
ANISOTROPIC_EQPS_WEIGHT_XY = <real> (0.0)
ANISOTROPIC_EQPS_WEIGHT_YZ = <real> (0.0)
ANISOTROPIC_EQPS_WEIGHT_ZX = <real> (0.0)
#
# Definitons for fourth-order anisotropic weighting
# (major/minor symmetric, 21 unique)
ANISOTROPIC_EQPS_WEIGHT_XXXX = <real> (1.0)
ANISOTROPIC_EQPS_WEIGHT_YYYY = <real> (1.0)
ANISOTROPIC_EQPS_WEIGHT_ZZZZ = <real> (1.0)
ANISOTROPIC_EQPS_WEIGHT_XXYY = <real> (0.0)
ANISOTROPIC_EQPS_WEIGHT_YYZZ = <real> (0.0)
ANISOTROPIC_EQPS_WEIGHT_ZZXX = <real> (0.0)
#
ANISOTROPIC_EQPS_WEIGHT_XXXY = <real> (0.0)
ANISOTROPIC_EQPS_WEIGHT_XXYZ = <real> (0.0)
ANISOTROPIC_EQPS_WEIGHT_XXZX = <real> (0.0)
ANISOTROPIC_EQPS_WEIGHT_YYXY = <real> (0.0)
ANISOTROPIC_EQPS_WEIGHT_YYYZ = <real> (0.0)
ANISOTROPIC_EQPS_WEIGHT_YYZX = <real> (0.0)
ANISOTROPIC_EQPS_WEIGHT_ZZXY = <real> (0.0)
ANISOTROPIC_EQPS_WEIGHT_ZZYZ = <real> (0.0)
ANISOTROPIC_EQPS_WEIGHT_ZZZX = <real> (0.0)
#
ANISOTROPIC_EQPS_WEIGHT_XYXY = <real> (0.5)
ANISOTROPIC_EQPS_WEIGHT_XYYZ = <real> (0.0)
ANISOTROPIC_EQPS_WEIGHT_XYZX = <real> (0.0)
ANISOTROPIC_EQPS_WEIGHT_YZYZ = <real> (0.5)
ANISOTROPIC_EQPS_WEIGHT_YZZX = <real> (0.0)
ANISOTROPIC_EQPS_WEIGHT_ZXZX = <real> (0.5)

Output variables available for this model are listed in State Variables for Anisotropic Failure
Model.

Table 4.66 State Variables for Anisotropic Failure Model
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Name Description
FAILURE_ROT_XX material rotation tensor, 𝑅11
FAILURE_ROT_YY material rotation tensor, 𝑅22
FAILURE_ROT_ZZ material rotation tensor, 𝑅33
FAILURE_ROT_XY material rotation tensor, 𝑅12
FAILURE_ROT_YZ material rotation tensor, 𝑅23
FAILURE_ROT_ZX material rotation tensor, 𝑅31
FAILURE_ROT_YX material rotation tensor, 𝑅21
FAILURE_ROT_ZY material rotation tensor, 𝑅32
FAILURE_ROT_XZ material rotation tensor, 𝑅13

474



A. Common Boundary Value Problems

Throughout this effort, a wide variety of boundary value problems have been used to verify the
various model responses investigated. Although some of these are specially tailored to a model,
many of the loading paths and problems are common. As such, these repeated tests are presented
and discussed here in this appendix. Emphasis is placed on the boundary conditions and
kinematic descriptions that do not depend on the constitutive behavior and are therefore similar
for all models. Details on how to produce these paths in a finite element problem are also
discussed. For details on the various problems considered, the reader is referred to various texts
[43], [56] on the subject.

A.1 Uniaxial Stress

In all likelihood, the most common test (experimentally or numerically) is that of uniaxial stress.
Such a state may be produced via either stress or displacement control. Here, the latter case is
discussed as displacement control can be essential when considering model responses that soften
through damage or other mechanisms. To produce the uniaxial stress of interest, a displacement of
the form 𝑢1 = 𝜆(𝑡) is applied along the 𝑥1 edge. In three dimensional finite element cases, it is
also essential to leave the 𝑥2 and 𝑥3 surfaces with a traction free condition. With elastically
isotropic materials, this produces a strain field of the form,

𝜀𝑖 𝑗 =
[
𝛿𝑖1𝛿 𝑗1 − 𝜈

(
𝛿𝑖2𝛿 𝑗2 + 𝛿𝑖3𝛿𝑖3

) ]
ln (1 + 𝜆) ,

which produces 𝜎11 as the only non-zero stress.

A.2 Simple Shear

An alternative, and often simpler to implement, shear problem is that of simple shear. With such a
deformation field, only one shear stress component is non-zero (like the pure shear case). The
difference arises in that given a simple shear loading the diagonal stresses are not necessarily zero.
This state may be produced by a motion, 𝜒(𝑋𝑖, 𝑡) of the form 𝜒(𝑋𝑖, 𝑡) = 𝑋𝑖 + 𝛾(𝑡)𝑋2𝛿𝑖1. The
resultant deformation gradient, 𝐹𝑖 𝑗 , takes the form,

𝐹𝑖 𝑗 = 𝛿𝑖 𝑗 + 𝛾 (𝑡) 𝛿𝑖1𝛿 𝑗2

and it is noted that this deformation is volume preserving (𝐽 = det 𝐹𝑖 𝑗 = 1). Numerically, such a
deformation field results from applying a displacement in the 𝑥 direction along the 𝑦 surface.
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A.3 Pure Shear

To consider shear-based responses and behaviors of a model, uniaxial loadings are often
insufficient. One problem, however, that does investigate shear deformations is that of a pure shear
problem. In such problems, only a single shear strain and stress component are non-zero. Such a
material state results from a deformation gradient of the form,

𝐹𝑖 𝑗 =
1
2

(
𝜆 + 𝜆−1

) (
𝛿𝑖1𝛿 𝑗1 + 𝛿𝑖2𝛿 𝑗2

)
+ 1

2

(
𝜆 − 𝜆−1

) (
𝛿𝑖1𝛿 𝑗2 + 𝛿𝑖2𝛿 𝑗1

)
+ 𝛿𝑖3𝛿 𝑗3,

where the shear loading is relative to the 𝑥1 − 𝑥2 axis. The logarithmic strain tensor is then simply
𝜀𝑖 𝑗 = ln𝜆(𝛿𝑖1𝛿 𝑗2 + 𝛿𝑖2𝛿 𝑗1). With such a strain tensor, it is trivial to note that 𝜎12 is the only
non-zero stress.

A.4 Hydrostatic Compression

In many cases, it is preferable to interrogate the pressure-dependent response of various models
independently of any deviatoric deformations. To consider such purely volumetric loadings,
hydrostatic (almost always compression) problems are invoked. Such loadings are often also
referred to as uniform dilation as the volumetric change is the same in all three directions.
Specifically, in these cases a purely volumetric response is investigated by applying a deformation
of the form 𝑢𝑖 = 𝜆(𝑡). In a finite element problem, such a deformation field is reproduced by
applying the displacement components onto the corresponding edges. With such applied
displacement fields, the resulting logarithmic strain tensor is simply,

𝜀𝑖 𝑗 = ln [1 + 𝜆 (𝑡)] 𝛿𝑖 𝑗 ,

and the corresponding (elastic) stress field is simply 𝜎𝑖 𝑗 = −𝑝𝛿𝑖 𝑗 where,

𝑝 = −3𝐾 ln (1 + 𝜆) .

Note, in the preceding relation 𝑝 is defined as positive in compression.

A.5 Constant Equivalent Plastic Strain Rate

Typically, for a given boundary value problem it is desirable to know either the stress or
deformation (strain) state and solve for the complementary response functions. In the case of
rate-dependent hardening, or often rate-independent, it is preferable to prescribe a constant
equivalent plastic strain rate, ¤̄𝜀𝑝. Knowing, and controlling, this variable is often essential to
finding and solving analytical solutions to verify hardening models.

As the equivalent plastic strain, 𝜀𝑝, is the internal (hidden) state variable corresponding to
isotropic hardening, it is counterintuitive to think of prescribing it’s value. Nonetheless, for many
plasticity models such a case is not only possible but relatively simple. Details of this approach
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may be found in [79], but are repeated here for convenience and completeness. In the following,
two cases are treated – uniaxial stress and pure shear. For either problem, it is assumed that the
stress state is initially at yield 𝜙[𝜎𝑖 𝑗 (𝑡 = 0, 𝜀𝑝 = 0)] = 𝜎0

𝑦 and a constant equivalent plastic strain
rate is prescribed such that,

𝜀𝑝 (𝑡) = ¤̄𝜀𝑝𝑡.

Furthermore, it is recalled that the yield surface, 𝑓 , is written as,

𝑓
(
𝜎𝑖 𝑗 , 𝜀

𝑝, ¤̄𝜀𝑝
)
= 𝜙

(
𝜎𝑖 𝑗

)
− 𝜎̄

(
𝜀𝑝, ¤̄𝜀𝑝

)
,

where,

𝜎̄
(
𝜀𝑝, ¤̄𝜀𝑝

)
= 𝜎̃𝑦 (𝜀𝑝) 𝜎̂𝑦

( ¤̄𝜀𝑝 ) .
Note, throughout this section function forms for 𝜎̃𝑦 and 𝜎̂𝑦 are not given. For the purposes of the
developed problem, the specific forms are unnecessarily as long as 𝜎̃𝑦 depends only on 𝜀𝑝 and 𝜎̂𝑦
on the corresponding rate.

A.5.1 Uniaxial Stress

During uniaxial stress, the state of stress reduces to,

𝜎𝑖 𝑗 = 𝜎𝛿𝑖𝜂𝛿 𝑗𝜂 (no sum on 𝜂)

where 𝜂 is the direction of loading (taken to align with one of the material principal axes) and

𝜎 = Γ𝜂𝜂𝜎̄ (𝑡) , (4.254)

with Γ𝜂𝜂 being a constant associated with and dependent on the model parameters of the plasticity
model. Specific forms for the various yield surfaces are given later in this section. Given this
stress state, the axial elastic strain is simply,

𝜀el𝜂𝜂 =
Γ𝜂𝜂𝜎̄ (𝑡)

𝐸
.

To determine the plastic state of the material, the equivalency of plastic work (𝜎𝑖 𝑗 ¤𝜀𝑝𝑖 𝑗 = 𝜎̄ ¤̄𝜀𝑝) is
invoked enabling the axial plastic strain to be given as,

¤𝜀𝑝𝜂𝜂 =
𝜎̄

𝜎
¤̄𝜀𝑝 = 1

Γ𝜂𝜂
¤̄𝜀𝑝 .

Integrating,

𝜀
𝑝
𝜂𝜂 (𝑡) =

1
Γ𝜂𝜂

𝜀𝑝 .
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The total strain is found simply as the sum of elastic and plastic components,

𝜀𝜂𝜂 (𝑡) = 𝜀el𝜂𝜂 + 𝜀
𝑝
𝜂𝜂 =

Γ𝜂𝜂𝜎̄ (𝑡)
𝐸

+ 1
Γ𝜂𝜂
¤̄𝜀𝑡. (4.255)

For this boundary value problem, only the axial displacement need be prescribed as zero traction
conditions are required on the remaining surfaces to achieve the uniaxial stress state. As the
equivalent plastic strain rate is constant, the flow stress, 𝜎̄ (𝑡), is known and the total strain of
(4.255) is only a function of time. Therefore, the desired displacement boundary condition may be
prescribed as a function of time alone and is simply,

𝑢𝜂 (𝑡) = exp
(
𝜀𝜂𝜂 (𝑡)

)
− 1.

J2 Plasticity

In the case of an isotropic J2 effective stress definition, for a uniaxial state of stress,

Γ𝜂𝜂 = 1 (no sum on 𝜂) .

Hosford Plasticity

As the Hosford effective stress definition is isotropic, for a uniaxial state of stress the coefficients
Γ𝜂𝜂 are simply,

Γ𝜂𝜂 = 1 (no sum on 𝜂) .

Hill Plasticity

For a Hill effective stress definition, by inspection of (4.254) it is clear that,

Γ𝜂𝜂 = 𝑅𝜂𝜂 (no sum on 𝜂) .

Barlat Plasticity

With a Barlat effective stress definition, the anisotropy coefficients are,

Γ𝜂𝜂 =
1
𝜔𝜂

(no sum on 𝜂) ,

where

𝜔1 =
1
3

{
1
4

[
|𝑐′12 + 𝑐′13 − 𝑐′′12 − 𝑐′′13 |𝑎 + |𝑐′12 + 𝑐′13 + 2𝑐′′21 − 𝑐′′23 |𝑎 + |𝑐′12 + 𝑐′13 + 2𝑐′′31 − 𝑐′′32 |𝑎

+ |𝑐′23 − 2𝑐′21 − 𝑐′′12 − 𝑐′′13 |𝑎 + |𝑐′23 − 2𝑐′21 + 2𝑐′′21 − 𝑐′′23 |𝑎 + |𝑐′23 − 2𝑐′21 + 2𝑐′′31 − 𝑐′′32 |𝑎

+ |𝑐′32 − 2𝑐′31 − 𝑐′′12 − 𝑐′′13 |𝑎 + |𝑐′32 − 2𝑐′31 + 2𝑐′′21 − 𝑐′′23 |𝑎 + |𝑐′32 − 2𝑐′31 + 2𝑐′′31 − 𝑐′′32 |𝑎
]}1/𝑎

,
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𝜔2 =
1
3

{
1
4

[
|𝑐′13 − 2𝑐′12 − 𝑐′′13 + 2𝑐′′12 |𝑎 + |𝑐′13 − 2𝑐′12 − 𝑐′′21 − 𝑐′′23 |𝑎 + |𝑐′13 − 2𝑐′12 − 𝑐′′31 + 2𝑐′′32 |𝑎

+ |𝑐′21 + 𝑐′23 − 𝑐′′13 + 2𝑐′′12 |𝑎 + |𝑐′21 + 𝑐′23 − 𝑐′′21 − 𝑐′′23 |𝑎 + |𝑐′21 + 𝑐′23 − 𝑐′′31 + 2𝑐′′32 |𝑎

+ |𝑐′31 − 2𝑐′32 − 𝑐′′13 + 2𝑐′′12 |𝑎 + |𝑐′31 − 2𝑐′32 − 𝑐′′21 − 𝑐′′23 |𝑎 + |𝑐′31 − 2𝑐′32 − 𝑐′′31 + 2𝑐′′32 |𝑎
]}1/𝑎

,

𝜔3 =
1
3

{
1
4

[
|𝑐′12 − 2𝑐′13 − 𝑐′′12 + 2𝑐′′13 |𝑎 + |𝑐′12 − 2𝑐′13 − 𝑐′′21 + 2𝑐′′23 |𝑎 + |𝑐′12 − 2𝑐′13 − 𝑐′′31 − 𝑐′′32 |𝑎

+ |𝑐′21 − 2𝑐′23 − 𝑐′′12 + 2𝑐′′13 |𝑎 + |𝑐′21 − 2𝑐′23 − 𝑐′′21 + 2𝑐′′23 |𝑎 + |𝑐′21 − 2𝑐′23 − 𝑐′′31 − 𝑐′′32 |𝑎

+ |𝑐′31 + 𝑐′32 − 𝑐′′12 + 2𝑐′′13 |𝑎 + |𝑐′31 + 𝑐′32 − 𝑐′′21 + 2𝑐′′23 |𝑎 + |𝑐′31 + 𝑐′32 − 𝑐′′31 − 𝑐′′32 |𝑎
]}1/𝑎

.

A.5.2 Pure Shear

To produce a pure shear stress state, the pure shear conditions discussed in Section A.3 are
utilized. In this case, for pure shear in the 𝑒𝜂 − 𝑒𝜁 plane, a deformation gradient of the form,

𝐹𝑖 𝑗 =
1
2

(
𝜆 + 𝜆−1

) (
𝛿𝑖𝜂𝛿 𝑗𝜂 + 𝛿𝑖𝜁𝛿 𝑗 𝜁

)
+ 1

2

(
𝜆 − 𝜆−1

) (
𝛿𝑖𝜂𝛿 𝑗 𝜁 + 𝛿𝑖𝜁𝛿 𝑗𝜂

)
+ 𝛿𝑖𝜃𝛿 𝑗𝜃 , (no sum on 𝜂, 𝜁 , 𝜃) ,

with 𝑒𝜃 being the cross-product of 𝑒𝜂 and 𝑒𝜁 . With such a deformation,

𝜀𝑖 𝑗 = ln𝜆
(
𝛿𝑖𝜂𝛿 𝑗 𝜁 + 𝛿𝑖𝜁𝛿 𝑗𝜂

)
,

meaning the appropriate displacement boundary conditions may be applied if the total shear strain
is known.

For the pure shear strain case, the stress tensor is simply 𝜎𝑖 𝑗 = 𝜏
(
𝛿𝑖𝜂𝛿 𝑗 𝜁 + 𝛿𝑖𝜁𝛿 𝑗𝜂

)
and may be

equated to the shear stress as,

𝜏 = Γ𝜂𝜁 𝜎̄ (𝑡) (𝜂 ≠ 𝜁) .

The elastic strain may then simply be written as

𝜀el𝜂𝜁 =
𝜏

2𝜇
=
Γ𝜂𝜁
2𝜇

𝜎̄ (𝑡) .

To find the plastic strain rate, the plastic work equivalency is recalled such that,

𝜎𝑖 𝑗 ¤𝜀𝑝𝑖 𝑗 = 2𝜎𝜂𝜁 ¤𝜀𝑝𝜂𝜁 = 𝜎̄ ¤̄𝜀
𝑝, (𝜂 ≠ 𝜁)

which produces an expression for the plastic strain rate as,

¤𝜀𝑝𝜂𝜁 =
1

2Γ𝜂𝜁
¤̄𝜀𝑝, (𝜂 ≠ 𝜁) . (4.256)
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Integrating (4.256) yields,

𝜀
𝑝
𝜂𝜁 (𝑡) =

1
2Γ𝜂𝜁

𝜀𝑝, (𝜂 ≠ 𝜁)

leading to a total strain of the form,

𝜀𝜂𝜁 (𝑡) =
Γ𝜂𝜁
2𝜇

𝜎̄ (𝑡) + 1
2Γ𝜂𝜁

¤̄𝜀𝑝𝑡, (𝜂 ≠ 𝜁)

and

𝜆 (𝑡) = exp
(
𝜀𝜂𝜁 (𝑡)

)
, (𝜂 ≠ 𝜁) .

J2 Plasticity

In the case of a isotropic J2 effective stress, the pure shear coefficients are,

Γ𝜂𝜁 =
1
√

3
(𝜂 ≠ 𝜁) .

Hosford Plasticity

Although isotropic, the Hosford effective stress definition is non-quadratic leading to a stress
multiplier of,

Γ𝜂𝜁 =
1[

1 + 2𝑎−1
]1/𝑎 (𝜂 ≠ 𝜁) .

Hill Plasticity

Like the uniaxial case, for the pure shear response a direct connection may be made between the 𝑅
stress ratios and Γ𝜂𝜁 such that,

Γ𝜂𝜁 =
𝑅𝜂𝜁√

3
(𝜂 ≠ 𝜁) .

Barlat Plasticity

The Barlat effective stress definition produces stress relationships of the form,

Γ𝜂𝜁 =
1
𝜉𝜂𝜁

(𝜂 ≠ 𝜁) ,
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where,

𝜉12 =

{
1
2

[
|𝑐′44 − 𝑐′′44 |𝑎 + |𝑐′44 + 𝑐′′44 |𝑎 + |𝑐′44 |𝑎 + |𝑐′′44 |𝑎

]}1/𝑎
,

𝜉23 =

{
1
2

[
|𝑐′55 − 𝑐

′′
55 |

𝑎 + |𝑐′55 + 𝑐
′′
55 |

𝑎 + |𝑐′55 |
𝑎 + |𝑐′′55 |

𝑎
]}1/𝑎

,

𝜉31 =

{
1
2

[
|𝑐′66 − 𝑐

′′
66 |

𝑎 + |𝑐′66 + 𝑐
′′
66 |

𝑎 + |𝑐′66 |
𝑎 + |𝑐′′66 |

𝑎
]}1/𝑎

.
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