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ABSTRACT

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis,
required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural
systems. This manual describes the theory behind many of the constructs in Sierra/SD. For a more detailed
description of how to use Sierra/SD, we refer the reader to User’s Manual.

Many of the constructs in Sierra/SD are pulled directly from published material. Where possible, these
materials are referenced herein. However, certain functions in Sierra/SD are specific to our
implementation. We try to be far more complete in those areas.

The theory manual was developed from several sources including general notes, a programmer_notes
manual, the user’s notes and of course the material in the open literature.
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1. INTRODUCTION

Sierra/SD is used to solve the partial differential equations (PDEs) of continuum mechanics and acoustics
using finite element discretizations. The physics addressed here is structural dynamics, acoustics (air and
water, cavities and infinite domains) and coupled structural acoustics. The basic structural analyses, statics,
linear dynamics, and frequency domain methods, are covered. Additional analyses include modal random
vibration, and fatigue modeling are also described.

PDE Nomenclature
Ω solid domain
𝑋 , ®𝑥 point in Ω

®𝑢(𝑥) displacements
𝑓 (𝑥, 𝑡) body force
𝜕Ω boundary
n unit normal vector
Γ𝐷 Dirichlet boundary
Γ𝑁 Neumann boundary

Materials
𝐸 Young’s modulus
𝜆, 𝜇 Lamé parameters
𝜈 Poisson’s ratio
𝜎(𝑥) stress tensor
𝜀(𝑥) strain tensor
𝜌 density
𝐶 elasticity tensor

Table 1-1. – Elastodynamic PDE Nomenclature.

The next few paragraphs skim the theory of linear elasticity to fix the notation used in this manual, noting
some common sources of confusion.

Newton’s dots denote temporal derivatives. Semicolons denote rank 2 tensors contraction. Note that
infinitesimal strain has two common definitions, with shear strains differing by a factor of 2. The Voigt
notation for stress structural strain is

®𝜎 =



𝜎11
𝜎22
𝜎33
𝜎23
𝜎13
𝜎12


, ®𝜀 =



𝜖11
𝜖22
𝜖33

2𝜖23
2𝜖13
2𝜖12


. (1.0.1)

In each discussion in this manual, it can be important to figure out what definition of strain has been
assumed. Variations in the Voigt ordering are also possible.

This manual does not assume that readers are familiar with abstract PDEs. This intent here is to add details
needed to make sense of the tabulated nomenclature 1-1 and 1-2.

In the PDE notation defined in Table 1-1, the momentum equation states that at all points ®𝑥 in Ω,

𝜌 ¥𝑢 − ∇ · 𝜎 = 𝐹 (𝑥, 𝑡), 𝑢 |Γ𝐷 = 𝑢𝑜, 𝜎(𝑥, 𝑡)n|Γ𝑁 = 𝑔, (1.0.2)

Table 1-1 also fixes the notation relating stress 𝜎 and an infinitesimal deformation 𝑢 of an isotropic
material.
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The weak formulation of equation (1.0.2) is constructed by multiplying by a test function, and integrating
by parts.

Integrals are written out usually, but the inner product,

⟨𝑢, 𝑣⟩Ω =

∫
Ω

𝑢 · 𝑣𝜌𝑑𝑥, ∥𝑢∥2Ω = ⟨𝑢, 𝑢⟩Ω,

can also be used. The weak form of the PDE is stated in terms of the Sobolev spaces

𝐻1(Ω) = {𝑢 : ∥∇𝑢∥Ω < ∞},

for free-free problems, and with Dirichlet conditions,

𝐻1
0 (Ω) = {𝑣 ∈ 𝐻

1(Ω) : 𝑣 |Γ𝐷 = 0}.

Strictly speaking, more sophisticated Sobolev spaces can enhance the discretization, for example to the case
of incompressible materials – this is not done in Sierra/SD. Tractions and displacements are applied on
mutually complementary parts of the boundary,

Γ𝐷 ∩ Γ𝑁 = ∅.

The linearized strain is the symmetrized gradient,

𝜀(𝑢) = ∇𝑠 (𝑢) =
1
2
(∇ + ∇𝑇 ). (1.0.3)

The virtual work done by the solution 𝑢 and a test function 𝑣 is

𝑏(𝑢, 𝑣) =
∫
Ω

𝜎(𝑢)𝜖 (𝑣)𝑑𝑥.

And the weak form of the equations of motion is,

⟨ ¥𝑢, 𝑣⟩Ω + 𝑏(𝑢, 𝑣) = ⟨ 𝑓 , 𝑣⟩Ω + ⟨𝑔, 𝑣⟩Γ𝑁 . (1.0.4)

The discretization applies Galerkin’s method to nodal finite elements familiar to users of NASTRAN and
Abaqus. A mesh of Ω defines elements with nodal degrees of freedom (DOF). The integrals in the weak
form are evaluated as the sum of the integrals over each element. In this sense, if we select the volume Ω to
be that of an element, the main step in the discretization is evaluating these integrals for each pair of nodal
DOFs within a general element.

In general the shape function of an element corresponding to node 𝑚 for the 𝑖th DOF, evaluated at the
physical point 𝑋 in Ω is denoted by 𝑁𝑚,𝑖 (𝑋). The notation 𝑁𝑚,𝑖 (𝜁, 𝜂, 𝜉) refers to reference element
coordinates (𝜁, 𝜂, 𝜉), not the physical coordinates 𝑋 . In practice, N represents the column vector of all the
shape functions under current consideration, say for an element. The subscript 𝑒 can identify a function
evaluated over the element 𝑒.

Symmetric gradients are approximated using the element strain-displacement matrix,

B = 𝐿𝑁,

for the spatial partial differential operator 𝐿 that also handles book keeping associated with Voigt
notation,

∇𝑠𝑢ℎ (𝜉) =
∑︁
𝑒

B𝑒𝑢𝑒, (1.0.5)
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with the corresponding stress,
𝜎 = 𝐶𝑒 = 𝐶𝐵𝑢. (1.0.6)

The element material element stiffness and mass matrices are,

𝐾𝑒 =

∫
𝑒

B𝑇 (𝑥)𝐶B(𝑥)𝑑𝑥, 𝑀𝑒 = ⟨N,N⟩𝑒 . (1.0.7)

M Mass matrix
K Material stiffness matrix
Φ Matrix with eigenvectors as columns
Ω Diagonal matrix of circular frequencies
H( 𝑓 ) Frequency response function vector

Table 1-2. – Matrices of Structural Dynamics.

Spatial discretization leads to familiar sparse linear algebra problems. The statics problem is 𝐾𝑢 = 𝑓 . For a
known external load 𝐹𝑒𝑥𝑡 , the transient equation for the balance of internal and external momentum
𝐹𝑖𝑛𝑡 = 𝐹𝑒𝑥𝑡 is,

𝑀𝑎(𝑡) + 𝐶𝑣(𝑡) + 𝐾𝑑 (𝑡) = 𝐹𝑒𝑥𝑡 (𝑡), 𝑣 = ¤𝑑, 𝑎 = ¥𝑑. (1.0.8)

Sources of damping are accumulated into the viscous damping matrix, 𝐶. The eigenvalue problem finds Ω
and Φ such that

𝐾Φ = 𝑀ΦΩ2, Φ𝑇𝑀Φ = 𝐼 . (1.0.9)

Finally, the frequency response function,

H( 𝑓 , 𝜔) = (𝐾 +
√
−1𝜔𝐶 − 𝑀𝜔2)−1 𝑓 . (1.0.10)

1.1. NASTRAN Terminology.

The discretizations use degrees of freedom (DOF) defined at the nodes. The active DOFs depend on the
physics and the boundary conditions. Certain tasks, such as transmitting data between Sierra/SD and
MATLAB, depend on users converting data between different sets of active DOFs. The documentation of
how to perform these tasks assume that the user understands the dimensions of different sets of DOFs.

NASTRAN developed terminology77 1.2 for the different sets of dofs, and Sierra/SD uses simplified
version. To give you an idea, consider a modal analysis of a structure run in serial. Shell elements are
mixed with solid elements. No boundary conditions are applied. There are 9938 nodes and 9 MPCs.

To output the required maps and other m-files, in the input deck add to the outputs both mfile and
ASetMap. To output the eigenvectors to the Exodus file, also add disp to outputs.

For this model, we have the following dimensions.

1. #nodes=9938

2. full set= #nodes * 9 dofs/node = 89442

3. structural set= #nodes * 6 dofs/node = 59628
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4. G-set = # active dofs before boundary conditions = 42708

5. A-set = analysis set = # equations to be solved = 42699

There are 3 dofs/node for solid elements. Shells and beams have 6. Acoustic, thermal, and electrical DOFs
are also included in the G-set. In aggregate, the total number of active dofs is 42708 before boundary
conditions and MPCs are applied. There are no boundary conditions in the model, but there are 9 MPC
equations, each of which eliminates 1 dof, so the Aset is reduced to 42699.

*_Disp*.m files are written in a reduced structural set which may or may not contain the full solution
vector, depending on the specifics of the model. These m-files use a legacy format which is not well
understood by our current development team. The most reliable and user-friendly output is available in
exodus format.

The matrices Mssr and Kssr contain the mass and stiffness matrices in the A-set. They are symmetric
matrices and only one half of the off diagonal is stored. To get the complete matrix within MATLAB,

K = Kssr + tril(Kssr,-1)’;

The full eigenvectors (in the structural set) are available in the output exodus file. To get them use the
SEACAS command exo2mat.

> exo2mat example-out.exo

Within MATLAB, the data can be converted to a properly shaped matrix.

>>> load example-out
>>> phi = zeros(nnodes*6,nsteps);
>>> temp = (0:nnodes-1)*6;
>>> phi(temp+1,:)=nvar01;
>>> phi(temp+2,:)=nvar02;
>>> phi(temp+3,:)=nvar03;
>>> phi(temp+4,:)=nvar04;
>>> phi(temp+5,:)=nvar05;
>>> phi(temp+6,:)=nvar06;

We now have phi as a matrix with each column corresponding to an eigenvector. However, phi is
dimensioned at 59628 x 10 for this example. Note that 59628 is the number of nodes times 6. We can’t
multiply phi by K for example - the dimensions don’t match. To do this we need a map.

We have one map in our directory. ASetMap_a.m is the map from the structural set to the A set. Thus, we
can reduce phi to the A-set by combining it with ASetMap_a. Generally the G-set map is not output, but
is used internally.

>>> p2=zeros(max(max(ASetMap_a)),nsteps);
>>> for j=1:nnodes*8
>>> i=ASetMap_a(j);
>>> if ( i > 0 )
>>> p2(i,:)=phi(j,:);
>>> end
>>> end
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This is slow. A faster, but less straightforward method is shown here.

>>> mapp1=ASetMap_a+1;
>>> temp=zeros(max(max(mapp1)),nsteps);
>>> temp(mapp1,:)=phi;
>>> p2=temp(2:max(max(mapp1)),:);

MATLAB supports neat things like p2’*K*p2. To the structural set, we again use this map. For example, if
we have a vector of dimension 42699,

>>> x=1:42699’;
>>> XX = zeros(59628,1);
>>> for i=1:59628
>>> if ( ASetMap_a(i)>0 )
>>> XX(i)=x(ASetMap_a(i));
>>> end
>>> end

An optimization is to do instead

>>> temp=[ 0 x’];
>>> X2=temp(mapp1);

1.2. Matrix Dimensions: Terminology

The previous section is complicated enough to stand out from other documentation. This section defines
some terminology used in the previous section. The various spaces are listed in Table 1-3. A discussion of
each follows.

Space Description
Full-set biggest possible set. 9 * number of nodes

Structural-set 6 * number of nodes
This is the space that is typically written to exodus.

Assembly-set the space for matrix assembly, represents dofs “touched” by ele-
ments.

S-set degrees of freedom eliminated by SPC
Common-set Assembly minus S-set

M-set degrees of freedom eliminated by MPC
Analysis-set dimension of matrices sent to solvers.

Table 1-3. – Sierra/SD solution spaces.

Full-set This space is referenced by many of our solvers. We then provide a map from this space to the
Analysis-set using ASetMap. Every node has 9 degrees of freedom (3 translations, 3 rotations,
acoustic, voltage, and thermal). Virtual nodes may have been added to handle generalized dofs.

Structural-set This is identical to the full-set except that it contains only structural degrees of freedom
(translations and rotations). It and contains all the structural dofs of the model including virtual
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nodes.

Assembly-set The assembly set is the space to which matrices are assembled. It includes dofs that may
later be eliminated by SPCs or MPCs. It includes all dofs that are touched.

Assembly-set = Analysis-set ∪ S-set ∪M-set

Currently, the only map to the assembly set is found in the node array. However, there is no user
interface to the node array.

S-set This is the list of degrees of freedom that are eliminated by single point constraints (SPC).

Common-set The “Common” set includes the Assembly set, with the S-set removed. This set is common
to all solvers, in contrast to the analysis set which may have different dimensions for serial and
parallel solvers.

M-set . This is the list of degrees of freedom that are eliminated using multipoint constraints (or MPCs).
When using constraint elimination in serial, the dimension of the problem is reduced by the number
of MPC constraints. In contrast, in solvers that use Lagrange multipliers, the stiffness matrix is
unchanged by introduction of the constraints. Note however, that the solution vector will include
extra Lagrange multipliers.

Analysis-set The analysis set is the matrix dimension that will be sent to the solver. Note that it may
depend on the solver. With constraint elimination, the M-set may not be empty, while solvers that use
Lagrange multipliers will always have an empty M-set.

Solution-set As noted above, in parallel solutions with Lagrange multipliers, we pass a left-hand side
matrix of dimension equal to the Analysis set. However, the solution vector returned is of length
Analysis-set plus the number of Lagrange multipliers. This is the solution-set length.

G-set Unfortunately, while the sets above are well-defined, the G-set is not. At various times it has been
used to refer to the Full, Structural or assembly set. This confusion spreads throughout the
documentation and the comments in the notes.

Revised Set definition Example. Consider the problem in Figure 1-1. The model consists of 4 real nodes,
one MPC, one superelement (with one generalized dof), and single point constraints sufficient to clamp the
left-hand side, and keep the rest of the model in one dimension.

1 2 3

MPC SE (1 generalized dof)

4

Figure 1-1. – Example for Set Definition.

Full-set There are 4 real nodes, plus 1 virtual node (generated for the generalized dof). Thus,

𝑠𝑖𝑧𝑒(𝐹𝑢𝑙𝑙) = (4 + 1)9 = 45
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Assembly-set The two elements are beams, with 6 dofs per node. The superelement touches the
generalized dof on the virtual node.

𝑠𝑖𝑧𝑒(𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦) = (4)6 + 1 = 25

S-set Degrees of freedom are eliminated by clamping 6 dofs on node 1, and by eliminating 5 dofs each on
the 3 remaining nodes.

𝑠𝑖𝑧𝑒(𝑆) = 6 + 15 = 21

Common-set After elimination of the S-set, the common set is,

𝑠𝑖𝑧𝑒(𝐶𝑜𝑚𝑚𝑜𝑛) = 25 − 21 = 4

All solvers use this space initially. The following cases are different for each solver.

M-set The size of the M-set is one, but what that means to the analysis depends on the solver. For serial
solvers with constraint elimination, the matrix size is reduced by one. For Lagrange multiplier
solvers, we keep our matrices at the same size, but augment the solution space by one Lagrange
multiplier.

Analysis-set For serial, constraint elimination solvers, the analysis set is 3. For Lagrange multiplier
problems, the left-hand side matrix stays at the Common-set dimension, but constraint equations are
passed in separately, and Lagrange multipliers are part of the solution vector.

Solution-set For serial solvers, the Solution-set is always equal to the analysis-set (which is 3 in this
example). For Lagrange multiplier solvers, the solution-set in this example is 5.

1.3. Rotational Degrees of Freedom

Beams, shells and some other specialty elements use rotational degrees of freedom (DOF) in addition to the
three translational DOF. Rotational DOF permit direct application of moments and allow efficient
computations of structural element response such as bending. Rotational DOF are also important for
management of rigid bodies. In our applications two methods are used to manage rotational DOF. Full
rotation tensors are used for large deformation nonlinear response, while infinitesimal rotations angles are
typically used for small strain, linear response such as eigen analysis.

Euler Angles. The rotation of a rigid body is often described using a rotation tensor with for example
Euler angles. Note that there are several of definitions of these angles, and that the order of application does
matter.

Euler angles are a means of representing the spatial orientation of any frame of the space as a
composition of rotations from a reference frame. In the following the fixed system is denoted
in lowercase (𝑥, 𝑦, 𝑧) and the rotated system is denoted in upper case letters (𝑋,𝑌, 𝑍).

The definition is Static. The intersection of the 𝑥𝑦 and the 𝑋𝑌 coordinate planes is called the
line of nodes (𝑁).

𝛼 is the angle between the 𝑥-axis and the line of nodes.

𝛽 is the angle between the 𝑧-axis and the 𝑍-axis.
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𝛾 is the angle between the line of nodes and the 𝑋-axis.

This previous definition is called 𝑧 𝑥 𝑧 convention and is one of several common conventions;
others are 𝑥 𝑦 𝑧 and 𝑧 𝑦 𝑥. Unfortunately the order in which the angles are given and even the
axes about which they are applied has never been “agreed” upon. When using Euler angles the
order and the axes about which the rotations are applied should be supplied.

Euler angles are one of several ways of specifying the relative orientation of two such
coordinate systems. Moreover, different authors may use different sets of angles to describe
these orientations, or different names for the same angles. Therefore, a discussion employing
Euler angles should always be preceded by their definition. (Wikipedia)

In each definition Euler angles use a series of 3 rotations about 3 different axes to represent the orientation
of a body in space. For example, in the case of the 𝑧 𝑥 𝑧 convention, these angle define the following
rotation matrix.

R =


cos𝛼 − sin𝛼 0
sin𝛼 cos𝛼 0

0 0 1



1 0 0
0 cos 𝛽 − sin 𝛽
0 sin 𝛽 cos 𝛽



cos 𝛾 − sin 𝛾 0
sin 𝛾 cos 𝛾 0

0 0 1


Because matrix multiplication is not commutative, the solution depends on the order of rotation. Rotation
of a vector by this angle is a tensor product with this matrix. i.e. 𝑣′ = 𝑅𝑣.

Infinitesimal Rotational Angles Here the matrix representation of the cross product is denoted Spin(𝑢).

for all®𝑢, ®𝑥 ®𝑢 × ®𝑥 = Spin( ®𝑢)®𝑥. (1.3.1)

Most linear, small deformation FE applications apply the small angle approximation. We expand all
trigonometric functions as polynomials of their arguments and retain only first order terms in the angles.
Thus, sin(𝜃) ∼ 𝜃, and cross terms are eliminated. With these approximations, the order of rotation becomes
unimportant, and the component contributions to the rotation matrix are commutable. For a rotation about
𝑥,𝑦, 𝑧 of 𝛼, 𝛽, 𝛾 we have:

R = 𝐼 + Spin

(
𝛼

𝛽

𝛾


)
.

The coordinates are independent of each other. There are obvious limitations, as the approach does not
conserve length for larger rotations. This is often apparent in animation of mode shapes; the modes are
computed under a small angle approximation, but are often displayed with a finite deformation.

Quaternions. Euler angles and full rotation tensors define the rotations of a body. Computational
efficiency is optimized using mathematically equivalent quaternion algebra. Sierra/SD uses the full
rotation tensor, and Sierra/SM uses quaternions.

Linear vs. Nonlinear Solutions. Linear solutions use the infinitesimal rotation angle formulations. All
nonlinear solutions maintain a large rotation capability and use the full rotation tensor. Nonlinear solutions
using linear elements (or linearized tangent stiffness matrix terms) require conversion between these
forms.

Mixed Variable Solutions. Many linear element have been constructed which are for use in some parts of
nonlinear applications. For example, a large ship may include a linearized model of an engine as part of the
model. As long as the engine is undergoing small deformations, it is reasonable to employ such a linearized
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model, even if another part of the ship is subject to large strain and large rotation. In general, Sierra/SD
allows the user to specify that certain material blocks in a model are linear, even in a nonlinear analysis.
This also necessitates translation between these alternate (and non-equivalent) forms.

Incremental Angular Update. Update of the rotation tensor following an incremental solution of a small
deformation is accomplished as follows. Let us call the initial rotation tensor, 𝑅𝑖𝑛𝑖𝑡 . We compute a small
rotation increment expressed in terms of its small rotation angles, (𝛼, 𝛽, 𝛾)𝑇 . From the rotation increment,
we compute a rotation increment quaternion as follows.

𝜃 =

√︃(
𝛼2 + 𝛽2 + 𝛾2) 𝑞2 = 𝑐𝛼

𝑞1 = cos(𝜃/2) 𝑞3 = 𝑐𝛽

𝑐 = sin(𝜃/2)/𝜃 𝑞4 = 𝑐𝛾

𝑞 = 𝑞/|𝑞 |

The quaternion is then converted to a rotation tensor,

𝑅∇ =


2(𝑞2

1 + 𝑞
2
2) − 1 2(𝑞2𝑞3 − 𝑞4𝑞1) 2(𝑞2𝑞4 + 𝑞3𝑞1)

2(𝑞2𝑞3 + 𝑞4𝑞1) 2(𝑞2
1 + 𝑞

2
3) − 1 2(𝑞3𝑞4 − 𝑞2𝑞1)

2(𝑞2𝑞4 + −𝑞3𝑞1) 2(𝑞3𝑞4 + 𝑞2𝑞1) 2(𝑞2
1 + 𝑞

2
4) − 1


The updated rotation tensor is,

𝑅𝑢𝑝𝑑𝑎𝑡𝑒 = 𝑅∇𝑅𝑖𝑛𝑖𝑡

Thus, the rotation increment is treated as a full angle update.

Consequence for Linear Elements in nonlinear solutions. The consequence of this update is that there
may be significant differences between a nonlinear solution and a linear solution, even when both are
applied to a linear element. The approximations applied for infinitesimal rotations are significant, and are
not reciprocal, i.e. information is lost in that approximation. Nonlinear solutions should permit large
rotations with most elements. Linear solutions are valid only in the range of small deformations.

1.4. Mass Properties

Mass properties are computed using the method of Baruch and Zemel.17 The total mass, location of the
center-of-gravity, and the moment of inertia tensor are all calculated for most element types using the mass
matrix and a set of rigid-body vectors. However, acoustic elements and superelements use a different
procedure. Both methods are discussed below.

Calculations for General Elements The mass properties are computed using rigid-body vectors.

Using the notation of equation (1.3.1), at a node with coordinates (𝑥, 𝑦, 𝑧), the translational and the
rotational rigid-body vectors are,

[𝑅𝑥 , 𝑅𝑦 , 𝑅𝑧 , 𝑅𝑟 𝑥 , 𝑅𝑟 𝑦 , 𝑅𝑟 𝑧] =
[
I3 Spin(𝑥)
0 I3

]
. (1.4.1)

These vectors are assembled on an element level. As an example, for a three-node triangle element,

𝑅𝑟 𝑥 = [0,−𝑧1, 𝑦1, 1, 0, 0, 0,−𝑧2, 𝑦2, 1, 0, 0, 0,−𝑧3, 𝑦3, 1, 0, 0]𝑇 .
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The total mass for an element depends on the element mass matrix, [𝑀𝑒],
[𝑅𝑥 , 𝑅𝑦 , 𝑅𝑧]𝑇𝑀𝑒 [𝑅𝑥 , 𝑅𝑦 , 𝑅𝑧] = 𝜇𝑒I3.

Note that the x, y, and z-direction equations produce the same result. Sierra/SD uses the x-direction
equation. The mass of the model is the sum of the element masses,

𝜇 =
∑︁
𝑒

𝜇𝑒 .

Using the notation from Section 1.3 the center-of-gravity, 𝑥𝑐𝑔 is computed from

𝜇 Spin(𝑥𝑐𝑔) =
∑︁
𝑒

[𝑅𝑟 𝑥 , 𝑅𝑟 𝑦 , 𝑅𝑟 𝑧]𝑇𝑀𝑒 [𝑅𝑥 , 𝑅𝑦 , 𝑅𝑧] .

and the inertia tensor is computed from

I =
∑︁
𝑒

[𝑅𝑟 𝑥 , 𝑅𝑟 𝑦 , 𝑅𝑟 𝑧]𝑇𝑀𝑒 [𝑅𝑟 𝑥 , 𝑅𝑟 𝑦 , 𝑅𝑟 𝑧] .

The mass properties procedure applies to Conmass, Beam2, Truss, TiBeam, Nbeam, Quad4, Quad8,
QuadM, Tet4, Tet10, TriaShell, Tria3, Tria6, Hex8, Hex20, Wedge6, and Wedge15 elements.

Acoustic and superelements Although acoustic element blocks are made up of element types listed above,
acoustic elements only have 1 degree-of-freedom per node. Thus, the rigid-body vectors presented above
cannot be used without modification. Similarly, superelement can have any number of degrees-of-freedom
depending on how the element was formed. Because of this, a different method is used to compute mass
properties for superelements and acoustic elements.

The mass properties for these elements can be computed with somewhat less accuracy than the method
presented above by lumping the mass matrix of each element, then summing the contribution from each
node. This is the method implemented in Sierra/SD.

The total mass is

𝑀𝑡𝑜𝑡𝑎𝑙 =

𝑁𝑛𝑜𝑑𝑒∑︁
𝑖=1

𝑀𝑖

where 𝑀𝑖 is the mass at node 𝑖. The center-of-gravity is

𝑥𝑐𝑔 =
1

𝑀𝑡𝑜𝑡𝑎𝑙

𝑁𝑛𝑜𝑑𝑒∑︁
𝑖=1

𝑀𝑖𝑥𝑖 , (1.4.2)

𝑦𝑐𝑔 =
1

𝑀𝑡𝑜𝑡𝑎𝑙

𝑁𝑛𝑜𝑑𝑒∑︁
𝑖=1

𝑀𝑖𝑦𝑖 , (1.4.3)

𝑧𝑐𝑔 =
1

𝑀𝑡𝑜𝑡𝑎𝑙

𝑁𝑛𝑜𝑑𝑒∑︁
𝑖=1

𝑀𝑖𝑧𝑖 (1.4.4)

where 𝑥𝑖 , 𝑦𝑖 , and 𝑧𝑖 , are the global coordinates of node 𝑖. The components of the inertia tensor are,

𝐼𝑥𝑥 =

𝑁𝑛𝑜𝑑𝑒∑︁
𝑖=1

𝑀𝑖 (𝑦2
𝑖 + 𝑧2

𝑖 ), 𝐼𝑥𝑦 = −
𝑁𝑛𝑜𝑑𝑒∑︁
𝑖=1

𝑀𝑖𝑥𝑖𝑦𝑖 , 𝐼𝑥𝑧 = −
𝑁𝑛𝑜𝑑𝑒∑︁
𝑖=1

𝑀𝑖𝑥𝑖𝑧𝑖 ,

𝐼𝑦𝑦 =

𝑁𝑛𝑜𝑑𝑒∑︁
𝑖=1

𝑀𝑖 (𝑥2
𝑖 + 𝑧2

𝑖 )𝐼𝑦𝑧 = −
𝑁𝑛𝑜𝑑𝑒∑︁
𝑖=1

𝑀𝑖𝑦𝑖𝑧𝑖

𝐼𝑧𝑧 =

𝑁𝑛𝑜𝑑𝑒∑︁
𝑖=1

𝑀𝑖 (𝑥2
𝑖 + 𝑦2

𝑖 ),
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𝑋

𝑌
𝑋 ′𝑌 ′

𝜃

Figure 1-2. – Original and rotated coordinate frames.

1.5. Coordinate Systems

Coordinate systems are provided for some applications including:

1. specification of boundary constraints (SPCs)

2. specification of multi-point constraints (MPCs)

3. specification of material property rotations for anisotropic materials.

4. specification of spring directions (see subsection 5.18).

5. specification of output coordinate systems (in history files only).

Coordinate systems are not supported for other applications including

1. specification of nodal locations,

2. specification of new coordinate systems in any but the basic system.

Coordinate systems for cartesian, cylindrical and spherical coordinates may be defined. In the case of
non-cartesian systems, the 𝑋𝑍 plane is used for defining the origin of the 𝜃 direction only.

Each new coordinate system 𝑋 ′ carries with it a rotation matrix, 𝑅, that rotates to the basic coordinate
system 𝑋 to the new coordinate system

𝑋 ′ = 𝑅𝑋.

𝑅 is a function of the current spatial location except in the cartesian system, in which case 𝑅 is constant,
orthonormal, and

𝑋 = 𝑅𝑇𝑋 ′, 𝑅 =


cos(𝜃) − sin(𝜃) 0
sin(𝜃) cos(𝜃) 0

0 0 1

 (1.5.1)

For example consider the cartesian system as shown in Figure 1-2. The new system (marked by primes) is
rotated by 𝜃 from the old system with the new 𝑋 ′ axis in the first quadrant of the old system.

1.6. L2 Projection of Gauss Point Stresses

The purpose of this chapter is to provide some background material on how nodal stress projection
calculations are performed in Sierra/SD. The first part provides a concise description of the 𝐿2 projection,
which involves solving a least squares problem, while the second part deals more with implementation
details.
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Given a square integrable stress function 𝑢 and a finite element function 𝑢ℎ ∈ 𝑈ℎ, the stress projection
problem is to find the 𝑢ℎ which minimizes

𝐺 (𝑢ℎ) =
∫
Ω

(𝑢ℎ − 𝑢)2 𝑑𝑥 = (𝑢ℎ − 𝑢, 𝑢ℎ − 𝑢),

where Ω is the domain for the problem and the inner product of two square integrable functions 𝑓 and 𝑔 is
defined as

( 𝑓 , 𝑔) =
∫
Ω

𝑓 𝑔 𝑑𝑥.

For our purposes,𝑈ℎ is associated with low-order elements such as the HEX8, TET4, and WEDGE6.
Minimization of 𝐺 (𝑢ℎ) gives the optimality conditions

(𝑢ℎ − 𝑢, 𝑣ℎ) = 0 for all 𝑣ℎ ∈ 𝑈ℎ,

which is equivalent to
(𝑢ℎ, 𝑣ℎ) = (𝑢, 𝑣ℎ) for all 𝑣ℎ ∈ 𝑈ℎ .

An interesting point to mention is that the stress 𝑢 is known only at Gauss points or element centroids.
Thus, the inner product should be viewed as an approximation that is obtained in practice using numerical
integration. As we show in the following development, finding 𝑢ℎ is equivalent to solving the linear
system

𝑀𝑎 = 𝑏,

where 𝑀 is the assembled finite element mass matrix for unit density, 𝑎 is a vector of nodal stresses, and 𝑏
is the assembled finite element load vector.

The domain for the problem is given by Ω =
⋃𝐾
𝑖=1 Ω𝑖 , where Ω𝑖 is the domain of finite element 𝑖. A finite

element function defined over Ω can be expressed as

𝑢ℎ (𝑥) =
𝑁∑︁
𝑗=1

𝑎 𝑗𝜙 𝑗 (𝑥) = 𝑎𝑇𝜙(𝑥),

where 𝑥 denotes spatial position, 𝑁 is the number of finite element nodes, 𝑎 𝑗 is the value at node 𝑗 , 𝜙 𝑗 (𝑥) is
the shape function for node 𝑗 , and

𝑎 =


𝑎1
𝑎2
...

𝑎𝑁


, 𝜙(𝑥) =


𝜙1(𝑥)
𝜙2(𝑥)
...

𝜙𝑁 (𝑥)


.

Our goal is to determine the nodal values in 𝑎 which minimize the functional

𝐺 (𝑎) =
∫
Ω

(𝑢ℎ (𝑥) − 𝑢(𝑥))2 𝑑𝑥 =
𝐾∑︁
𝑖=1

∫
Ω𝑖

(𝑢ℎ (𝑥) − 𝑢(𝑥))2 𝑑𝑥. (1.6.1)

Within each Ω𝑖 ,

𝑢ℎ (𝑥) =
𝑁𝑖∑︁
𝑘=1

𝑎𝑖𝑘𝜙𝑖𝑘 (𝑥) = (𝑅𝑖𝑎)𝑇 (𝑅𝑖𝜙(𝑥)), (1.6.2)
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where 𝑁𝑖 is the number of nodes for element 𝑖, 𝑎𝑖𝑘 are nodal values for element 𝑖, 𝜙𝑖𝑘 (𝑥) are shape
functions for element 𝑖, and the superscript 𝑇 denotes transpose. Further, 𝑅𝑖𝑎 and 𝑅𝑖𝜙(𝑥) select nodal
values and shape functions from 𝑎 and 𝜙(𝑥), respectively, for element 𝑖. Notice the number of rows in 𝑅𝑖 is
𝑁𝑖 and the number of columns is the total number of nodes 𝑁 . In addition, each row of 𝑅𝑖 has a single
nonzero entry of 1.

Substituting (1.6.2) into (1.6.1), we find

𝐺 (𝑎) = 𝑎𝑇
(
𝐾∑︁
𝑖=1

𝑅𝑇𝑖 𝑀𝑖𝑅𝑖

)
𝑎 − 2𝑎𝑇

𝐾∑︁
𝑖=1

𝑅𝑇𝑖 𝑏𝑖 + 𝑐, (1.6.3)

where
𝑀𝑖 =

∫
Ω𝑖

𝑅𝑖𝜙(𝑥)𝜙(𝑥)𝑇𝑅𝑇𝑖 𝑑𝑥, 𝑏𝑖 =

∫
Ω𝑖

𝑅𝑖𝜙(𝑥)𝑢(𝑥) 𝑑𝑥, 𝑐 =

∫
Ω

𝑢(𝑥)𝑢(𝑥) 𝑑𝑥.

Notice that 𝑀𝑖 is the unit density mass matrix for element 𝑖 and 𝑏𝑖 is the load vector for element 𝑖, which
depends on 𝑢(𝑥). The expression for 𝐺 in (1.6.3) can be written succinctly as

𝐺 (𝑎) = 𝑎𝑇𝑀𝑎 − 2𝑎𝑇𝑏 + 𝑐,

where

𝑀 =

𝐾∑︁
𝑖=1

𝑅𝑇𝑖 𝑀𝑖𝑅𝑖 , 𝑏 =

𝐾∑︁
𝑖=1

𝑅𝑇𝑖 𝑏𝑖 .

Notice that 𝑀 and 𝑏 are the assembled finite element mass matrix and load vector, respectively.
Minimization of 𝐺 with respect to 𝑎 then gives us

𝑀𝑎 = 𝑏,

which can be solved for the vector of nodal values 𝑎.

For our stress projection calculations, we currently obtain the element mass matrix 𝑀𝑖 using the same
numerical integration rule as for the element stiffness matrix of the higher-order element. Projection of
HEX8 centroid stresses is an exception where the integration rule for the mass matrix is the same as the
integration rule for the stiffness matrix of the HEX8 element. In contrast, the element load vector 𝑏𝑖 is
obtained using an integration rule consistent with the number of locations in Ω𝑖 where 𝑢(𝑥) is available.
These two integration rules may be different, as is the case for HEX8 elements where only a single point
integration rule is used for 𝑏𝑖 .

We refer the interested reader to a more comprehensive discussion of this topic in.105

25



This page intentionally left blank.

26



2. STRUCTURAL SOLUTION PROCEDURES

Among the mechanics codes developed at Sandia National LabsSierra/SD has the unique ability to
combine a variety of different solution procedures. These range from modal superposition based solutions
to nonlinear transient. As described in the User’s Manual, these solutions can be combined (or chained) in
solution cases. This section describes the theory behind individual procedures. Details about particular
finite elements are provides in Section 5.

2.1. Linear transient analysis

For a known external load 𝐹𝑒𝑥𝑡 , the transient equation for the balance of internal and external momentum
𝐹𝑖𝑛𝑡 = 𝐹𝑒𝑥𝑡 is,

𝑀𝑎(𝑡) + 𝐶𝑣(𝑡) + 𝐾𝑑 (𝑡) = 𝐹𝑒𝑥𝑡 (𝑡), 𝑣 = ¤𝑑, 𝑎 = ¥𝑑, (2.1.1)

A fixed user specified time step size Δ𝑡 is used. The viscous damping matrix 𝐶 is the sum of all sources of
damping included in the simulation. Either the Newmark-Beta method (default) or the Generalized Alpha
method is used. Generalized Alpha method supersedes Hilbert-Hughes-Taylor. The displacement at step
𝑛 + 1 is determined from a linear system with one of two right-hand sides,

𝐴 𝑑𝑛+1 = 𝑏𝑛+1, Δ𝑑 = 𝑑𝑛+1 − 𝑑𝑛 (2.1.2)

𝐴 Δ𝑑 = 𝑏̂𝑛+1 = 𝑏𝑛+1 − 𝐴𝑑𝑛 (2.1.3)

This section reviews the definitions of this linear system.

The algorithm is formulated in terms of the linear interpolation from the initial 𝑡𝑛 and final times 𝑡𝑛+1 to the
time 𝑡𝑛+𝛾 , to the time

𝑑𝑛+𝛾 = 𝑑𝑛 (1 − 𝛾) + 𝑑𝑛+1 𝛾.

The most general case discussed here is the formulation of the Generalized Alpha method in terms of the
abstract parameters,

𝛼𝑚 < 𝛼 𝑓 ≤ 1/2,

𝛾 =
1
2

− 𝛼𝑚+𝛼 𝑓 ,

𝛽 ≥ 1
4
+ 1

2
(𝛼 𝑓−𝛼𝑚).

The constraints are the necessary and sufficient conditions for both unconditional stability and second-order
temporal accuracy. In practice users select the single parameter 𝜌 between 0 and 1.

𝛼 𝑓 = 𝜌/(1 + 𝜌)
𝛼𝑚 = (2𝜌 − 1)/(1 + 𝜌)

𝛽 =
1
4
(1 − 𝛼𝑚 + 𝛼 𝑓 ) · (1 − 𝛼𝑚 + 𝛼 𝑓 )

𝛾 =
1
2
− 𝛼𝑚 + 𝛼 𝑓
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Maximal damping, 𝜌 = 0, corresponds to 𝛼 𝑓 = 0 and 𝛼𝑚 = −1. The undamped case,

𝜌 = 1, 𝛼 𝑓 = 𝛼𝑚 =
1
2
, 𝛽 =

1
4
, 𝛾 =

1
2
, (2.1.4)

is the default undamped Newmark-Beta method.

Some extra notation is needed to tell the difference between first interpolating and second evaluating,
𝐹 (𝑑𝑛+𝛾), and first evaluating and then interpolating,

L𝑛 (𝐹, 𝑑, 𝛾) = 𝐹 (𝑑𝑛) (1 − 𝛾) + 𝐹 (𝑑𝑛+1)𝛾. (2.1.5)

The Generalized Alpha method can be summarized as

𝑀𝑎𝑛+1−𝛼𝑚 + 𝐶𝑣𝑛+1−𝛼 𝑓 + 𝐾𝑑𝑛+1−𝛼 𝑓 = L𝑛 (𝐹𝑒𝑥𝑡 , 𝑡, 1 − 𝛼 𝑓 ). (2.1.6)

For example with the default undamped Newmark-Beta method, equation (2.1.4),

𝑀𝑎𝑛+1/2 + 𝐶𝑣𝑛+1/2 + 𝐾𝑑𝑛+1/2 = (𝐹𝑒𝑥𝑡 (𝑡𝑛) + 𝐹𝑒𝑥𝑡 (𝑡𝑛+1))/2

In terms of 𝛽 and 𝛾,

Δ𝑑 = Δ𝑡𝑣𝑛 +
Δ𝑡2

2
𝑎𝑛+2𝛽

𝑣𝑛+1 = 𝑣𝑛 + Δ𝑡𝑎𝑛+𝛾
(2.1.7)

The inequality constraints (2.1) ensure second order accuracy of displacements and velocities only.
Acceleration accuracy is of first order. 1 Fortunately, the acceleration interpolated to the same time 1 − 𝛼 𝑓
as the velocity and displacement is second order accurate. In SD the extra work is done to return the more
accurate 𝑎𝑝𝑜𝑠𝑡 ,

𝑎
𝑝𝑜𝑠𝑡

𝑛+1−𝛼𝑚 = 𝑎𝑛+1−𝛼𝑚 . (2.1.8)

The derivation of Newmark’s displacement-based method for linear transient or general nonlinear transient
problems continues from equation (2.1.7) by expressing acceleration and velocity at step 𝑛 + 1 in terms of
displacement. These equations are about to become unreadable. This is hopefully mitigated by introducing
the auxiliary velocities 𝑣̆𝑛+1,

𝑣̆𝑛+1 = 𝑣𝑛 + Δ𝑡
[
(1 − 𝛾𝑛)𝑎𝑛 −

𝛾𝑛

𝛽𝑛Δ𝑡
2 (𝑑𝑛 + 𝑣𝑛Δ𝑡) − 𝛾𝑛

1 − 2𝛽𝑛
2𝛽𝑛

𝑎𝑛

]
(2.1.9)

and in the Δ𝑑,

𝑣̂𝑛+1 = 𝑣𝑛 + Δ𝑡
[
(1 − 𝛾𝑛)𝑎𝑛 −

𝛾𝑛

𝛽𝑛Δ𝑡
𝑣𝑛 − 𝛾𝑛

1 − 2𝛽𝑛
2𝛽𝑛

𝑎𝑛

]
(2.1.10)

𝑎𝑛+1 =
1

𝛽Δ𝑡2
(Δ𝑑 − 𝑣𝑛Δ𝑡) −

1 − 2𝛽
2𝛽

𝑎𝑛,

𝑣𝑛+1 = 𝑣̆𝑛+1 +
𝛾𝑛

𝛽𝑛Δ𝑡
𝑑𝑛+1 = 𝑣̂𝑛+1 +

𝛾𝑛

𝛽𝑛Δ𝑡
Δ𝑑

(2.1.11)

Substitute equation (2.1.11) into equation (2.1.6). Collecting terms, the linear system equations (2.1.2) or
(2.1.3) imply that the Newmark-Beta method uses the dynamic matrix

𝐴 = 𝑀
1

𝛽Δ𝑡2
+ 𝐶 𝛾

𝛽Δ𝑡
+ 𝐾, (2.1.12)

1see AlphaStudy.doc in Sierra/SD documentation, for details on convergence and post processing discussed here.
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and one of the right-hand sides,

𝑏𝑛+1 = 𝐹𝑒𝑥𝑡𝑛+1 − 𝐶𝑣̆𝑛+1 + 𝑀
[

1
𝛽Δ𝑡2

(𝑑𝑛 + 𝑣𝑛Δ𝑡) +
1 − 2𝛽

2𝛽
𝑎𝑛

]
𝑏̂𝑛+1 = 𝐹𝑒𝑥𝑡𝑛+1 − 𝐾𝑑𝑛 − 𝐶𝑣̃𝑛+1 + 𝑀

[
𝑣𝑛

1
𝛽Δ𝑡
+ 1 − 2𝛽

2𝛽
𝑎𝑛

]
.

For the Generalized Alpha method,

𝐴 = 𝑀
1 − 𝛼𝑚
𝛽Δ𝑡2

+ 𝐶𝛾
1 − 𝛼 𝑓
𝛽Δ𝑡

+ 𝐾 (1 − 𝛼 𝑓 ) (2.1.13)

and

𝑏𝑛+1 = 𝐹𝑒𝑥𝑡𝑛+1−𝛼 𝑓 − 𝐾𝑑𝑛𝛼 𝑓 − 𝐶 (𝛼 𝑓 𝑣𝑛 + (1 − 𝛼 𝑓 )𝑣̆𝑛+1)+ (2.1.14)

+ 𝑀
[
−𝛼𝑚𝑎𝑛 +

1 − 𝛼𝑚
𝛽Δ𝑡2

(𝑑𝑛 + 𝑣𝑛Δ𝑡) + (1 − 𝛼𝑚)
1 − 2𝛽

2𝛽
𝑎𝑛

]
(2.1.15)

𝑏̂𝑛+1 = 𝐹𝑒𝑥𝑡𝑛+1 − 𝐾𝑑𝑛 − 𝐶 (𝛼 𝑓 𝑣𝑛 + (1 − 𝛼 𝑓 )𝑣̂𝑛+1)+ (2.1.16)

+ 𝑀
[
−𝛼𝑚𝑎𝑛 +

1 − 𝛼𝑚
𝛽Δ𝑡

𝑣𝑛 + (1 − 𝛼𝑚)
1 − 2𝛽

2𝛽
𝑎𝑛

]
(2.1.17)

In either case, three matrix-vector products, one for each of the system matrices 𝑀 , 𝐾 , and 𝐶, is necessary
to determine 𝑏.

2.1.1. Predictor Corrector Adjustment

The linear system in equation (2.1.2) with the right-hand side of equation (2.1.15) can be solved using
high-performance linear iterative solvers such as GDSW. In this context, it would be beneficial to take the
initial iterate closer to the expected solution to increase the efficiency of the solver. Thus, the system in
equation (2.1.3) can be solved using the right-hand side of equation (2.1.17).

A more aggressive predictor was evaluated and rejected, namely

d𝑒𝑥𝑡 = d𝑛 + Δ𝑡v𝑛 + Δ𝑡2

2 a𝑛,
r̄ = r𝑛+1 − Ad𝑒𝑥𝑡 ,

Ad̄ = r̄,
d𝑛+1 = d̄ + d𝑒𝑥𝑡 .

(2.1.18)

In the above d𝑒𝑥𝑡 is the initial estimate of d𝑛+1, obtained using Taylor series extrapolation (essentially
assuming that the acceleration remains unchanged in the current time step). We noticed that the above
predictor-corrector implementation (2.1.18) is crucial to ensure that accurate results are obtained for
realistic relative solver tolerances (direct implementation as in (2.1.15) could result in high-frequency
oscillations that can pollute the solution even after applying filters). Naturally, the approach (2.1.18) also
results in accelerated convergence of the GDSW solver resulting in computational savings.

Unfortunately, the predictor-corrector implementation in (2.1.18) resulted in an undesirable side effect,
namely growth in error in the constraint equations. Displacement constraint relative errors appear to grow
as 𝑛1.5, where 𝑛 is the number of time steps, but the reason is not clear at this time.
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The system in equation (2.1.3) is a simple modification of the predictor expression eliminating the velocity
and acceleration terms. Observed error growth is milder, proportional to

√
𝑛, and is thus employed in the

code.

2.1.2. Prescribed Accelerations

Prescribed accelerations can be applied in Sierra/SD to nodesets or sidesets, as described in User’s
Manual. Here we give a brief description of the theory behind the implementation.

To simplify matters, we consider the case when the acceleration of a single DOF is prescribed as 𝑎𝑜 𝑓 (𝑡),
where 𝑎𝑜 is the amplitude, and 𝑓 (𝑡) is the function describing the time dependence. The extension to
multiply prescribed DOFs is a matter of an external loop.

Given 𝑓 (𝑡), two integrals are evaluated numerically,

𝑎(𝑡) = 𝑎𝑜 𝑓 (𝑡), 𝑣(𝑡) = 𝑣0 +
∫ 𝑡

0
𝑎(𝑡), 𝑑 (𝑡) = 𝑑0 +

∫ 𝑡

0
𝑣(𝑡)𝑑𝑡,

where 𝑑0 and 𝑣0 denote the initial displacement and velocity.

Given these functions, we can statically condense the prescribed degrees of freedom, and bring the resulting
terms to the right-hand side. First, we define m𝑖 to be the column of the mass matrix associated with the
prescribed DOF, and c𝑖 and k𝑖 are similarly defined for the damping and stiffness matrices. We first write
the G set version of equation (2.1.6). We put subscripts of 𝑔 on the system matrices and right-hand side to
denote that the prescribed boundary conditions have not yet been eliminated (hence are G set).

𝑀𝑔𝑎𝑛+1−𝛼𝑚 + 𝐶𝑔𝑣𝑛+1−𝛼 𝑓 + 𝐾𝑔𝑑𝑛+1−𝛼 𝑓 = L𝑛 (𝐹𝑒𝑥𝑡𝑔 , 𝑡, 1 − 𝛼 𝑓 ).

Next, condense out the prescribed DOFs and move their contributions to the right-hand side, noting that
fixed DOFs do not contribute. As this reduces the system matrices to A set form, the subscripts are
dropped. To reduce everything to the A set, the right-hand side terms are also condensed. Recalling
equation (2.1.5),

𝑀𝑎𝑛+1−𝛼𝑚 + 𝐶𝑣𝑛+1−𝛼 𝑓 + 𝐾𝑑𝑛+1−𝛼 𝑓 = L𝑛 (𝐹𝑒𝑥𝑡 , 𝑡, 1 − 𝛼 𝑓 )
−L𝑛 (𝑎(𝑡)m𝑖 + 𝑣(𝑡)c𝑖 + 𝑑 (𝑡)k𝑖 , 𝑡, 1 − 𝛼 𝑓 ).

Prescribed accelerations subtract from the right-hand side the prescribed columns of 𝑀 𝑎(𝑡), 𝐶 𝑣(𝑡) and
𝐾 𝑑 (𝑡). Prescribed static displacements are implemented by subtracting the prescribed column of 𝐾𝑑 (0)
from the right-hand side.

2.1.3. Nonlinear transient analysis

Nonlinear transient simulations are necessary if the external loads depend on displacement. The standard
nonlinear transient procedure19 is a subtle extension of the methods for linear transient problems.
Equations (2.1.11) once again defines the velocity and acceleration in terms of the displacement. The
equation of motion,

𝑀𝑎𝑛+1−𝛼𝑚 + 𝐶𝑣𝑛+1−𝛼 𝑓 + L𝑛 (𝐹𝑖𝑛𝑡 , 𝑑, 1 − 𝛼 𝑓 ) = L𝑛 (𝐹𝑒𝑥𝑡 , 𝑑, 1 − 𝛼 𝑓 ). (2.1.19)

uses the tangent stiffness matrix,

𝐾𝑇 (𝑑) =
𝜕

𝜕𝑢
𝐹𝑖𝑛𝑡 (𝑡, 𝑑)
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instead of the material stiffness matrix. By default, the tangent stiffness matrix is updated at each time
step.

Alternatively in equation (2.1.19), 𝐹𝑖𝑛𝑡 (𝑑𝑛+1−𝛼 𝑓 ), and 𝐹𝑒𝑥𝑡 (𝑑𝑛+1−𝛼 𝑓 ) could be used instead of
L𝑛 (𝐹𝑖𝑛𝑡 , 𝑑, 1 − 𝛼 𝑓 ) and L𝑛 (𝐹𝑒𝑥𝑡 , 𝑑, 1 − 𝛼 𝑓 ), respectively. During the initial development, observed
differences between the two formulations were negligible.

For the initial guess for equation (2.1.19), 𝐹𝑖𝑛𝑡 (𝑑𝑛+1) ≈ 𝐹𝑖𝑛𝑡 (𝑑𝑛) + 𝐾𝑇Δ𝑑 corresponds to

L𝑛 (𝐹𝑖𝑛𝑡 , 𝑑, 1 − 𝛼 𝑓 ) ≈ 𝐹𝑖𝑛𝑡 (𝑑𝑛) + 𝐾𝑇Δ𝑑 (1 − 𝛼 𝑓 ) (2.1.20)

The dynamic matrix is given by equation (2.1.13) with 𝐾𝑇 replacing 𝐾 .

Equation (2.1.15) for equation (2.1.2) is repeated here for comparison:

𝑏𝑛+1 = 𝐹𝑒𝑥𝑡𝑛+1−𝛼 𝑓 − 𝐾𝑑𝑛𝛼 𝑓

−𝐶 (𝛼 𝑓 𝑣𝑛 + (1 − 𝛼 𝑓 )𝑣̆𝑛+1)+

+𝑀
[
−𝛼𝑚𝑎𝑛 +

1 − 𝛼𝑚
𝛽Δ𝑡2

(𝑑𝑛 + 𝑣𝑛Δ𝑡) + (1 − 𝛼𝑚)
1 − 2𝛽

2𝛽
𝑎𝑛

]
.

The nonlinear transient initial right-hand side is nearly identical,

𝑏𝑛+1 = 𝐹𝑒𝑥𝑡𝑛+1−𝛼 𝑓 − 𝛼 𝑓 𝐹
𝑖𝑛𝑡
𝑛 − (1 − 𝛼 𝑓 )

[
𝐹𝑖𝑛𝑡𝑛 − 𝐾𝑇𝑑𝑛

]
−𝐶 (𝛼 𝑓 𝑣𝑛 + (1 − 𝛼 𝑓 )𝑣̆𝑛+1)+

+𝑀
[
−𝛼𝑚𝑎𝑛 +

1 − 𝛼𝑚
𝛽Δ𝑡2

(𝑑𝑛 + 𝑣𝑛Δ𝑡) + (1 − 𝛼𝑚)
1 − 2𝛽

2𝛽
𝑎𝑛

]
In a sense, the initial guess for 𝑑𝑛+1 is zero.

Now, given the previous approximation 𝑑 of 𝑑𝑛+1, Δ𝑑 = 𝑑𝑛+1 − 𝑑 is approximated by solving the update
equation. This is another instance of the predictor-corrector linear system of equation (2.1.3) with dynamic
matrix given by equation (2.1.13) with 𝐾𝑇 instead of 𝐾 . However, using the previous estimated velocity 𝑣̂
and acceleration 𝑎̂, the right-hand side is,

𝑏̂𝑛+1 = 𝐹𝑒𝑥𝑡𝑛+1+𝛼 𝑓 − (1 − 𝛼 𝑓 )𝐹̂
𝑖𝑛𝑡 − 𝛼 𝑓 𝐹𝑖𝑛𝑡𝑛 (2.1.21)

−𝐶
[
(1 − 𝛼 𝑓 )𝑣̂ + 𝛼 𝑓 𝑣𝑛

]
−𝑀 [(1 − 𝛼𝑚)𝑎̂ + 𝛼𝑚𝑎𝑛]

Note that
𝐹̂𝑖𝑛𝑡 = 𝐹𝑖𝑛𝑡𝑛 + 𝐾𝑇 (𝑑 − 𝑑𝑛).

The residual r is the amount by which the equations of motion (2.1.19) are not satisfied by the current
iterate. The right-hand side in equation (2.1.21) is the residual r for the update equation,

𝐴Δ𝑑 = r. (2.1.22)

As claimed at the start of this section, for Newmark-Beta, 𝛾 = 1
2 , 𝛽 = 1

4 , equation (2.1.21) reduces to the
standard procedure,19 [

𝑀
4
Δ𝑡2
+ 𝐶 2

Δ𝑡
+ 𝐾𝑇

]
Δ𝑑 = 𝐹𝑒𝑥𝑡𝑛+1 − 𝐹̂

𝑖𝑛𝑡 − 𝐶𝑣̂ − 𝑀𝑎̂,

r = 𝐹𝑒𝑥𝑡𝑛+1 − 𝐹̂
𝑖𝑛𝑡 − 𝐶𝑣̂ − 𝑀𝑎̂ (2.1.23)
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2.1.3.1. Nonlinear Transient Analysis with Constraints

In the previous section, the assumption was made that there were no multi-point constraint equations.
These extra equations introduce Lagrange multipliers that need to be included in the nonlinear equations. In
this section, we will describe how to include constraint equations into the nonlinear solution method based
on Newton’s method.

Equation 2.1.22 is correct if there are no constraint equations in the problem. When constraint equations
are involved, we will show that this generalizes to the following[

𝐴 𝐺𝑇

𝐺 0

] [
Δ𝑑

Δ𝜆

]
=

[
𝑟𝑒𝑠

0

]
(2.1.24)

where the residual is defined with an additional term due to the constraints

𝑟𝑒𝑠 = 𝐹𝑒𝑥𝑡𝑛+1 − 𝐹̂
𝑖𝑛𝑡 − 𝐶𝑣̂ − 𝑀𝑎̂ − 𝐺𝑇 𝜆̂ (2.1.25)

where 𝐺 is the matrix representation of the constraint equations, 𝜆̂ is the current Newton iterate of the
Lagrange multipliers, and 𝐺𝑇 𝜆̂ represents a force due to constraints. Note that when the problem has no
constraint equations, equations 2.1.24 and 2.1.25 reduce to equations 2.1.22 and 2.1.23.

We can arrive at equations 2.1.24 through some simple arguments similar to the unconstrained case. The
second equation

𝐺Δ𝑑 = 𝐺𝑑𝑛+1 − 𝐺𝑑 = 0 (2.1.26)

is a simple argument that the linear solver always returns solutions that satisfy 𝐺𝑑 = 0, and thus the
difference 𝐺𝑑𝑛+1 − 𝐺𝑑 must also be zero.

The first equation can be deduced by including an additional constraint force term into the residual
equation. We will work with the Newmark method, i.e. 𝛾𝑛 = 1

2 , 𝛽𝑛 = 1
4 , 𝛼 𝑓 = 𝛼𝑚 = 0 to keep the

discussion simple. The case with the generalized alpha method is a simple extension of what follows. We
write the total internal force, including constraint force terms, as

𝐹𝑡𝑜𝑡 (𝑑, 𝜆̂) = 𝐹𝑖𝑛𝑡 (𝑑) + 𝑀𝑎̂ + 𝐶𝑣̂ + 𝐺𝑇 𝜆̂ (2.1.27)

The incremented total force is given by

𝐹𝑡𝑜𝑡 (𝑑𝑛+1, 𝜆𝑛+1) = 𝐹𝑡𝑜𝑡 (𝑑, 𝜆̂) +
𝜕𝐹𝑡𝑜𝑡

𝜕𝑑
Δ𝑑 + 𝜕𝐹𝑡𝑜𝑡

𝜕𝜆̂
Δ𝜆

= 𝐹𝑡𝑜𝑡 (𝑑, 𝜆̂) + 𝐴Δ𝑑 + 𝐺𝑇Δ𝜆

The force balance says that

𝐹𝑒𝑥𝑡𝑛+1 = 𝐹𝑡𝑜𝑡 (𝑑𝑛+1, 𝜆𝑛+1) (2.1.28)

Simplifying, we obtain
𝐴Δ𝑑 + 𝐺𝑇Δ𝜆 = 𝐹𝑒𝑥𝑡𝑛+1 − 𝐹̂

𝑖𝑛𝑡 − 𝐶𝑣̂ − 𝑀𝑎̂ − 𝐺𝑇 𝜆̂ (2.1.29)

which corresponds to the first equation in the system of equations given by equation 2.1.24.
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Damping Source Discussion

linear dashpots Contributes directly to the 𝐶 matrix described in equation
2.1.6. The matrix is constant.

proportional damping Also, known as Rayleigh damping,

𝛼𝑀𝑜 + 𝛽𝐾𝑜

The damping is proportional to velocity. Note that the effective
damping matrix is constant. Damping is not proportional to
the tangent matrix, 𝐾𝑡 .

linear viscoelasticity Determined by material parameters.

nonlinear energy loss Many nonlinear elements contribute to this form of damping.
It does not generate a damping matrix term, and often moves
energy from lower frequencies to higher frequencies. An
example is the Iwan element.

nonlinear material Similar to nonlinear elements.

numerical damping No damping matrix is generated. Most of the energy loss is
at frequencies above the Nyquist frequency. Controlled by
parameter RHO.

Table 2-1. – Sources of Damping in the Solution.

2.1.3.2. Damping in Nonlinear Solutions

Some sources of damping in the solution of linear and nonlinear solutions have been identified. It is useful
to list them for comparison, as in Table 2-1. Note in particular, that proportional damping, common in
linear systems, requires a different definition in nonlinear systems, and will also require explicit formation
of a damping matrix.

2.2. Damping of Flexible Modes Only

Here we outline the method used in Sierra/SD to ensure that various damping models do not affect the
rigid body response of a structure. 2. A more detailed explanation of the theory which involves less
restrictive assumptions and describes connections with the present approach can be found in the document
dampFlexMode.tex, which appears in the Sierra/SD documents repository. The sensitivity of this approach
to errors in the 𝐾 is discussed in filterrbm_error.tex.

Consider the standard equilibrium equations given by

𝑀 ¥𝑥 + 𝐶 ¤𝑥 + 𝐾𝑥 = 𝑓 , (2.2.1)

where 𝑀 is the mass matrix, 𝐶 is the damping matrix, 𝐾 is the stiffness matrix, 𝑥 is the response vector, and
𝑓 is the applied force vector. Let the columns of the matrix Φ𝑟 span the rigid body modes of the structure.

2The technique is also known as filtering the rigid body modes, hence the name filterRBM
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That is,
𝐾Φ𝑟 = 0. (2.2.2)

Typically, there are six rigid body modes (3 translational and 3 rotational), and it is assumed this is the case.
Consider next a proportional damping model in which

𝐶 = 𝛼𝐾 + 𝛽𝑀, (2.2.3)

where 𝛼 and 𝛽 are non-negative constants. Since the mass matrix 𝑀 is nonsingular, we will have 𝐶Φ𝑟 ≠ 0
for mass proportional damping when 𝛽 > 0. Thus, the damping model will dissipate the energy of the rigid
body modes. Some analysts would like to include mass proportional damping, but only have it damp the
flexible modes.

We may express the response vector 𝑥 as

𝑥 = Φ𝑟𝑞𝑟 +Φ 𝑓 𝑞 𝑓 , (2.2.4)

where 𝑞𝑟 and 𝑞 𝑓 are vectors of generalized coordinates associated with the rigid body and flexible modes,
respectively. Further,

Φ𝑇𝑓𝑀Φ𝑟 = 0. (2.2.5)

Substituting (2.2.4) into (2.2.1), using (2.2.2), and setting

𝐶Φ𝑟 = 0 (2.2.6)

gives us
𝑀 (Φ𝑟 ¥𝑞𝑟 +Φ 𝑓 ¥𝑞 𝑓 ) + 𝐶Φ 𝑓 ¤𝑞 𝑓 + 𝐾Φ 𝑓 𝑞 𝑓 = 𝑓 . (2.2.7)

First assume that 𝐶 and 𝐾 are symmetric. We then find from (2.2.2) and (2.2.6) that

Φ𝑇𝑟 𝐶 = 0, Φ𝑇𝑟 𝐾 = 0, (2.2.8)

Pre-multiplying (2.2.7) by Φ𝑇𝑟 and substitution of (2.2.5) and (2.2.8) gives us

Φ𝑇𝑟 𝑀Φ𝑟 ¥𝑞𝑟 = Φ𝑇𝑟 𝑓 . (2.2.9)

If the rigid body modes are 𝑀-orthonormal, i.e. Φ𝑇𝑟 𝑀Φ𝑟 = 𝐼, we then obtain

¥𝑞𝑟 = Φ𝑇𝑟 𝑓 . (2.2.10)

Substituting (2.2.10) into (2.2.7) and using the notation 𝑥 𝑓 = Φ 𝑓 𝑞 𝑓 gives us

𝑀 ¥𝑥 𝑓 + 𝐶 ¤𝑥 𝑓 + 𝐾𝑥 𝑓 = (𝐼 − 𝑀Φ𝑟Φ
𝑇
𝑟 ) 𝑓 . (2.2.11)

From (2.2.4) we see that the total response is given by

𝑥 = Φ𝑟𝑞𝑟 + 𝑥 𝑓 , (2.2.12)

where the dynamics associated with 𝑞𝑟 and 𝑥 𝑓 are governed by (2.2.10) and (2.2.11).

Notice that the dynamics for the flexible part of the response, i.e. (2.2.11), is the original equilibrium
equations in (2.2.1) with a modified force vector. This modified for vector can be calculated efficiently as

(𝐼 − 𝑀Φ𝑟Φ
𝑇
𝑟 ) 𝑓 = 𝑓 − 𝑀 (Φ𝑟 (Φ𝑇𝑟 𝑓 )). (2.2.13)
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The rigid body response governed by (2.2.10) can be numerically integrated using the same scheme as for
the flexible response.

If 𝑓 is a known force vector that does not depend on the response, then we do not need to concern ourselves
with stability issues since all we’ve done is modified the force vector in a stable manner. If, however, the
force vector depends on the response, then stability issues could arise. It should be mentioned though that
these potential issues could arise even in our existing capabilities for coupling Sierra/SD to other
simulation codes that do not use the present damping approach.

Usability Question Certain expedient spatial discretizations of floating structures lead to a stiffness matrix
𝐾̃ with the nonphysical property 𝐾̃Φ ≠ 0. Given 𝑀 , 𝐶 and 𝐾̃ , 𝑓 determines 𝑥. If, moreover, the rigid body
modes Φ are undamped, we get a solution 𝑦. Is 𝑦 “better" than 𝑥? A cumbersome discretization determines
𝐾 such that

Φ𝑇𝑟 𝐾 = 0, 𝐾Φ𝑟 = 0. (2.2.14)

In practice 𝐾 = 𝐾̃ −𝑉𝑉𝑇 the matrices differ by a symmetric low rank perturbation, and 𝑉𝑉𝑇 is sparse.

Our fundamental tool is
𝑃 = 𝐼 −Φ𝑟Φ𝑇𝑟 𝑀.

In general neither 𝑃𝑇 𝐾̃ nor 𝐾̃𝑃 satisfies equation (2). If there exists 𝐻 such that 𝐾̃Φ = 𝑀Φ𝐻, then (not
obvious) 𝑃𝑇 𝐾̃ = 𝐾̃𝑃. Using filterrbm is like transforming 𝐾̃ to 𝑃𝑇 𝐾̃𝑃 = 𝐾 + 𝑃𝑇𝑉𝑉𝑇𝑃. This has the
advantage of projecting out the rigid body modes from 𝑉 .

2.3. Modal Solutions

Modal transient and FRF simulations are used heavily due to their high efficiency (no linear solves) and
also their ability to act as a perfect pass filter.

Scalability. Figure 2-2 illustrates the unsatisfactory data locality problems with the standard approach. An
alternative algorithm will solve these locality problems.

We here address a method for much higher performance provided that output is required on a modest data
set and that the force is simple. Compute the modal system response from equation 2.3.4.
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1. Compute all eigenvectors, (𝐾 − 𝜆𝑀)Φ = 0.

2. Compute the applied load (in modal coordinates) at each
time,

𝑓 𝑖 =
∑︁
𝑘

Φ𝑘𝑖𝐹
𝑒𝑥𝑡
𝑘 .

3. Compute the modal system response from equation 2.3.4.

4. Expand from modal to full physical space.

𝑋 𝑘𝑛+1 =
∑︁

𝑖<Nmodes
𝑞𝑖𝑛+1Φ𝑘𝑖 .

5. Collapse the physical space to the output degrees of free-
dom.

𝑥 = subset(𝑋)
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Figure 2-1. – The par-
allel data (matrices and
vectorsΦ and 𝑋) are par-
titioned by processor.

Figure 2-2. – Standard Modal Transient Algorithm. Note that while the output is required on only a small part
of the model, a calculation of data on all degrees of freedom is performed first, and results are then collapsed to
the reduced model.

2.3.1. Modal Solution Summary

Using the trapezoidal rule, Newmark-beta integrator3 equation 2.1.1 may be condensed to,[
4
Δ𝑡2

𝑀 + 2
Δ𝑡
𝐶̂ + 𝐾

]
𝑑𝑛+1 = 𝐹𝑒𝑥𝑡𝑛+1 + 𝐶̂

[
𝑣𝑛 +

2
Δ𝑡
𝑑𝑛

]
+ 𝑀

[
4
Δ𝑡2

𝑑𝑛 +
4
Δ𝑡
𝑣𝑛 + 𝑎𝑛

]
(2.3.1)

Also,

𝑣𝑛+1 = −𝑣𝑛 +
2
Δ𝑡
(𝑑𝑛+1 − 𝑑𝑛) (2.3.2)

𝑎𝑛+1 = −𝑎𝑛 +
4
Δ𝑡2
(𝑑𝑛+1 − 𝑑𝑛) −

4
Δ𝑡
𝑣𝑛 (2.3.3)

With the usual modal transformation, 𝑑𝑘 =
∑
𝑖 Φ𝑘𝑖𝑞, 𝜆𝑖 = Φ𝑇

𝑖
𝐾Φ𝑖 , and Φ𝑇𝑀Φ = 𝐼, we may write the

equivalent modal equations.
𝑎𝑖𝑞

𝑖
𝑛+1 = 𝑞𝑖𝑛 + 𝑓 𝑖𝑛+1 + 𝑓

𝑖 (2.3.4)

3This implies that 𝛼𝑚 = 𝛼 𝑓 = 0, 𝛽𝑛 = 1/4, and 𝛾𝑛 = 1/2.

36



where

𝑎𝑖 =
4
Δ𝑡2
+ 2
Δ𝑡
𝛾𝑖 + 𝜆𝑖

𝑓 𝑖𝑛+1 =
∑︁
𝑘

Φ𝑘𝑖𝐹
𝑒𝑥𝑡
𝑘

𝑓 𝑖 = ¥𝑞𝑛 +
(

4
Δ𝑡
¤𝑞𝑛 +

4
Δ𝑡2

𝑞𝑛

)
+ 𝛾𝑖

(
¤𝑞𝑛 +

2
Δ𝑡
𝑞𝑛

)
and,
𝛾𝑖 is the modal damping

These are uncoupled equations. The solution for each modal coordinate is independent of any other.

2.3.2. Parallel Modal

Typically the objective is to measure the response in a small region, such as data output to a history file.
Large amounts of data are processed, only to reduce the data at each time step to a reduced system. The
parallel computer processing is being expended to process large vectors that are not needed, and for which
no useful output is provided. If the reduced set may easily fit on a single processor, and if the modal force
may be adequately determined, then a streamlined algorithm may be used.

The fast algorithm is illustrated in Figure 2-3 for transient dynamics, and in Figure 2-4 for modal frequency
response. This is the modal displacement method for modal FRF. The modal acceleration method for
modal FRF is discussed in Section 2.15. The same set of equations are now solved, but since the entire
physical model exists on all processors, we can compute the sum of terms in parallel.

1. Begin with eigenvalues, 𝜆, and reduced eigenvectors, 𝜙. We also need the generalized components of
modal force, 𝜁 𝑠

𝑖
(𝜔) = ∑

𝑘 Φ𝑘𝑖 𝐹̂
𝑠
𝑘
(𝜔).

2. Compute the time response of the modal system response in parallel. Each processor gets only a subset
of modes, and solves equation 2.3.4 independently.

3. Compute the response on the physical space using the sum of modes as a sum across processors.
NOTE: this is restricted to the reduced physical space.

𝑥𝑘 =

𝑁𝑝𝑟𝑜𝑐∑︁
𝑝

𝑁𝑚𝑜𝑑𝑒𝑠𝑝𝑟𝑜𝑐∑︁
𝑖

𝜙𝑘𝑖𝑞𝑖

Figure 2-3. – Modal Transient Algorithm.
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1. Begin with eigenvalues, 𝜆, and reduced eigenvectors, 𝜙. We also need the generalized components of
modal force, 𝜁 𝑠

𝑖
(𝜔) = ∑

𝑘 Φ𝑘𝑖 𝐹̂
𝑠
𝑘
(𝜔).

2. Compute the frequency response of the modal system response in parallel. Each processor gets only
a subset of modes, and solves the following equation independently.

𝑞𝑖 (𝜔) =
𝑓
𝑞

𝑖
(𝜔)

𝜔2 − 𝜔2
𝑖
− 2 𝑗𝛾𝑖𝜔𝜔𝑖

where 𝜔 =
√
𝜆𝑖 and 𝑗 =

√
−1.

3. Compute the response on the physical space using the sum of modes as a sum across processors.
NOTE: this is restricted to the reduced physical space.

𝑥𝑘 =

𝑁𝑝𝑟𝑜𝑐∑︁
𝑝

𝑁𝑚𝑜𝑑𝑒𝑠𝑝𝑟𝑜𝑐∑︁
𝑖

𝜙𝑘𝑖𝑞𝑖

Alternatively, each processor may be assigned the computation of a frequency range, and compute all
the modal contributions to that range. A processor sum would gather all the results for output.

Figure 2-4. – Modal Frequency Response Algorithm.

2.3.3. Determination of Modal Force

The fast algorithm outlined in the previous section depends on determination of the modal force vector,
𝑓 𝑖 (𝑡). But, the physical loads may be applied to degrees of freedom other than those in the limited output
set, so that the eigenvector, Φ of the full system would be required.

However, in most cases,4 the force in the physical coordinates is computed as a sum of spatial and temporal
terms.5

𝐹𝑒𝑥𝑡 (𝑥, 𝑡) =
𝑁𝑠𝑒𝑡𝑠∑︁
𝑠

𝐹̂𝑠 (𝑥)𝛿𝑠 (𝑡)

Typically, each spatial function 𝐹̂𝑠 is determined by a nodeset, sideset or body load input, while the
temporal term, 𝛿𝑠 (𝑡), is a multiplier defined in a FUNCTION section. We may thus write,

𝑓 𝑖 (𝑡) =
∑︁
𝑘

Φ𝑘𝑖𝐹
𝑒𝑥𝑡 (𝑥𝑘 , 𝑡) (2.3.5)

=
∑︁
𝑘

Φ𝑘𝑖

𝑁𝑠𝑒𝑡𝑠∑︁
𝑠

𝐹̂𝑠 (𝑥)𝛿𝑠 (𝑡)

=

𝑁𝑠𝑒𝑡𝑠∑︁
𝑠

𝜁 𝑖𝑠𝛿
𝑠 (𝑡) (2.3.6)

Here,
𝜁 𝑖𝑠 =

∑︁
𝑘

Φ𝑘𝑖 𝐹̂
𝑠
𝑘 (2.3.7)

4If user defined functions of space are included, this situation is violated, and the fast algorithm cannot be used.
5What is described here for the time domain also applies in the frequency domain. They are products of spatial and frequency

components.
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Thus, a necessary part of the preparation for a fast modal solution includes calculation of the generalized
components of force,

𝜁 𝑖𝑠 .

2.4. Eigenvalue Problems

The eigen solution method computes a user-specified number of the lowest-frequency modes of

(𝐾 − 𝜔2𝑀)𝜙 = 0. (2.4.1)

The eigenvalue (or mode) 𝜔2 and eigenvector (or mode shape) 𝜙 correspond to the solution 𝑢(𝑡) = 𝜙𝑒𝑖𝜔𝑡
with frequency 𝜔/(2𝜋). The frequency and the mode shape are reported to the user. The mode shapes are
mass orthogonal, i.e., 𝜙𝑇

𝑖
𝑀𝜙 𝑗 = 𝛿𝑖 𝑗 . The default diagnostic output, including the residual norms

∥(𝐾 − 𝜔2𝑀)𝜙∥, are labeled by eigenvalue 𝜔2.

Some approaches can be used to solve this system, and their relative merits are understood (see8). For large
systems, direct (or dense) methods such as the QR algorithm or Jacobi transformations are tremendously
more expensive than the methods used in Sierra/SD. In Sierra/SD, we rely on the shifted and inverted
algorithm as implemented in ARPACK96 . A detailed scalability study is available in SAND
2019-1217.27

Different solution methods are available for many of the different eigenvalue problems. Note that Rayleigh
damping, 𝐶 = 𝛼𝑀 + 𝛽𝐾 , does not change the mode shapes and changes the mode frequencies as in a
single-degree-of-freedom problem.

The shift (𝜎) and invert transform leads to a problem whose largest modes are the modes of interest. The
result of subtracting 𝜎𝑀𝜙 from both sides of equation (2.4.1) is

(𝐾 − 𝜎𝑀)𝜙 = 𝑀𝜙(𝜔2 − 𝜎). (2.4.2)

The eigenvalue problem exposed to ARPACK emerges by multiplying both sides of (2.4.2) by
(𝐾 − 𝜎𝑀)−1(𝜔2 − 𝜎)−1:

(𝐾 − 𝜎𝑀)−1𝑀𝜙 = (𝜔2 − 𝜎)−1𝜙. (2.4.3)

For example, users are expected to understand that the shift corresponding to the frequency 𝑓 is 4𝜋2 𝑓 2.

The linear solvers available with the eigen solution case all require positive-definite systems. For this
reason, the shift must be negative. Generally speaking, increasing the magnitude of the shift makes solving
the linear systems easier and solving the eigenvalue problem harder. In theory, using the Helmholtz linear
solver, the capability could be implemented to determine the modes nearest to an arbitrary positive
user-specified shift. The demand for this capability has never justified the risk and expense of
implementation.

Structural dynamics eigenvalue problems have some unique features all revolving around the challenging
nature of the corresponding linear systems. Results are typically insensitive to the linear solver relative
residual norm threshold (the default is 10−6). One exception is the case of computing many (thousands) of
modes, in which case it is necessary to start out with a smaller tolerance (say 10−12) to avoid convergence
problems at the higher frequencies.
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2.5. A posteriori error estimation for eigen analysis

The purpose of this section is to summarize two different approaches for a posteriori error estimation of
eigen analysis. The first is an explicit error estimator,93,76 and the second is a quantity of interest
approach.1 The explicit approaches are described in chapter 2 of,112 and the quantity of interest approaches
are described in Chapter 8 of the same book. However, since we are interested in the eigenvalue problem,
the methodologies are somewhat different than the approaches described in,112 though there are many
similarities. Both the explicit and the quantity of interest approaches have the same goal - to use the
computed solution to compute upper and lower bounds on the discretization error for the eigenvalues and
eigenvectors. A drawback to the explicit approach is that unknown constants are present in the bounds,
making final determination of the error more difficult. Because of this, an explicit estimator is more
frequently used as an element indicators to drive adaptivity algorithms, rather than as an error estimator.
The quantity of interest approach avoids the unknown constants, but is more work in terms of
implementation.

2.5.1. Preliminaries

We seek a posteriori bounds on the error of the finite element solution of the eigenvalue problem for
elasticity

−𝜌𝜆𝑢 = (Λ + 𝜇)∇(∇ · 𝑢) + 𝜇∇2𝑢 = ∇ · 𝜎(𝑢) (2.5.1)

or
𝐴1(𝑢) = −𝜆𝐴2(𝑢) (2.5.2)

where 𝐴1(𝑢) and 𝐴2(𝑢) are the partial differential operators implied by equation 2.5.1, 𝜆 and 𝑢 are the
unknown eigenvector and eigenvalue, and Λ and 𝜇 are the Lamé elasticity constants. We note that the
right-hand side of equation 2.5.1 can be written either in terms of displacement, as in the first representation,
or in terms of stress, as in the second representation of the right-hand side of the equation. The weak
formulation of equation 2.5.1 is constructed by multiplying by a test function, and integrating by parts, with
homogeneous boundary conditions. This leads to the weak formulation: Find (𝜆, 𝑢) ∈ 𝑉 × 𝑅 such that

𝐵(𝑢, 𝑣) = 𝜆𝑀 (𝑢, 𝑣) ∀𝑣 ∈ 𝑉 (2.5.3)

where
𝐵(𝑢, 𝑣) =

∫
Ω

𝜎(𝑢)𝜖 (𝑣)𝑑𝑥 (2.5.4)

and
𝑀 (𝑢, 𝑣) =

∫
Ω

𝜌𝑢𝑣𝑑𝑥 (2.5.5)

After defining a finite element discretization, this reduces to: Find (𝑢ℎ, 𝜆ℎ) such that

𝐾𝑢 = 𝜆𝑀𝑢 (2.5.6)

where (𝑢ℎ, 𝜆ℎ) are the finite element approximations of the eigenvector and eigenvalue, and 𝐾 , 𝑀 , are the
assembled stiffness and mass matrices.
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2.5.2. An explicit error estimator

In Larsen93 and Rannacher,76 two independently derived error estimates are presented for the Laplace
equation. While the two estimates differ, both incorporate an unknown constant, 𝐶, an element diameter
term, ℎ𝑒, and an element residual function, 𝜌̄. In what follows we extend these estimates to the elasticity
problem. The following two error estimates are given in93 and76 respectively. In what follows we use
Larsen’s results (equation 2.5.7) exclusively. 6

|𝜆 − 𝜆ℎ | ≤ 𝑐𝜆𝐶𝑒,0

(
𝑁𝑒∑︁
𝑒=1

ℎ4
𝑒 𝜌̄(𝑢ℎ, 𝜆ℎ)2

) 1
2

(2.5.7)

|𝜆 − 𝜆ℎ | ≤ 𝐶2

𝑁𝑒∑︁
𝑒=1

ℎ2
𝑒 𝜌̄(𝑢ℎ, 𝜆ℎ)2 (2.5.8)

where ℎ𝑒 is the element diameter, and

𝜌̄(𝑢ℎ, 𝜆ℎ)2 =

∫
Ω𝑒

(
|𝐴1𝑢ℎ + 𝜆ℎ𝐴2𝑢ℎ | + 𝑅 𝑓 𝑙𝑢𝑥

)2
𝑑Ω𝑒 (2.5.9)

The first term on the right-hand side is the interior element residual, which is the differential stiffness
operator 𝐴1, defined in equation 2.5.2, applied to the computed element displacement combined with the
computed eigenvalue times the differential mass operator 𝐴2, also defined in equation 2.5.2, applied to the
computed element displacement. This term is computed by representing the eigenvector as a summation

𝑢ℎ (𝑥) =
𝑁∑︁
𝑖=1

𝑎𝑖𝑁𝑖 (𝑥) (2.5.10)

where 𝑎𝑖 is the 𝑖𝑡ℎ entry in the eigenvector, and 𝑁𝑖 (𝑥) is the 𝑖𝑡ℎ shape function, and then applying the
gradient and divergence operators from equation 2.5.1 to the summation in equation 2.5.10.

We note that the quantity 𝐴1𝑢ℎ + 𝜆ℎ𝐴2𝑢ℎ is expressed in the strong form, and thus is not the same as
𝐾𝑢ℎ − 𝜆ℎ𝑀𝑢ℎ, though both expressions are on the element level. The difference can be seen by observing
the first term 𝐴1𝑢ℎ

𝐴1𝑢ℎ = ∇ · 𝜎(𝑢ℎ) (2.5.11)

That is, 𝐴1𝑢ℎ is the divergence of the stress (which is computed from the finite element displacement 𝑢ℎ).
This is not the same as 𝐾𝑢ℎ, since 𝐾𝑢ℎ is in the weak form, and has been evaluated by integrating over the
element against a test function. For example, if we consider linear elements, we have
𝐴1𝑢ℎ = ∇ · 𝜎(𝑢ℎ) = 0, since the stress is constant over the element. On the other hand, 𝐾𝑢ℎ is not zero.

The second term is the boundary or flux residual.

𝑅 𝑓 𝑙𝑢𝑥 = (ℎ𝑒𝑣𝑜𝑙 (𝑒))−1/2
[∫

Γ𝑒

𝑅2𝑑Γ𝑒

]1/2
(2.5.12)

6Equation 2.5.7 applies to elements with linear shape functions. The more general expression may be found in equation 2.5.57 or
the reference.
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It has two different integrands depending on whether the face in question lies on a part of the boundary
where traction or pressure boundary conditions are applied, or whether it is an interior face. When it lies on
a boundary loaded face,

𝑅 = 𝑔 − 𝜎𝑖 𝑗𝑛 𝑗 (2.5.13)

where 𝑔 is the applied traction or pressure load. Note that 𝑔 = 0 for eigen problems. When the face is an
interior face,

𝑅 =
[
𝜎𝑖 𝑗𝑛 𝑗

]
= 𝜎𝑎𝑖 𝑗𝑛 𝑗 − 𝜎𝑏𝑖 𝑗𝑛 𝑗 (2.5.14)

where 𝜎𝑎 and 𝜎𝑏 are the stress tensors in the two adjacent elements, element ’a’ and element ’b’. Note that
because the integrand is squared, computing the flux residual in parallel requires parallel communication.

We note the intuitive nature of the upper bound in equation 2.5.7. As the element size ℎ𝑒 tends to zero, the
right-hand sides of the estimate goes to zero, due to the multiplication by the element sizes ℎ𝑒. Keep in
mind also that the 𝜌̄ term includes an integral over a volume and that

∑𝑁𝑒
𝑒=1 ∥const∥ is a constant.

There are two important issues in applying the results in Larsen’s reference to general elasticity problems.
The first of these is the extension to elasticity. The second is the extension to multiple materials. These are
covered in the following sections.

2.5.3. Error estimates for elasticity

This section was provided by Ulrich Hetmaniuk to help us with problems in scaling the Laplace equation to
the elasticity problem. It addresses issues of both mass and stiffness scaling. A similar development was
provided by Clark Dohrmann. The development herein builds upon Larsen’s development,93 and uses
quantities defined there.

We consider the eigenvalue problem

−𝜇Δu − (Λ + 𝜇)∇(∇ · u) = −∇ · 𝜎(u) = 𝜃𝜌u in Ω (2.5.15)
u = 0 on 𝜕Ω (2.5.16)

where the Lamé constants Λ and 𝜇 satisfy

Λ =
𝜈𝐸

(1 + 𝜈) (1 − 2𝜈) , 𝜇 =
𝐸

2(1 + 𝜈) (2.5.17)

We define also a weak formulation: find (u, 𝜃) ∈ V × R

𝑎(u, v) = 𝜃𝑏(u, v), ∀ v ∈ V (2.5.18)
𝑏(u, u) = 1 (2.5.19)

where
𝑎(u, v) =

∫
Ω

𝜎(u) · 𝜖 (v)𝑑𝑥 (2.5.20)

and
𝑏(u, v) =

∫
Ω

𝜌u · v𝑑𝑥 (2.5.21)

We follow the approach in the paper by M. Larson to derive an a posteriori error estimator. We use most of
his notation.
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Residual

The definition (3.7) for the residual becomes, on a triangle 𝜏,

𝑅(uℎ, 𝜃ℎ) |𝜏 =
1
√
𝜌
|∇ · 𝜎(uℎ) + 𝜃ℎ𝜌uℎ | +

√︄
1

ℎ 𝑣𝑜𝑙 (𝜏)

∫
𝜕𝜏\𝜕Ω

(
n ·

[
𝜎(uℎ)
2√𝜌

] )2
(2.5.22)

Note that we have
𝑅(uℎ, 𝜃ℎ) ≡ 𝑅(uℎ, 𝜃ℎ, 𝜌, 𝐸, 𝜈) (2.5.23)

and that 𝑅 satisfies the following scaling properties

𝑅( uℎ√
𝛼
,
𝜃ℎ

𝛼
, 𝛼𝜌, 𝐸, 𝜈) =

1
𝛼
𝑅(uℎ, 𝜃ℎ, 𝜌, 𝐸, 𝜈) (2.5.24)

𝑅(uℎ, 𝛼𝜃ℎ, 𝜌, 𝛼𝐸, 𝜈) = 𝛼𝑅(uℎ, 𝜃ℎ, 𝜌, 𝐸, 𝜈) (2.5.25)

Stability estimates

The equation (3.10) becomes

| |𝐷2+𝑠v| | ≤ 𝐶𝑒,𝑠

√√√
𝑏

((
−1
𝜌
∇ · 𝜎

)1+𝑠/2
(v),

(
−1
𝜌
∇ · 𝜎

)1+𝑠/2
(v)

)
(2.5.26)

Note that
Λ + 𝜇 =

𝐸

2(1 + 𝜈) (1 − 2𝜈) ,
𝜇

Λ + 𝜇 = 1 − 2𝜈 (2.5.27)

Then, we get

𝐶𝑒,𝑠 = 𝑐
𝜌 (1+𝑠)/2

(Λ + 𝜇) (2+𝑠)/2
(2.5.28)

Note that we have
𝐶𝑒,𝑠 ≡ 𝐶𝑒,𝑠 (𝜌, 𝐸, 𝜈) (2.5.29)

and that 𝐶𝑒,𝑠 satisfies the following scaling properties

𝐶𝑒,𝑠 (𝛼𝜌, 𝐸, 𝜈) = 𝛼 (1+𝑠)/2𝐶𝑒,𝑠 (𝜌, 𝐸, 𝜈) (2.5.30)

𝐶𝑒,𝑠 (𝜌, 𝛼𝐸, 𝜈) =
1

𝛼 (2+𝑠)/2
𝐶𝑒,𝑠 (𝜌, 𝐸, 𝜈) (2.5.31)

A posteriori estimates

We make also the assumption (2.6) : there are 0 ≤ 𝛿 < 1 and ℎ0 > 0 such that

max
𝜃𝑖∉Θ

����𝜃ℎ − 𝜃𝜃𝑖 − 𝜃

���� ≤ 𝛿 , | |𝑄Θuℎ | |2 ≤ 𝛿 (2.5.32)

for all meshes such that max ℎ(𝑥) ≤ ℎ0. Using 𝑝 = 1, 𝑘 = 2, 𝛽0 = 0, and 𝛽1 = 1, the final estimate on the
eigenvalues becomes

𝜃ℎ − 𝜃
𝜃
≤ 𝑐

1 − 𝛿𝐶𝑒,0
√
𝜌 | |ℎ2𝑅(uℎ, 𝜃ℎ) | | (2.5.33)
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The estimates on the error in the discrete eigenvector are now√︁
𝑏(eΘ, eΘ) ≤

𝑐

1 − 𝛿𝐶𝑒,0(1 +max
𝜃𝑖∉Θ

𝜃

|𝜃𝑖 − 𝜃 |
)√𝜌 | |ℎ2𝑅(uℎ, 𝜃ℎ) | | (2.5.34)√︁

𝑎(eΘ, eΘ) ≤
𝑐
√
𝜌

1 − 𝛿 (𝐶𝑐 + 𝐶𝑒,0 max
𝜃𝑖∉Θ

𝜃𝜃
1/2
𝑖

|𝜃𝑖 − 𝜃 |
ℎ𝑚𝑎𝑥) | |ℎ𝑅(uℎ, 𝜃ℎ) | | (2.5.35)

where 𝐶𝑐 is related to the coercivity constant

| |𝐷v| | ≤ 𝐶𝑐
√︁
𝑎(v, v) (2.5.36)

In Ciarlet’s book (“The finite element method for elliptic problems”), the coercivity constant is given

𝑎(v, v) ≥ 2𝜇 | |𝐷v| | ⇒ 𝐶𝑐 =
𝑐√︁
2𝜇

(2.5.37)

2.5.4. Explicit Estimator - Multiple Materials

To date, we have not seen any publication which extends the explicit error estimator to multiple materials.
We don’t believe that there are significant issues, and present the approach used in Sierra/SD here. There
are two main constraints from the explicit error estimator formulations that must be maintained.

1. The eigenvectors, 𝑢ℎ must be unit normalized, i.e.∥𝑢ℎ∥ = 1. This is important for mass scaling so
that a change of units does not change the fractional error in the solution. It is an essential part of
both Larsen’s development and Ulrich’s extension to elasticity. See equation 2.5.19.

2. The extensions must maintain finite element consistency so that as ℎ goes to zero there is no
inconsistency.

The second of these can be evaluated by examination of the residuals (as in equation 2.5.9). Both the
internal and the flux terms of the residuals are unchanged by most scaling operations provided that
materials remain constant within an element. Note that the evaluation of the flux jump (equation 2.5.12) is
insensitive to multiple materials since the normal component of stress discontinuity should go to zero even
for disparate materials.

Eigenvector normalization could be addressed in several ways. The eigenvectors computed in Sierra/SD
are mass normalized, i.e. 𝑢𝑇𝑀𝑢 = 𝐼. We renormalize for error estimation in the following manner.

1. A dimensionless mass matrix, 𝑀̄ is computed using unit density material.

2. We compute a scale factor
𝑚𝛼 = 𝑢𝑇 𝑀̄𝑢 (2.5.38)

3. The eigenvectors are renormalized as 𝑢 ← 𝑢/√𝑚𝛼.

In addition to eigenvector renormalization, we move the evaluation of the scaling constant, 𝐶𝑒, 𝑠, from
equation 2.5.28 inside the summation of equation 2.5.7. This maintains the proper scaling with respect the
element stiffness terms.

A recent paper by Bernardi and Verfurth24 has shown that an explicit estimator can be used in the presence
of multiple materials. For static Laplace equation, he derived multiplicative constants for the interior and
flux contributions that make the multiplicative constant in front of the estimator independent of jumps in
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material properties. In what follows we extend this approach to the eigenvalue problem, and to elasticity
problems. We will follow the same approach as in that paper, i.e. first constructing the lower bound, and
then the upper bound. The proper choices for the coefficients will result from the upper and lower bound
estimates.

First, we note a commonly used form for an explicit estimator.

∥uh − u∥𝛼 ≤ 𝑐
∑︁
𝐾

(
ℎ∥𝑅𝑖 (uh, 𝜃ℎ)∥2𝐿2 (𝐾 ) +

√
ℎ∥ [𝜎𝑛 (uh)]

2
∥2
𝐿2 (𝜕𝐾 )

) 1
2

(2.5.39)

where 𝑅𝑖 (uh, 𝜃ℎ) = |∇ · 𝜎(uℎ) + 𝜃ℎ𝜌uℎ |, [𝜎𝑛 (uh)] is the jump in stress across the element boundary 𝜕𝐾 ,
and ∥ · ∥𝛼 is the energy norm. This estimator can be shown to give both an upper and a lower bound on the
error. As written, this estimator does not account for discontinuities in material properties, since the
constant 𝑐 in front of the estimator would depend on the jumps in material properties.

We note that the estimator, written in this form, is essentially the same as the one proposed by Larson. For
example, by writing the boundary term as an integral of a constant function, scaled by the volume of the
element, then we can write equation 2.5.39 in the form

∥𝑢ℎ − 𝑢∥𝛼 ≤ 𝑐
∑︁
𝐾

(
∥ℎ𝑅𝑖 (𝑢ℎ, 𝜃ℎ) +

√
ℎ

𝑉𝑜𝑙 (𝐾)
[𝜎𝑛 (uh)]

2
∥2
𝐿2 (𝐾 )

) 1
2

(2.5.40)

which is the same expression given by Larson in the case of linear elements. We note that this estimator is
in terms of the energy norm, whereas Larson gives his results in terms of the 𝐿2 norm. This results in the
difference of one power of ℎ in equation 2.5.40.

The approach in Bernardi is to replace the estimator in equation 2.5.39 by

∥uh − u∥𝛼 ≤ 𝑐
∑︁
𝐾

(
𝜇𝐾

2∥𝑅𝑖 (uh, 𝜃ℎ)∥2𝐿2 (𝐾 ) + 𝜇𝑒∥
[𝜎𝑛 (uh)]

2
∥2
𝐿2 (𝜕𝐾 )

) 1
2

(2.5.41)

where 𝜇𝐾 and 𝜇𝑒 are chosen in such a way that the resulting estimator is both an upper and lower bound on
the error, and the constant 𝑐 is independent of the jumps in material properties.

Before beginning, we redefine the original PDE as follows

−∇ · 𝜎
𝜌

= 𝜃u (2.5.42)

the corresponding bilinear forms as

𝑎(u, v) =
∫
Ω

1
𝜌
𝜎(u) · 𝜖 (v)𝑑x

𝑏(u, v) =
∫
Ω

u · v𝑑x

and the corresponding interior residual as

𝑅𝑖 (uh, 𝜃ℎ) = |
∇ · 𝜎(uℎ)

𝜌
+ 𝜃ℎuℎ | (2.5.43)
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By dividing through by 𝜌, we include the density in the energy norm. This will be important later on when
the coefficients in equation 2.5.41 are selected.

As in Bernardi, we need the following identities, which follow from equation 2.5.3

𝑎(u − uh, v) = 𝜃𝑏(u, v) − 𝑎(uh, v) (2.5.44)

𝜃𝑏(u, v) − 𝑎(uh, v) =
∑︁
𝐾

∫
𝐾

(
𝜃u + 1

𝜌
∇ · 𝜎(uℎ)

)
v𝑑x −∑︁

𝑒

∫
𝑒

[
1
𝜌
𝜎𝑛 (uh)

]
· v𝑑𝜏 (2.5.45)

where the summation
∑
𝑒 is over all edges (in 2D) or over all faces (in 3D). We also use equations 2.11 in

Bernardi’s paper.

The lower bound will be considered first. We set 𝑤𝐾 = Ψ𝐾𝑅𝑖 (uh, 𝜃ℎ), where Ψ𝐾 comes from equation
2.11 in Bernardi’s paper. We will also make use of the following inequality for the bilinear form

𝑎(u, v)𝐾 ≤ ∥u∥𝛼∥v∥𝛼 (2.5.46)
≤ 𝛼𝐾 ∥u∥1∥v∥1 (2.5.47)

where 𝛼𝐾 =
𝐶𝐾
𝜌𝐾

, and 𝐶𝐾 is the maximum eigenvalue of the material property matrix, and 𝜌𝐾 is the density
of the element.

For the interior part of the residual, we have

∥𝑅𝑖 (𝑢ℎ, 𝜃ℎ)∥2𝐿2 (𝐾 ) ≤ 𝛾2
1

∫
𝐾

[
1
𝜌
∇ · 𝜎(uh) + 𝜃ℎuh

]
· wK𝑑x

= −𝛾2
1

∫
𝐾

1
𝜌
𝜎(uh) · 𝜖 (wK)𝑑x + 𝛾2

1

∫
𝐾

𝜃ℎuh · wK

= 𝛾2
1𝑎(u − uh,wK)𝐾 − 𝛾2

1𝜃

∫
𝐾

u · wK𝑑x + 𝛾2
1𝜃ℎ

∫
𝐾

uh · wK𝑑x

≤ 𝛾2
1

[
∥u − uh∥𝛼(𝐾 )𝛾2ℎ

−1
𝐾 𝛼

1
2
𝐾
+ ∥𝜃ℎuh − u𝜃∥𝐿2 (𝐾 )

]
× ∥𝑅𝑖 (𝑢ℎ, 𝜃ℎ)∥𝐿2 (𝐾 ) (2.5.48)

where we note that, since Ψ𝐾 is a bubble function, the boundary terms vanish in the integration by parts on
the second line of the above equation.

This implies that

∥𝑅𝑖 (𝑢ℎ, 𝜃ℎ)∥𝛼(𝐾 ) ≤ 𝛾2
1

[
∥u − uh∥𝛼(𝐾 )𝛾2ℎ

−1
𝐾 𝛼

1
2
𝐾
+ ∥𝜃ℎuh − u𝜃∥𝐿2 (𝐾 )

]
or, multiplying through by 𝜇𝐾 ,

𝜇𝐾 ∥𝑅𝑖 (𝑢ℎ, 𝜃ℎ)∥𝛼(𝐾 ) ≤ 𝛾2
1

[
∥u − uh∥𝛼(𝐾 )𝜇𝐾𝛾2ℎ

−1
𝐾 𝛼

1
2
𝐾
+ 𝜇𝐾 ∥𝜃ℎuh − u𝜃∥𝐿2 (𝐾 )

]
We assume that the computed eigenpair 𝜃ℎ and uh are closer to the exact solution 𝜃 and u than any other
exact eigenpair. This assumption is also made by Larson, in equation 2.6. With this assumption, the term
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∥𝜃ℎuh − u𝜃∥𝐿2 (𝐾 ) is a higher order term compared with ∥u − uh∥𝛼(𝐾 ) , and thus will decay to zero at a
faster rate. This was also shown in the paper by Duran.52 Thus, we select 𝜇𝐾 based on the term
∥u − uh∥𝐿2 (𝐾 ) only. If we select 𝜇𝐾 = ℎ𝐾𝛼

− 1
2

𝐾
then the right-hand side is independent of the jumps in

material properties.

For the boundary term, we first choose 𝑤𝑒 = Ψ𝑒

[
1
𝜌
𝜎𝑛 (uh)

]
, where again Ψ𝑒 comes from equation 2.11 in

Bernardi. Then, using equation 2.5.48 we have

∥
[

1
𝜌
𝜎𝑛 (uh)

]
∥2
𝐿2 (𝑒) ≤ 𝛾2

3

∫
𝑒

[
1
𝜌
𝜎𝑛 (uh)

]
· we𝑑𝜏

= 𝛾2
3

∑︁
𝐾

∫
𝐾

(
∇ · 1

𝜌
𝜎(uℎ) + 𝜃ℎuℎ

)
· we − 𝛾2

3

∑︁
𝐾

𝑎(u − uh,we)

+ 𝛾2
3

∑︁
𝐾

∫
𝐾

(𝜃u − 𝜃ℎuh) · we

≤ 𝑐𝛾2
3

(∑︁
𝐾

𝛾5ℎ
1
2
𝑒 ∥𝑅𝑖 (𝑢ℎ, 𝜃ℎ)∥𝐿2 (𝐾 ) +

∑︁
𝐾

𝛾4ℎ
− 1

2
𝑒 𝛼

1
2
𝐾
∥u − uh∥𝛼

+ 𝛾5ℎ
1
2
𝑒

∑︁
𝐾

∥u𝜃 − uh𝜃ℎ∥𝐿2 (𝐾 )

)
∥
[

1
𝜌
𝜎𝑛 (uh)

]
∥𝐿2 (𝑒)

≤ 𝑐𝛾2
3

[∑︁
𝐾

ℎ
− 1

2
𝑒 𝛼

1
2
𝐾
∥u − uh∥𝛼 +

∑︁
𝐾

ℎ
1
2
𝑒 ∥𝜃ℎuh − 𝜃u∥𝐿2 (𝐾 )

]
× ∥

[
1
𝜌
𝜎𝑛 (uh)

]
∥𝐿2 (𝑒) (2.5.49)

where in the above equation,
∑
𝐾 denotes a summation over elements, but only those elements that border

the edge 𝑒. Also, in the previous estimate we collected constants involving 𝛾 and combine with the constant
𝑐, where possible.

This implies that

𝜇
1
2
𝑒 ∥

[
1
𝜌
𝜎𝑛 (uh)

]
∥𝐿2 (𝑒) ≤ 𝑐𝛾2

3𝜇
1
2
𝑒

[∑︁
𝐾

ℎ
− 1

2
𝑒 𝛼

1
2
𝐾
∥u − uh∥𝛼 +

∑︁
𝐾

ℎ
1
2
𝑒 ∥𝜃ℎuh − 𝜃u∥𝐿2 (𝐾 )

]
We see that if we choose 𝜇𝑒 = ℎ𝑒 max (𝛼𝐾1, 𝛼𝐾2)−1, where subscripts 1 and 2 denotes the two neighboring
elements that contain the edge or face 𝑒, then the right-hand side (neglecting the higher order term) is
independent of the jumps in material properties.

Now we construct the upper bound. We start with a few identities that will be needed along the way.∫
Ω

(
1
𝜌
∇ · 𝜎(uℎ) + 𝜃u

)
· (w − wh) = −𝑎(uh,w − wh) +∑︁

𝑒

[
1
𝜌
𝜎𝑛 (uh)

]
· (w − wh) +

∫
Ω

𝜃u(w − wh)

(2.5.50)
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This implies that

𝑎(uh,w − wh) =
∑︁
𝑒

[
1
𝜌
𝜎𝑛 (uh)

]
· (w − wh)

+
∫
Ω

𝜃u · (w − wh) −
∫
Ω

(
1
𝜌
∇ · 𝜎(uℎ) + 𝜃𝜌u

)
· (w − wh) (2.5.51)

We will use the previous result in the upper bound on the energy norm of the error. Let w = u − uh. Then

∥u − uh∥2𝛼 = 𝑎(u − uh,w) = 𝑎(u − uh,w − wh) (2.5.52)

where the last equality follows from Galerkin orthogonality. Breaking the previous expression into
element-wise quantities, and using equation 2.5.51, we obtain

∥u − uh∥2𝛼 =
∑︁
𝐾

𝑎(u − uh,w − wh) (2.5.53)

=
∑︁
𝐾

𝑎(u,w − wh) −
∑︁
𝑒

[
1
𝜌
𝜎𝑛 (uh)

]
· (w − wh)

−
∑︁
𝐾

∫
𝐾

𝜃u · (w − wh) +
∑︁
𝐾

∫
𝐾

(
∇ · 1

𝜌
𝜎(uℎ) + 𝜃u

)
· (w − wh)

=
∑︁
𝐾

∫
𝐾

(
∇ · 1

𝜌
𝜎(uℎ) + 𝜃u

)
· w − wh −

∑︁
𝑒

[
1
𝜌
𝜎𝑛 (uh)

]
· (w − wh)

≤
∑︁
𝐾

𝜇𝐾 ∥∇ ·
1
𝜌
𝜎(uℎ) + 𝜃u∥𝐿2 (𝐾 )𝜇

−1
𝐾 ∥w − wh∥𝐿2 (𝐾 )

+
∑︁
𝑒

𝜇
1
2
𝑒 ∥

[
1
𝜌
𝜎𝑛 (uh)

]
∥𝐿2 (𝑒)𝜇

1
2
𝑒 ∥w − wh∥𝐿2 (𝑒)

≤
[∑︁
𝐾

𝜇2
𝐾 ∥∇ ·

1
𝜌
𝜎(uℎ) + 𝜃u∥2𝐿2 (𝐾 ) +

∑︁
𝑒

𝜇𝑒∥
[

1
𝜌
𝜎𝑛 (uh)

]
∥2
𝐿2 (𝑒)

] 1
2

×
[∑︁
𝐾

𝜇−2
𝐾 ∥w − wh∥2𝐿2 (𝐾 ) +

∑︁
𝑒

𝜇−1
𝑒 ∥w − wh∥2𝐿2 (𝑒)

] 1
2

Equation 2.16 in Bernardi’s paper shows that[∑︁
𝐾

𝜇−2
𝐾 ∥w − wh∥2𝐿2 (𝐾 ) +

∑︁
𝑒

𝜇−1
𝑒 ∥w − wh∥2𝐿2 (𝑒)

] 1
2

≤ 𝑐∥w∥𝛼 (2.5.54)

With this result, we have

∥u − uh∥𝛼 ≤ 𝑐
[∑︁
𝐾

𝜇2
𝐾 ∥∇ ·

1
𝜌
𝜎(uℎ) + 𝜃𝜌u∥2

𝐿2 (𝐾 ) +
∑︁
𝑒

𝜇𝑒∥
[

1
𝜌
𝜎𝑛 (uh)

]
∥2
𝐿2 (𝑒)

] 1
2

(2.5.55)

which is the desired upper bound. We note that we would also obtain higher order terms in the above
expression by adding and subtracting terms of the kind

∫
𝐾
𝜃ℎuh𝑑𝑥, but the same argument could be made as

before.
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2.5.5. Explicit Estimator Summary

Summarizing, the implementation of the explicit error estimator involves the following steps. These steps
have to be carried out for each eigenvalue separately.

1. Renormalize the eigenvectors as in Section 2.5.4, equation 2.5.38.

2. Loop through all elements in the mesh. Compute the surface flux residuals for each face. Share that
residual vector at each surface Gauss point with neighboring elements to determine the stress jump
2.5.14. Integrate over all faces (by summing at surface Gauss points) to determine 𝑅 𝑓 𝑙𝑢𝑥 (eq 2.5.12).

3. Loop through all elements in the mesh. At each interior Gauss point of each element,

a) Compute the interior residual,

𝑎1 = |𝐴1(𝑢ℎ) + 𝜆ℎ𝐴2(𝑢ℎ) |

b) Compute the integrand,
(𝑎1 + 𝑅 𝑓 𝑙𝑢𝑥)2

Note that 𝑅 𝑓 𝑙𝑢𝑥 is a constant over the element.

c) Sum at Gauss points to obtain the element contribution,

𝜌̄2 =

∫
Ω𝑒

(𝑎1 + 𝑅 𝑓 𝑙𝑢𝑥)2𝑑Ω𝑒 ∼
𝑁𝐺𝑎𝑢𝑠𝑠∑︁

𝑖

𝑤𝑖 (𝑎1(𝑥𝑖) + 𝑅 𝑓 𝑙𝑢𝑥)2

4. Compute the global contribution to the error. For elements with linear shape functions, this may be
written,

|𝜆 − 𝜆ℎ |
𝜆

≤ 𝑐
(
𝑁𝑒∑︁
𝑒=1
(𝐶𝑒,0ℎ2

𝑒 𝜌̄)2
) 1

2

. (2.5.56)

Where (as shown in Section 2.5.3, equation 2.5.28),

𝐶2
𝑒,0 =

𝜌

(Λ + 𝜇)2

and 𝜌, Λ and 𝜇 are the material density and the Lamé constants respectively. The more general
expression for elements of order 𝑝 is,

|𝜆 − 𝜆ℎ |
𝜆 (𝑝+1)/2 ≤ 𝑐

(
𝑁𝑒∑︁
𝑒=1
(𝐶𝑒,𝑝−1ℎ

(𝑝+1)
𝑒 𝜌̄)2

) 1
2

. (2.5.57)

We note that although the constant, 𝑐, in equation 2.5.56 is unknown, it is estimated to be of order 1.
The constant depends on the details of the mesh, and in particular on the minimum angle in the
elements.
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2.5.6. Approach II - quantity of interest estimator

In,1 an error estimator is derived for the elasticity equation, using the eigenvalues as the quantity of interest.
The estimate is of the form

𝜂𝜆𝑙𝑜𝑤 = −𝜂2
𝑢𝑝𝑝 (2.5.58)

𝜂𝜆𝑢𝑝𝑝 = −𝜂2
𝑙𝑜𝑤 (2.5.59)

where 𝜂𝜆
𝑙𝑜𝑤

is a lower bound on 𝜆 − 𝜆ℎ, and 𝜂𝜆𝑢𝑝𝑝 is an upper bound on 𝜆 − 𝜆ℎ. Note that both quantities are
necessarily negative,7 since the computed eigenvalues are always larger than the exact ones.

The quantities 𝜂𝑢𝑝𝑝 and 𝜂𝑙𝑜𝑤 are computed using the element residual method. This method involves
solving a small linear system on each element to obtain an error representation for that element, and then
the element contributions are accumulated to obtain the total errors. The element linear system is

−𝐵(Φ𝐾 , 𝑣) = 𝑅(𝑣, 0) +
∫
𝜕𝐾

𝑔𝛾,𝐾𝑣𝑑𝑠 ∀𝑣 ∈ 𝑊𝐾 (2.5.60)

or
𝐾𝑏𝑎 = 𝑓 (2.5.61)

where 𝑎 is the vector of coefficients that represent the function Φ𝐾 . In other words,
Φ𝐾 =

∑𝑁𝑠ℎ𝑎𝑝𝑒𝑏𝑢𝑏𝑏𝑙𝑒
𝑖=1 𝑎𝑖𝑁𝑖 , where 𝑁𝑖 is the 𝑖𝑡ℎ bubble shape function. The left-hand side 𝐾𝑏 is the element

stiffness matrix, but evaluated using bubble functions rather than the standard element shape functions.
This is necessary since the standard element stiffness matrix is singular and thus equation 2.5.61 would
otherwise not be solvable. The right-hand side consists of two terms, an interior residual term for the
interior of the element, and a stress jump term on the element boundary. This is similar to the interior and
boundary residual terms that were encountered in the explicit error estimator, though the exact formulas for
these terms are somewhat different. The first term is

𝑅(𝑣, 0) = 𝐵(𝑢ℎ, 𝑣) − 𝜆ℎ𝑀 (𝑢ℎ, 𝑣) (2.5.62)

Equation 2.5.62 can be most efficiently evaluated using the following method.116 We evaluate the first term
first.

𝐵(𝑢ℎ, 𝑣) =
∫
𝐾

𝐵𝑇𝑏𝑢𝑏𝑏𝑙𝑒𝜎(𝑥)𝑑𝑥 (2.5.63)

where 𝐵𝑇
𝑏𝑢𝑏𝑏𝑙𝑒

is the standard ’B’ matrix, or the matrix of derivatives of the element shape functions,
except that it is using the bubble shape functions rather than the standard shape functions. Note that the
result of equation 2.5.63 is a vector of length 3𝑥𝑁𝑠ℎ𝑎𝑝𝑒𝑏𝑢𝑏𝑏𝑙𝑒, where 𝑁𝑠ℎ𝑎𝑝𝑒𝑏𝑢𝑏𝑏𝑙𝑒 is the number of
bubble shape functions. We note that the routine ForceFromStress in IsoSolid.C already performs the
computation needed for equation 2.5.63, with the only change being the use of the matrix 𝐵𝑇

𝑏𝑢𝑏𝑏𝑙𝑒
rather

than the standard 𝐵𝑇 , and thus this code could be re-used.

The second term can be evaluated in a similar way.

𝑀 (𝑢ℎ, 𝑣) =
∫
𝐾

𝑢ℎ (𝑥)𝑣(𝑥)𝑑𝑥 (2.5.64)

7for consistent mass only.
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Note that 𝑢ℎ (𝑥) is a known function. This term is also a vector of length 3𝑥𝑁𝑠ℎ𝑎𝑝𝑒𝑏𝑢𝑏𝑏𝑙𝑒. The three
entries corresponding to the 𝑖𝑡ℎ bubble shape function are as follows∫

𝐾

𝑢1ℎ (𝑥)𝜙𝑖 (𝑥)𝑑𝑥,
∫
𝐾

𝑢2ℎ (𝑥)𝜙𝑖 (𝑥)𝑑𝑥,
∫
𝐾

𝑢3ℎ (𝑥)𝜙𝑖 (𝑥)𝑑𝑥.

where 𝑢1ℎ, 𝑢2ℎ, and 𝑢3ℎ are the x, y, and z components of 𝑢ℎ, and 𝜙𝑖 is the 𝑖𝑡ℎ bubble shape function.

The boundary term consists of the following. 𝑔𝛾,𝐾 is the traction on the element boundary, or∫
𝜕𝐾

𝑔𝛾,𝐾𝑣𝑑𝑠 =

∫
𝜕𝐾

[
𝜎𝑖 𝑗𝑛 𝑗

]
𝑣𝑑𝑠 (2.5.65)

where
[
𝜎𝑖 𝑗𝑛 𝑗

]
denotes the averaged stress on the element faces. For two adjacent elements, element ’a’ and

element ’b’, it is the average of their stress traction vectors.[
𝜎𝑖 𝑗𝑛 𝑗

]
=

1
2

(
𝜎𝑎𝑖 𝑗𝑛 𝑗 + 𝜎𝑏𝑖 𝑗𝑛 𝑗

)
(2.5.66)

Again, the test (shape) function in this case, ’v’ is the bubble function rather than the standard element
shape function. We note that the boundary integral term in equation 2.5.60 and equation 2.5.65 is over all
faces of the element in question. Thus, if the implementation of this term proceeds one face at a time, then
there will be a nodal summation step to get the complete right-hand side vector corresponding to the
boundary integral term. We could also write this term as

∫
𝜕𝐾

𝑔𝛾,𝐾𝑣𝑑𝑠 =

𝑁 𝑓 𝑎𝑐𝑒𝑠∑︁
𝑖=1

∫
𝜕𝐾𝑖

𝑔𝛾,𝐾𝑣𝑑𝑠 (2.5.67)

where 𝜕𝐾𝑖 is the 𝑖𝑡ℎ face of element ’K’. Note that the test functions, 𝑣 become the element shape functions
when restricted to an element. Thus, for a given element bubble shape function 𝜙𝑏𝑢𝑏𝑏𝑙𝑒, and a given face,
we can write the previous equation as ∫

𝜕𝐾𝑖

𝑔𝛾,𝐾𝜙𝑏𝑢𝑏𝑏𝑙𝑒𝑑𝑠 (2.5.68)

Note that 𝑔𝛾,𝐾 is a 3-vector, and so for a given bubble shape function, and a given face,
∫
𝜕𝐾𝑖

𝑔𝛾,𝐾𝜙𝑏𝑢𝑏𝑏𝑙𝑒𝑑𝑠

is also a 3-vector. We then take this 3-vector and project it into the element right-hand side. After looping
through all faces and all bubble shape functions, we end up with a vector that is of length
3 ∗ 𝑁𝑠ℎ𝑎𝑝𝑒𝑏𝑢𝑏𝑏𝑙𝑒.

Once the linear systems 2.5.61 are solved on each element, the upper bound, 𝜂𝑢𝑝 from equation 2.5.59 can
be computed as follows

𝜂𝑢𝑝𝑝 =

√︄∑︁
𝐾

𝐵(Φ𝐾 ,Φ𝐾 ) (2.5.69)

This equation can also be written as follows. If we represent the function Φ𝐾 as a summation of coefficients
multiplied by the bubble shape functions,

Φ𝐾 =

𝑁𝑠ℎ𝑎𝑝𝑒𝑏𝑢𝑏𝑏𝑙𝑒∑︁
𝑖=1

𝑎𝑖𝑁𝑖 (2.5.70)

then

𝜂𝑢𝑝𝑝 =

√︄∑︁
𝐾

𝐵(Φ𝐾 ,Φ𝐾 ) =
√︄∑︁

𝐾

𝑎𝑇𝐾𝑏𝑎 (2.5.71)
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Finally, using equation 2.5.59, we have an upper bound on the error in the eigenvalue.

A lower bound on the error in the eigenvalue can also be computed. This is described in detail in,1 and we
summarize here.

First, we define a function 𝜒 ∈ 𝑉 , which we will define shortly. Once the function 𝜒 is defined, the lower
bound can be computed as follows

𝜂𝑙𝑜𝑤 =
|𝑅𝑝 (𝜒, 0) |√︁
𝐵(𝜒, 𝜒)

(2.5.72)

The quantities in both the numerator and denominator can be computed by looping through all elements
and computing the corresponding element-wise quantities (using equation 2.5.62), and then summing
globally.

Summarizing, to implement the quantity of interest approach for eigenvalue error estimation, we have the
following steps. These must be carried out for each eigenvalue.

1. Loop over all elements. Construct the bubble stiffness matrix, 𝐾𝑏 in equation 2.5.61, in the same way
that standard element stiffness matrix is constructed, but using the bubble shape functions.

2. Loop over all elements. Construct the right-hand side of equation 2.5.61. This consists of the interior
part, equation 2.5.62, and the boundary part, equation 2.5.65.

3. Loop over all elements and solve the linear systems 2.5.61, to obtain the error functions Φ𝐾 .

4. Compute the upper bound on the error in the eigenvalue using equation 2.5.71.

5. Compute the lower bound on the error in the eigenvalue using equation 2.5.72.

2.6. Modal Random Vibration

Details of random vibration analysis are presented in several papers8. These few paragraphs document what
was implemented.

2.6.1. Algorithm

Initially a model decomposition is determined, 𝐾Φ = 𝑀ΦΩ2 normalized so that Φ𝑇𝑀Φ = 𝐼. For
𝑗 =
√
−1, the modal frequency response is,

𝑞𝑖 ( 𝑓 ) =
1

𝜔2
𝑖
− 𝜔2 + 2 𝑗𝜔𝜔𝑖𝛾𝑖

, 𝑓 =
𝜔

2𝜋
.

Note that if other damping (such as mass and stiffness proportional damping) is used, then the effective 𝛾𝑖 is
used here. For the 𝑎th load and the 𝑖th mode shape, define

𝑍 𝑖𝑎 =
∑︁
𝑘

𝜙𝑖𝑘𝐹
𝑎
𝑘 = ⟨𝜙𝑖 , 𝐹𝑎⟩.

8see for example, reference.121
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𝑍 = Φ𝑇𝐹 contains the spatial contributions from the mode shapes and is also frequency independent. The
number of rows in 𝑍 is the number of modes, and the number of columns in 𝑍 is the number of loads.

𝑆𝑎,𝑏 ( 𝑓 ) is the (𝑎, 𝑏) entry of the Hermitian cross-correlation matrix between loads. Letting 𝑍𝑖 denote row 𝑖

of 𝑍 ,
Γ𝑖 𝑗 = 𝑞

∗
𝑖 (𝑍𝑖𝑆( 𝑓 )𝑍𝑇𝑗 )𝑞 𝑗𝛿 𝑓 ,

or
Γ = diag(𝑞∗)𝑍𝑆( 𝑓 )𝑍𝑇diag(𝑞)𝛿 𝑓

For each mode shape,𝜙, each element, there is a displacement with a corresponding element stress, 𝜓. The
(𝑖, 𝑗) pair of modes contributes 𝜓𝑇

𝑖
𝐴𝜓 𝑗Γ𝑖 𝑗 to the von Mises stress. The velocity and acceleration

contributes similar terms to the 2𝑛𝑑 and 4𝑡ℎ moments of von Mises stress, respectively.

2.6.2. Power Spectral Density

The displacement power spectral output may also be written as follows,

𝐺𝑚𝑛 ( 𝑓 ) =
∑︁
𝑖, 𝑗

∑︁
𝑎,𝑎′

𝑞∗𝑖 ( 𝑓 )𝑞 𝑗 ( 𝑓 )𝜙𝑖𝑚𝜙 𝑗𝑛𝑍 𝑖𝑎𝑆𝑎,𝑎
′ ( 𝑓 )𝑍 𝑗

𝑎′ (2.6.1)

Note that there is no 𝛿 𝑓 coefficient here.

If the output displacement degrees of freedom are restricted to a single node, the subscripts 𝑚 and 𝑛 are
applicable to the 3 degrees of freedom at a single location. Because the response directions may not be
independent, the matrix may not be diagonal.

By summing over the loads we may reduce the power spectral expression to a sum on modal
contributions.

𝐺𝑚𝑛 ( 𝑓 ) =
∑︁
𝑖, 𝑗

𝜙𝑖𝑚𝜙 𝑗𝑛G𝑖 𝑗 ( 𝑓 ) (2.6.2)

where
G𝑖 𝑗 ( 𝑓 ) = 𝑞∗𝑖 ( 𝑓 )𝑞 𝑗 ( 𝑓 )

∑︁
𝑎,𝑎′

𝑍 𝑖𝑎𝑍
𝑗

𝑎′𝑆
𝑎,𝑎′ ( 𝑓 ) (2.6.3)

Note that, except for the 𝑍 𝑖𝑎 (which only needs to be computed once), all the terms in equation 2.6.3 are
known on each subdomain.

At each frequency, 𝑓 , there is a 3 by 3 complex Hermitian output displacement spectral density matrix 𝐺
and an output acceleration spectral density matrix, 𝐺𝜔4.

2.6.3. Tensor Transformations of PSD

The output PSD is a Hermitian tensor, 𝐴𝑇 = 𝐴∗. The output PSD is defined as the correlation of the
acceleration, i.e.

𝐴𝑃𝑆𝐷 (𝜔) = 𝑎(𝜔)𝑎(𝜔)†, (2.6.4)

where 𝑎(𝜔) is the complex acceleration vector. On a single node, 𝐴 is a 3 x 3 complex tensor. The tensor
rotation can be derived from the rotation of the vectors. Let 𝑎̄ = 𝑅𝑎 be the acceleration expressed in a new
coordinate frame and computed from the acceleration in the basic frame multiplied by an orthogonal
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transformation matrix 𝑅. Because 𝑅−1 = 𝑅𝑇 , we have 𝑎 = 𝑅𝑇 𝑎̄. See section 1.5 for a discussion of
coordinate systems and vector transformations.

𝐴𝑃𝑆𝐷 = 𝑎𝑎† (2.6.5)
= 𝑅𝑇 𝑎̄(𝑅𝑇 𝑎̄)† (2.6.6)
= 𝑅𝑇 𝑎̄𝑎̄†𝑅 (2.6.7)
= 𝑅𝑇 𝐴̄𝑃𝑆𝐷𝑅 (2.6.8)

Therefore, 𝐴̄𝑃𝑆𝐷 = 𝑅 𝐴𝑃𝑆𝐷𝑅
𝑇 .

2.6.4. RMS Output

The RMS output for degree of freedom 𝑚 is given by,

𝑋𝑟𝑚𝑠 =

√︄∫
𝐺𝑚𝑚( 𝑓 )𝑑𝑓

=

√︄∫ ∑︁
𝑖, 𝑗

𝜙𝑖𝑚𝜙 𝑗𝑚G𝑖 𝑗 ( 𝑓 )𝑑𝑓

=

√︄∑︁
𝑖, 𝑗

𝜙𝑖𝑚𝜙 𝑗𝑚Γ𝑖 𝑗 (2.6.9)

where Γ𝑖 𝑗 =
∫
G𝑖 𝑗 ( 𝑓 )𝑑𝑓 .

2.6.4.1. Truncation.

Note that equation 2.6.9 involves a summation over modes weighted by Γ𝑖 𝑗 . This summation is an order 𝑁2

operation which can retard performance if there are many modes. Often many of the terms in Γ are small.
Rows and columns of the sum may be eliminated with no impact on the overall solution of 𝑋𝑟𝑚𝑠.9

2.6.4.2. Parallelization.

The parallel result can be arrived at by computing 𝑍 𝑖𝑎 on each subdomain, and then summing the
contributions of each subdomain. Note that 𝑍 𝑖𝑎 contains the spatial contribution of the input force. At
boundaries that interface force must be properly normalized like an applied force is normalized for statics or
transient dynamics by dividing by the cardinality of the node. Once 𝑍 has been summed, Γ𝑖 𝑗 may be
computed redundantly on each subdomain. The only communication required is the sum on 𝑍 (a matrix
dimensioned at the number of loads by the number of modes).

The acceleration power spectral density is 𝐺𝑚𝑚(𝜔)𝜔4. Subsection 7.2.5 provides details about
transforming power spectra to an output coordinate system.

9A similar truncation can be performed if the quantity of interest is acceleration rather than displacement. In that case, truncation
may be performed on Γ𝑖 𝑗𝜔

2
𝑖
𝜔2
𝑗
.
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2.6.4.3. Displacement Interference (Relative_Disp)

A common requirement is understanding the probability of interference of two nodes. The difference
displacement spectrum of a degree of freedom on two different points is a similar expression.

𝑋2
𝐾𝐿 ( 𝑓 ) = (𝑋𝐾 ( 𝑓 ) − 𝑋𝐿 ( 𝑓 )) (𝑋𝐾 ( 𝑓 ) − 𝑋𝐿 ( 𝑓 ))∗ (2.6.10)

= 𝑋𝐾 ( 𝑓 )𝑋∗𝐾 ( 𝑓 ) + 𝑋𝐿 ( 𝑓 )𝑋∗𝐿 ( 𝑓 ) − 𝑋𝐾 ( 𝑓 )𝑋∗𝐿 ( 𝑓 ) − 𝑋𝐿 ( 𝑓 )𝑋∗𝐾 ( 𝑓 ) (2.6.11)
= 𝐺𝐾𝐾 ( 𝑓 ) + 𝐺𝐿𝐿 ( 𝑓 ) − 𝐺𝐾𝐿 ( 𝑓 ) − 𝐺𝐿𝐾 ( 𝑓 ) (2.6.12)

Likewise, the RMS value may be computed.

(𝑋𝐾𝐿)𝑟𝑚𝑠 =

√︄∫
𝑋2
𝐾𝐿
𝑑𝑓 (2.6.13)

=

√︄∑︁
𝑖, 𝑗

(
𝜙𝑖𝐾𝜙 𝑗𝐾 + 𝜙𝑖𝐿𝜙 𝑗𝐿 − 𝜙𝑖𝐾𝜙 𝑗𝐿 − 𝜙𝑖𝐿𝜙 𝑗𝐾

)
Γ𝑖 𝑗 (2.6.14)

As with the displacement spectrum, when the different coordinate directions are not independent, off
diagonal contributions can be important. This development must be extended to all the dependent degrees
of freedom.

This information can be computed between two points using the output keyword Relative_Disp and a
Joint2G element.

2.6.5. RMS Stress

A description of the algorithm for computation of the von Mises RMS stress is included in the reference at
the beginning of this chapter. Two methods are available, but both use the integrated modal contribution Γ𝑖 𝑗

as the basis for their computation. The more complete method relies on a singular value decomposition.
Portions of that method are touched on below

2.6.6. Matrix properties for RMS stress

Since 𝑆( 𝑓 ) is Hermitian, it follows that Γ𝑞𝑞 is also necessarily Hermitian. It will not in general be real. The
complex valued singular value decomposition (SVD) is computed using the LAPACK zgesvd routine. The
results from the SVD of an Hermitian matrix are real eigenvalues (stored in 𝑋), and complex vectors, stored
in 𝑄. The LAPACK routines for Hermitian eigenvalue problems (zhetrd,zsteqr) would be more
efficient.

At the element level another SVD is computed. In this case we are computing the singular values of the
matrix 𝐶.

𝐶 = 𝑋𝑄†𝐵𝑄𝑋

where,
𝐵 = Ψ𝑇𝐴Ψ
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𝐵 is symmetric. It can be shown that 𝑄†𝐵𝑄 is Hermitian. If we examine a single element of 𝐶 we can see
that it contains the sum over all the terms in an Hermitian matrix. That sum is necessarily real, since it can
be computed by adding the lower half with its transpose and then summing the diagonal. Let,

𝐴𝑖 𝑗 =
∑︁
𝑚,𝑛

𝑄∗𝑚𝑖𝐵𝑚𝑛𝑄𝑛 𝑗 =
∑︁
𝑚,𝑛

𝑎𝑖 𝑗

But,
𝐴∗𝑗𝑖 =

∑︁
𝑚,𝑛

𝑄𝑚, 𝑗 ∗ 𝐵𝑚𝑛𝑄∗𝑛𝑖 =
∑︁
𝑚,𝑛

𝑄𝑛 𝑗𝐵𝑚𝑛𝑄
∗
𝑚𝑖 =

∑︁
𝑚,𝑛

𝑎∗𝑖 𝑗

We therefore only need use the real svd routines to compute the results at each output location.

The svd calculations provide the information needed to truncate or reduce the model. As the size of the
model grows, the number of modes required for an analysis tends also to grow. However, the computational
time for computing the svd is proportional to matrix dimension cubed. On the other hand, the svd(Γ) is
only computed once. However, the computation of each decomposition of 𝐶 occurs at each output location
and can significantly affect performance. In the model problem where the dimension of 𝐶 was allowed to
remain the same as the number of modes, increasing the number of modes from 20 to 100 changed the time
for the analysis by factor of more than 100 (close to the predicted 53). Unfortunately the desired models
may have many hundreds of modes.

The svd(Γ) provides important information about the number of independent processes. Note that 𝐶
includes the svd values from this calculation. We truncate by computing all the nmodes x nmodes terms
in 𝐵, but only retaining Cdim columns of 𝑄, where Cdim is chosen so the values of 𝑋 are not too small.
Thus, 𝑋 [Cdim]/𝑋 [0] > 10−14. This restricts the dimension of 𝐶 to a small number, while retaining all
components that contribute significantly to its value. As a result, the entire calculation appears to scale
approximately linearly with the number of modes.

2.7. Complex Eigenvalue Problems

The complex eigenvalue problem refers to the generalization of the eigenvalue problem of equation (1.0.9)
to viscously damped structures. In the notation of the dynamic momentum balance equation (1.0.8), the
eigenvalue problem is

𝐾𝜙 + 𝐶𝜙𝜆 + 𝑀𝜙𝜆2 = 0. (2.7.1)

Including the viscous damping matrix, 𝐶, changes the imaginary eigenvalue 𝑖𝜔 corresponding to equation
(1.0.9) to the complex circular frequency 𝜆, and the corresponding transient solution

𝑢(𝑡) = Φ𝑒Λ𝑡𝑞𝑜, 𝑢(0) = Φ𝑞0, ¤𝑢(0) = ΦΛ𝑞𝑜 . (2.7.2)

Stability,ℜ𝜆 ≤ 0, demands that 𝐶 is (not necessarily symmetric but) positive definite, for all real vectors
𝑥,

𝑥𝑇𝐶𝑥 ≥ 0.

If 𝐶 = 0, then it is more efficient to use the Eigen solution method. A common test of a model is to
compare the zero eigenvalues of (𝐾, 𝑀) to the rigid body modes of a structure. This, in particular, this will
be much easier with Eigen. Sa Eigen can do this, albeit inefficiently. In theory, the other methods require
that any rigid body modes are known in advance. In practice, none of the other methods can be relied on to
in such cases.
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2.7.1. Introduction

Quadratic eigenvalue problems for viscously damped structures are different from undamped problems in
several important ways.

The algorithms in Sierra/SD only support the case of real valued (𝐾,𝐶, 𝑀). Solutions come in sets of 4.
For each 𝜙 that are two eigenvalues, say 𝜆1 and 𝜆2, that are not complex conjugates,

ℑ(𝜆1) < 0 < ℑ(𝜆2).

The other two correspond to 𝜙∗, namely 𝜆∗1 and 𝜆∗2. In particular, including 𝐶 splits 𝑖𝜔 into the two
eigenvalues 𝜆2 and 𝜆∗1.

Energy is
𝐸 (𝑥) = ⟨ ¤𝑥, 𝑀 ¤𝑥⟩/2 + ⟨𝑥, 𝐾𝑥⟩/2.

𝑥𝑇𝐶𝑥 ≥ 0 means that internal energy is not increasing,

¤𝐸+ < ¤𝑥, 𝐶 ¤𝑥 >=< ¤𝑥, 𝑓 > . (2.7.3)

The derivatives of (𝑃, 𝐿) if (𝐾, 0, 𝑀) in the direction 𝐶. causes first order perturbations D of O and F of P.
The diagonal of 𝐹 is zero. The perturbed values are 𝑃(𝐼 + 𝐹) and Λ = Ω2 + 𝐷. Σ + 𝑆 = Φ𝑇𝐶Φ, Σ is
diagonal and 𝑆 has zero diagonal.

[𝑂2, 𝐹] + 𝑖(Σ + 2𝐷)𝑂 = 0

𝑠𝑘 = 𝑆𝑒𝑘 , 𝜆𝑘 = 𝑖𝜔𝑘 + 𝑑𝑘 ,

𝐷 = −Σ/2, . 𝑓 (:, 𝑘) = 𝑖𝜆𝑘 (𝑂𝑚𝑒𝑔𝑎2 + 𝜆2
𝑘)
−1𝑠𝑘 . (2.7.4)

If 𝐶 is skew symmetric, the first derivative of the eigenvalues is zero. See Equation (2.13.2) for the second
order perturbation.

Finally, eigenvalue problems for equation (2.7.1) have complications that are not present in the undamped
problem of equation (1.0.9) In theory, with viscous damping, diagonalization may be impossible.92 While
in practice, this seldom arises, it does mean that ill conditioning issues cannot be ruled out, and in fact do
come up in practice.

2.8. Coupled Structural Acoustics

Subscripts refer to structural or acoustic domains, where 𝜌𝑎 is the density of the fluid, and 𝐿 is a coupling
matrix. Note that for this formulation, 𝜙𝑎 represents the acoustic velocity potential, which relates to the
time derivative of the acoustic pressure,

𝜙𝑎 = ∇ ¤𝑢𝑎 .

( [
𝐾𝑠 0
0 𝐾𝑎

]
+ 𝜆

[
𝐶𝑠 𝐿

−𝜌𝑎𝐿𝑇 𝐶𝑎

]
+ 𝜆2

[
𝑀𝑠 0
0 𝑀𝑎

] ) [
𝜙𝑠
𝜙𝑎

]
= 0. (2.8.1)
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2.8.1. Fluid Structure Interaction

In fluid-structure interaction problems (115,22,132) that neglect the damping mechanisms in the structure and
fluid (e.g., inviscid fluid and no exterior boundaries,58,113)[

𝐾𝑠 0
0 𝐾 𝑓

] [
𝑢

𝜙

]
+

[
𝐶𝑠 𝐿

−𝜌 𝑓 𝐿𝑇 𝐶 𝑓

] [
¤𝑢
¤𝜙

]
+

[
𝑀𝑠 0
0 𝑀 𝑓

] [
¥𝑢
¥𝜙

]
=

[
𝑓𝑠
𝑓 𝑓

]
The discretization for the structures (·)𝑠 is coupled to the discretization of the fluid (·) 𝑓 through the
damping matrix. In Sierra/SD the Projection Eigenvalue method for these problems is called “Structural
Acoustics Eigenvalue” or “SA Eigen.” Note that the use of infinite elements in the eigenvalue problem for
fluid-structure interaction is discouraged. 𝐶 is tested for skew symmetry. 𝐶 is skew-symmetric for fluids
with unit density, 𝜌 𝑓 = 1,

Equation (2.8.1) has symmetric positive semi-definite and symmetric positive definite 𝐾 and 𝑀 , and
damping matrix

𝐶 =

[
𝐶𝑠 𝐿

−𝜌𝑎𝐿𝑇 𝐶𝑎

]
.

If 𝐶𝑠 = 0 and 𝐶𝑎 = 0, then the eigenvalue problem (𝐾,𝐶, 𝑀) with eigenvector 𝜙 is related to a gyroscopic
eigenvalue problem54 through the diagonal scaling matrix Δ,

Δ =

[
𝜌

1/2
𝑎 0
0 𝜌

−1/2
𝑎

]
. (2.8.2)

Δ commutes with 𝐾 and 𝑀 , and Δ𝐶Δ−1 really is skew. The change of coordinates 𝜓 = Δ𝜙 transforms the
eigenvector 𝜙 to the eigenvector 𝜓 of the eigenvalue problem (𝐾,Δ𝐶Δ−1, 𝑀) It is not at all obvious, but it
is possible to show that gyroscopic problems have real eigenvalues, as shown in Section 2.13. Physically
this is because the system does not dissipate energy.

2.9. Viscoelasticity

This section is about vibration problems for models with a time-dependent stiffness matrix,

𝐸 (𝑡) = 𝐸∞ +
𝑛∑︁
𝑖=1

𝐸𝑖𝑒
−𝑡/𝜏𝑖 .

In the 𝑛 term series, each 𝜏𝑖 is a relaxation time. The series is called a Prony series. These eigenvalue
problems are called viscoelastic eigenvalue problems. The viscoelastic problem can be formulated as a
quadratic eigenvalue problem.41 The capability is supported through the CEigen solver, and is configured
using the parameter viscofreq. This material is included here because it would be easy to expand this
feature to any quadratic eigenvalue problem solver.

Troubleshooting.

• Solutions of a different problem are computed.41 Part of solving the original problem is checking the
accuracy of these approximate solutions. See Section 2.9.3.

• Getting solutions of the quadratic eigenvalue problem can be more challenging than for an undamped
one. See Section 2.12.2
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What’s left to say? A little theory, some explanation of visco freq,

The frequency space stiffness is the Laplace transform of 𝐸 (𝑡),

𝐸 (𝑠) = 𝐸∞ +
𝑛∑︁
𝑖=1

𝐸𝑖/(𝑠 + 1/𝜏𝑖).

Here 𝑠 is a positive real number, as in a Laplace Transform. The eigenvalue problem for a constant stiffness
matrix corresponds to a nonlinear problem for the resonant frequencies.

Loosely speaking, equation (2.7.1) applies with stiffness matrix,

K = B𝐸∞,

and frequency dependent viscous damping matrix,

C(𝑧) = B(𝐸𝑔 − 𝐸∞) (𝑧 + 1/𝜏)−1. (2.9.1)

For the problem to make sense, 𝐶 (𝑧) must always be positive. For example,

lim
𝑠→∞

C(𝑠) = 0, (2.9.2)

It can be comforting to note that, with a one term Prony series damping, the eigenvalue problem is actually
a cubic equation, as can be seen by multiplying by

𝑧 + 1/𝜏.

This connection also gives some insight into the core difficulty with viscoelastic eigenvalue problems.
Cubic equations with real coefficients have real eigenvalues that are not physical.41 For any real valued
eigen-pair (𝛾̂, 𝑥),

𝑥𝑇M𝑥 𝑏2 + 𝑥𝑇B(𝐸𝑔 − 𝐸∞)𝑥
𝛾̂

𝛾̂ + 1/𝜏 + 𝑥
𝑇K𝑥 = 0.

If the eigenvalue is real, it has to be negative, which implies

𝛾̂

𝛾̂ + 1/𝜏 < 0↔ −1/𝜏 < 𝛾̂ < 0. (2.9.3)

The farther away from 0 the real eigenvalue 𝛾̂ is, the easier it is to solve the eigenvalue problem. We can
infer from this inequality that, the shorter the relaxation time is, the easier the eigenvalue problem is.

2.9.1. Viscofreq

CEigen only.

Two formulations lead to quadratic eigenvalue problems. One is to freeze the damping matrix of equation
(2.9.1) at a complex value 𝑧𝑜. This was not a practical option when CEigen was written, due to the lack of
support for complex valued linear systems, but that restriction no longer exists. The second formulation, the
one used in Sierra/SD, results in a real valued quadratic eigenvalue problem.

Solving these viscoelastic eigenvalue problems approximately starts familiarly, with a shift 𝑧𝑜 near to the
circular frequencies of interest. An equation of the form (2.7.1) is derived here whose eigenvalues
approximately solve equation (2.9.1). The matrices C and K will depend on 𝜔.
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The real user parameter viscofreq= 𝜔 determines the imaginary shift 𝑧𝑜 = 𝑖𝜔. These notes work through
case of an arbitrary complex shift 𝑧𝑜 = 𝛾 + 𝑖𝜔. The case of 𝛾 = 0 if much simpler. This section is so long
because the damping and stiffness matrices depend on the shift in a way that has no simple explanation.

The first time reading this section, it helps to set 𝛾 = 0.

It turns out that over-estimates of viscofreq generally work as well as perfect shifts, but that severe
underestimates are problematic. As viscofreq increases, the eigenvalues do change, and the solver
converges more quickly. The cluster of real eigenvalues moves left, away from zero, and it becomes
possible to compute more of the complex eigenvalues.

This concern exposed by Equation (2.9.3) is that the real modes might be near to 0. In this case, the
nonlinear problem, attempts to compute low frequency modes could be thwarted by using a shift that is
nearer to an infinite number of real modes than to the physical modes.

The approximation is more accurate for problems in which 𝑟 is much more accurate than 𝜔. Also,
(M,C,K) are all real matrices. The eigenvalues and eigenvectors come in complex conjugate pairs.

C and K will depend on 𝜔.

In the following, if 𝑟 appears, note that 𝑟 = 𝛾.

2.9.2. Theory

OK. What has to be true? Equation (2.7.1) cannot satisfy equation (2.9.2). This means that eigenvalues of
equation (2.9.2) of frequency much higher than 𝜔 are over-damped.

Consider the simplest possible viscoelastic material, characterized by a single term of the Prony series. The
equation of motion for a 1D system with this material is given below. The full 3D case is similar, except
that it has separate terms for the bulk and shear components,

(𝐾∞ + 𝑟𝐶 (𝑟) − 𝑟2𝑀)𝜙 = 𝑓 (𝑟) (2.9.4)

Here, 𝑟 is the circular frequency, 𝑓 (𝑟) is the frequency dependent force, and the damping matrix is now a
function of 𝑟,

𝐶 (𝑟) = (𝐸𝐺 − 𝐸∞)
1

𝑟 + 1/𝜏 𝐵. (2.9.5)

Here, 𝐸∞, the Young’s modulus for high frequencies, 𝐸𝐺 the modulus for low (or glassy) frequencies, 𝜏 is
the Prony series relaxation time, and 𝐾∞ = 𝐸∞𝐵 is the stiffness at high frequencies.

Equation 2.9.4 has two linearizations, since for the quadratic eigenvalue problem, we may only solve
equations of the form in equation (2.7.1) stiffness, unsymmetric damping positive, mass, quadratic in 𝜆 or
𝑠.

User Specified frequency The user specified viscofreq is a circular frequency 𝜔. Our task is to find the
nearby circular frequencies 𝑟 that satisfy equations (2.9.6) and (2.9.8). The solutions of a quadratic
eigenvalue problem are complex valued. For this reason, equations are cast in terms of

𝑠 = 𝛾 + 𝑖𝜔.

A more general case is discussed here, that user has some specified a complex number 𝑠, instead of 𝜔. The
side issue here is that this discussion is to expose any advantages to enabling users to specify a nonzero 𝛾.
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The derivation of the linearization is based on the idea that some values of 𝑠 can be replaced by an
eigenvalue 𝜆.

Real matrices 𝐶̆ and 𝐾̆ will be derived that depend on the user specified 𝑠, in such a way that the
corresponding eigenvalue of equation (2.7.1), namely

(𝐾̆ + 𝜆𝐶̆ + 𝜆2𝑀)𝜙 = 0, (2.9.6)

has solutions 𝜙 and 𝜆 of interest. Namely, 𝜙 and 𝜆 accurately approximate solutions of the frequency
dependent problem, equation (2.9.5), for 𝜆 over some wide range of values loosely related to 𝑠, to be
determined.

First some auxiliary notation is introduced to avoid complicated algebraic expressions,

𝑧 = 𝜏𝑠 + 1, 𝜉 = 𝜏2 |𝑠 |2/|𝑧 |2, 𝜖 = 1 − 𝜉.

It is important to understand what values are real, such as 𝜉. Also, the common case

|𝜏𝑠 | ≫ 1.

Due to,
|𝑧 |2 = |𝛾𝜏 + 1 + 𝑖𝜔𝜏 |2,

in the common case 𝜉 ∼ 1 and

𝜖 = 1 − 𝜏2 |𝑠 |2/|𝑧 |2 = ( |𝑧 |2 − 𝜏2 |𝑠 |2)/|𝑧 |2 = (2𝛾𝜏 + 1)/|𝑧 |2, (2.9.7)

is very small. The next step is to find the real and imaginary parts of,

𝑠

𝑠 + 1/𝜏 = 𝜏𝑠/𝑧 = 𝜏𝑠𝑧∗/|𝑧 |2 = (𝜏𝑠 + 𝜏2 |𝑠 |2)/|𝑧 |2 = 𝑠𝜏/|𝑧 |2 + 𝜉.

Substituting into equation (2.9.5),

𝑠𝐶 (𝑠) = (𝐸𝐺 − 𝐸∞)
𝑠

𝑠 + 1/𝜏 𝐵 = (𝐸𝐺 − 𝐸∞)𝐵(𝑠𝜏/|𝑧 |2 + 𝜉).

Define the matrices in terms of the user specified 𝑠,

𝐶̆ = (𝐸𝐺 − 𝐸∞)𝐵𝜏/|𝑧 |2, 𝐴̆ = (𝐸𝐺 − 𝐸∞)𝐵𝜉.

Finally, replace 𝑠 by 𝜆,
𝜆𝐶 (𝑠) = 𝜆𝐶̆ + 𝐴̆, 𝐾̆ = 𝐾∞ + 𝐴̆, (2.9.8)

Floating point arithmetic can be more fully exploited by avoiding expressions involving massive
cancellation, such as replacing 1 − 𝜉 with 𝜖 , computed using the expression on the right-hand side of
equation (2.9.7),

𝐾̆ = 𝐾∞ + 𝐸𝐺𝐵𝜉 − 𝐾∞𝜉 = 𝜉𝐸𝐺𝐵 + 𝜖𝐾∞. (2.9.9)

Thus, we see that the damping matrix is real, but the stiffness matrix gets an additional (positive) real
contribution. An advantage of this linearization is that the linearized stiffness matrix is essentially
independent of 𝑠 in the common case.

Practically of course, the systems are far more complex. Typically, there is more than one material, and that
material has some Prony terms. Equation 2.9.6 is modified, but the overall effect is the same, i.e. the
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stiffness matrix is increased by a viscoelastic term, and the damping term is also modified. Effectively we
have the following.

𝐾̃ (𝑠) =
∑︁
𝑒𝑙𝑒𝑚

𝐾̃𝑒𝑙𝑒𝑚(𝑠). (2.9.10)

Here, 𝐾̃𝑒𝑙𝑒𝑚 is the modified stiffness matrix.

𝐾̃𝑒𝑙𝑒𝑚(𝑠) = 𝐾𝑒𝑙𝑒𝑚 + ℑ(𝐷𝑒𝑙𝑒𝑚(𝑠))

Likewise,
𝐶̃𝑒𝑙𝑒𝑚(𝑠) = ℜ𝐶 (𝑠) (2.9.11)

2.9.3. Ceigen visco Error Estimate

The accuracy of the eigenvalues of equation 2.9.6 as eigenvalues of equation 2.9.8 may be estimated.

First, we define the distance from a given computed eigenvalue, 𝑠𝑐, to the point of linearization, 𝑠𝜔 as 𝛿.

𝛿 = 𝑠𝑐 − 𝑠𝜔 (2.9.12)

Note that 𝛿 is a complex-valued quantity.

Next, we define the residual as the vector resulting from inserting 𝑠𝑐 and the corresponding computed
eigenvalue, 𝜙𝑐, into equation 2.9.4. (

𝑠2
𝑐𝑀 + 𝑠𝑐𝐶 (𝑠𝑐) + 𝐾

)
𝜙𝑐 = 𝑟𝑒𝑠 (2.9.13)

The residual, as defined in equation 2.9.13, is a computable quantity. If the residual is large, then the error
in the computed eigenvalue and eigenvector is large. However, the more interesting question from the
analyst’s perspective is how large may 𝛿 be for one to expect accurate eigenvalues.

2.10. Linearization

Note that a † superscript denotes the complex conjugate transpose.

A linearization of the second order system of equation (1.0.8) is an equivalent block 2 × 2 system,

Cast as a first order system, the transient problem is,

𝐴𝑤 − 𝐵 ¤𝑤 =

[
0
𝜎 𝑓

]
, (2.10.1)

where 𝜎 = ±1 depends on the linearization. For the homogeneous problem, the ansatz 𝑤 = 𝜙𝑒𝜆𝑡 , leads to
the eigenvalue problem,

𝐴Φ = 𝐵ΦΛ, Φ = [𝜙1, 𝜙2, ..., 𝜙2𝑛] (2.10.2)

For an entry point in the literature on the subject of the numerical stability of different linearizations,
see.131

For an arbitrary nonsingular matrix, 𝑁 , the first companion or 𝐿1 linearizations are

𝐴 =

[
0 𝑁

−𝐾 −𝐶

]
, 𝐵 =

[
𝑁 0
0 𝑀

]
, 𝜙 =

[
𝑢

𝑢𝜆

]
(2.10.3)
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For L1, 𝜎 = −1 in equation (2.10.1). And for arbitrary nonsingular 𝑁 , the second companion or 𝐿2
linearizations are

𝐴 =

[
𝑁 0
0 𝐾

]
, 𝐵 =

[
0 𝑁

−𝑀 −𝐶

]
, 𝜙 =

[
𝑢𝜆

𝑢

]
(2.10.4)

For L2, 𝜎 = 1 in equation (2.10.1).

It’s necessary to split the eigenvectors back up,

Ψ =

[
Ψ1
Ψ2

]
, Φ =

[
Φ1
Φ2

]
.

Tricks could be used to infer the left eigenvectors. For example, given the right eigenvectors, Φ1 or Φ2,
using Φ𝑖 in the place of Ψ𝑖 might work fine. More work could be done, such as through the QR
decomposition,

[𝐾Φ𝑖 , 𝑀Φ𝑖] = 𝑄𝑅,

and the singular value decomposition,

[𝐾𝑄,𝐶′𝑄, 𝑀𝑄]𝐷 = 𝑈𝑆𝑉 ′, Ψ𝑖 = 𝑈1,

basically it could work to just use the first columns of𝑈. The 𝐷 matrix is a diagonal matrix, that just means
to normalize the columns before computing the SVD.

2.11. SA Eigen

While various methods are available for solving the generalized, linear eigenvalue problem, equation
(1.0.9), solution of the quadratic eigenvalue problem, equation (2.7.1), is more challenging. SA stands for
Structural Acoustics. The intended application of SA Eigen is solving equation (??).

There are two more important points to consider for the eigenvectors of this problem.

• Unlike the original second order equation, 1.0.8, the left and the right eigenvectors of the linearized
system diagonalize the characteristic matrices 𝐴 and 𝐵. This is why linearization is so important.

• Simply put, nonsymmetric eigenvalue problems are much more complicated than their symmetric
relatives.

The approach followed here is to transform the problem into a reduced space, equation (2.11.1), solve the
corresponding dense matrix system completely, (2.11.2), and prolongate to the original space (2.11.3). The
challenge, of course, is to properly choose the transformation. In general, if the eigenvector, 𝜙, can be
written in terms of generalized coordinates, 𝑞, then this approach may be taken.

For a given transformation matrix, 𝑇 , which determines 𝜙 given 𝑞, we have the following.

[𝑚̂, 𝑐, 𝑘̂] = 𝑇𝑇 [𝑀,𝐶, 𝐾]𝑇, (2.11.1)(
𝑘̂ + 𝜆𝑐 + 𝜆2𝑚̂

)
𝑞 = 0, (2.11.2)

𝜙 = 𝑇𝑞. (2.11.3)

Note that the only restriction on 𝑇 is that we may adequately write 𝜙 = 𝑇𝑞. In other words, 𝑇 must span the
space of the eigenvectors. In particular, 𝑇 need not be unitary or even orthogonal. However, for the
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transformation to be useful for a model reduction, there must be many fewer columns than rows in 𝑇 . The
L1 linearization, equation (2.10.3), is applied to equation (2.11.2), resulting in the corresponding
eigenvalue problem of equation (2.10.2). One advantage of the L1 linearization is that 𝐵 is symmetric
positive definite.

The structural/acoustics problem of equation (??) may be viewed as a two subdomain problem.10 There are
a variety of basis functions that have been examined for connecting such subdomains.

Here T is the low frequency Free-Free modes. The unconstrained eigenvectors of each subdomain are
computed and used as the columns of 𝑇 . When the number of columns in 𝑇 equals the number of rows, this
basis is complete.

The Free-Free method has proved to converge slowly for structure/structure problems, the coupling between
the structural and acoustic domains is often weak. This may be adequate.

2.11.1. Modal Transient

The linearized (𝐴, 𝐵) eigenvalue equation (2.10.2) is repeated here using slightly different notation to avoid
confusion,

𝐴𝑍 = 𝐵𝑍Λ.

Equation (2.7.2) gives the solution of the transient problem as soon as the modal coordinates, 𝑞𝑜 of the
initial conditions, [

𝑢̂
¤̂𝑢

]
= 𝑍𝑞𝑜 . (2.11.4)

computed as shown here. The reduced exterior force is determined similarly.

The linear eigenvalue problem, equation (2.10.2), has corresponding “left” eigenvectors defined by,

𝑊𝑇𝐴 = Λ𝑊𝑇𝐵. (2.11.5)

Multiplying equation (2.10.2), on the left by (𝐵Φ)−1 and on the right by Φ−1, a comparison with equation
(2.11.5) shows that

𝑊𝑇 = (𝐵𝑍)−1. (2.11.6)

Constructing the left eigenvectors in this way avoids having to match the left and right mode shapes. If 𝐶 is
skew symmetric, the left eigenvectors of the first order system can be determined by symmetry, as shown in
equation (2.13.1). Multiplying equation (2.11.4) on the right by𝑊𝑇𝐵, due to equation (2.11.6),

𝑞𝑜 = 𝑊
𝑇𝐵

[
𝑢̂
¤̂𝑢

]
.

10There is no requirement that each subdomain be topologically connected in any special way.
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2.11.2. Modal Frequency Response

We transform equation (2.10.1) into the frequency domain.

𝐴𝑞 − 𝑖𝜔𝐵𝑞 = 𝑔(𝜔) (2.11.7)

where 𝜔 is the frequency of the external excitation. We assume that the solution can be represented as

𝑞 = Φ𝑧 =

2𝑛∑︁
𝑖=1

𝜙𝑖𝑧𝑖 . (2.11.8)

Multiplying equation (2.11.5) by Φ,
Ψ†𝐴Φ = ΛΨ†𝐵Φ

For diagonal A and B,
Ψ†(𝐴, 𝐵)Φ = (A,B), (2.11.9)

𝑧 is the solution of the diagonal linear system,

(A − 𝑖𝜔B)𝑧 = 𝜓†
𝑖
𝑔. (2.11.10)

The solution in reduced space, 𝑞 can be obtained from equation (2.11.8). Given 𝑞, 𝑢̂ is the upper half of 𝑞,
𝑢 can be computed from 𝑢̂ using equation (2.11.3).

2.11.3. Properties of Linearizations

The Modal FRF algorithm described in Section 2.11.1 requires the left eigenvectors of the state space
eigenvalue problem of equation (2.11.5). To simplify this step, the L2 linearization of equation (2.10.4) is
used.

Before continuing, more notation is needed. The SA Eigen algorithm solves equation (2.7.1) for reduced
matrices. Here 𝑄 and Λ are the matrices of eigenvectors and eigenvalues of the reduced quadratic
eigenvalue problem. Also, 𝑃 is the matrix of the corresponding left eigenvectors.

Continuing, 𝐾 ,𝐶, and 𝑀 are real valued. For this reason, the eigenvectors and eigenvalues come in complex
conjugate pairs. Here 𝐶 is skew. It turns out that this implies that Λ = 𝑖Ω, and 𝑃 = 𝑄†. No, I don’t know a
reference that has a correct proof. The purpose of this section is to explain how to extend this property to
the state space eigenvalue problem.

The left eigenvectors with the L1 linearization of (2.10.3) satisfy

[𝑎𝑇 , 𝑏𝑇 ]𝐴 = 𝜆[𝑎𝑇 , 𝑏𝑇 ]𝐵

The 𝑏 vectors are left eigenvectors of the quadratic problem, equation (2.7.1), and can be determined from
the right eigenvectors 𝑄 using the equation 𝑃 = 𝑄†. However, the relation between the 𝑎 and 𝑏 vectors is
𝑁𝑎𝜆 + 𝐾𝑏 = 0. This mean that the 𝑎 vectors are determined from the 𝑏 vectors by the equation
𝑎 = 𝑁−1𝐾𝑏𝜆−1.

With the L2 linearization of equation (2.10.4), if 𝑁 = 𝑀 , then (𝐴, 𝐵)𝑇 = (𝐴,−𝐵) and Ψ = Φ†. SA Eigen
uses this approach.
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2.11.4. Potential SA Eigen Enhancements

Free-Free modes are used to restrict a quadratic eigenvalue problem to one of sufficiently small order that
dense linear algebraic solvers applicable. Free-Free modes fine. This note records some alternatives that
were either discarded, or not pursued, along with notes on evaluating the approximation error due to modal
truncation.

One alternative is to use the Craig-Bampton method. For structural acoustics, the eigenvectors of the
structural and acoustic domains are computed with the interface fixed. These eigenvectors are
supplemented with constraint modes computed by fixing all the interface degrees of freedom except one.
That DOF receives a unit static deformation. This method has converges nearly optimally for
structure/structure interactions. Unfortunately the Craig-Bampton method will result in dense matrices that
are too large for standard solution methods.

We may find it advantageous to augment the free-free modes by adding basis functions near the surface.
Some thoughts that have been considered include the following.

• A uniform pressure mode could be added to both the acoustic and structural responses.

• We could consider the static acoustic modes that are generated by the deformations of the structural
eigen analysis. We anticipate that the structural deformations will have a larger control over acoustic
modes, so we may not need to be as concerned about the impact of the acoustic pressures on the
structure, but we may want to include these too. Could a subset of modes be identified that would aid
in model completeness and convergence?

• Spline or boundary expansions are possible.

There are several ways to evaluate the viability of the subspace 𝑇 . An eigenvector corresponds to linearly
dependent columns of [𝐾𝑇,𝐶𝑇, 𝑀𝑇]. By equation (1.0.9), 𝐾𝑇 and 𝑀𝑇 are linearly dependent. The
number of eigenvectors that can be approximated is no more than the number of linearly dependent
columns of [𝑀𝑇,𝐶𝑇],

Note also that by construction [ 𝑘̂ , 𝑚̂] = [Ω2, 𝐼]. For example, 𝐵 = 𝐼.

2.12. CEigen

first companion or 𝐿1 linearization, equation (2.10.3), 𝑁 = 𝐼. The original ceigen method described in41

uses the L1 linearization, but internally switches between L1 and L2 linearizations.

A diagonal matrix congruence transformation (this means 𝑋 → 𝐷𝑋𝐷) cite the SAND report is used to
enhance convergence rates and accuracy.

The parameters of Ceigen to be aware of are eig_tol, nmodes, and viscofreq. The first two parameters,
eig_tol and nmodes will be familiar to Sierra/SD users that solve eigenvalue problem for undamped
structures. eig_tol is the convergence tolerance for the eigenvalues, and nmodes is the number of
requested eigenvalues.

viscofreq approximates the first flexible mode of the structure. The default value for eig_tol is
1.𝑒 − 8.
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Solvers similar to the algorithms used in Abaqus are also supported. The Projection and Superposition
solvers resemble the Abaqus solvers. Also, the S A solver is available for structural acoustic problems. In
the edge cases, these methods are more reliable.

CEigen uses the Cayley transformation formulation of ARPACK. Minor but essential changes to ARPACK
were necessary in order to make this interface easy to use. There is no further documentation of this
topic.

2.12.1. CEigen UI

The Sierra/SD input file specification is similar to the specification for transient simulations. To change a
working Sierra/SD input file for a transient problem into a Sierra/SD input file for Ceigen, change the
Solution and Parameters blocks. The example below illustrates how the Solution and Parameter blocks are
modified for modal analyses.

SOLUTION
case ceigen
ceigen nmodes 20
viscofreq=1.e+4
END
PARAMETERS
eig_tol 1.E-5
wtmass=0.00259
END

The parameter wtmass is an example of a parameter that was needed for the transient simulation, and is still
needed for modal analyses.

2.12.2. Troubleshooting

Common required parameter adjustment. In the complex plane, CEigen configures ARPACK to
compute the right-most eigenvalues. One challenge is that the order in which mode shapes converge varies.
Another is that, as ARPACK iterates, internally observed potential modes do sometimes disappear. A
cluster of real eigenvalues among the right-most eigenvalues (say from over damping) complicates the
problem of extracting mode shapes of high frequency. Although CEigen includes several algorithm
extensions to mitigate this phenomenon, user intervention is sometimes required:

• Increase parameter eig_tol (multiply by ten)

• Increase solution parameter nmodes (add ten),

• Increase viscofreq (double).
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2.13. Gyroscopic Problems

A quadratic eigenvalue problem is gyroscopic if 𝐶𝑇 = −𝐶. This section discusses the left eigenvectors and
the secular equation for eigenvalues. A proof that eigenvalues are imaginary, even if 𝐾 is singular, is also
included.

The left eigenvectors are defined by,

𝜓𝑇𝐾 + 𝐶𝑇𝜓𝑇𝜆 + 𝑀𝜓𝑇𝑀𝜆2 = 0.

The eigenvalues are imaginary, 𝜆∗ = −𝜆 (proof at end of section), and 𝜆2 ≤ 0. Comparing the transpose of
equation (2.7.1) and the complex conjugate of (2.7.1), 𝜓 is the right-eigenvector of 𝜆∗,

𝜓 = 𝜙∗. (2.13.1)

The secular equation for eigenvalues, equation (2.7.4), has a special structure. In terms of the modes of the
undamped problem, 𝐾Φ = 𝑀ΦΩ2, define 𝑆 = Φ𝑇𝐶Φ, and set 𝑠𝑘 = 𝑆𝑒𝑘 (𝑆 has zero diagonal). The
perturbation of mode shapes,

(𝑂𝑚𝑒𝑔𝑎2 + 𝜆𝑆 + 𝜆2)𝑞 = 0, 𝑞 = 𝑒𝑘 + 𝑓𝑘 , 𝑓𝑘 = −(Ω2 + 𝜆2
𝑘)
−1𝑠𝑘

Dropping terms such as 𝑆 𝑓𝑘𝜆𝑘 leads to the scalar secular equation,

𝜆2 + 𝑠𝑇𝑘 (Ω
2 + 𝜆2

𝑘 𝐼)
−1𝑠𝑘𝜆

2
𝑘 + 𝜔

2 = 0. (2.13.2)

As mentioned earlier, the proof that eigenvalues are imaginary, even if 𝐾 is singular, is a little tricky. A
proof is provided here for the interested reader. Suppose that K R = 0. The eigenvector 𝑤 = 𝑢 + 𝑖𝑣, has
eigenvalue 𝑡 = 𝑎 + 𝑖𝑏. Define 𝑟 (𝑡) by

𝑟 (𝑡) = 𝐾𝑤 + 𝐶𝑤𝑡 + 𝑀𝑤𝑡2,

Note that
𝑤∗𝐾𝑤 > 0, 𝑤∗𝑀𝑤 > 0, 𝑤∗𝐶𝑤 = 2𝑖𝑣𝑇𝐶𝑢.

This implies that,

𝑤∗𝑟 (𝑡) = 𝑤∗𝐾𝑤 + (𝑎 + 𝑖𝑏)𝑤∗𝐶𝑤 + (𝑎2 − 𝑏2 + 2𝑖𝑎𝑏)𝑤∗𝑀𝑤 =

𝑤∗𝐾𝑤 + (𝑎2 − 𝑏2)𝑤∗𝑀𝑤 + 2𝑖(𝑎 + 𝑖𝑏)𝑣𝑇𝐶𝑢 + 2𝑖𝑎𝑏𝑤∗𝑀𝑤.

There exists 𝑠 such that
𝑤∗𝐶𝑤 = −2𝑖𝑠𝑤∗𝑀𝑤.

𝑤∗𝐾𝑤 + 𝑤∗𝐶𝑤𝑡 + 𝑤∗𝑀𝑤𝑡2 = 𝑤∗𝐾𝑤 − 2𝑖𝑠𝑡𝑤∗𝑀𝑤 + 𝑤∗𝑀𝑤𝑡2 = 𝑤∗𝐾𝑤 + 𝑤∗𝑀𝑤(𝑡2 − 2𝑖𝑠𝑡)
The last step is to shows that 𝑟 (𝑡) = 0 implies that 𝑎 = 0. If 𝑟 (𝑡) = 0, then (𝑡 is 𝜆), then either 𝑡 = 0 or
𝑡2 − 2𝑖𝑠𝑡 < 0.

(𝑎 + 𝑖𝑏) (𝑎 + 𝑖(𝑏 − 2𝑠)) = 𝑎2 + 𝑖𝑎(𝑏 − 2𝑠) + 𝑖𝑎𝑏 − 𝑏(𝑏 − 2𝑠) = 𝑎2 + 2𝑏𝑠 − 𝑏2 + 2𝑖𝑎(𝑏 − 𝑠).

𝑎2 + 2𝑏𝑠 − 𝑏2 < 0,

𝑏(2𝑠 − 𝑏) < −𝑎2 < 0

What if b and s have the same sign, then either 𝑏 > 2𝑠 > 𝑠 > 0 or 𝑏 < 2𝑠 < 𝑠 < 0. In each case, 𝑏 ≠ 𝑠.
Therefore 𝑎 = 0.
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2.14. Linear Buckling

Buckling is the catastrophic failure of a structure under a specific load. Linear buckling is an approximation
to that solution which is accurate in many load environments. Texts on the subject include Cook.37

In linear buckling analysis, a sample load is applied to the structure. The material and geometric stiffness
matrices are computed, and an eigenvalue problem is used to determine under what load the total stiffness
becomes singular. More specifically,

𝐾𝑡 = 𝐾mat + 𝐾geom,

and (
𝐾mat − 𝜆𝐾geom

)
𝜓 = 0 (2.14.1)

Determination of the eigenvalue 𝜆 provides the scale factor that multiplies the sample load to determine the
buckling load. The eigenvector 𝜓 is an arbitrarily-normalized shape of the buckling deformation.

2.14.1. Eigen Problem Methods for Buckling

Note that (2.14.1) has the same form as equation (2.4.1) for the vibrational eigenvalue problem, with 𝑀
being replaced by 𝐾geom. For this reason, the numerical methods used to solve these problems are closely
related, and it is recommended that the reader begin by reviewing Section 2.4.

The buckling problem is solved using a shift/invert strategy similar to that used in dynamics. The operator
solved for buckling is, (

𝐾mat − 𝜎𝐾geom
)−1

𝐾mat; (2.14.2)

c.f. (2.4.3). The main issue for the user is how to select an appropriate shift 𝜎.

Some challenges arise in computing the solution because, unlike 𝑀 , the matrix 𝐾geom typically is not
positive definite:

1. Because 𝐾geom is not positive definite, we orthogonalize and normalize the vectors with respect to
𝐾mat.

2. When 𝐾mat is singular, the solution method can fail or give unexpected results. Most buckling
problems clamp one end of the structure, so that is rarely a problem.

3. There are solutions possible when 𝐾mat is singular, such as a piano wire that is singular until
tensioned. We don’t address these problems with our software, but encourage the analyst to explore
that space.

4. Selection of an appropriate value for the shift becomes important. Some principles may be applied.

a) The matrix 𝐴 = 𝐾mat − 𝜎𝐾geom is key.

b) Formulation of (2.14.2) requires that 𝜎 ≠ 0.

c) 𝜎 should scale 𝐾geom so it is large enough to modify 𝐾mat.

d) The eigenvalue solver will find solutions 𝜎.

e) Convergence is rapid if 𝜎 is chosen such that 𝐴 is nearly singular. However, if 𝐴 is singular, our
linear solvers will fail.
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f) The sign of 𝜎 is important. Typically, loads that put the structure in compression should apply a
positive value for 𝜎.

5. For buckling, a negative or a positive shift 𝜎 may be appropriate depending upon the sign of the load.
It is easy to get this wrong and converge to a mode other than the first buckling mode, or not to
converge at all.

2.14.2. Buckling with Constraints

In this section, we derive the buckling equation (2.14.2) with constraints. Consider a structure with mass
matrix 𝑀 and stiffness matrix 𝐾 . Our first problem of interest is to solve an eigenvalue problem in which
the displacements 𝑢 are subject to the constraints 𝐶𝑢 = 0. Here, the rows of the constraint matrix 𝐶 are
assumed to be linearly independent.

As a starting point, let’s first develop the unforced equations of motion using Lagrange’s equations. The
Lagrangian 𝐿 can be defined as

𝐿 = 𝑇 −𝑈 − 𝜆𝑇𝐶𝑢,
where the kinetic energy 𝑇 and potential energy𝑈 are given by

𝑇 = ¤𝑢𝑇𝑀 ¤𝑢/2, 𝑈 = 𝑢𝑇𝐾𝑢/2,

and 𝜆 is a vector of Lagrange multipliers. Lagrange’s equations of motion are

𝑑

𝑑𝑡

(
𝜕𝐿

𝜕 ¤𝑢

)
− 𝜕𝐿
𝜕𝑢

= 0,

−𝜕𝐿
𝜕𝜆

= 0,

which can be expressed concisely as[
𝑀 0
0 0

] [
¥𝑢
¥𝜆

]
+

[
𝐾 𝐶𝑇

𝐶 0

] [
𝑢

𝜆

]
=

[
0
0

]
.

Assuming a solution of the form 𝑢 = 𝑢̂𝑒𝑖𝜔𝑡 and 𝜆 = 𝜆̂𝑒𝑖𝜔𝑡 leads to the eigenvalue problem(
𝐾 𝐶𝑇

𝐶 0

)
︸     ︷︷     ︸
≡𝐾

(
𝑢̂

𝜆̂

)
= 𝜔2

(
𝑀 0
0 0

)
︸   ︷︷   ︸
≡𝑀

(
𝑢̂

𝜆̂

)
(2.14.3)

Thus, we can write the system as

𝑥 =

(
𝑢̂

𝜆̂

)
𝐾𝑥 = 𝜔2𝑀𝑥,

Following the discussion in Section 2.4, this problem can be transformed as follows:

𝐾𝑥 − 𝜎𝑀𝑥 = 𝜔2𝑀𝑥 − 𝜎𝑀𝑥,

implying that
(𝐾 − 𝜎𝑀)−1𝑀𝑥 = (𝜔2 − 𝜎)−1𝑥. (2.14.4)
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Solution of this transformed eigenvalue problem (2.14.4) can be done with the shift-invert mode in
ARPACK. The linear system to be solved involves the matrix

𝐾 − 𝜎𝑀 =

(
𝐾 − 𝜎𝑀 𝐶𝑇

𝐶 0

)
, (2.14.5)

which has the same constraint requirements as for a statics solve. The solver still needs to handle the
constraints in the same manner despite the subtraction of 𝜎𝑀 . Note that the matrix 𝑀 appearing after the
matrix inverse in (2.14.4) does not include the constraint matrix 𝐶.

The buckling problem:

min
𝑢̂ s.t.
𝐶𝑢̂=0

1
2
𝑢̂𝑇 (𝐾 − 𝜇𝐾𝑔)𝑢̂

has Lagrangian

𝐿 (𝑢̂, 𝜈) = 1
2
𝑢̂𝑇 (𝐾 − 𝜇𝐾𝑔)𝑢̂ + 𝜈𝑇𝐶𝑢̂,

with partial derivatives

0 =
𝜕𝐿

𝜕𝑢̂
=(𝐾 − 𝜇𝐾𝑔)𝑢̂ + 𝐶𝑇𝜈

0 =
𝜕𝐿

𝜕𝜈
=𝐶𝑢̂,

implying the eigenvalue problem (
𝐾 𝐶𝑇

𝐶 0

)
︸     ︷︷     ︸

=𝐾

(
𝑢̂

𝜈

)
= 𝜇

(
𝐾𝑔 0
0 0

)
︸    ︷︷    ︸
≡𝐾̃𝑔

(
𝑢̂

𝜈

)
, (2.14.6)

directly analogous to (2.14.3), with 𝑥𝑇 =
(
𝑢̂𝑇 𝜈𝑇

)
.

The transformations used to solve the ARPACK buckling mode problem are somewhat different. Begin
with multiplication of both sides by 𝜎 ≠ 0:

𝜎𝐾𝑥 = 𝜎𝜇𝐾𝑔𝑥,

and subtract 𝜇𝐾𝑥 from both sides, leading to

𝜎𝐾𝑥 − 𝜇𝐾𝑥 = 𝜎𝜇𝐾𝑔𝑥 − 𝜇𝐾𝑥,

implying that
(𝜇 − 𝜎)𝐾𝑥 = 𝜇(𝐾 − 𝜎𝐾𝑔)𝑥

which can be rearranged to the form

(𝐾 − 𝜎𝐾𝑔)−1𝐾𝑥 =
𝜇

𝜇 − 𝜎𝑥. (2.14.7)

The matrix required for the linear solves in this transformed problem has the same form as in (2.14.5), i.e.,

𝐾 − 𝜎𝐾𝑔 =
(
𝐾 − 𝜎𝐾𝑔 𝐶𝑇

𝐶 0

)
, (2.14.8)
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which implies that the constraint handling required by the linear solver itself is the same in both cases.

A critical difference between (2.14.4) and (2.14.7) is the form of the matrix that appears after the matrix
inverse: 𝑀 vs 𝐾 . Explicitly, these are:

𝐾 =

(
𝐾 𝐶𝑇

𝐶 0

)
𝑀 =

(
𝑀 0
0 0

)
.

The matrix 𝐾 is a semi-inner-product only for vectors 𝑥𝑇 =
(
𝑢̂𝑇 𝜈𝑇

)
such that 𝐶𝑢 = 0. Thus, we must

ensure that the vectors generated by the Arnoldi iteration always satisfy the constraint equations. In the
code, it was necessary to implement an extra reorthogonalization step to accomplish this.

2.14.3. Geometric Stiffness

The geometric stiffness matrix, 𝐾geom, is computed in two ways.

Stress: The Sierra transfer process uses stress as the variable to compute the tangent stiffness matrix.
Stress is ideal in this case because the Sierra transfer also modifies the base coordinates of the nodes
to match the deformed location. The stress is the only remaining variable in this formulation. It is
important because we don’t need the stress history (which could involve plasticity or other
nonlinearities) to compute that tangent matrix.

Displacement: When Sierra/SD does its own nonlinear update, the tangent matrices are computed from
the existing displacement variables. Element stress is not used at all.

These two methods of computation are equivalent in the small strain, small displacement world that is
appropriate for a linear buckling calculation.

2.14.3.1. TRIA3 and QUADT Shell Elements

An initial stress state computed in Sierra/SM can be read by Sierra/SD using the receive_sierra_data
solution case. These stresses can then be transformed to the element coordinate system and used to
calculate the geometric stiffness matrix of the shell element as discussed in this section. Generally
speaking, we note that tensile in-plane stresses tend to increase the transverse stiffness of a shell element
while compressive stresses have the opposite effect.

The effects of existing stresses on a shell element’s stiffness can be determined by considering an energy
potential based on Green-Lagrange strains, see, for example.134 Our focus is on the TRIA3 element since
the QUADT element is obtained internally in Sierra/SD from the union of two TRIA3 elements. The
element 𝑥-direction is from node 1 to node 2. The element 𝑧-direction is normal to the plane of the element
with counterclockwise being the positive sense. The element 𝑦-direction is then the cross product of the

72



element 𝑧 and 𝑥-directions. For the TRIA3 element, the shape functions for nodal displacements are
linear.62 One can confirm the following expressions for the spatial derivatives of the shape functions.

𝜕𝜙1(𝑥, 𝑦)
𝜕𝑥

=
𝑦2 − 𝑦3

3𝑑
,

𝜕𝜙1(𝑥, 𝑦)
𝜕𝑦

=
𝑥3 − 𝑥2

3𝑑
,

𝜕𝜙2(𝑥, 𝑦)
𝜕𝑥

=
𝑦3 − 𝑦1

3𝑑
,

𝜕𝜙2(𝑥, 𝑦)
𝜕𝑦

=
𝑥1 − 𝑥3

3𝑑
,

𝜕𝜙3(𝑥, 𝑦)
𝜕𝑥

=
𝑦1 − 𝑦2

3𝑑
,

𝜕𝜙3(𝑥, 𝑦)
𝜕𝑦

=
𝑥2 − 𝑥1

3𝑑
,

where 𝑑 = 𝑥2𝑦3 − 𝑦2𝑥3 and (𝑥𝑖 , 𝑦𝑖) are the coordinates of node 𝑖 in the element coordinate system.

The in-plane stresses 𝜎𝑥𝑥 , 𝜎𝑦𝑦 , and 𝜎𝑥𝑦 are assumed constant in the element. The 3x3 element geometric
stiffness matrix 𝐾geom associated with transverse displacements is then given by

𝐾geom = 𝑡𝐴𝐺𝑇𝑆𝐺,

where 𝑡 is the element thickness, 𝐴 the element area, and

𝐺 =

[
𝜕𝜙1
𝜕𝑥

𝜕𝜙2
𝜕𝑥

𝜕𝜙3
𝜕𝑥

𝜕𝜙1
𝜕𝑦

𝜕𝜙2
𝜕𝑦

𝜕𝜙3
𝜕𝑦

]
, 𝑆 =

[
𝜎𝑥𝑥 𝜎𝑥𝑦
𝜎𝑥𝑦 𝜎𝑦𝑦

]
.

The matrix 𝐾geom can then be transformed into an 18x18 matrix associated with the global directions using
standard approaches (there are 3 translation and 3 rotation degrees of freedom for each node).

The Sierra/SD verification manual includes buckling, static, transient, and eigen analysis tests of a
beam-like structure subjected to an axial load to help verify the geometric stiffness formulation of TRIA3
and QUADT elements presented here. The interested reader may also contact the Sierra/SD development
team for a more detailed development found in our design documents.

2.14.3.2. Isosolid Elements.

There is a more general definition of the geometric stiffness matrix,7

𝐾geom =

∫
elem
(𝜎 : 𝑇)𝐽𝑑𝑉, 𝑇𝑖 𝑗 =

𝑑𝑁𝑖

𝑑𝑥

′ 𝑑𝑁 𝑗

𝑑𝑥
− ∇𝑠𝑁 𝑗∇𝑠𝑁𝑖 . (2.14.9)

Notation here is consistent with equation (1.0.3). The : is the tensor contraction, and 𝐽 is the Jacobian. The
general definition has been used in code to code comparisons with commercial codes. However, it is not
discussed in this manual.

2.14.3.3. Corotational Shells.

The geometric stiffness contributions for corotational shells uses a formulation by Bjørn Haugen.75 Details
are needed.

Deformations are usually thought of as either infinitesimal or finite. A linear-elastic response can fail to
predict structural response. Finite deformation effects may be required. We will consider structural
buckling prediction as motivation for the geometric stiffness.
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Recall that for a linear elastic analysis, small strains are assumed. Strain energy arises from bending, axial,
and shear effects. Moreover, these contributions are decoupled. This strain energy leads to the formation of
the conventional stiffness matrix. However, finite deformation introduces additional terms in the strain
energy function. Some terms appear in the geometric stiffness matrix.

In a buckling analysis, a linear-elastic (static) response given a set of loads is first determined. Then, given
the pre-loaded stresses, we compute the relevant stiffness matrices and solve the eigenvalue problem

𝐾𝜓 = 𝐾𝑔𝑒𝑜𝑚𝜓𝜆.

Sierra/SD Formulation The Sierra/SD buckling solution case implements the theory presented in Abaqus
[7] The stress state in the geometric stiffness matrix depends on the boundary condition (load). The
geometric stiffness matrix is assembled as follows,

equation (1.0.7)

𝐾𝑁𝑀𝑔𝑒𝑜𝑚 =

∫
𝑉

𝛿𝜎 :
[ (
𝜕NN

𝜕x

)𝑇
· 𝜕NM

𝜕x
− 2

(
B𝑀 (𝑥) · B𝑁 (𝑥)

) ]
𝑑𝑉

In this section, we present an alternative formulation to provide insight on the geometric stiffness matrix.
Notice that the Abaqus formulation considers large deformation effects generally, while this example
considers rotation effects that exceed small-strain assumptions. The basis of this formulation is found in
[111].

Consider a body in equilibrium. With a small-strain assumption, strain is found as

𝜖𝑖 𝑗 =
1
2

(
𝜕𝑢𝑖

𝜕𝑥 𝑗
+
𝜕𝑢 𝑗

𝜕𝑥𝑖

)
(2.14.10)

where u corresponds to the displacement field and x corresponds to the coordinates system. Using the
updated displacement field, u, kinematically admissible functions, w, and a small scaling constant 𝛼, let

u = u + 𝛼w (2.14.11)

Because of the large deformations, Green-Lagrange strain is used, and we note that its strain components
are defined as

𝜀𝑖 𝑗 = 𝜖𝑖 𝑗 + 𝛼𝜖𝑖 𝑗 +
𝛼2

2
𝑤𝑘𝑖𝑤𝑘 𝑗 , (2.14.12)

where
𝜖𝑖 𝑗 =

1
2

(𝜕𝑤𝑖
𝜕𝑥 𝑗
+
𝜕𝑤 𝑗

𝜕𝑥𝑖

)
(2.14.13)

and
𝑤𝑖 𝑗 =

1
2

(𝜕𝑤𝑖
𝜕𝑥 𝑗
−
𝜕𝑤 𝑗

𝜕𝑥𝑖

)
. (2.14.14)

The associated stress components are

𝜎𝑖 𝑗 = 𝜎
0
𝑖 𝑗 + 𝛼𝜎𝑖 𝑗 + 𝛼2𝜎𝑖 𝑗 , (2.14.15)
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where 𝜎0
𝑖 𝑗

are stresses from the initial load, and 𝜎 and 𝜎 are stresses due to the additional deformation

effects. 𝑈0 is the potential energy in the initial configuration. 𝑈 and𝑈 are

𝑈 =

∫
𝑉

𝜎0
𝑖 𝑗𝜖 𝑖 𝑗𝑑𝑉 (2.14.16)

𝑈 =

∫
𝑉

𝜎𝑖 𝑗𝜖 𝑖 𝑗 + 𝜎0
𝑖 𝑗𝑤𝑘𝑖𝑤𝑘 𝑗𝑑𝑉. (2.14.17)

The potential energy is
𝑈 = 𝑈0 + 𝛼𝑈 + 𝛼2𝑈 + higher order terms, (2.14.18)

𝑈 depends on the displacements w, and influences stability. Because w has a linear displacement gradient,
the first term in (2.14.17) is nothing more than the normal stiffness matrix. The second term in (2.14.17)
corresponds to the geometric stiffness matrix. We can then derive the geometric stiffness matrix by
introducing the relevant shape functions and relevant gradient shape functions. For instance,

u(x) = N(x)û (2.14.19)
𝜀(x) = B(x)û (2.14.20)
𝜎(x) = DB(x)û, (2.14.21)

where N is the shape function, B is the shape function derivatives, and D is the constitutive tensor (in Voigt
notation). The vector of û are nodal coordinates.

For simplicity, consider that the additional deformation is due to some rotations. Then, we can write the
displacements w as

w =
1
2
∇ × N(x)û = 𝚿û (2.14.22)

Substituting the definitions into (2.14.17) yields

𝑈 =
1
2

v𝑇 (K0 +K𝐺)v, (2.14.23)

where v is our generalized displacement vector (or can be thought of as virtual displacements). The
matrices are found to be the material stiffness K0 and

K𝐺 =

∫
𝑉

(𝚿𝑇 𝑠0𝚿 −𝚿𝑇𝜎0𝚿)𝑑𝑉. (2.14.24)

We see that 𝑠0 = 𝜎11 + 𝜎22 + 𝜎33 = 𝜎𝑘𝑘 , and 𝜎0 is the initial stress. Notice that (2.14.3.3) and (2.14.24) are
similar, though the formulation by (2.14.24) makes some assumptions on the applied displacements.
However, the simpler notation111 allows for a better understanding of geometric stiffness. The road map for
deriving (2.14.3.3) starts with a non-linear formulation.
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2.15. Modal Acceleration for Modal FRF

This section is about Modal Acceleration. The frequency response function can be computed exactly, but
solving linear systems. It can also be approximated after solving the eigenvalue problem, 𝐾Φ = 𝑀ΦΩ2, for
the low frequency modes. A feature of modal methods for the FRF is that modal damping is used,

Γ = diag(2𝜁𝑖𝜔𝑖
𝑚𝑖
), 𝐶 = 𝑀ΦΓΦ𝑇𝑀. (2.15.1)

The obvious way to compute the FRF in this case is called the Modal Displacement method. Modal
Acceleration is a different more faithful approximation of the FRF. Essentially the idea is to use the modal
expansion for the acceleration, and to solve a residual statics problem for the displacement part.

Modal frequency response refers to approximately solving the frequency response problem at the circular
frequency 𝜔 and using a damping matrix (see Craig Eq. (18.14)) determined by a user specified set of
damping ratios, {𝜁𝑖}𝑛𝑖=1,

Γ = diag(2𝜁𝑖𝜔𝑖
𝑚𝑖
), 𝐶 = 𝑀ΦΓΦ𝑇𝑀, (−𝑀𝜔2 + 𝑗𝜔𝐶 + 𝐾)𝑢 = 𝑓 . (2.15.2)

A statics problem for the load 𝑓 is solved at each time step. In other words, modal truncation is only applied
to the damping and acceleration terms.

For clarity, first assume that 𝐾 is nonsingular (no rigid body modes). Modal acceleration means that a
partial eigen-decomposition

𝐾Φ = 𝑀ΦΩ2, Φ𝑇𝑀Φ = 𝐼𝑛.

is used to approximate solutions. That is, the number of mode shapes and damping ratios, 𝑛, is much less
than the order of the matrices 𝐾 , etc. The approximation is,

𝑢̂ = Φ𝑞. (2.15.3)

The last piece of the puzzle is to solve the statics problem,

𝐾𝑢̃ = 𝑓 .

Substitute this in equation (2.15.2),

𝐾𝑢̂ + (2 𝑗𝜔𝑀𝑃Γ + 𝑀𝑃𝜔2)𝑞 = 𝐾𝑢̃,

and
𝑢̂ = 𝑢̃ − (2 𝑗𝜔Ω−2 + 𝜔2Ω−2)𝑞

2.15.1. Rigid Body Modes

The procedure outlined here describes how the modal acceleration method can be used in the case when the
structure has rigid body modes. The main difference between the approach presented here and Craig’s
method39 (pp. 368-371) is in the way that the flexible response is computed using the singular stiffness
matrix. Craig removes the rigid body modes from the stiffness matrix using constraints. In our approach,
we first orthogonalize the right-hand side with respect to the rigid body modes, and then use an iterative
solver to solve the singular system directly. Although the two methods are equivalent, the latter is easier to
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implement. Note, however, that a Sierra/SD implementation in serial would use a direct solvers which can
not factor a singular stiffness matrix without extensive modifications [119].

The subscript R refers to rigid contributions, and E refers to contributions from flexible modes. Equation
(2.15.2) has rigid and flexible parts,

𝑞 =

[
𝑞𝑅
𝑞𝐸

]
, Φ = [𝑅,Φ𝐸], Γ = diag(Γ𝑅, Γ𝐸), Ω = diag(Ω𝑅,Ω𝐸), (2.15.4)

with 𝐾𝑅 = 0. Here 𝑢̃ is the solution of the consistent linear system,

𝐾𝑢̃ = 𝑓𝐸 = (𝐼 − 𝑀𝑅𝑅𝑇 ) 𝑓 .

With 𝑓𝑅 = 𝑀𝑅𝑅𝑇 𝑓 , 𝑓 = 𝑓𝐸 + 𝑓𝑅, Equation (2.15.2) reduces to,

𝐾 (𝑢 − 𝑢̃) = 𝑓𝑅 − 𝑗𝜔𝐶𝑢 + 𝑀𝜔2𝑢. (2.15.5)

This has to be consistent,
𝑅𝑇 𝑓𝑅 = 𝑅𝑇 (− 𝑗𝜔𝐶𝑢 + 𝑀𝜔2𝑢).

Noting two things, that in the consistency equation the approximation 𝑢 ≈ Φ𝑞 is used, and second that
equation (2.15.1) implies that

𝑅′𝐶Φ = 𝑅′𝑀ΦΓΦ𝑇𝑀Φ = Γ𝑅𝑅
𝑇𝑀Φ,

the rigid equation reduces to,
𝑅𝑇 𝑓 = (− 𝑗𝜔Γ + 𝜔2)𝑞𝑅 .

The approximation, 𝑢̂ = Φ𝐸𝑞𝐸 + 𝑅𝑞𝑅 + 𝑞, is used. No simple equations are available to determine Φ𝐸 .
The idea is that,

(𝐾 + 𝑗𝜔𝐶 − 𝑀𝜔2)Φ𝐸𝑞𝐸 = (− 𝑗𝜔𝐶 + 𝑀𝜔2) (𝑞)

2.15.2. Example

An example demonstrates the performance of this method compared to the standard modal displacement
method. Consider a free-free beam composed of 320 Hex8 elements. All rigid body modes are present.
The frequency response is computed up to 9000 Hz, and 15 modes are used in the modal expansion, with
the 15th frequency 11362 Hz. In Figure 2-5, the two methods are compared with the direct frequency
response approach. It is seen that the modal acceleration method gives a significantly improved
performance over the modal displacement method.
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Figure 2-5. – A comparison of the modal displacement, modal acceleration, and direct frequency response
approaches. The modal acceleration method gives a better approximation to the direct approach than the modal
displacement method.

2.16. Craig-Bampton reduction

Consistent with the notation in Craig (reference39 Chapter 19), the degrees of freedom (DOFs) in a
superelement model prior to any model reduction are partitioned into vectors of internal (vibration) DOFs,
𝑢𝑣 , and interface (constraint) DOFs, 𝑢𝑐, as

𝑢 =

[
𝑢𝑣
𝑢𝑐

]
.

Thus, the mass, damping, and stiffness matrices of the superelement prior to any model reduction are
expressed as

𝑀 =

[
𝑀𝑣𝑣 𝑀𝑣𝑐
𝑀𝑐𝑣 𝑀𝑐𝑐

]
, 𝐶 =

[
𝐶𝑣𝑣 𝐶𝑣𝑐
𝐶𝑐𝑣 𝐶𝑐𝑐

]
, 𝐾 =

[
𝐾𝑣𝑣 𝐾𝑣𝑐
𝐾𝑐𝑣 𝐾𝑐𝑐

]
.

The first step of a Craig-Bampton Reduction (CBR) analysis involves solving the generalized eigenvalue
problem

𝐾𝑣𝑣Φ = 𝑀𝑣𝑣ΦΛ,

where Φ is the fixed-interface mode shape matrix and Λ is a diagonal matrix of eigenvalues. The number of
rows in Φ is the number of DOFs in the superelement interior (i.e., not on the interface) while the number
of columns is the number of mode shapes 𝑛 to calculate. The diagonal matrix Λ is square with dimensions
𝑛 × 𝑛. Let 𝑚 denote the number of DOFs in the interface. The total number of DOFs for the CBR model is
then 𝑚 + 𝑛.

The next step of a CBR analysis is to calculate what are known as constraint modes, Ψ. Given 𝑢𝑐, the 𝑢𝑣
which minimizes the strain energy 𝑢𝑇𝐾𝑢/2 can be found from the linear equation

𝐾𝑣𝑣𝑢𝑣 + 𝐾𝑣𝑐𝑢𝑐 = 0.
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Solving for 𝑢𝑣 , we find
𝑢𝑣 = −𝐾−1

𝑣𝑣 𝐾𝑣𝑐𝑢𝑐 = Ψ𝑢𝑐 .

Notice that 𝐾𝑣𝑣 is nonsingular if fixing all DOFs in the interface is sufficient to restrain any rigid-body
motion of the superelement.

The superelement approximation of 𝑢 is then given by

𝑢 =

[
Φ Ψ

0 𝐼

] [
𝑞

𝑢𝑐

]
= 𝑇𝑢𝑠, (2.16.1)

where 𝑞 is a vector of fixed-interface modal DOFs. The fixed-interface mode shapes are usually
mass-normalized. That is,

Φ𝑇𝑀𝑣𝑣Φ = 𝐼,

where 𝐼 is the 𝑛 × 𝑛 identity matrix. Also,

Φ𝑇𝐾𝑣𝑣Φ = Λ.

The standard dynamic equations for the superelement alone are

𝑀 ¥𝑢 + 𝐶 ¤𝑢 + 𝐾𝑢 = 𝑓 ,

where 𝑓 is the external load vector. Introducing the approximation in (2.16.1) into the dynamic equations
and premultiplying by 𝑇𝑇 gives us

𝑀𝑠 ¥𝑢𝑠 + 𝐶𝑠 ¤𝑢𝑠 + 𝐾𝑠𝑢𝑠 = 𝑓𝑠,

where 𝑓𝑠 = 𝑇𝑇 𝑓 and

𝑀𝑠 = 𝑇
𝑇𝑀𝑇 =

[
𝐼 Φ𝑇 (𝑀𝑣𝑐 + 𝑀𝑣𝑣Ψ)

(𝑀𝑐𝑣 + Ψ𝑇𝑀𝑣𝑣)Φ 𝑀𝑐𝑐 + 𝑀𝑐𝑣Ψ + Ψ𝑇𝑀𝑣𝑐 + Ψ𝑇𝑀𝑣𝑣Ψ

]
,

𝐶𝑠 = 𝑇
𝑇𝐶𝑇 =

[
Φ𝑇𝐶𝑣𝑣Φ Φ𝑇 (𝐶𝑣𝑐 + 𝐶𝑣𝑣Ψ)

(𝐶𝑐𝑣 + Ψ𝑇𝐶𝑣𝑣)Φ 𝐶𝑐𝑐 + 𝐶𝑐𝑣Ψ + Ψ𝑇𝐶𝑣𝑐 + Ψ𝑇𝐶𝑣𝑣Ψ

]
,

𝐾𝑠 = 𝑇
𝑇𝐾𝑇 =

[
Λ 0
0 𝐾𝑐𝑐 + 𝐾𝑐𝑣Ψ

]
. (2.16.2)

Notice there is no coupling between interface and internal DOFs for the CBR stiffness matrix 𝐾𝑠. The
reason for this is the term 𝐾𝑣𝑐 + 𝐾𝑣𝑣Ψ vanishes because of the definition of Ψ. In contrast, there is
coupling of these DOFs for the CBR mass and damping matrices 𝑀𝑠 and 𝐶𝑠.

Numerical Accuracy Issues

Here we discuss a couple of issues related rigid body modes of the CBR model and the accuracy of
numerical solutions.

1. Rigid Body Modes. In the absence of any essential boundary conditions on the superelement, the
CBR model should have six rigid body modes. The rigid body modes of the superelement are
spanned by the constraint modes alone without any contributions from the fixed-interface modes.
Thus, it should hold that

𝐾𝑠

[
0
𝑅𝑐

]
= 0,

where 𝑅𝑐 is a matrix of rigid body modes restricted to the superelement interface. In other words, the
superelement stiffness matrix should have a null space of dimension six. Some options are described
next on how to ensure the CBR model has six rigid body modes.
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2. Accuracy Issues. The accuracy of the null space is determined by the sum of two large quantities
(see equation 2.16.2). With iterative solvers, this may not be determined accurately enough to ensure
stability of subsequent time history integration. Even unconditionally stable integration schemes like
the trapezoidal Newmark-beta methods can become unstable if the stiffness matrix is indefinite.

In our experience inaccurate solves decrease the accuracy of the rigid body energy modes with little
impact on the remaining flexible modes. A post processing step corrects the rigid body modes. Two
methods are used. The simpler method removes negative modes from the reduced matrix without
affecting the eigenvector basis of the matrix. However, if the eigenvectors can be accurately
determined using geometric means, then a better approach uses these known eigenvectors to correct
both the eigenvalues and eigenvectors of the reduced matrix.

To correct eigenvalues alone, we developed the following algorithm, based on the idea of matrix
completion [40].

a) We extract the interface portion of the CBR stiffness matrix, 𝜅𝑐𝑐 = 𝐾𝑐𝑐 + 𝐾𝑐𝑣Ψ. Note that the
portion of the matrix associated with generalized degrees of freedom (i.e. the fixed interface
modes) should be positive definite.

b) We perform an eigen analysis of this matrix.

𝜅𝑐𝑐 = 𝑉Δ𝑉
𝑇

where 𝑉 𝑗𝑖 is the eigenvector, and Δ𝑖 is the eigenvalue of mode 𝑖.

c) We determine a corrected matrix,

𝜅𝑐𝑐 = 𝜅𝑐𝑐 −
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑚𝑜𝑑𝑒𝑠∑︁

𝑗

𝑉 𝑗Δ 𝑗𝑉
𝑇
𝑗

To correct both eigenvalues and eigenvectors of the corrupted null space, the algorithm is more
involved. Details of the algorithm are presented in Figure 2-6. Most of the operations in the
algorithm operate on matrices of order 12 or smaller, so the computational cost is minimal. The
method does require practically exact zero energy modes.
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1. Determine rigid body modes, 𝑅, of the interface. This is done geometrically.
These are normalized so that 𝑅𝑇𝑅 = 𝐼. Typically there are 6 such vectors.

2. Let, 𝐴 = 𝑅𝑇 𝜅𝑐𝑐𝑅.

3. Compute a error vector,𝑈 = 𝜅𝑐𝑐𝑅 − 𝑅𝐴. Note that 𝑅𝑇𝑈 = 0

4. Perform a QR factorization of the error vector. 𝑈 = 𝑆𝐵. Matrix 𝑆 has orthonor-
mal columns.

5. Define 𝑄 = [𝑅 𝑆]

6. Compute the norm of the matrix composed of 𝐴 and 𝐵.

𝜇 =





[ 𝐴𝐵 ]




7. Compute the eigenvalues of 𝐴.

(𝐴 − 𝜆𝐼)𝜙𝑎 = 0

8. Compute 𝐺 = 𝜇2𝐼 − 𝜆2.

9. 𝑊 = 𝜙𝑎
√
𝐺𝜙𝑇𝑎

10. 𝐷 = −𝐵𝑊−1𝐴𝑊−1𝐵𝑇

11. define,

𝐻 =

(
𝐴 𝐵𝑇

𝐵 𝐷

)
note that | |𝐻 | | = 𝜇.

12. Compute the correction,
𝜅𝑐𝑐 = 𝜅𝑐𝑐 −𝑄𝐻𝑄𝑇

Figure 2-6. – Eigenvalue and Eigenvector corrections of Craig-Bampton reduced models
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2.16.1. Craig-Bampton sensitivity analysis

Sierra/SD may compute the sensitivity of the reduced mass and stiffness matrices to design variables. In
terms of the transformation matrix (see equation (2.16.1))

𝜅 = 𝑇𝑇𝐾𝑇 (2.16.3)

Sensitivity of the matrix to variations in a parameter may be obtained by differentiating this equation.
There are several approaches to that operation.

Constant Vector The transformation matrix 𝑇 , is treated as a constant. Thus, the original model and its
derivative are transformed into the modal space of the original structure. If there are sufficient modes
to span the space, this operation is exact. We designate 𝑇𝑜 as the transformation matrix for that
original modal space, and use forward differences to write the derivative.

𝑑𝜅

𝑑𝑝
≈ 𝑇

𝑇
𝑜 (𝐾 (𝑝 + Δ𝑝) − 𝐾 (𝑝)) 𝑇𝑜

Δ𝑝
(2.16.4)

In the limit as Δ𝑝 approaches zero, this should approach the exact solution provided that 𝑇𝑜 spans the
space.

However, practically we truncate the modal space spanned by 𝑇𝑜. In many real world cases, that
truncation is unable to accurately represent the derivatives.

Finite Difference In this approach, we recompute the entire model, including the transformation matrix, at
both the nominal and perturbed state. Thus, 𝐾1 = 𝐾 (𝑝 + Δ𝑝) and 𝑇1 = 𝑇 (𝑝 + Δ𝑝). Using forward
differences,

𝑑𝜅

𝑑𝑝
≈
𝑇𝑇1 𝐾 (𝑝 + Δ𝑝)𝑇1 − 𝑇𝑇𝑜 𝐾 (𝑝)𝑇𝑜

Δ𝑝
(2.16.5)

The finite difference method accurately represents the state at both the nominal and perturbed states.
In the limit as Δ𝑝 approaches zero, the method converges to the true solution.

However, problems will be encountered if there are closely spaced (or repeated) modes.53,89 Consider
the reduced matrices, which have both physical and generalized degrees of freedom. If a closely
spaced mode changes sort order in the matrix, the derivative is meaningless. With repeated modes,
the issue is even more difficult as the eigenvectors of repeated modes may be linearly combined.
Also, any eigenvector has an arbitrary sign. To help diagnose these problems, we output the mass
cross orthogonality matrix.

𝐴𝑖 𝑗 = 𝜙
𝑇
𝑗 𝑀𝜙𝑖 (2.16.6)

Product Rule The finite difference method is treated like an exact method. However, in the case of CB
reduction, the changes in eigenvectors make the method complicated. Another approach would be to
differentiate equation 2.16.3 using the product rule.

𝑑𝜅

𝑑𝑝
=
𝑑𝑇𝑇

𝑑𝑝
𝐾𝑇 + 𝑇𝑇 𝑑𝐾

𝑑𝑝
𝑇 + 𝑇𝑇𝐾 𝑑𝑇

𝑑𝑝
(2.16.7)

Several means68,109,139 are available to determine the derivatives of the fixed interface modes, 𝜙, and
constraint modes, 𝜓, which are the components of the transformation matrix. This approach blends
the best features of both previous methods, but is more complex to develop.

This method is currently unimplemented.
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2.17. Eigenvalue Sensitivity Analysis

Within Sierra/SD semi-analytic sensitivities may be computed for eigenvalues and eigenvectors. A
rudimentary capability for sensitivity to linear transient response is also available, but has not found much
practical value because the cost of the analysis is not significantly better than the cost of computing the
response using finite differences. For details of the transient analysis formulation, see Alvin’s paper,.4

For eigenvalue sensitivity, we begin with linear eigenvalue equation.

(𝐾 − 𝜆𝑀) 𝜙 = 0 (2.17.1)

The equation is differentiated with respect to a sensitivity parameter, 𝑝, and we consider the solution for a
single eigen pair.

(𝑑𝐾 − 𝑑𝜆𝑖𝑀 − 𝜆𝑖𝑑𝑀) 𝜙𝑖 + (𝐾 − 𝜆𝑖𝑀) 𝑑𝜙𝑖 = 0 (2.17.2)
𝜙𝑇𝑖 (𝑑𝐾 − 𝑑𝜆𝑖𝑀 − 𝜆𝑑𝑀) 𝜙𝑖 = 0 (2.17.3)

where we use the fact that 𝜙𝑇
𝑖
(𝐾 − 𝜆𝑖𝑀) is zero. We note that 𝜙𝑇𝑀𝜙 is the identity to solve for the

sensitivity.
𝑑𝜆𝑖 = 𝜙

𝑇
𝑖 𝑑𝐾𝜙𝑖 − 𝜆𝑖𝜙𝑇𝑖 𝑑𝑀𝜙𝑖 (2.17.4)

The method is “semi-analytic” in that the matrices 𝑑𝐾 and 𝑑𝑀 are found by finite differences but then are
applied to the analytic expression above. Because there are no linear solves required, the solution is
straightforward and accurate.

The algorithm used for the solution of eigenvalue sensitivity is as follows.

1. Perform nominal eigenvalue solution.

2. Loop through parameters P, and modify as needed.

3. On an element by element basis compute,

𝜅 = (𝐾 + 𝑑𝐾)𝜙
𝜇 = (𝑀 + 𝑑𝑀)𝜙

4. compute the sensitivity, 𝑑𝜆 = 𝜙𝑇 𝜅 − 𝜆𝜙𝑇𝜇.

This element by element method conserves memory and is efficient. It has been implemented successfully
for all parallel solvers. It has not been implemented for the sparsepak solver when MPCs are included in the
model. The transformations required for multipoint constraints complicate the element by element
calculation.

There are many algorithms139 for computing eigenvector sensitivity. Nelson’s method109 expresses
eigenvector sensitivity implicitly,

𝑓𝑖 = − (𝑑𝐾 − 𝜆𝑖𝑑𝑀 − 𝑑𝜆𝑖𝑀) , (𝐾 − 𝜆𝑖𝑀)𝑑𝜙𝑖 = 𝑓𝑖 ,

requiring one linear solve per eigenvector sensitivity. It suffers from singularity issues with redundant
modes and from accuracy limitations when only part of the modes are extracted. For computational
efficiency, the linear solve uses a preconditioned conjugate gradient algorithm,

(𝐾 − 𝜆𝑖𝑀)𝑤𝑖 = 𝑓𝑖 − (𝐾 − 𝜆𝑖𝑀)Φ𝑐𝑖 (2.17.5)
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Because this operator is indefinite, we redefine the problem as,

𝑤𝑖 = Ψ𝑥𝑖 , (Ψ𝑇 (𝐾 − 𝜆𝑖𝑀)Ψ)𝑥𝑖 = 𝜓𝑇 ( 𝑓𝑖 − (𝐾 − 𝜆𝑖𝑀)Φ𝑐𝑖). (2.17.6)

The operator (Ψ𝑇 (𝐾 − 𝜆𝑖𝑀)Ψ) is positive definite as long as mode 𝑖 and all modes below mode 𝑖 are
contained in Φ.

Forward sensitivity of linear transient dynamics solutions was not found to be useful. For details on
sensitivity on the reduction of superelements see Section 2.16.1.

2.18. Nonlinear Iwan Damping Models

This provides a method for implementing nonlinear distributed damping into a subsystem with a nonlinear
transient solution. This is a method developed to model the nonlinear damping response of a subsystem. It
implements the damping nonlinearly with the use of an internal force term. The damping is modeled by an
Iwan model and distributed to the subsystem by a modal expansion. This method augments the internal
force vector through a modal Masing formulation.

Subsystem Distributed Damping Formulation with Iwan Model. Given a system that contains a
subsystem exhibiting nonlinear damping behavior, the equation of motion for the subsystem, denoted by 𝐵,
can be written in typical finite element form as:

MBuB + CBuB +KBuB = FB + FJ
B, (2.18.1)

where MB, CB, KB are the mass, damping, and stiffness matrices of the subsystem 𝐵 derived from a
low-load response, uB is the discretized nodal displacements, a superposed dot denotes time differentiation,
FB represents the external forces, and FJ

B is a distribution of internal nonlinear damping forces to be
discussed later.

A modal expansion is used to distribute the damping to the subsystem; therefore, the problem is formulated
in modal coordinates. Let 𝚽𝐵 be the matrix whose columns are the eigenvectors of the (MB, KB) system
and define modal coordinates in subsystem body 𝐵

uB = 𝚽BqB, (2.18.2)

where 𝑞𝐵 is a vector of modal coordinates. It is assumed that the eigenvectors are mass normalized.
Pre-multiplying Eq. (2.18.1), by 𝚽𝑇

𝐵, yields

[𝚽𝑇
𝐵MB𝚽B]qB + [𝚽T

BCB𝚽B]qB + [𝚽T
BKB𝚽B]qB = 𝚽T

BFB +𝚽T
BFJ

B, (2.18.3)

To derive a nonlinear distributed damping system, the force term 𝚽𝑇
𝐵FJ

B is modeled by a four parameter
Iwan model:124

𝚽𝑇
𝐵FJ

B = FJ
𝚽B = −

∫ ∞

0
diag(𝜌(𝜙)) [q(t) − 𝜷(t, 𝜙)]d𝜙, (2.18.4)

where 𝜌 is the population density of Jenkins elements of strength 𝜙 (not to be confused with the
eigenvectors), and 𝛽(𝑡, 𝜙) is the current modal displacements of the sliders in the Iwan model.124 This force
term is solved in a discretized form with the integration from zero to 𝜙𝑚𝑎𝑥:124

FJ
𝚽B = −

N∑︁
m=1

Fm(t) − F𝛿 (t) +K0q(t), (2.18.5)
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where the integral in Eq. (2.18.4) is numerically integrated with intervals, Δ𝜙𝑚, such that,

𝑁∑︁
𝑚=1

Δ𝜙𝑚 = 𝜙𝑚𝑎𝑥 , (2.18.6)

with 𝜙𝑚 being the midpoint of each interval Δ𝜙𝑚 in the numerical integration. The, term, 𝐹𝑚(𝑡) is derived
as:124

𝐹𝑚(𝑡) =

𝑅
𝜙

2+𝜒
𝑟,𝑚−𝜙

2+𝜒
𝑙,𝑚

2+𝜒 sgn [𝑞(𝑡) − 𝜷(𝑡)] if ∥ 𝑞(𝑡) − 𝜷(𝑡) ∥= 𝜙𝑚

𝑅
𝜙

1+𝜒
𝑟,𝑚−𝜙

1+𝜒
𝑙,𝑚

1+𝜒 [𝑞(𝑡) − 𝜷(𝑡)] if ∥ 𝑞(𝑡) − 𝜷(𝑡) ∥< 𝜙𝑚
(2.18.7)

with 𝜙𝑟 ,𝑚 and 𝜙𝑙,𝑚 being the right and left side of each sub-interval, Δ𝜙𝑚, and 𝑅 and 𝜒 are a parameters of
the Iwan model. The term, 𝐹𝛿 (𝑡), is found:124

𝐹𝛿 (𝑡) =
{
𝑆[𝑞(𝑡) − 𝜷(𝑡)] if [𝑞(𝑡) − 𝜷(𝑡)] < 𝜙𝑚
𝑆𝜙𝑚𝑎𝑥sgn[𝑞(𝑡) − 𝜷(𝑡)] otherwise (2.18.8)

where 𝑆 is an Iwan parameter. The final term, 𝐾0𝑞(𝑡) in Eq. (2.18.5), is an elastic restoring force in the
Iwan model that is included in the 𝐹𝑚(𝑡) term, but also in the overall subsystem stiffness matrix, KB.
Therefore, it needs to be subtracted, so as not to include the elastic force twice. The term 𝐾0 is the stiffness
of the Iwan model under small applied loads (where slip is infinitesimal). This is calculated from the Iwan
parameters as

𝐾0 =
𝑅𝜙

𝜒+1
𝑚𝑎𝑥

𝜒 + 1
+ 𝑆 =

𝑅𝜙
𝜒+1
𝑚𝑎𝑥

𝜒 + 1
(1 + 𝛽) (2.18.9)

Transferring to physical degrees of freedom provides the following for the equation of motion:

MBuB + CBuB +KBuB = FB +𝚽−T
B FJ

𝚽B (2.18.10)

To avoid the possibility of an ill-conditioned and difficult pseudo-inversions, recognize that MB𝚽B = 𝚽−T
B ,

yielding:
MBuB + CBuB +KBuB = FB +MB𝚽BFJ

𝚽B (2.18.11)

Given the above EOM, a typical nonlinear analysis can be performed, recognizing that the force term
MB𝚽BFJ

𝚽B is a function of the displacement. However, care must be exercised in the implementation, as
the modal displacement will need to be passed to the Iwan function for updating internal forces.

2.18.1. Subsystem Distributed Damping with a Linear Damper

It is possible to derive the same basic formulation as above, but for a linear damping. This provides a check
into the formulation as the results should be the same as a model with a modal damping parameter.

The only required change from the above derivation is in the nonlinear internal force term, FJ
𝚽B. This term

will need to be appropriate for a viscous damper; thus, a function of the modal velocity. A formulation can
be found as the following:

FJ
𝚽B = FJ

𝚽Bi = −2𝜍i𝜔iqi, (2.18.12)

where subscript 𝑖 represents the mode, 𝜍𝑖 is the damping ratio for mode 𝑖, 𝜔𝑖 is the frequency for mode 𝑖,
and ¤𝛼 is the modal velocity. Here I am trying to see how many subscripts I can possibly add.

Reduced Model. To reduce computational demand, a reduced set of eigenvectors (𝚽𝑅
𝐵) can be calculated

for the subsystem and used in place of the total subsystem eigenvector, 𝚽𝐵.
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Full System Model. Implementation of the full system with nodal degrees of freedom, 𝑢, is accomplished
with a typical projection matrix, 𝑃, from the full system to the subsystem.

𝑢𝐵 = 𝑃𝑢 (2.18.13)

The EOM simplifies to
Mu + Cu +Ku = F + PTMB𝚽

R
BFJ

𝚽B (2.18.14)

2.19. Superposition for superelement recovery

A Craig-Bampton reduction generates a transformation matrix consisting of a combined set of fixed
interface and constraint modes. These modes may be stored in an Exodus file. We call this
“se-base.exo”. A netcdf file containing the reduced order model, “se.ncf” is also created at this time.
Subsequently, this reduced model is inserted into a residual model for superelement analysis, say a transient
analysis. That analysis outputs the standard Exodus results, “mesh-out.exo” and results on the netcdf file,
“se-out.ncf”. The point is to recover the response on the original interior degrees of freedom of the
superelement.

The transient response on the interior degrees of freedom is,

𝑢𝑘 (𝑡𝑛) =
𝑛𝑚𝑜𝑑𝑒𝑠∑︁

𝑖

𝑞𝑖 (𝑡𝑛)𝜙𝑖𝑘 +
𝑛𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡∑︁

𝑗

𝑤 𝑗 (𝑡𝑛)𝜓 𝑗𝑘 (2.19.1)

where,

𝑢𝑘 (𝑡𝑛) = is the displacement at interior dof 𝑘
𝑡𝑛 = is the time step
𝑞𝑖 = is the amplitude of a generalized dof for mode 𝑖
𝜙𝑖𝑘 = is the fixed interface mode 𝑖 at dof 𝑘
𝑤 𝑗 = is the amplitude of interface dof 𝑗
𝜓 𝑗𝑘 = is the constraint mode 𝑗 at dof 𝑘

The amplitudes 𝑞𝑖 and 𝑤 𝑗 are found in “se-out.ncf”, while the mode shapes, 𝜙𝑖𝑘 and 𝜓 𝑗𝑘 are found in
“se-base.exo”. The “superposition” solution combines these results and writes a new output file
containing the results.

2.20. Coupled Electro-Mechanical Physics

The finite element method was used to derive the coupled equations of motion underlying the coupled
electro-mechanical physics package. The theoretical details are documented in the referenced Sand
report.28
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2.21. High Cycle Fatigue and Damage

The theory for fatigue analysis is developed from “Random Vibrations, theory and practice”.137 From
equation WPO:10.58, the wideband damage is a correction to the narrowband damage.

𝐷 = 𝜆𝐷𝑁𝐵

For Narrow Band damage, 𝜆 is 1, but other damage models (such as that proposed by Wirsching and Light),
use 𝜆 as a modifier to adapt Narrow Band damage to Wide Band processes. Narrow Band damage is
defined as:

𝐷𝑁𝐵 =
𝜈+𝑜𝜏

𝐴
(
√

2𝜎𝑠𝐹𝑆𝑆)𝑚Γ
(𝑚

2
+ 1

)
(2.21.1)

Note that this equation assumes that the value of 𝐴 used in the material’s S-N curve is based on peak stress.
If it is calculated based on stress range, narrowband damage is instead express as:

𝐷𝑁𝐵 =
𝜈+𝑜𝜏

𝐴
(2
√

2𝜎𝑠𝐹𝑆𝑆)𝑚Γ
(𝑚

2
+ 1

)
Both practices are common in material data. We use the definition in equation (2.21.1) in this work. The
Fatigue Stress Scale (𝐹𝑆𝑆) is a parameter to convert stress units from the simulation’s unit system to the unit
system of the material. Here,

𝑚 negative of slope of S-N curve, default=3.
𝜈+𝑜 rate of crossings
𝜏 is the exposure time (or duration)
𝐴 strength coefficient of material
𝜎𝑠 RMS stress
𝐹𝑆𝑆 Fatigue Stress Scale

The rate of zero crossings may be computed as, 𝜈+𝑜 =
√︁
𝑀2/𝑀0 from equation WPO:6.24. Here 𝑀 𝑗 is a

stress moment, which is readily computed in Sierra/SD. Within the modal random vibration 2.6 module,
RMS stress moments are computed. These are related to the stress moments.

𝑀0 = (𝑉𝑅𝑀𝑆/(2𝜋))2 , 𝑀2 =

(
𝑉𝑅𝑀𝑆2/(2𝜋)2

)2
, 𝑀4 =

(
𝑉𝑅𝑀𝑆4/(2𝜋)3

)2
.

Therefore,
𝜈+𝑜 = 𝑉𝑅𝑀𝑆2/(2𝜋 · 𝑉𝑅𝑀𝑆)

The RMS stress is the primary output of the modal random vibration analysis.

Material and random loads must be provided as user input, and the other quantities are readily determined
from the analysis. 𝐷𝑁𝐵 is well-defined. There are various methods of computing the correction factor 𝜆. A
few are outlined below.

Sensitivity to Stress The narrow band damage parameter (eq. 2.21.1), is nonlinear in the stress.
Effectively, 𝐷𝑛𝑏 ∝ 𝜎𝑚. Thus, doubling the stress when 𝑚 = 3 results in an 8 fold increase in damage rate.
However, 𝑚 may be as high as 14 for many real materials. Doubling the stress increases the damage rate by
214 = 16384.
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2.21.1. Competing Damage Models

Wirsching and Light: applies equation WPO:10.60. This is described in [136]. Compute:

𝑎(𝑚) = 0.926 − 0.033𝑚 𝛼 =
𝜈+𝑜
𝜈𝑝

𝑏(𝑚) = 1.587𝑚 − 2.323 𝜖 =
√︁

1 − 𝛼2

𝜈𝑝 =
√︁
𝑀4/𝑀2 𝜆 = 𝑎(𝑚) + [1 − 𝑎(𝑚)] (1 − 𝜖)𝑏 (𝑚) .

Ortiz, Chen and Perng: applies equation WPO:10.62.

𝑘 = 2/𝑚, 𝛽 =

√︂
𝑀2𝑀𝑘

𝑀0𝑀𝑘+2
, 𝜆 = 𝛽/𝛼.

Lutes and Larsen: applies equation WPO:10.68.

𝜆 =
(𝑀𝑘)1/𝑘
𝜈+𝑜

(2.21.2)

Steinberg: The Steinberg approach for calculating fatigue can be useful as a simple check of fatigue
failure. The Steinberg approach uses the assumption that the RMS of the stress is representative of a
1𝜎 event, and that the peak stress of any given cycle is a random value. As such, it calculates a
cumulative damage as the summation:

𝑛𝑖 = 𝜈
+
𝑜 𝜏 erf

(
𝑖
√

2

)
, 𝑁𝑖 =

𝐴

(𝑖 𝜎𝑠)𝑚
, 𝐷 =

∞∑︁
𝑖=1

𝑛𝑖

𝑁𝑖
. (2.21.3)

The Steinberg approach is ideally suited to loads that operate at one frequency, or a narrowband of
frequencies. There is also the problem of choosing an acceptable number of terms to calculate.
Eventually, the magnitude of the stress becomes great enough to cause low-cycle failure, and the
equations for high-cycle fatigue breakdown. To avoid this, and to make the calculation inexpensive, it
is common to limit ourselves to only the first 3 terms of the series.

Dirlik: This method is described in Mrsniǩ (106). Define,

𝑥𝑚 =
𝑀1

𝑀0

√︂
𝑀2

𝑀4
𝑅𝑑 =

𝛼2 − 𝑥𝑚 − 𝐺2
1

1 − 𝛼2 − 𝐺1 + 𝐺2
1

𝑍 =
𝑠
√
𝑀𝑜

𝐺2 =
1 − 𝛼−2 𝐺1 + 𝐺2

1
1 − 𝑅𝑑

𝛼2 =
𝑀2√
𝑀0𝑀4

𝐺3 = 1 − 𝐺1 − 𝐺2

𝐺1 =
2(𝑥𝑚 − 𝛼2

2)
1 + 𝛼2

2
𝑄 =

1.25(𝛼2 − 𝐺3 − 𝐺2𝑅𝑑)
𝐺1

Then,

𝐷̄ = 𝐶−1𝜈𝑝𝑀
𝑘
2
𝑜

[
𝐺1𝑄

𝑘Γ(1 + 𝑘) + (
√

2)𝑘Γ
(
1 + 𝑘

2

)
(𝐺2 |𝑅𝑑 |𝑘 + 𝐺3)

]
Typically, these correction methods provide similar results. The Ortiz and Lutes methods require the
moment 𝑀𝑘 , which could vary by material block, and is expensive to compute. The Wirsching method is
somewhat simpler, and will be followed as a first development.
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2.22. Modal Augmentation with Residual Vectors

The residual_vectors solution method Modal truncation augmentation (MTA)46 provides a method to
represent the modes not retained in the eigendecomposition. It is particularly useful in component mode
synthesis approaches where multiple models are joined together. In NASTRAN, MTA vectors are referred
to as ‘residual vectors’. The theory of MTA46 is established. We use the following terminology:

N Number of degrees of freedom
nev Number of retained eigenvalues/eigenvectors from the eigen solution
nf Number of applied forces and/or moments
𝑴 Mass matrix of size N×N
𝑲 Stiffness matrix of size N×N
Φ Matrix with eigenvectors as columns, size N×(nev)
Ω2 Diagonal matrix of eigenvalues, size (nev)×(nev)
𝑹0 Applied spatial load vector, size N×(nf)
𝑹𝑠 Modally represented spatial load vector, size N×(nf)
𝑹𝑡 Force truncation vector, size N×(nf)
𝑿 Static displacements due to applied loads, size N×(nf)
𝜔̄2 Diagonal matrix of reduced eigenvalues, size (nf)×(nf)
𝑸̄ Matrix of reduced eigenvectors, size (nf)×(nf)
𝑷 Matrix of modal truncation (residual) vectors, size N×(nf)

The algorithm for computing MTA vectors is:

1. Solve the generalized eigenvalue problem

𝑲Φ = 𝑴ΦΩ2

for nev eigenvalues and eigenvectors. This is done by first specifying eigen in a multicase solution
procedure.

2. Compute the force truncation vector

𝑹𝑡 = 𝑹0 − 𝑹𝑠 = 𝑹0 − 𝑴ΦΦ𝑇𝑹0.

3. Compute the static displacements 𝑿 due to the force truncation vector 𝑹𝑡 by solving 𝑲𝑿 = 𝑹𝑡 .

4. If rigid body modes are present, orthogonalize 𝑿 to them. The optional input nrbms allows the user
to specify the number of rigid body modes present.

5. Form the reduced matrices 𝑛 𝑓 × 𝑛 𝑓 ,

𝑲̄ = 𝑿𝑇𝑲𝑿, 𝑴̄ = 𝑿𝑇𝑴𝑿 .

6. Solve the reduced generalized eigenvalue problem 𝑲̄𝑸̄ = 𝑴̄𝑸̄𝜔̄2

7. Form the modal truncation (residual) vectors: 𝑷 = 𝑿𝑸̄

8. Construct the pseudo modal set: Φ̃ = [Φ|𝑷].

In Sierra-SD, the multi-case solution strategy is:
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1. Solve the eigenvalue problem

2. For each column of 𝑹0, solve a statics problem

3. Solve a residual_vectors problem to form the pseudo modal set

2.22.1. Theory

Here we present a theoretical development of residual vectors for the interested reader. For related content,
see [46] and [39]. Both the eigen and CBR solution cases are discussed.

In the context of standard eigen solutions, an algorithm for calculating residual vectors was just presented.
Including residual vectors in CBR models is a bit different because the “modal" space includes both
constraint modes, which involve interface degrees of freedom (DOFs), and fixed-interface modes, in which
interface DOFs are constrained to zero. In the context of an eigen solution, residual vectors ultimately
appear as modes which are mass and stiffness matrix orthogonal to each other and also with the original
modes of the model. Further, the modes are orthonormal with respect to the mass matrix. In other words,
the reduced stiffness matrix is diagonal while the reduced mass matrix is an identity matrix.

In the next two sections, we develop theory and present algorithms to calculate residual vectors for the
eigen and CBR solution cases.

2.22.1.1. Eigen solution case

For eigen solution cases, we have
𝐾Φ = 𝑀ΦΛ, (2.22.1)

where 𝐾 and 𝑀 are the mass and stiffness matrices (both assumed symmetric), Φ is a matrix of
eigenvectors, and Λ is a diagonal matrix of eigenvalues. Further, the eigenvectors are assumed to satisfy

Φ𝑇𝑀Φ = 𝐼, (2.22.2)

where 𝐼 is an identity matrix of suitable dimensions.

A displacement vector 𝑢 can be decomposed as

𝑢 = Φ𝑞 +Φ⊥𝑞⊥, (2.22.3)

where Φ⊥ is a matrix of modes shapes not calculated in the original eigenvalue problem, and 𝑞 and 𝑞⊥ are
vectors of generalized coordinates. Multiplying (2.22.3) by Φ𝑇𝑀 , using Φ𝑇𝑀Φ⊥ = 0, and the
orthonormality condition in (2.22.2), we find

𝑞 = Φ𝑇𝑀𝑢, (2.22.4)

where superscript 𝑇 denotes matrix transpose. Substituting this expression for 𝑞 back into (2.22.3) gives
us

𝑢⊥ = Φ⊥𝑞⊥ = 𝑢 −Φ𝑞 = (𝐼 −ΦΦ𝑇𝑀)𝑢 = Π𝑢.

Notice that the matrix Π has the effect of projecting a vector onto the space of ignored eigenvectors. Notice
also that Π is a projection matrix since Π2 = Π.
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When using residual vectors, 𝑢 is approximated in terms of Φ and a matrix of untransformed residual
vectors Φ𝑟 as

𝑢 ≈ Φ𝑞 +Φ𝑟𝑞𝑟 , (2.22.5)

where 𝑞𝑟 is a vector of generalized coordinates associated with residual vectors. To help avoid any
confusion, we note that Φ𝑟 corresponds to 𝑋 in the previous section. The residual vectors are chosen to be
mass matrix orthogonal to Φ. That is,

Φ𝑇𝑟 𝑀Φ = 0,

where 𝑀 is the mass matrix. This is an important choice because it ensures that the residual vectors have
no effect on the mode shape and frequencies of the original eigen solution.

Premultiplying (2.22.5) by Φ𝑇𝑀 and using this orthogonality leads to

Φ𝑟𝑞𝑟 = Π𝑢 (2.22.6)

The residual vectors are chosen such that the static solution for a load 𝐹𝑟𝑞𝑟 is approximated exactly. That
is,

𝐾𝑢 = 𝐹𝑟𝑞𝑟 .

We note that 𝐹𝑟𝑞𝑟 can be viewed as a linear combination of load cases in an actual analysis, and including
residual vectors ensures recovery of the static response for this load exactly. Solving this equation for 𝑢 and
substituting back into (2.22.6) lead to

Φ𝑟𝑞𝑟 = Π𝐾−1𝐹𝑟𝑞𝑟 ,

and equating coefficients of 𝑞𝑟 gives us
Φ𝑟 = Π𝐾−1𝐹𝑟 . (2.22.7)

This expression is not consistent with the previous section which has Φ𝑟 = 𝐾−1Π𝑇𝐹𝑟 . Nevertheless, it is
equivalent. To see this, we find using (2.22.1) that

𝐾−1Π𝑇 = 𝐾−1(𝐼 − 𝑀ΦΦ𝑇 ) = 𝐾−1 − 𝐾−1𝑀ΦΦ𝑇𝐾𝐾−1

= 𝐾−1 −ΦΛ−1Φ𝑇𝐾𝐾−1 = 𝐾−1 −ΦΛ−1ΛΦ𝑇𝑀𝐾−1

= (𝐼 −ΦΦ𝑇𝑀)𝐾−1 = Π𝐾−1.

We next presents some checks to verify that the residual vectors satisfy the properties of mass and stiffness
matrix orthogonality with the original modes and that the exact static response is obtained for an applied
load of the form 𝐹𝑟𝑞𝑟 .

Othogonality checks: Premultiplying (2.22.7) by Φ𝑇𝑀 gives us

Φ𝑇𝑀Φ𝑟 = (Φ𝑇𝑀 −Φ𝑇𝑀)𝐾−1𝐹𝑟 = 0,

which confirms the orthogonality relation Φ𝑇𝑟 𝑀Φ = 0 since 𝑀 is symmetric. To show orthogonality with
respect to the stiffness matrix 𝐾 , we find from (2.22.1) that

Φ𝑇𝐾Φ = Λ, Φ𝑇 = ΛΦ𝑇𝑀𝐾−1,

and with the symmetry of 𝐾 it follows that

Φ𝑇𝐾Φ𝑟 = Φ𝑇𝐾 [𝐼 −ΦΦ𝑇𝑀]𝐾−1𝐹𝑟 ,

= Φ𝑇𝐹𝑟 − ΛΦ𝑇𝑀𝐾−1𝐹𝑟 ,

= Φ𝑇𝐹𝑟 −Φ𝑇𝐹𝑟 = 0.
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In summary, for the eigen case the residual vectors in Φ𝑟 are mass matrix and stiffness matrix orthogonal to
the mode shapes Φ. This is important because it implies that including residual vectors will not alter the
original natural frequencies and mode shapes. A final orthogonalization step described later is made to
ensure the residual vectors are mass matrix orthonormal and stiffness matrix orthogonal with respect to
each other. This is important for modal superposition solutions because it allows residual vectors to be used
in the same manner in the code as the modes themselves. We note that residual vectors are not bona fide
mode shapes, but they are uncoupled from other modes and can be treated as uncoupled harmonic
oscillators in a modal superposition. Further, since they are primarily included to recover correct static
responses, large modal damping can be used to restrict their dynamic response.

Static solution check: In order to get the correct static solution when using modal superposition, the mode
shapes and residual vectors must span the columns of 𝐾−1𝐹𝑟 . That is, given a vector of generalized
coordinates 𝑠, there must exist a 𝑞 and 𝑞𝑟 such that

𝐾Φ𝑞 + 𝐾Φ𝑟𝑞𝑟 = 𝐹𝑟 𝑠.

The modal coordinate 𝑞 associated with the static response 𝐾−1𝐹𝑟 𝑠 is given by (see (2.22.4))
𝑞 = Φ𝑇𝑀𝐾−1𝐹𝑟 𝑠. By choosing 𝑞𝑟 = 𝑠, we then find using (2.22.7) that

𝐾Φ𝑞 + 𝐾Φ𝑟𝑞𝑟 = 𝐾ΦΦ𝑇𝑀𝐾−1𝐹𝑟 𝑠 + 𝐾Π𝐾−1𝐹𝑟 𝑠,

= 𝐾 (ΦΦ𝑇𝑀 + Π)𝐾−1𝐹𝑟 𝑠,

= 𝐾𝐼𝐾−1𝐹𝑟 𝑠 = 𝐹𝑟 𝑠.

In order to make the residual vectors mass and stiffness matrix orthogonal with respect to themselves, we
form the reduced matrices

𝐾𝑟 = Φ𝑇𝑟 𝐾Φ𝑟 , 𝑀𝑟 = Φ𝑇𝑟 𝑀Φ𝑟

and solve the generalized eigenvalue problem

𝐾𝑟Θ = 𝑀𝑟ΘΛ𝑟 .

Assuming that the mode shapes Θ are normalized such that Θ𝑇𝑀𝑟Θ = 𝐼, the transformed residual vectors
are given by

Φ̃𝑟 = Φ𝑟Θ.

Notice that the reduced mass and stiffness matrices for the transformed residual vectors, i.e., the residual
vectors in their final form satisfy

Φ̃𝑟𝑀Φ̃𝑟 = 𝐼, Φ̃𝑇𝑟 𝐾Φ̃𝑟 = Λ𝑟 .

Further, the reduced mass and stiffness matrices for the mode shapes augmented with residual vectors, i.e.,
for Ψ =

[
Φ Φ̃𝑟

]
are given by

Ψ𝑇𝑀Ψ = 𝐼, Ψ𝑇𝐾Ψ =

[
Λ 0
0 Λ𝑟

]
.

2.22.1.2. CBR solution case

For the CBR solution case, the reduced mass and stiffness matrices are written out as dense matrices even
though some of their entries are zero. This means that there is no requirement to orthogonalize the residual
vectors with respect to the fixed-interface and constraint modes. Nevertheless, from a practical point of
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view it does make sense to orthogonalize them with respect to the fixed-interface modes so that they can be
treated in the same way. For example, this will allow damping levels for the residual vectors to be specified
in a simple way.

Implementing residual vectors for the CBR case is basically the same as for the eigen case, but only
fixed-interface modes are considered. In other words, the constraint modes are ignored in the
orthogonalization process.
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3. ACOUSTICS AND STRUCTURAL ACOUSTICS

This chapter begins with the derivation of the acoustic wave equations from the fluid dynamics equations,
Both the pressure and the velocity potential forms are derived. This will then lead into a discussion of the
coupled equations of motion. Later sections explain the discretization procedures, mesh matching
conditions on the wet surface, exterior boundary conditions, and the supported loading scenarios such as
scattering.

fluid pressure 𝑝

density 𝜌

velocity 𝑣

Table 3-1. – Nomeclature for fluids

Under certain assumptions, fluid motion can be approximated as small-amplitude linear wave propagation.
We give a short background on the assumptions that go into the derivation of the acoustic wave equation. In
the most general case the fluid motion is governed by the compressible Navier Stokes equations. In the case
of small-amplitude wave propagation, viscosity is typically neglected, and a polytropic relationship is
assumed between pressure and density in the fluid. In this case the fluid motion is described by the
nonlinear Euler equations and a nonlinear pressure-density relation,

¤𝜌 + ∇ · (𝜌𝑣) = 𝑞 mass conservation
𝜌 ¤𝑣 + 𝜌𝑣 · ∇𝑣 + ∇𝑝 = 𝑓 momentum conservation

𝑝 = 𝑝(𝜌) pressure density.
(3.0.1)

The right-hand side terms consist of mass injection 𝑞 (density per unit time) and body force 𝑓 (force per
unit volume). Nonlinearity is necessary to allows for both fluid convection and wave propagation.

Acoustics is the study of the Euler equations linearized about of ambient (background) values of these
fields. Under the assumptions of small fluid motion field variables decompose as,

𝑝

𝜌

𝑣

 =


𝑝0
𝜌0
0

 +

𝛿𝑝

𝛿𝜌

𝛿𝑣

 ,

𝛿𝑝

𝛿𝜌

𝛿𝑣

 = 𝑂 (𝛿), (3.0.2)

the Euler equations can be linearized. Note that the background velocity is zero.

The purpose of the remainder of this section is to show that the perturbations 𝛿𝑣 and 𝛿𝑝 obey wave
equations. In later sections, the 𝛿s are dropped, and equations are written in terms of 𝑣,𝑝.
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Expanding equations (3.0.1) to first order in 𝛿 leads to the equations of mass conservation,

𝑞 = ¤𝜌 + ∇ · (𝜌𝑣)

=
𝜕

𝜕𝑡
(𝜌0 + 𝛿𝜌) + ∇ · ((𝜌0 + 𝛿𝜌)𝛿𝑣)

=
𝜕𝜌0

𝜕𝑡︸︷︷︸
=0

+𝜕𝛿𝜌
𝜕𝑡
+ 𝜌0∇ · 𝛿𝑣 + 𝛿𝜌∇ · 𝛿𝑣 + 𝛿𝑣∇ · 𝛿𝜌︸                    ︷︷                    ︸

=𝑂 (𝛿2 )

≈ 𝜕𝛿𝜌
𝜕𝑡
+ 𝜌0 ∇ · 𝛿𝑣

(3.0.3)

and momentum conservation,

𝑓 = 𝜌
𝜕𝑣

𝜕𝑡
+ 𝜌𝑣 · ∇𝑣 + ∇𝑝

= (𝜌0 + 𝛿𝜌)
𝜕𝛿𝑣

𝜕𝑡
+ (𝜌0 + 𝛿𝜌)𝛿𝑣 · ∇𝛿𝑣 + ∇(𝑝0 + 𝛿𝑝)

= 𝜌0
𝜕𝛿𝑣

𝜕𝑡
+ 𝛿𝜌 𝜕𝛿𝑣

𝜕𝑡︸  ︷︷  ︸
=𝑂 (𝛿2 )

+ (𝜌0 + 𝛿𝜌)𝛿𝑣 · ∇𝛿𝑣︸                 ︷︷                 ︸
=𝑂 (𝛿2 )

+ ∇𝑝0︸︷︷︸
=0

+∇𝛿𝑝

≈ 𝜌0
𝜕𝛿𝑣

𝜕𝑡
+ ∇𝛿𝑝.

(3.0.4)

Expanding the pressure-density relation to first order,

𝑝(𝜌) = 𝑝0 +
𝜕𝑝

𝜕𝜌
(𝜌0)𝛿𝜌 + . . . , (3.0.5)

which completes the system, and exposes the scalar 𝑐,

𝛿𝑝 =
𝜕𝑝

𝜕𝜌
(𝜌0)𝛿𝜌, 𝑐2 ≡ 𝜕𝑝

𝜕𝜌
(𝜌0). (3.0.6)

Combining equations (3.0.3), (3.0.4), and (3.0.6), leads to the linear Euler equations,

1
𝑐2
𝜕𝛿𝑝

𝜕𝑡
+ 𝜌0∇ · 𝛿𝑣 = 𝑞,

𝜌0
𝜕𝛿𝑣

𝜕𝑡
+ ∇𝛿𝑝 = 𝑓 .

(3.0.7)

Taking the time derivative of the first of equations (3.0.7) and the divergence of the second of
equations (3.0.7), we arrive at the pressure potential formulation,

𝜕𝑞

𝜕𝑡
− ∇ · 𝑓 = 𝜕

𝜕𝑡

(
1
𝑐2
𝜕 𝛿𝑝

𝜕𝑡
+ 𝜌0∇ · 𝛿𝑣

)
− ∇ ·

(
𝜌0
𝜕 𝛿𝑣

𝜕𝑡
+ ∇ 𝛿𝑝

)
=

1
𝑐2
𝜕2𝛿𝑝

𝜕𝑡2
+ 𝜌0

𝜕

𝜕𝑡
∇ · 𝛿𝑣 − 𝜌0∇ ·

𝜕𝛿𝑣

𝜕𝑡︸                          ︷︷                          ︸
=0

−Δ𝛿𝑝

=
1
𝑐2
𝜕2𝛿𝑝

𝜕𝑡2
− Δ 𝛿𝑝. pressure potential

(3.0.8)
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3.1. The Sierra/SD Velocity Potential Formulation

A formulation of the acoustic wave equation based on a velocity potential 𝜓 rather than the acoustic
pressure 𝛿𝑝 has two advantages. First the formulation of structural acoustics is simplified. And second, the
corresponding linear systems are symmetric.

Acoustics Potential
Source Loading Velocity
Enforced Acceleration Pressure
Infinite Elements Velocity
Lighthill Tensor Pressure

Table 3-2. – Potential corresponding to different boundary conditions and loads

The velocity potential is named after the well-known definition,

𝛿𝑣 = ∇𝜓. (3.1.1)

However, Sierra/SD uses the alternative definition based on,

𝛿𝑝 =
𝜕𝜓

𝜕𝑡
. (3.1.2)

Let us consider the implications of (3.1.1) vis-a-vis equation (3.0.7). Equation (3.0.7) simplifies to

𝑓 = 𝜌0
𝜕∇𝜓
𝜕𝑡
+ ∇𝛿𝑝

= ∇
(
𝜌0
𝜕𝜓

𝛿𝑡
+ 𝛿𝑝

) (3.1.3)

Therefore, we have
𝛿𝑝 = −𝜌0

𝜕𝜓

𝜕𝑡
+ 𝐹, 𝑓 = ∇𝐹. (3.1.4)

With the definition in equation (3.1.4), differentiation of the velocity potential 𝜓 is necessary to recover the
physical pressure. The fluid density 𝜌0 must also be available to perform this conversion.

The alternative choice (3.1.2) has the advantage of eliminating 𝜌0 from the relation between pressure and
the velocity potential. Equation (3.0.7) now simplifies to

∇𝜓 = −𝜌0𝛿𝑣 +
∫ 𝑡

𝑓 . (3.1.5)

Also the disadvantage is that the velocity potential appears to relate to ∇𝜓.

In either case, derivations similar to the derivation of the pressure potential will demonstrate that the
velocity potential also satisfies a wave equation115

1
𝑐2
𝜕2𝜓

𝜕𝑡2
− Δ𝜓 = 0. (3.1.6)

We use this fact later on for coupled system of equations. In the following sections, we find it convenient to
drop the 𝛿s and write 𝑣,𝑝 to indicate the perturbations 𝛿𝑣,𝛿𝑝.
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3.2. Structural Acoustics with Nonconforming Meshes

Structural Acoustics models simulate the effects of an acoustic field (previous section) coupled to an elastic
structure along a wet interface. Reviews74 and57 are available. Here details relevant to the Sierra/SD
implementation are explained.

For structural acoustic simulations Sierra/SD uses the velocity potential (3.1.2) scaled by -1 to maintain
symmetry. Source loading is required. Infinite elements are available.

Having the same mesh density in the acoustic fluid and solid may be inefficient, since the two domains
typically require significantly different mesh densities to achieve a given level of discretization accuracy. It
is also impractical in many applications since the mesh generation process may be performed separately for
the two domains. Generating conforming meshes on the wet interface may be difficult, if not impossible,
even given the most sophisticated mesh generation software. Illustrative examples include the hull of a ship,
or the skin of an aircraft. In these cases, the structural and fluid meshes are typically created independently,
and have different mesh density requirements. Joining them into a single, monolithic mesh is often
impractical.

Although methods for joining dissimilar meshes are well-known in structural mechanics,6,50,95,118 few
papers exist in the area of dissimilar structural acoustic meshes. Mandel102 considered parallel domain
decomposition techniques for structural acoustics in the frequency domain, on mismatched fluid/solid
meshes. Nonconforming discretizations on the wet interface were handled by duplicating acoustic and
structural degrees of freedom on either side of the wet interface, and imposing coupling equations that
enforce continuity of pressure and displacement. The duplicated degrees of freedom were then included in
a dual-primal, parallel domain decomposition strategy. Only two-dimensional, frequency-domain problems
were considered. Flemisch67 studied both fluid-fluid and structure-fluid coupling on mismatched meshes.
For fluid-fluid coupling, a mortar approach was taken, whereas for structural acoustic coupling, the
coupling matrices were assembled in normal fashion and used across the wet interface to coupled the
fluid-solid responses. Only time-domain, serial solutions were considered.

Several recent references considered a displacement-based acoustic formulation, which was then coupled to
an elasticity formulation on mismatched fluid/solid meshes. Alonzo3 used an adaptive method with error
estimation to refine the fluid/solid meshes accordingly. The error estimator demanded different mesh
densities on the fluid and solid interface, as expected. Bermudez21 also considered a displacement-based
acoustic formulation, but used an integral constraint on the wet interface, along with a static condensation
procedure to eliminate the acoustic degrees of freedom. In both of the preceding references,
Raviart-Thomas elements were needed to avoid spurious modes in the fluid. These modes would have been
automatically eliminated with the use of a potential formulation in the fluid.

In the following sections, a new technique is presented for structural acoustic analysis in the case of
nonconforming fluid/solid interface meshes. We first construct a simple method for coupling mismatched
fluid/fluid meshes, based on a set of linear constraint equations. Using static condensation, we show how
these constraint equations can be eliminated from the final system of equations. We then demonstrate that
the same approach can be taken to couple mismatched fluid/solid meshes, provided that the coupling
matrices that are typically used for conforming fluid/solid meshes are calculated at a set of nodes with both
structural and acoustic degrees of freedom, and that extra (“ghost”) degrees of freedom are introduced to
couple the structural or acoustic terms to the other side of the interface. With this arrangement, the
structural acoustic coupling resembles a conforming method with like degrees of freedom linked across the
interface via MPC equations. Then the conforming structure to acoustic coupling operators ensure a weak
continuity of particle velocity and stress between the structural degrees of freedom and collocated acoustic
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degrees of freedom on the shared side of the interface. Note either the structural degrees of freedom can be
ghosted to the acoustic side of the interface or the acoustic degrees of freedom can be ghosted to the
structural side of the interface. Either arrangement may be more appropriate depending on the mesh
density of the two regions.

3.2.1. Meshes conforming on the wet interface

In this section, we review the governing equations of acoustics and structural acoustics, along with their
corresponding weak formulations, and then we present our approach for the nonconforming discretization.
We begin with the case when all meshes are conforming, and then we extend this to the nonconforming
case.

We begin by constructing a weak formulation of the linear acoustic wave equation for conforming meshes.
Subsequently, we consider conforming structural acoustics. In this section, we will use the relation (3.1.2)
between pressure and the velocity potential 𝜓, but write 𝜌 𝑓 instead of 𝜌0 as the density of the fluid to use 𝜌𝑠
for the solid density. Surface normal vectors are denoted by 𝑛̂.

wet interface Γ𝑤𝑒𝑡

fluid domain Ω 𝑓

velocity potential 𝜓

acoustic density 𝜌 𝑓
sound speed 𝑐

structural domain Ω𝑠

deformation ®𝑢
structural stress tensor 𝜎

solid density 𝜌𝑠
solid body forces 𝑓

Table 3-3. – Nomeclature for structural acoustics. Subscripts 𝑠 and 𝑓 will refer to the solid and the fluid.

Note that we do not include volume (body) forces on the fluid when solving equation (3.1.6) The fluid has
boundaries for applied Neumann (n) and Dirichlet (d) boundary conditions,

𝜕Ω 𝑓 = 𝜕Ω𝑛 ∪ 𝜕Ω𝑑 .

We also assume that the fluid is initially at rest, i.e. 𝜓(𝑥, 0) = 𝜕𝑡𝜓(𝑥, 0) = 0, which is sufficient for most
applications.

The function spaces 𝑉 𝑓 (Ω 𝑓 ) for equation (3.1.6) and 𝑉𝑠 (Ω𝑠) for the structure have the corresponding inner
products,

⟨𝜂, 𝜙⟩ 𝑓 =
∫
Ω 𝑓

𝜂𝜙𝑑𝑥, ⟨®𝑢, ®𝑣⟩𝑠 =
∫
Ω𝑠

𝑢𝑇𝑣 𝑑𝑥.

The velocity potential 𝜓 : [0, 𝑇] → 𝑉 𝑓 (Ω 𝑓 ) is sought such that ∀𝜙 ∈ 𝑉 𝑓 (Ω 𝑓 ),

⟨𝑐−2 ¥𝜓, 𝜙⟩ 𝑓 + ⟨∇𝜓,∇𝜙⟩ 𝑓 = −
∫
𝜕Ω𝑛

𝜌 𝑓 𝜙𝑣 · 𝑛̂𝑑𝑠 (3.2.1)

where the fluid velocity 𝑣 is prescribed on the Neumann portion of the fluid boundary, 𝜕Ω𝑛.
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The finite element discretization is 𝜓(𝑥) = ∑𝑁
𝑖=1 𝜓𝑖𝑁𝑖 (𝑥), or in terms of the vector of shape function, 𝑁 (𝑥),

𝜓(𝑥) = 𝑁 (𝑥)𝑇𝜓. Equation (3.2.1) reduces to

𝑀 𝑓
¥𝜓 + 𝐾 𝑓𝜓 = 𝑓𝑎, 𝑓𝑎 = −

∫
𝜕Ω𝑛

𝜌 𝑓 𝑣 · 𝑛̂𝑁𝑇𝑑𝑥, (3.2.2)

𝑀 𝑓 = ⟨𝑁, 𝑁𝑇⟩ 𝑓 /𝑐2, and 𝐾 𝑓 = ⟨∇𝑁,∇𝑁𝑇⟩ 𝑓 . The boundary condition 𝑓𝑎 is due to Neumann boundary
conditions.

For structural acoustics, the second order equation of motion for the solid,

𝜌𝑠 ¥𝑢 − ∇ · 𝜎 = 𝑓 , (3.2.3)

is coupled to equation (3.1.6) along Γ𝑤𝑒𝑡 . The normal to Γ𝑤𝑒𝑡 points from solid into the fluid. The
symmetric part of the gradient is denoted ∇𝑠 = 1

2
(
∇ + ∇𝑇

)
.

In linear acoustics velocity and stress are continuous across Γ𝑤𝑒𝑡 ,

∇𝜓 · 𝑛̂ − 𝜌 𝑓 𝜕𝑡𝑢 · 𝑛̂, 𝜎 · 𝑛̂ = −𝜕𝜓
𝜕𝑡
𝑛̂. (3.2.4)

The abstract weak form seeks 𝑣 and 𝜓 such that ∀𝑤 ∈ 𝑉𝑠 (Ω𝑠), ∀𝜙 ∈ 𝑉 𝑓 (Ω 𝑓 ),

⟨𝜌𝑠, ¥𝑤⟩𝑠 + ⟨𝜎,∇𝑠𝑤⟩𝑠 −
∫
𝜕Ω𝑤𝑒𝑡

(𝜎 · 𝑛̂)𝑤𝑑𝑠 = ⟨ 𝑓 , 𝑤⟩𝑠 +
∫
𝜕Ω𝑛

(𝜎 · 𝑛̂)𝑤𝑑𝑠, (3.2.5)

1
𝑐2 ⟨ ¥𝜓, 𝜙⟩ 𝑓 + ⟨∇𝜓,∇𝜙⟩ 𝑓 +

∫
𝜕Ω𝑤𝑒𝑡

(∇𝜓 · 𝑛̂)𝜙𝑑𝑠 =
∫
𝜕Ω𝑛

(∇𝜓 · 𝑛̂)𝜙𝑑𝑠 (3.2.6)

where 𝜕Ω𝑛 is the portion of the solid and fluid boundaries that has applied loads. If Dirichlet boundary
conditions were applied to part of the structure, or if the fluid had a portion of its boundary subjected to
Dirichlet conditions, then the corresponding Sobolev spaces 𝑉𝑠 (Ω𝑠) and 𝑉 𝑓 (Ω 𝑓 ) satisfy the boundary
conditions. Recall that the normal is defined to be positive going from solid into the fluid.

Next define 𝑔 = 𝜎 · 𝑛̂ on the solid portion of 𝜕Ω𝑛. Apply the boundary conditions of equation (3.2.4),

⟨𝜌𝑠, ¥𝑤⟩𝑠 + ⟨𝜎,∇𝑠𝑤⟩𝑠 +
∫
𝜕Ω𝑤𝑒𝑡

¤𝜓𝑤𝑛̂𝑑𝑠 = ⟨ 𝑓 , 𝑤⟩𝑠 +
∫
𝜕Ω𝑛

𝑔𝑤𝑑𝑠, (3.2.7)

1
𝑐2 ⟨ ¥𝜓, 𝜙⟩ 𝑓 + ⟨∇𝜓,∇𝜙⟩ 𝑓 + −𝜌 𝑓

∫
𝜕Ω𝑤𝑒𝑡

(𝜕𝑡𝑢 · 𝑛̂)𝜙𝑑𝑠 = (3.2.8)

−𝜌 𝑓
∫
𝜕Ω𝑛

(𝜕𝑡𝑢 · 𝑛̂)𝜙𝑑𝑠 (3.2.9)

Assuming a linear constitutive model for the solid, and inserting the spatial discretizations
𝑢 = (𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧) = (

∑
𝑢𝑥𝑖𝑁𝑖 ,

∑
𝑢𝑦𝑖𝑁𝑖 ,

∑
𝑢𝑧𝑖𝑁𝑖) and 𝜙 =

∑
𝜙𝑖𝑁𝑖 into equation (3.2.7) yields the following

semi-discrete second order differential equation,[
𝑀𝑠 0
0 𝑀 𝑓

] [
¥𝑢
¥𝜓

]
+

[
𝐶𝑠 𝐿

−𝜌 𝑓 𝐿𝑇 𝐶 𝑓

] [
¤𝑢
¤𝜓

]
+

[
𝐾𝑠 0
0 𝐾 𝑓

] [
𝑢

𝜓

]
=

[
𝑓𝑠
𝑓 𝑓

]
. (3.2.10)

where 𝑀𝑠, 𝐶𝑠, and 𝐾𝑠 denote the mass, damping, and stiffness matrices for the solid, and 𝑀 𝑓 , 𝐶 𝑓 , and 𝐾 𝑓
denote the same for the fluid. The coupling matrix is denoted by 𝐿. Coupling between fluid and structure,
and any damping in the fluid or solid separately, is accounted for by the damping matrices. The quantities
𝑓𝑠 and 𝑓 𝑓 denote the external forces on the solid and fluid, respectively.
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3.2.2. Nonconforming Structural Acoustics

In the case of nonconforming fluid/solid discretizations, equations (3.2.5) and (3.2.7) contain some extra
technicalities. In this section we first describe a simple procedure for coupling two acoustic domains which
share a common boundary, but with nonconforming discretizations. This method serves as a stepping stone
to the case of nonconforming structural acoustics.

To enforce continuity of appropriate field variables between the two different surfaces, the degrees of
freedom and element surfaces involved in the coupling need to be known a priori. Given the surface meshes
of the fluid and solid, this information is non-trivial to obtain, especially in parallel, since adjacent element
surfaces may reside on different processors.

The ACME and Dash package26 have been developed as tools to determine surface contact conditions
between general surfaces in three dimensions. These surfaces can take the form of boundaries of finite
element discretizations, as in our case, or they can be analytic surfaces. In either case, search algorithms are
employed to determine node-face interactions between the opposing surfaces, based on search tolerances.
A given node is determined to be in contact with a given face of the adjacent surface if the distance from the
node to the adjacent element face is within the defined search tolerance. The contact package can compute
contact conditions between most of the standard three-dimensional finite elements, including hexahedrons,
tetrahedrons, and prisms. Once these interactions are defined, one can devise enforcement algorithms to
enforce continuity of the appropriate field variables. Once surface constraints are known, we derive our
own enforcement algorithms, as explained below.

We consider the situation shown in Figure (3-1). Here there are 2 interacting acoustic domains, and two
contact surfaces. We adopt a node-face approach, where one of the two interacting surfaces contains tied
faces and the other tied nodes. We denote surface 1 as the face-surface, and surface 2 as node-surface. For
a transient acoustic simulation involving the two meshes shown in Figure 3-1, we would have to solve the
system of equations given in equation (3.2.2), which would involve degrees of freedom from both acoustic
domains, subject to the constraint that the velocity potential is continuous across the nonconforming
interface. The extra equations corresponding to this constraint can be derived from a simple consideration
of the contact geometry.

Surface 1 Surface 2

Acoustic Domain 2Acoustic Domain 1

Figure 3-1. – Two interacting acoustic domains, with nonconforming meshes at the common interface. In this
case surface 1 is defined to be the face-surface, and surface 2 is the node-surface.

In Figure 3-2, node 𝑥 from surface 1 is impinging on element face 𝑦 of surface 2.
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Node "X"

Element "Y"

Surface 1Surface 2

Figure 3-2. – A node-face interaction on the structural acoustic interface.

If contact determines that the distance from node 𝑥 to element face 𝑦 is within the user-defined search
tolerance, a constraint relation will be needed to enforce continuity of velocity potential. The constraint
relation for this interaction can be written in the form

𝜓𝑎 =

4∑︁
𝑖=1

𝑐𝑖𝜓
𝑏
𝑖 , (3.2.11)

where 𝜓𝑎 is the velocity potential at node 𝑥 on surface 1, and 𝜓𝑏
𝑖

are the velocity potentials at the four
nodes of element face 𝑦 on surface 2. The coefficients 𝑐𝑖 are determined from the position of node x relative
to the positions of the nodes on element face y on surface 2. More precisely, 𝑐𝑖 = 𝑁𝑖 (𝜉, 𝜁) are the values of
the surface shape functions corresponding to the nodes on the surface of element y in Figure 3-2, and 𝜉 and
𝜁 are the dimensionless surface coordinates of the location of node 𝑥 on the surface of element 𝑦. Thus, the
velocity potential at node 𝑥 is constrained to be equal to the value that would be predicted by a finite
element interpolation on the surface of element 𝑦.

For example, in the special case that face 𝑦 is square and node x lies at the center of the face 𝑦, the
coefficients 𝑐𝑖 would all be equal to 1

4 , indicating that the constraint is an average. This can be seen by
considering the surface shape functions corresponding to a plane bilinear element on a square [−1, 1]2,

𝑁 (𝜉, 𝜁) = 1
4
[(1 − 𝜉) (1 − 𝜁), (1 + 𝜉) (1 − 𝜁), (1 + 𝜉) (1 + 𝜁), (1 − 𝜉) (1 + 𝜁)]𝑇 . (3.2.12)

If node 𝑥 were at the center of element 𝑦, then 𝜉 = 𝜁 = 0, and all coefficients would be 1
4 . If 𝑥 were

off-center, these coefficients would change accordingly. If the surface of element 𝑦 were a triangle instead
of a square, (indicating a tetrahedron instead of a hexahedron), the procedure would be the same, except the
shape functions in equation 3.2.12 would be different.

We use this approach, sometimes called standard node collocation or inconsistent tied contact,50 for the
nodes/elements on the interacting surfaces. This results in a set of linear constraints that enforces continuity
of velocity potential at discrete points between the two acoustic meshes.

It is well-known that inconsistent tied contact results in constraints which do not meet convergence criteria
for finite elements. In particular, meshes which rely on these methods do not always pass the static patch
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test for structures.49,95,118,138 Other methods such as mortar methods, provide more accurate, but more
complex approaches. Fundamentally, these methods are similar to those presented here, as the concepts of
tying the acoustic degrees of freedom through a system of constraint equations apply.

These constraint equations can be expressed as37

𝐶Φ = 0, (3.2.13)

where 𝐶 is a matrix that contains the constraint coefficients from the node-face interactions, and vector Φ
contains all degrees of freedom for the problem. The vector Φ can be partitioned as

Φ =

[
Φ 𝑓

Φ𝑛

]
, (3.2.14)

where Φ𝑛 contains all node-surface acoustic degrees of freedom and Φ 𝑓 the face-surface degrees of
freedom. With this partition, equation (3.2.13) can be written as

𝐶𝑚Φ 𝑓 + 𝐶𝑠Φ𝑛 = 0. (3.2.15)

We note that the matrix 𝐶𝑠 is diagonal either for the constraint enforcement approach used here or for a dual
mortar method.138,118 If the constraint equations are linearly independent (assuming there are no redundant
constraints), then the matrix 𝐶𝑠 is also nonsingular. The node-surface degrees of freedom can be condensed
from the stiffness matrix by using Φ𝑛 = 𝐶𝑚𝑠Φ 𝑓 , where we define 𝐶𝑚𝑠 = −𝐶−1

𝑠 𝐶𝑚. Additional details are
provided later.

Next, we examine the dimensions of the constraint matrices defined above, and their relation with the
number of acoustic and structural nodes on the wet interface. We define 𝑛𝑠 as the number of nodes on the
structural side of the wet surface, and 𝑛 the total number of degrees of freedom for the problem. The
dimensions of 𝐶𝑠 are then seen to be 𝑛𝑠 by 𝑛𝑠, while the dimensions of 𝐶𝑚 is 𝑛𝑠 by 𝑛 − 𝑛𝑠. For example,
consider the mesh shown in Figure (3-1). If we assume that the domain on the right is a structural domain
(instead of acoustic), we would have 𝑛𝑠 = 7. In addition, only 5 columns of 𝐶𝑚 would have nonzero
entries.

The condensation expression37 holds,

𝐾̃ = 𝐾𝑚𝑚 + 𝐾𝑚𝑠𝐶𝑚𝑠 + 𝐶𝑇𝑚𝑠𝐾𝑠𝑚 + 𝐶𝑇𝑚𝑠𝐾𝑠𝑠𝐶𝑚𝑠, (3.2.16)

as do the similar expressions for mass and damping. While static condensation does generate non-diagonal
matrices, it does not significantly affect the sparsity of 𝐾̃ or 𝑀̃ , since these are local constraint equations
that involve only a few degrees of freedom. After condensing out the node-surface acoustic degrees of
freedom in equation (3.2.2), we obtain a modified system of equations

𝑀̃ ¥𝜓 + 𝐾̃𝜓 = 𝑓𝑎, (3.2.17)

where the tilde superscripts indicate that the node-surface constraints have been condensed out. Note that
the vector 𝜓 only contains the interior degrees of freedom (corresponding to nodes that are not on the
interacting surfaces), and the face-surface degrees of freedom on the contact surface, since the node-surface
degrees of freedom have been eliminated. Equations (3.2.17) can also be solved in the frequency domain,
as follows [

𝑠2𝑀̃ + 𝐾̃
]
𝜓 = 𝑓𝑎, (3.2.18)

where 𝑠 is the frequency parameter that comes from the Laplace transform.
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In the case of structural acoustics, the algorithm for the nonconforming fluid/fluid meshes can be used as a
stepping stone to the nonconforming solid/fluid meshes. In this approach ghost structural or acoustic
degrees of freedom are added to one side of the wet interface. Due to the ghost degrees of freedom
collocated structural and acoustic degrees of freedom are present one side of the wet interface (e.g. three
displacement and one velocity potential degree of freedom). Two surface integrals in equation (3.2.7), i.e.∫
𝜕Ω𝑤𝑒𝑡

𝜕𝑡𝜓𝑛̂𝑤𝑑𝑠 and 𝜌 𝑓
∫
𝜕Ω𝑤𝑒𝑡

𝜕𝑡𝑢 · 𝑛̂𝜙𝑑𝑠, are evaluated to couple the structural acoustic coupling terms at
these collocated degrees of freedom. Across the interface the like degrees of freedom (the “true” degrees of
freedom and their ghost counterparts) are tied together using the same set of linear constraint equations that
were developed for the nonconforming structure/structure case.

In addition to equations (3.2.10), we have a set of linear constraint equations that couple shared degrees of
freedom across the wet interface. As in the structure/structure case, these constraint equations represent the
relations between the face-surface and node-surface degrees of freedom, and they take the same form given
by equation (3.2.13). Upon condensing these constraints out of the system of equations, (3.2.10), we obtain
a modified system of equations[

𝑀̃𝑠 0
0 𝑀̃ 𝑓

] [
¥𝑢
¥𝜓

]
+

[
𝐶̃𝑠 𝐿̃

−𝜌 𝑓 𝐿̃𝑇 𝐶̃ 𝑓

] [
¤𝑢
¤𝜓

]
+

[
𝐾̃𝑠 0
0 𝐾̃ 𝑓

] [
𝑢

𝜓

]
=

[
𝑓𝑠
𝑓 𝑓

]
, (3.2.19)

where again the tilde superscripts represent the matrices with constraints condensed out. Note that, in this
case, the structural matrices (and coupling matrices) must be modified during the constraint removal
process. This is because of the coupling matrices 𝐿 and 𝐿𝑇 involve uncondensed degrees of freedom. To
solve this system of equations, we use the generalized alpha time integration method,34 which is a
generalization of the Newmark-beta method.

In addition to the transient analysis formulation outlined above, an advantage of our coupling procedure is
that it can be applied equally well to nonconforming structural acoustic problems for both eigenvalue
analysis, and frequency domain analysis. The coupling terms lead to a quadratic eigenvalue problem.( [

𝐾̃𝑠 0
0 −𝐾̃ 𝑓 /𝜌 𝑓

]
+ 𝜆

[
𝐶̃𝑠 𝐿̃

𝐿̃𝑇 −𝐶̃ 𝑓 /𝜌 𝑓

]
+ 𝜆2

[
𝑀̃𝑠 0
0 −𝑀̃ 𝑓 /𝜌 𝑓

] ) [
𝑢

𝜓

]
= 0 (3.2.20)

In the case of zero damping, this is a gyroscopic system with imaginary eigenvalues, and complex
eigenvectors.

The frequency domain equation can be obtained by a Fourier transform of the time domain equation. This
results in following complex-valued system of equations.

( [
𝐾̃𝑠 0
0 −𝐾̃ 𝑓 /𝜌 𝑓

]
+ 𝑖𝜔

[
𝐶̃𝑠 𝐿̃

𝐿̃𝑇 −𝐶̃ 𝑓 /𝜌 𝑓

]
− 𝜔2

[
𝑀̃𝑠 0
0 −𝑀̃ 𝑓 /𝜌 𝑓

] ) [
𝑢

𝜓

]
=

[
𝑓𝑠

− 𝑓 𝑓 /𝜌 𝑓

]
. (3.2.21)

In the next section on numerical results, we present results from all cases, including time domain,
frequency domain, and eigenvalue analysis simulations.

Our method can be summarized by the diagram in Figure (3-3). In the shown example the structural nodes
on the wet interface are augmented with the acoustic degree of freedom. Consequently, these nodes each
have four degrees of freedom. In this example the acoustic degrees of freedom are constrained across the
interface via an acoustic-to-acoustic MPC. The structure to acoustic coupling is enforced on the structure
side of the interface which has conforming structural and acoustic degrees of freedom.
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Constraint equations join acoustic degrees of
freedom on both sides of wet interface

Acoustic subdomain Solid subdomain

1 degree of freedom per node

4 degrees of freedom per node

3 degrees of freedom per node

Figure 3-3. – Illustration of our method for structural acoustic meshes with nonconforming interfaces. Ghost
acoustic degrees of freedom are added to the structural side of the wet interface, and then connected to the adjacent
acoustic surface with constraint equations. The resulting nodes in the mesh can then have either one acoustic
degree of freedom (shown by a circle), three displacement degrees of freedom (shown by a dashed circle), or one
acoustic degree of freedom and three displacement degrees of freedom (shown by a black-filled circle).
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One case that requires special care for structural acoustic coupling is double wetted shells (a structural shell
sandwiched between two acoustic domains.) For this case the structural velocities at the shell and the two
acoustic domains should be identical. However, the acoustic pressure potentials at the two acoustic domains
are not identical. To correctly run this case, the structural degrees of freedom should be tied with MPCs
across the three domains and the structure-to-acoustic coupling terms be evaluated on the acoustic domains.
This enables two separate and potentially disjoint acoustic degrees of freedom to be present at the interface.
The proper setup for this case is shown in Figure (3-4).

Acoustic 
Subdomain

Acoustic 
Subdomain

Structural 
Shell

Figure 3-4. – Nonconformal Structural Acoustic Tying for Doubled Wetted Shell.

The dual mortar method138,118 generates a similar set of constraint equations.

3.3. Acoustic Scattering

Acoustic scattering refers to the interaction of plane acoustic waves with solid bodies which are immersed
in an infinite acoustic fluid. The plane waves are assumed to originate from infinity, and after impinging on
the solid body, they continue to propagate to infinity. In scattering simulations, the velocity potential is
decomposed into a sum of the incident potential, and scattered potential

𝜓𝑡𝑜𝑡 = 𝜓𝑖𝑛 + 𝜓𝑠𝑐 (3.3.1)

where 𝜓𝑡𝑜𝑡 is the total potential, 𝜓𝑖𝑛 is the incident potential, and 𝜓𝑠𝑐 is the scattered potential. The
incident potential is a known quantity, and the scattered potential is unknown. Thus, in the final
formulation, the incident potential becomes part of the right-hand side forcing function, and the scattered
potential remains on the left-hand side as an unknown.

We recall that the linear wave equation in terms of the total velocity potential is given by

1
𝑐2
¥𝜓𝑡𝑜𝑡 − Δ𝜓𝑡𝑜𝑡 = 0 (3.3.2)

Decomposing this into incident and scattered fields, we have[
1
𝑐2
¥𝜓𝑖𝑛 − Δ𝜓𝑖𝑛

]
+

[
1
𝑐2
¥𝜓𝑠𝑐 − Δ𝜓𝑠𝑐

]
= 0 (3.3.3)

Since the incident wave is assumed to satisfy the wave equation, the first part of the expression can be
dropped, and we are left with

1
𝑐2
¥𝜓𝑠𝑐 − Δ𝜓𝑠𝑐 = 0 (3.3.4)
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This implies that we can solve for the scattered potential directly. The effect of the incident field is then
accounted for in the boundary conditions on the wet surface.

For scattering in the context of the coupled structural acoustic problem, it is most convenient to solve for the
scattered acoustic potential in the fluid and the total displacement field in the structure. With that
assumption, we have the following partial differential equations

𝜌𝑠𝑢
𝑡𝑜𝑡
𝑡𝑡 − ∇ · 𝜎 = 𝐹,

1
𝑐2
¥𝜓𝑠𝑐 − Δ𝜓𝑠𝑐 = 0 = 0.

(3.3.5)

Here 𝑢𝑡𝑜𝑡 corresponds to the total displacement of the structure, 𝜎 is the structural stress tensor, 𝜌𝑠 is the
density in the solid, and 𝐹 denotes body forces on the solid. Subsequently, subscripts 𝑠 and 𝑓 refer to solid
and fluid, respectively.

In the case of linear acoustics, the boundary conditions on the fluid/solid interface (wet interface, which is
designated by 𝜕Ω𝑤𝑒𝑡 ), are

𝜕𝜓𝑡𝑜𝑡

𝜕𝑛
= −𝜌 𝑓 ¤𝑢𝑡𝑜𝑡𝑛 (3.3.6)

𝜎𝑛 = − ¤𝜓𝑡𝑜𝑡 𝑛̂ = −
[ ¤𝜓𝑖𝑛 + ¤𝜓𝑠𝑐] 𝑛̂ (3.3.7)

where 𝜌 𝑓 is the density of the fluid, and 𝑛̂ is the surface normal vector. These boundary conditions
correspond to continuity of velocity and stress at the wet interface. For equation (3.3.6), we note that we
rearrange the terms for convenience

𝜕𝜓𝑡𝑜𝑡

𝜕𝑛
=

𝜕𝜓𝑖𝑛

𝜕𝑛
+ 𝜕𝜓

𝑠𝑐

𝜕𝑛

= −𝜌 𝑓 ¤𝑢𝑡𝑜𝑡𝑛
(3.3.8)

Rearranging, we have

𝜕𝜓𝑠𝑐

𝜕𝑛
= −𝜌 𝑓 ¤𝑢𝑡𝑜𝑡𝑛 −

𝜕𝜓𝑖𝑛

𝜕𝑛
(3.3.9)

Equations (3.3.9) and (3.3.7) are in the form that we can insert them directly into the variational
formulation (3.2.5), with the recognition that the unknowns are the total structural displacement and
scattered velocity potential. Carrying this through, and assuming a linear constitutive model for both the
solid and fluid, the time domain equations of motion can be represented by the following semi-discrete
system of linear ordinary differential equations[

𝑀𝑠 0
0 −1

𝜌𝑎
𝑀𝑎

] [
¥𝑢𝑡𝑜𝑡
¥𝜓𝑠𝑐

]
+

[
𝐶𝑠 𝐿

𝐿𝑇 −1
𝜌𝑎
𝐶𝑎

] [
¤𝑢𝑡𝑜𝑡
¤𝜓𝑠𝑐

]
+

[
𝐾𝑠 0
0 −1

𝜌𝑎
𝐾𝑎

] [
𝑢𝑡𝑜𝑡

𝜓𝑠𝑐

]
=

[
𝑓𝑠
−1
𝜌𝑎
𝑓𝑎

]
, (3.3.10)

where 𝑀𝑠, 𝐶𝑠, and 𝐾𝑠 denote the mass, damping, and stiffness matrices for the solid, 𝑀𝑎, 𝐶𝑎, 𝐾𝑎 denote
the same for the acoustic fluid, 𝜌𝑎 is the density of the acoustic fluid, and 𝑢 and 𝜓 denote the structural
displacement and fluid velocity potential. The coupling matrices are denoted by 𝐿 and 𝐿𝑇 . Coupling
between fluid and structure, and any damping in the fluid or solid separately, is accounted for by the
damping matrices. The quantities 𝑓𝑠 and 𝑓𝑎 denote the external forces on the solid and fluid, respectively.
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The acoustic load 𝑓𝑎 for the scattering problem can be written in the form

𝑓𝑎 = −
∫
𝜕Ω𝑛

𝜕𝜓𝑖𝑛

𝜕𝑛
𝜙𝑑𝑠 (3.3.11)

where again 𝜙 is a test function. Since 𝜕𝜓𝑖𝑛

𝜕𝑛
is a known quantity, we can integrate equation (3.3.11) to

obtain the loading on the fluid side of the wet interface.

The expression for loading on the structure due to scattering loads is given by

𝑓𝑠 =

∫
𝜕Ω𝑛

¤𝜓𝑖𝑛𝑤𝑑𝑠 (3.3.12)

where 𝑤 is a test function for the structural discretization. Since ¤𝜓𝑖𝑛 is a known quantity, the force on the
solid body can be computed from equation (3.3.12). Note that equations (3.3.11) and (3.3.12) require the
spatial and temporal derivatives of the incident field, 𝜓𝑖𝑛𝑐. Thus, even if 𝜓𝑖𝑛 is known, methods for
computing its spatial and temporal derivatives are also required.

Inserting the expressions for 𝑓𝑎 and 𝑓𝑠 from equations (3.3.11) and (3.3.12) into equations (3.3.10), we can
solve for the responses of the acoustic fluid and solid body to incident acoustic waves. The only requirement
on 𝜓𝑖𝑛 is that it satisfies the acoustic wave equation. Note that the solution to equations (3.3.10) will give
the scattered acoustic potential. To compute the total acoustic potential, we would need to add the incident
and scattered potentials together, as in equation (3.3.1). Also, we note that the loads from equations (3.3.11)
and (3.3.12) are generated by a single incident wave. For multiple incident waves (as in the case of a diffuse
field), the right-hand side of equations (3.2.19) involve a simple superposition of the incident waves.

3.3.1. Frequency Domain scattering

The incident potential satisfies the wave equation, and for a plane wave takes the form

𝜓𝑖𝑛 = 𝐴𝑒𝑖 [𝑘 ·x−𝜔𝑡 ] (3.3.13)

where 𝜔 = 2𝜋 𝑓 is the circular frequency of the wave, 𝑓 is the frequency in Hz, 𝑘 is the vector wave number,
and x is the vector coordinates of a point in space. The vector wave number has three components,
𝑘 = (𝑘𝑥 , 𝑘𝑦 , 𝑘𝑧), which define the direction of propagation of the wave. For example, for a wave
propagating strictly in the x direction, we would have 𝑘 = (𝑘𝑥 , 0, 0), where 𝑘𝑥 = 𝜔

𝑐
would be the standard

wave number from one-dimensional wave propagation. The parameter 𝐴 is a scalar constant that defines the
magnitude of the wave. Although 𝐴 can be made to vary with frequency, we will only consider the case
where 𝐴 is a scalar constant. This implies that all incoming plane waves have the same amplitude (but
different frequencies). In the frequency domain, the time portion of the expression in equation (3.3.13)
drops out,

𝜓𝑖𝑛 = 𝐴𝑒𝑖𝑘 ·x. (3.3.14)

We consider a three-dimensional elastic body, which is immersed in an infinite acoustic fluid, and subjected
to impinging plane waves from infinity in the frequency domain. The equations of motion of the coupled
system are given by

−𝜔2
[
𝑀̃𝑠 0
0 𝑀̃𝑎

] [
𝑢𝑡𝑜𝑡

𝜓𝑠𝑐

]
+ 𝑖𝜔

[
𝐶̃𝑠 𝐿̃

−𝜌 𝑓 𝐿̃𝑇 𝐶̃ 𝑓

] [
𝑢𝑡𝑜𝑡

𝜓𝑠𝑐

]
+

[
𝐾̃𝑠 0
0 𝐾̃𝑎

] [
𝑢𝑡𝑜𝑡

𝜓𝑠𝑐

]
=

[
𝑓𝑠
−1
𝜌𝑎
𝑓𝑎

]
. (3.3.15)
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We recall that the portion of the acoustic load 𝑓𝑎 that comes from Neumann boundary conditions can be
computed from equation (3.3.11). Given equation (3.3.14), we define 𝑛 = (𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧) to be the surface
normal of the solid body. We also let 𝑘 = 𝜔

𝑐
(dir𝑥 , dir𝑦 , dir𝑧), where (dir𝑥 , dir𝑦 , dir𝑧) define the direction

cosines of the direction of propagation of the incident plane wave. Then, we have

𝜕𝜓𝑖𝑛

𝜕𝑛
= ∇𝜓𝑖𝑛 · 𝑛 = 𝑖 𝜔

𝑐

[
𝑛𝑥dir𝑥 + 𝑛𝑦dir𝑦 + 𝑛𝑧dir𝑧

]
𝐴𝑒𝑖𝑘 ·𝑥 (3.3.16)

Inserting this expression into equation (3.3.11), and integrating, we obtain the loading on the acoustic fluid
due to scattering.

For the loading on the structure, we recall the expression for loading on the structure due to Neumann
boundary conditions in equation (3.3.12). In the frequency domain case,
𝜎𝑛 = 𝑛 ¤𝜓𝑖𝑛 = 𝑖𝑛𝜔𝜓𝑖𝑛 = 𝑖𝑛𝜔𝐴𝑒𝑖 (𝑘 ·𝑥 ) . Inserting this expression into equation (3.3.12), and integrating, we
obtain the loading on the solid body due to scattering.

Finally, we examine the complex-valued loads presented in equations (3.3.11) and (3.3.12). We make two
observations regarding these loads.

1. These loads have real and imaginary parts, and thus even for a single plane wave, they cannot be
combined into a single vector, even though they have the same multiplication factor 𝐴. Currently,
Sierra/SD combines load vectors that have the same time function into a single array. For the case of
complex loads in the frequency domain, this translates into combining the real and imaginary parts
into a single array if they have the same “time" function, which in this case corresponds to the
multiplication factor 𝐴. A temporary work-around is to use distinct time functions for the real and
imaginary parts in the input deck. (even if the time functions themselves are identical). Otherwise, if
the same time function is used, the real and imaginary parts would be combined into a single vector
in Sierra/SD.

2. We have considered the case where the coefficient 𝐴 is a scalar constant, but we could also consider
the case where 𝐴 = 𝐴(𝜔) is a function of frequency. This would correspond to multiple plane waves
of different amplitudes impinging on the structure. Since the spatial parts of these loads varies with
frequency, they could not be computed by adding the spatial parts together before multiplying by the
coefficient 𝐴(𝜔). Thus, we would have an inconsistency with the current approach in Sierra/SD of
adding the spatial parts together before multiplying by the time function (which in this case would be
𝐴(𝜔)).

3.4. Nonlinear Acoustics

Linear acoustic theory is based on the assumptions of small amplitude waves and a linear constitutive
theory of the fluid medium. Although these assumptions hold for many vibro-acoustic interactions, they are
invalid in sound fields with high sound pressure levels,108 i.e. sound fields that have finite amplitude waves.
Finite amplitude waves can be generated in interior fields when resonance occurs,55 in the far-field of
atmospheric and underwater explosions,32 in tire noise generation,70 and in many aeroacoustic sources
(such as sonic booms).73 Nonlinear effects increase with the frequency of the waves, and thus the study of
nonlinear acoustics has also become important in high-frequency applications such as ultrasound.80,31

Unlike the linear acoustic wave equation, the nonlinear counterparts can handle waves with finite
amplitude, and allow more accurate modeling of nonlinear constitutive models in the fluid.
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The classical Kuznetsov equation91 treats three-dimensional nonlinear acoustic waves to second order in
nonlinearity. Recently, Soderholm128 generalized Kuznetsov’s equation using the exact equation of state,
rather than a series expansion. The nonlinear terms in these wave equations imply that the sound speed
depends on the stress state in the fluid. This leads, eventually, to the formation of weak shocks (small
discontinuities in acoustic pressure). For a mono-frequency source, energy will be gradually transferred
from lower harmonics to higher harmonics, leading to a steepening of an initially smooth wave. Weak
shocks radiated from a structure lead to unpleasant cracking noise, and when impinging on a structure they
cause a different response than smooth acoustic waves. Thus, it is important to characterize their effects in
both noise radiation and structural coupling problems.

The governing equations of acoustics can be formulated in terms of particle displacement, or scalar-based
quantities such as acoustic pressure or velocity potential. In particle displacement approach, the mesh
moves with the waves, whereas in the latter approaches the mesh is fixed. The primary advantage of the
displacement approach is its easy coupling with a Lagrangian solid mechanics code, since the unknowns
are the same as for the solids. The displacement approach has been studied in,114,33,135 though these
references dealt only with the linear case. Since ideal fluids have zero shear modulus, this approach suffers
from an infinite dimensional null space consisting of rotational modes in the fluid. Numerically, this leads
to spurious modes that pollute the computed solution. These modes can be eliminated through the use of
penalty formulations, but this can result in poor conditioning. Displacement formulations for acoustics are
also prone to mesh tangling in the case of large displacements in either the solid or the fluid, making them
inappropriate for many applications.

In the Eulerian approach, the unknown is typically acoustic pressure or velocity potential. In problems
without structural coupling, the mesh remains stationary. In addition, the null space consists only of the
constant pressure mode, which makes these formulations more stable for numerical computations. On the
other hand, for coupled solid/fluid problems, the Eulerian formulation requires a coupling mechanism
between fluid and solid to handle the different degrees of freedom used to discretize the fluid/solid domains.
In the case of small structural displacements, this coupling mechanism reduces to coupling operators that
couple acoustic pressure and structural displacements between fluid and solid. In the case of large structural
displacements or rotations, methods such as the Arbitrary Lagrangian-Eulerian (ALE) approach, which
have been developed for aeroelastic coupling,59,60 could also be applied to the structural acoustics problem.
An alternative approach in the case of large structural motion is an Eulerian method for the fluid allowing
the solid/fluid boundary to cuts through fluid elements. Regardless of the approach taken for the structural
coupling, we have chosen the Eulerian approach for acoustic discretization, since it avoids the null space
issues alluded to earlier.

Unlike the rich history of finite element formulations in nonlinear solid mechanics, the finite element
formulation of nonlinear acoustic equations for fluids has received considerably less attention. Cai et. al.,31

recently used finite elements and parallel computations to solve Kuznetsov’s equation to model ultrasonic
waves. In a sequence of works, Hoffelner et. al.,80 also used a finite element method to solve Kuznetsov’s
equation. Later,79 they used their method to simulate acoustic streaming and radiation force, two important
acoustic phenomena that cannot be captured from linear theory. Kagawa85 took a similar approach in
solving Kuznetsov’s equation, except that additional approximations were made to the equation before
discretization. Vanhille et. al.,133 used finite differences and finite volume methods to solve a nonlinear
acoustic wave equation in the Lagrangian framework.

In this section, we present a finite element implementation of the Kuznetsov wave equation. We derive the
full tangent operator for the spatial discretization, and give an implementation of a time discretization
scheme using the generalized alpha method. We then derive a formulation for coupling the Kuznetsov
equation to the equations of motion of an elastic solid.
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To illustrate ideas, we begin with the linear acoustic wave equation

1
𝑐2
𝜕2𝜙

𝜕𝑡2
− Δ𝜙 = 0 (3.4.1)

Here 𝜙 is the velocity potential (𝜙 = ∇𝑢, where 𝑢 is the particle velocity), and 𝑐 is the speed of sound. The
derivation of this equation neglects both convective and constitutive nonlinearities.

The nonlinear isentropic equation of state for air can be written as follows

𝑃

𝑃0
=

(
𝜌

𝜌0

)𝛾
(3.4.2)

where 𝑃 and 𝑃0 are the total and reference pressures, 𝜌 and 𝜌0 are the current and reference densities. 𝛾 is
the ratio of specific heats, and is equal to 1.4 for air. Equation 3.4.2 can then be combined with the
conservation of momentum and conservation of mass for the fluid to derive nonlinear wave equations. In
Soderholm’s approach, equation 3.4.2 is used directly. In Kuznetsov’s approach, it is first expanded in a
Taylor series about the isentrope 𝑠 = 𝑠0

73

𝑝 = 𝑃 − 𝑃0 =

(
𝜕𝑃

𝜕𝜌

)
𝑠0,𝜌0

(𝜌 − 𝜌0) +
1
2

(
𝜕2𝑃

𝜕𝜌2

)
𝑠0,𝜌0

(𝜌 − 𝜌0)2 + ... (3.4.3)

which can be written compactly as

𝑝 = 𝐴

(
𝜌 − 𝜌0

𝜌0

)
+ 𝐵

2

(
𝜌 − 𝜌0

𝜌0

)2
+ ... (3.4.4)

where 𝐴 = 𝜌0

(
𝜕𝑃
𝜕𝜌

)
𝑠0,𝜌0
≡ 𝜌0𝑐

2
0, and 𝐵 = 𝜌2

0

(
𝜕2𝑃
𝜕𝜌2

)
𝑠0,𝜌0

. Since
(
𝜕𝑃
𝜕𝜌

)
𝑠0,𝜌0

= 𝑐2
0 is the square of the linear

speed of sound, we see from the expansion that the ratio of the first two terms is

𝐵

𝐴
=
𝜌0

𝑐2
0

(
𝜕2𝑃

𝜕𝜌2

)
𝑠0,𝜌0

(3.4.5)

The parameter 𝐵/𝐴 accounts for the nonlinear constitutive law of the fluid up to second order. A table of
values of 𝐵/𝐴 for various fluids can be found in texts on nonlinear acoustics.73

For linear acoustics, only the first term in the expansion 3.4.4 is retained. In that case, we have

𝑝 = 𝐴

(
𝜌 − 𝜌0

𝜌0

)
= 𝑐2

0(𝜌 − 𝜌0) (3.4.6)

which implies that the stiffness of the fluid is the square of the linear speed of sound.

Kuznetsov’s equation uses the above Taylor series expansion of the equation of state, but truncates all terms
past the second. It also accounts for convective nonlinearities to second order. The equation is derived by
combining the Taylor series expansion of the equation of state with the conservation of mass and
momentum. The result is the following..91,55,101,108

1
𝑐2
𝜕2𝜙

𝜕𝑡2
− Δ𝜙 − 1

𝑐2
𝜕

𝜕𝑡

(
𝑏(Δ𝜙) + 𝐵/𝐴

2𝑐2

(
𝜕𝜙

𝜕𝑡

)2
+ (∇𝜙)2

)
= 0 (3.4.7)

where 𝜙 is defined as 𝑝 = 𝜌 𝑓
𝜕𝜙

𝜕𝑡
, and 𝑝 is the acoustic pressure. The first two terms in equation 3.4.7 are

the same as in equation 3.4.1, but the fourth and fifth terms are nonlinear. The third term is a linear
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absorption term. It is grouped with the nonlinear terms to indicate deviation from the linear wave equation.
The parameter 𝑏 is for absorption in the fluid due to viscosity and thermal conductivity.

Equation 3.4.7 was originally developed in terms of the velocity potential. Here, instead of solving for the
velocity potential, we prefer to solve for 𝜓 such that 𝑝 = ¤𝜓. This implies that 𝜙 = 1

𝜌
𝜓. Inserting this

relation into equation 3.4.7 yields

1
𝑐2
𝜕2𝜓

𝜕𝑡2
− Δ𝜓 − 1

𝑐2
𝜕

𝜕𝑡

(
𝑏(Δ𝜓) + 𝐵/𝐴

2𝜌𝑐2

(
𝜕𝜓

𝜕𝑡

)2
+ (∇𝜓)

2

𝜌

)
= 0 (3.4.8)

This is done only for convenience, since the acoustic pressure can easily be computed during post
processing as 𝑝 = ¤𝜓. For simplicity, we will still refer to 𝜓 as the velocity potential in the remainder of this
paper.

Soderholm128 derived a higher order nonlinear acoustic equation that accounts for nonlinearities to higher
order. In this approach, the exact equation of state, equation 3.4.2, is used directly, rather than the second
order expansion of Kuznetsov’s equation. This equation is only valid for air, whereas Kuznetsov’s equation
can be used for any fluid that has a tabulated value of 𝐵

𝐴
. After combining the equation of state with the

conservation of mass and momentum, the following equation results

1
𝑐2

0

𝜕2𝜙

𝜕𝑡2
− Δ𝜙 − 𝑏

𝑐2
0

𝜕

𝜕𝑡
(Δ𝜙) + 1

𝑐2
0

𝜕

𝜕𝑡
(∇𝜙)2

+ 1
2𝑐2

0
∇𝜙 · ∇ (∇𝜙)2 + 𝛾 − 1

𝑐2
0

(
𝜕

𝜕𝑡
𝜙 + 1

2
(∇𝜙)2

)
Δ𝜙 = 0

We note that Soderholm’s equation is a generalization of the exact relation given by equation 3.26 in,73

which was derived for the case of a lossless fluid. The only difference is the term 𝑏

𝑐2
0

𝜕
𝜕𝑡
(Δ𝜙), which

accounts for absorption.

The range of validity of nonlinear wave equations is typically given in terms of acoustic mach number.

𝑀 =
𝑢

𝑐0
(3.4.9)

where 𝑢 is the particle velocity, and 𝑐0 is the linear speed of sound. Rough guidelines are given in.101 For
the Kuznetsov equation, a limit of 𝑀 ≤ 0.1 is given. For a third order wave equation, a limit of 𝑀 ≤ 0.7 is
given. These are useful guidelines for the acoustic analyst, who needs to decide which equation applies to
their needs.

In summary, three-dimensional nonlinear acoustic waves in thermo-viscous fluids can be modeled using
equations derived by Kuznetsov and, more recently, by Soderholm. These equations include the linear wave
equation as a special case. Kuznetsov’s equation generalizes the linear wave equation to include
nonlinearities to second order and linear dissipation. Soderholm’s equation is an additional generalization
that allows for higher degrees of nonlinearity. The dissipative term in Soderholm’s equation is the same as
in Kuznetsov’s equation.

3.4.1. Weak Formulations

In this paper we will only work with Kuznetsov’s equation, since we are interested in a formulation that is
valid for any fluid. A weak formulation of equation 3.4.8 can be constructed by multiplying with a test
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function and integrating by parts. We denote the fluid domain by Ω 𝑓 and its boundary by
𝜕Ω = 𝜕Ω𝑛

⋃
𝜕Ω𝑑 , where the subscripts 𝑛 and 𝑑 refer to the portions of the boundary where Neumann and

Dirichlet boundary conditions are applied. We also assume that the fluid is initially at rest, i.e.
𝜓(𝑥, 0) = ¤𝜓(𝑥, 0) = ¥𝜓(𝑥, 0) = 0, which is sufficient for most applications.

Denoting by 𝑉 𝑓 (Ω 𝑓 ) the function space for the fluid, and Γ = 𝜕Ω 𝑓 , the weak formulation can be written as
follows. Find the mapping 𝜓 : [0, 𝑇] → 𝑉 𝑓 (Ω 𝑓 ) such that

1
𝑐2

∫
Ω

¥𝜓𝜙𝑑𝑥 +
∫
Ω

∇𝜓 · ∇𝜙𝑑𝑥 + 1
𝑐2

∫
Ω

𝑏∇ ¤𝜓 · ∇𝜙𝑑𝑥

− 𝐵

𝐴𝜌𝑐4

∫
Ω

¥𝜓 ¤𝜓𝜙𝑑𝑥 − 2
𝜌𝑐2

∫
Ω

∇ ¤𝜓 · ∇𝜓𝜙𝑑𝑥 =∫
Γ

𝜕𝜓

𝜕𝑛
𝜙𝑑𝑠 = −

∫
Γ

𝜌 𝑓 ( ¤𝑢𝑛 +
𝑏

𝑐2 ¥𝑢𝑛)𝜙𝑑𝑠

(3.4.10)

∀𝜙 ∈ 𝑉 𝑓 (Ω 𝑓 ), where ¤𝑢𝑛, and ¥𝑢𝑛 are the prescribed particle velocity and acceleration on the Neumann
portion of the fluid boundary. Here we use 𝜙 to denote the test function, and not the velocity potential as
denoted earlier. We note that for air, 𝑏

𝑐2 is of the order 1𝑒−10 under normal conditions, and thus it is
sufficient to drop the acceleration term and approximate the right-hand side as −

∫
𝜕Ω𝑛

𝜌 𝑓 ¤𝑢𝑛𝜙𝑑𝑠. We will
make this approximation in the remainder of this paper.

We note that an interesting feature of the weak formulation of equation 3.4.8 is that the integration by parts
only occurs on the linear elliptic terms. The nonlinear terms are not integrated by parts.

3.4.2. Spatial and Temporal Discretization

A finite element formulation of equation 3.4.10 is constructed by representing the unknown by a finite
summation 𝜓(𝑥) = ∑𝑛

𝑖=1 𝜓𝑖𝑁𝑖 (𝑥) = 𝜓𝑇𝑁 , and substituting in equation 3.4.10. This leads to the following
set of nonlinear ordinary differential equations in time

𝐹𝑖𝑛𝑡 ( ¥𝜓(𝑥, 𝑡), ¤𝜓(𝑥, 𝑡), 𝜓(𝑥, 𝑡)) = 𝐹𝑒𝑥𝑡 (𝑥, 𝑡) (3.4.11)

where

𝐹𝑖𝑛𝑡 =
1
𝑐2

∫
Ω

¥𝜓𝜙𝑑𝑥 +
∫
Ω

∇𝜓 · ∇𝜙𝑑𝑥 (3.4.12)

+ 1
𝑐2

∫
Ω

𝑏∇ ¤𝜓 · ∇𝜙𝑑𝑥 − 1
𝜌𝑐4 (𝐵/𝐴)

∫
Ω

¥𝜓 ¤𝜓𝜙𝑑𝑥 −

2
𝜌𝑐2

∫
Ω

∇ ¤𝜓 · ∇𝜓𝜙𝑑𝑥 (3.4.13)

and

𝐹𝑒𝑥𝑡 = −
∫
𝜕Ω𝑛

𝜌 𝑓 ¤𝑢𝑛𝜙𝑑𝑠 (3.4.14)

𝐹𝑖𝑛𝑡 is the internal force, which depends on 𝜓 and its first two time derivatives, and 𝐹𝑒𝑥𝑡 is the external
force. We note that ¥𝜓 and ¤𝜓 depend on 𝜓 through the time discretization scheme, and thus we could write
equation 3.4.11 as

𝐹𝑖𝑛𝑡 (𝜓(𝑥, 𝑡)) = 𝐹𝑒𝑥𝑡 (𝑥, 𝑡) (3.4.15)
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To linearize equation 3.4.11, we could use a finite difference approach, in which the tangent matrix is
derived by differencing the internal force function with respect to an incremental displacement.
Alternatively, we could derive a full Newton tangent matrix by taking partial derivatives with respect to the
independent variables. We have taken the latter approach, since it reveals explicitly the fact that the tangent
matrix is nonsymmetric.

We define 𝜓̃, ¤̃𝜓, ¥̃𝜓 as the current iterates, and 𝜓, ¤𝜓, ¥𝜓 as the unknowns. The tangent equations can be
derived by expanding the left-hand side of equation 3.4.11 in a Taylor series. If we truncate all terms
beyond the constant and linear contributions, we obtain

𝐹𝑖𝑛𝑡 (𝜓, ¤𝜓, ¥𝜓) ≈ 𝐹𝑖𝑛𝑡 (𝜓̃, ¤̃𝜓, ¥̃𝜓) +[
𝜕𝐹𝑖𝑛𝑡

𝜕𝜓
(𝜓̃, ¤̃𝜓, ¥̃𝜓) + 𝜕𝐹𝑖𝑛𝑡

𝜕 ¤𝜓
(𝜓̃, ¤̃𝜓, ¥̃𝜓) 𝜕

¤𝜓
𝜕𝜓
+ 𝜕𝐹𝑖𝑛𝑡

𝜕 ¥𝜓
(𝜓̃, ¤̃𝜓, ¥̃𝜓) 𝜕

¥𝜓
𝜕𝜓

]
Δ𝜓 = 𝐹𝑖𝑛𝑡 (𝜓̃, ¤̃𝜓, ¥̃𝜓) + 𝐴Δ𝜓

(3.4.16)

where Δ𝜓 = 𝜓 − 𝜓̃, and 𝜓̃ is the current iterate. The full tangent matrix 𝐴 is defined as

𝐴 =

[
𝜕𝐹𝑖𝑛𝑡

𝜕𝜓
(𝜓̃, ¤̃𝜓, ¥̃𝜓) + 𝜕𝐹𝑖𝑛𝑡

𝜕 ¤𝜓
(𝜓̃, ¤̃𝜓, ¥̃𝜓) 𝜕

¤𝜓
𝜕𝜓
+ 𝜕𝐹𝑖𝑛𝑡

𝜕 ¥𝜓
(𝜓̃, ¤̃𝜓, ¥̃𝜓) 𝜕

¥𝜓
𝜕𝜓

]
(3.4.17)

Since Δ𝜓 is unknown, we approximate it as Δ𝜓̃ = 𝜓̃ − ˜̃𝜓, where ˜̃𝜓 is the previous iterate. Thus, as
convergence occurs, the current and previous iterates become identical.

We have chosen the generalized alpha time integration scheme34 to discretize equation 3.4.11 in time. The
generalized alpha method is based on the generalized Newmark-beta method. The flexibility of this method
is useful in this case, since it can be made to be either implicit or explicit (e.g. central difference),
depending on the problem at hand. In displacement form, the generalized Newmark-beta method first needs
an update equation. Given Δ𝜓̃, and a previous iterate ˜̃𝜓, we compute an updated current iterate as

𝜓̃ = ˜̃𝜓 + Δ𝜓̃ (3.4.18)

Then, we use 𝜓̃ to compute updated first and second time derivatives as follows

¥̃𝜓 =
1

𝛽Δ𝑡2

[
𝜓̃ − 𝜓𝑛 − ¤𝜓𝑛Δ𝑡

]
− 1 − 2𝛽

2𝛽
¥𝜓𝑛

¤̃𝜓 = ¤𝜓𝑛 + Δ𝑡
[
(1 − 𝛾) ¥𝜓𝑛 + 𝛾 ¥̃𝜓

]
= ¤𝜓𝑛 + Δ𝑡

[
(1 − 𝛾) ¥𝜓𝑛 +

𝛾

𝛽Δ𝑡2

[
𝜓̃ − 𝜓𝑛 − ¤𝜓𝑛Δ𝑡

]
− 𝛾 1 − 2𝛽

2𝛽
¥𝜓𝑛

]
(3.4.19)

where 𝛾, 𝛽 are the integration parameters for the Newmark-beta method, and ¤𝜓𝑛, ¥𝜓𝑛 are the first and second
time derivatives from the previous time step. Note that, as Δ𝜓̃ → 0, 𝜓̃ → 𝜓𝑛+1, indicating that the current
iterate has converged to the value at the next time step, step 𝑛 + 1.

We can simplify by noting that, from equation 3.4.19,

𝜕 ¤𝜓
𝜕𝜓

=
𝛾

𝛽Δ𝑡

𝜕 ¥𝜓
𝜕𝜓

=
1

𝛽Δ𝑡2

(3.4.20)
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We also make the following definitions, which define the tangent stiffness, damping, and mass matrices

𝜕𝐹𝑖𝑛𝑡

𝜕𝜓
(𝜓̃, ¤̃𝜓, ¥̃𝜓) = 𝐾𝑡

𝜕𝐹𝑖𝑛𝑡

𝜕 ¤𝜓
(𝜓̃, ¤̃𝜓, ¥̃𝜓) = 𝐶𝑡

𝜕𝐹𝑖𝑛𝑡

𝜕 ¥𝜓
(𝜓̃, ¤̃𝜓, ¥̃𝜓) = 𝑀𝑡

(3.4.21)

where 𝐾𝑡 , 𝐶𝑡 , and 𝑀𝑡 denote the tangent stiffness, damping, and mass matrices. The tangent matrices are
the derivatives of the internal force, but evaluated at the current Newton iteration. Substituting equations
3.4.20 and 3.4.21 into equation 3.4.16 yields

𝐹𝑖𝑛𝑡 (𝜓, ¤𝜓, ¥𝜓) = 𝐹𝑖𝑛𝑡 (𝜓̃, ¤̃𝜓, ¥̃𝜓) +
[
𝐾𝑡 +

𝛾

𝛽Δ𝑡
𝐶𝑡 +

1
𝛽Δ𝑡2

𝑀𝑡

]
Δ𝜓 (3.4.22)

Finally, substituting equation 3.4.22 into equation 3.4.11 yields[
𝐾𝑡 +

𝛾

𝛽Δ𝑡
𝐶𝑡 +

1
𝛽Δ𝑡2

𝑀𝑡

]
Δ𝜓 = 𝐹𝑒𝑥𝑡 − 𝐹𝑖𝑛𝑡 (𝜓̃, ¤̃𝜓, ¥̃𝜓) = 𝑅𝑒𝑠 (3.4.23)

Note that the right-hand side of equation 3.4.23 is the residual, or the difference between the external force
and the internal force at the current Newton iteration. As convergence occurs, the residual goes to zero.

We derive explicit expressions for 𝐾𝑡 , 𝐶𝑡 , and 𝑀𝑡 . We have

𝐾𝑡 =
𝜕𝐹𝑖𝑛𝑡

𝜕𝜓
(𝜓̃, ¤̃𝜓, ¥̃𝜓)

=

∫
Ω

∇𝑁𝑇 · ∇𝑁𝑑𝑥 − 2
𝜌𝑐2

∫
Ω

(∇ ¤̃𝜓 · ∇𝑁𝑇 )𝑁𝑑𝑥 (3.4.24)

𝐶𝑡 =
𝜕𝐹𝑖𝑛𝑡

𝜕 ¤𝜓
(𝜓̃, ¤̃𝜓, ¥̃𝜓)

=
1
𝑐2

∫
Ω

𝑏∇𝑁𝑇 · ∇𝑁𝑑𝑥 − 2
𝜌𝑐2

∫
Ω

(∇𝜓̃ · ∇𝑁𝑇 )𝑁𝑑𝑥 (3.4.25)

− 1
𝜌𝑐4 𝐵/𝐴

∫
Ω

¥̃𝜓𝑁𝑇𝑁𝑑𝑥 (3.4.26)

(3.4.27)

𝑀𝑡 =
𝜕𝐹𝑖𝑛𝑡

𝜕 ¥𝜓
(𝜓̃, ¤̃𝜓, ¥̃𝜓)

=
1
𝑐2

∫
Ω

𝑁𝑇𝑁𝑑𝑥 − 1
𝜌𝑐2 𝐵/𝐴

∫
Ω

¤̃𝜓𝑁𝑇𝑁𝑑𝑥 (3.4.28)

where 𝑁 is the vector of element shape functions.

For the full Newton method, these tangent matrices need to be reformed at each iteration of the Newton
loop. The tangent damping and tangent stiffness matrices are nonsymmetric, since some terms involve
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products of shape functions with gradients of shape functions. However, we note that the initial tangent
matrices are all symmetric, since at time 𝑡 = 0, we have 𝜓 = 0, ¤𝜓 = 0 and ¥𝜓 = 0 by assumption. In that
case, we have

𝐾𝑡0 =

∫
Ω

∇𝑁𝑇 · ∇𝑁𝑑𝑥 (3.4.29)

𝐶𝑡0 =
1
𝑐2

∫
Ω

𝑏∇𝑁𝑇 · ∇𝑁𝑑𝑥 (3.4.30)

𝑀𝑡0 =
1
𝑐2

∫
Ω

𝑁𝑇𝑁𝑑𝑥 (3.4.31)

In this work we chose the Newton method for the nonlinear solution, and thus we could use any of the
variants of this method, some requiring more and less frequent updating of the tangent matrices. In the case
of the full Newton method, the nonsymmetric tangent matrices would need to be reformed at each iteration.
In the initial Newton method, only the initial symmetric tangent needs to be formed. The numerical
experiments conducted thus far indicate that excellent convergence behavior is observed even with the
initial Newton method.

3.4.3. Structural Coupling

The second order equations of motion for the solid and the Kuznetsov equation for the fluid are

𝜌𝑠𝑢𝑡𝑡 − ∇ · 𝜎 = 𝑓

1
𝑐2
𝜕2𝜓

𝜕𝑡2
− Δ𝜓 − 1

𝑐2
𝜕

𝜕𝑡

(
𝑏(Δ𝜓) + 𝐵/𝐴

2𝜌𝑐2

(
𝜕𝜓

𝜕𝑡

)2
+ (∇𝜓)

2

𝜌

)
= 0

(3.4.32)

Here 𝑢 corresponds to the displacement of the structure, 𝜎 is the structural stress tensor, and subscripts 𝑠
and 𝑓 refer to solid and fluid, respectively. The equations of motion for the solid in equation 3.4.32 are
written in the most general form, which could include both material and geometric nonlinearities. However,
since we are only considering small structural displacements, these will be specialized to the linear
elasticity equations.

In the case of linear acoustics, the boundary conditions on the fluid/solid interface (wet interface, which is
designated by 𝜕Ω𝑤𝑒𝑡 ), are

𝜕𝜓

𝜕𝑛
= −𝜌 𝑓 ¤𝑢𝑛

𝜎𝑛 = − ¤𝜓𝑛̂
(3.4.33)

where 𝑛̂ is the surface normal vector. These correspond to continuity of velocity and stress on the wet
interface. In the case of nonlinear acoustics, the second condition is replaced by101

𝜎𝑛 = −𝑛̂
(
¤𝜓 + 1

𝑐2
¤𝜓2 − 1

2
(∇𝜓)2 + 𝑏Δ𝜓

)
(3.4.34)
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The linear approximation of condition 3.4.34 is

𝜎𝑛 = − ¤𝜓𝑛̂ (3.4.35)

In,80,31 numerical results were presented on the solution of Kuznetsov’s equation, and the approximation
3.4.35 was used to convert from velocity potential to pressure as a post-processing step. In our case we also
use this approximation as a post-processing step, and additionally, we use equation 3.4.35, rather than
equation 3.4.34 to approximate the structural acoustic coupling. This is an additional approximation, but it
is consistent with the previous studies.80,31 Using relation 3.4.34 would lead to nonlinear boundary integral
terms, and result in a nonsymmetric formulation.

The weak formulation of the coupled problem is constructed by multiplying the two partial differential
equations in equation 3.4.32 by test functions and integrating by parts. Denoting by 𝑉𝑠 (Ω𝑠) and 𝑉 𝑓 (Ω 𝑓 ) the
function spaces for the solid and fluid, respectively, we have the following weak formulation.

Find the mapping (𝑢, 𝜓) : [0, 𝑇] → 𝑉𝑠 (Ω𝑠) ×𝑉 𝑓 (Ω 𝑓 ) such that∫
Ω𝑠

𝜌𝑠 ¥𝑢𝑤𝑑𝑥 +
∫
Ω𝑠

𝜎 : ∇𝑠𝑤𝑑𝑥 −
∫
𝜕Ω𝑤𝑒𝑡

𝜎𝑛𝑤𝑑𝑠 =

∫
Ω𝑠

𝑓 𝑤𝑑𝑥 +
∫
𝜕Ω𝑛

𝜎𝑛𝑤𝑑𝑠

1
𝑐2

∫
Ω 𝑓

¥𝜓𝜙𝑑𝑥 +
∫
Ω 𝑓

∇𝜓 · ∇𝜙𝑑𝑥 +
∫
𝜕Ω𝑤𝑒𝑡

𝜕𝜓

𝜕𝑛
𝜙𝑑𝑠

+ 𝑏
𝑐2

∫
Ω 𝑓

∇ ¤𝜓 · ∇𝜙𝑑𝑥 − 𝐵/𝐴
𝜌𝑐4

∫
Ω 𝑓

¥𝜓 ¤𝜓𝜙𝑑𝑥 −

2
𝜌𝑐2

∫
Ω 𝑓

∇ ¤𝜓 · ∇𝜓𝜙𝑑𝑥 =
∫
𝜕Ω𝑛

𝜕𝜓

𝜕𝑛
𝜙𝑑𝑠

(3.4.36)

∀𝑤 ∈ 𝑉𝑠 (Ω𝑠) and ∀𝜙 ∈ 𝑉 𝑓 (Ω 𝑓 ), where 𝜕Ω𝑛 is the portion of the solid and fluid boundaries that has applied
loads, and 𝑓 is used to denote body forces on the solid. Also, ∇𝑠 = 1

2
(
∇ + ∇𝑇

)
is the symmetric part of the

gradient operator. If Dirichlet boundary conditions were applied to part of the structure, or if the fluid had a
portion of its boundary subjected to Dirichlet conditions, then the Sobolev spaces 𝑉𝑠 (Ω𝑠) and 𝑉 𝑓 (Ω 𝑓 )
would be modified accordingly to correspond to spaces that have those same boundary conditions. We also
note that in the integration on the wet interface, the normal is defined to be positive going from solid into
the fluid.

Next, we insert the boundary conditions from equation 3.4.33, and we define 𝜎𝑛 = 𝑔 on the solid portion of
𝜕Ω𝑛, and 𝜕𝜓

𝜕𝑛
= −𝜌 𝑓 𝑢𝑛 on the fluid portion of 𝜕Ω𝑛. This leads to the following weak formulation. Find the

mapping (𝑢, 𝜓) : [0, 𝑇] → 𝑉𝑠 (Ω𝑠) ×𝑉 𝑓 (Ω 𝑓 ) such that∫
Ω𝑠

𝜌𝑠 ¥𝑢𝑤𝑑𝑥 +
∫
Ω𝑠

𝜎 : ∇𝑠𝑤𝑑𝑥 +
∫
𝜕Ω𝑤𝑒𝑡

¤𝜓𝑛̂𝑤𝑑𝑠 =
∫
Ω𝑠

𝑓 𝑤𝑑𝑥 +
∫
𝜕Ω𝑛

𝑔𝑤𝑑𝑠

1
𝑐2

∫
Ω 𝑓

¥𝜓𝜙𝑑𝑥 +
∫
Ω 𝑓

∇𝜓 · ∇𝜙𝑑𝑥 − 𝜌 𝑓
∫
𝜕Ω𝑤𝑒𝑡

¤𝑢𝑛𝜙𝑑𝑠

+ 𝑏
𝑐2

∫
Ω 𝑓

∇ ¤𝜓 · ∇𝜙𝑑𝑥 − 𝐵/𝐴
𝜌𝑐4

∫
Ω 𝑓

¥𝜓 ¤𝜓𝜙𝑑𝑥 −

2
𝜌𝑐2

∫
Ω 𝑓

∇ ¤𝜓 · ∇𝜓𝜙𝑑𝑥 = −𝜌 𝑓
∫
𝜕Ω𝑛

¤𝑢𝑛𝜙𝑑𝑠 (3.4.37)

∀𝑤 ∈ 𝑉𝑠 (Ω𝑠) and ∀𝜓 ∈ 𝑉 𝑓 (Ω 𝑓 ). Equations 3.4.37 are a nonlinear system of equations, since the fluid wave
equation is nonlinear.
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Inserting the spatial discretizations 𝑢 =
∑
𝑢𝑖𝑁𝑖 and 𝜙 =

∑
𝜙𝑖𝑁𝑖 into equation 3.4.37 yields the following

semi-discrete system of nonlinear ordinary differential equations in time[
𝑀𝑠 0
0 𝑀 𝑓

] [
Δ ¥𝑢
Δ ¥𝜓

]
+

[
𝐶𝑠 𝐿

−𝜌 𝑓 𝐿𝑇 𝐶 𝑓

] [
Δ ¤𝑢
Δ ¤𝜓

]
+

[
𝐾𝑠 0
0 𝐾 𝑓

] [
Δ𝑢

Δ𝜓

]
=

[
𝑅𝑒𝑠𝑠
𝑅𝑒𝑠 𝑓

]
(3.4.38)

where 𝑀𝑠, 𝐶𝑠, and 𝐾𝑠 denote the mass, damping, and stiffness matrices for the solid, and 𝑀 𝑓 , 𝐶 𝑓 , and 𝐾 𝑓
denote the same for the fluid. The coupling matrices are denoted by 𝐿 and 𝐿𝑇 . Coupling between fluid and
structure, and any damping in the fluid or solid separately, is accounted for by the damping matrices. The
quantities 𝑅𝑒𝑠𝑠 and 𝑅𝑒𝑠 𝑓 denote the residuals in the solid and fluid, respectively (recall equation 3.4.23).

𝑅𝑒𝑠𝑠 = 𝐹
𝑒𝑥𝑡
𝑠 − 𝑀𝑠 ¥̃𝑢 − 𝐶𝑠 ¤̃𝑢 − 𝐿 ¤̃𝜓 − 𝐾𝑠𝑢
𝑅𝑒𝑠 𝑓 = 𝐹

𝑒𝑥𝑡
𝑓 − 𝐹

𝑖𝑛𝑡
𝑓 ( ¥̃𝜓, ¤̃𝜓, 𝜓̃)

(3.4.39)

Equation 3.2.10 is solved using Newton’s method, in conjunction with the time discretization scheme that
was introduced earlier. The nonlinear terms in the fluid wave equation are accounted for in the right-hand
side in the initial Newton method, but for a full Newton update, the matrices 𝑀 𝑓 , 𝐶 𝑓 , and 𝐾 𝑓 would all
need to be updated using equations 3.4.24, 3.4.27, and 3.4.28.

For the initial Newton method, equation 3.4.38 can be symmetrized in a number of ways. For example, the
second equation can be multiplied by −1

𝜌 𝑓
. This makes the system symmetric, but the matrices are

indefinite.

To solve the coupled system of equations (3.2.10), we could either treat the 2 × 2 block system as a
monolithic system of equations and integrate it directly, or we could use a staggered, loose coupling
scheme. For the numerical examples presented next, we integrate the system directly.

Finally, we note that most numerical methods for absorbing boundary conditions in acoustics have been
developed for the linear case. The development of absorbing boundary conditions for nonlinear acoustics is
an important area of research, but we do not pursue that subject here. In this paper we use first-order
absorbing boundary conditions of the form

𝜕𝜓

𝜕𝑛
= −1

𝑐

𝜕𝜓

𝜕𝑡
(3.4.40)

This condition leads to an additional contribution to the matrix 𝐶 𝑓 from equation 3.4.38. Equation 3.4.40
is, or course, an additional approximation that neglects nonlinear terms. We mention that Cai31 made a
similar approximation when simulating nonlinear acoustic fields.

3.5. Wet Modes or Added Mass

Analysts want to compute the structural normal modes for a structure partially submerged in a fluid. In
appropriate approximations, this may be analyzed as a real eigen problem of the structure with added mass
on the wetted surface.

Fluid loading of the real eigenvalue problem is performed by separating the solution domain into structural
and acoustic regions. A real eigen analysis is performed on the acoustic domain which generates a mass
loading correction for a subsequent real eigen analysis of the structure.
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3.5.1. Case I - matching meshes at wet interface

After finite element discretization, a submerged coupled structural acoustic system obeys the following
discrete formulation.

−𝜔2

[
𝑀𝑠 0
0 −1

𝜌 𝑓
𝑀 𝑓

] [
𝑢

𝜙

]
+ 𝑖𝜔

[
𝐶𝑠 𝐿

𝐿𝑇 −1
𝜌 𝑓
𝐶 𝑓

] [
𝑢

𝜙

]
+[

𝐾𝑠 0
0 −1

𝜌 𝑓
𝐾 𝑓

] [
𝑢

𝜙

]
=

[
𝑓𝑠

𝑓𝑎/𝜌 𝑓

]
(3.5.1)

where 𝑀𝑠, 𝐶𝑠, and 𝐾𝑠 denote the mass, damping, and stiffness matrices for the solid,1 𝑀 𝑓 , 𝐶 𝑓 , and 𝐾 𝑓
denote the same for the fluid, 𝑓𝑠 and 𝑓𝑎 denote loadings on the structure and fluid, and 𝑢 and 𝜙 are the
structural displacement and acoustic velocity potential, respectively. The coupling matrices are denoted by
𝐿 and 𝐿𝑇 . 𝐶 𝑓 may represent a non-reflecting boundary condition on the exterior of the fluid. Coupling
between fluid and structure is accounted for by the matrices 𝐿 and 𝐿𝑇 . Due to the presence of the damping
terms, this eigenvalue problem is quadratic. In the special case 𝐶𝑠 = 𝐶 𝑓 = 0, the system is called
gyroscopic since the eigenvalues are real valued, even though a damping matrix is present.

The goal of the added mass approach is to simplify equation (3.5.1) by considering only the incompressible
limit. This can be achieved by taking the limit 𝑐 𝑓 →∞, where 𝑐 𝑓 is the speed of sound in the fluid. The
latter condition implies an incompressible fluid, which has infinite sound speed. It is important to note that
these limits are only applied to the acoustic equation in the system (3.5.1), and not the structural equation.
Since we are only interested in eigen analysis, we set 𝑓𝑠 = 𝑓𝑎 = 0 for the remainder of this note.

If we consider the limiting condition 𝑐 𝑓 →∞ applied to the second equation in the system (3.5.1), we see

that the term 𝜔2

𝜌 𝑓
𝑀 𝑓 𝜙 will vanish, since the acoustic mass matrix 𝑀 𝑓 has a factor of

(
1
𝑐 𝑓

)2
built into it.

Similarly, as 𝑐 𝑓 →∞ the fluid damping, due to either an exterior boundary condition or infinite elements,
vanishes. For absorbing boundaries, this can be seen by considering the corresponding damping matrix

𝐶 𝑓 𝑖 𝑗 =
1
𝑐 𝑓

∫
𝜕Ω𝑒

𝑁𝑖𝑁 𝑗𝑑Ω𝑒 (3.5.2)

where the integral is evaluated over the exterior boundary 𝜕Ω𝑒, and 𝑁𝑖 , 𝑁 𝑗 are the standard finite element
shape functions evaluated over Ω𝑒. Thus, the term 𝐶 𝑓 has a factor of 1

𝑐 𝑓
built in, which implies that it can

also be neglected. Physically, this implies that an incompressible fluid provides no radiation damping. For
infinite elements, the damping matrix is different from absorbing boundaries, but it is still pre-multiplied by
1
𝑐 𝑓

.

𝐶 𝑓 𝑖 𝑗 =
1
𝑐 𝑓

∫
Ω𝑒

𝐷N𝑖∇𝜇 · ∇N 𝑗 − N𝑖N 𝑗∇𝐷 · ∇𝜇 − 𝐷N 𝑗∇N𝑖 · ∇𝜇𝑑𝑉 (3.5.3)

where N𝑖 , 𝜇, and 𝐷 are components of infinite element shape functions, and here the integral extends over
the entire exterior domain Ω𝑒 instead of being on the boundary. Again, due to the pre-multiplication of 1

𝑐 𝑓
,

we can neglect the infinite element damping matrix for incompressible fluids.

Additionally, we neglect structural damping and set 𝐶𝑠 = 0. Simplifying the second equation in the
system (3.5.1) in these ways yields,

𝜙 = 𝑖𝜔𝜌 𝑓𝐾
−1
𝑓 𝐿

𝑇𝑢 (3.5.4)

1In a ship floating in water, the structural stiffness matrix, 𝐾𝑠 will typically contain 6 zero energy modes. Addition of buoyancy
terms converts three of these to bounce, roll and pitch modes, but three singularities typically remain.
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This also implies that
𝑖𝜔𝜙 = −𝜔2𝜌 𝑓𝐾

−1
𝑓 𝐿

𝑇𝑢 (3.5.5)

If we define 𝜆 = 𝜔2, and substitute the previous results into the first equation in the system (3.5.1), we
obtain

−𝜆
[
𝑀𝑠 + 𝜌 𝑓 𝐿𝐾−1

𝑓 𝐿
𝑇
]
𝑢 + 𝐾𝑠𝑢 = 0 (3.5.6)

The added mass matrix is
𝑀𝑎 = 𝜌 𝑓 𝐿𝐾

−1
𝑓 𝐿

𝑇 (3.5.7)

To make the acoustic stiffness matrix 𝐾 𝑓 invertible, most practitioners assign Dirichlet boundary conditions
𝑝 = 0 on the exterior surface.2 Also, standard practice is to mesh the fluid to the extent of one or two
structural diameters away from the structure. As one takes more and more fluid, the eigenvalues should
converge to fixed values (although not precisely the same values as would be obtained from a full complex
eigen solution).

As an alternative to the Dirichlet boundary condition, one can use the spherical absorbing condition, not the
plane wave condition from equation 3.5.2. The spherical condition is more accurate, and since it
contributes an extra term to the stiffness matrix, it eliminates the need for the Dirichlet boundary condition.
This term takes the form

𝐾𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙𝑖 𝑗 =
1
𝑅

∫
𝜕Ω𝑒

𝑁𝑖𝑁 𝑗𝑑Ω𝑒 (3.5.8)

where 𝑅 is the radius of curvature of the absorbing domain, and 𝑁 𝑗 is a shape function on the exterior
(absorbing) boundary of the surface. This term would then get appended to the acoustic stiffness matrix
𝐾 𝑓 , rendering it nonsingular, without the need for the Dirichlet boundary condition.

Equation (3.5.6) is an eigenvalue problem in terms of structural unknowns only. For both absorbing
boundaries and infinite elements, the matrix 𝑀𝑎 is real-valued, and independent of frequency. In the case
of either absorbing boundaries or simple Dirichlet boundary conditions, it is also symmetric, and thus is in
the form of a standard eigenvalue problem that will yield real-valued modes. The eigen solver typically
requires a symmetric positive definite capacitance matrix, 𝑀 . The linear solver must still address issues
with singular 𝐾𝑠.

For infinite elements, however, 𝐾 𝑓 is nonsymmetric, and thus the matrix 𝑀𝑎 is also nonsymmetric. In
general, this will lead to complex modes, which are undesirable for added mass calculations. Thus, a
symmetrization of 𝐾 𝑓 may be needed if infinite elements are to be used with added mass. This may be
important, as the Dirichlet boundary condition approach may require a large acoustic mesh to obtain
converged wet modes, whereas infinite elements typically allow for a much smaller (ellipsoidal) mesh.

Modal Solution of Acoustic Domain. The above procedure requires a solution of the acoustic domain at
each step of the system eigen problem. This may be simplified by use of a modal expansion of the acoustic
domain. We begin with the coupled system of equations, simplified by the limits of infinite acoustic
velocity. The eigen equation may be summarized.(

−𝜔2
[
𝑀𝑠 0
0 0

]
+ 𝑖𝜔

[
0 𝐿

𝐿𝑇 0

]
+

[
𝐾𝑠 0
0 −1

𝜌 𝑓
𝐾 𝑓

]) [
𝑢

𝜙

]
= 0 (3.5.9)

We consider a modal solution of the acoustic domain which diagonalizes the acoustic stiffness matrix.
Specifically, we define 𝜙 = 𝜓𝑞 such that 𝜓𝑇𝐾 𝑓𝜓 = Λ 𝑓 , a diagonal matrix. Substituting into the lower

2Throughout further discussions, we assume that 𝐾 𝑓 is symmetric, positive definite.
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equation of (3.5.9), we have,

𝑖𝜔𝐿𝑇𝑢 =
𝐾 𝑓

𝜌 𝑓
𝜓𝑞 (3.5.10)

We pre-multiply by 𝜓𝑇 , and solve for 𝑞.

𝑞 = 𝑖𝜔𝜌 𝑓Λ
−1
𝑓 𝜓

𝑇𝐿𝑇𝑢 (3.5.11)

Substitution of 𝑞 in the top equation of (3.5.9) results in a simplified expression for the mass loaded
structural eigen problem. (

−𝜔2 [𝑀𝑠 + 𝑀̃𝑎] + 𝐾𝑠
)
𝑢 = 0 (3.5.12)

where,
𝑀̃𝑎 = 𝜌 𝑓 𝐿𝜓Λ

−1
𝑓 𝜓

𝑇𝐿𝑇 (3.5.13)

The eigenvalue problem above is real. The mass matrix contribution is real and symmetric. However, as in
the physical solution above, the mass matrix is full on the wet surface boundary, and is not typically
assembled. The modal solution does not require a linear solve at each iteration of the eigen solver, but by
not assembling the mass matrix we cannot utilize the shift-invert strategies available in ARPACK.

Decomposition Issues

The linear solver depends on effective decompositions for accurate, robust, high performance solutions. In
these methods, care must be taken for effective load balance. Rebalancing may be useful. It may be
possible to require the linear solver to rebalance. Alternatively, we may want a decomposition that is
independent in the fluid and structural domains.

Modal Truncation

The methods in this section are useful only if a reasonable modal truncation can be developed for the
acoustic domain. The only requirement on the basis is that the eigenvectors diagonalize 𝐾 𝑓 . Thus, we could
solve the standard eigenvalue problem, (𝐾 𝑓 − 𝜆𝐼)𝜓 = 0, the generalized eigen problem with the fluid mass
matrix, (𝐾 𝑓 − 𝜆𝑀 𝑓 )𝜓 = 0, or use any other capacitance matrix. It is not clear which of these solutions
would provide the best model for modal truncation. We also do not have any experience on the number of
modes needed for effective truncation.

3.5.2. Case II - mismatched meshes at wet interface

When the meshes are mismatched at the wet interface, extra acoustic degrees of freedom are created on the
structural side of the wet interface, and these degrees of freedom have zero stiffness. Also, the coupling
matrix 𝐿 is only active on the virtual acoustic degrees of freedom on the structural side of the wet interface.
However, because of the manner in which linear constraint equations are handled in GDSW, the issue of
virtual vs physical acoustic dofs does not impact the necessary algorithm development for the added mass
matrix vector product.

Element Matrix Approximations. In the limits of infinite acoustic velocity, the contributions to the mass
and damping matrices for the fluid go to zero. We consider here the stiffness matrix for an element in
volumetric domain and for an infinite element. The infinite element formulation is described in equation
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(6.1.16) of the infinite element section (6.1.1). As shown in this section, the infinite element is not a
function of either 𝜔 or 𝑐𝑜, and thus is unchanged in the infinite velocity approximation. Likewise, the
volumetric stiffness is defined in equation (3.2.2) of Section 3. It is also independent of frequency or
acoustic velocity. Standard element formulations apply for both stiffness matrix contributions in the limits
of infinite acoustic velocity.

3.6. Waterline Determination

We develop the approach for solution of a rigid body floating in a fluid. When the ship is treated as a rigid
body, its equilibrium equations simplify to six equations in six unknowns that involve force and moment
balances in three coordinate directions. However, from symmetry considerations we may assume that the
displacements of the ship are zero in the plane of the waterline. Further, we assume that the angular rotation
of the ship about an axis normal to the waterline is also zero. Thus, the six equilibrium equations can be
reduced to three,

𝑝 =


𝑧

𝜃1
𝜃2

 .
For convenience, we take the ship to be fixed in space while the orientation of the waterline plane is
described by in-plane rotations 𝜃1 and 𝜃2. The position of the ship mass center above and perpendicular to
the waterline is denoted by the coordinate 𝑧. Additional details on the coordinate 𝑧 and the angles 𝜃1 and 𝜃2
are provided in Section 3.6.1.

The function 𝑓 (𝑝) represents the nonlinear force balance,

𝑓 (𝑝) =

𝐹3
𝑀1
𝑀2

 (3.6.1)

The terms on the right-hand side of (3.6.1) involve the net force and moments acting about the ship center
of mass due to buoyancy forces (pressure loads from water) and gravity. Also,

K(𝑝) = 𝑑𝑓 (𝑝)/𝑑𝑝

is the unsymmetric Jacobian matrix. The associated Newton step 𝐾𝑛+1𝛿𝑝 = − 𝑓𝑛+1, 𝑝𝑛+1 = 𝑝𝑛 + 𝛿𝑝. The
terms 𝛿𝑝 are incremental updates to 𝑝. Again, more details are provided later on the precise form of these
terms. Additional details on the implementation of Newton’s method are provided in § 3.6.4

3.6.1. Reference Frames

The position vector of a node 𝑛 in a fixed reference frame 𝐴 can be expressed as

𝒑𝑛 = 𝑥𝑛,1𝒂1 + 𝑥𝑛,2𝒂2 + 𝑥𝑛,3𝒂3, (3.6.2)

where (𝑥𝑛,1, 𝑥𝑛,2, 𝑥𝑛,3) are the coordinates of the node and 𝒂1, 𝒂2, 𝒂3 are unit vectors aligned with
coordinate directions 𝑋1, 𝑋2, 𝑋3. We note in the present context that (𝑥𝑛,1, 𝑥𝑛,2, 𝑥𝑛,3) are the coordinates of
the node in the Exodus finite element model used by Sierra/SD. Further, we take 𝒂3 to be directed
vertically upward.
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Figure 3-5. – Sketch showing ship, origin 𝑂 of waterline frame, coordinate 𝑧, and angle 𝜃2.

Consider a rigid body 𝐵 with attached unit vectors 𝒃1, 𝒃2, 𝒃3 that are initially aligned with 𝒂1, 𝒂2, 𝒂3. A
rotation of 𝐵 by 𝜃1 about the 𝒂1 direction results in

𝒃1 = 𝒂1, 𝒃2 = cos 𝜃1𝒂2 + sin 𝜃1𝒂3, 𝒃3 = cos 𝜃1𝒂3 − sin 𝜃1𝒂2. (3.6.3)

Next, consider a rigid body 𝐶 with attached unit vectors 𝒄1, 𝒄2, 𝒄3 that are initially aligned with 𝒃1, 𝒃2, 𝒃3.
A rotation of 𝐶 by 𝜃2 about the 𝒃2 direction gives us

𝒄1 = cos 𝜃2𝒃1 − sin 𝜃2𝒃3, 𝒄2 = 𝒃2, 𝒄3 = cos 𝜃2𝒃3 + sin 𝜃2𝒃1. (3.6.4)

Combining (3.6.3) and (3.6.4), we find

𝒄1 = cos 𝜃2𝒂1 + sin 𝜃2 sin 𝜃1𝒂2 − sin 𝜃2 cos 𝜃1𝒂3, (3.6.5)
𝒄2 = cos 𝜃1𝒂2 + sin 𝜃1𝒂3, (3.6.6)
𝒄3 = sin 𝜃2𝒂1 − cos 𝜃2 sin 𝜃1𝒂2 + cos 𝜃2 cos 𝜃1𝒂3. (3.6.7)

For purposes of convenience, we choose unit vector 𝒄3 to be in the direction normal to the waterline and
directed away from the water. Similarly, unit vectors 𝒄1 and 𝒄2 are also attached to the waterline frame.
Using summation notation, (3.6.5-3.6.7) can be expressed concisely as

𝒄𝑖 = 𝑐𝑖 𝑗 𝒂 𝑗 , (3.6.8)

where the scalar coefficient 𝑐𝑖 𝑗 = 𝒄𝑖 · 𝒂 𝑗 and appears as the entry in row 𝑖 and column 𝑗 of the direction
cosine matrix

𝐷 =


cos 𝜃2 sin 𝜃1 sin 𝜃2 − cos 𝜃1 sin 𝜃2

0 cos 𝜃1 sin 𝜃1
sin 𝜃2 − sin 𝜃1 cos 𝜃2 cos 𝜃1 cos 𝜃2

 .
We note that the columns of 𝐷 are orthonormal, i.e., 𝐷−1 = 𝐷𝑇 .

The origin 𝑂 of the waterline frame is chosen as the point of intersection of the line in direction 𝒄3 passing
through the ship mass center with the plane of the water (see Figure 3-5). Thus, the position vector of the
center of mass of the ship relative to 𝑂 can be expressed as

𝒑𝑐𝑚/𝑂 = 𝑧𝒄3. (3.6.9)
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3.6.2. Pressure at a Node

We would like to express the position vector of a node as in (3.6.2) relative to 𝑂 rather than the origin of
reference frame 𝐴. To this end, let the position vector of the center of mass of the ship relative to the origin
of 𝐴 be expressed as

𝒑𝑐𝑚 = 𝑥𝑐𝑚,1𝒂1 + 𝑥𝑐𝑚,2𝒂2 + 𝑥𝑐𝑚,3𝒂3. (3.6.10)

We note the coordinates (𝑥𝑐𝑚,1, 𝑥𝑐𝑚,2, 𝑥𝑐𝑚,3) are readily available from Sierra/SD. Next, let the position
vector of 𝑂 relative to the origin of 𝐴 be expressed as

𝒑𝑂 = 𝑥𝑂,1𝒂1 + 𝑥𝑂,2𝒂2 + 𝑥𝑂,3𝒂3. (3.6.11)

Since 𝒑𝑐𝑚 = 𝒑𝑂 + 𝒑𝑐𝑚/𝑂, it follows from the previous three equations and (3.6.8) that

𝑥𝑂, 𝑗 = 𝑥𝑐𝑚, 𝑗 − 𝑧𝑐3 𝑗 𝑗 = 1, 2, 3. (3.6.12)

The pressure at node 𝑛 depends on its depth,

𝑝(𝑛) = −𝜌𝑔(p𝑛 − p𝑂) · c3

= −𝜌𝑔
∑︁
(𝑥𝑛,𝑖 − 𝑥𝑂,𝑖)𝑐𝑖3) (3.6.13)

where 𝜌 is the density of water and 𝑔 is the acceleration of gravity. If the pressure calculated from (3.6.13)
is negative, then the node is above the waterline. In this case we set 𝑝(𝑛) = 0.

3.6.3. Waterline Plane Specification

The initial guess in the Solution section is defined by 𝒕1, 𝒕2, 𝒕3 not on a line. Plowing on,

𝒗1 := 𝒕2 − 𝒕1, 𝒗2 := 𝒕3 − 𝒕1,

the unit normal to this plane is given by

𝒏 =
𝒗1 × 𝒗2

∥𝒗1 × 𝒗2∥
= 𝑛1𝒂1 + 𝑛2𝒂2 + 𝑛3𝒂3. (3.6.14)

If 𝒏 · 𝒂3 = 𝑛3 < 0, then we multiply 𝒏 by -1 so that 𝒏 points out of the water rather than into it.

We next show how to relate the waterline plane to the variables 𝜃1, 𝜃2 and 𝑧. Since 𝒏 = 𝒄3, we find from
(3.6.7) and (3.6.14) that

sin 𝜃2 = 𝑛1, − sin 𝜃1 cos 𝜃2 = 𝑛2, cos 𝜃1 cos 𝜃2 = 𝑛3, (3.6.15)

from which follows
𝜃2 = arcsin(𝑛1), 𝜃1 = arctan(−𝑛2/𝑛3). (3.6.16)

We will print a warning message if either |𝜃1 | or |𝜃2 | is greater than 𝜋/4 (45 degrees). Since the origin 𝑂 is
in the plane of the waterline, 𝒏 = 𝒄3, and 𝒑𝑂 = 𝒑𝑐𝑚 − 𝒑𝑐𝑚/𝑂, we find from (3.6.9) and (3.6.10) that

𝑧 = ( 𝒑𝑐𝑚 − 𝒑𝑂) · 𝒏
= (𝑥𝑐𝑚,1 − 𝑥𝑂,1)𝑛1 + (𝑥𝑐𝑚,2 − 𝑥𝑂,2)𝑛2 + (𝑥𝑐𝑚,3 − 𝑥𝑂,3)𝑛3. (3.6.17)
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We note in the previous expression that 𝒑𝑂 may be replaced by either 𝒕1, 𝒕2 or 𝒕3 since these three points are
also in the waterline plane.

As described later, Newton’s method is used to solve one force and two equilibrium equations in terms of
the coordinate 𝑧 and the angles 𝜃1 and 𝜃2. After a converged solution is obtained, it is important for the
analyst to confirm that the sideset used for the problem specification includes all element faces of the outer
ship surface which contain one or more nodes below the waterline.

3.6.4. Net Force and Moment Calculation

With equation (3.6.13) in hand, Sierra/SD can be used to calculate and assemble the water pressure loads
into equivalent nodal loads. This process involves the interpolation of nodal pressures to Gauss points and
numerical integration. The equivalent nodal loads can then be used to determine the net force and moment
acting on the ship. We outline a procedure for doing this calculation in the following paragraphs.

Water pressure on subdomain 𝑖 corresponds to 𝑓𝑖 . We note each row of 𝑓𝑖 corresponds to a load for a
particular degree of freedom. For example, row 7 of 𝑓𝑖 may correspond to a force at a specific node in
coordinate direction 3. The vector 𝑓𝑖 is associated with a set N𝑖 of nodes in subdomain 𝑖. Further, we note
that the force vector f𝑛 and the moment vector m𝑛 at node 𝑛 ∈ N𝑖 can be extracted directly from 𝑓𝑖 .

Let r𝑛 := p𝑛 − p𝑐𝑚 denote the position vector from the ship center of mass to node 𝑛. Summing
contributions from all the nodes in N𝑖 , we find that the net force and moment contribution from subdomain
𝑖 is given by

F𝑖 =
∑︁
𝑛∈N𝑖

f𝑛, (3.6.18)

M𝑖 =
∑︁
𝑛∈N𝑖

r𝑛 × f𝑛. (3.6.19)

Summing contributions from all 𝑁 subdomains, the net force and moment about the mass center of the ship
is given by

F𝑠 =
𝑁∑︁
𝑖=1

F𝑖 = 𝐹𝑠,1a1 + 𝐹𝑠,2a2 + 𝐹𝑠,3a3 (3.6.20)

M𝑠 =

𝑁∑︁
𝑖=1

M𝑖 = 𝑀𝑠,1a1 + 𝑀𝑠,2a2 + 𝑀𝑠,3a3. (3.6.21)

Returning to (3.6.1), we have

𝐹3 = F𝑠 · c3 − 𝑚𝑠𝑔 = 𝑐3,1𝐹𝑠,1 + 𝑐3,2𝐹𝑠,2 + 𝑐3,3𝐹𝑠,3 − 𝑚𝑠𝑔, (3.6.22)
𝑀1 = M𝑠 · c1 = 𝑐1,1𝑀𝑠,1 + 𝑐1,2𝑀𝑠,2 + 𝑐1,3𝑀𝑠,3, (3.6.23)
𝑀2 = M𝑠 · c2 = 𝑐2,1𝑀𝑠,1 + 𝑐2,2𝑀𝑠,2 + 𝑐2,3𝑀𝑠,3, (3.6.24)

where 𝑚𝑠 is the mass of the ship.

Newton’s Method. We apply finite differences together with (3.6.22)-(3.6.24) to calculate K. We use a
finite difference step size of 0.001 for the dimensionless variables 𝜃1 and 𝜃2, 0.001 times a characteristic
length of the ship for 𝑧. If convergence issues should ever arise, standard regularization approaches are
available.
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Tangent Matrix. We apply finite differences together with (3.6.22-3.6.24) to calculate the tangent matrix,
𝑲𝑇 . We use a finite difference step size of 0.001 for the dimensionless variables 𝜃1 and 𝜃2, while the step
size for 𝑧 is 0.001 times a characteristic length of the ship.

3.7. Fluid Coupling through Lighthill’s Tensor

Convective, turbulent flow may be effectively coupled to acoustic formulations for sound propagation using
the Lighthill analogy. In Sierra/SD, only the pressure potential formulation of the acoustic wave equation
implements loads from Lightill’s tensor. The algorithm for generalizing the velocity potential formulations
is documented 6.1.4.

The inviscid Euler equations given in equation (3.0.7) including a source term are given by
𝜕𝜌

𝜕𝑡
+ 𝜌0∇ · u = 0, (3.7.1)

𝜌0
𝜕u
𝜕𝑡
+ ∇𝑝 = S, (3.7.2)

where 𝜌0 is a reference density, 𝜌 is density, 𝑝 is pressure, u is particle velocity, and S is a source term. We
note that in equation (3.7.2) the Pressure and density are related as

𝑐2
0𝜌 = 𝑝. (3.7.3)

Pressure formulation. The acoustic pressure formulation is obtained by combining the mass and
momentum balance equations. The time derivative of (3.7.1) is

¥𝜌 + 𝜌0∇ · ¤u = 0, (3.7.4)

where a superposed dot represented partial differentiation with respect to time. The divergence of (3.7.2)
is

𝜌0∇ · ¤u + ∇2𝑝 = ∇ · S. (3.7.5)
Substituting (3.7.3) and subsequently eliminating ∇ · ¤u, the acoustic pressure equation is

1
𝑐2

0
¥𝑝 − ∇2𝑝 = −∇ · S. (3.7.6)

And there is a similar velocity potential formulation.

Lighthill’s analogy97 is an approach to the problem of sound generation and propagation in turbulent flow.
The equations of motion are rearranged into a scalar, inhomogeneous wave equation where the source terms
are the noise generation due to turbulence in the fluid:

¥𝜌 − 𝑐2
0∇

2𝜌 = ∇ · (∇ · T), (3.7.7)

where T is known as the Lighthill tensor. In terms of the fluid viscous stress tensor 𝜏, T has Cartesian
component form

𝑇𝑖 𝑗 = 𝜌𝑢𝑖𝑢 𝑗 + (𝑝 − 𝑐2
0𝜌)𝛿𝑖 𝑗 − 𝜏𝑖 𝑗 , (3.7.8)

The pressure form of (3.7.7) is
¥𝑝 − 𝑐2

0∇
2𝑝 = 𝑐2

0∇ · (∇ · T).
In Sierra/SD, only the pressure formulation of Lighthill’s method as given by the above equations is
implemented. This is in contrast to most acoustic solutions which employ a velocity potential formulation.
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4. MATERIAL

By definition, strain is symmetric. Further, we make the usual constitutive assumption that the stress is
symmetric. This permits the representation of the 3 × 3 stress matrix, 𝑠 for 𝜎, and the 3 × 3 strain matrix, 𝑒
for 𝜀, in Voigt notation, equation (??).

Voigt notation is popular in the Material Science, but it differs from the numbering used in NASTRAN and
from the numbering in Abaqus. Although 𝑠 and 𝑒 are called the “stress vector” and the “strain vector”, they
do not map from one coordinate system to another as true vectors do. How that mapping is done is
discussed in a later section.

In terms of the bulk, 𝐾 , and shear, 𝐺, moduli, the elastic material constitutive model, the 𝐶 in equation
(1.0.6), expands to

𝐶 = (𝐾𝐷𝐾 + 𝐺𝐷𝐺)𝜀. (4.0.1)

In Voigt notation,37

𝐷𝐾 =



1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, 𝐷𝐺 =

1
3



4 −2 −2 0 0 0
−2 4 −2 0 0 0
−2 −2 4 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


4.1. Anisotropic Materials

A theoretical development for anisotropic elasticity is presented emphasizing the numbering convention.

Linear Anisotropic Elasticity. Linear elasticity asserts that the stress is a linear function of the strain:

𝜎𝑖 𝑗 = 𝐶
4
𝑖 𝑗𝑘𝑙𝜀𝑘𝑙

Where 𝐶4
𝑖 𝑗𝑘𝑙

are the Cartesian components of the fourth order constitutive tensor and the Einstein
convention of summation on repeated indices is used.

We use the above to map the fourth-order tensor 𝐶4
𝑖 𝑗𝑘𝑙

into a 6 × 6 matrix of material parameters. This is
done with the aid of the matrices that formally map 𝜎 to 𝑠 and from 𝜀 to 𝑒.

𝑒𝑛 = 𝐸𝑛𝑖 𝑗𝜀𝑖 𝑗 (4.1.1)

and
𝜀𝑖 𝑗 = 𝑒𝑛𝐹𝑛𝑖 𝑗 (4.1.2)
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where

𝐸1 =


1 0 0
0 0 0
0 0 0

 𝐸2 =


0 0 0
0 1 0
0 0 0

 𝐸3 =


0 0 0
0 0 0
0 0 1


𝐸4 =


0 0 0
0 0 1
0 1 0

 𝐸5 =


0 0 1
0 0 0
1 0 0

 𝐸6 =


0 1 0
0 0 0
0 1 0

 (4.1.3)

and
𝐹1 = 𝐸1, 𝐹2 = 𝐸2, 𝐹3 = 𝐸3,

𝐹4 =
1
2
𝐸4, 𝐹5 =

1
2
𝐸5, 𝐹6 =

1
2
𝐸6,

We note that the stress mappings are also achieved with the above third order quantities:

𝑠𝑛 = 𝐹𝑛𝑖 𝑗𝜎𝑖 𝑗 (4.1.4)

and
𝜎𝑖 𝑗 = 𝑠𝑛𝐸𝑛𝑖 𝑗 (4.1.5)

From Equations 4.1.1 and 4.1.2 or Equations 4.1.4 and 4.1.5 we see that,

𝐸𝑚𝑖 𝑗𝐹𝑛𝑖 𝑗 = 𝛿𝑚𝑛 (4.1.6)

Substituting Equations 4.1.2 and 4.1.5 into Equation 4.1 and simplifying with Equation 4.1.6, we find

𝑠𝑚 = 𝐶𝑚𝑛𝑒𝑛 (4.1.7)

where
𝐶𝑚𝑛 = 𝐹𝑚𝑖 𝑗𝐶

4
𝑖 𝑗𝑘𝑙𝐹𝑛𝑘𝑙 (4.1.8)

This shows how to find the 6 × 6 matrix 𝐶𝑖 𝑗 in terms of the fourth order tensor components 𝐶4
𝑖 𝑗𝑘𝑙

. The
material description may also be provided in terms of the components of 𝐶𝑖 𝑗 .

4.1.1. Strain Energy and Orientation

Consider the situation where the matrix of material parameters is provided in a Cartesian coordinate system
different from the global coordinate system in which strains are calculated. Because stress and strain are
tensors, they transfer from one coordinate system to another by:

𝜎𝑖 𝑗 = 𝑅𝑎𝑖𝜎̂𝑎𝑏𝑅𝑏 𝑗 (4.1.9)

and
𝜀𝑖 𝑗 = 𝑅𝑎𝑖𝜀𝑎𝑏𝑅𝑏 𝑗 (4.1.10)

where 𝜎𝑖 𝑗 and 𝜀𝑖 𝑗 are the stress and strain components calculated in some other (global) Cartesian system
and 𝑅𝑎𝑖 are the components of the rotation matrix that rotates the basis vectors in that global system to that
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with respect to which the material properties are defined. A basis vector 𝑏̂𝑎 in the local, material frame is
expressed in terms of the basis vectors of the global system by:

𝑏̂𝑎 = 𝑅𝑎𝑖𝑏𝑖 (4.1.11)

where 𝑏1, 𝑏2, and 𝑏3 are the basis vectors of the global frame.

From Equations 4.1.4, 4.1.5, and 4.1.8, we find following

𝑠𝑚 = (𝐹𝑚𝑖 𝑗𝐸𝑛𝑎𝑏𝑅𝑎𝑖𝑅𝑏 𝑗)𝑠𝑛. (4.1.12)

From Equations 4.1.1, 4.1.2, and 4.1.10, we find the more useful relationship

𝑒𝑚 = (𝐸𝑚𝑖 𝑗𝐹𝑛𝑎𝑏𝑅𝑎𝑖𝑅𝑏 𝑗)𝑒𝑛. (4.1.13)

The above two transformations are simplified:

𝑠 = 𝑇𝑇 𝑠 (4.1.14)

and
𝑒 = 𝑇𝑒 (4.1.15)

where the 6 × 6 transformation matrix, 𝑇 , is defined

𝑇𝑛𝑘 = 𝐸𝑛𝑖 𝑗𝐹𝑘𝑎𝑏𝑅𝑎𝑖𝑅𝑏 𝑗 = 𝑡𝑟

(
𝐸𝑇𝑛 𝑅𝐹𝑘𝑅

𝑇
)

(4.1.16)

Noting that
𝑠 = 𝐶̂𝑒, (4.1.17)

and substituting Equations 4.1.14 and 4.1.15 into Equation 4.1.17, we further find

𝑠 = 𝑇𝑇𝐶̂𝑇𝑒. (4.1.18)

Comparing the above with Equation 4.1.7, we finally find that

𝐶 = 𝑇𝑇𝐶̂𝑇 (4.1.19)

which was the main point of this exercise.

Note also that the components of arrays 𝐸𝑛 and 𝐹𝑛 are mostly zero, with the rest either 1 or 1/2. As in [16]
Equation 3.34, the simplified (with Maple) product matrix is

𝑇 =

[
𝑇11 𝑇12
𝑇21 𝑇22,

]
(4.1.20)

𝑇11 =


𝑅2

11 𝑅2
12 𝑅2

13
𝑅2

21 𝑅2
22 𝑅2

23
𝑅2

31 𝑅2
32 𝑅2

33

 , 𝑇12 =


𝑅13𝑅12 𝑅13𝑅11 𝑅13𝑅11
𝑅23𝑅22 𝑅23𝑅21 𝑅23𝑅21
𝑅33𝑅32 𝑅33𝑅31 𝑅33𝑅31

 ,
𝑇21 = 2𝑅21𝑅31 𝑅22𝑅32 𝑅23𝑅33

2𝑅11𝑅31 𝑅12𝑅32 𝑅13𝑅33
2𝑅11𝑅21 𝑅12𝑅22 𝑅13𝑅23

 ,

𝑇22 = 𝑅23𝑅32 + 𝑅22𝑅33 𝑅23𝑅31 + 𝑅21𝑅33 𝑅22𝑅31 + 𝑅21𝑅32
𝑅13𝑅32 + 𝑅12𝑅33 𝑅13𝑅31 + 𝑅11𝑅33 𝑅12𝑅31 + 𝑅11𝑅32
𝑅13𝑅22 + 𝑅12𝑅23 𝑅13𝑅21 + 𝑅11𝑅23 𝑅12𝑅21 + 𝑅11𝑅22

 .
(4.1.21)

The Maple code to perform the above calculations follows.
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with(linalg);
E[1] := matrix(3,3,[ [1,0,0],[0,0,0],[0,0,0]]);
E[2] := matrix(3,3,[ [0,0,0],[0,1,0],[0,0,0]]);
E[3] := matrix(3,3,[ [0,0,0],[0,0,0],[0,0,1]]);
E[4] := matrix(3,3,[ [0,0,0],[0,0,1],[0,1,0]]);
E[5] := matrix(3,3,[ [0,0,1],[0,0,0],[1,0,0]]);
E[6] := matrix(3,3,[ [0,1,0],[1,0,0],[0,0,0]]);
F[1] := E[1];
F[2] := E[2];
F[3] := E[3];
F[4] := (1/2)*E[4];
F[5] := (1/2)*E[5];
F[6] := (1/2)*E[6];
R := matrix(3,3);

for k from 1 to 6 do
FRR[k] := matrix(3,3);
FRR[k] := evalm ( R &* F[k] &*transpose(R));
od;

T := matrix(6,6);
for k from 1 to 6 do
for n from 1 to 6 do
T[n,k] := 0;
for i from 1 to 3 do
for j from 1 to 3 do
T[n,k] := T[n,k] +evalm(FRR[k][i,j])*E[n][i,j];
od; od;
od; od;

readlib(C);
C(T);

read("maple2mif.mpl");
M := maple2mif();
fprintf("temp.mif",’%s’,M(eval(T))) ;

4.2. Viscoelastic Materials

The constitutive equations used in Sierra/SD for viscoelastic materials support time dependent relaxation
of the stiffnesses, and introduce the corresponding velocity proportional damping forces. This section also
describes the remarkably efficient generalization of direct transient algorithm to models using isotropic
viscoelastic materials. The algorithm is based on the Generalized Alpha method, a parameterized family of
time marching schemes that includes Newmark-beta method.

Experimental data typically results in time-dependent Prony series models for the bulk 𝐾 and shear 𝐺
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moduli.
𝐺 (𝑡) = 𝐺∞ + (𝐺 (0) − 𝐺∞)𝜁𝐺 (𝑡),

𝜁𝐺 (𝑡) =
𝑛−1∑︁
𝑘=0

𝑐𝑘𝑒
−𝑡/𝜏𝑘 ,

∑︁
𝑐𝑘 = 1, 𝑐𝑘 ≥ 0

Shear strain softens in time from the initial glassy modulus𝐺0 to the asymptotic rubbery modulus 𝐺∞. The
Prony series coefficients {𝑐𝑘 , 𝜏𝑘}𝑛−1

𝑘=0 a chosen to fit an experimentally measured shear modulus relaxation
curve. A bulk modulus relaxation curve leads to a corresponding completely independent model for 𝐾 (𝑡).

The constitutive law equation (4.0.1) can be generalized to a linear viscoelastic material as follows

𝜎(𝑥, 𝑡) = (𝐺0 − 𝐺∞)𝐷𝐺
∫ 𝑡

0
𝜁𝐺 (𝑥, 𝑡 − 𝜏)

𝜕𝜖 (𝑥, 𝜏)
𝜕𝜏

𝑑𝜏 + 𝐺∞𝐷𝐺𝜖 (𝑥, 𝑡)+

(𝐾0 − 𝐾∞)𝐷𝐾
∫ 𝑡

0
𝜁𝐾 (𝑥, 𝑡 − 𝜏)

𝜕𝜖 (𝑥, 𝜏)
𝜕𝜏

𝑑𝜏 + 𝐾∞𝐷𝐾𝜖 (𝑥, 𝑡)

The above expression is then used to represent the stress in the weak form of the equations of motion,
(1.0.4).

This all works remarkably well. Because a Prony series is used, evaluating the convolution products,

𝜁 (𝑥, 𝑡) ∗ 𝑓 (𝑥, 𝑡) =
∫ 𝑡

0
𝜁 (𝑡 − 𝜏) 𝑓 (𝜏)𝑑𝜏,

turns out to be trivial.

Given a finite dimensional subspace 𝑉ℎ ⊂ 𝑉 , we represent the approximate solution in the standard way

𝑢ℎ (𝑥, 𝑡) =
𝑛∑︁
𝑖=1

𝜙𝑖 (𝑥)𝜂𝑖 (𝑡) (4.2.1)

where 𝑉ℎ = 𝑠𝑝𝑎𝑛(𝜙𝑖), and 𝜂(𝑡) represents the unknown time dependence. We also denote Φ(𝑥) = [𝜙𝑖 (𝑥)]
as the matrix having 𝜙𝑖 as the 𝑖𝑡ℎ column. Inserting this into the equations of motion, and rearranging, we
obtain

𝑀 ¥𝜂(𝑡) + (𝐺0 − 𝐺∞)𝐾1

∫ 𝑡

0
𝜁𝐺 (𝑡 − 𝜏) ¤𝜂(𝜏)𝑑𝜏+

(𝐾0 − 𝐾∞)𝐾1

∫ 𝑡

0
𝜁𝐾 (𝑡 − 𝜏) ¤𝜂(𝜏)𝑑𝜏 + 𝐾2𝜂(𝑡) = 𝑓 (𝑡)

where
𝑀 =

∫
Ω

𝜌(𝑥)Φ𝑇 (𝑥)Φ(𝑥)𝑑𝑥 (4.2.2)

is the mass matrix,

𝐾1 = (𝐺0 − 𝐺∞)
∫
Ω

𝐵𝑇𝐷𝐺𝐵𝑑𝑥 + (𝐾0 − 𝐾∞)
∫
Ω

𝐵𝑇𝐷𝐾𝐵𝑑𝑥

𝐾2 = 𝐺∞

∫
Ω

𝐵𝑇𝐷𝐺𝐵𝑑𝑥 + 𝐾∞
∫
Ω

𝐵𝑇𝐷𝐾𝐵𝑑𝑥

are the stiffness matrices, and

𝑓 (𝑡) =
∫
Ω

𝑓 (𝑥, 𝑡) · 𝑣(𝑥)𝑑𝑥 +
∫
Γ𝑁

𝑔(𝑥, 𝑡) · 𝑣(𝑥)𝑑𝑠 (4.2.3)
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is the right-hand side. The corresponding element matrices are defined by breaking the integrals into
element wise contributions.

Equation 4.2 represents a system of Volterra integro-differential equations. Without the inertial term, 4.2
represents a system of Volterra integral equations of the first kind. The standard form for implicit time
integration schemes is

𝑀 ¥𝜂(𝑡) + 𝐶 ¤𝜂(𝑡) + 𝐾𝜂(𝑡) = 𝑓 (𝑡). (4.2.4)

Here 𝐶 is a constant damping matrix. Is the system of equations 4.2 reducible to standard form? ˆ𝑓 (𝑡) is a
modified right-hand side that will include a portion of the viscoelastic convolution term. We demand that 𝐶
be independent of time, since this will eliminate the need for refactoring the left-hand side at each time step.
The damping (integral) term in equation 4.2 is time-dependent. However, we will show that it is possible to
split this integral term into a time-dependent and a time-independent part. The time-independent parts
remain on the left-hand side and become the damping matrix, whereas the time-dependent parts can be
carried to the right-hand side, since they are known quantities. Once the equations 4.2 are reduced to the
system 4.2.4, the standard time integrators for structural dynamics can be employed.

For simplicity, we consider the case of only a single Prony series term. The results for more terms can be
obtained by adding together the results for a single term. The integral in equation 4.2 can be split into two
parts (considering only a single Prony series term)∫ 𝑡

0
𝑒
𝑡−𝜏
𝑠 ¤𝜂(𝜏)𝑑𝜏 =

∫ 𝑡𝑖

0
𝑒
𝑡−𝜏
𝑠 ¤𝜂(𝜏)𝑑𝜏 +

∫ 𝑡

𝑡𝑖

𝑒
𝑡−𝜏
𝑎 ¤𝜂(𝜏)𝑑𝜏

= 𝑒
Δ𝑡
𝑠

∫ 𝑡𝑖

0
𝑒
𝑡𝑖−𝜏
𝑠 ¤𝜂(𝜏)𝑑𝜏 +

∫ 𝑡

𝑡𝑖

𝑒
𝑡−𝜏
𝑠 ¤𝜂(𝜏)𝑑𝜏

where the first term is a loading history term that is known at time 𝑡𝑖 . Consequently, it can be treated as an
additional load and brought to the right-hand side. The remaining term can be split into two terms, one
containing coefficients of ¤𝜂, and the other containing coefficients of ¤𝜂𝑖 . The former is unknown and thus
becomes 𝐶 ¤𝜂, whereas the latter is known and thus also contributes to the right-hand side.

To evaluate the term ∫ 𝑡

𝑡𝑖

𝑒
𝑡−𝜏
𝑠 ¤𝜂(𝜏)𝑑𝜏 (4.2.5)

we first need a representation for the velocity ¤𝜂(𝜏) in the interval 𝜏 ∈ [𝑡𝑖 , 𝑡]. We present two choices, both
of which are second order accurate.

4.2.1. Linear Representation of Velocity

The first is consistent with the Newmark-beta method, which presumes a constant acceleration within the
time step. With this assumption, the velocity must vary linearly within the time step. Thus,

¤𝜂(𝑡) = ¤𝜂(𝑡𝑖) +
¥𝜂 + ¥𝜂(𝑡𝑖)

2
(𝑡 − 𝑡𝑖) (4.2.6)

where ¥𝜂 is the (unknown) acceleration at current time 𝑡, and ¥𝜂(𝑡𝑖) is the previous acceleration. Although
equation 4.2.6 is the correct representation for velocity, it is inconvenient in that it would lead to (after
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inserting into equation 4.2.5) a contribution to the mass matrix. This is undesirable, since it would interfere
with the use of a lumped mass matrix. Thus, we re-write the velocity distribution in an equivalent form

𝜂(𝑡) = ¤𝜂(𝑡𝑖) +
¤𝜂 − ¤𝜂(𝑡𝑖)

Δ𝑡
(𝑡 − 𝑡𝑖) (4.2.7)

We note that equations 4.2.6 and 4.2.7 are equivalent representations of the velocity. By inserting equation
4.2.7 into equation 4.2.5 we obtain∫ 𝑡

𝑡𝑖

𝑒
𝑡−𝜏
𝑠 ¤𝜂(𝜏)𝑑𝜏 =

[
𝑠 + 𝑠

2

Δ𝑡

(
𝑒

Δ𝑡
𝑠 − 1

)]
¤𝜂 +

[
−𝑠𝑒 −Δ𝑡𝑠 + 𝑠

2

Δ𝑡

(
1 − 𝑒 −Δ𝑡𝑠

)]
¤𝜂𝑖

The first term involves a coefficient times the unknown ¤𝜂, which is the unknown velocity at the current time,
and thus it must remain on the left-hand side as a damping term contribution. The damping matrix implied
by this term is

𝐶 = 𝑐𝐾 (𝑠𝐾 +
𝑠2
𝐾

Δ𝑡
(𝑒
−Δ𝑡
𝑠𝐾 − 1))BTDKB + 𝑐𝐺 (𝑠𝐺 +

𝑠2
𝐺

Δ𝑡
(𝑒
−Δ𝑡
𝑠𝐺 − 1))BTDGB (4.2.8)

The second term is known, and thus it can be added to the load vector.

4.2.2. Midpoint Representation of Velocity

A second implicit scheme can be derived by using the midpoint rule on the velocity in the viscoelastic term.
The only difference from the linear approach described above is in equation 4.2.1.

¤𝜂(𝑡) = ¤𝜂 +
¤𝜂(𝑡𝑖)

2
(4.2.9)

This leads to ∫ 𝑡

𝑡𝑖

𝑒
𝑡−𝜏
𝑠 ¤𝜂(𝜏)𝑑𝜏 = 𝑠

2

(
1 − 𝑒 Δ𝑡

𝑠

)
¤𝜂 + 𝑠

2

(
1 − 𝑒 Δ𝑡

𝑠

)
¤𝜂𝑖

In the same way as for the linear velocity approach, we use the term involving ¤𝜂 to construct a damping
matrix, and the remaining known terms are carried to the right-hand side.

The midpoint scheme is inconsistent in that a different discretization scheme is used for the viscoelastic
term than was used for the overall time integration. The linear representation of velocity is a consistent
scheme. However, both approaches are second order accurate.
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5. ELEMENTS

Structural dynamics is a rich and extensive field. Finite element tools such as Sierra/SD have been used for
decades to describe and analyze a variety of structures. The same tools are applied to large civil structures
(such as bridges and towers), to machines, and to micron sized structures. This has necessarily led to a
wealth of different element libraries. Details of these element libraries are presented in this section. For
information on the solution procedures that tie these elements together, please refer to Section 2.

5.1. Corrections to Element Matrices

Several elements generate element matrices that may need corrections. If the stiffness matrix generated
from Craig-Bampton reductions is not symmetric positive (semi-) definite, then it may not have the proper
null space. Users may optionally fix this issue (see Section 2.16). Infinite acoustic elements have a similar
problem with the mass matrix. These errors are typically small, but may lead to unstable systems.
Correcting the errors is an important step.

The errors are removed using an eigen decomposition. We compute the eigenvalues and eigenvectors of the
element matrix of concern.

(𝐴 − 𝜆𝐼)𝜙 = 0

where 𝐴 is the matrix of concern, 𝜆 are the eigenvalues and 𝜙 are the eigenvectors. Computation of the
eigen problem on a small element matrix is not expensive. We normalize the eigenvectors such that
𝜙𝑇𝜙 = 𝐼. It follows that 𝜙𝑇 = 𝜙−1. We correct the element matrix by computing,

𝐴̃ 𝑗𝑘 = 𝐴 𝑗𝑘 −
𝜆𝑖<0∑︁
𝑖

𝜙𝑖 𝑗𝜆𝑖𝜙𝑖𝑘 (5.1.1)

The element matrix 𝐴̃ replaces matrix 𝐴 in subsequent calculations. The correction of the null space
vectors (and the element matrix) is optionally performed for Craig-Bampton models. See Figure 2-6.

5.2. Mass lumping

A consistent mass matrix is used by default. A lumped mass matrix is used to apply gravity loads, and is
available for most solution cases. Several mass lumping techniques are outlined in the literature.78 Summing
mass across rows is an established method. It works for most volumetric elements. It is used in SD.

For elements both with translational and rotational DOFs, the row sums are segregated. With a 2 node
beam with 6 dofs per node, the sum for rows {1, 2, 3} includes columns {1, 2, 3} and {7, 8, 9}. Rotational
lumping uses the same row sum method for rotational inertias. The sum for rows {4, 5, 6} includes columns
{4, 5, 6} and {10, 11, 12}. Rotational lumping uses the
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5.3. Integration of Isoparametric Solids

A selective integration method for isoparametric solids is described that satisfies the standard conditions,
including the patch test, and at the same time accommodates anisotropic materials.

The matrix of elastic constants connects the stress, 𝑠, and strain, 𝜈, vectors,

𝑠 =



𝜎11
𝜎22
𝜎33
𝜎23
𝜎13
𝜎12


= 𝐶𝜈, 𝜈 =



𝜖11
𝜖22
𝜖33

2𝜖23
2𝜖13
2𝜖12


.

Virtual work will be used to derive the stiffness matrix.

𝛿𝑊 =

∫
𝑉

𝑠𝑇𝛿𝜈𝑑𝑉 =

∫
𝑉

𝜈𝑇𝐶𝛿𝜈𝑑𝑉 (5.3.1)

If we select the above volume to be that of an element and as in equation (1.0.5), use the
strain-displacement matrices associated with each nodal degree of freedom,

𝜈(𝑥) =
∑︁
𝑗

𝐵 𝑗 (𝑥)𝑢 𝑗 (5.3.2)

where 𝑢 𝑗 is the 𝑗 𝑡ℎ nodal degree of freedom, the virtual work becomes

𝛿𝑊 = 𝑢 𝑗𝛿𝑢𝑘

∫
𝑉

𝐵 𝑗 (𝑥)𝑇𝐶𝐵𝑘 (𝑥)𝑑𝑉 (5.3.3)

Since the element stiffness matrix is defined by

𝛿𝑊 = 𝑢 𝑗𝛿𝐾𝑖 𝑗 (5.3.4)

Therefore equation (1.0.7) (from the Introduction) for the material stiffness matrix also applies here.

Next the strain-displacement vectors are decomposed into deviatoric and dilatational components.

𝐵 𝑗 (𝑥) = 𝐵𝐷𝑗 (𝑥) + 𝐵𝑉𝑗 (𝑥) (5.3.5)

where,

𝐵𝑉𝑗 (𝑥) = 𝑑 𝑗 (𝑥)



1
1
1
0
0
0


(5.3.6)
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and 3𝑑 𝑗 (𝑥) is the sum of the first three rows of 𝐵 𝑗 (𝑥). 𝐵𝐷𝑗 (𝑥) is defined by equation 5.3.5. Substitution of
equation 5.3.5 into equation 1.0.7 yields:

𝐾𝑖 𝑗 =

∫
𝑉

𝐵𝐷𝑗 (𝑥)𝑇𝐶𝐵𝐷𝑘 (𝑥)𝑑𝑉 +
∫
𝑉

𝐵𝑉𝑗 (𝑥)𝑇𝐶𝐵𝑉𝑘 (𝑥)𝑑𝑉 + · · ·

+
∫
𝑉

𝐵𝑉𝑗 (𝑥)𝑇𝐶𝐵𝐷𝑘 (𝑥)𝑑𝑉 +
∫
𝑉

𝐵𝐷𝑗 (𝑥)𝑇𝐶𝐵𝑉𝑘 (𝑥)𝑑𝑉 (5.3.7)

In the case of isotropic materials, the deviatoric and dilatational portions of the strain are orthogonal with
respect to the matrix of material constants. The last two integrals in equation (5.3.7) vanish. Finally
parasitic shear is mitigated by using special cubature rules for each contribution to the stiffness matrix in
equation (5.3.7).

Uniform Strain-Displacement Matrices. The purpose of this section is to explain the treatment for
anisotropic materials. The first new tool is the element averaged strain displacement matrices.

𝐵̄𝑘 =
1
𝑉

∫
𝑉

𝐵𝑘 (𝑥)𝑑𝑉 (5.3.8)

For hexahedrons, these are the strain-displacement matrices,65,66 and lead to “uniform strain” elements.
Elements formed by the above strain/displacement matrices are “soft", having properties similar to
elements formed by single point integration. Hex elements of this sort display spurious zero-energy modes.
In what follows, we consider linear combinations of this strain-displacement matrix formulation with the
consistent formulation of equation (5.3.2).

The uniform strain matrices are also separable into dilatational and deviatoric parts.

𝐵̄𝑘 = 𝐵̄
𝑉
𝑘 + 𝐵̄

𝐷
𝑘 (5.3.9)

Mixed Integration. This selective integration method builds on one presented by Hughes.81 We can
achieve the effect of softening elements by forming the strain displacement matrices from combinations of
the consistent strain-displacement and the uniform strain displacement matrices.

𝐵̂𝑘 (𝑥) = 𝛼𝐵̄𝑉𝑘 + (1 − 𝛼)𝐵
𝑉
𝑘 (𝑥) + 𝛽𝐵̄

𝐷
𝑘 + (1 − 𝛽)𝐵

𝐷
𝑘 (𝑥) (5.3.10)

(14) Note that for all values of 𝛼 and 𝛽, the above correctly captures uniform strains. It is in how the
non-uniform strains contribute to the stiffness matrix that the particular values of 𝛼 and 𝛽 make a difference.
By setting values of 𝛼 and 𝛽 according to the following table, we recover the standard integration forms:

𝛼 𝛽 Integration
1 1 Flanagan and Belytschko
0 0 Full Integration
1 0 Selective Integration

We note that setting 𝛼 = 1 and using an intermediate value of 𝛽, we can achieve performance comparable to
that of the Flanagan and Belytschko element but without admitting hour-glass modes.
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5.4. Selective integration

In theory, selective integration applies to any 3D isoparametric element. The implementation applies
selective integration to elements with linear shape functions (such as Hex8 or wedge6). The first step is to
explain how to apply certain operators to the shape functions. Later these operators will be integrated into
𝐾 .

The strategy for avoiding over stiffness with respect to bending begins with splitting the strain into
deviatoric and dilatational parts. An isotropic, linearly elastic material has strain energy density

𝑝 =
1
2
(2𝐺𝜖 + 𝜆𝑡𝑟 (𝜖)𝐼) • 𝜖 (5.4.1)

with some re-arrangement, this can be shown to be:

𝑝 = 𝐺𝜖 • 𝜖 + 1
2
𝛽(𝑡𝑟 (𝜖))2 (5.4.2)

where 𝜖 = 𝜖 − 1
3 𝑡𝑟 (𝜖)𝐼.

The contribution to strain energy density from the deviatoric strain is separated from the contribution from
the dilatational strain. The contributions are integrated separately. First, the strains are expressed in terms
of nodal degrees of freedom.

The deformation field depends linearly on the nodal DOFs. The displacement gradient does too. It should
be possible to expand each quantity as follows.

Let 𝑃 𝑗 be the node associated with the 𝑗 th degree of freedom and let 𝑠 𝑗 be the direction associated with that
degree of freedom. The displacement field is:

®𝑢(𝑥) = 𝑁̃𝑃𝑗 (𝑥)𝑢𝑃𝑗𝑠 𝑗 ®𝑒𝑠 𝑗 (5.4.3)

where summation takes place over the degree of freedom 𝑗 .

Similarly, the displacement gradient is:

®∇®𝑢(𝑥) = ( 𝜕
𝜕𝑥𝑘
)𝑁̃𝑃𝑗 (𝑥)𝑢𝑃𝑗𝑠 𝑗 ®𝑒𝑠 𝑗 ®𝑒𝑘 (5.4.4)

We define the shape deformation tensor𝑊 𝑗 corresponding to the 𝑗 the nodal degree of freedom:

𝑊 𝑗 (𝑥) = ( 𝜕

𝜕𝑢
𝑃𝑗
𝑠 𝑗

) ®∇®𝑢(𝑥) (5.4.5)

which, with Equation 5.4.4 yields:

𝑊 𝑗 (𝑥) = ( 𝜕
𝜕𝑥𝑘
)𝑁̃𝑃𝑗 (𝑥) ®𝑒𝑠 𝑗 ®𝑒𝑘 (5.4.6)

The symmetric part of this tensor and the strain tensor are,

𝑆 𝑗 (𝑥) = 1
2
(𝑊 𝑗 (𝑥) +𝑊 𝑗 (𝑥)𝑇 ), 𝜖 (𝑥) = 𝑆 𝑗 (𝑥)𝑢𝑃𝑗𝑠 𝑗 .
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From the above, we construct the dilatational and deviatoric portions of the strain in terms of the nodal
displacement components:

𝑡𝑟 (𝜖 (𝑥)) = 𝑏 𝑗 (𝑥)𝑢𝑃𝑗𝑠 𝑗 (5.4.7)

where
𝑏 𝑗 (𝑥) = 𝑡𝑟 (𝑆 𝑗 (𝑥)) (5.4.8)

Similarly,
𝜖 (𝑥) = 𝐵̂ 𝑗 (𝑥)𝑢𝑃𝑗𝑠 𝑗 (5.4.9)

where
𝐵̂ 𝑗 (𝑥) = 𝑆 𝑗 (𝑥) − 1

3
𝑏 𝑗 (𝑥)𝐼 (5.4.10)

To evaluate 𝐾 use the constitutive equation 5.4.2 and

𝐾𝑚,𝑛 =
𝜕2

𝜕𝑢
𝑃𝑚
𝑠𝑚 𝜕𝑢

𝑃𝑛
𝑠𝑛

∫
𝑣𝑜𝑙𝑢𝑚𝑒

𝑝(𝑥)𝑑𝑉 (𝑥) (5.4.11)

Combine this with the expressions for strain in terms of the nodal DOFs,

𝐾𝑚,𝑛 = 𝐺

∫
𝑣𝑜𝑙𝑢𝑚𝑒

(𝐵̂𝑚(𝑥))𝑇 • 𝐵̂𝑛 (𝑥)𝑑𝑉 (𝑥)

+𝛽
∫
𝑣𝑜𝑙𝑢𝑚𝑒

𝑏𝑚(𝑥)𝑏𝑛 (𝑥)𝑑𝑉 (𝑥) (5.4.12)

5.4.1. Implementation

From the above it is seen that once the shape deformation tensor𝑊 𝑗 is found, the rest of the calculation
follows naturally. Next the tensor components are derived. The components of𝑊 𝑗 are

𝑊
𝑗
𝑚𝑛 = ®𝑒𝑚 ·𝑊 𝑗 · ®𝑒𝑛 (5.4.13)

= 𝛿𝑚,𝑠 𝑗 (
𝜕

𝜕𝑥𝑛
)𝑁̃𝑃𝑗 (𝑥) (5.4.14)

The partial derivative ( 𝜕
𝜕𝑥𝑛
)𝑁̃𝑃𝑗 (𝑥) is calculated from

( 𝜕
𝜕𝑥𝑛
)𝑁̃𝑃𝑗 (𝑥(𝜉)) = ( 𝜕

𝜕𝜉𝛼
)𝑁𝑃𝑗 (𝜉)𝐽−1

𝛼,𝑛 (5.4.15)

where
𝐽𝑚,𝛾 =

𝜕

𝜕𝜉𝛾
𝑥𝑚(𝜉) (5.4.16)

and
𝑁 (𝜉) = 𝑁̃ (𝑥(𝜉)) (5.4.17)

Selective element integration, discussed in Section 5.3, is applied to all isoparametric solid elements.
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5.5. Mean Quadrature with Selective Deviatoric Control

In this section we discuss the implementation of the mean quadrature element in Sierra/SD. This work is a
result of a collaboration with Sam Key.87

We first examine the element stiffness matrix resulting from a fully integrated element

𝐾 =

∫
𝑉

𝐵𝑇𝐶𝐵𝑑𝑉 (5.5.1)

where 𝐾 is the stiffness matrix, 𝑉 is the volume of the element, 𝐵 is the standard strain-displacement
matrix, and 𝐶 is the matrix of material constants. When implemented in the standard way, this element
behaves poorly for nearly-incompressible materials, and is too stiff even on materials with moderate Poisson
ratios.

A standard approach for softening the element formulation in the presence of nearly incompressible
materials is to replace the matrix 𝐵 with its mean quadrature counterpart, 𝐵̃,

𝐵̃ =

∫
𝑉

𝐵𝑑𝑉 (5.5.2)

This alleviates problems associated with nearly incompressible materials, but the resulting stiffness matrix
exhibits hourglass modes. These modes can be removed either through hourglass control methods, or by
adding in some of the missing deviatoric components. We use the latter method. 𝐵 and 𝐵̃ split into
volumetric and deviatoric components, i.e.

𝐵̃ = 𝐵̃𝑉 + 𝐵̃𝐷 (5.5.3)
𝐵 = 𝐵𝑉 + 𝐵𝐷

With these decompositions, we define

𝐵̂ = 𝐵̃𝑉 + 𝐵̃𝐷 + 𝑠𝑑 (𝐵𝐷 − 𝐵̃𝐷) (5.5.4)

where 𝑠𝑑 is a parameter between 0 and 1. When 𝑠𝑑 = 0, the element corresponds to a mean quadrature
element. When 𝑠𝑑 = 1, the element corresponds to mean quadrature on the volumetric part, but with full
integration on the deviatoric component.

With this new definition of 𝐵̂, we can define the stiffness matrix for this element as

𝐾 =

∫
𝑉

𝐵̂𝑇𝐶𝐵̂𝑑𝑉 (5.5.5)

5.5.1. Bubble Functions in Linear Analyses

Low order finite elements discretization accuracy deteriorates when subjected to bending loads. The
Bubble Hex elements have been shown to more accurately model bending using the same number of
element DOFs.130,82,99 This section reviews of the theory behind this element. This section builds on the
Introduction. The discussion and notation here builds on the Introduction 1 and follows the standard
reference.82
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The first break through was that using elements with complete spaces of quadratic shape functions more
accurately modeled bending loads than the nodal linear quad and hex elements.130 Adding these shape
functions,

𝜁2, 𝜂2, 𝜉2

is equivalent to adding the quadratic bubble functions vanishing at all the nodes. On the cube [−1, 1]3,
these are

P( ®𝜉 ) ↔

1 − 𝜁2

1 − 𝜂2

1 − 𝜉2

 , u( ®𝜉 ) = N𝑇 ( ®𝜉 )u + P𝑇 ( ®𝜉 )a.

The second break through was the observation that the constant strain patch test passes if the bubble
functions shape gradients are shifted to have zero mean.130

For the canonical linear Hex8 element, three DOFs per node, N is 3 × 24, and P is 3 × 9.

In the notation of equations (1.0.1) and (1.0.5), 𝑁 has strain displacement matrix 𝐵 of size 6 × 24.
Including the analogous strain displacement matrix for 𝑃,

𝜖 = 𝐵u + 𝐺̃a, 𝐺̃ 6 × 9, (5.5.6)

As in equation (1.0.7), this bubble element has material stiffness matrix,∫
𝑒

[𝐵, 𝐺̃]𝑇𝐶 [𝐵, 𝐺̃]𝑑𝑉 =

[
𝐾̆ 𝐹𝑇

𝐹 𝐻

]
.

Nodal forces 𝑓 are equilibrated by displacements 𝑢 and 𝑎 satisfying,[
𝐾̆ 𝐹𝑇

𝐹 𝐻

] [
u
a

]
=

[
f
0

]
. (5.5.7)

The force is zero in the above equations because, although bubble functions have been added, no new nodes
have been added. The bubble unknowns 𝑎 are local to each element, and are eliminated using the
factorization, [

𝐾̆ 𝐹𝑇

𝐹 𝐻

]
=

[
𝐹𝑇𝐻−1 𝐼

𝐼 0

] [
𝐹 𝐻

𝐾 0

]
. (5.5.8)

Due to equation (5.5.7), the bubble displacements corresponding to the nodal element displacement vector
u are

a = 𝐻−1𝐹u. (5.5.9)

The corresponding order 24 reduced stiffness is,

𝐾 = 𝐾̆ − 𝐹𝑇𝐻−1𝐹 (5.5.10)

As mentioned in the lead paragraph for the patch test to pass, the average value of 𝐺̃82 must be subtracted
from 𝐺.

𝐺 = 𝐺̃ − 1
𝑉𝑒

∫
𝑒

𝐺̃𝑑𝑉. (5.5.11)

Now it is possible to repeat the above derivation without the tildes.
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5.5.2. Bubble Functions in Nonlinear Analyses

Minor adaptations82 are needed for nonlinear analyses. Although the assumed strain approach was used
instead of the assumed displacement method, both lead to the same procedure.

We will give the necessary modifications for a nonlinear static analysis. The governing equation is

𝐹𝑖𝑛𝑡 (u, a) = 𝐹𝑒𝑥𝑡 (5.5.12)

It separates into the two equations

𝐹𝑖𝑛𝑡 =

∫
Ω

𝐵𝑇𝜎𝑑Ω = 𝐹𝑒𝑥𝑡 , 𝐹𝑖𝑛𝑡𝐺 =

∫
Ω

𝐺𝑇𝜎𝑑Ω = 0, (5.5.13)

with 𝜖 is given by equation (5.5.6).

The unknowns are u and a. And û and â represent the current iterates of displacement and bubble
unknowns. The two term Taylor’s series for internal force is

𝐹𝑖𝑛𝑡 (u, a) ≈ 𝐹𝑖𝑛𝑡 (û, â) + 𝜕𝐹
𝑖𝑛𝑡

𝜕u
Δu + 𝜕𝐹

𝑖𝑛𝑡

𝜕a
Δa (5.5.14)

𝐹𝑖𝑛𝑡𝐺 (u, a) ≈ 𝐹
𝑖𝑛𝑡
𝐺 (û, â) +

𝜕𝐹𝑖𝑛𝑡
𝐺

𝜕u
Δu +

𝜕𝐹𝑖𝑛𝑡
𝐺

𝜕a
Δa (5.5.15)

We define

[𝐾𝑇 , 𝐹𝑇 ] =
[
𝜕

𝜕u
,
𝜕

𝜕a

]
𝐹𝑖𝑛𝑡 , 𝐻𝑇 =

𝜕𝐹𝑖𝑛𝑡
𝐺

𝜕a
.

where the subscript 𝑇 denotes tangent matrices that are computed at the current configuration. Using these
definitions and substituting equations 5.5.15 into equations (5.5.13), we obtain[

𝐾𝑇 𝐹𝑇
𝑇

𝐹𝑇 𝐻𝑇

] [
Δu
Δa

]
= r

where
r =

[
𝑟u
𝑟a

]
=

[
𝐹𝑒𝑥𝑡 − 𝐹𝑖𝑛𝑡 (û, â)
−𝐹𝑖𝑛𝑡

𝐺
(û, â)

]
In equation (5.5.13) and others, 𝜎 and 𝐵 depend on displacement 𝑢 and bubble unknowns 𝑎. Using the
chain rule the tangent matrices are,

𝐾𝑇 =
𝜕

𝜕u

∫
Ω

𝐵𝑇𝜎𝑑Ω =

∫
Ω

𝜕𝐵𝑇

𝜕u
𝜎𝑑Ω +

∫
Ω

𝐵𝑇
𝜕𝜎

𝜕u
𝑑Ω, (5.5.16)

𝐹𝑇 =
𝜕

𝜕a

∫
Ω

𝐵𝑇𝜎𝑑Ω =

∫
Ω

𝜕𝐵𝑇

𝜕a
𝜎𝑑Ω +

∫
Ω

𝐵𝑇
𝜕𝜎

𝜕a
𝑑Ω, (5.5.17)

𝐻𝑇 =
𝜕

𝜕a

∫
Ω

𝐺𝑇𝜎𝑑Ω =

∫
Ω

𝜕𝐺𝑇

𝜕a
𝜎𝑑Ω +

∫
Ω

𝐺𝑇
𝜕𝜎

𝜕a
𝑑Ω. (5.5.18)

The expressions on the right-hand side are the geometric and material stiffnesses respectively.

The deformation gradient is used to evaluate 𝜕𝐵𝑇

𝜕u and 𝜕𝐵𝑇

𝜕a . For finite deformation, the Green-Lagrange
strain is used,

𝜀 =
1
2
(𝐹𝑇𝐹 − 𝐼).
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New notation is needed. X is the initial configuration, x is the current configuration, and u = x − X is the
displacement. The idea here is to review the construction of the material stiffness matrix,

𝐹 =
𝜕𝑥

𝜕𝑋
= 𝐼 + 𝜕𝑢

𝜕𝑋
= 𝐼 + 𝑢𝑇 𝐷𝑁

𝐷𝑋
+ 𝑎𝑇 𝐷𝑃

𝐷𝑋
,

𝜕𝐹

𝜕𝑢
=
𝐷𝑁

𝐷𝑋
, (5.5.19)

𝜕2𝐹

𝜕𝑢2 = 0, (5.5.20)

and then show that the similar construction applies seamlessly to the bubble functions,

𝜕𝐹

𝜕𝑎
=
𝐷𝑃

𝐷𝑋
,

𝜕2𝐹

𝜕𝑎2 = 0.

Differentiating the Green-Lagrange strain,

[𝐵, 𝐺] =
[
𝜕

𝜕𝑢
,
𝜕

𝜕𝑎

]
𝜀 =

[
𝐹
𝜕𝐹

𝜕𝑢
, 𝐹
𝜕𝐹

𝜕𝑎

]
.

Due to equation (5.5.20),

𝜕

𝜕𝑢
𝐵 = 𝐹

𝜕2𝐹

𝜕𝑢2 +
𝜕𝐹

𝜕𝑢

𝜕𝐹

𝜕𝑢
=
𝜕𝐹

𝜕𝑢

𝜕𝐹

𝜕𝑢
, (5.5.21)

𝜕

𝜕𝑎
𝐺 = 𝐹

𝜕2𝐹

𝜕𝑎2 +
𝜕𝐹

𝜕𝑎

𝜕𝐹

𝜕𝑎
=
𝜕𝐹

𝜕𝑎

𝜕𝐹

𝜕𝑎
. (5.5.22)

Equation (5.5.19) implies that

𝜕2𝐹

𝜕𝑢𝜕𝑎
= 0 (5.5.23)

For the cross terms, we have

𝜕𝐵

𝜕𝑎
= 𝐹

𝜕2𝐹

𝜕𝑢𝜕𝑎
+ 𝜕𝐹
𝜕𝑢

𝜕𝐹

𝜕𝑎
=
𝜕𝐹

𝜕𝑢

𝜕𝐹

𝜕𝑎
(5.5.24)

As was done for the linear element, the bubble degrees of freedom can be condensed from equations
(5.5.2). This results in the equation

(𝐾𝑇 − 𝐹𝑇𝑇 𝐻−1
𝑇 𝐹𝑇 )Δu = ru − 𝐹𝑇𝑇 𝐻−1

𝑇 ra. (5.5.25)

Thus, the full tangent operator for the bubble element is given by

𝐾𝑇 − 𝐹𝑇𝑇 𝐻−1
𝑇 𝐹𝑇 , (5.5.26)

the internal force is given by
𝐹𝑖𝑛𝑡 (û, â) − 𝐹𝑇𝑇 𝐻−1

𝑇 𝐹𝑖𝑛𝑡𝐺 (û, â), (5.5.27)

and the residual is given by two terms
ru − 𝐹𝑇𝑇 𝐻−1

𝑇 ra. (5.5.28)

These equations describe the nonlinear analysis of the bubble element.
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5.6. Quadratic isoparametric solids

Quadratic elements (elements with bilinear or higher order shape functions) such as the Hex20 and tet10
are naturally soft and do not need to be softened by positive values of G and 𝛽 (see sections 5.4 and 5.3 for
definitions of 𝐺 and 𝛽). Therefore, the values 𝐺 = 0 and 𝛽 = 0 are recommended.

5.6.1. Shape functions and integration points

The shape functions and Gauss points for Hex20 elements use a standard ordering. The nodal ordering (and
shape functions) follows the ordering in the Exodus manual. Gauss points are input and output using the a
Sandia legacy ordering. Internally, the Gauss points are located at element coordinates (and order) shown
in Table 5-2.

Shape Function 𝐴0 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5
𝑁1 = (1 − 𝜉)𝑡/2 1/2 -1/2 -1/2 -1/2 1/2 1/2
𝑁2 = (1 − 𝜉)𝑟/2 1/2 -1/2
𝑁3 = (1 − 𝜉)𝑠/2 1/2 −1/2
𝑁4 = (1 + 𝜉)𝑡/2 1/2 -1/2 -1/2 1/2 -1/2 -1/2
𝑁5 = (1 + 𝜉)𝑟/2 1/2 1/2
𝑁6 = (1 + 𝜉)𝑠/2 1/2 1/2

Table 5-1. – Shape functions and coefficients.
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number label suffix X Y Z
1 111 0 0 0
2 112 0 0 A
3 110 0 0 -A
4 121 0 A 0
5 122 0 A A
6 120 0 A -A
7 101 0 -A 0
8 102 0 -A A
9 100 0 -A -A
10 211 A 0 0
11 212 A 0 A
12 210 A 0 -A
13 221 A A 0
14 222 A A A
15 220 A A -A
16 201 A -A 0
17 202 A -A A
18 200 A -A -A
19 011 -A 0 0
20 012 -A 0 A
21 010 -A 0 -A
22 021 -A A 0
23 022 -A A A
24 020 -A A -A
25 001 -A -A 0
26 002 -A -A A
27 000 -A -A -A

Table 5-2. – Hex20 Gauss Point Locations. The constant A=0.77459666924148. The unit element is 2x2x2,
with a volume of 8 cubic units.
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5.7. Wedge Shape Functions

The shape functions are given explicitly as in.81 These are provided as bi-linear polynomials in 𝑟, 𝑠, 𝑡, and
𝜉, where 𝑟 and 𝑠 are independent coordinates of the triangular cross-subsections, 𝑡 = 1 − 𝑟 − 𝑠, and 𝜉 is the
coordinate in the third direction. For our purposes, it is necessary to expand the shape functions as
polynomials in 𝑟, 𝑠, and 𝜉:

𝑁𝑘 = 𝐴𝑘0 + 𝐴
𝑘
1𝑟 + 𝐴

𝑘
2 𝑠 + 𝐴

𝑘
3 𝜉 + 𝐴

𝑘
4𝑟𝜉 + 𝐴

𝑘
5 𝑠𝜉 (5.7.1)

5.7.1. Wedge quadrature

No. Points 𝑟 𝑠 𝜉

1 1/3 1/3 0
2 1/3 1/3 -1/

√
3

1/3 1/3 1/
√

3
6 1/6 1/6 -1/

√
3

2/3 1/6 -1/
√

3
1/6 2/3 -1/

√
3

1/6 1/6 1/
√

3
2/3 1/6 1/

√
3

1/6 2/3 1/
√

3

Table 5-3. – Wedge element integration rules.

5.8. Tet10

Also see Section 5.6

The degree 2 integration rule (see for example Appendix 3.1 of81) based on values at the four vertices is
used for the stiffness matrix. The mass matrix depends on integrals of polynomials two degrees higher than
the stiffness matrix. Higher order integration is required to determine a consistent (exact) mass matrix than
is required for the stiffness matrix. The 16-point integration comes from.83 (Using 4-point integration to try
to estimate the mass matrix of a natural element resulted in a 30 by 30 mass matrix with several zero
eigenvalues.) A 16-point integration with degree of exactness 6 from83 is used for the mass matrices.
Lower order cubature rules are often sufficient, and in these cases they are used for efficiency.

5.9. Hex20 shape functions and gradients

The shape functions a determined from the monomials

𝑝𝑖 (𝜀) = 𝜀𝑟𝑖1 𝜀
𝑠𝑖
2 𝜀

𝑡𝑖
3 .

for the non-negative integers {𝑟𝑖 , 𝑠𝑖 , 𝑡𝑖}1≤𝑖≤20 such that

𝑟2
𝑖 + 𝑠2

𝑖 + 𝑡2𝑖 ≤ 7.

146



The derivation of a cardinal basis starts with the rst matrix.

𝑆20 = {(𝐼, 𝐽, 𝐾) : 𝐼2 + 𝐽2 + 𝐾2 < 8}.

The shape functions {𝑁𝑖 (𝑟, 𝑠, 𝑡)}1≤𝑖≤20 are linear combinations of the 𝑝𝑖 satisfying 𝑁𝑖 (𝑟 𝑗 , 𝑠 𝑗 , 𝑡 𝑗) = 𝛿𝑖, 𝑗 ,

®𝑁 = 𝐴 ®𝑝. (5.9.1)

The element has 20 nodes. 𝐴 is a 20 × 20 matrix. Wouldn’t 𝐴 be 60 × 60 ?

We find the 400 term 𝐴−matrix values. Let ®𝜀𝑖 denote the natural coordinate value at the 𝑖th node. We have
𝐴 ®𝑝( ®𝜀1) = ®𝑒1 ≡ (1, 0, 0, . . . , 0)𝑇 , and, in general, 𝐴 ®𝑝( ®𝜀𝑖) = ®𝑒𝑖 .

[ ®𝜀1, ®𝜀2, . . . , ®𝜀20] = [𝐴] [ ®𝑝( ®𝜀1), ®𝑝( ®𝜀2), . . . , ®𝑝( ®𝜀20)]

or,
𝐼 = 𝐴𝑃

or,
𝐴 = 𝑃−1

The SD source code labels 𝐴 as hc20.

The gradients are also linear combination of the 𝑝𝑖 , 𝜕
®𝑁

𝜕𝜀 𝑗
, ( 𝑗 = 1, 2, 3), determined by differentiating

equation 5.9.1,
𝜕 ®𝑁
𝜕𝜀 𝑗

= 𝐴
𝜕 ®𝑝
𝜕𝜀 𝑗

The 𝜕 ®𝑝/𝜕𝜀 𝑗 may be written as a linear combination of the 𝑝𝑘 via the following three equations.

𝜕𝑝𝑖

𝜕𝜀1
= 𝑟𝑖𝜀

𝑟𝑖−1
1 𝜀

𝑠𝑖
2 𝜀

𝑡𝑖
3 (5.9.2)

𝜕𝑝𝑖

𝜕𝜀2
= 𝑠𝑖𝜀

𝑟𝑖
1 𝜀

𝑠𝑖−1
2 𝜀

𝑡𝑖
3 (5.9.3)

𝜕𝑝𝑖

𝜕𝜀3
= 𝑡𝑖𝜀

𝑟𝑖
1 𝜀

𝑠𝑖
2 𝜀

𝑡𝑖−1
3 (5.9.4)

while noting that equations 5.9.2, 5.9.3 and 5.9.4 are zero if 𝑟𝑖 , 𝑠𝑖 , or 𝑡𝑖 is zero, respectively. The matrices
𝐵 𝑗 with 𝑗 = 1, 2, 3 are sought such that,

𝜕 ®𝑁
𝜕𝜀 𝑗

= 𝐵 𝑗 ®𝑝.

Evaluating 𝜕 ®𝑁/𝜕𝜀 𝑗 and ®𝑝 at all 20 nodes, we have,[
𝜕 ®𝑁
𝜕𝜀 𝑗
( ®𝜀1),

𝜕 ®𝑁
𝜕𝜀 𝑗
( ®𝜀2), . . . ,

𝜕 ®𝑁
𝜕𝜀 𝑗
( ®𝜀20)

]
= 𝐵 𝑗 [ ®𝑝( ®𝜀1), ®𝑝( ®𝜀2), . . . , ®𝑝( ®𝜀20)] (5.9.5)

Matrix equation 5.9.5 can be inverted to solve for 𝐵 𝑗 with 𝑗 = 1, 2, 3. In Hex20.C, AB1 is 𝐵1 , AB2 is 𝐵2,
and AB3 is 𝐵3.

5.9.1. Shape Function Ordering

The above method results in elements which satisfy the requirements that the evaluation of shape function 𝑖
on node 𝑖 is one. However, the implementation does not ensure compatibility with standard node ordering
from Exodus. We’ve provided a re-ordering function to ensure this.
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5.9.2. Anisotropy

Anisotropic materials require special care in the rotation of the matrix of material parameters when those
parameters are given in some coordinate system other that in which the element matrices are calculated.
The formulae for rotating those matrices are derived in 4.1.

5.10. Hexshell usage and limitations

A Hexshell61 element has the behavior of a standard shell element and the mesh topology of a brick. Thin
regions meshed with the solid brick topology may be modelled with Hexshells without concern for the large
element aspect ratios.

Hexshells require an thickness direction. It is important to be able to identify that direction. SD implements
four such methods

natural The natural ordering of the nodes in the element can determine the thickness direction. This is the
method used by Carlos to develop the element. I believe that the connectivity for the element will
indeed have to be modified to properly interface to his software.

sideset The placement of a sideset on one (or both) thickness faces of the elements uniquely identifies the
thickness direction.

topology The topology may be used to identify the thickness direction if the Hexshell is in a sheet.
Another hypothesis is that the sheet does not intersect itself. The thickness direction connects the
sheet’s free surfaces. Further, once the thickness direction is established for one element, the
thickness direction propagates to the adjacent elements.

projection The thickness direction could be determined by the closest projection to a coordinate direction.

We will try to support all the above methods. The topology method puts the least burden on the analyst. It
is the least explicit however, and the most work to implement (especially in parallel). The next simplest (for
the analyst) is the projection method. Sideset methods are burdensome for both the analyst and the
developers. The natural method is the easiest to implement, but can be next to impossible for the analyst to
use.

Input will be structured as follows. Keywords are associated with each method. At most one of the four
keywords above may be entered. The default is topology. The mass properties of a layered Hexshell are

Block 9
Hexshell

orientation sideset=’1,2’ material=9
end

Block 9
Hexshell

orientation topology material=9
end

computed approximately as follows.

volume fraction 𝑓𝑖 , and density, 𝜌𝑖 , of each layer is determined.

element mass is added to the nodes as if the element had isotropic density 𝜌̄ =
∑
𝑖 𝜌𝑖 𝑓𝑖
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The net effect of this is that the mass is computed as if an average density were applied. This could
introduce minor errors if the element is thick and one side is much denser than the other.

Materials for all Hexshell specifications can be defined as a function of temperature, with the temperatures
defined through the Exodus file as element variables.

5.10.1. Membranes

In this section we provide the theory behind the tangent stiffness matrix for the quad membrane element in
Sierra/SD. This element has stiffness in the in-plane directions, but has no stiffness out-of-plane. Also, it
has no rotational degrees of freedom. The following formulation coincides with the Abaqus7 membrane.

In the plane domain Ω of the membrane, the orthonormal surface directions are ®𝑙, ®𝑚. Together with the unit
normal vector 𝑛, they define an (𝑙, 𝑚, 𝑛) coordinate system.

F = dx/dX, Why L? Who uses L?

As usual, 𝜎 is the stress tensor. The deformation gradient,

L =
𝜕u
𝜕x

is the sum L = D +W, of the rate-of-deformation D tensor,

D =
1
2

[
𝜕u
𝜕x
+

(
𝜕u
𝜕x

)𝑇 ]
, (5.10.1)

and the spin tensor W,

W =
1
2

[
𝜕u
𝜕x
−

(
𝜕u
𝜕x

)𝑇 ]
(5.10.2)

The change in virtual work𝑊𝑖𝑛𝑡 due to a change in the rate of deformation tensor for the membrane in the
deformed configuration19 is,

𝛿𝑊𝑖𝑛𝑡 =

∫
Ω

𝛿D : 𝜎𝑑Ω (5.10.3)

The updated Lagrangian formulation is used. Thus, the integral in equation (5.10.3) is over the current
(deformed) configuration of the membrane. Due to 𝛿𝑊 : 𝜎 = 0,

𝛿𝑊𝑖𝑛𝑡 =

∫
Ω

𝛿L : 𝜎𝑑Ω (5.10.4)

Equation (5.10.4) is written in terms of the global coordinate system. In the formation of the tangent
stiffness matrix, we wish to use the fact that all stress components normal to the plane of the membrane are
zero. Hence, when considering equation (5.10.3) in terms of the (𝑙, 𝑚, 𝑛) coordinate system of the
membrane, we can eliminate the out-of-plane terms and write as

𝛿𝑊𝑖𝑛𝑡 =

∫
Ω

𝛿𝐿𝑙𝑚 : 𝜎𝑙𝑚𝑑Ω (5.10.5)

where 𝑙, 𝑚 = 1, 2 are the indices for the in-plane coordinate system of the membrane, 𝐿𝑙𝑚 =
𝜕𝑢𝑙
𝜕𝑥𝑚

, and 𝜎𝑙𝑚
is the 2 × 2, in-plane stress tensor.
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Next, we need to relate the derivatives in the plane of the element to those in the global coordinate system.
This is because the numerical integration of the tangent stiffness matrix takes place in the plane of the
element (and hence involves derivatives with respect to in-plane coordinates), whereas the derivatives in
equation (5.10.5) are in terms of global coordinates. We can express the in-plane displacement in terms of
the out-of-plane displacement as

[𝑢𝑙, 𝑢𝑚, 𝑢𝑛] = u𝑇 [l,m, n]

The derivative involves the unit vector e𝑙 in the 𝑙 direction,

𝜕

𝜕𝑥𝑙
u =

𝜕u
𝜕x

𝜕

𝜕𝑥𝑙
x =

𝜕u
𝜕x

el,

and similarly for the other directions. Also,

𝜕𝑢𝑚

𝜕𝑥𝑙
= ⟨e𝑚,

𝜕u
𝜕x

e𝑙⟩.

Next, we consider the expression given for the tangent operator in7∫
Ω

𝛿D : C : 𝑑D + 𝜎 :
(
𝛿L𝑇 · 𝑑L − 2𝛿D · 𝑑D

)
𝑑Ω (5.10.6)

Due to the zero out-of-plane stress, and the invariance through the thickness,∫
Ω

. . . 𝑑Ω = 𝑡

∫
𝐴

. . . 𝑑𝐴.

The tangent operator is a sum of material and geometric stiffnesses respectively,

𝑡

∫
𝐴

𝛿D : C : 𝑑D + 𝜎 :
(
𝛿L𝑇 · 𝑑L − 2𝛿D · 𝑑D

)
𝑑𝐴. (5.10.7)

Although the material stiffness term is the three-dimensional material stiffness restricted to two dimensions,
the origins of the geometric stiffness term are not yet clear.

First, we consider the deformation gradient in the plane of the element

𝐿𝑙𝑚 = e𝑙
𝜕u
𝜕𝑥𝑚

(5.10.8)

We have

𝛿𝐿𝑙𝑚 = e𝑙
𝜕𝛿u
𝜕𝑥𝑚

(5.10.9)

𝛿𝐿𝑇𝑙𝑚 =

(
𝜕𝛿u
𝜕𝑥𝑚

)𝑇
e𝑇𝑙 (5.10.10)

e𝑇
𝑙
e𝑚 = 𝛿𝑙𝑚 implies that

L𝑇L =

(
𝜕u
𝜕𝑥𝑚

)𝑇
e𝑇𝑙 e𝑚

𝜕u
𝜕𝑥𝑙

=

(
𝜕u
𝜕𝑥𝑚

)𝑇
𝜕u
𝜕𝑥𝑙

(5.10.11)

since e𝑇
𝑙
e𝑚 = 𝛿𝑙𝑚.

150



The rate of deformation D is the symmetric part of L. Thus, we can write

𝐷𝑙𝑚 =
1
2

(
e𝑙
𝜕u
𝜕𝑥𝑚
+ e𝑚

𝜕u
𝜕𝑥𝑙

)
(5.10.12)

With these relations, we can expand the expression for the geometric stiffness, as

𝑡

∫
𝐴

𝜎𝑙𝑚

(
𝜕𝛿u
𝜕𝑥𝑚

)𝑇
𝜕u
𝜕𝑥𝑙

𝑑𝐴

− 𝑡
2

∫
𝐴

2∑︁
𝛾=1

(
e𝛾
𝜕𝛿u
𝜕𝑥𝑙
+ e𝑙

𝜕u
𝜕𝑥𝛾

) (
e𝛾
𝜕𝛿u
𝜕𝑥𝑚
+ e𝑚

𝜕u
𝜕𝑥𝛾

)
𝑑𝐴

(5.10.13)

The material stiffness term can be integrated with a selective deviatoric approach, in much the same was as
for a volumetric element. First, we note that after finite element discretization, the material stiffness term in
equation (5.10.7) can be written in terms of the strain-displacement matrix 𝐵 as in equation (1.0.7).

We define the mean quadrature counterpart to 𝐵,

𝐵̃ =

∫
𝑉

𝐵𝑑𝑉 (5.10.14)

𝐵 and 𝐵̃ split into volumetric and deviatoric components, i.e.,

𝐵̃ = 𝐵̃𝑉 + 𝐵̃𝐷 (5.10.15)
𝐵 = 𝐵𝑉 + 𝐵𝐷

With these decompositions, we define

𝐵̂ = 𝐵̃𝑉 + 𝐵̃𝐷 + 𝑠𝑑 (𝐵𝐷 − 𝐵̃𝐷) (5.10.16)

where 𝑠𝑑 is a parameter between 0 and 1. When 𝑠𝑑 = 0, the element corresponds to a mean quadrature
element. When 𝑠𝑑 = 1, the element corresponds to mean quadrature on the volumetric part, but with full
integration on the deviatoric component. The element material stiffness matrix is defined using 𝐵̂ as in
equation (1.0.7). This is the approach taken for integrating the material stiffness term in equation (5.10.7)

5.11. Tria6

This section reviews the derivation of the triangular shell element (TriaShell) element. The membrane
DOFs (𝑢, 𝑣, 𝜃𝑧) are decoupled from the bending DOFs (𝑤, 𝜃𝑥 , 𝜃𝑦). Allman’s triangle2 models the
membrane response. The discrete Kirchhoff triangle18 (DKT) models the bending response.

Allman’s Triangular Element Allman’s formulation after the substitutions cos(𝛾𝑖 𝑗) =
𝑦 𝑗𝑖

𝑙𝑖 𝑗
and

sin(𝛾𝑖 𝑗) =
−𝑥 𝑗𝑖
𝑙𝑖 𝑗

, is

𝑢 = 𝑢1𝜓1 + 𝑢2𝜓2 + 𝑢3𝜓3 + 1
2 𝑦21(𝜔2 − 𝜔1)𝜓1𝜓2+

1
2 𝑦32(𝜔3 − 𝜔2)𝜓2𝜓3 + 1

2 𝑦13(𝜔1 − 𝜔3)𝜓3𝜓1
(5.11.1)

𝑣 = 𝑣1𝜓1 + 𝑣2𝜓2 + 𝑣3𝜓3 + 1
2𝑥21(𝜔2 − 𝜔1)𝜓1𝜓2

−1
2𝑥32(𝜔3 − 𝜔2)𝜓2𝜓3 − 1

2𝑥13(𝜔1 − 𝜔3)𝜓3𝜓1
(5.11.2)
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General finite element procedures are used to determine ([𝐾]𝐴𝑇 , [𝑀]𝐴𝑇 ). However, the element has a
mechanism that introduces spurious low energy modes. This mechanism arises if the deformations are all
zero and the rotations are all the same. A “fix”37 has been implemented.

Discrete Kirchhoff Element The DKT18 element has 9 DOFs. It is obtained by transforming a 12 DOF
element with mid-side nodes to a triangle with the nodes at the vertices only. This is obtained as follows.
Using Kirchhoff theory, the transverse shear is set to zero at the nodes. And the rotation about the normal to
the edge is imposed to be linear. Using these constraints, a nine DOF bending element is derived (DKT)
using the shape functions for the six-node triangle. Unfortunately, the variation of 𝑤 over the element
cannot be explicitly written. Therefore, the 𝑤 variation over the element needs to be calculated before the
mass matrix can be obtained.

As stated, the equation for 𝑤 is not explicitly stated over the element in the derivation.18 Using a nine DOF
element, a complete cubic cannot be written, since 10 quantities would be needed to get a unique
polynomial. The strategy taken here is that the stiffness matrix produced using for the DKT element
provides reasonable results, and the derivation of the mass matrix is not as critical. So, the equation for
𝑤140 as

𝑤 = 𝛼1𝜓1 + 𝛼2𝜓2 + 𝛼3𝜓3+
+𝛼4𝜓1𝜓2 + 𝛼5𝜓2𝜓3 + 𝛼6𝜓3𝜓1+
+𝛼7𝜓1

2𝜓2 + 𝛼8𝜓2
2𝜓3 + 𝛼9𝜓3

2𝜓1

(5.11.3)

Our AT and DKT element stiffness and mass matrix derivations used Maple. The consistent mass matrix
derivation follows the standard finite element procedure. And mass lumping of translational DOFs are
found as usual. Mass lumping for the rotational DOFs, however, are set to 1

125 of the translation terms.

The complication in the derivation of the combined AT and DKT shell element is the derivation of DKT
element mass matrix. We used an incomplete family of polynomials. We think that this did not affect the
result.

Verification and Validation. Results for our AT element agree with the published results.2 The square
plate in pure bending and a cantilevered beam with a parabolic tip load are used as verification examples.
Mass matrix verification is limited to noting that mass is conserved in the 𝑢 − 𝑣 directions.

The DKT element is validated against experimental data for a triangular fin.18 The first 10 eigenvalues for
the triangular fin (cantilever) match very well. In addition, the DKT element is verified by using a
cantilevered beam and matching deflection results at the tip. If 𝜈 = 0, then results should match very
closely with Euler-Beam theory results, and they did.

Finally, the AT/DKT element is verified by comparing with published results from Ref..56 Tables 5-4 and
5-5 show that our elements match exactly with ABAQUS to the number of digits shown. The first column is
the result produced by Ertas et al., the second column is the result produced by ABAQUS, and the third
column is the result produced by Sierra/SD using this DKT/AT element.
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DOF AT/DKT ABAQUS AT/DKT!
𝑥 0.000 0.000 0.000
𝑦 0.000 0.000 0.000
𝑧 -1.405 × 10−2 -1.398 × 10−2 -1.398 × 10−2

𝜃𝑥 3.337 × 10−2 3.337 × 10−2 3.337 × 10−2

𝜃𝑦 3.106 × 10−2 3.089 × 10−2 3.089 × 10−2

𝜃𝑧 0.000 0.000 0.000

Table 5-4. – Comparison of deflections at Node 2.

DOF AT/DKT ABAQUS AT/DKT!
𝑥 0.000 0.000 0.000
𝑦 0.000 0.000 0.000
𝑧 1.949 × 10−2 1.955 × 10−2 1.955 × 10−2

𝜃𝑥 3.363 × 10−2 3.363 × 10−2 3.363 × 10−2

𝜃𝑦 -2.686 × 10−2 -2.702 × 10−2 -2.702 × 10−2

𝜃𝑧 0.000 0.000 0.000

Table 5-5. – Comparison of deflections at Node 3.

5.12. 3 noded Triangle

The triangular shell used most in Sierra/SD is the Tria3 element developed by Carlos Felippa of the
University of Colorado in Boulder. This element is similar to the TriaShell element presented in Section
5.11. Full details of the theory behind the element is out of the scope of this document, but details may be
found in references5,64 and.63 Unfortunately, these references omit any mention of how this element handles
the bending part.

5.13. Shell Offset

Consider a shell offset, with an offset vector, ®𝑣. Notice that ®𝑣 could be defined at each nodal location in
what follows, but for this development, we assume a single offset ®𝑣 which applies to all nodes. That is,
consider the offset of a single node. Define a coordinate system at the node, with variables 𝑢. On the offset
beam the coordinate system is 𝑢̃.

𝑢 is related to 𝑢̃. The constraint of a constant offset may be stated that the displacement difference of the
two systems must be orthogonal to ®𝑣, i.e. (𝑢 − 𝑢̃) = ®𝑣 × ®𝜅, where ®𝜅 is the rotation at the nodes.

Thus, we can write, (
𝑢̃

𝜅

)
= [𝐿]

(
𝑢

𝜅

)
(5.13.1)

For multiple nodes each diagonal block of 𝐿 depends on the offset of the corresponding node. We can use
this transformation matrix to eliminate the degrees of freedom associated with 𝑢̃. The energy of the shell
can be written,

𝐸𝑠𝑡𝑟𝑎𝑖𝑛 = 0.5
{
𝑢̃

𝜅

}𝑇 [
𝐾̃
] {

𝑢̃

𝜅

}
(5.13.2)
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But with this substitution,

𝐸𝑠𝑡𝑟𝑎𝑖𝑛 = 0.5
{
𝑢

𝜅

}𝑇 [
𝐿𝑇 𝐾̃𝐿

] {
𝑢

𝜅

}
(5.13.3)

If we let 𝐾 = 𝐿𝑇 𝐾̃𝐿, then

𝐸𝑠𝑡𝑟𝑎𝑖𝑛 = 0.5
{
𝑢

𝜅

}𝑇
[𝐾]

{
𝑢

𝜅

}
(5.13.4)

Thus, 𝑢̃ has been eliminated, and the equations may be put in terms of the output variables.

5.14. Beam2

The 2-noded beam37 element uses under-integrated cubic shape functions. Isotropic material models are
supported. Torsional effects are accounted for in the axis of the beam. The area and bending moments are
constants independent of position in the beam.

Attributes are read from the Exodus file for each element.

1. The cross sub-sectional area of the beam (Attribute 1)

2. The first bending moment, 𝐼1. (Attribute 2).

3. The second bending moment, 𝐼2. (Attribute 3).

4. The torsional moment, 𝐽𝑘 . (Attribute 4).

5. The orientation of the beam (Attributes 5, 6 and 7)

The orientation should not be aligned with the beam axis. In the event of an improperly specified
orientation, a warning will be written, and a new orientation selected. The orientation is an x,y,z
triplet specifying a direction. It does not need to be perpendicular to the beam axis, nor is it required
to be normalized. The orientation vector, and the beam axis define the plane for the first bending
direction.

Torsion

As outlined in Blevins,25 the stiffness properties of beam torsion are governed by 𝐽𝑘 (Attribute 4), while the
mass properties are derived from the polar moment of inertia, 𝐽𝑝𝑜𝑙𝑎𝑟 = 𝐼1 + 𝐼2. This representation is
accurate for beams with closed cross sections, but will have significant error for more open sections.
Warping in open sections is not accounted for in this standard beam formulation.
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𝐴𝐸/𝐿 0 0 0 0 0 −𝐴𝐸/𝐿 0 0 0 0 0

𝑅1 𝛽 0 −𝐿𝛽/2 𝐿𝑅1/2 0 −𝑅1 −𝛽 0 −𝐿𝛽/2 𝐿𝑅1/2

𝑅2 0 −𝐿𝑅2/2 𝐿𝛽/2 0 −𝛽 −𝑅2 0 −𝐿𝑅2/2 𝐿𝛽/2

𝐺𝐽/𝐿 0 0 0 0 0 −𝐺𝐽/𝐿 0 0

𝑘2 −𝛽𝐿2/3 0 𝐿𝛽/2 −𝐿𝑅2/2 0 𝑘4 −𝛽𝐿2/6

𝑘1 0 𝐿𝑅1/2 −𝐿𝛽/2 0 −𝛽𝐿2/6 𝑘3

𝐴𝐸/𝐿 0 0 0 0 0

𝑅1 𝛽 0 𝐿𝛽/2 −𝐿𝑅1/2

𝑅𝑖2 0 𝐿𝑅2/2 −𝐿𝛽/2

𝐺𝐽/𝐿 0 0

𝑘2 −𝛽𝐿2/3

𝑘1

Figure 5-1. – Nbeam Element Stiffness Matrix.

5.15. Nbeam

Beam/bar elements are a major component in many structural Finite Element Models (FEM). It is
important to employ a beam/bar element which includes transverse shear and torsion in addition to axial
and bending stiffness. Additionally, the mass formulation needs to include rotary inertia. The Nbeam
element is an implementation of the NASTRAN CBAR element. The stiffness matrix is identical to the
CBAR. The mass matrix is a new formulation to this implementation providing a diagonal mass matrix w/
rotary inertia included.

The Nbeam element stiffness matrix is based on Timoshenko beam theory.117 The formulation differs in the
inertia coupling formulation. The derivation of this specific form is provided in [100]. The exact form of the
stiffness matrix implemented in Sierra/SD is shown in Figure 5-1.

The following derived98 quantities are used depending on the value of 𝐼12.

If 𝐼12 = 0 If 𝐼12 ≠ 0

𝛽 = 0 𝛽 =
12𝐸𝐼12
𝐿3

𝑅1 =
12𝐸𝐼1
𝐿3

[
1 + 12𝐸𝐼1

𝑠1𝐴𝐺𝐿2

]−1
𝑅1 =

12𝐸𝐼1
𝐿3

𝑅2 =
12𝐸𝐼2
𝐿3

[
1 + 12𝐸𝐼2

𝑠2𝐴𝐺𝐿2

]−1
𝑅2 =

12𝐸𝐼2
𝐿3

The rest of the quantities are valid for any value of 𝐼12.

𝑘1 =
𝐿2𝑅1

4
+ 𝐸𝐼1

𝐿

𝑘2 =
𝐿2𝑅2

4
+ 𝐸𝐼2

𝐿

𝑘3 =
𝐿2𝑅1

4
− 𝐸𝐼1

𝐿

𝑘4 =
𝐿2𝑅2

4
− 𝐸𝐼2

𝐿
𝑠1 = 𝐴𝑦/𝐴 shear factor
𝑠2 = 𝐴𝑧/𝐴 shear factor
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𝑚′ 0 0 0 0 0 0 0 0 0 0 0
𝑚′ 0 0 0 0 0 0 0 0 0 0

𝑚′ 0 0 0 0 0 0 0 0 0
𝑚′𝐽/𝐴 0 0 0 0 0 0 0 0

𝑚′𝐼2/𝐴𝑧 0 0 0 0 0 0 0
𝑚′𝐼1/𝐴𝑦 0 0 0 0 0 0

𝑚′ 0 0 0 0 0
𝑚′ 0 0 0 0

𝑚′ 0 0 0
𝑚′𝐽/𝐴 0 0

𝑚′𝐼2/𝐴𝑧 0
𝑚′𝐼1/𝐴𝑦

Figure 5-2. – Nbeam mass matrix.

Table 5-6. – Nbeam Parameters.
Description Keyword Exodus Attributes
Cross-Sectional Area Area 1
First Bending Moment I1 2
Second Bending Moment I2 3
Cross Inertia I12 N/A
Torsional Moment J 4
Beam Orientation orientation 5-7
Y-axis Shear Area Factor Shear_factor_1 N/A
Z-axis Shear Area Factor Shear_factor_2 N/A
Offset Vector At 1st Node offset 8-10
Offset Vector At 2nd Node - 11-13

The Nbeam mass matrix is given in Figure 5-2. The mass quantity 𝑚′ is defined as 𝑚′ = 𝜌𝐴𝐿/2.

If the local coordinate system is not the global coordinate system, then the transformation to global
coordinates introduces off diagonal terms to the mass matrix in the rows corresponding to rotary inertia. In
Sierra/SD the mass matrix is lumped by setting off diagonals to zero and not adding them to a diagonal.
Total rotary mass contributions are reduced. An alternative is to set off diagonals to zero and add them to a
diagonal; this increases total rotary mass contributions.

Element properties are specified in the text input file. The required parameters are listed in Table 5-6.

The parallel axis theorem is used to account for offsets. The offset vector is defined as a vector from the
bending neutral axis of the beam to the nodal location. All other quantities are derived from the material
data and the element length.

Torsion

As outlined in Blevins,25 the stiffness properties of beam torsion are governed by 𝐽𝑘 , while the mass
properties are derived from the polar moment of inertia, 𝐽𝑝𝑜𝑙𝑎𝑟 = 𝐼1 + 𝐼2. This representation is accurate
for beams with closed cross sections, but will have significant error for more open sections. Warping in
open sections is not accounted for in this standard beam formulation.
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5.16. Navy quadrilateral

Many structural components on naval vessels, including the hull, bulkheads and decks are made from plate,
be it steel, aluminum or a composite material. As such, plate and shell elements are essential to any finite
element analysis of ships or submarines. It is important to employ an element that is shear deformable and
can also accommodate orthotropic layers. The Nquad is a four node isoparametric quadrilateral element
resembling NASTRAN’s CQUAD4.

This section is based on material in Chapter 4 of [120], material that does not appear in later editions.

The development of the stiffness matrix draws from the plane elasticity and bending formulations found in
[120]. The membrane and bending components are decoupled. The membrane stiffness terms are derived
from the integrals in equation 4.156 in [120]:

𝐾11
𝑖 𝑗 =

∫
Ω𝑒

(
𝐶11

𝜕𝜓𝑖

𝜕𝑥

𝜕𝜓 𝑗

𝜕𝑥
+ 𝐶33

𝜕𝜓𝑖

𝜕𝑦

𝜕𝜓 𝑗

𝜕𝑦

)
𝑑𝑥𝑑𝑦 (5.16.1)

𝐾12
𝑖 𝑗 = 𝐾21

𝑖 𝑗 =

∫
Ω𝑒

(
𝐶12

𝜕𝜓𝑖

𝜕𝑥

𝜕𝜓 𝑗

𝜕𝑦
+ 𝐶33

𝜕𝜓𝑖

𝜕𝑦

𝜕𝜓 𝑗

𝜕𝑥

)
𝑑𝑥𝑑𝑦 (5.16.2)

𝐾22
𝑖 𝑗 =

∫
Ω𝑒

(
𝐶33

𝜕𝜓𝑖

𝜕𝑥

𝜕𝜓 𝑗

𝜕𝑥
+ 𝐶22

𝜕𝜓𝑖

𝜕𝑦

𝜕𝜓 𝑗

𝜕𝑦

)
𝑑𝑥𝑑𝑦 (5.16.3)

where the 𝐶𝑖 𝑗 are the elastic material constants for plane stress

𝐶11 = 𝐶22 = 𝐸

1−𝜈2 𝐶12 = 𝜈𝐸

1−𝜈2 𝐶33 = 𝐸
2(1+𝜈

and the 𝜓𝑖 are the bilinear element shape functions (see equation 4.31 in [120]) over the element Ω𝑒. For a
rectangle of width 𝑎 and height 𝑏,

𝜓1 = (1 − 𝜉/𝑎) (1 − 𝜂/𝑏)

𝜓2 =
𝜉

𝑎
(1 − 𝜂/𝑏)

𝜓3 = (1 − 𝜉/𝑎) 𝜂
𝑏

𝜓4 =
𝜉

𝑎

𝜂

𝑏
.

The membrane stiffness matrix is of the form: [
𝐾11 𝐾12

𝐾21 𝐾22

]
assuming the displacement vector is of the form {𝑢1, 𝑣1, 𝑢2, 𝑣2, ...}.

The bending terms are organized here into a block 3 by 3 matrix,[
𝐾11 𝐾12 𝐾13

𝐾22 𝐾23𝑠𝑦𝑚 𝐾33

] 
𝑤

𝑆𝑥
𝑆𝑦

 =


𝑓 1

𝑓 2

𝑓 3

 .
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The bending stiffness terms, based on the shear deformation theory of plates, are based on the integrals in
equation 4.226 in [120]:

𝐾11
𝑖 𝑗 =

∫
Ω𝑒

(
𝐷44

𝜕𝜓𝑖

𝜕𝑥

𝜕𝜓 𝑗

𝜕𝑥
+ 𝐷55

𝜕𝜓𝑖

𝜕𝑦

𝜕𝜓 𝑗

𝜕𝑦

)
𝑑𝑥 𝑑𝑦

𝐾12
𝑖 𝑗 =

∫
Ω𝑒

(
𝐷44

𝜕𝜓𝑖

𝜕𝑥
𝜓 𝑗

)
𝑑𝑥 𝑑𝑦

𝐾13
𝑖 𝑗 =

∫
Ω𝑒

(
𝐷55

𝜕𝜓𝑖

𝜕𝑦
𝜓 𝑗

)
𝑑𝑥 𝑑𝑦

𝐾22
𝑖 𝑗 =

∫
Ω𝑒

(
𝐷11

𝜕𝜓𝑖

𝜕𝑥

𝜕𝜓 𝑗

𝜕𝑥
+ 𝐷33

𝜕𝜓𝑖

𝜕𝑦

𝜕𝜓 𝑗

𝜕𝑦
+ 𝐷44𝜓𝑖𝜓 𝑗

)
𝑑𝑥 𝑑𝑦

𝐾23
𝑖 𝑗 =

∫
Ω𝑒

(
𝐷12

𝜕𝜓𝑖

𝜕𝑥

𝜕𝜓 𝑗

𝜕𝑦
+ 𝐷33

𝜕𝜓𝑖

𝜕𝑦

𝜕𝜓 𝑗

𝜕𝑥

)
𝑑𝑥 𝑑𝑦

𝐾33
𝑖 𝑗 =

∫
Ω𝑒

(
𝐷33

𝜕𝜓𝑖

𝜕𝑥

𝜕𝜓 𝑗

𝜕𝑥
+ 𝐷22

𝜕𝜓𝑖

𝜕𝑦

𝜕𝜓 𝑗

𝜕𝑦
+ 𝐷55𝜓𝑖𝜓 𝑗

)
𝑑𝑥 𝑑𝑦

where the 𝐷𝑖 𝑗 are the isotropic elastic material constants (defined for example in equation 4.221 of [120]:

𝐷11 = 𝐷22 =
𝐸ℎ3

12(1 − 𝜈2)
𝐷12 = 𝜈𝐷11

𝐷33 =
𝐺ℎ3

12
𝐷44 = 𝐷55 = 𝐺ℎ𝑘

where ℎ is the thickness of the plate and 𝑘 is the shear correction factor. The bending stiffness matrix is of
the form: 

[𝐾11] [𝐾12] [𝐾13]
[𝐾22] [𝐾23]

𝑠𝑦𝑚 [𝐾33]


assuming the displacement matrix is of the form {𝑤1, 𝜃𝑥1, 𝜃𝑦1, 𝑤2, 𝜃𝑥2, 𝜃𝑦2, ...} To minimize the effect of
locking, reduced integration on the shear terms (i.e., those involving 𝐷44 and 𝐷55) is used.

The stabilization method from Belytschko20 is used for the Nquad element. Using single point integration
𝐾
[1𝑥1]
𝑠 for the shear stiffness matrix leads to hourglass modes for some problems. Using full integration

𝐾
[2𝑥2]
𝑠 can cause shear locking in some problems. Belytschko recommends a shear stiffness matrix given as

𝐾𝑠 = (1 − 𝜀)𝐾 [1𝑥1]
𝑠 + 𝜀𝐾 [2𝑥2]

𝑠 , a linear combination of the reduced integration and full integration shear
stiffness matrices. The fraction, 𝜀 = 𝑟𝑡2/𝐴 is a function of thickness and area. Here 𝑟 = 0.03, 𝑡 is the
element thickness and 𝐴 the area of the shell. This automatic selection of 𝜀 is more successful for thinner
plates; 𝜀 should never exceed 1.

The layered shell formulation, also based on first-order shear deformation theory, draws from [110],
particularly equations 3.4-5 and 3.4-6 found therein.

The stiffness matrices developed for the isotropic and laminate cases do not account for in-plane rotational
stiffness. A fictitious stiffness for the 𝜃𝑧 d.o.f. is provided by equation 12.3-4 in [37]. The resulting element
stiffness matrix is 24 x 24, accounting for 6 d.o.f at each of the four nodes.
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A consistent mass matrix is formed based on equation 4.235 in:120

𝑀𝑖 𝑗 =

∫
Ω𝑒
𝜌ℎ𝜓𝑖𝜓 𝑗 𝑑𝑥 𝑑𝑦

where 𝜌 is the material density. The diagonal mass matrix is derived by row summation.

Element level strains are expressed by equation 4.147 in:120

{𝜀}𝑒 = [𝐵]𝑒 {Δ}𝑒

where the five terms in {𝜀}𝑒 are 𝜀𝑥 , 𝜀𝑦 , 𝜏𝑥𝑦 and the two transverse shear strains 𝛾𝑦𝑧 and 𝛾𝑧𝑥 . The 5 x 24
matrix [𝐵]𝑒 is formed by the element shape functions and their derivatives and the 24 x 1 vector {Δ}𝑒 are
the nodal displacements. The membrane and bending strain-displacement relationships are found,
respectively, in equations 11.1-3 and 11.1-4 in [37]:

Membrane:
𝜀𝑥 = 𝑢,𝑥 𝜀𝑦 = 𝑣,𝑦 𝛾𝑥𝑦 = (𝑢,𝑦 +𝑣,𝑥 )

Bending:
𝜀𝑥 = −𝑧𝜃𝑦,𝑥 𝛾𝑥𝑦 = −𝑧(𝜃𝑦,𝑦 + 𝜃𝑥,𝑥)
𝜀𝑦 = −𝑧𝜃𝑥,𝑦 𝛾𝑦𝑧 = 𝑤,𝑦 − 𝜃𝑥

𝛾𝑧𝑥 = 𝑤,𝑥 − 𝜃𝑦

Note that the bending equations are altered from 11.1-4 in [37]. In that reference, a rotation about the x-axis
is expressed as 𝜃𝑦 and a rotation about the y-axis is 𝜃𝑥 x. These definitions have been reversed in the above
equations.

The user provides element properties in the Sierra/SD input deck. The required parameters are:

1. Element thickness.

2. Material ID, which contains the required material properties (E, 𝜈, 𝜌).

3. For the layered shell case, each layer must have specified its own material ID (such as an
orthotropic_layer), thickness and fiber orientation.

5.17. Truss

The truss element implementation37 pages 214-216 uses linear shape functions. Torsional stiffness
vanishes, unlike the NASTRAN truss element. Area is independent of position in the truss. The following
parameter is read from the Exodus file.

1. The cross sub-sectional area of the truss (Attribute 1)

5.18. Spring

Spring elements have mass 0. Stiffnesses 𝐾𝑥 , 𝐾𝑦 , and 𝐾𝑧 are set in the input deck.

• The force generated in a Spring element should be collinear with the nodes. Typically, a spring
element connection between coincident nodes generates 0 torque.
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• Springs attach 3 DOFs. If some spring constants vanish, then the associated DOF has 0 stiffness.
However, the degree of freedom will remain in the A-set 1 matrices. Adjacent elements provide
stiffness entries connecting the spring to the model. If the other DOFs are not attached to adjacent
elements, then the stiffness is singular.

The element stiffness matrix 𝐾̃ =

𝐾̃11 = diag(𝐾𝑥 , 𝐾𝑦 , 𝐾𝑧),
[
𝐾̃11 −𝐾̃11
−𝐾̃11 𝐾̃11

]
. (5.18.1)

For 𝑅𝑖 in 𝑆𝑂 (3) as described in Section 1.5, the frame 𝑢̃𝑖 is transformed from the unrotated frame 𝑢𝑖 by
𝑇 = diag(𝑅1, 𝑅2), [

𝑢1
𝑢2

]
= [𝑇]

[
𝑢̃1
𝑢̃2

]
.

The spring nodes rotate together, 𝑅1 = 𝑅2. For 𝐾𝑖 𝑗 = 𝑅𝑇 𝐾̃𝑖 𝑗𝑅,

𝐾 =

(
𝐾11 𝐾12
𝐾12 𝐾22

)
5.19. Superelements

A superelement has reduced mass and stiffness matrices generated by a model reduction process such as
component mode synthesis 2.16. Superelement generation typically saves the element in a file. Subsequent
analysis a system (or residual structure) typically read the element from its file.

Superelements may contain sensitivity matrices 2.16.1. A point estimate of the superelement mass or
stiffness matrix may be computed as a Taylor series expansion and used as part of a standard analysis. The
approximate reduced matrix is given by the expansion.

𝐾𝑟 (𝑝) ≈ 𝐾𝑟 (𝑝𝑜) +
𝑑𝐾𝑟

𝑑𝑝
(𝑝 − 𝑝𝑜) (5.19.1)

where 𝑝 is the sensitivity variable, 𝑝𝑜 is the nominal value of that variable and 𝐾𝑟 (𝑝) represents the
reduced order matrix evaluated at an arbitrary point in parameter space.

5.20. Gap

The gap element is a nonlinear spring which has a stiffness matrix that is dependent on displacement. In the
element coordinate frame, the stiffness matrix has the same form as the matrix in equation 5.18.1 with the
replacements:

Spring Gap
Open Closed

𝐾𝑥 KU KL
𝐾𝑦 𝐾𝑇 × 𝐾𝑈/𝐾𝐿 KT
𝐾𝑧 𝐾𝑇 × 𝐾𝑈/𝐾𝐿 KT
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Note that typically 𝐾𝐿 ≫ 𝐾𝑈.

The two nodes of the gap element must rotate together. Spring elements are the same. The matrix
transforms exactly as the matrix for a spring element.

5.21. Rigid Elements

Sierra/SD supports standard pseudoelements for rigid bodies. These include,

• Rrod - a rigid truss element, infinitely stiff in extension, but with no coupling to bending degrees of
freedom. An element creates one constraint equation.

• RBar - a rigid beam, with up to 6 constraint equations per element.

• RBE2 - a rigid solid. With up to 6(𝑛 − 1) degrees of freedom deleted, where 𝑛 is the number of
nodes. An RBE2 can stiffen a structure.

• RBE3 - an averaging type solid. This connects to many nodes, but removes up to 6 dofs on the
reference node.

A rigid element has infinite stiffness and zero mass. In the input Exodus mesh beam elements represent
rigid elements. In the input text file the corresponding block selects the type of rigid element.

Internally rigid elements are all stored and applied as special multi-point constraints. The RBE2 is a type of
RBar (multiple instances). Elements all activate DOFs, but not ordinary MPCs. A rigid element is an MPC
that activates DOFs.

Considerations for NASTRAN users

Rigid elements are intended to provide a capability similar to NASTRAN rigid elements. However, the
differences can be significant. One difference is due to the solvers. Sierra/SD solvers manage the
separation of dependent and independent DOFs, freeing the analyst from having to manage this complexity.
Specification of rigid elements in NASTRAN implies this relation. If applied in the most common ways
(such as an RBar constraining 6 dofs), the elements are the same. If some but not all DOFs are constrained,
and if the NASTRAN autospc capability is invoked, significant differences are possible.

5.21.1. Rrod

An Rrod is a pseudoelement which is infinitely stiff in the extension direction. The constraints for an Rrod
may be conveniently stated as ensuring that the dot product of the translation and the beam axial direction
for a Rrod vanishes. Each Rrod adds one constraint equation.

Consider the geometry of Figure 5-3. The equation of constraint for the Rrod is

𝐿𝑥𝑑𝑢𝑥 + 𝐿𝑦𝑑𝑢𝑦 + 𝐿𝑧𝑑𝑢𝑧 = 0 (5.21.1)
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Figure 5-3. – Rigid Element Geometry.

The undeformed and deformed extents of the bar may be expressed as ®𝐿 and ®𝑙. After deformation,
®𝑑𝑢 = ®𝑑𝑢𝐵 − ®𝑑𝑢𝐴. The undeformed and deformed bars have components

𝐿𝑥 = 𝑥𝐵 − 𝑥𝐴 𝑙𝑥 = 𝐿𝑥 + 𝑑𝑢𝑥
𝐿𝑦 = 𝑦𝐵 − 𝑦𝐴 𝑙𝑦 = 𝐿𝑦 + 𝑑𝑢𝑦
𝐿𝑧 = 𝑧𝐵 − 𝑧𝐴 𝑙𝑧 = 𝐿𝑧 + 𝑑𝑢𝑧 .

5.21.2. RBar

An RBar is a pseudoelement which is infinitely stiff in all the directions. An RBar can stiffen a structure.
The constraints for an RBar may be summarized as follows:

1. rotations at the ends of the RBar coincide,

2. bar extension is zero,

3. translations at one end of the bar are consistent with rotations.

Apparently the last two of these constraints may be specified mathematically by requiring that the
translation be the cross product of the rotation vector and the bar direction.

®𝑇 = ®𝑅 × ®𝐿

where ®𝑇 is the translation difference of the bar (defined as ®𝑈2 − ®𝑈1),

®𝑅 is the rotation vector, and

®𝐿 is the vector from the first grid to the second.
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The three constraints in the cross product, together with the three constraints requiring identical rotations at
both ends of the bar form the six required constraint equations. Referring to Figure 5-3, the six constraint
equations are 1

𝑑𝑢𝑥 + 𝑙𝑦𝑅𝑧 − 𝑙𝑧𝑅𝑦 = 0 (5.21.2)
𝑑𝑢𝑦 + 𝑙𝑧𝑅𝑥 − 𝑙𝑥𝑅𝑧 = 0 (5.21.3)
𝑑𝑢𝑧 + 𝑙𝑥𝑅𝑦 − 𝑙𝑦𝑅𝑥 = 0 (5.21.4)

𝑅𝑥𝑎 = 𝑅𝑥𝑏 (5.21.5)
𝑅𝑦𝑎 = 𝑅𝑦𝑏 (5.21.6)
𝑅𝑧𝑎 = 𝑅𝑧𝑏 (5.21.7)

Partial Constraints on an RBar

NASTRAN permits application of some constraints on an RBar. For example, one can apply the first 3
constraints, and ignore the constraints on rotation alone. In addition, NASTRAN permits control of which
end of the bars is constrained, and can split dependent and independent degrees of freedom between the
nodes. Although NASTRAN permits fewer than 6 dependent dofs, SD requires 6 independent dofs.

Sierra/SD uses two attributes in the Exodus file to partially constrain an RBar. An attribute labeled
“CID_FLAG_INDEP”is the constraint flag associated with the independent dofs. It should always be
“123456”, and it is always associated with the first node of the bar. The second attribute,
“CID_FLAG_DEPEND”, establishes the dependent degrees of freedom on the second node of the bar. This
attribute determines which of the equations above are applied. For example, if CID_FLAG_DEPEND =
123000 then the first three constraint equations are applied.

With partial application of the constraint equations, the results can be confusing. If equations 5.21.5-5.21.7
are not applied, then the rotation terms in 5.21.2 are appropriate only to the independent node. This is not
always what is anticipated by the analyst. It is not possible to allocate DOFs to arbitrary ends of the bar. For
this reason, the rotation may differ from what is produced by NASTRAN. Recall that applying
CID_FLAG_INDEP = CID_FLAG_DEPEND = 1 results in an Rrod type constraint.

5.21.3. RBE3

The RBE3 applies distributed forces to many nodes. The structure is not stiffened.

The RBE3 uses the concept of a reference node. The theory follows the MSC documentation included in
Section 5.22. RBE3 element is a simplification of the NASTRAN RBE3 element. One simplification is that
the RBE3 supports one weight that is applied to all the nodes. The NASTRAN RBE3 element supports
different weights for each of its nodes.

Earlier implementations of the RBE3 differed significantly from the MSC NASTRAN implementations
5.22.

1For a zero length bar, the first three constraints are modified to become 𝑑𝑢𝑥 = 𝑑𝑢𝑦 = 𝑑𝑢𝑧 = 0.

163



5.21.3.1. Characteristic Length.

An element characteristic length is computed to allow scaling the equations. The distance between the
reference point (subscript 𝑞) and a connected point (subscript 𝑖) is expressed by the components

𝐿𝑖,𝑥 = 𝑥𝑖 − 𝑥𝑞 (5.21.8)
𝐿𝑖,𝑦 = 𝑦𝑖 − 𝑦𝑞 (5.21.9)
𝐿𝑖,𝑧 = 𝑧𝑖 − 𝑧𝑞 (5.21.10)

𝐿𝑖 =

√︃
𝐿2
𝑖,𝑥
+ 𝐿2

𝑖,𝑦
+ 𝐿2

𝑖,𝑧
(5.21.11)

The characteristic length of the element is the average of these lengths,

𝐿𝑐 =

𝑁𝑐∑︁
𝑖=1
|𝐿𝑖 |/𝑁𝑐, (5.21.12)

where 𝑁𝑐 is the number of connected points. If 𝐿𝑐 is computed as a binary zero it is changed to a value of
unity.

To ensure that the element is invariant to a change of scale, the weighting functions w1 through w6 provided
by the user are modified to produce a connected grid point’s weighting matrix.

𝑊 = diag(𝑤1, 𝑤2, 𝑤3, 𝑤4𝐿
2
𝑐, 𝑤5𝐿

2
𝑐, 𝑤6𝐿

2
𝑐).

That is, the rotational DOF coefficients are scaled by the square of the characteristic length.

5.21.3.2. Equilibration.

Conventional equilibration equations are applied. These equations relate a force applied at the reference
point to an equivalent force and moment applied at the reference node as illustrated in Figure 5-4. The
loads at the connection point, 𝑖, relate to the loads at the reference point.

𝑃𝑞 = 𝑆𝑇𝑖𝑞𝑃𝑖 , 𝑆𝑖𝑞 =



1 0 0 0 𝐿𝑖,𝑧 −𝐿𝑖,𝑦
1 0 −𝐿𝑖,𝑧 0 𝐿𝑥

1 𝐿𝑖,𝑦 −𝐿𝑖,𝑥 0
1 0 0

0 1 0
1


(5.21.13)
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Figure 5-4. – Equilibration of loads.

𝑞

𝑖

𝐿𝑖,𝑥

𝐿𝑖,𝑦

A force of−𝑒1 at point 𝑖 is equivalent to a
force of −𝑒1 and a moment of 𝜏𝑧 = 𝐿𝑖,𝑦
at point 𝑞.

5.21.3.3. Assembled Constraint.

As shown in Section 5.22 (equation 5.22.1), the loads on the set of all connection nodes may be computed
from the load on the reference node. S is a concatenation of the individual 𝑆𝑖𝑞 ,

S =


𝑆1,𝑞
𝑆2,𝑞
...

𝑆𝑁𝑐 ,𝑞

 . (5.21.14)

𝐺𝑞𝑖 = 𝐴−1S′W, (5.21.15)

and
𝑃𝑖 = 𝐺

′
𝑞𝑖𝑃𝑞 . (5.21.16)

Similarly,
𝑊 = diag(𝑊1,𝑊2, . . . ,𝑊𝑐),

and 𝐴 is an order 6 weighting matrix.
𝐴 = S𝑇𝑊S (5.21.17)

We require that 𝐴 be non-singular, which corresponds to a requirement that the RBE3 be non-mechanistic.
The constraint relation follows directly from 𝐺𝑞𝑖 , i.e. define the 6 by (6 + 6𝑁𝑐) matrix,

C = [ −𝐼𝑞𝑞 𝐺𝑞𝑖 ] (5.21.18)

and apply the constraint,

C
[
𝑢𝑞
𝑢𝑖

]
= 0. (5.21.19)

Each row of C contains the constraint coefficients for one of the six possible constraints in the RBE3.

5.22. MSC documentation of the NASTRAN RBE3 element

The documentation of the modern RBE3 element is provided by MSC Software from their web page.107

Solution#: 4494 Last Modified Date: 06/01/00 09:06:19 AM
Product Line: MSC NASTRAN Product Name: MSC NASTRAN (1002 or 1004)

Product Version: Product Feature:
Article Type: FAQ Publish: Y
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The RBE3 element is a volume or surface spline element similar to the RSPLINE line spline element. The
purpose of this memorandum is to develop a method for computing the terms in the equations of constraint
generated by the element.

A sample Bulk Data Entry for the element is :

$ EID [blank] REFGRID REFC WT1 C1 G1,1 G1,2
RBE3 15 5 123456 1.0 123 10 20

$ G1,3 G1,4 WT2 C2 . .
, 30 40

$ UM G1 C1 G2 C2 . . .
, UM 10 123 20 23 30 3

The grid points 10 through 40, in the 𝐺𝑖, 𝑗 fields on the entry, are connected to a reference grid point
(number 5). The number of connected points, 𝑁𝑐, is unlimited. The physical principle used to generate the
constraint equation coefficients is that the motion of a body connected to the reference grid point produces a
weighted least-squares best fit to the actual motions at the other connected grid points. The reference point
is connected by 1 through 6 DOFs (REFC specification). The connected points are also connected by 1
through 6 DOFs (Ci specification) with a weighting factor Wti. The UM data is optional, and is explained
below.

The reference is the original design document for this element. Over the years some changes have been
made in the interests of better theory and increased numerical robustness. Those changes are incorporated
in this document as though this were the original design document, to avoid the awkwardness of first
explaining older behaviors and then the present behavior. The original equations of the reference are
derived with conventional variational principles applied to displacement variables. The derivation used here
is based on force variable principles. This has proven to be more intuitive and better understood by some
engineers. The results derived by the displacement method theory and force method theory are identical.

5.22.1. Generation of unit weighting functions

The element is designed to allow use of any coordinate system at any connected grid point, the global
coordinate system in NASTRAN parlance. In the interests of clarity the equations are first developed for a
system where all variables are defined in one common coordinate system (the basic coordinate system),
then modified to allow global coordinates. An element characteristic length is computed to allow scaling
the equations. The distance between the reference point (subscript q) and a connected point (subscript i) is
expressed by the components

𝐿𝑖,𝑥 = 𝑥𝑖 − 𝑥𝑞
𝐿𝑖,𝑦 = 𝑦𝑖 − 𝑦𝑞
𝐿𝑖,𝑧 = 𝑧𝑖 − 𝑧𝑞
𝐿𝑖 =

√︃
𝐿2
𝑖,𝑥
+ 𝐿2

𝑖,𝑦
+ 𝐿2

𝑖,𝑧
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The characteristic length of the element is the average of these lengths, 𝐿𝑐 =
∑𝑐
𝑖=1 |𝐿𝑖 |/𝑐, where 𝑐 is the

number of connected points. If 𝐿𝑐 is computed as a binary zero it is changed to a value of unity. User
weighting functions 𝑤𝑖 produce a dimensionless nodal weighting matrix.

𝑤̃𝑖 = 𝑤𝑖𝐿
2
𝑐, 𝑊 = diag(𝑤1, 𝑤2, 𝑤3, 𝑤̃4, 𝑤̃5, 𝑤̃6).

Conventional equilibrium equations are developed,

𝑆𝑖𝑞 =



1 0 0 0 𝑧 −𝑦
1 0 −𝑧 0 𝑥

1 𝑦 −𝑥 0
1 0 0

0 1 0
1


This matrix expresses the loads that must be applied to the reference point to react loads applied at a
connected point,

𝑃𝑞 = 𝑆𝑇𝑖𝑞𝑃𝑖

The equilibrium matrix can also be used to generate a loading pattern on the connected points due to a load
on the reference point. Let 𝑃𝑞𝑖𝑛 be a set of arbitrary loads on the reference point. When this load is
applied, it is “beamed out” as loads on the connected points,

𝑃𝑖 =


𝑃1
𝑃2
...

𝑃𝑐

 =


𝑊1

𝑊2
...

𝑊𝑐



𝑆1
𝑆2
...

𝑆𝑐

 𝑋𝑃𝑞𝑖𝑛 = 𝑊𝑆𝑖𝑞
𝑋 is a 6 by 6 matrix to be determined. The criterion used in its determination is that the load distribution
mechanism should be in equilibrium. The equilibrium condition is that

𝑃𝑞𝑜𝑢𝑡 =
[
𝑆′1 𝑆′2 ... 𝑆′𝑐

]
𝑃𝑖 = 𝑆

𝑇
𝑖𝑞𝑃𝑖

Then
𝑃𝑞𝑜𝑢𝑡 = 𝑆

𝑇
𝑖𝑞𝑊𝑆𝑖𝑞𝑋𝑃𝑞𝑖𝑛

𝐺𝑇𝑞𝑖 = 𝑊𝑆𝑋 (5.22.1)

If 𝑃𝑞𝑜𝑢𝑡 = 𝑃𝑞𝑖𝑛, then
𝑋 = (𝑆𝑇𝑖𝑞𝑊𝑆𝑖𝑞)−1, 𝑃𝑖 = 𝑊𝑆𝑋𝑃𝑞 = 𝐺𝑇𝑞𝑖𝑃𝑞

5.22.1.1. Transformation.

The direction cosine matrix 𝑇𝑖 expresses the transformation between 𝑢𝑖 , the values in basic coordinates, and
𝑢̃𝑖 , the values in global coordinates:

𝑢𝑖 = 𝑇𝑖𝑢̃𝑖

The transformed equilibrium equations and weighting matrices are
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𝑆𝑖𝑞 =


𝑇1𝑆1
𝑇2𝑆2
...

𝑇𝑐𝑆𝑐


The transformed weighting matrix in global coordinates is

𝑊𝑖 = 𝑇
′
𝑖𝑊𝑖𝑇𝑖

The transformed A matrix is
𝐴𝑖 = 𝑆

′
𝑖𝑞𝑊𝑖𝑆𝑖𝑞

𝐴 =
∑︁
𝑖

𝐴𝑖

It is shown in the reference that the introduction of global coordinates modifies 𝐺𝑞𝑖 as shown:

𝐺𝑞𝑖 = 𝑇𝑖𝐴
−1 [𝑆𝑖𝑞]𝑊𝑖

This implies the dual relationship between displacements

𝑢𝑞 = 𝐺𝑞𝑖𝑢𝑖

Cast in the NASTRAN convention of constraint equations,

𝑅𝑞𝑖 = [ −𝐼𝑞𝑞 𝐺𝑞𝑖 ]

and,

𝑅𝑞𝑖

[
𝑢𝑞
𝑢𝑖

]
= 0.

𝑅𝑞𝑖 is the rows of the matrix of MPC coefficients for one RBE3 element.

5.22.2. Selection of dependent dofs (Optional)

The default selection for dependent DOFs (m-set) are the REFC DOFs listed for the REFGRID. There are
modeling applications where it is convenient to use these DOFs in a set exclusive from the dependent set,
such as the analysis set (a-set). The dependent DOFs may be moved to the connected DOFs with the
optional UM data. The number of DOFs must match the number of REFC DOFs, and the selected DOFs in
the UM data must have non-zero weighting functions. If the subset of Rgi associated with these DOFs is
named Rmm, the Rqi matrix is pre-multiplied by the inverse of this quantity,

𝑅𝑞𝑖 = 𝑅
−1
𝑚𝑚𝑅𝑞𝑖 = [−𝐼𝑚𝑚 |𝑅−1

𝑚𝑚𝑅𝑚𝑛]

The user is required to select a UM set that produces an 𝑅𝑚𝑚 matrix that is stable for inversion. There are
TANs that describe techniques for selection of a good set of UM variables. The uncoupling of the
dependent equations allows some to be discarded, as described in the next section.

Equation selection. The total 𝑅𝑞𝑖 is generated above. It has 6 rows. Six or fewer rows are transmitted to
the system constraint matrix 𝑅𝑚𝑔, depending on the REFC data. This data consists of a packed integer with
up to 6 numbers in the range of 1 to 6, and describes which rows are to be passed to 𝑅𝑚𝑔. The remaining
rows are discarded.
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5.22.3. Features for dimension independence

A good finite element should produce the same results regardless of the units of measure used in the model.
That is, the same structure modeled in millimeters, centimeters, or inches should provide identical results.
The RBE3 gains this valuable characteristic by scaling the rotation weights with an element characteristic
length,𝐿𝑐, as described above. The effect of this scaling is demonstrated here by an example. In the
interests of simplicity all geometry is in the basic coordinate system and the only non-zero offsets are in the
𝑧 direction. The 𝑇 matrix is then an identity matrix, and need not be listed in these equations. Consider the
problem, defined by the 𝑆𝑖𝑞 matrix above and𝑊𝑖 matrices below, where

𝑥 = 𝑥𝑖 − 𝑥𝑞 = 0,
𝑦 = 𝑦𝑖 − 𝑦𝑞 = 0,
𝑧 = 𝑧𝑖 − 𝑧𝑞 >< 0

The user inputs up to six weighting factors w1 through w6. The weighting factors for rotation are
multiplied by 𝐿𝑐𝑠𝑞 = 𝐿𝑐2, the square of the characteristic lengths of the element. These modified terms are
underlined in the matrix below, for example, 𝑤4 = 𝐿2

𝑐𝑤4. The modified weighting factor matrix is then

𝑊 =



𝑤1
𝑤2

𝑤3
𝑤4𝐿

2
𝑐

𝑤5𝐿
2
𝑐

𝑤6𝐿
2
𝑐


The contribution for grid point i to the equilibrium matrix 𝐴 is

𝐴 = 𝑆′𝑊𝑆 =



𝑤1 0 0 0 𝑤1𝑧 0
𝑤2 0 −𝑤2𝑧 0 0

𝑤3 0 0 0
𝐿2
𝑐𝑤4 + 𝑧2𝑤2 0 0

𝑆𝑦𝑚 𝐿2
𝑐𝑤5 + 𝑧2𝑤1 0

𝐿2
𝑐𝑤6


The diagonal terms for rotation (for example 𝐴55) have the form 𝐿2

𝑐𝑤𝑖 + 𝑧2𝑤 𝑗 , where 𝑤𝑖 is the rotational
weighting term, and 𝑤 𝑗 the translation term active in rotation weighting because of offsets. The motivation
for modifying the rotation term can be seen in this addition of effects. Both 𝐿2

𝑐 and 𝑧2 are in the same units
of measure. When a model is changed from centimeters to millimeters, for example, the ratio of rotation
effects to offset effects is unchanged. This modification of the rotation term allows the solution in the area
of the RBE3 element to be the same for all units of measure. As 𝑧 and 𝐿𝑐 are related by a common factor
the ratio of moment terms coming in directly from applied moments (𝐿2

𝑐𝑤5) stays in constant ratio to the
moment terms from offsets (𝑧2𝑤1) regardless of whether lengths are measured in centimeters, millimeters,
or inches. This modification of the moment weight term provides dimension independence.

This example also provides an opportunity to discuss another counter-intuitive behavior of the RBE3
element, the difference between the user-supplied weighting functions and the actual values used in the
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corresponding coefficients of the constraint matrix. Let us simplify the expression of 𝐴 above by setting
𝑧𝑖 = 0.0. 𝐴 becomes a diagonal matrix, which when inverted and multiplied by𝑊 to form 𝐺, becomes an
identity matrix. The weighting factors are scaled to provide equilibrium. There may be little correlation
between the values in the weighting matrix and the values in the coefficients of the constraint matrix. The
requirements for equilibrium may change these values radically. Similarly, it shows that the significance of
the weighting factors is in their ratio to one another. If all are multiplied by 10, for example, the inversion of
the 𝐴 matrix, used to impose equilibrium, removes this factor of 10 so that the coefficients of the constraint
matrix are unchanged.

Stability issues. The solution requires the inverse of 𝐴. It may be ill-conditioned for linear equation
solution. It is first equilibrated to make the inversion more stable. Let 𝐴𝑑 be the diagonal terms of A. It is
pre- and post-multiplied by the inverse of 𝐴𝑑 ,

𝐴 = 𝐴−1
𝑑 𝐴𝐴−1

𝑑

This makes the diagonal terms of 𝐴 unity. Any term multiplied by 𝐴 is first multiplied by 𝐴𝑑 . A matrix
decomposition subroutine is used that provides an inverse conditioning number. As this number approaches
zero the solution becomes more ill-conditioned. A belt-and-suspenders check that is less mathematical and
more engineering-oriented is made by also computing the largest term in [𝐴−1𝐴 − 𝐼], which should be a
computational zero, and outputting this value when it passed a certain threshold. If the element is
determined to be pathologically ill-conditioned it causes a user fatal error exit.

The RBE3 element is independent of the units of measure. For example, a structure modeled in centimeters
will provide the same results when modeled in millimeters. An old formulation of the RBE3 element that
did not provide dimension independence can be reproduced by setting the characteristic length 𝐿𝑐 to one.

5.22.3.1. Theory

The modeler inputs a reference grid point, its connectivity, a weighting factor for other connected grid
points, their connectivity, and the connected grid point ids. An RBE3 element used for testing this new
capability of the form

$ EID [blank] REFGRID REFC WT C G1 G2
RBE3, 123, , 4 123456 1.0 123456 1 2
$ G3
, 3

The modeler’s intent here is to connect grid point 4, for all 6 of its DOFs to the 1, 2, and 3 grid points, for
their DOFs, with a uniform weighting factor for all. The element divides forces applied to point 4 to the
other grid points in a manner that is influenced by their geometry and weighting factors, in a manner that
maintains equilibrium. Define a line from the reference point to a connected point as an arm of the element.
In the revised theory, a characteristic length, 𝐿𝑐 of the element is calculated from the average length of its
arms. The square of this length is used to modify the weighting of the connected rotation DOFs. The
element is described and derived in TAN 4494. Some results of that derivation are used here. The
constraint equation terms applied to a connected point 𝑢𝑖 and the reference point 𝑢𝑞 are

𝑢𝑞 = 𝐺𝑞𝑖𝑢𝑖
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The constraint matrix itself has the following components:

𝐺𝑞𝑖 = 𝑇𝑖𝐴
−1𝑆𝑖𝑞𝑊𝑖

𝑇𝑖 is a rotation matrix that is an identity matrix when GID𝑖 and GID𝑞 are in parallel coordinate systems. It
will be dropped from this discussion. 𝑆𝑖𝑞 is the traditional matrix for transmitting rigid body motion
between point “i” and point “q”. It has unit terms on the diagonal, and offset lengths on coupling terms
between translation and rotation in the upper triangle. 𝑊𝑖 is the user-supplied weighting functions, and 𝐴 a
matrix used to force the element to meet equilibrium requirements. All MSC NASTRAN constraint-type
(R-) elements must meet an equilibrium condition, to avoid any possibility of internal constraints in the
element. It is tedious and instructive to work out a simple example by hand, for a simple geometry. We will
instead look at typical terms.

The 𝐴 matrix is generated by finding the resultants of loads applied at the connected points, measured at the
reference point. The 5,5 term for a single connected point is shown in the referenced TAN to be

𝐴55 = 𝑤5 + 𝑧2
𝑖𝑤2.

When 𝐴 is inverted, this term operates on the corresponding 𝑆𝑖𝑞𝑤𝑖 term

𝐺𝑖𝑞55 = 𝑤5/(𝑤5 + 𝑧2
𝑖𝑤1)

If 𝑧𝑖 is zero, the effects of this normalization is to "wash out" the 𝑤5 weighting term, so that the coefficient
is 1.0. If 𝑧𝑖 is not zero, the ratio of translation load effects 𝑧2

𝑖
𝑤1 to rotation loads effects 𝑤5 is

𝑅𝑎𝑡𝑖𝑜 = 𝑤5/(𝑧2
𝑖𝑤1)

This leads to a dimensional dependence, in that the ratio changes when the model is converted from
millimeters to centimeters, for example. This undesirable behavior is eliminated by multiplying the rotation
weighting factors by the square of the characteristic length, 𝐿𝑐,

𝑅𝑎𝑡𝑖𝑜 = 𝐿2
𝑐 ∗ 𝑤5/(𝑧2

𝑖𝑤1)

If 𝑧𝑖 (and 𝐿𝑐) have their units of measure changed, the ratio stays constant. If this modified weighting
constant is used on the 5,5 term

𝐺𝑖𝑞55 = 𝐿2
𝑐𝑤5/(𝐿2

𝑐𝑤5 + 𝑧2
𝑖𝑤1)

If 𝑧𝑖 = 0.0 the weighting terms wash out. If it is non-zero the denominator of this quantity is constant with
changes in units of measure.

Note that answers will change only when rotations are given connectivity for the connected DOFs, and then
only when the rotations at the connected DOFs are part of a redundant load path. This is because the
element is required to meet equilibrium conditions to avoid internal constraints, that is, single point
constraints that do not appear in the SPCFORCE output. If the load path is statically determinate the
equations used to impose equilibrium will adjust the values of internal loads in the element as needed to
meet equilibrium, regardless of the value of the weighting functions. Always meeting equilibrium
requirements ensures that there will be no internal SPC forces in the element.
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5.23. Interpolation within an Element

It can be useful to sample a field within an element. This is necessary for verification of the input for
temperature fields applied at integration points, as in a X-ray deposition. If the fields are known at a variety
of points inside an element, we can use that information to determine the fields at an arbitrary location. In
the case of infinite elements, the fields “interior” to the element project to the entire space beyond the
element surface. Several means may be used to perform this interpolation. In Sierra/SD we use a least
squares projection onto a Pascal space, and then apply the Pascal shape functions to generate the
interpolated function. The least squares solution requires that there be more sample points than there are
shape functions.

As an example, consider temperatures applied at the Gauss integration points of a Hex20. The coordinates
of the 27 integration points are defined in Table 5-2. For a quadratic fit of the data, we can complete the
Pascal triangle to obtain the shape functions listed in Table 5-7. We generate a shape matrix, 𝐴, for which
each entry in the matrix is given as follows.

𝐴𝑖 𝑗 = 𝑃 𝑗 (𝜉𝑖)

Here, 𝜉𝑖 is the element coordinate of the 𝑖𝑡ℎ integration point.

index Function, 𝑃𝑖
1 1
2 𝜂1
3 𝜂2
4 𝜂3
5 𝜂2

1
6 𝜂1𝜂2
7 𝜂1𝜂3
8 𝜂2

2
9 𝜂2𝜂3
10 𝜂2

3

Table 5-7. – Pascal Shape functions for 3D elements of order 2.

The coefficients of the Pascal shape functions, 𝑏, are given by the solution to the least squares minimization
problem.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 | |𝑥 − 𝐴𝑏 | |

where 𝑥 is the vector of known temperature values at the 27 integration points in the element, 𝐴 is the shape
matrix defined above and 𝑏 the vector of coefficients to determine. This problem is solved using the
LAPACK function dgels in Sierra/SD.

Once the coefficient vector is known, the solution at any location within the element may be determined by
expansion of the shape functions at the location of interest.

𝑇 (𝜂1, 𝜂2, 𝜂3) =
∑︁
𝑖

𝑏𝑖𝑃𝑖 (𝜂1, 𝜂2, 𝜂3)

where 𝑃𝑖 are the shape functions of Table 5-7.
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6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

6.1. Acoustics and Structural Acoustics

In this section, we describe the various boundary conditions available in Sierra/SD for acoustics and
structural-acoustics. In each case we discuss the governing equations and discretization approaches.

Absorbing Boundaries. The need to truncate acoustic domains arises in exterior problems, where the fluid
or solid domain is infinite or semi-infinite. In these cases, the domain could be truncated either with infinite
elements, or absorbing boundary conditions. We describe below the simple absorbing boundary conditions
that have been implemented in Sierra/SD. Infinite elements (see section (6.1.1)) are also implemented in
Sierra/SD. We describe the cases of an acoustic space and an elastic space separately.

Acoustic Space. The implementation of absorbing boundary conditions begins by considering the weak
formulation of the equations of motion, in equations (3.2.5). On an absorbing boundary, one needs to
consider the term ∫

𝜕Ω𝑛

𝜕𝜓

𝜕𝑛
𝜙𝑑𝑠, (6.1.1)

which arises from the integration by parts on the acoustic space. Absorbing boundary conditions are
typically derived by applying impedance matching conditions to equation (6.1.1), in such a way that the
boundary completely absorbs waves of a given form. For example, the simplest absorbing boundary
conditions consist of plane wave and spherical wave conditions,57 which are either the zero-th order
accurate Sommerfeld condition

𝜕𝜓

𝜕𝑛
=
−1
𝑐 𝑓

𝜕𝜓

𝜕𝑡
(6.1.2)

or the first order accurate Bayliss-Turkel condition

𝜕𝜓

𝜕𝑛
=
−1
𝑐 𝑓

𝜕𝜓

𝜕𝑡
− 1
𝑅
𝜓 (6.1.3)

where 𝑅 is the radius of the absorbing spherical boundary.

Inserting equation (6.1.2) into equation (6.1.1), we obtain a term proportional to ¤𝜓, which becomes a
damping matrix. Inserting equation (6.1.3) into equation (6.1.1), we obtain two matrix terms, one that
contributes to the damping matrix, and another that contributes to the stiffness matrix. Note that in the limit
of large 𝑅, the spherical wave condition reduces to the plane wave condition, since for large enough radius,
the spherical wave begins to resemble a plane wave.

Both conditions (6.1.2) and (6.1.3) are implemented in Sierra/SD.

Elastic Space. In the case of an elastic space, similar absorbing boundary conditions can be applied as were
in the acoustic space, except the boundary has to absorb both pressure and shear waves. In the case of an
acoustic medium, only pressure waves are of interest. Thus, the elastic space is more complicated.

For a solid with material density 𝜌, the stress 𝜎 is connected to a time dependent load 𝑓 by

𝜌𝑢𝑡𝑡 − ∇ · 𝜎 = 𝑓 .
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The same notation is used for the material and fluid densities. A weak formulation of this equation can be
constructed by multiplying with a test function and integrating by parts.∫

𝑉

𝜌𝑢𝑡𝑡𝑤𝑑𝑉 +
∫
𝑉

𝜎 : ∇𝑤𝑑𝑉 −
∫
𝜕𝑉

𝜎𝑠𝑤𝑑𝑆 =

∫
𝑉

𝑓 · 𝑤𝑑𝑉 (6.1.4)

where 𝑤 is the test function, and 𝜎𝑠 is the traction vector on 𝜕𝑉 , the boundary of volume 𝑉 . The absorbing
boundary condition is imposed on the portions of 𝜕𝑉 that point into the infinite space. In this derivation,
we assume that this includes the entire boundary 𝜕𝑉 . If only part of the boundary pointed into the infinite
space, the derivation would be the same.

Considering the term ∫
𝜕𝑉

𝜎𝑠𝑤𝑑𝑆 (6.1.5)

we note that the traction vector 𝜎𝑠 can be decomposed into its normal and tangential components, i.e.
𝜎𝑠 = 𝜎𝑛 + 𝜎𝑡 . Then, we apply the conditions

𝜎𝑛 = −𝜌𝑐𝐿𝑣𝑛 (6.1.6)
𝜎𝑡 = −𝜌𝑐𝑇𝑣𝑡

where 𝑐𝐿 and 𝑐𝑇 are the longitudinal and shear wave speeds in the medium, and 𝑣𝑛, 𝑣𝑡 are the normal and
tangential components of velocity vectors on the surface. Inserting these relations into equation (6.1.5)
yields two absorbing boundary matrices. Since these matrices involve the velocities, they become part of
the overall damping matrix of the structure.

6.1.1. Infinite Elements for Acoustics

Infinite elements have been around since the mid 1970’s. Excellent review articles can be found in,9.71

In the early formulations, only frequency-domain formulations were considered, and system matrices were
developed that depended on frequency in a nonlinear manner. Though these formulations worked in the
frequency domain, there was no clear approach for transforming them to the time domain. As a result, time
domain formulations for infinite elements were delayed for some time. The formulations9,35 in the time
domain formulation would involve convolution integrals that could be used with the frequency-dependent
system matrices. However, storing the time histories for the convolution integrals would be a significant
burden for a time-domain code.

In the early 1990’s, Astley10,15,12 derived a conjugated formulation that resulted in system matrices that
were independent of frequency. This allowed the frequency domain formulation to be readily transformed
to the time domain, in the same way that is typically done in linear structural dynamics. He also derived a
scheme for post-processing the infinite element degrees of freedom to compute the far-field response at
points outside of the acoustic mesh. This approach followed from a time-shift applied to the infinite
element degrees of freedom.

The exterior acoustic problem consists of finding a solution 𝑝, outside of some bounded region Ω𝑖 . We refer
to Figure (6-1) for a description of the geometry. We have an interior domain Ω𝑖 , and an exterior domain
Ω𝑒, and a boundary Γ that separates the inner and outer domains. We wish to find the acoustic pressure 𝑝 in
Ω𝑒. In the exterior domain Ω𝑒, the acoustic pressure must satisfy the acoustic wave equation
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Figure 6-1. – Domains Ω𝑖 and Ω𝑒 and interface Γ for the exterior acoustic problem.

1
𝑐2 ¥𝑝 − Δ𝑝 = 0 (6.1.7)

a Neumann boundary condition on Γ
𝜕𝑝

𝜕𝑛
= 𝑔(𝑥, 𝑡) (6.1.8)

and the Sommerfeld radiation condition at infinity

𝜕𝑝

𝜕𝑟
+ 1
𝑐

𝜕𝑝

𝜕𝑡
→ 1

𝑟
(6.1.9)

as 𝑟 →∞.

We note that the weight and test functions are chosen such that the Sommerfeld condition is satisfied
identically. Then, the weak formulation reads as follows∫

Ω𝑒

1
𝑐2 ¥𝑝𝑞 + ∇𝑝 · ∇𝑞𝑑𝑉 =

∫
Γ

𝑔𝑞𝑑𝑆 (6.1.10)

In the frequency domain, the counterpart to equation (6.1.10) is as follows

−𝑘2
∫
Ω𝑒

𝑝𝑞𝑑𝑉 +
∫
Ω𝑒

∇𝑝 · ∇𝑞𝑑𝑉 =

∫
Γ

𝑔𝑞𝑑𝑆 (6.1.11)

where 𝑘 = 𝜔
𝑐

.

We will focus on conjugated infinite element formulations, which implies specific choices for the trial and
weight functions for the infinite elements. For the trial functions, we have

𝜙 𝑗 (𝑥, 𝜔) = 𝑃 𝑗 (𝑥)𝑒−𝑖𝑘𝜇 (𝑥 ) (6.1.12)

and for the weight functions, we have

𝜓 𝑗 (𝑥, 𝜔) = 𝐷 (𝑥)𝑃(𝑥)𝑒𝑖𝑘𝜇 (𝑥 ) (6.1.13)

where 𝑃(𝑥), 𝐷 (𝑥), and 𝜇(𝑥) are as yet undefined functions of 𝑥, and 𝑘 = 𝜔
𝑐

is the wavenumber. The choice
of these functions will determine the particular infinite element approach. In our case, the exponential in
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the weight functions involves a conjugate of the exponential in the trial functions. This results in the
exponential canceling out in the system matrices, thus rendering the matrices independent of frequency.

Given these trial functions, the solution 𝑝(𝑥, 𝜔) can be written in an expansion

𝑝(𝑥, 𝜔) =
𝑁∑︁
𝑖=1

𝑞 𝑗 (𝑥, 𝜔)𝜙 𝑗 (𝑥, 𝜔) (6.1.14)

Substituting these expressions for trial and weight functions into equation (6.1.11), we obtain for following
expression ∫

Ω𝑒

(𝑃𝑖∇𝐷 + 𝐷∇𝑃𝑖 + 𝑖𝑘𝐷𝑃𝑖∇𝜇) ·
(
∇𝑃 𝑗 − 𝑖𝑘𝑃 𝑗∇𝜇

)
𝑞𝑖 − 𝑘2𝐷𝑃𝑖𝑃 𝑗𝑞𝑖𝑑𝑉 (6.1.15)

Separating out terms of 𝜔, we obtain the following expressions for the stiffness, mass and damping
matrices

𝐾𝑖 𝑗 =

∫
Ω𝑒

(𝑃𝑖∇𝐷 + 𝐷∇𝑃𝑖) · ∇𝑃 𝑗𝑑𝑉 (6.1.16)

𝐶𝑖 𝑗 =
1
𝑐

∫
Ω𝑒

𝐷𝑃𝑖∇𝜇 · ∇𝑃 𝑗 − 𝑃𝑖𝑃 𝑗∇𝐷 · ∇𝜇 − 𝐷𝑃 𝑗∇𝑃𝑖 · ∇𝜇𝑑𝑉 (6.1.17)

𝑀𝑖 𝑗 =
1
𝑐2

∫
Ω𝑒

𝐷𝑃𝑖𝑃 𝑗 (1 − ∇𝜇 · ∇𝜇)𝑑𝑉 (6.1.18)

Consider the phase function 𝜇(𝑥). First, we note that the series expansions for the trial functions (the 𝑖𝑡ℎ
term is given by equation (6.1.12)), assume an outwardly propagating wave. The exact solution from which
these trial functions are derived involves a source point for the wave. We denote the distance from that
source point to a point on the base surface by 𝑎. The phase function is then defined by

𝜇(𝑥) = 𝑟 − 𝑎 (6.1.19)

In spherical coordinates, the gradient of a function is equal to

∇ 𝑓 (𝑟, 𝜃, 𝜙) = 𝑟 𝜕 𝑓
𝜕𝑟
+ 1
𝑟

𝜕 𝑓

𝜕𝜙
𝜙 + 1

𝑟𝑠𝑖𝑛(𝜙)
𝜕 𝑓

𝜕𝜃
𝜃 (6.1.20)

Since the expression for 𝜇(𝑥) depends only on 𝑟, we have

∇𝜇(𝑥) = 𝑟 (6.1.21)

Thus, ∇𝜇(𝑥) · ∇𝜇(𝑥) = 1. This implies that when the boundary defining the infinite elements is a spherical
surface, the mass matrix from equation (6.1.18) is identically zero. This makes sense, since it ensures that
the modes are outgoing, and that there are no standing waves. Since a numerical integration of equation
(6.1.18) will never come out identically zero, the question then becomes whether to include this numerical
mass in the time integration, or whether to neglect it from the outset. This has important implications in the
stability of the time integration, as outlined in.13

In terms of discretizing the infinite domain, infinite elements can be classified into 2 main approaches: the
separable approach, and the mapped approach. In the separable approach, the exterior domain is assumed
to be in a separable coordinate system, such as spherical or spheroidal. In the mapped approach, the nodes
on the exterior boundary are mapped into parent elements using a special mapping functions that map the
infinite domain into a finite reference element domain. The mapped approach is advantageous because it
allows a more arbitrary placement of nodes on the exterior surface. The separable approach requires the
exterior nodes to conform to a specific boundary, and thus this approach places more restrictions on the
mesh generation process.
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6.1.1.1. Infinite Element Shape Functions

In our work, we have chosen the mapped approach due to its flexibility in mesh generation. The integrals in
equations (6.1.16), (6.1.18), and (6.1.17) are over an infinite domain, Ω𝑒. To perform numerical integration
of these integrals, we first must map onto a unit reference element, as in standard finite elements. The
mapping is as follows

𝑥 =

𝑁∑︁
𝑗=1

𝑀 𝑗 (𝑠, 𝑡, 𝑣)𝑥 𝑗 (6.1.22)

where 𝑥 is a point in the infinite domain, 𝑥 𝑗 are the coordinates of the mapping points, 𝑠, 𝑡 define the base
coordinates of the base plane of the infinite element (which lies on the exterior surface of the acoustic
mesh), and 𝑣 is the base coordinate in the infinite direction. If we consider a point on the exterior surface,
and its radial point 𝑎𝑖 , then the base coordinate along the radial edge emanating from this point is given
by,

𝑣𝑖 = 1 − 2𝑎𝑖/𝑟𝑖 (6.1.23)

Equivalently,

𝑟𝑖 − 𝑎𝑖 = 𝑎𝑖
1 + 𝑣𝑖
1 − 𝑣𝑖

(6.1.24)

Where 𝑟𝑖 is a radial distance from a virtual source point (or virtual origin). Each node on the infinite
element boundary may have a source point, as illustrated in Figure (6-2). Generally, the source point is
positioned to ensure that rays are normal to the surface.10,14 The mapping ensures that as the element
coordinate 𝑣 approaches 1, the physical radial coordinate, 𝑟 approaches infinity; thus mapping an infinite
space onto a unit element.

mesh

Interior

acoustic

O
O

r

r

a

a

1

2

2

2

1

1

Figure 6-2. – Infinite Element Radial Mapping. Each node on the infinite element boundary may have an origin,
𝑂𝑖 , (called a virtual source point) and an effective nominal radius, 𝑎𝑖 . The source point is chosen to ensure that
rays are normal to the surface. For a spherical boundary, all virtual source points are at the center of the sphere.

The virtual source point can provide an orthogonal basis in the radial direction. For non-spherical meshes,
one virtual source point is needed for each point on the infinite element boundary to ensure that the radial
expansions are normal to the surface and orthogonal to the surface shape functions, 𝑆𝑖 (𝑠, 𝑡). This permit
writing the mapping function as a product of spatially separated terms, 𝑀𝑖 (𝑠, 𝑡, 𝑣) = 𝑆𝑖 (𝑠, 𝑡)𝑅𝑖 (𝑣). This
orthogonality is also necessary to ensure that the mass matrix remains positive semi-definite. The mass
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matrix (from equation (6.1.18)) includes the term 1 − ∇𝜇 · ∇𝜇. The magnitude of the gradient term, ∇𝜇, is
1.0 when the source is normal to the surface. It is greater than one otherwise, which leads to an indefinite
matrix, and can produce instability in dynamic integration.

In Sierra/SD two methods are used to generate the source point location. The first travels the normal vector
a fixed distance 𝑏, where 𝑏 is the dimension of the minor axis. The second method provides an offset that
intersect a plane normal to the vector and passing through the origin of the ellipsoid. These two methods
are illustrated in Figure (6-3).

Figure 6-3. – Methods of Locating Source Point. On the left, the source point is located on the surface normal, a
distance 𝑏 into the structure, where 𝑏 is the minor axis dimension. On the right, the source point is located along
the surface normal such that it intersects a plane normal to the vector, and containing the ellipsoid centroid.

The radial point 𝑎 is interpolated over the infinite element base, to give

𝑎(𝑠, 𝑡) =
𝑁∑︁
𝑖=1

𝑎𝑖𝑆𝑖 (𝑠, 𝑡) (6.1.25)

where 𝑆𝑖 (𝑠, 𝑡) is the implied surface shape function of the base element on the exterior surface. In this way,
tetrahedrons or hexahedrons may be used in the acoustic mesh. For the infinite elements, the only
difference is the surface shape functions 𝑆𝑖 (𝑠, 𝑡). The radial interpolation is independent of the underlying
finite element. The mapping functions 𝑀 𝑗 (𝑠, 𝑡, 𝑣) given in equation (6.1.22) are constructed as tensor
products of the surface shape functions 𝑆𝑖 (𝑠, 𝑡) and radial basis mapping functions. The radial basis
mapping functions are typically defined to be linear functions that map the finite domain into the infinite
domain. These functions are given as,

𝑚1(𝑣) =
2𝑣
𝑣 − 1

𝑚2(𝑣) =
1 + 𝑣
1 − 𝑣

(6.1.26)

Thus, when 𝑣 = −1, we have that 𝑚1(𝑣) = 1 and 𝑚2(𝑣) = 0. When 𝑣 = 1, we have 𝑚1(𝑣) = −∞ and
𝑚2(𝑣) = ∞. In this way, the infinite domain is mapped to a finite domain.

The mapping functions 𝑀 𝑗 (𝑠, 𝑡, 𝑣) are defined as tensor products of the surface shape functions 𝑆𝑖 (𝑠, 𝑡)
with the radial mapping functions from equation (6.1.26). For example, for an 8-node hex, the surface
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shape functions are defined as,

𝑆1(𝑠, 𝑡) =
(1 + 𝑠) (1 + 𝑡)

4

𝑆2(𝑠, 𝑡) =
(1 + 𝑠) (1 − 𝑡)

4

𝑆3(𝑠, 𝑡) =
(1 − 𝑠) (1 + 𝑡)

4

𝑆4(𝑠, 𝑡) =
(1 − 𝑠) (1 − 𝑡)

4
(6.1.27)

Then, the 8 functions 𝑀𝑖 (𝑠, 𝑡, 𝑣) can be constructed by crossing each 𝑆𝑖 (𝑠, 𝑡) from equation (6.1.27) with an
𝑚 𝑗 (𝑣) from equation (6.1.26).

Equation (6.1.24) can then be used to compute the phase function 𝜇(𝑥) at an arbitrary point

𝜇(𝑥) = 𝑟 − 𝑎 =

𝑁∑︁
𝑖=1
(𝑟 − 𝑎𝑖)𝑆𝑖 (𝑠, 𝑡) =

𝑁∑︁
𝑖=1

𝑎𝑖𝑆𝑖 (𝑠, 𝑡)
1 + 𝑣
1 − 𝑣 = 𝑎(𝑠, 𝑡) 1 + 𝑣

1 − 𝑣 (6.1.28)

With 𝜇(𝑥) defined, we consider 𝑃(𝑥). The 𝑙𝑡ℎ shape function 𝑃(𝑥) is defined as

𝑃𝑙 (𝑥) =
1
2
𝑆𝑖 (𝑠, 𝑡) (1 − 𝑣)𝑄 𝑗 (𝑣) (6.1.29)

where 𝑄 𝑗 (𝑣) is a polynomial in a single variable. Various choices of 𝑄 𝑗 (𝑥) have been investigated,
including Lagrangian,10,15 Legendre,11 Jacobi,51 and rational (integrated Jacobi).44 Lagrangian shape
functions result in ill conditioned infinite element matrices. The other three choices all appear to give
acceptable levels of conditioning. Dreyer51 showed that the Jacobi polynomials in general give a better
condition than the Legendre polynomials. Regardless of the choice for 𝑄(𝑥), equations (6.1.22)
and (6.1.29) imply that 𝑃(𝑥) will be a function of the reference element coordinates 𝑟, 𝑠, 𝑡, and thus can be
integrated over the reference element.

The function 𝐷 (𝑥) is defined as

𝐷 (𝑥) =
(
1 − 𝑣

2

)2
(6.1.30)

We have defined 𝑃(𝑥), 𝜇(𝑥), and 𝐷 (𝑥), in terms of the reference element coordinates 𝑟, 𝑠, 𝑡. The integrals
in equations (6.1.16), (6.1.17), and (6.1.18) can all be evaluated by standard Gaussian quadrature over the
reference unit element (either hex or tet).

6.1.2. Computation of solution at far-field points

After the solution to the acoustic problem is complete, the values of the coefficients in the expansion of
equation (6.1.14) are known. The next step is then to compute the solution at far-field points outside of the
acoustic mesh. We consider two cases below, one where the polynomial functions 𝑃(𝑥) in equation (6.1.12)
is a Lagrangian shape function, and the other where 𝑃(𝑥) is a more general polynomial (like a Legendre or
Jacobi polynomial). In the former case, the functions 𝑃(𝑥) are associated with particular nodes having
values of 1 at the node and 0 at the other nodes. In the latter case, this property does not hold.
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We assume that we wish to compute the solution at a node 𝑑 that is at a location 𝑥𝑑 , and a radial distance
𝑟 = | |𝑥𝑑 | | from the origin. This point is located on a radial line with a corresponding radial point 𝑎. Thus,
for this point we have 𝜇𝑑 = 𝑟 − 𝑎., We have

𝑝(𝑥𝑑 , 𝜔) =
𝑁∑︁
𝑖=1

𝑞 𝑗 (𝜔)𝑃 𝑗 (𝑥𝑑)𝑒−𝑖𝑘𝜇𝑑 (6.1.31)

Note that ’N’ in this case is the number of infinite element basis functions within the infinite element that
includes the point 𝑑. In the case of Lagrangian polynomials, we have the property that the function is equal
to 1 at the node of interest and is equal to 0 at the other nodes. Thus, in the case that the point 𝑥𝑑 coincides
with a node in the infinite element, we have the expression

𝑝(𝑥𝑑 , 𝜔) = 𝑞𝑑 (𝜔)𝑒−𝑖𝑘𝜇𝑑 (6.1.32)

where 𝑞𝑑 (𝜔) is the infinite element shape function corresponding to node 𝑑. Equivalently, we have

𝑞𝑑 (𝜔) = 𝑝(𝑥𝑑 , 𝜔)𝑒𝑖𝑘𝜇𝑑 (6.1.33)

Thus, the pressure at the node 𝑑 is equal to the corresponding value of the coefficient of the infinite element
expansion corresponding to that node, multiplied by the factor 𝑒−𝑖𝑘𝜇𝑑 , where 𝜇𝑑 is equal to the distance
(along the radial line) from the boundary of the acoustic domain to the node 𝑑.

If we take the inverse Fourier transform of equation (6.1.33), we get

𝑞𝑑 (𝑡) = 𝑝(𝑥𝑑 , 𝑡 +
𝑑

𝑐
) (6.1.34)

Thus, the pressure time history at node 𝑑 is equal to a time-shifted value of the infinite element degree of
freedom 𝑞𝑑 (𝑡) corresponding to node 𝑑. This makes physical sense in that it would take the wave additional
time equal to 𝑑

𝑐
to reach the point 𝑑.

Next we consider the case when 𝑃(𝑥) is not a Lagrangian polynomial. In this case, the point 𝑑 could not be
associated with any particular node. In this case, we still have the relation

𝑝(𝑥𝑑 , 𝜔) =
𝑁∑︁
𝑖=1

𝑞 𝑗 (𝜔)𝑃 𝑗 (𝑥𝑑)𝑒−𝑖𝑘𝜇𝑑 (6.1.35)

except in this case, the polynomials 𝑃(𝑥) do not necessarily vanish at 𝑑. Thus, again bringing the
exponential to the other side of the equation, we have

𝑝(𝑥𝑑 , 𝜔)𝑒𝑖𝑘𝜇𝑑 =

𝑁∑︁
𝑖=1

𝑞 𝑗 (𝜔)𝑃 𝑗 (𝑥𝑑) (6.1.36)

Taking inverse Fourier transforms, we arrive at the result

𝑝(𝑥𝑑 , 𝑡 +
𝑑

𝑐
) =

𝑁∑︁
𝑖=1

𝑞 𝑗 (𝑡)𝑃 𝑗 (𝑥𝑑) (6.1.37)

Since all quantities on the right-hand side of equation (6.1.37) are known after the finite/infinite element
solution is complete, we can post-process to compute the pressure at the field point 𝑥𝑑 .
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6.1.3. Acoustic Point Source: A Lighthill Load

Point acoustic sources are common in acoustic modeling, and we provide some capability for doing this in
Sierra/SD. Here we describe the theory behind this implementation. Note solution verification could be
done using the frequency response function a point source located at the origin of an unbounded domain,
(6.1.44) using a sphere with an absorbing exterior boundary condition as the domain. The subsection after
this 6.1.4 touches on this.

Some recent studies have examined the accuracy of modeling air pumping in tire noise using point sources
[88], [70]. The pros and cons of this approach were clearly demonstrated in these papers. In this section,
we will outline the theory behind point source modeling, and will show that they are a special case of the
more general Lighthill approach for modeling flow-induced noise.

The theory of point sources90,115 in acoustics is typically formulated by considering a pulsating sphere of
radius 𝑅, centered at the point 𝑥𝑠. Upon taking the limit as the radius of the sphere goes to zero, one obtains
the equation for an acoustic point source.

The distance from the center of the sphere to a point in the domain is |𝑥 − 𝑥𝑠 |, where 𝑥 is the vector from the
center of the sphere. Here 𝜌 is the density of the fluid.

We consider a point source that is injecting mass into the acoustic domain at a rate

¤𝑚𝑠 (𝑡) = 𝜌𝑄𝑠 (𝑡),

where ¤𝑚𝑠 is the mass per unit time of fluid that is being injected into the domain, and 𝑄𝑠 (𝑡) is the volume
velocity (volume per unit time) of the fluid that is entering the acoustic domain. More on this will be given
later in Section 3.7 on Lighthill’s approach, and its connection with the point source. We can construct a
point source consistent with the mass injection rate 𝑞 defined in equation (3.0.1) via multiplication of ¤𝑚𝑠 by
a Dirac delta function (which itself has units of one over volume). Because 𝜕𝑞/𝜕𝑡 appears in the wave
equation (3.0.8), one more time derivative of ¤𝑚𝑠 is required:115

∇2𝑝 − 1
𝑐2
𝜕2𝑝

𝜕𝑡2
= − ¥𝑚𝑠 (𝑡)𝛿(𝑥 − 𝑥𝑠), (6.1.38)

where 𝑝 is the acoustic pressure at a point in the domain, 𝑐 is the speed of sound, and 𝜌 is the fluid density.
We note that the volume velocity can also be written as the time derivative of the volume in the source

𝑄𝑠 (𝑡) =
𝑑𝑉

𝑑𝑡
(6.1.39)

where 𝑉 is the volume enclosed by the source. Equation (6.1.39) is valid for a spherical source enclosing a
volume 𝑉 , but in the case of a point source we shrink the radius to zero. The volume velocity, 𝑄𝑠, is also
sometimes called the source strength. It is the integral of the normal component of surface velocity over the
spherical surface of the source. Since the surface velocity is the same everywhere on the surface of the
sphere, the source strength is

𝑄𝑠 =

∫
𝑆

𝑣𝑛𝑑𝑆 = 𝑣𝑛

∫
𝑠

𝑑𝑆 = 4𝜋𝑎2𝑣𝑛 (6.1.40)

where 𝑎 is the radius of the sphere, and 𝑣𝑛 is the normal component of velocity on the surface. By
considering the volume increase for a pulsating sphere, it is easy to see that equations (6.1.39) and (6.1.40)
are the same.
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We note that in the Sierra/SD implementation of acoustics, we use the time derivative of pressure rather
than the pressure directly. We also scale the equation by density, since this is needed when the fluid
properties are not constant. Thus, we would modify equation (6.1.38) as follows

∇2𝜓

𝜌
− 1
𝜌𝑐2

𝜕2𝜓

𝜕𝑡2
= − ¤𝑚𝑠 (𝑡)

𝜌
𝛿(𝑥 − 𝑥𝑠),

where 𝑝 = 𝜕𝜓/𝜕𝑡. Equivalently, this gives

∇2𝜓

𝜌
− 1
𝜌𝑐2

𝜕2𝜓

𝜕𝑡2
= −𝑄𝑠 (𝑡)𝛿(𝑥 − 𝑥𝑠). (6.1.41)

The frequency domain version corresponds to

𝜓 = 𝜓𝑒− 𝑗𝜔𝑡 ,

and simplifies to, (
∇2 + 𝑘2

)
𝜙 = −𝜌𝑄𝛿(𝑥 − 𝑥𝑠). (6.1.42)

Equation (6.1.38) is typically expressed in terms of the amplitude, 𝐴, of the source,(
∇2 + 𝑘2

)
𝜙 = −4𝜋𝐴𝛿(𝑥 − 𝑥𝑠) (6.1.43)

The solution to equation (6.1.43) in an unbounded domain can be shown to be

𝜙 =
𝐴

𝑟
𝑒 𝑗𝑘𝑟 (6.1.44)

where 𝑟 = |𝑥 − 𝑥𝑠 | is the distance from the source to the point 𝑥 in the domain, and 𝑘 = 𝜔
𝑐

is the
wavenumber.

Assuming a time-harmonic expression for 𝑄𝑠 (𝑡) = 𝑄𝑒− 𝑗𝜔𝑡 , equation (6.1.43) is consistent with
equation (6.1.41) if

𝑄 =
4𝜋𝐴
𝜌
.

The solution 𝜙 can therefore be expressed as

𝜙 = 𝜌𝑄
𝑒 𝑗𝑘𝑟

4𝜋𝑟
(6.1.45)

or due to
𝑝 = −𝜕𝜓/𝜕𝑡, 𝜓 = 𝜙𝑒− 𝑗𝜔𝑡 ,

as

𝑝 = − 𝑗𝜔𝜌𝑄 𝑒
𝑗𝑘𝑟

4𝜋𝑟
. (6.1.46)

Specification of 𝑑𝑉/𝑑𝑡 in equation (6.1.42) and 𝑑2𝑉/𝑑𝑡2 in equation (6.1.38) is covered in User’s
Manual.

A finite element formulation of the previous equation can be constructed as usual, by multiplying the
previous equation by a test function, and integrating by parts. We note that the domain of integration must
include the point 𝑥𝑠, the location of the point source. Also, we note that the integration against the delta
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function 𝛿(𝑥 − 𝑥𝑠) is a duality pairing, rather than an integral, since the integral of a delta function is not
defined. In what follows, we assume that the point 𝑥𝑠 lies on a node in the finite element mesh. This will
facilitate the modeling, since we will typically define the point source on a nodeset or nodelist consisting of
a single node.

Denoting by 𝑉 𝑓 (Ω 𝑓 ) the function space for the fluid, the weak formulation can be written as follows. Find
the mapping 𝜓 : [0, 𝑇] → 𝑉 𝑓 (Ω 𝑓 ) such that∫

Ω

¥𝜓
𝜌𝑐2 𝜙𝑑𝑥 +

∫
Ω

∇𝜓 · ∇𝜙
𝜌

𝑑𝑥 = −
∫
𝜕Ω𝑛

¤𝑢𝑛𝜙𝑑𝑠 +𝑄𝑠 (𝑡)

∀𝜙 ∈ 𝑉 𝑓 (Ω 𝑓 ), where ¤𝑢𝑛 is the prescribed velocity on the Neumann portion of the fluid boundary. We note
that the first term on the right-hand side is a surface excitation force, and thus only contributes nonzero
terms on nodes that lie on the surface

∫
𝜕Ω𝑛

. The second term comes from the point source, and only
contributes a nonzero term on the node where the point source is located.

Inserting a finite element discretization 𝜙(𝑥) = ∑𝑁
𝑖=1 𝜙𝑖𝑁𝑖 (𝑥) into equation (6.1.47) results in the system of

equations
𝑀 ¥𝜓 + 𝐾𝜓 = 𝑓𝑎, (6.1.47)

where 𝑁 is the vector of shape functions, 𝑀 =
∫
Ω 𝑓

1
𝜌𝑐2𝑁𝑁

𝑇𝑑𝑥 is the mass matrix, 𝐾 =
∫
Ω 𝑓

∇𝑁 ·∇𝑁𝑇
𝜌

𝑑𝑥 is
the stiffness matrix, and 𝑓𝑎 =

∫
𝜕Ω𝑛
¤𝑢𝑛𝑁𝑇𝑑𝑥 +𝑄𝑠 (𝑡) is the external forcing vector from Neumann boundary

conditions.

If 𝑄 = 𝑑𝑉
𝑑𝑡

is computed with a void element in Presto, equation (6.1.47) can be used to compute the
right-hand side term and the corresponding acoustic response.

6.1.4. A Distribution of Sources Throughout the Volume - Lighthill’s approach

In the case that there is a general flow field in the fluid domain, the preceding theory for point sources can
be integrated over the volume to obtain the acoustic response generated by the flow field. In effect, this
treats the flow field as a distribution of point sources throughout the volume.

The acoustic response from the flow field can be computed from the acoustic wave equation with a
volumetric right-hand side term (

1
𝑐2 − ∇

2
)
𝜙 =

𝜕2𝑇𝑖 𝑗

𝜕𝑥𝑖𝜕𝑥 𝑗
(6.1.48)

Distributing sources over the volume eliminates no spatial delta function.

To relate the velocity on the spherical surface to the velocity potential from equation 6.1.44, we recall that
the boundary condition from classical acoustics that relates normal derivative of velocity potential to
velocity

𝜕𝜙

𝜕𝑛
= −𝜌𝑣𝑛 (6.1.49)

where 𝑣𝑛 is the normal component of velocity etc.

For spherical surfaces, the normal direction coincides with the radial direction and

𝜕𝜙

𝜕𝑛
=
𝜕𝜙

𝜕𝑟
.
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Together with (6.1.44), this implies

𝑣𝑛 = 𝑣𝑟 =
𝐴𝑒𝑖𝜔𝑡

𝜌

[
1 + 𝑖𝑘𝑟
𝑟2

]
𝑒−𝑖𝑘𝑟 (6.1.50)

The volume velocity at 𝑟 = 𝑟0 is then

𝑄 = 4𝜋𝑟2
0𝑣𝑟 = 4𝜋

𝐴𝑒𝑖𝜔𝑡

𝜌
[1 + 𝑖𝑘𝑟0] 𝑒−𝑖𝑘𝑟0 (6.1.51)

The previous equation is valid for a sphere of radius 𝑟0 oscillating with harmonic normal velocity 𝑣𝑛.
Consider what happens if the sphere radius shrinks to zero. In the limit of vanishing 𝑘𝑟0,

𝑄 = 4𝜋
𝐴𝑒𝑖𝜔𝑡

𝜌
, [1 + 𝑖𝑘𝑟0] → 1, 𝑒−𝑖𝑘𝑟0 → 1.

And so,
𝐴 =

𝜌

4𝜋
𝑒−𝑖𝜔𝑡𝑄.

The commercial code SYSNOISE [129] uses this expression for their point source in terms of the volume
velocity 𝑄. The user inputs 𝑄, and the code computes the corresponding acoustic field.

6.1.5. Perfectly Matched Layers

The perfectly matched layers are described in detail in Bunting et al.29 Given a structure 𝑆 surrounded by
bounded interior domain Ω𝑖 , and an exterior domain Ω𝑒, the exterior acoustics problem consists of
determining the acoustic pressure, 𝑝, in domain Ω𝑒 ∪Ω𝑖 . We refer to Figure 6-4 for a schematic of the
geometry. In a domain truncation strategy, boundary conditions are applied to the outermost boundary Γ𝑒

of Ω𝑖 .

To illustrate the ideas, we assume an acoustic pressure wave propagating in the 𝑥-direction, with
wavenumber 𝑘 = 𝜔

𝑐
, where 𝜔 is the circular frequency, and 𝑐 is the speed of sound. The wave takes the

form
𝑝(𝑥) = 𝑝0𝑒

𝑖𝑘𝑥 (6.1.52)

S

Γ𝑆
Γ𝑒

Ω𝑖 Ω𝑒

Figure 6-4. – Domains Ω𝑖 and Ω𝑒 and interface Γ for the exterior acoustic problem.
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As written, this wave is undamped, and will propagate indefinitely with no change of shape. However, if we
allow the wave to propagate on a coordinate system that has complex coordinates 𝑥 = 𝑎(𝑥) + 𝑖𝑏(𝑥), where
𝑎(𝑥) and 𝑏(𝑥) are functions of 𝑥, then the equation of the wave becomes84

𝑝(𝑥) = 𝑝0𝑒
𝑖𝑘 𝑥̃ = 𝑝0𝑒

𝑖 (𝑘𝑎 (𝑥 )+𝑖𝑘𝑏 (𝑥 ) ) = 𝑝0𝑒
−𝑘𝑏 (𝑥 )𝑒𝑖𝑘𝑎 (𝑥 ) (6.1.53)

We observe that this wave corresponds to damped wave propagation, with decay coefficient equal to 𝑘𝑏(𝑥).
For a coordinate stretching of 𝑏(𝑥) > 0, this wave will decay exponentially fast, which is the case
considered in this paper. If 𝑏(𝑥) < 0, then the wave will grow exponentially fast.

In order for equation (6.1.53) to be a solution to a wave equation, that wave equation must itself be written
in a coordinate system that is complex, rather than real-valued. On the other hand, the corresponding finite
element implementation is most easily derived on a real-valued coordinate system. Thus, though the
governing partial differential equations of the PML are written in a complex coordinate field, the
corresponding weak formulation is mapped to a real coordinate system, to facilitate the finite element
implementation.

To build up to the ellipsoidal PML formulation, the following sections provide derivations of rectangular,
rotated rectangular, and spherical PML. These provide the building blocks for the ellipsoidal case. We will
subsequently show that the ellipsoidal formulation reduces to the spherical and rectangular cases by
choosing equal and large radii of curvature, respectively.

6.1.5.1. Cartesian PML

We define the PML domain as being a parallelepiped of dimension (2𝑎̄, 2𝑏̄, 2𝑐), centered at the origin, with
an interior parallelepiped hole of dimension (2𝑎, 2𝑏, 2𝑐). Practically, this would correspond to the case
where the structure of interest, as complex shape it may have, was surrounded by an acoustic mesh that
terminated at the boundary of the inner parallelepiped. The PML would then occupy the region between the
inner and outer parallelepiped boundaries. A simple shift can be applied if the domain is not
origin-centered.

The PML formulation can be broken down into three steps. First the analytic continuation is used to map
the Helmholtz equation into the complex plane. Then the weak form is formulated on the complex plane,
and the chain rule is applied to map between the complex and real plane. Finally, the results from the chain
rule give a weak formulation over the real-valued domain, but with the dissipative properties stemming
from the transformation to complex coordinates.

6.1.5.1.1. Step 1. Analytic continuation The PML equations can be written in either first or second
order form. Here we consider the implementation of second order form. In the interior Ω = Ω𝐼 , the
acoustic pressure must satisfy the acoustic Helmholtz equation

−Δ𝑝 − 𝑘2𝑝 = 0 (6.1.54)

where 𝑘 = 𝜔
𝑐

, and 𝑝 is the acoustic pressure, a prescribed Neumann boundary condition on Γ𝑆

𝜕𝑝

𝜕𝑛
= 𝑔(𝑥, 𝜔) (6.1.55)
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and the Sommerfeld radiation condition for outgoing waves at infinity104����𝜕𝑝𝜕𝑟 − 𝑖𝑘 𝑝���� = O (
1
𝑟2

)
, 𝑟 →∞ (6.1.56)

where 𝑘 = 𝜔
𝑐

. We note that equation (6.1.54) involves constant coefficients, meaning that the speed of
sound and density in the fluid are assumed to be constant. More specifically, equation (6.1.54) is
undamped, meaning that the waves will not attenuate as they propagate through the medium.

Equation (6.1.54) is written in terms of real coordinates. As illustrated earlier, the waves will decay in the
PML if the coordinates are considered as complex-valued rather than real-valued. Thus, we use analytic
continuation to map the Helmholtz equation into the complex plane

Δ̃𝑝 − 𝑘2𝑝 = 0 (6.1.57)

where the change of coordinates for the x-direction is defined as:

𝑥 = 𝑥 − 𝑖

𝜔

∫ 𝑎

𝑥

𝜎(𝜉)𝑑𝜉 𝑎 < 𝑥 < 𝑎̄ (6.1.58)

𝑥 = 𝑥 + 𝑖

𝜔

∫ 𝑥

𝑎

𝜎(𝜉)𝑑𝜉 − 𝑎̄ < 𝑥 < −𝑎 (6.1.59)

Similar expressions describe the coordinate transformations for the other two coordinate axes.

6.1.5.1.2. Step 2. Weak formulation over complex-valued domain We note that the weak
formulation of equation (6.1.57) can be constructed using either a bilinear or sesquilinear formulation.43,45

The difference is only whether complex conjugation is applied to the test functions. In standard finite
element methods for acoustics, these formulations lead to the same discrete system of equations. However,
with PML the formulations yield different numerical methods. In this paper we take the bilinear approach,
since it yields a complex-symmetric system of linear equations that can be exploited in the linear solver.
The bilinear weak form of equation (6.1.57) seeks 𝑝 ∈ 𝑉 𝑓 (Ω̃𝐼 ) such that∫

Ω̃𝐼

[⟨∇̃𝑝, ∇̃𝑞⟩ − 𝑘2𝑝𝑞 ]𝑑Ω̃𝐼 =
∫
Γ̃𝑆

𝑔𝑞𝑑Γ̃𝑆 (6.1.60)

where the tildes indicate quantities defined over the complex extension of the domain Ω𝐼 , and 𝑞 represents
the test function.

6.1.5.1.3. Step 3: Apply the chain rule From equation (6.1.59) and the Fundamental Theorem of
Calculus, we see that

𝜕𝑥

𝜕𝑥
= 𝛾𝑥 (𝑥) = 1 ± 𝑖

𝜔
𝜎(𝑥) (6.1.61)

Similar expressions hold for the 𝑦 and 𝑧 coordinates. This implies that the gradients of acoustic pressure
can be transformed between the real and complex domains using a Jacobian

∇𝑝 = 𝑱𝑐𝑎𝑟𝑡 ˜∇𝑝 (6.1.62)
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where the Jacobian matrix for the Cartesian coordinate system 𝑱𝑐𝑎𝑟𝑡 is defined as

𝑱𝑐𝑎𝑟𝑡 =


𝛾𝑥 0 0
0 𝛾𝑦 0
0 0 𝛾𝑧

 (6.1.63)

Conversely, we can map from the complex to the real derivatives using the inverse of the Jacobian.

˜∇𝑝 = 𝑱−1
𝑐𝑎𝑟𝑡∇𝑝 (6.1.64)

where

𝑱−1
𝑐𝑎𝑟𝑡 =


1
𝛾𝑥

0 0
0 1

𝛾𝑦
0

0 0 1
𝛾𝑧

 (6.1.65)

The scale factor that maps Ω̃𝐼 into Ω𝐼 is the determinant of the Jacobian,

𝑊𝑐𝑎𝑟𝑡 = 𝛾𝑥𝛾𝑦𝛾𝑧 (6.1.66)

6.1.5.1.4. Step 4: Revert to real-valued weak formulation Using the previous results and the
determinant relation from equation (6.1.66), the corresponding weak version of the Helmholtz equation is
given as follows. Find 𝑝 ∈ 𝑉 𝑓 (Ω𝐼 ) such that∫

Ω𝐼

[
(𝑱−1
𝑐𝑎𝑟𝑡∇𝑝) · (𝑱−1

𝑐𝑎𝑟𝑡∇𝑞) − 𝑘2𝑝𝑞
]
𝑊𝑐𝑎𝑟𝑡𝑑Ω𝐼 =

∫
Γ𝑆

𝑔𝑞𝑑𝑆. (6.1.67)

We note that we can turn this into a Helmholtz equation with variable coefficients as follows∫
Ω𝐼

[𝑨⟨∇𝑝,∇𝑞⟩ − 𝑘2𝑝𝑞]𝑊𝑐𝑎𝑟𝑡 𝑑Ω𝐼 =
∫
Γ𝑆

𝑔𝑞𝑑Γ𝑆 (6.1.68)

where 𝑨 = 𝑊𝑐𝑎𝑟𝑡 𝑱
−1
𝑐𝑎𝑟𝑡 𝑱

−𝑇
𝑐𝑎𝑟𝑡 . We note that 𝑨 is a symmetric matrix, which follows from our choice to use a

bilinear formulation rather than sesquilinear. Matrix 𝑨 can be interpreted generally, without being tied to
the cartesian coordinate system. The Jacobian matrices account for the different scaling factors for the
various coordinate systems. Note that equation (6.1.68) achieves all the goals that were set from the
beginning. A symmetric weak formulation over the real-valued domain, but with built-in dissipative
properties stemming from the transformation to complex coordinates.

In the following sections, we will derive PML equations for rotated Cartesian, spherical, and ellipsoidal
coordinates. In all cases, the weak formulation will be precisely the same as in equation (6.1.68), but with a
different Jacobian matrix 𝑱 and corresponding determinant𝑊 . Thus, we will only derive expressions for 𝑱
in each of the coordinate systems.
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6.1.5.2. Rotated Cartesian Coordinates

In this section we consider the case where the PML surface is extruded from a flat plane that is oriented at
an arbitrary angle in three-dimensional space. If we define 𝒙 = 𝑥𝑖 , 𝑖 = 1, 2, 3 as the unrotated coordinates
and 𝒙

′
= 𝑥

′
𝑖
, 𝑖 = 1, 2, 3 as the coordinates in the rotated coordinate system, we have

𝑅 =


𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

 (6.1.69)

where 𝑎𝑖 𝑗 is the direction cosine between the 𝑥𝑖 and 𝑥′
𝑖
axis. This defines the transformation as follows

𝒙
′
= 𝑹𝒙 (6.1.70)

The Jacobian matrix for this case can be computed from the chain rule103

𝑱𝑟𝑜𝑡𝑐𝑎𝑟𝑡 =
𝜕 (𝑥, 𝑦̃, 𝑧)
𝜕 (𝑥, 𝑦, 𝑧) =

𝜕 (𝑥, 𝑦̃, 𝑧)
𝜕 (𝑥′ 𝑦′ , 𝑧′)

𝜕 (𝑥′ , 𝑦′ , 𝑧′)
𝜕 (𝑥, 𝑦, 𝑧) =


𝛾𝑥 0 0
0 𝛾𝑦 0
0 0 𝛾𝑧

 𝑹 = 𝑱𝑐𝑎𝑟𝑡𝑹 (6.1.71)

The inverse of this matrix is given as
𝑱−1
𝑟𝑜𝑡𝑐𝑎𝑟𝑡 = 𝑹𝑇 𝑱−1

𝑐𝑎𝑟𝑡 (6.1.72)

Thus, the coefficient matrix for this case is given by

𝑨 = 𝑊𝑟𝑜𝑡𝑐𝑎𝑟𝑡 𝑱
−1
𝑟𝑜𝑡𝑐𝑎𝑟𝑡 𝑱

−𝑇
𝑟𝑜𝑡𝑐𝑎𝑟𝑡

= 𝑊𝑟𝑜𝑡𝑐𝑎𝑟𝑡𝑹
𝑇 𝑱−1

𝑐𝑎𝑟𝑡 (𝑱𝑐𝑎𝑟𝑡𝑹)−𝑇

= 𝑊𝑐𝑎𝑟𝑡𝑹
𝑇 𝑱−1

𝑐𝑎𝑟𝑡 𝑱
−𝑇
𝑐𝑎𝑟𝑡𝑹

(6.1.73)

where we have used the fact that𝑊𝑟𝑜𝑡𝑐𝑎𝑟𝑡 = 𝑊𝑐𝑎𝑟𝑡 . We see that this involves a simple rotation tensor
transformation applied to the diagonal Jacobian matrix given in the unrotated case, equation (6.1.65). Thus,
equation (6.1.68) applies, and can be used to construct the weak formulation in the rotated Cartesian case,
but with a modified coefficient matrix 𝑨 given in equation (6.1.73).

6.1.5.3. Spherical Coordinates

In a similar manner, we can derive the Jacobian matrix for a spherical PML. Though other researchers127,36

have chosen to solve the spherical PML equations directly in spherical coordinates, we prefer to map the
equations back to the Cartesian system to facilitate the finite element implementation. Thus, in this case our
Jacobian needs to account for this additional transformation. The formulation for this case is given in.103

The mapping from spherical to Cartesian coordinates is given as

𝑥 = 𝑟 sin(𝜙) cos(𝜃)
𝑦 = 𝑟 sin(𝜙) sin(𝜃)
𝑧 = 𝑟 cos(𝜙)

(6.1.74)

The corresponding analytically continued coordinates are given as

𝑥 = 𝑟 sin(𝜙) cos(𝜃)
𝑦̃ = 𝑟 sin(𝜙) sin(𝜃)
𝑧 = 𝑟 cos(𝜙)

(6.1.75)
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Note that the complex coordinate stretching occurs only in the radial direction, as dissipative effect is not
desired in the transverse directions. With these definitions the Jacobian matrix is given by the chain rule

𝑱𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 =
𝜕 (𝑥, 𝑦̃, 𝑧)
𝜕 (𝑥, 𝑦, 𝑧) =

𝜕 (𝑥, 𝑦̃, 𝑧)
𝜕 (𝑟, 𝜙, 𝜃)

𝜕 (𝑥, 𝑦, 𝑧)
𝜕 (𝑟, 𝜙, 𝜃)

−1

=


𝑟
′ sin(𝜙) cos(𝜃) 𝑟 cos(𝜙) cos(𝜃) −𝑟 sin(𝜙) sin(𝜃)
𝑟
′ sin(𝜙) sin(𝜃) 𝑟 cos(𝜙) sin(𝜃) 𝑟 sin(𝜙) cos(𝜃)
𝑟
′ cos(𝜙) −𝑟 sin(𝜙) 0


sin(𝜙) cos(𝜃) 𝑟 cos(𝜙) cos(𝜃) −𝑟 sin(𝜙) sin(𝜃)
sin(𝜙) sin(𝜃) 𝑟 cos(𝜙) sin(𝜃) 𝑟 sin(𝜙) cos(𝜃)

cos(𝜙) −𝑟 sin(𝜙) 0


−1

(6.1.76)

Once again, equation (6.1.68) applies, and can be used to construct the weak formulation in the case of
spherical coordinates, but with a modified coefficient matrix 𝑨 given in equation (6.1.76).

We note that an advantage of the curvilinear PML formulation is that it is one-dimensional in the sense that
the stretching only happens in one of the coordinate directions, in this case the radial direction. Thus, we
can define the stretching as being in the radial direction only. This takes the form

𝑟 = 𝑟 + 𝑖

𝜔

∫ 𝑟

𝑅

𝜎(𝜖)𝑑𝜖 (6.1.77)

which implies that

𝑟
′
=
𝜕𝑟

𝜕𝑟
= 𝛾(𝑟) = 1 + 𝑖

𝜔
𝜎(𝑟) (6.1.78)

6.1.5.4. Ellipsoidal Coordinates

In the case of ellipsoidal coordinates, we first must choose an appropriate coordinate system for the
complex stretching of the PML. Ellipsoidal coordinates can be expressed in various ways, but we have
found use of the coordinates developed by Burnett30 to be the most convenient for defining the PML. We
select the case of the prolate ellipsoid, with 𝑎 ≥ 𝑏 = 𝑐. As in the spherical case, we prefer to solve the final
equations in Cartesian coordinates rather than ellipsoidal. Thus, we will apply complex stretching to the
ellipsoidal coordinate system, but will map the resulting equations back to Cartesian coordinates for the
finite element solution. Once again, these transformations can be applied with the Jacobian.

We define an ellipsoidal radius30 as
𝑟 =

𝑐1 + 𝑐2

2
(6.1.79)

where 𝑐1 and 𝑐2 are the distances of a given point on the ellipse to the two foci. We note that on the
ellipsoidal surface, 𝑟 is a constant, and is essentially a generalization of the notion of radial distance in the
case of a sphere. Given the major and minor radii 𝑎 and 𝑏 of the ellipse, the distance to the focus along the
major axis is given by 𝑓 =

√
𝑎2 − 𝑏2.

In terms of PML, we choose the direction of complex stretching to be along the direction defined in
equation (6.1.79). We note that unlike the radial direction for a sphere, equation (6.1.79) defines curvilinear
lines, and thus the PML layer will produce damping along those directions. This is necessary since if we
were to define damping along straight-line paths (say in the direction normal to the ellipsoid surface), then
the complex stretching would occur in all three directions 𝑟, 𝜙, 𝜃.
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Given these parameters, the ellipsoidal coordinate system is defined as

𝑥 =
√︁
𝑟2 − 𝑓 2 sin(𝜙) cos(𝜃)

𝑦 =
√︁
𝑟2 − 𝑓 2 sin(𝜙) sin(𝜃)

𝑧 = 𝑟 cos(𝜙)
(6.1.80)

Note that in the case of a sphere, 𝑎 = 𝑏 = 𝑐, which implies that 𝑓 = 0, and these coordinates reduce to the
spherical case. The stretched coordinates in the ellipsoidal case are given by

𝑥 =
√︁
𝑟2 − 𝑓 2 sin(𝜙) cos(𝜃)

𝑦̃ =
√︁
𝑟2 − 𝑓 2 sin(𝜙) sin(𝜃)

𝑧 = 𝑟 cos(𝜙)
(6.1.81)

This implies that the transformation matrix is given as

𝑱𝑒𝑙𝑙𝑖 𝑝𝑠𝑜𝑖𝑑𝑎𝑙 =
𝜕 (𝑥, 𝑦̃, 𝑧)
𝜕 (𝑥, 𝑦, 𝑧) =

𝜕 (𝑥, 𝑦̃, 𝑧)
𝜕 (𝑟, 𝜙, 𝜃)

𝜕 (𝑥, 𝑦, 𝑧)
𝜕 (𝑟, 𝜙, 𝜃)

−1

=


𝑟𝑟
′

√
𝑟2− 𝑓 2

sin(𝜙) cos(𝜃)
√︁
𝑟2 − 𝑓 2 cos(𝜙) cos(𝜃) −

√︁
𝑟2 − 𝑓 2 sin(𝜙) sin(𝜃)

𝑟𝑟
′

√
𝑟2− 𝑓 2

sin(𝜙) sin(𝜃)
√︁
𝑟2 − 𝑓 2 cos(𝜙) sin(𝜃)

√︁
𝑟2 − 𝑓 2 sin(𝜙) cos(𝜃)

𝑟
′ cos(𝜙) −𝑟 sin(𝜙) 0


𝑟√
𝑟2− 𝑓 2

sin(𝜙) cos(𝜃)
√︁
𝑟2 − 𝑓 2 cos(𝜙) cos(𝜃) −

√︁
𝑟2 − 𝑓 2 sin(𝜙) sin(𝜃)

𝑟√
𝑟2− 𝑓 2

sin(𝜙) sin(𝜃)
√︁
𝑟2 − 𝑓 2 cos(𝜙) sin(𝜃)

√︁
𝑟2 − 𝑓 2 sin(𝜙) cos(𝜃)

cos(𝜙) −𝑟 sin(𝜙) 0


−1

(6.1.82)

6.1.5.5. Ellipsoidal Coordinates with X axis as Major axis

The previous section assumed that the major axis of the ellipse was oriented along the 𝑧 direction. For
completeness, we show here how to adjust the formulation in the case when the major axis is along the 𝑥
direction. In this case the ellipsoidal coordinate system is defined as

𝑥 = 𝑟 cos(𝜙)

𝑦 =
√︁
𝑟2 − 𝑓 2 sin(𝜙) sin(𝜃)

𝑧 =
√︁
𝑟2 − 𝑓 2 sin(𝜙) cos(𝜃)

(6.1.83)

Note that in the case of a sphere, 𝑎 = 𝑏 = 𝑐, which implies that 𝑓 = 0, and these coordinates reduce to the
spherical case. The stretched coordinates in the ellipsoidal case are given by

𝑥 = 𝑟 cos(𝜙)

𝑦̃ =
√︁
𝑟2 − 𝑓 2 sin(𝜙) sin(𝜃)

𝑧 =
√︁
𝑟2 − 𝑓 2 sin(𝜙) cos(𝜃)

(6.1.84)
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This implies that the Jacobian matrix is given as

𝑱 =
𝜕 (𝑥, 𝑦̃, 𝑧)
𝜕 (𝑥, 𝑦, 𝑧) =

𝜕 (𝑥, 𝑦̃, 𝑧)
𝜕 (𝑟, 𝜙, 𝜃)

𝜕 (𝑥, 𝑦, 𝑧)
𝜕 (𝑟, 𝜙, 𝜃)

−1

=


𝑟
′ cos(𝜙) −𝑟 sin(𝜙) 0

𝑟𝑟
′

√
𝑟2− 𝑓 2

sin(𝜙) sin(𝜃)
√︁
𝑟2 − 𝑓 2 cos(𝜙) sin(𝜃)

√︁
𝑟2 − 𝑓 2 sin(𝜙) cos(𝜃)

𝑟𝑟
′

√
𝑟2− 𝑓 2

sin(𝜙) cos(𝜃)
√︁
𝑟2 − 𝑓 2 cos(𝜙) cos(𝜃) −

√︁
𝑟2 − 𝑓 2 sin(𝜙) sin(𝜃)


cos(𝜙) −𝑟 sin(𝜙) 0

𝑟√
𝑟2− 𝑓 2

sin(𝜙) sin(𝜃)
√︁
𝑟2 − 𝑓 2 cos(𝜙) sin(𝜃)

√︁
𝑟2 − 𝑓 2 sin(𝜙) cos(𝜃)

𝑟√
𝑟2− 𝑓 2

sin(𝜙) cos(𝜃)
√︁
𝑟2 − 𝑓 2 cos(𝜙) cos(𝜃) −

√︁
𝑟2 − 𝑓 2 sin(𝜙) sin(𝜃)


−1

(6.1.85)

6.1.5.6. Relations Between the PML Formulations

It is clear that as the minor and major axis become equal, 𝑎 = 𝑏 = 𝑐, and hence 𝑓 = 0. This implies that the
Jacobian for ellipsoidal coordinates in equation (6.1.82) reduces to the spherical Jacobian given in equation
(6.1.76).

As an additional step, we consider that the spherical Jacobian reduces to that of the Cartesian in the limiting
case of a large radius of the inner sphere defining the PML boundary. This can be seen by considering
equations (6.1.77) and (6.1.78), which we repeat here for convenience

𝑟 = 𝑟 + 𝑖

𝜔

∫ 𝑟

𝑅

𝜎(𝜖)𝑑𝜖 (6.1.86)

which implies that

𝑟
′
=
𝜕𝑟

𝜕𝑟
= 𝛾(𝑟) = 1 + 𝑖

𝜔
𝜎(𝑟) (6.1.87)

As 𝑟 and hence 𝑅 become very large, we see from equation (6.1.77) that then 𝑟 → 𝑟, since the imaginary
term will become vanishingly small compared to 𝑟. However, from equation (6.1.78) we see no limiting
change in 𝑟 ′ as 𝑟 becomes large, since 𝜎(𝑅) = 0 and 𝜎(𝑟) will be bounded by the thickness of the PML
layer. Thus, going back to equation (6.1.76), we have:
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𝑱𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 =
𝜕 (𝑥, 𝑦̃, 𝑧)
𝜕 (𝑥, 𝑦, 𝑧) =

𝜕 (𝑥, 𝑦̃, 𝑧)
𝜕 (𝑟, 𝜙, 𝜃)

𝜕 (𝑥, 𝑦, 𝑧)
𝜕 (𝑟, 𝜙, 𝜃)

−1

=


𝑟
′ sin(𝜙) cos(𝜃) 𝑟 cos(𝜙) cos(𝜃) −𝑟 sin(𝜙) sin(𝜃)
𝑟
′ sin(𝜙) sin(𝜃) 𝑟 cos(𝜙) sin(𝜃) 𝑟 sin(𝜙) cos(𝜃)
𝑟
′ cos(𝜙) −𝑟 sin(𝜙) 0


sin(𝜙) cos(𝜃) 𝑟 cos(𝜙) cos(𝜃) −𝑟 sin(𝜙) sin(𝜃)
sin(𝜙) sin(𝜃) 𝑟 cos(𝜙) sin(𝜃) 𝑟 sin(𝜙) cos(𝜃)

cos(𝜙) −𝑟 sin(𝜙) 0


−1

→

𝑟
′ sin(𝜙) cos(𝜃) 𝑟 cos(𝜙) cos(𝜃) −𝑟 sin(𝜙) sin(𝜃)
𝑟
′ sin(𝜙) sin(𝜃) 𝑟 cos(𝜙) sin(𝜃) 𝑟 sin(𝜙) cos(𝜃)
𝑟
′ cos(𝜙) −𝑟 sin(𝜙) 0


sin(𝜙) cos(𝜃) 𝑟 cos(𝜙) cos(𝜃) −𝑟 sin(𝜙) sin(𝜃)
sin(𝜙) sin(𝜃) 𝑟 cos(𝜙) sin(𝜃) 𝑟 sin(𝜙) cos(𝜃)

cos(𝜙) −𝑟 sin(𝜙) 0


−1

=


sin(𝜙) cos(𝜃) cos(𝜙) cos(𝜃) − sin(𝜙) sin(𝜃)
sin(𝜙) sin(𝜃) cos(𝜙) sin(𝜃) sin(𝜙) cos(𝜃)

cos(𝜙) − sin(𝜙) 0


𝛾(𝑟) 0 0

0 𝑟 0
0 0 𝑟




1 0 0
0 1

𝑟
0

0 0 1
𝑟




sin(𝜙) cos(𝜃) cos(𝜙) cos(𝜃) − sin(𝜙) sin(𝜃)
sin(𝜙) sin(𝜃) cos(𝜙) sin(𝜃) sin(𝜙) cos(𝜃)

cos(𝜙) − sin(𝜙) 0


−1

(6.1.88)

For the cartesian case in the pure x direction, 𝜙 = 𝜋
2 and 𝜃 = 0.

𝑅 =


1 0 0
0 0 1
0 −1 0

 (6.1.89)

and

𝐽 =


𝛾(𝑟) 0 0

0 1 0
0 0 1

 (6.1.90)

Similar substitutions can be applied for other values of 𝜙 and 𝜃 that show the Jacobian reduce to a rotation
between spherical and cartesian coordinates. For off axes cases, the Jacobian will be a full matrix. Thus,
the limiting case of a large radius for the PML surface reduces to a one-dimensional PML layer.
Constructing a tensor product with PML layers in the other two directions produces a diagonal Jacobian
matrix as given for the Cartesian case in equation (6.1.63).

6.2. Analysis of Rotating Structures

In addition to the standard mass and stiffness matrices that arise in linear structural dynamics, force-based
matrices are also common. The most common include follower stiffness matrices from applied pressures,
and Coriolis/centrifugal matrices in rotating structures. These notes describe the design of the interface for
these additional matrices. We will focus on the following three terms
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1. Follower stiffness matrix from applied pressure. This is a nonsymmetric term, but is symmetrized,
and becomes part of the stiffness matrix.

2. Centrifugal stiffness in rotating structures. This is a symmetric term, and becomes part of the
stiffness matrix.

3. Angular velocity adds a Coriolis damping matrix and a Coriolis virtual load. Angular acceleration
adds both an acceleration matrix to the stiffness and acceleration virtual load. Coriolis damping does
not dissipate energy.

For rotating structures, the formulation is called the Lagrangian formulation to distinguish it from an
Eulerian formulation developed for a customer Each models a structure in a coordinate system as in Figure
(6-5), with fixed origin, rotating with user specified angular velocity 𝜔, and angular acceleration ¤𝜔. In the
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Figure 6-5. – A schematic of a structure that is rotating about fixed coordinate axes.

current implementation, 𝜔 does not vary in time, even if ¤𝜔 is nonzero. We assume that the user has chosen
a sufficiently brief simulation that the change in 𝜔 is negligible.

Only the Lagrangian formulation is discussed here.

The design of the implementation of this capability is documented.123

Symbol Description
𝐾𝑎 angular acceleration
𝐾𝑔 geometric stiffness matrix
𝐺 Coriolis matrix
𝐾𝑐 centrifugal softening matrix

,
Symbol Description
𝑓𝑎 angular acceleration
𝑓𝑐 centrifugal force

Table 6-1. – Notation for stiffness and damping matrices (left) and forces (right).

For readers puzzled by the absence of Euler’s force in Table (6-1), the angular acceleration force 𝑓𝑎 is also
called Euler’s force, and the angular acceleration matrix, 𝐾𝑎, is also called the Euler force matrix.

The Lagrangian approach86 seeks deformations about the rotating coordinate system. Of the many papers
on this topic, we found a few to be especially helpful.94,54,126,125 In the notation of Table 6-1, the governing
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equation is,
𝑀 ¥𝑢 + 𝐺 ¤𝑢 +

(
𝐾 + 𝐾𝑔 + 𝐾𝑎 + 𝐾𝑐

)
𝑢 = 𝑓𝑎 + 𝑓𝑐 . (6.2.1)

Equation (6.2.1) depends on the unknown 𝐾𝑔 which is determined from a preliminary statics simulation,(
𝐾 + 𝐾𝑎 + 𝐾𝑐

)
𝑢 = 𝑓𝑐 + 𝑓𝑎 . (6.2.2)

We assume that essential boundary conditions have been applied. Furthermore, we assume that these
essential boundary conditions ensure that no rigid body modes are present. Equivalently, 𝐾 + 𝐾𝑎 + 𝐾𝑐 is
nonsingular. The geometric stiffness matrix 𝐾𝑔 is determined from the associated stress field.

A direct time stepping algorithm based on equation (6.2.1) will approximate the time history of the
structural displacement 𝑢(𝑡) about the rotating frame. Linear and nonlinear static and transient simulations
are tested.

The eigenvalue problem corresponds to the ansatz 𝑢̂(𝑥, 𝑡) = 𝑢(𝑥)𝑒𝜆𝑡 and zero boundary conditions,(
𝜆2𝑀 + 𝜆𝐺 + (𝐾 + 𝐾𝑔 + 𝐾𝑎 + 𝐾𝑐)

)
𝑢 = 0. (6.2.3)

The property that the Coriolis matrix 𝐺 of equation (6.2.11), is skew symmetric ensures that the vibrational
modes do not dissipate energy. It is not obvious, but it is possible to show that this implies that 𝜆 is purely
imaginary as if there was no damping at all.

6.2.1. Formulation and Discretization

The weak form is derived from the kinematics. Structural element assembly is discussed first, before solid
element assembly.

Symbol Description
𝐵 rotating frame
𝑁 inertial frame

{𝒃𝑖}3𝑖=1 basis aligned with 𝐵
𝝎 angular velocity
𝒖 displacement about 𝐵
𝒓 position vector
𝒙 position in 𝐵

Table 6-2. – Notation for Kinematics.

As summarized in Table 6-2, 𝝎 is the angular velocity of 𝐵 in 𝑁 . The origin in 𝐵 is fixed, and 𝐵 has zero
translation with respect to the inertial frame 𝑁 . 𝑁 and 𝐵 share the same origin. Notice that the time
derivative of 𝒙𝑖 in the rotating frame is zero.

The displacement, 𝒖, of a point in frame 𝑁 rotating with respect to the frame 𝐵 has position vector 𝒓,

𝒓 = 𝒙 + 𝒖. (6.2.4)

Here 𝒙 is the undeformed position of the point in 𝐵. In terms of 𝜔 = Ω𝑖𝒃𝑖 , the velocity of the point in an
inertial frame 𝑁 is then86

𝒗 =
𝑁𝑑

𝑑𝑡
𝒓 =

𝐵𝑑

𝑑𝑡
𝒓 + 𝝎 × 𝒓 = ¤𝒖 + 𝝎 × (𝒙 + 𝒖). (6.2.5)
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Taking another derivative, we find the acceleration of the point in an inertial frame to be

𝒂 =
𝑁𝑑

𝑑𝑡
𝒗 = ¥𝒖 + 2𝝎 × ¤𝒖 + 𝝎 × (𝝎 × (𝒙 + 𝒖)) + ¤𝝎 × 𝒙 + ¤𝝎 × 𝒖. (6.2.6)

This completes the description of the kinematics.

In an inertial reference frame, the homogeneous (zero force) equation of motion of a solid
three-dimensional body is

𝜌 ¥𝑟 − ∇ · 𝜎 = 0.

The only non-standard step in the derivation of the weak formulation, by multiplying equation (6.2.1) by a
test function 𝑣, and ultimately integrating by parts, is the substitution equations (6.2.4) and (6.2.6). In order
to emphasize the names of the different terms, Coriolis (𝑔), acceleration (𝑎), and centripetal (𝑐) bilinear
forms are introduced, along with the corresponding acceleration and centripetal force functions 𝑏𝑎 and
𝑏𝑐,

𝑔( ¤𝒖, 𝑣) = 2⟨𝜔 × ¤𝒖, 𝑣⟩
𝑎(𝒖, 𝑣) = ⟨ ¤𝝎 × 𝒖, 𝑣⟩ 𝑏𝑎 (𝑣) = −⟨ ¤𝝎 × 𝒙, 𝑣⟩
𝑐(𝒖, 𝑣) = ⟨𝝎 × (𝝎 × 𝒖), 𝑣⟩ 𝑏𝑐 (𝑣) = −⟨𝝎 × (𝝎 × 𝒙), 𝑣⟩.

To match the order of the terms in the governing matrix equation (6.2.1), arranging the resulting terms as,

⟨ ¥𝒖, 𝑣⟩ + 𝑔( ¤𝒖, 𝑣) +
∫
𝑉

𝜎 : ∇𝑣𝑑𝑉 + 𝑎(𝒖, 𝑣) + 𝑐(𝒖, 𝑣)

=

∫
𝑆

𝜎𝑛𝑣𝑑𝑆 + 𝑏𝑎 (𝑣) + 𝑏𝑐 (𝑣)
(6.2.7)

Note that the stiffness includes both the stiffness 𝐾 associated with the material properties, as well as the
geometric stiffness 𝐾𝑔 associated with the stress state due to the steady-state spinning problem.

The centrifugal matrix 𝐾𝑐, which corresponds to 𝑐(𝒖, 𝑣) is symmetric. This can be demonstrated using the
properties of the cross product. As expected,

𝑔(𝒖, 𝑣) = −𝑔(𝑣, 𝒖), 𝑎(𝒖, 𝑣) = −𝑎(𝑣, 𝒖).

A standard nodal finite element discretization is used. The vector shape function, ®𝑁𝑖 , for node 𝑖 and in
coordinate direction 𝑘 depends on the scalar 𝑖𝑡ℎ shape function 𝜙𝑖 (𝑥) for node 𝑖 and a column, ®𝑒𝑘 , of the
appropriate identity matrix,

𝑁𝑖 (𝑥) = 𝑒𝑘𝜙𝑖 (𝑥), 𝑢̂(𝑥, 𝑡) = 𝑁𝑖 (𝑥)𝑢𝑖 (𝑡).

The element matrices and forces are defined as usual by evaluating the integrals in equation (6.2.7) over the
element, with entries,

𝐺𝑖 𝑗 = 𝑔(𝑁𝑖 , 𝑁 𝑗)
𝐾𝑎,𝑖 𝑗 = 𝑎(𝑁𝑖 , 𝑁 𝑗) 𝑓

𝑗
𝑎 = 𝑏𝑎 (𝑁 𝑗)

𝐾𝑐,𝑖 𝑗 = 𝑐(𝑁𝑖 , 𝑁 𝑗) 𝑓
𝑗
𝑐 = 𝑏𝑐 (𝑁 𝑗)

(6.2.8)

Note that our isoparametric formulation evaluates forces using

𝒙 = 𝑁𝑖x𝑖 .

Also as usual, the 3 by 3 spin matrix Spin is defined so that 𝜔 × 𝑟 = Spin(𝑟).
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6.2.1.1. A Two Node Beam Element

Although the weak form defines assembly in terms of integrals over elements, the goal of this section is to
explain how an implementation can be simplified by using equivalent algebraic expressions for element
matrices and loads in terms of the element mass matrix for a generic element 𝜅. For simplicity, the case
studies here is a beam element with both translational and rotational DOFs The assembly of other structural
elements is very similar to beam element assembly, as will be explained. The leading (or North West) 6 by
6 submatrix of the element mass matrix 𝑀 𝜅 correspond to the DOFs of the first node of the element 𝜅.
Similarly, the trailing (or South East) 6 by 6 submatrix corresponds to the second node.

Equation (6.2.5) applies to the velocity 𝒗𝑖 of node 𝑖 of 𝑒 in the inertial frame 𝑁 . In general the subscript 𝑖
refers to node 𝑖. In terms of the 6-vectors of DOFs 𝑣𝑖 , ¤𝑢𝑖 , and 𝑢𝑖 associated with 𝒗𝑖 , ¤𝒖𝑖 , and 𝒖𝑖 ,

𝑣𝑖 = ¤𝑢𝑖 + 𝐴𝑢𝑖 + 𝑏𝑖 , 𝐴 =

[
Spin(𝜔) 0

0 0

]
, 𝑏𝑖 =

[
𝜔 × 𝑥
𝜔

]
.

There is an inconsistency here with the prior use of bold face type. In this section, only the vectors actually
stored in a computer are not in bold face. One way to remember that the symbol 𝐴 denotes the matrix
representation of the cross product is that the Arabic word for cross product begins with an a. To express
the right-hand sides in terms of 𝜔, introduce

𝑥𝑖 =

[
𝒙𝑖
0

]
, 𝑤𝑖 =

[
0
𝝎

]
, 𝑏𝑖 = 𝐴𝑥𝑖 + 𝑤𝑖 , ¤𝑏𝑖 =

.
𝐴𝑥𝑖 + ¤𝑤𝑖 . (6.2.9)

A beam has 𝑛𝜅 = 2 nodes,

𝑣𝜅 =

[
𝑣1
𝑣𝑛𝜅

]
, 𝑢𝜅 =

[
𝑢1
𝑢𝑛𝜅

]
, 𝑏𝜅 =

[
𝑏1
𝑏𝑛𝜅

]
.

The vectors 𝑤𝜅 and 𝑥𝜅 are defined analogously. For an element with an arbitrary number of nodes, 𝑣𝜅 has
length 6𝑛𝜅 . In this section the symbol 𝐼𝑛 denotes an 𝑛 by 𝑛 identity matrix,

𝐴𝜅 = 𝐴 ⊗ 𝐼𝑛𝜅 , 𝑣𝜅 = ¤𝑢𝜅 + 𝐴𝜅𝑢𝜅 + 𝑏𝜅 .

With Lagrange’s equation characterizing the state of physical systems including 𝜅, in term of the kinetic
energy 𝑇𝜅 ,

2𝑇𝜅 = ∥𝑣𝜅 ∥2𝑀𝜅 = ∥ ¤𝑢𝜅 + 𝐴𝜅𝑢𝜅 + 𝑏𝜅 ∥2𝑀𝜅 ,

𝑑

𝑑𝑡

(
𝜕𝑇𝜅

𝜕 ¤𝑢𝜅

)
= 𝑀 𝜅 ( ¥𝑢𝜅 +

.
𝐴𝜅𝑢𝜅 + 𝐴𝜅 ¤𝑢𝜅 + ¤𝑏𝜅 ),

𝜕𝑇𝜅

𝜕𝑢𝜅
= 𝐴𝑇𝜅𝑀

𝜅 ( ¤𝑢𝜅 + 𝐴𝜅𝑢𝜅 + 𝑏𝜅 ).

Subtracting,

𝑑

𝑑𝑡

(
𝜕𝑇𝜅

𝜕 ¤𝑢𝜅

)
− 𝜕𝑇𝜅
𝜕𝑢𝜅

= 𝑀 𝜅 ¥𝑢𝜅 + (𝑀 𝜅𝐴𝜅 − 𝐴𝑇𝜅𝑀 𝜅 ) ¤𝑢𝜅 + (𝑀 𝜅
.
𝐴𝜅 − 𝐴𝑇𝜅𝑀 𝜅𝐴𝜅 )𝑢𝜅

+ 𝑀 𝜅 ¤𝑏𝜅 − 𝐴𝑇𝜅𝑀 𝜅𝑏𝜅 .

(6.2.10)

All that is left is to figure out how to interpret this equation. Due to equation (6.2.10),

𝐺 = 𝑀 𝜅𝐴𝜅 − 𝐴𝑇𝜅𝑀 𝜅 , (6.2.11)
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the centrifugal softening matrix 𝐾𝑐 = −𝐴𝑇𝜅𝑀 𝜅𝐴𝜅 , and the acceleration matrix 𝐾𝑎 = 𝑀 𝜅
.
𝐴𝜅 . Substituting

equation (6.2.9),

𝑓𝑐 = 𝐴𝑇𝜅𝑀
𝜅𝑏𝜅 𝑓𝑎 = −𝑀 𝜅 ¤𝑏𝜅 (6.2.12)

= 𝐴𝑇𝜅𝑀
𝜅 (𝐴𝑥𝜅 + 𝑤𝜅 ) = −𝑀 𝜅 (

.
𝐴𝑥𝜅 + ¤𝑤𝜅 ) (6.2.13)

The internal (strain) energy can be expressed as

𝑈𝜅 =
1
2
𝑢𝑇𝜅 (𝐾 𝜅 + 𝐾 𝜅𝑔 )𝑢𝜅 .

Ignoring external and damping forces for clarity, the equation of motion,

𝑑

𝑑𝑡

(
𝜕𝑇𝜅

𝜕 ¤𝑢𝜅

)
− 𝜕𝑇𝜅
𝜕𝑢𝜅
+ 𝜕𝑈𝜅
𝜕𝑢𝜅

= 0,

reduces to equation (6.2.1) for a rotating structure.

6.2.1.2. Solid Element Assembly

In summary, contributions from angular acceleration to element stiffness matrices and load vectors are
given by (6.2.14) and (6.2.15), respectively. Denote by 𝐼𝑘 the 𝑘 by 𝑘 identity matrix. A solid element 𝜅 has
3 by 3 block diagonal

𝑀 =

∫
𝑉

𝜙𝑖𝜙 𝑗𝜌𝑑𝑉 ⊗ 𝐼3, 𝐴 = Spin𝜔 ⊗ 𝐼𝑛𝜅 .

The skew stiffness matrix contributions are due to bilinear forms resembling ⟨𝝎 × 𝒖, 𝑣⟩. At a node, with
vector of shape functions 𝑁 and spin tensor 𝑆(𝜔), the corresponding matrix entries are ⟨𝑁, 𝑆𝑁⟩.

In terms of

𝜔 =


Ω1
Ω2
Ω3

 ,
you can formally write,

𝐺 = 2


0 −Ω3𝑀 Ω2𝑀

Ω3𝑀 0 −Ω1𝑀

−Ω2𝑀 Ω1𝑀 0

 .
We are assuming that 𝑀 is block diagonal, with one block per DOF, which is true due to the connection
between 𝑀 and kinetic energy. However, using this expression to assemble 𝐺 leaves many details to the
reader.

Returning to the expression for acceleration in (6.2.6), notice that the term 2𝛀 × ¤𝒖 gave rise to the Coriolis
matrix 𝐾𝑔. Notice also that the term ¤𝛀 × 𝒖 is obtained from 2𝛀 × ¤𝒖 simply by replacing 2 with 1, 𝛀 by ¤𝛀
and ¤𝒖 by 𝒖. Accordingly, the contribution from angular acceleration to the stiffness matrix is skew
symmetric and given by

𝐾𝑎 =


0 − ¤Ω3𝑀 ¤Ω2𝑀
¤Ω3𝑀 0 − ¤Ω1𝑀

− ¤Ω2𝑀 ¤Ω1𝑀 0

 . (6.2.14)
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The term ¤𝛀 × 𝒙 in (6.2.6) is associated in the weak formulation with

−
∫
𝑉

𝜌𝒗 · ( ¤𝛀 × 𝒙) 𝑑𝑉,

where the minus sign originates from moving this term to the right-hand side of the equilibrium equations.
Notice the similarity of this term with the one in With the obvious modifications, the same module can
assemble both 𝐺 and 𝐾𝑎.

The implementation assembles matrices using the force, one column at a time First 𝒖 and 𝒙 are
approximated using the same shape functions (isoparametric formulation). Second 𝑐1, 𝑐2 and 𝑐3 are vectors
of nodal coordinates in the corresponding directions. Third,

𝜔 =


Ω1
Ω2
Ω3


Angular acceleration contributes to the element load vector,

𝑓𝑎 = −𝐾𝑎

𝑐1
𝑐2
𝑐3

 =


¤Ω3𝑀𝑐2 − ¤Ω2𝑀𝑐3
¤Ω1𝑀𝑐3 − ¤Ω3𝑀𝑐1
¤Ω2𝑀𝑐1 − ¤Ω1𝑀𝑐2

 , (6.2.15)

A stiffness matrix can be expressed in terms of the mass matrix and the rotational velocity (or acceleration)
by spelling out two details. Define 𝑁𝑚,𝑖 to be the shape function at node 𝑚 for the 𝑖th DOF. Recalling that
Levi-Civita’s symbol, 𝜖𝑖, 𝑗 ,𝑘 , is the sign of the permutation (𝑖, 𝑗 , 𝑘) if the indices are unique, vanishing
otherwise,

𝐾 (𝑛, 𝑖, 𝑚, 𝑘) =
∑︁
𝑗 ,𝑘

⟨𝑁𝑛,𝑖 , 𝜖𝑖, 𝑗 ,𝑘𝜔 𝑗𝑁𝑚,𝑘⟩ =∑︁
𝑗 ,𝑘

𝜖𝑖, 𝑗 ,𝑘𝜔 𝑗 ⟨𝑁𝑛,𝑖 , 𝑁𝑚,𝑘⟩.

This is not the product of the mass matrix with any another matrix.

6.3. Random Pressure Loading

Input for random loads can be complicated. The most general type of input is the correlation matrix, which
is the inverse Fourier transform of the spectral density matrix,1 𝑆𝑖 𝑗 (𝜔).

𝑐(®𝑥1, ®𝑥2, 𝑡1 − 𝑡2) = 𝐸 [𝑃(®𝑥1, 𝑡1)𝑃(®𝑥2, 𝑡2)] (6.3.1)

where 𝐸 [] is the expected value of the pressure at two locations on the surface at respective times.

This could be defined as a user defined function. In the most general case, that is the best means of a
definition. However, defining that function is a real chore, and in many cases, the function can be more
easily defined.

1In the frequency domain we have the autospectral density matrix, and cross spectral density matrices which together form the
spectral density matrix. It typically has units of (𝑃𝑆𝐼)2/𝐻𝑧.
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6.3.1. Specialization for Hypersonic Vehicles

Some simplifications can reduce the complexity of the correlation matrix. In the following paragraphs, we
examine each of these, and arrive at a simplified parametric input for the correlation matrix.

Ergodic or Stationary Systems

Many variables change significantly during hypersonic flight. For example, the velocity of the body and the
density of the air may depend on the portion of the trajectory. However, within limited time bounds of the
trajectory, the system may be considered stationary. We represent this by writing the pressure as a product
of a deterministic function and a stationary function of time and space.

𝑃(®𝑥, 𝑡) = 𝜎(®𝑥, 𝑡)𝑄(®𝑥, 𝑡) (6.3.2)

where, 𝜎 is a slowly varying, deterministic function, and 𝑄 contains all the random processes.

The pressure field applied to the hypersonic body is not stationary. One reason is the deceleration of the
vehicle and the increase in dynamic pressure with time. However, we assume here that this non-stationary
behavior can be modeled by 𝑃 = 𝜎𝑄, where 𝑄 is stationary and ergodic, and 𝜎 is a scaling or modulation
function of time and space. This class of non-stationary model is called a modulated stationary process.
Because 𝑄 is stationary, 𝐸 [𝑄(𝑥1, 𝑡1)𝑄(𝑥2, 𝑡2)] can be written as a function of 𝑡2 − 𝑡1, call it 𝜏(𝑡2 − 𝑡1).
However, 𝑃 is not stationary because 𝐸 [𝑃(𝑥1, 𝑡1)𝑃(𝑥2, 𝑡2)] = 𝜎(𝑥1, 𝑡1)𝜎(𝑥2, 𝑡2)𝜏(𝑡2 − 𝑡1) cannot be written
as a function only of (𝑡2 − 𝑡1); 𝑡1 and 𝑡2 appear in the 𝜎 terms.

This can simplify computation of the correlations of the pressure.

𝑐(®𝑥1, ®𝑥2, 𝑡1, 𝑡2) = 𝐸 [𝑃(®𝑥1, 𝑡1)𝑃(®𝑥2, 𝑡2)] (6.3.3)
= 𝜎(®𝑥1, 𝑡1)𝜎(®𝑥2, 𝑡2)𝐸 [𝑄(®𝑥1, 𝑡1)𝑄(®𝑥2, 𝑡2)] (6.3.4)

Separation of spatial and temporal components

We may often separate the temporal and spatial components of the correlation function.

𝐸 [𝑄(®𝑥1, 𝑡1)𝑄(®𝑥2, 𝑡2)] = 𝜋(®𝑥1, ®𝑥2) 𝜏(𝑡1, 𝑡2) (6.3.5)

Where 𝜋(®𝑥1, ®𝑥2) contains the spatial component of correlation, and 𝜏(𝑡1, 𝑡2) contains the temporal
correlation.

Simplified Spatial Correlation

There is little data and few mathematical models of the spatial correlation of pressure on a body during
hypersonic flight. A report by Corcos38 is most commonly used. It describes the correlation variation as
products of decaying exponentials. There is some evidence that the variables may be “self similar”, at least
in the flow direction, so the decay constants are scalable with the frequency and velocity. The self-similar
properties are less well-established in the transverse directions.42 The spatial component of correlation may
be written as,

𝜋(®𝑥1, ®𝑥2) = exp(−𝛼𝑧Δ𝑧) exp(−𝛽𝑡Δ𝑦) (6.3.6)
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In this expression, the spatial correlation terms depend on the separation in the stream (or flow) direction,
Δ𝑧, and on the transverse separation, Δ𝑦.

Simplified Temporal Correlations

Aerodynamic models that predict the pressure power spectral density (PSD) on the surface of a hypersonic
body are still under development. Many of these models predict a PSD that is only a weak function of the
axial location. Thus, the PSD at the back of the body is a scaled version of those at the front. Further, with
high velocities, the PSD is flat within the band of interest. Thus, the PSD may be represented as a product
of a deterministic function of 𝑧 and a single PSD. The correlations reflect this same product, and the
deterministic function 𝜎() can be employed to carry this scaling. If the PSD is flat over the bandwidth, the
temporal correlation may be further simplified. We may then write,

𝜏(𝑡1, 𝑡2) =
sin(𝜔𝑐 (𝑡1 − 𝑡2))
𝜔𝑐 (𝑡1 − 𝑡2)

(6.3.7)

where we use the fact that the Fourier transform of a constant frequency response with cutoff frequency 𝜔𝑐
is a sin(𝑥)/𝑥.2

Temporal Interpolation and Filtering

As noted above, we have an assumption that there is a cutoff frequency. Anything above that frequency is
out of band of the analysis, and can (should) be filtered. Equivalently, time steps less than 𝑇 = 𝜋/𝜔𝑐 should
also be filtered. One way to approach this is to sample at an interval 𝑇 , and interpolate using a sin(𝑥)/𝑥
type filter as described below. Note that in addition to the benefit of filtering, sampling at an interval, 𝑇 , can
reduce the amount of memory used to store the temporal correlation.

Let [−𝜈∗, 𝜈∗], 0 < 𝜈∗ < 𝜔𝑐, be the frequency band of a deterministic function, 𝑥(𝑡), −∞ < 𝑡 < ∞. Then,

𝑥(𝑡) = lim
𝑛→∞

𝑛∑︁
𝑘=−𝑛

𝑥(𝑘𝑇)𝛼𝑘 (𝑡, 𝑇) (6.3.8)

where

𝛼𝑘 (𝑡, 𝑇) =
sin[𝜋(𝑡/𝑇 − 𝑘)]
𝜋(𝑡/𝑇 − 𝑘) (6.3.9)

=
sin[ 𝜋

𝑇
(𝑡 − 𝑘𝑇)]

𝜋
𝑇
(𝑡 − 𝑘𝑇) (6.3.10)

“It is sufficient to know the values 𝑥(𝑘𝑇), with 𝑘 = ...,-2, -1, 0, 1, 2, ... to reconstruct the entire signal 𝑥(𝑡),
−∞ < 𝑡 < ∞."

Note:

𝛼𝑘 = 1 if
𝑡

𝑇
= 𝑘 (6.3.11)

𝛼𝑘 = 0 if
𝑡

𝑇
any other integer (6.3.12)

|𝛼𝑘 | decreases to zero as
��� 𝑡
𝑇
− 𝑘

��� increases. (6.3.13)
2While a flat response results in a sin(𝑥)/𝑥, which is the default, many PSD responses are not flat, so a user defined temporal

function may be required.
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Advancing the Coarse Temporal Solution

The strategy described involves computation of the solution on a coarse temporal grid, with interpolation to
a fine time step as described above. The process for advancing the coarse time solution is described here.

The initial coarse solution, 𝑌 (𝑥, 𝑇), is given by the solution to the Cholesky factor of the correlation
matrix.

𝑌 = 𝑐ℎ𝑜𝑙 (𝑐)𝑊 (6.3.14)

where

𝑐 is the 𝑑 (2𝑛 + 1) x 𝑑 (2𝑛 + 1) correlation matrix
𝑊 is a vector of zero mean, unit variance random variables,

and
𝑌 is the properly correlated solution vector at the 2𝑛+1 coarse

time values, 0, 𝑇 , 2𝑇 , ..., (2𝑛 + 1)𝑇 and the 𝑑 sample
locations.

6.3.1.1. Temporal Advancement

As described in texts on stochastic calculus (see72 for example), we can compute the response of a Gaussian
random vector when a portion of the vector is known. Consider a random vector 𝑌 , which is partitioned
into a known part, 𝑌 (1) , and a portion to be determined, 𝑌 (2) . We may write, (see equation 2.109 of [72]),

𝜉 = (𝑌 (2) |𝑌 (1) = 𝑧) (6.3.15)
˜ 𝑁 ( 𝜇̂, 𝑐) (6.3.16)

where,

𝜇̂ = 𝜇 (2) + 𝑐 (2,1) [𝑐 (1,1) ]−1(𝑧 − 𝜇 (1) ) (6.3.17)
𝑐 = 𝑐 (2,2) − 𝑐 (2,1) [𝑐 (1,1) ]−1𝑐 (1,2) (6.3.18)

and 𝜇 (𝑖) is the mean on each portion of the solution.

In words, we can express the normal distribution of the unknown vector as a random distribution with mean
𝜇̂ and variance given by the covariance matrix 𝑐. The covariance does not depend on the previous samples
but only on the partition of the original covariance matrix. The mean depends weakly on the previous
sample, 𝑧.

The matrix 𝑐 is partitioned as follows.

𝑐 (1,1) is 𝑐, the original correlation matrix. It is a square matrix of dimension 𝑑 (2𝑛 + 1).

𝑐 (2,2) is the 𝑑 x 𝑑 correlation matrix associated with zero time lag.

𝑐 (2,1) is an additional set of 𝑑 rows of the correlation matrix associated with the time lag (2𝑛 + 2)𝑇 .

𝑐 =


𝐶 (0) 𝐶 (𝑇) 𝐶 (2𝑇) ... | 𝐶 ((2𝑛 + 2)𝑇)
𝐶 (𝑇) 𝐶 (0) 𝐶 (𝑇) ... | 𝐶 ((2𝑛 + 1)𝑇)
... ... ... ... | ...

𝐶 ((2𝑛 + 2)𝑇) 𝐶 ((2𝑛 + 1)𝑇) 𝐶 (2𝑛𝑇) ... | 𝐶 (0)


and 𝐶 (𝑇) is the 𝑑 x 𝑑 correlation matrix evaluated on the 𝑑 spatial points at time lag 𝑇 .
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6.3.1.2. Procedure

The solution is advanced as follows.

1. We augment the system to have 𝑑 (2𝑛 + 2) equations. Thus, 𝑐 (1,1) is the 𝑑 (2𝑛 + 1) covariance
previously calculated.

2. We use 𝑏 = 𝑐ℎ𝑜𝑙 (𝑐 (1,1) ) to compute the desired mean of the new distribution. Specifically,

𝜇̂ = 𝜇 (2) + 𝑐 (2,1) (𝑏𝑡𝑏)−1(𝑧 − 𝜇 (1) ) (6.3.19)
= 𝑐 (2,1) (𝑏𝑡𝑏)−1𝑧 (6.3.20)
= 𝑔𝑧 (6.3.21)

where we have used the fact that both 𝜇(1) and 𝜇(2) are zero. We store the rectangular matrix
𝑔 = 𝑐 (2,1) (𝑏𝑡𝑏)−1. We no longer need the original covariance matrix 𝑐, nor its factor, 𝑏.

3. We reuse 𝑔 to compute the revised correlation matrix.

𝑐 = 𝑐 (2,2) − 𝑐 (2,1) [𝑐 (1,1) ]−1𝑐 (1,2) (6.3.22)
= 𝐶 (0) − 𝑔𝑐 (1,2) (6.3.23)

where 𝐶 (0) is the 𝑑 x 𝑑 correlation matrix for a time lag of zero. The matrix 𝑐 is also 𝑑 x 𝑑.

4. We perform a Cholesky factor on 𝑐. This is the second such factor, and it is performed on a smaller
space. It need be performed only on the first advancement as 𝑐 is a constant.

𝑏̂ = 𝑐ℎ𝑜𝑙 (𝑐) (6.3.24)

5. Compute the new distribution.

𝜉 = 𝑁̃ ( 𝜇̂, 𝑐) (6.3.25)
= 𝜇̂ + 𝑐ℎ𝑜𝑙 (𝑐)𝑤 (6.3.26)
= 𝜇̂ + 𝑏̂𝑤 (6.3.27)

where 𝑤 is a zero mean, unit normal Gaussian basis.

6. Move solution vector solution, 𝑌 , up by one, and insert 𝜉 in the new locations.

6.4. Removing Net Torques from Applied Loads

For structures without any connections to ground, there are six rigid body modes. Three modes correspond
to rigid body translations, while the remaining three are for rigid body rotation about the center of mass of
the structure. If the applied loads have a net torque about the center of mass, then we should expect the
structure to eventually begin tumbling as time progresses. If the net torque vanishes, then the small strain
approximation used in Sierra/SD is accurate since rotational deformations should remain small. This
expectation holds even in the presence of large displacements caused by loads with significant translational
rigid body components.

The purpose of these notes is to describe options for removing net torques from applied loads to avoid
tumbling in Sierra/SD during transient analyses. One option assumes that the center of mass is known,
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while the second makes use of the mass matrix for the system finite element model. We note that net
translational loads are not removed using either of these options. Only the mass matrix option is used in
Sierra/SD.

Use of Mass Matrix. Let 𝑀 and 𝐾 denote the mass and stiffness matrices for the structure. Further, let
Φ𝑡𝑟𝑎𝑛 and Φ𝑟𝑜𝑡 contain the translational and rotational rigid body modes. Both Φ𝑡𝑟𝑎𝑛 and Φ𝑟𝑜𝑡 have 3
columns, and for floating structures 𝐾Φ𝑡𝑟𝑎𝑛 = 𝐾Φ𝑟𝑜𝑡 = 0. We will assume the mass matrix 𝑀 is
symmetric and positive definite, while the stiffness matrix is assumed to be symmetric and have 6 rigid
body modes as stated. Further, we assume for the damping matrix 𝐶 that 𝐶Φ𝑟𝑏𝑚 = 0 and Φ𝑇

𝑟𝑏𝑚
𝐶 = 0,

where Φ𝑟𝑏𝑚 =
[
Φ𝑡𝑟𝑎𝑛 Φ𝑟𝑜𝑡

]
. If rigid body motion of the structure does not cause any damping forces,

then this assumption holds. One instance where this assumption on 𝐶 does not hold is for models with mass
proportional damping.

The notation is set in Section 1.3 equation (1.3.1). This section overlaps with Section 1.4.

Consider a node 𝑖 of the model that has both translational and rotational degrees of freedom coordinates r𝑖
in the global coordinate system. Equation (1.4.1) gives the associated rows of Φ𝑟𝑏𝑚,

Φ𝑖𝑟𝑏𝑚 =

[
.I3 Spin(r𝑖)
0 I3

]
. (6.4.1)

Note here that the origin for 𝒓𝑖 is the origin of the global coordinate system and does not necessarily
coincide with the center of mass of the system.

Sierra/SD mass orthonormalizes the rigid body modes. Namely,

Φ𝑇𝑟𝑏𝑚𝑀Φ𝑟𝑏𝑚 = 𝐼, (6.4.2)

where 𝐼 is the identity matrix (notice this equation also implies Φ𝑇𝑟𝑜𝑡𝑀Φ𝑟𝑜𝑡 = 𝐼). Moreover, the columns of
Φ𝑟𝑏𝑚 are orthonormalized from the leftmost column to the right so that the rigid body translational modes
remain in the first three columns of Φ𝑟𝑏𝑚. Φ𝑟𝑜𝑡 is the mass-orthonormalized rigid body mode matrix for
rotations.

The standard equations of motion can be expressed as

𝑀 ¥𝑢 + 𝐶 ¤𝑢 + 𝐾𝑢 = 𝑓 , (6.4.3)

where 𝑢 and 𝑓 are the displacement and applied force vectors. Next, consider the approximation
𝑢 = Φ𝑟𝑏𝑚𝑞, where 𝑞 is a 6 vector. Substituting 𝑢 = Φ𝑟𝑏𝑚𝑞 into (6.4.3) and pre-multiplying by Φ𝑇

𝑟𝑏𝑚
, it

follows from (6.4.2) and the assumptions 𝐾Φ𝑟𝑏𝑚 = 0 and 𝐶Φ𝑟𝑏𝑚 = 0 that

¥𝑞 = Φ𝑇𝑟𝑏𝑚 𝑓 , (6.4.4)

or, equivalently,

¥𝑞𝑡𝑟𝑎𝑛 = Φ𝑇𝑡𝑟𝑎𝑛 𝑓 , (6.4.5)

¥𝑞𝑟𝑜𝑡 = Φ𝑇𝑟𝑜𝑡 𝑓 . (6.4.6)

Notice from (6.4.6) that there will be rigid body rotational accelerations if Φ𝑇𝑟𝑜𝑡 𝑓 ≠ 0. We will consider a
modified force vector of the form

𝑓 = 𝑓 − 𝑀Φ𝑟𝑜𝑡 𝑠, (6.4.7)
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where 𝑠 is a 3 vector to be determined from the condition

Φ𝑇𝑟𝑜𝑡 𝑓 = 0. (6.4.8)

Substitution of (6.4.7) into (6.4.8) and use of Φ𝑇𝑟𝑜𝑡𝑀Φ𝑟𝑜𝑡 = 𝐼 then gives us

𝑠 = Φ𝑇𝑟𝑜𝑡 𝑓 , (6.4.9)

and (6.4.7) then reads,
𝑓 = 𝑓 − 𝑀Φ𝑟𝑜𝑡 (Φ𝑇𝑟𝑜𝑡 𝑓 ). (6.4.10)

Examination of Flexible Modes

By pre-multiplying (6.4.10) by Φ𝑇𝑟𝑜𝑡 and using Φ𝑇𝑟𝑜𝑡𝑀Φ𝑟𝑜𝑡 = 𝐼 once again, one can confirm that Φ𝑇𝑟𝑜𝑡 𝑓 = 0
as required to avoid rigid body rotational accelerations.

Let Φ 𝑓 𝑙𝑒𝑥 denote the mode shape matrix for the undamped flexible modes. The mode shape matrix for all
the modes can be written as Φ =

[
Φ𝑡𝑟𝑎𝑛 Φ𝑟𝑜𝑡 Φ 𝑓 𝑙𝑒𝑥

]
. Notice since both Φ𝑇𝑀Φ and Φ𝑇𝐾Φ are

diagonal, it follows that Φ𝑇
𝑓 𝑙𝑒𝑥

𝑀Φ𝑟𝑜𝑡 = 0.

The generalized force associated with the flexible modes is given by

𝑓 𝑓 𝑙𝑒𝑥 = Φ𝑇𝑓 𝑙𝑒𝑥 𝑓 . (6.4.11)

Since Φ𝑇
𝑓 𝑙𝑒𝑥

𝑀Φ𝑟𝑜𝑡 = 0, we then find

𝑓 𝑓 𝑙𝑒𝑥 = Φ𝑇𝑓 𝑙𝑒𝑥 𝑓 −Φ
𝑇
𝑓 𝑙𝑒𝑥𝑀Φ𝑟𝑜𝑡 (Φ𝑇𝑟𝑜𝑡 𝑓 )

= 𝑓 𝑓 𝑙𝑒𝑥 . (6.4.12)

Thus, the generalized force vector 𝑓 𝑓 𝑙𝑒𝑥 for the modified force vector is identical to the original one 𝑓 𝑓 𝑙𝑒𝑥 .
This implies that the adjustments made to the original force vector do not modify the flexible response.
This is a nice feature.

Parallelization Issues

When the model is decomposed by element3 the mass matrix provides requisite information about
duplication of nodal quantities on the boundaries. Thus, nodal quantities (which are replicated on
subdomains which share a boundary) are only counted once in a dot product. However, for statics, there is
no mass matrix, and the identity is substituted for the mass matrix. While the system matrix is the identity,
the appropriate submatrix of the identity on each subdomain is not a subdomain identity matrix. It is a
diagonal matrix with entries,

𝐼𝑠𝑢𝑏𝑗 𝑗 = 1/cardinality𝑛𝑜𝑑𝑒 𝑗

This definition of the subdomain identity submatrix, 𝐼𝑠𝑢𝑏 permits multiplication without duplication of
values on the subdomain boundary. This submatrix must be used for orthogonalization and for the force
correction (equation 6.4.10).

3each element is one subdomain.
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Filter of Output Displacements

The mass matrix also provides stabilization of the solution matrix. For statics solutions on floating
structures, the solution matrix is the stiffness matrix, which is singular. Additional tools are in place to help
the linear solver with this challenge. In particular, GDSW (see e.g.47) may solve such systems provided that
the dimension of the null space is provided. However, small non-equilibrated forces or round off in the
solver can still result in solution vectors in the range of the null space. For statics, these displacement
vectors are also filtered to eliminate the rigid body component. The filtering uses equation 6.4.10, with the
identity matrix replacing the mass matrix.

6.5. Traction Loads

In the traction loading of a side set, if the user specified coordinate frame 𝐶𝑢 with basis

( 𝒆̂1, 𝒆̂2, 𝒆̂3)

is specified with the traction vector, it is used to determine the directions of application of the loads so that
the third component remains the element normal vector, 𝒏̂.

Loads are applied in the projected coordinate frame 𝐶𝑝 with basis

( 𝒑̂1, 𝒑̂2, 𝒏̂)

determined using the normal,
𝒑̂1 = 𝒆̂2 × 𝒏̂ 𝜌1, 𝒑̂2 = 𝒏̂ × 𝒑̂1 𝜌2.

Here 𝜌𝑖 are positive scalar normalization terms. The event 𝒆̂2 × 𝒏̂ = 0 is handled by substituting
𝒑̂1 = 𝒆̂1 × 𝒏̂𝜌1 and 𝒑̂2 = 𝒏̂ × 𝒑̂1 𝜌2.

The direction in which forces will be applied depends on the coordinate systems. In particular side sets will
need to be chosen (or subdivided) to ensure that 𝒆̂2 × 𝒏̂ ≠ 0.

In a cartesian coordinate frame, element normal vectors for tractions should not be aligned with the 𝑦
direction of the applicable coordinate frame. In the cylindrical frame (𝒓, 𝜽, 𝒛) or a spherical coordinate
frame (𝒓, 𝜽, 𝝓), element normal vectors aligned with the azimuthal direction are problematic.
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Figure 6-6. – Coordinate Frame Projection for Tractions

6.6. Consistent Loads Calculations

Starting with equation 4.1-6 from Concepts and Applications of Finite Element Analysis by Cook et
al.[37],

{𝑟𝑒} =
∫

𝑉𝑒

[𝐵]𝑇 [𝐸]{𝜖0}𝑑𝑉 −
∫
𝑉𝑒

[𝐵]𝑇 {𝜎0}𝑑𝑉 +
∫
𝑉𝑒

[𝑁]𝑇 {𝐹}𝑑𝑉 +
∫
𝑆𝑒

[𝑁]𝑇 {Φ}𝑑𝑆 (6.6.1)

where each term is defined in Subsection 4.1 of the above mentioned reference. The load vector, {𝑟𝑒}, is
composed of four parts in equation 6.6.1. In this document, only the last part, which is the contribution of
the surface tractions to the load vector, will be considered. Rewriting,

{𝑟𝑒} =
∫
𝑆𝑒

[𝑁]𝑇 {Φ}𝑑𝑆 (6.6.2)

Here, the integral is calculated over the surface of the element on which the surface traction, {Φ}, is
applied. Therefore,

{Φ} = [Φ𝑥 Φ𝑦 Φ𝑧]𝑇 (6.6.3)

and [𝑁] is the shape function matrix of the element on which the surface tractions, {Φ}, are applied. To
generate a model for application inn Sierra/SD, {Φ} can be generated within PATRAN or other
preprocessors by applying a spatial field to a specified side set. In Sierra/SD however, these spatial field
values are available only on the surface nodes of the element. Using the nodal values of this surface
traction, the value at any surface location must be determined using an interpolation function over the
surface or side of the element. Since only one value per node may be specified on the side set in Sierra/SD,
a surface traction may be applied only in one direction at a time. Therefore, {Φ} will be defined as,

{Φ} =

𝑛𝑥
𝑛𝑦
𝑛𝑧

Φ(𝑥, 𝑦, 𝑧) (6.6.4)
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6.6.1. Elements with consistent loads

Consistent loads are implemented for the following 3-D and 2-D elements:

• Hex8, Hex20, Tet4, Tet10, Wedge6

• Tria3, TriaShell ,Tria6 (four Tria3s)

• QuadT (two Tria3s), Quad8T (1 QuadT and 4 Tria3s)

6.6.2. Pressure Loading

Here, we will consider only pressure loads on 3-D elements, such that

{Φ} =

𝑛𝑥
𝑛𝑦
𝑛𝑧

Φ(𝑥, 𝑦, 𝑧) (6.6.5)

where [𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧]𝑇 is the normal to the element face. Hence, the consistent loads can be calculated as,

{𝑟𝑒} =
∫
𝑆𝑒

[𝑁]𝑇 {Φ}𝑑𝑆 =

∫
𝑆𝑒

[𝑁]𝑇Φ(𝑥, 𝑦, 𝑧) ( ®𝑎 × ®𝑏)𝑑𝑆𝑒 (6.6.6)

Here,

®𝑎 = [ 𝜕𝑥
𝜕𝑟
,
𝜕𝑦

𝜕𝑟
,
𝜕𝑧

𝜕𝑟
]𝑇 (6.6.7)

®𝑏 = [ 𝜕𝑥
𝜕𝑠
,
𝜕𝑦

𝜕𝑠
,
𝜕𝑧

𝜕𝑠
]𝑇 (6.6.8)

where Φ is the pressure load, and (𝑥, 𝑦, 𝑧) are the physical coordinate directions, and (𝑟, 𝑠) are the local
element directions for the face of the element. The normal may be obtained by taking the cross-product of ®𝑎
and ®𝑏.

6.6.3. Shape Functions for Calculating Consistent Loads

For 3-D elements, all the faces are either quadrilateral or triangular shaped. Hence, shape functions for
quads and triangles could be used to evaluate the consistent loads. However, application of the shape
functions for the 3-D elements, reduces code and “fits” better into the current finite element class structure.
This is what is currently implemented. This requires a “mapping” of the 3-D elements’ faces to a 2-D
plane. The additional overhead for using the 3-D elements is that each face of the element must have this
“mapping” which states how the elements’ 3-D shape functions map to a 2-D element. For example, for a
Hex20, the element coordinates (𝜂1, 𝜂2, 𝜂3) are defined in a particular way. For each face of the Hex20,
defined by a side id, the face has a local coordinate system (𝑟, 𝑠). The “mapping” defines how (𝑟, 𝑠) are
related to (𝜂1, 𝜂2, 𝜂3). This also helps define how 2-D Gauss points are mapped to the 3-D face. These
mappings are available for all the linear and quadratic 3-D elements.
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6.6.4. Shell Elements - consistent loads

All the 2-D elements (shell elements) compute loads based on the Tria3 shape functions. The consistent
loads calculations for the Tria3 can be “copied” to the TriaShell. This way all the shell elements use the
same consistent loads implementation. Since Carlos Felippa designed the Tria3, his consistent loads
implementation is used. The portion for linearly varying pressure loads is shown here. If the loads are
aligned along an edge, {𝑞}, they need to be decomposed into (𝑞𝑠, 𝑞𝑛, 𝑞𝑡). Where (𝑠, 𝑛, 𝑡) are coordinate
directions along the element edge. Coordinate 𝑠 varies along the element edge tangentially, 𝑛 is normal to
the element edge, and 𝑡 is tangent to the element edge in the transverse direction, i.e., in the direction of the
thickness. Once, the edge load is decomposed, the equations for consistent loads are,

𝑓 1
𝑠 =

1
20
(7𝑞𝑠1 + 3𝑞𝑠2)𝐿21 𝑓 2

𝑠 =
1

20
(3𝑞𝑠1 + 7𝑞𝑠2)𝐿21 (6.6.9)

𝑓 1
𝑛 =

1
20
(7𝑞𝑛1 + 3𝑞𝑛2)𝐿21 𝑓 2

𝑛 =
1
20
(3𝑞𝑛1 + 7𝑞𝑛2)𝐿21 (6.6.10)

𝑓 1
𝑡 =

1
20
(7𝑞𝑡1 + 3𝑞𝑡2)𝐿21 𝑓 2

𝑡 =
1
20
(3𝑞𝑡1 + 7𝑞𝑡2)𝐿21 (6.6.11)

𝑚1
𝑠 = 𝑚

2
𝑠 = 0 (6.6.12)

𝑚1
𝑛 = −

1
60
(3𝑞𝑡1 + 2𝑞𝑡2)𝐿2

21 𝑚2
𝑛 =

1
60
(2𝑞𝑡1 + 3𝑞𝑡2)𝐿2

21 (6.6.13)

𝑚1
𝑡 = −

1
40
(3𝑞𝑛1 + 2𝑞𝑛2)𝐿2

21 𝑚2
𝑡 =

1
40
(2𝑞𝑛1 + 3𝑞𝑛2)𝐿2

21 (6.6.14)

where 𝑞𝑠1 is the value of 𝑞 in the 𝑠 direction at node 1 of the edge, 𝐿12 is the length of the edge. The
superscripts 1,2 are the node numbers of the edge. Note, it is assumed here that the load 𝑞 is per unit length,
but this is not assumed when creating the sideset in PATRAN for example. Therefore, this distributed load
is multiplied, in Sierra/SD, by the thickness of the triangle.
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For a pressure load on the face of the Tria3, the equations become,

𝑓 1
𝑥 = 𝑓 1

𝑦 = 𝑚
1
𝑧 = 𝑓 2

𝑥 = 𝑓 2
𝑦 = 𝑚

2
𝑧 = 𝑓 3

𝑥 = 𝑓 3
𝑦 = 𝑚

3
𝑧 = 0 (6.6.15)

𝑓 1
𝑧 =

(
8
45
𝑝1 +

7
90
𝑝2 +

7
90
𝑝3

)
𝐴 (6.6.16)

𝑓 2
𝑧 =

(
7
90
𝑝1 +

8
45
𝑝2 +

7
90
𝑝3

)
𝐴 (6.6.17)

𝑓 3
𝑧 =

(
7
90
𝑝1 +

7
90
𝑝2 +

8
45
𝑝3

)
𝐴 (6.6.18)

𝑚1
𝑥 =

𝐴

360
[7(𝑦31 + 𝑦21)𝑝1 + (3𝑦31 + 5𝑦21)𝑝2 + (5𝑦31 + 3𝑦21)𝑝3] (6.6.19)

𝑚1
𝑦 =

𝐴

360
[7(𝑥13 + 𝑥12)𝑝1 + (3𝑥13 + 5𝑥12)𝑝2 + (5𝑥13 + 3𝑥12)𝑝3] (6.6.20)

𝑚2
𝑥 =

𝐴

360
[(5𝑦12 + 3𝑦32)𝑝1 + 7(𝑦12 + 𝑦32)𝑝2 + (3𝑦12 + 5𝑦32)𝑝3] (6.6.21)

𝑚2
𝑦 =

𝐴

360
[(5𝑥21 + 3𝑥23)𝑝1 + 7(𝑥21 + 𝑥23)𝑝2 + (3𝑥21 + 5𝑥23)𝑝3] (6.6.22)

𝑚3
𝑥 =

𝐴

360
[(3𝑦23 + 5𝑦13)𝑝1 + (5𝑦23 + 3𝑦13)𝑝2 + 7(𝑦23 + 𝑦13)𝑝3] (6.6.23)

𝑚3
𝑥 =

𝐴

360
[(3𝑥32 + 5𝑥31)𝑝1 + (5𝑥32 + 3𝑥31)𝑝2 + 7(𝑥32 + 𝑥31)𝑝3] (6.6.24)

where 𝑦𝑖 𝑗 = 𝑦𝑖 − 𝑦 𝑗 and 𝑥𝑖 𝑗 = 𝑥𝑖 − 𝑥 𝑗 , 𝐴 is the area of the triangle, 𝑝𝑖 is the value of the pressure load at
node 𝑖, and (𝑥𝑖 , 𝑦𝑖) are coordinates of the triangle in 2-D space.

Finally, the “pseudo” elements (QuadT, Quad8T, Tria6) created by using triangles require overhead. For
example, the Quad8T is composed of 1 QuadT and 4 Tria3s. However, since it is defined as a Quad8T, it
has distribution factors at its 8 nodes, and these distribution factors have to be mapped to the 1 QuadT and
the 4 Tria3s. The number of distribution factors is 3 however, if the load is applied to its edge. Therefore,
this extra coding can be seen in the ElemLoad method of the shells’ classes.

6.7. Solution of Singular Linear Systems

It may be required on occasion to solve problems with singular coefficient matrices. For example, the static
analysis of a structure that has no essential boundary conditions (free-free) will typically have six rigid
body modes and the stiffness matrix is singular. In this subsection, we describe how singular linear systems
are handled by the GDSW solver and also provide supporting theory. The development below is for serial
runs, but the same approach is applied to the singular linear system associated with the coarse problem for
multi-processor runs.

Consider a structure with a symmetric and positive semi-definite stiffness matrix 𝐾 . The columns of the
matrix 𝑄 span the null space of 𝐾 . That is, 𝐾𝑄 = 0 and 𝑄𝑇𝑄 = 𝐼, where 𝐼 is an identity matrix. For
example, 𝑄 can be obtained from Gram-Schmidt orthogonalization of the geometric rigid body modes.

We are interested in solving linear systems of the form

𝐾𝑢 = 𝑓 . (6.7.1)
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Since 𝐾 is singular, we must have 𝑄𝑇 𝑓 = 0 for a solution of (6.7.1) to exist. In other words, the force vector
must be orthogonal to the rigid body modes. We may perform a simple Gaussian elimination process with
row pivoting on the matrix 𝑄 to identify a set of linearly independent set of rows of 𝑄. Without loss of
generality, let 𝑄2 denote these rows of 𝑄 and let us express 𝑄 as

𝑄 =

[
𝑄1
𝑄2

]
,

where 𝑄2 is square and nonsingular by construction. Similarly, we express the stiffness matrix as

𝐾 =

[
𝐾11 𝐾12
𝐾21 𝐾22

]
.

Our first step is to show that 𝐾11 is positive definite. To this end, consider a vector 𝑣 of the form

𝑣 =

[
𝑣1
0

]
,

where 𝑣1 ≠ 0. We may express 𝑣 as
𝑣 = 𝑄𝑞 +𝑄⊥𝑞⊥,

where 𝑞 and 𝑞⊥ are vectors, 𝑄𝑇⊥𝑄⊥ = 𝐼 and 𝑄𝑇⊥𝑄 = 0. Notice if 𝑞 = 0, then 𝑞⊥ ≠ 0 since 𝑣1 ≠ 0. Likewise,
if 𝑞 ≠ 0, then we have from the lower block of the expression for 𝑣 that

0 = 𝑄2𝑞 +𝑄⊥2𝑞⊥.

Since 𝑄2 is nonsingular and 𝑞 ≠ 0, it follows that 𝑞⊥ ≠ 0. Thus, in both cases we have 𝑞⊥ ≠ 0 which
implies 𝑣⊥ = 𝑄⊥𝑞⊥ ≠ 0. Consequently, since 𝑣𝑇⊥𝐾𝑣⊥ > 0 for all 𝑣⊥ = 𝑄⊥𝑞⊥ ≠ 0, we have

𝑣𝑇1 𝐾11𝑣1 = 𝑣𝑇𝐾𝑣 = 𝑣𝑇⊥𝐾𝑣⊥ > 0.

In other words, 𝐾11 is positive definite and thus nonsingular.

The following procedure is used in GDSW for solving (6.7.1) for serial runs. The same approach for
multi-processor runs applies to the singular linear system for the coarse problem.

1. Make sure 𝑓 is orthogonal to 𝑄 by calculating 𝑓 = 𝑓 −𝑄(𝑄𝑇 𝑓 ).

2. Solve the linear system, [
𝐾11 0
0 𝐼

] [
𝑢̃1
𝑢̃2

]
︸ ︷︷ ︸

𝑢̃

=

[
𝑓1
0

]
.

3. Remove any null space component by calculating 𝑢 = 𝑢̃ −𝑄(𝑄𝑇 𝑢̃).

We next verify that the solution from this procedure satisfies (6.7.1). Notice from Step 2 that 𝑢̃2 = 0 and

𝐾11𝑢̃1 + 𝐾12𝑢̃2 = 𝑓1. (6.7.2)

The first block of equations in 𝐾𝑄 = 0 reads as 𝐾11𝑄1 + 𝐾12𝑄2 = 0, which gives

𝐾−1
11 𝐾12 = −𝑄1𝑄

−1
2 .
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Since 𝑄𝑇 𝑓 = 0, we also have
𝑄𝑇1 𝑓1 +𝑄

𝑇
2 𝑓2 = 0.

From the previous two expressions it follows that

𝐾21𝐾
−1
11 𝑓1 = −𝑄−𝑇2 𝑄𝑇1 𝑓1

= −𝑄−𝑇2 (−𝑄
𝑇
2 𝑓2) = 𝑓2

It then follows from the previous equation and Step 2 that

𝐾21𝑢̃1 + 𝐾22𝑢̃2 = 𝐾21𝐾
−1
11 𝑓1 = 𝑓2 (6.7.3)

In summary, (6.7.2) and (6.7.3) verify that the 𝑢̃ calculated from the procedure satisfies 𝐾𝑢̃ = 𝑓 . The final
step of the procedure removes any null space component from 𝑢̃, and we can verify

𝐾𝑢 = 𝐾 (𝑢̃ −𝑄(𝑄𝑇 𝑢̃)) = 𝐾𝑢̃ = 𝑓

and
𝑄𝑇𝑢 = 𝑄𝑇 (𝑢̃ −𝑄(𝑄𝑇 𝑢̃)) = 𝑄𝑇 𝑢̃ −𝑄𝑇 𝑢̃ = 0.
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7. CONTACT

7.1. Multipoint Constraints

User’s Manual describes MPCs. Here coordinate system dependencies are discussed.

MPCs may be defined in any coordinate system. However, all nodes in the MPCs are defined in the same
system. This is done for convenience in parsing, and not for any fundamental reason. Consider a constraint
equation where each entry in the equation could be specified in a different coordinate system.∑︁

𝑖

𝐶𝑖𝑢
(𝑘𝑖 )
𝑖

= 0

where 𝐶𝑖 is a real coefficient, and 𝑢 (𝑘𝑖 )
𝑖

represents the displacement of degree of freedom 𝑖 in degree of
coordinate system 𝑘𝑖 . We can transform to the basic coordinate system using 𝑢 (𝑘𝑖 )

𝑖
=

∑
𝑗 𝑅
(𝑘𝑖 )
𝑗𝑖
𝑢
(0)
𝑗

, where
𝑅 (𝑘𝑖 ) is the rotation matrix for coordinate system 𝑘𝑖 . Then we may write,∑︁

𝑖, 𝑗

𝐶𝑖𝑅
(𝑘𝑖 )
𝑗𝑖
𝑢
(0)
𝑗

= 0

or, ∑︁
𝑖

𝐶
(𝑘𝑖 )
𝑖

𝑢
(0)
𝑖

= 0

where 𝐶 (𝑘𝑖 )
𝑖

=
∑
𝑗 𝑅
(𝑘𝑖 )
𝑖 𝑗

𝐶 𝑗 . Note however, that in this analysis, we have assumed that the dimension of 𝐶 is
3. Thus, rotation into the basic frame will likely increase the number of coefficients.

Sierra/SD is designed to support constraints through at least two methods. These include a constraint
transform method and Lagrange multipliers. Lagrange multiplier methods are used for all the parallel
solvers. The serial solver uses constraint transform methods.

7.2. Constraint Transformations in General Coordinate Systems

In general, constraint equations can be applied in any coordinate system. We here describe the
transformation equations and implications for general constraints in any coordinate system. The
implications of this use in Sierra/SD are also outlined.

Consider a constraint equation,
𝐶′𝑢′ = 𝑄. (7.2.1)

The primes indicate a generalized coordinate frame. The frame may be transformed to the basic coordinate
system using equation 1.5.1, and

𝑢′ = 𝑅𝑢 (7.2.2)
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Rewrite equation 7.2.1 as
𝐶′𝑅𝑢 = 𝑄

𝐶𝑢 = 𝑄
(7.2.3)

where 𝐶 = 𝐶′𝑅.

Thus, a general system of constraint equations may be easily transformed to the basic system. Further, the
rotational matrix is an order 3 matrix which may be applied to each node’s degrees of freedom separately.

7.2.1. Decoupling Constraint Equations

We still have a coupled system of equations. We partition the space into constrained and retained degrees of
freedom, and describe the constrained dofs in terms of its Schur complement.

𝑢 =

[
𝑢𝑟
𝑢𝑐

]
(7.2.4)

The whole constraint equation may be similarly partitioned.[
𝐶𝑟 𝐶𝑐

] [
𝑢𝑟
𝑢𝑐

]
= [𝑄] (7.2.5)

Note that 𝐶𝑟 is an 𝑐 × 𝑟 matrix, 𝐶𝑐 is order 𝑐, and 𝑄 is a vector of length 𝑐. Under most conditions 𝑄 is
null.

This may be solved for 𝑢𝑐,
𝑢𝑐 = 𝐶

−1
𝑐 𝑄 − 𝐶−1

𝑐 𝐶𝑟𝑢𝑟 (7.2.6)

We must be concerned with cases where 𝐶𝑐 may be either singular or over constrained. The former case
occurs if we try to eliminate 𝑐 equations, but the rank of 𝐶 is less than 𝑐. This could occur if the equations
are redundant. We can over constrain the system only if 𝑄 is nonzero. Both these situations need attention,
but both can be dealt with.

We may also write the solution using a transformation matrix, 𝑇 .[
𝑢𝑟
𝑢𝑐

]
= [𝑇] [𝑢𝑟 ] + 𝑄̃ (7.2.7)

where
𝑇 =

[
1
𝐶𝑟𝑐

]
(7.2.8)

𝐶𝑟𝑐 = −𝐶−1
𝑐 𝐶𝑟 (7.2.9)

and
𝑄̃ =

[
0

𝐶−1
𝑐 𝑄

]
=

[
0
𝑄̆

]
(7.2.10)
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7.2.2. Transformation of Stiffness Matrix

We assume a similar partition of the stiffness matrix. The equations for statics are then,[
𝐾𝑟𝑟 𝐾𝑟𝑐
𝐾𝑐𝑟 𝐾𝑐𝑐

] [
𝑢𝑟
𝑢𝑐

]
=

[
𝑅𝑟
𝑅𝑐

]
(7.2.11)

or,
[𝐾] [𝑇] 𝑢𝑟 + [𝐾]

[
𝑄̃

]
= 𝑅 (7.2.12)

and
𝑇𝑇𝐾𝑇𝑢𝑟 = 𝑇

𝑇
{
𝑅 − 𝐾𝑄̃

}
= 𝑅̃ (7.2.13)

We can define the reduced equations,

𝐾̃ = 𝑇𝑇𝐾𝑇 = 𝐾𝑟𝑟 + 𝐾𝑟𝑐𝐶𝑟𝑐 + 𝐶𝑇𝑟𝑐𝐾𝑐𝑟 + 𝐶𝑇𝑟𝑐𝐾𝑐𝑐𝐶𝑟𝑐 (7.2.14)

and,

𝑅̃ = 𝑇𝑇𝑅 − 𝑇𝑇
[
𝐾𝑟𝑐𝑄̆

𝐾𝑐𝑐𝑄̆

]
= 𝑅𝑟 + 𝐶𝑇𝑟𝑐𝑅𝑐 − 𝐾𝑟𝑐𝑄̆ − 𝐶𝑇𝑟𝑐𝐾𝑐𝑐𝑄̆

(7.2.15)

The solution in the retained system is
𝐾̃𝑢𝑟 = 𝑅̃ (7.2.16)

The system may be solved using the reduced equations, and the constrained degrees of freedom may be
solved using equation 7.2.6. Much of this is detailed in Cook, but without the constrained right-hand side.

For eigendecomposition of the mass matrix may be transformed like the stiffness matrix in equation 7.2.14.
There is no force vector.

For transient dynamics the mass and stiffness matrix transform the same. The force vector and force vector
corrections may be time dependent. There is currently no structure to store these time dependent terms in
Sierra/SD.

7.2.3. Application to single point constraints

Our initial efforts at applying single point constraints (SPC) has been limited to the basic coordinate
system. In that system the equations decouple, 𝐶𝑐 is unity and 𝐶𝑟𝑐 is zero. Then equations 7.2.14 and
7.2.15 reduce to elimination of rows and columns.

To properly account for the coupling that occurs when the constraints are not applied in the basic coordinate
system, we must generate all the constraint equation on the node. This may be up to a 6 × 6 system. I
believe that there is no real conflict in first applying constraints in the basic system, then adding additional
constraints in other systems.

The process for applying constraints can be summarized as follows.

1. Generate the constraint equation in the generalized coordinate system (equation 7.2.1).

2. Transform the constraint equation to the basic coordinate system (equation 7.2.2).
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3. Determine the constraint degrees of freedom. It may need to be done in concert with the next step to
keep from degrading the matrix condition.

4. Compute the two transformation matrices 𝐶−1
𝑐 and 𝐶𝑟𝑐 from equations 7.2.5 and 7.2.9.

5. Compute the corrections to the force vector from equation 7.2.15. We currently do not have a
structure to store these corrections, except for the case of statics.

6. Compute the reduced mass and stiffness matrices from equation 7.2.14.

7. Eliminate the constraint degrees of freedom from the mass and stiffness matrix.

In addition, for post processing,

8. store the terms of the equations necessary to recover the constraint degrees of freedom (equation
7.2.6).

A few words about post processing could also prove useful. In the first implementation of Sierra/SD,
constraints were applied only in the basic coordinate system. The degree of freedom to eliminate was
obvious from the Exodus file, and its value was a constant (usually zero). In this later version, a more
general approach must be used. We use the following strategy.

1. Degrees of freedom directly constrained to zero are handled implicitly. This is done by setting the
G-set vector to zero before merging in the A-set results. There is no storage cost for this.

2. Other degrees of freedom are managed using an Spc_info object. An array of these objects will be
stored globally. Each object contains the degree of freedom to fill, an integer indicating the number
of other terms, a list of dofs/coefficients, and a constant. This facilitates solutions of the form,

𝑢spc = constant +
retained dofs∑︁

𝑖

𝑢𝑖𝐶𝑖 (7.2.17)

7.2.4. Multi Point Constraints

The application to multi-point constraints is straight forward. The only difference is that the whole system
of equations must be considered together. This changes the linear algebra significantly because the matrices
must be stored in sparse format. However, the steps that are applicable for single point constraints also
apply here. Subsection 7.1 deals more explicitly with MPCs.

7.2.5. Transformation of Power Spectral Densities

Note: The following is taken almost verbatim from Paez’s book [137]. We identify how to transform output
PSD.

Let H( 𝑓 ) denote a frequency response function vector for a given input (in the global system) expressed
as,

H( 𝑓 ) = 𝐻1( 𝑓 )e1 + 𝐻2( 𝑓 )e2 + 𝐻3( 𝑓 )e3

where e𝑖 represents the unit vectors of this space. Note that H( 𝑓 ) is an output vector at a single location in
the model. H( 𝑓 ) can also be expressed using an alternate set of unit vectors, ẽ𝑖 .

H( 𝑓 ) = 𝐻̃1( 𝑓 )ẽ1 + 𝐻̃2( 𝑓 )ẽ2 + 𝐻̃3( 𝑓 )ẽ3

216



Taking the dot product of these two equations and equating the results, we have,

𝐻̃1( 𝑓 ) =
3∑︁
𝑘=1

𝑐𝑘𝑖𝐻𝑘 ( 𝑓 ) (7.2.18)

where
𝑐𝑘𝑖 = e𝑘 · ẽ𝑖

The spectral density function 𝐺𝑖 𝑗 ( 𝑓 ) (for a given input and at a single output location) can be expressed
as,

𝐺𝑖 𝑗 ( 𝑓 ) = 𝛼𝐻∗𝑖 ( 𝑓 )𝐻 𝑗 ( 𝑓 ) (7.2.19)

where 𝛼 is a constant and superscript * denotes complex conjugate. Similarly, for the alternative coordinate
frame,

𝐺̃𝑖 𝑗 ( 𝑓 ) = 𝛼𝐻̃∗𝑖 ( 𝑓 )𝐻̃ 𝑗 ( 𝑓 )

We may use equation 7.2.18 to express 𝐺̃ in terms of the 𝐻𝑖 . We may then use the spectral definition in
equation 7.2.19 to provide the transformation of spectral densities.

𝐺̃𝑖 𝑗 ( 𝑓 ) = 𝛼

(
3∑︁
𝑘=1

𝑐𝑘𝑖𝐻
∗
𝑘 ( 𝑓 )

) (
3∑︁
𝑚=1

𝑐𝑚𝑗𝐻𝑚( 𝑓 )
)

=

3∑︁
𝑘=1

3∑︁
𝑚=1

𝑐𝑘𝑖𝑐𝑚𝑗𝐺𝑘𝑚 (7.2.20)

This can be expressed in matrix notation as 𝐺̃ = 𝐶𝑇𝐺𝐶.

7.3. Orthogonality of MPC to Rigid Body Vectors

There are many requirements on multipoint constraints (MPCs). One that is essential is that the constraints
must be orthogonal to rigid body rotations. By this we mean that the multipoint constraints must not
constrain the system in a way that eliminates rigid body motion. This can be easily seen in modal analysis.
An ungrounded system with MPCs must retain 6 rigid body modes. Transient and static analysis has the
same issues, but here the problem may not be as obvious. Note that there are a variety of means of arriving
at the weights for a set of constraints, such as tied data. A mortar method preserves rigid body motion with
a different set of constraints. The weights for these systems may differ, but all must allow the body to freely
rotate. Clearly each constraint equation must satisfy this orthogonality independently.

For tied data a nodal dof on the node-surface ®𝑥𝑠 is constrained to the nearest face by a row of 𝐶. 𝑅 is a
function of the coordinates. Effectively 𝑅 is a function of the lofting. Particular solutions of the family of
equations

𝐶 (𝜆)𝑅(𝜆) = 0 (7.3.1)

are determined, ensuring that 𝐶 is a continuous function of the lofting parameter. In other words, enforcing
orthogonality changes the constraints as little as possible.
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7.3.1. Beam Example

Figure 7-1 illustrates a node ®𝑥3 constrained to a beam with nodes ®𝑥1 and ®𝑥2. This beam is represented using
a 2 dimensional coordinate frame, and has no rotational degrees of freedom. The 𝑋 axis is aligned with the
beam. There are two dof per node. The node ®𝑥3 is located a distance 𝑑 from the node ®𝑥1.

1 23

𝑑

Figure 7-1. – Node Constrained Directly to Beam.

The displacement vector is defined as,

𝑈 = [𝑢1𝑥 𝑢1𝑦 𝑢2𝑥 𝑢2𝑦 𝑢3𝑥 𝑢3𝑦] (7.3.2)

The high level approach of sections 7.3.1 and 7.3.2 is to address certain deficiencies by activating different
dof of nodes. Some Sierra codes do not allow for constraints that couple different dof of the same nodes.

The constraints keeping node ®𝑥3 on the beam (𝑥3 = 𝑥1 + 𝑑) are

𝐶 (0) =
[
(1 − 𝑑) 0 𝑑 0 −1 0

0 (1 − 𝑑) 0 𝑑 0 −1

]
(7.3.3)

and the corresponding three orthogonal rigid body vectors are,1 The node
®𝑥𝑠 = ®𝑥3 = [𝑥3, 𝑦3]𝑇 ,𝑥3 = [𝑥1, 𝑥2] [1 − 𝑑, 𝑑]𝑇 , 𝑦3 = 0. The origin 𝑜 is chosen to make the rigid modes
orthogonal, 𝑜 = 𝑥1 + ℎ, ℎ = (𝑥2 − 𝑥1)/2. Finally, 𝑥3 = 𝑜 + (2𝑑 − 1)ℎ.

𝑅(0)𝑇 =


1 0 1 0 1 0
0 1 0 1 0 1
0 −𝜃 0 𝜃 0 (2𝑑 − 1)𝜃

 , 𝜃 = 1 (7.3.4)

The constraints 𝐶 are orthogonal (𝐶 · 𝑅 = 0) to the rigid body vectors, 𝑅.

7.3.2. Offset Example

A small offset of a tied node above the tied face is common for a variety of reasons. For example, tying
together nodes on curved surfaces often introduces an offset from the plane of constraints, as is illustrated in
Figure 7-2. Figure 7-3 shows the general case in which the third node is offset, 𝐿, along the positive 𝑌 axis.

Figure 7-2. – Example Node on Face Constraint on Cylinder. The faceted faces produce a small offset from the
nodal location of a point on the matching cylinder.

1We are using infinitesimal rotations where sin(𝜃) = 𝜃.
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The point on the node-surface, ®𝑥𝑠 = ®𝑥3 = [𝑥3, 𝑦3]𝑇 , is lofted 𝑦3 = 𝐿. The corresponding rigid body modes
are

𝑅(𝜆)𝑇 =


1 0 1 0 1 0
0 1 0 1 0 1
0 −1 0 1 𝜆 (2𝑑 − 1)

 , 𝜆 = 𝐿sign(1/2 − 𝑑)/ℎ (7.3.5)

What is important here is that the rotation rigid body mode gains an extra term. Rotation of this beam about
the 𝑍 axis now has a term in 𝑋 . These rotational rigid body modes are no longer orthogonal to the original
constraints, 7.3.3.

L1 2

3

𝑑

Figure 7-3. – Node Constrained Offset to Beam.

Row one of 𝐶 (0) is the problem; row two of 𝐶 (0) equals row two of 𝐶 (𝜆). In this paragraph, 𝑐(𝜆) is row
one of 𝐶 (𝜆). As a sparse vector, the graph of 𝑐(𝜆) is the set of nonzeros. The only vector orthogonal to the
RBM, with the same graph as 𝐶 (0), namely [1, 0,−1, 0, 0, 0], does not constrain the node. The graph of
𝑐(𝜆) will have to expand. Adding the 𝑦 dof of active nodes to graph of 𝐶, the solution of equation 7.3.1 is

𝑐(𝜆) = [1 − 𝑑, 𝜆/2, 𝑑,−𝜆/2,−1, 0]

7.3.3. Correct MPC Equations

A solution to the problem can be obtained by using a projection onto the plane, as illustrated in Figure 7-4.
The constraints for the projected node are determined from the standard shape functions of the element
face, as in equation 7.3.3. However, we also maintain a perpendicular offset from that projection point on
the face to the constrained node.

®𝑢𝑠 = ®𝑢𝑝 + ®𝑢𝑟
and,

®𝑢𝑟 = ®𝜃 × ®𝜖

where ®𝜃 represents the rotation vector, and ®𝜖 represents the offset. When using shells and beams, we have ®𝜃
as a natural part of the rotational coordinates. For solids elements, we must compute ®𝜃.

Initially, one may conclude that higher order elements would alleviate the issues somewhat. Quadratic
shape functions for these elements can properly represent second order geometry and displacements.
However, multipoint constraints are inherently linear. We have not yet evaluated the effects of MPCs on
curved, higher-order element faces.
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Figure 7-4. – Constraint Projection. Standard shape functions provide the constraint relations for the projected
point,𝑈𝑝 . A rigid perpendicular offset maintains the proper geometry to retain rigid body invariance, and is used
to compute ®𝑢𝑟 . The total, ®𝑢𝑠 is the sum of these components.
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7.3.4. Orthogonalization of Incorrect MPCs

A simple orthogonalization step can make the constraint weights once again orthogonal.2 We compute,

𝛼 = ®𝐶 · ®𝑅𝑖/| | ®𝑅𝑖 | |2 (7.3.6)
𝐶̃ ← ®𝐶 − 𝛼 ®𝑅𝑖 (7.3.7)

where ®𝐶 represents the constraint equation, and ®𝑅𝑖 represents one of the orthogonalized rigid body modes.
As long as they span a full space, we can restrict ®𝑅 to the nodes in the constraint interaction. This allows us
to modify a constraint without generating terms that extend across the entire body. Typically, this operation
will add terms to 𝐶 that were previously zero. In general, this operation must be performed for all rigid
body modes on each constraint.

The orthogonalization process of equation 7.3.7 works for shell and beam models that include rotational
degrees of freedom on the nodes of the constraint. If rotational dofs are added to constraints applied only to
solid elements, those constraints are ineffective because solid elements have no active rotational degrees of
freedom. However, if the degrees of freedom in the constraint spans the space properly, these rotational
degrees of freedom may be removed and only translational degrees of freedom retained. Equation 7.3.7 still
applies, but now is restricted to the translational degrees of freedom on nodes in the constraint.

7.3.4.1. Orthogonalization on incomplete space.

In some cases, there are insufficient degrees of freedom in the constraint equation to adequately span the
space of the rigid body vectors. With shells and beams this is not an issue because the six dofs on a single
node can represent 6 orthogonal rigid body rotations. When only solid elements are active, a minimum of
three nodes are required to represent the same six rigid body modes. When insufficient degrees of freedom
are available in the constraint, a few possibilities are presented for ensuring rigid body invariance.

1. In some cases the constraint may be orthogonal to all rigid body modes. No modification is necessary.

This is the case for two co-located nodes that are constrained by a rigid translation. It can be shown
in this case, that the rotation vector (expressed only as translational terms) is a null vector. The
orthogonality with that vector is trivially zero.

2. The constraint could be eliminated. This may be the correct solution for two nodes tied only by
rotation. In some cases, this may change the response of the solution.

3. Additional degrees of freedom from neighboring nodes could be introduced into the constraint. See
the discussion in Figure 7-5.

Detection:

A critical issue is the identification of conditions that result in bad solutions. This occurs when the
orthogonalization of the vector results in a null vector. To avoid numerical round-off issues we define this
such that,

𝐶̃

𝐶
< 𝛿

Where 𝐶̃ is the updated constraint equation determined from equation 7.3.7 and 𝛿 is a small quantity.3

2Orthogonalization can be achieved in a variety of means. This is one simple approach.
3chosen as 1/1000.
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No constraints are added to the system. That would change the solution. The number of nodes (dofs) that are
involved in the orthogonalization of the RBM increases. This is much like adding an extra independent term to a
RBE3 averaging element. Recall that we restricted the RBM to the nodes involved in the constraint. This was an
arbitrary choice, determined to avoid creating constraint equations that span the space of the solution. In this effort
we broaden the space to ensure that the reduced rigid body vectors are long enough to permit orthogonalization of
each vector with respect to the constraints.
Generally, we want to add degrees of freedom that are physically near the nodes in the constraint, however addition
of nodes that are collocated or co-linear with existing constraint nodes is not beneficial. We use the following
strategy.

1. Determine the centroid of the MPC, ®𝑥𝑜, and a characteristic length, 𝐿.

2. Select the 𝑁 nearest nodes from each processor, that are not part of the MPC. This requires a sort by location.

3. Communicate, and contract this list to the 𝑁 nearest nodes in space.

4. Apply these additional degrees of freedom, and recompute the 𝐶̃ vector and norms.

5. If the norm is still zero, issue a message and abort.

Figure 7-5. – Additional Nodes in the MPC. Unimplemented.

7.3.5. Adding the same dof of new nodes

This section revisits the offset beam problem, discussed in Section 7.3.2. Here the same dof of certain other
nodes are added to the graph. The constrained node is ®𝑥5 = [𝑥5, 𝑦5]𝑇 ,𝑥5 = [𝑥1, 𝑥2] [1 − 𝑑, 𝑑]𝑇 , and 𝑦5 = 𝐿.
In node-face contact, the other vertices of the face that have been filtered out are the natural choice: (®𝑥𝑖)4𝑖=1.
Typically

®𝑥3 ∼ ®𝑥2 + [0, 𝑦̃]𝑇 , ®𝑥4 ∼ ®𝑥1 + [0, 𝑦̃]𝑇 (7.3.8)

The dimensionless parameters of interest are 𝜂 = 𝑦̃/ℎ, 𝑦̃ < 0, and 𝜆 = 𝐿sign(1/2 − 𝑑)/ℎ.

Hypothesis for x dof solution: 𝜂 + 𝜆 ≠ 0 or equivalently 𝑦̃ + 𝐿sign(1/2 − 𝑑) ≠ 0.

Differentiating equation (7.3.1), and once again letting 𝑐 denote row one of 𝐶, ¤𝑐𝑅 + 𝑐 ¤𝑅 = 0,𝑐 ¤𝑅 = [0, 0, 1]𝑇 .
Nodes ®𝑥1 and ®𝑥2 handled the 𝑐(0) term. Nodes ®𝑥3 and ®𝑥4 handle the ¤𝑐(0) term.

Define 𝐵 as the result of removing the following rows and columns from 𝑅: remove the rows corresponding
to the first 2 nodes, remove even rows corresponding to the 𝑦 dof in 𝑐, and remove the middle column.

It helps to consider the case in which the approximation (7.3.8) is exact,

𝐵 =


1 𝜂

1 𝜂

1 −𝜆


The constraint is determined by 𝐵𝑇 ¤𝑐(3 : 5) = [0, 1]𝑇 . The hypothesis is that 𝐵 has full rank. If the
approximation (7.3.8) is exact, 𝜂 + 𝜆 must be nonzero. More generally, the cross product of the columns is
nonzero if and only if 𝐵 has full rank, a condition that can be read off from the coordinates.

Solving 𝐵𝑇𝑐(3 : 5) = [0, 1]𝑇 is not trivial. Unfortunately this type of equation is typically solved via
normal equations, whose inaccuracy increases with the need for accuracy. In terms of the economy size qr
factorization of 𝐵 = 𝑄𝑈, (𝑄 has the same size as 𝐵 and𝑈 in 𝑀 (2, 2) is upper triangular),
𝑐(3 : 5) = 𝑄𝑅−𝑇 [0, 1]𝑇 . That means, for 𝑓 such that 𝑅𝑇 𝑓 = [0, 1]′, the constraint is 𝑐 = [0;𝑄 𝑓 ].
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7.3.6. Lofted node-face constraints

An element may or may not be tied to a node, ®𝑥𝑠, in a way that preserves rotations. This section is about
detecting constraints that do not preserve rotations, and then modifying the constraints so that rotations are
preserved. Lofting is a geometric characterization of the extent to which a node-face constraint preserves
rotations.

To understand all of this, let’s start with some simple cases: a node-face constraint tying a node to a planar
triangular face, a planar quadrilateral face, a discussion of lofting, and then remarks the extent to a planar
face accurately describes the general non-planar case.

A planar triangle is defined by three non-coincident nodes. A node-face constraint is not lofted if the
constrained node is in the plane of the triangular face. The vertex coordinates determine the matrix

𝑅̃ =


1 𝑥0 𝑦0 𝑧0
1 𝑥1 𝑦1 𝑧1
1 𝑥2 𝑦2 𝑧2


Recall the concept of barycentric coordinates. The vertices are coplanar if and only if 𝑅̃ has rank 3, in
which case the plane is the 2d set of points of the form[

1
®𝑥

]
in the range of 𝑅̃𝑇 . Node triangular face contact involves the matrix

𝑅 =


1 𝑥0 𝑦0 𝑧0
1 𝑥1 𝑦1 𝑧1
1 𝑥2 𝑦2 𝑧2
1 𝑥3 𝑦3 𝑧3

 , (𝑥3, 𝑦3, 𝑧3) = ®𝑥𝑠 (7.3.9)

A node-face constraint, 𝑐, preserves rotations if and only if 𝑐𝑇𝑅 = 0. Or geometrically, node on planar
triangular face constraints preserves rotations if and only if the constrained node is in the plane determined
by the triangular face. A constraint that does not preserve constraints is lofted some nonzero distance 𝜆
above the plane,

®𝑥𝑠 = ®𝑥𝑝 + ®𝑛𝜆

Here ®𝑥𝑝 is the orthogonal projection along the unit normal ®𝑛 of the lofted node onto the face.

The same argument applies to a planar quadrilateral. Although 𝑅̃ is 4 by 4 in this case, still has rank of only
3. Barycentric coordinates define a plane, as in the case of a triangle. Finally, 𝑅 is 5 by 4 in this case.

In node-face constraints, if the nodes are not planar, then barycentric coordinates define a surface, instead
of a plane. In the case of a quadrilateral, 𝑅̃ may have rank 4, but it is nearly singular.

A lofted constraint is fixed by adding nodes so that 𝑅̃ has a small condition number. This is done by adding
the nodes of the element that contains the face. There are pathological cases in the SD test suite in which
the "face" is a collection of nodes, and in these cases, nodes are added from one of the elements attached to
one of the nodes.

There’s a nifty construction of the new weights as a perturbation of the old weights, 𝑐, which not being
documented anywhere else, will be documented here. The construction is reviewed in the case of a node

223



tied to the quadrilateral face of a hexahedron. For the problem to be well posed, the new weights must be a
perturbation that is proportional to 𝜆. In light of this, it is helpful express the equations in terms of 𝜆:

𝑅 = 𝑅(𝜆) = 𝑅(0) + 𝑒5𝜆®𝑛𝑇 , 𝑐 = 𝑐(𝜆), 𝑐(0)𝑇𝑅(0) = 0

Our goal is to determine 𝑐(𝜆) so that 𝑐(𝜆)𝑇𝑅(𝜆) = 0. Substituting

𝑐(𝜆) = 𝑐(0) + 𝜆 ¤𝑐(0)

𝑐(𝜆)𝑇𝑅(𝜆) = 𝜆(𝑐(0)𝑇 ¤𝑅(0) + ¤𝑐(0)𝑅(𝜆)

Recalling that the last coordinate of 𝑐(0) is −1, 𝑐(0)𝑇 ¤𝑅(0) = −𝑒4𝜆(0, ®𝑛𝑇 ). After adding (in this case the
other 4) nodes, there is a "reasonable" vector of weights 𝑠 such that

𝑅(0)𝑇 𝑠 =
[
0
®𝑛

]
Note that 𝑐(0) had to be re-indexed after adding nodes. The nifty trick is the identity
𝑅𝑇 (𝜆) (𝐼 + 𝑐(0)𝑒𝑇9 ) = 𝑅

𝑇 (0). In particular

𝑅𝑇 (𝜆) (𝐼 + 𝑐(0)𝑒𝑇5 )𝑠 =
[
0
®𝑛

]
, ¤𝑐(0) = (𝐼 + 𝑐(0)𝑒𝑇9 )𝑠 (7.3.10)

7.3.7. Rotationally Invariant Spot Weld Constraints

To support Spot Welds with finite gaps, a similar equation to (7.3.10) was applied to node-face constraints
using a least-squares fit to rigid rotation.

Here, our goal is to create the 15-by-3 constraint matrix 𝐶𝑒𝑞𝑛 referenced by (7.9.1). Where 𝐶𝑒𝑞𝑛 is
expressed using the derivative of the constrained node’s displacement ®𝑢𝑑 with regard to displacements on
the face ®𝑢 𝑓 .

𝐶𝑒𝑞𝑛 =

[
𝜕®𝑢𝑑
𝜕®𝑢 𝑓
−𝐼

]
(7.3.11)

That derivative is given as:

𝜕 ®𝑢𝑑
𝜕 ®𝑢 𝑓

= 𝑁𝑇𝑝 +
[
(𝐴𝑇𝑝𝐴𝑝)−1𝐴𝑇𝑝 (𝐼 − 𝐴1𝑁𝑝)

]
× 𝑔̂ (7.3.12)

Where:

• 𝑔̂ : Gap vector from projected point to constrained node

• 𝐴𝑝 : n-by-3 Rigid Rotation vectors of the face nodes

• 𝐴1 : n-by-3 Rigid Translation vectors of the face nodes

• 𝑁𝑝 : 3-by-n Shape function matrix(7.3.13)
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𝑁𝑝 =


𝑁1 0 0 𝑁2 0 0 𝑁3 0 0 𝑁4 0 0
0 𝑁1 0 0 𝑁2 0 0 𝑁3 0 0 𝑁4 0
0 0 𝑁1 0 0 𝑁2 0 0 𝑁3 0 0 𝑁4

 (7.3.13)

To understand equation (7.3.12), we can rewrite it in terms of a rotation vector about the projected point ®𝜃:

𝜕 ®𝑢𝑑
𝜕 ®𝑢 𝑓

= 𝑁𝑇𝑝 +
[
𝜕 ®𝜃
𝜕 ®𝑢 𝑓

]
× 𝑔̂ (7.3.14)

Note that there are multiple valid ways to estimate 𝜕 ®𝜃
𝜕®𝑢 𝑓 , but we found equation (7.3.15) to be the most robust

when applied to poor quality elements.

𝜕 ®𝜃
𝜕 ®𝑢 𝑓

= (𝐴𝑇𝑝𝐴𝑝)−1𝐴𝑇𝑝 (𝐼 − 𝐴1𝑁𝑝) (7.3.15)

7.4. Constraints and infinite eigenvalues

Constraints (in §7.1) modify equation (2.4.1) to an eigenvalue problem

𝐴

[
𝜙

𝜆

]
= 𝐵

[
𝜙

𝜆

]
𝜔2 (7.4.1)

𝐴 =

[
𝐾 𝐶𝑇

𝐶 0

]
, 𝐵 =

[
𝑀 0
0 0

]
.

The modes and mode shapes and modes satisfy the equation

𝐾𝜙 + 𝐶𝑇𝜆 = 𝑀𝜙𝜔2, (7.4.2)

Like superelements, Lagrange multipliers 𝜆 are not part of the finite element mesh interface. Lagrange
multipliers are not exposed to users. When an eigenvalue problem is restarted, the Lagrange multipliers for
the modes in the restart file are all set to zero.

The remainder of this section discusses a subtle issue that developers need to understand "once in a blue
moon." If constraints are present then there are infinite modes[

0
𝜆

]
, 𝐵

[
0
𝜆

]
= 0.

Approximate solutions of the constrained eigenvalue problem can be misleading if the infinite modes are
not deflated. The deflation technique is due to Hans Weinberger. Fortunately in Sierra/SD, the deflation
matches the Lagrange multiplier methods used to solve the linear systems,47,48 and is handled, for the most
part, behind the scenes. Sometimes however, such as during debugging, it is necessary to understand
this, and this section is included to address that case.

But before diving in, let’s go over what the constrained eigenvalue problem, equation (7.4.1), has in
common with equation (2.4.1). Multiplying 𝜙𝑇 and row one of equation (7.4.1),

𝐾𝜙 + 𝐶𝑇𝜆 = 𝑀𝜙𝜔2,
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brings us to the unconstrained equation

𝜙𝑇𝐾𝜙 = 𝜙𝑇𝑀𝜙𝜔2.

The standard normalization
𝜙𝑇 (𝐾, 𝑀)𝜙 = (Λ, 𝐼)

is used here too. Although
𝐶𝜙 = 0,

note that
[0, 𝜆]𝑇

[
𝐾 𝐶𝑇

𝐶 0

]
= [𝜆𝑇𝐶, 0] ≠ 0

is the force maintaining the constraints.

The elimination of the redundant constraints uses the partition (or more precisely reordering) 𝐶 = [𝐶𝑟 , 𝐶𝑐]
so that 𝐶𝑐 square and non-singular. This is done by the linear solver. The corresponding partition of 𝜙 into
retained (independent) and constrained (dependent) vectors is

𝜙 =

[
𝜙𝑟
𝜙𝑐

]
.

The constraint equation is 𝐶𝑟𝜙𝑟 + 𝐶𝑐𝜙𝑐 = 0, or 𝐶−1
𝑐 𝐶𝑟 𝜙𝑟 + 𝜙𝑐 = 0 or

𝐶𝑟𝑐 = −𝐶−1
𝑐 𝐶𝑟 , 𝜙𝑐 = 𝐶𝑟𝑐𝜙𝑟 . (7.4.3)

The dimension of 𝜙𝑐 equals the dimension of 𝜆. The partition also induces a change in the eigenvalue
problem. [

𝐾𝑑𝑑 𝐾𝑑𝑖 𝐶𝑇𝑟
𝐾𝑖𝑑 𝐾𝑖𝑖 𝐶𝑇𝑐

] 
𝜙𝑟
𝜙𝑐
𝜆

 =

[
𝑀𝑑𝑑 𝑀𝑑𝑖
𝑀𝑖𝑑 𝑀𝑖𝑖

] [
𝜙𝑟
𝜙𝑐

]
𝜆

To eliminate 𝜙𝑐, [
𝐾𝑑𝑑 + 𝐾𝑑𝑖𝐶𝑟𝑐 𝐶𝑇𝑟
𝐾𝑖𝑑 + 𝐾𝑖𝑖𝐶𝑟𝑐 𝐶𝑇𝑐

] [
𝜙𝑟
𝜆

]
=

[
𝑀𝑑𝑑 + 𝑀𝑑𝑖𝐶𝑟𝑐
𝑀𝑖𝑑 + 𝑀𝑖𝑖𝐶𝑟𝑐

]
𝜙𝑟𝜆 (7.4.4)

And finally to eliminate 𝜆, in equation (7.4.4) subtract from row one −𝐶𝑇𝑟𝑐 times row two. For 𝑆 defined
by

𝑆(𝐾) = 𝐾𝑑𝑑 + 𝐾𝑑𝑖𝐶𝑟𝑐 + 𝐶𝑇𝑟𝑐𝐾𝑖𝑑 + 𝐶𝑇𝑟𝑐𝐾𝑖𝑖𝐶𝑟𝑐,

the reduced eigenvalue problem is
𝑆(𝐾)𝜙𝑟 = 𝑆(𝑀)𝜙𝑟𝜆

Given 𝜙𝑟 and 𝜆, equation (7.4.3) determines 𝜙𝑐. And 𝜆 is determined by

𝜆 = 𝐶−𝑇𝑐 (𝑀𝑖𝑑 + 𝑀𝑖𝑖𝐶𝑟𝑐 − 𝐾𝑖𝑑 − 𝐾𝑖𝑖𝐶𝑟𝑐) 𝜙𝑟

226



7.5. GDSW Contact Enforcement

A GDSW contact enforcement method is summarized. Maintaining constraints, i.e. given any 𝑢̃, finding
“near by" 𝑢 = 𝑇𝑢̃ satisfying the constraints, is discussed at the end. Contact introduces a residual force to
the momentum equation,

𝐾𝑢 + 𝐶𝑇𝜆 = 𝑓 (7.5.1)

and the constraint
𝐶𝑢 = 0, 𝐶 is 𝑟 × 𝑛, 𝑟 ≪ 𝑛 (7.5.2)

A null space basis 𝑍 of rank ≤ 𝑛 − 𝑟 satisfies 𝐶𝑍 = 0. The full rank case, rank(𝑍) = 𝑛 − 𝑟, is addressed
here (with the complicated software handling the general case, and including many important
optimizations). Displacements are of the form 𝑢 = 𝑍𝑣, and the momentum equation, (7.5.1), reduces to
(𝑍𝑇𝐾𝑍)𝑣 = 𝑍𝑇 𝑓 .

Direct elimination is a null space basis method in which permutation matrices 𝑄 and 𝑃 are found such
that

0 = 𝑄𝐶𝑃𝑢𝑃 = 𝐶𝑆𝑢𝑃 = [𝐶𝑆𝐼 , 𝐶𝑆𝐷]
[
𝑢𝐼𝑃
𝑢𝐷𝑃

]
, 𝑢 = 𝑃𝑢𝑃

Here D and I denote the dependent and independent sets. The full rank case has 𝐶𝑆𝐷 nonsingular for
|𝑆 | = |𝐷 | = 𝑟. A clever notation is 𝐶𝐷𝑆𝐶𝑆𝐷 = 𝐼 and 𝐶𝐷𝑆𝐶𝑆𝐼 = 𝐶𝐷𝐼 . Independent displacements 𝑢𝐼𝑃 are
independent of the constraints. Meanwhile, 𝑢𝐷𝑃 depends on 𝑢𝐼𝑃 through the constraints,

𝑢𝐷𝑃 + 𝐶𝐷𝐼 𝑢𝐼𝑃 = 0, 𝑍 =

[
𝐼

−𝐶𝐷𝐼

]
.

In practice an LU decomposition

𝐶𝑇 = 𝑃

[
𝐿𝐷
𝐿𝐼

]
𝑈𝑄

leads to
𝐿𝑇𝐷 𝑢𝐷𝑃 + 𝐿𝑇𝐼 𝑢𝐼𝑃 = 0, 𝐶𝐷𝐼 = 𝐿−𝑇𝐷 𝐿𝑇𝐼 .

The transformation 𝑇 = 𝑃𝑍𝑃𝑇
𝐼

resets the dependent constraints, leaving the independent constraints
invariant. Here 𝑃 = [𝑃𝐷 , 𝑃𝐼 ] so that in particular 𝑢̃𝐼𝑃 = 𝑃𝑇

𝐼
𝑢̃.

7.6. Tied Friction

The work on tied surfaces with friction is under development. Details are maintained in our design
documentation.

7.7. Mortar Methods

For simplicity, we only consider one of the three components of displacement in the following
development; the same approach holds for the other two components of displacement. Let 𝑢𝑏 and 𝑢𝑎
denote displacements on the b and a sides of a mesh interface. Ideally, we would like to satisfy

𝑢𝑎 = 𝑢𝑏
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at all locations on the interface. This restriction, however, is only practical for meshes which are
conforming at the interface. Otherwise, displacements would be restricted to a low-order polynomial of
degree equal to that of the lowest-order finite element on either side of the interface. As a result, the
interface would be too stiff.

For mortar methods, the constraint 𝑢𝑎 = 𝑢𝑏 is only satisfied in a weak sense. Specifically, the mortar
constraints are of the form ∫

Γ

𝜆(𝑢𝑎 − 𝑢𝑏) 𝑑𝑥 = 0, (7.7.1)

where Γ denotes the interface and 𝜆 is a Lagrange multiplier. Notice the familiar inconsistent tied contact
(node on face) constraints for node can be expressed in this form by choosing 𝜆 as a Dirac delta function for
the subject node. For mortar methods it is important that constant functions are in the space of Lagrange
multipliers. Dirac delta functions cannot be combined to obtain a constant. Thus, we should not expect the
convergence rates of mortar and tied contact methods to be identical. Indeed, the convergence rates for tied
contact are in general suboptimal.23

Let 𝑞𝑏 and 𝑞𝑎 denote vectors of nodal values of displacement on the 𝑏 and 𝑎 sides of the interface.
Similarly, let 𝑞𝜆 denote a vector of discrete values of the Lagrange multiplier. The displacements and
Lagrange multiplier are approximated (discretized) as follows:

𝑢𝑏 = 𝜙
𝑇
𝑏𝑞𝑏, (7.7.2)

𝑢𝑎 = 𝜙
𝑇
𝑎𝑞𝑎, (7.7.3)

𝜆 = 𝜙𝑇𝜆𝑞𝜆, (7.7.4)

where 𝜙𝑏 and 𝜙𝑎 are vectors of shape functions for the 𝑏 and 𝑎 sides of the interface, and 𝜙𝜆 is a vector of
shape functions for the Lagrange multiplier. A discrete form of the mortar constraints are obtained from
substitution of (7.7.2-7.7.4) into (7.7.1).

𝑀𝑠𝑠𝑞𝑎 + 𝑀𝑠𝑚𝑞𝑏 = 0, (7.7.5)

where
𝑀𝑠𝑠 =

∫
Γ

𝜆𝑎𝜙
𝑇
𝑎 𝑑𝑥, 𝑀𝑠𝑚 =

∫
Γ

𝜆𝑎𝜙
𝑇
𝑏 𝑑𝑥. (7.7.6)

The standard mortar method implemented in ACME uses

𝜙𝜆 = 𝜙𝑎 . (7.7.7)

In other words, the Lagrange multiplier shape functions are the same as the shape functions for the 𝑎 side of
the interface. We note in the mortar methods literature that Lagrange multiplier shape functions are often
modified for 𝑎 nodes on the boundary of the interface. The purpose for this modification is to avoid
redundant constraints at the intersection of two or more interfaces. At present, we make no such
modifications, but we will revisit this topic in a later section. Substitution of (7.7.7) into (7.7.6) gives

𝑀𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
𝑠𝑠 =

∫
Γ

𝜙𝑎𝜙
𝑇
𝑎 𝑑𝑥, 𝑀𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

𝑠𝑚 =

∫
Γ

𝜙𝑎𝜙
𝑇
𝑏 𝑑𝑥. (7.7.8)

Although the matrix 𝑀𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
𝑠𝑠 is sparse and positive definite, its inverse is dense. Thus, if one were to

solve (7.7.5) for 𝑞𝑎 in terms of 𝑞𝑏, each 𝑎 node displacement would depend on all the 𝑏 side nodal
displacements in the general case. As a result, solvers which make use of this form of constraint elimination
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would suffer from significant memory and computational demands for interfaces with large numbers of
nodes.

Dual mortar methods find and use a Lagrange multiplier basis which leads to a diagonal 𝑀𝑠𝑠 matrix. Each
𝑎 node displacement depends on the 𝑏 node displacements in a neighborhood of the 𝑎 node. Eliminating
the 𝑎 node displacements is efficient. Elimination is also efficient with tied contact.

Let 𝜎 denote an element face on the 𝑎 side of the interface. Further, let 𝜎(Γ) denote the set of all such
faces on Γ. From (7.7.6) we then have

𝑀𝑠𝑠 =
∑︁

𝜎∈𝜎 (Γ)
𝑀𝑠𝑠𝜎 , 𝑀𝑠𝑚 =

∑︁
𝜎∈𝜎 (Γ)

𝑀𝑠𝑚𝜎 , (7.7.9)

where
𝑀𝑠𝑠𝜎 =

∫
𝜎

𝜙𝜆𝜙
𝑇
𝑎 𝑑𝑥, 𝑀𝑠𝑚𝜎 =

∫
𝜎

𝜙𝜆𝜙
𝑇
𝑏 𝑑𝑥. (7.7.10)

For the dual mortar method, we choose the vector 𝜙𝜆 to be a linear combination of rows of 𝜙𝑎. Specifically,
for each 𝑎 face 𝜎 we set

𝜙𝜆 = 𝐴𝜎𝜙𝑎, (7.7.11)

where 𝐴𝜎 is a transformation matrix. To have a method which passes constant stress patch tests (linear
consistency), it must be possible to obtain a constant function from a linear combination of the rows of 𝜙𝜆.
We see that 𝐴𝜎 equal to the identity matrix satisfies this condition since the sum of all 𝑎 shape functions
over 𝜎 is unity. In this case, however, we recover the standard mortar method. The present goal is to choose
𝐴𝜎 to satisfy the constant approximation property while also leading to a diagonal matrix 𝑀𝑠𝑠. To this end,
we follow the construction in138 and:118

𝐴𝜎 = 𝐷𝜎 (𝑀𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
𝑠𝑠𝜎 )−1, (7.7.12)

where
𝐷𝜎 = diag

(∫
𝜎

𝜙𝑎 𝑑𝑥

)
. (7.7.13)

Replacing 𝜙𝑎 in (7.7.8) by 𝐴𝜎𝜙𝑎, we obtain

𝑀𝑑𝑢𝑎𝑙
𝑠𝑠 =

∑︁
𝜎∈𝜎 (Γ)

∫
𝜎

𝐴𝜎𝜙𝑎𝜙
𝑇
𝑎 𝑑𝑥 =

∑︁
𝜎∈𝜎 (Γ)

𝐴𝜎𝑀
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
𝑠𝑠𝜎 =

∑︁
𝜎∈𝜎 (Γ)

𝐷𝜎 , (7.7.14)

𝑀𝑑𝑢𝑎𝑙
𝑠𝑚 =

∑︁
𝜎∈𝜎 (Γ)

∫
𝜎

𝐴𝜎𝜙𝑎𝜙
𝑇
𝑏 𝑑𝑥 =

∑︁
𝜎∈𝜎 (Γ)

𝐴𝜎𝑀
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
𝑠𝑚𝜎 . (7.7.15)

Since each 𝐷𝜎 is diagonal, it follows that 𝑀𝑑𝑢𝑎𝑙
𝑠𝑠 is also diagonal.

Numerical integration over each 𝑎 face 𝜎 is done in ACME by first decomposing 𝜎 into a set of triangular
facets 𝑡 (𝜎) and then summing the contributions from each facet. Specifically, from ACME we have access
to the integrals

𝑀𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
𝑠𝑠𝑡 =

∫
𝑡

𝜙𝑎𝜙
𝑇
𝑎 𝑑𝑥, 𝑀𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

𝑠𝑚𝑡 =

∫
𝑡

𝜙𝑎𝜙
𝑇
𝑏 𝑑𝑥, (7.7.16)

where 𝑡 ∈ 𝑡 (𝜎). By assembling contributions to 𝜎, we then calculate

𝑀𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
𝑠𝑠𝜎 =

∫
𝜎

𝜙𝑎𝜙
𝑇
𝑎 𝑑𝑥 =

∑︁
𝑡∈𝑡 (𝜎)

𝑀𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
𝑠𝑠𝑡 . (7.7.17)
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With 𝑀𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
𝑠𝑠𝜎 in hand, we then calculate

𝑀𝑑𝑢𝑎𝑙
𝑠𝑠𝑡 = 𝐴𝜎𝑀

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
𝑠𝑠𝑡 = 𝐷𝜎 (𝑀𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

𝑠𝑠𝜎 )−1𝑀𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
𝑠𝑠𝑡 , (7.7.18)

𝑀𝑑𝑢𝑎𝑙
𝑠𝑚𝑡 = 𝐴𝜎𝑀

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
𝑠𝑠𝑡 = 𝐷𝜎 (𝑀𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

𝑠𝑠𝜎 )−1𝑀𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
𝑠𝑚𝑡 . (7.7.19)

Since 𝑀𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
𝑠𝑠𝜎 is symmetric and positive definite, it can be factored using the Cholesky decomposition.

Accordingly, products with the inverse of 𝑀𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
𝑠𝑠𝜎 in (7.7.18) and (7.7.19) can be obtained with calls to

LAPACK routines DPOTRF and DPOTRS. It then only remains to calculate the entries of the diagonal matrix
𝐷𝜎 .

Let 𝑒 denote a vector of the same length as 𝜙𝑎 and with all its entries equal to 1. Since the sum of shape
functions in 𝜙𝑎 equals 1 in 𝜎, we have

𝜙𝑇𝑎𝑒 = 1. (7.7.20)

From (7.7.17) we then obtain

𝑀𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
𝑠𝑠𝜎 𝑒 =

∫
𝜎

𝜙𝑎 (𝜙𝑇𝑎𝑒) 𝑑𝑥 =
∫
𝜎

𝜙𝑎 𝑑𝑥. (7.7.21)

It follows from (7.7.13) that
𝐷𝜎 = diag

(
𝑀𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
𝑠𝑠𝜎 𝑒

)
. (7.7.22)

The transformed mortar matrices 𝑀𝑑𝑢𝑎𝑙
𝑠𝑠𝑡 and 𝑀𝑑𝑢𝑎𝑙

𝑠𝑚𝑡 for the dual Lagrange multiplier basis are calculated in
the following order,

1. 𝑀𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
𝑠𝑠𝜎 by assembling contributions from triangular facets as in (7.7.17).

2. the diagonal matrix 𝐷𝜎 according to (7.7.22).

3. the mortar matrices 𝑀𝑑𝑢𝑎𝑙
𝑠𝑠𝑡 and 𝑀𝑑𝑢𝑎𝑙

𝑠𝑚𝑡 for the dual Lagrange multiplier basis according to (7.7.18)
and (7.7.19).

In summary, all that is needed is to replace the mortar matrices 𝑀𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
𝑠𝑠𝑡 and 𝑀𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

𝑠𝑚𝑡 for each
triangular facet 𝑡 by their dual basis counterparts 𝑀𝑑𝑢𝑎𝑙

𝑠𝑠𝑡 and 𝑀𝑑𝑢𝑎𝑙
𝑠𝑚𝑡 . The remainder of the coding in ACME

remains the same. The only code changes on the Sierra/SD side is to pass a flag to ACME indicating
whether to use the dual mortar method.

A subsection titled Treatment of Interface Boundary explaining the special treatment of constrained nodes
on the interface boundary to avoid potential redundant constraint equations would be a welcome addition.
There is also room here for a subsection titled Nodal Coordinate Adjustments dealing with how to initially
move the constrained nodes to retain all six rigid body modes for curved interfaces or flat interfaces with
initial gaps.

7.8. Correction For Dynamic Constraint Equilibrium

Multipoint constraints defined in an initial condition that is in equilibrium are homogeneous. The constraint
equation applied to the displacement, velocity, or acceleration vanishes. A constraint generated at an
equilibrium maintains equilibrium for all time.

Under some circumstances in a transient analysis, constraints can be generated in a non-equilibrium state.
This occurs, for example, if two domains are initialized to different pressures and then connected via an
MPC. Additionally, MPCs created in the middle of a run, such as on a moving mesh, are often created in a
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state that is at least subtly out of equilibrium. In this circumstance, it is required to bring the constraint into
an equilibrium state as quickly as possible to enforce the intended continuity. Generally, immediate
enforcement of a constraint on the primary variable will not regain equilibrium. For example, if
enforcement of the constraint immediately eliminates a displacement jump, this will cause a large
discontinuity of velocity at the constraint.

To remedy this situation, a special sequence of non-homogeneous constraints is generated that brings the
constraint back to equilibrium as quickly as possible: specifically, in three transient time steps.

Section 2.1 gives a detailed description of the Newmark beta time integration method. Let 𝑑+ and 𝑑−
indicate the displacement variable on either side of an interface at which a constraint is to be applied. The
constraint violation across the interface is 𝑢 = 𝑑+ − 𝑑−. At the current step, we know the values

𝑢𝑛 =𝑑
+
𝑛 − 𝑑−𝑛

¤𝑢𝑛 =𝑣+𝑛 − 𝑣−𝑛
¥𝑢𝑛 =𝑎+𝑛 − 𝑎−𝑛 ,

but time-stepping must be done in a special way to bring 𝑢, ¤𝑢, ¥𝑢 back to zero. Although not required for the
method to work, we simplify the following discussion by assuming the standard values of 𝛾 = 1

2 and 𝛽 = 1
4 .

Rewriting in 𝑢 equation 2.1.7 for the Newmark beta step, we obtain equations 7.8.1 and 7.8.2.

¤𝑢𝑛+1 = ¤𝑢𝑛 +
Δ𝑡

2
( ¥𝑢𝑛 + ¥𝑢𝑛+1) (7.8.1)

𝑢𝑛+1 =𝑢𝑛 + Δ𝑡 ¤𝑢𝑛 +
Δ𝑡2

4
¥𝑢𝑛 +

Δ𝑡2

4
¥𝑢𝑛+1 (7.8.2)

The target value for the constraint violation, 𝑢𝑛+1, will be specified later. Equation 7.8.2 can thus be
rearranged to provide the unknown acceleration ¥𝑢𝑛+1 as a function of the known initial conditions and 𝑢𝑛+1,
shown in equation 7.8.3.

¥𝑢𝑛+1 =
−¥𝑢𝑛Δ𝑡2 − 4𝑢𝑛 + 4𝑢𝑛+1 − 4Δ𝑡 ¤𝑢𝑛

Δ𝑡2
(7.8.3)

Recursively applying equations 7.8.1 and 7.8.3 yields the acceleration and velocity at the end of three steps
as a function of the assumed target values 𝑢𝑛+1, 𝑢𝑛+2, 𝑢𝑛+3 for the constraint violation:

¤𝑢𝑛+1 =
−2𝑢𝑛 + 2𝑢𝑛+1 − Δ𝑡 ¤𝑢𝑛

Δ𝑡
(7.8.4)

¥𝑢𝑛+2 =
−¥𝑢𝑛+1Δ𝑡

2 − 4𝑢𝑛+1 + 4𝑢𝑛+2 − 4Δ𝑡 ¤𝑢𝑛+1

Δ𝑡2
(7.8.5)

¤𝑢𝑛+2 =
−2𝑢𝑛+1 + 2𝑢𝑛+2 − Δ𝑡 ¤𝑢𝑛+1

Δ𝑡
(7.8.6)

¥𝑢𝑛+3 =
−¥𝑢𝑛+2Δ𝑡

2 − 4𝑢𝑛+2 + 4𝑢𝑛+3 − 4Δ𝑡 ¤𝑢𝑛+2

Δ𝑡2
(7.8.7)

¤𝑢𝑛+3 =
−2𝑢𝑛+2 + 2𝑢𝑛+3 − Δ𝑡 ¤𝑢𝑛+2

Δ𝑡
(7.8.8)

Next assume a formula that will set the target constraint violation for the next step in terms of the current
displacement, velocity, and acceleration constraint violation. Assume there exist some unknown
coefficients weighting the mismatch in current displacement, velocity, and acceleration as given in
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Equations 7.8.9, 7.8.10, 7.8.11.

𝑢𝑛+1 =𝐶𝑑𝑢𝑛 + 𝐶𝑣Δ𝑡 ¤𝑢𝑛 + 𝐶𝑎Δ𝑡2 ¥𝑢𝑛 (7.8.9)

𝑢𝑛+2 =𝐶𝑑𝑢𝑛+1 + 𝐶𝑣Δ𝑡 ¤𝑢𝑛+1 + 𝐶𝑎Δ𝑡2 ¥𝑢𝑛+1 (7.8.10)

𝑢𝑛+3 =𝐶𝑑𝑢𝑛+2 + 𝐶𝑣Δ𝑡 ¤𝑢𝑛+2 + 𝐶𝑎Δ𝑡2 ¥𝑢𝑛+2 (7.8.11)

Equations 7.8.7, 7.8.8, 7.8.11 can be simultaneously solved to find the update coefficients that yield zero
displacement, velocity, and acceleration at the end of the third step:

𝑢𝑛+3 = 0, ¤𝑢𝑛+3 = 0, ¥𝑢𝑛+3 = 0. (7.8.12)

Note that by plugging 7.8.9 into 7.8.10 to express 𝑢𝑛+1 in terms of 𝐶𝑑 , 𝐶𝑣 , 𝐶𝑎, and 7.8.10 into 7.8.11 to
express 𝑢𝑛+2 in terms of 𝐶𝑑 , 𝐶𝑣 , 𝐶𝑎, the equations become non-linear in the unknown coefficients
𝐶𝑑 , 𝐶𝑣 , 𝐶𝑎. This solution yields the coefficients in equation 7.8.13:

𝐶𝑑 =
3
4
, 𝐶𝑣 =

1
2
, 𝐶𝑎 =

1
16
. (7.8.13)

When the update coefficients are used to set a target constraint violation at the next step, then for any initial
conditions the constraint will reach total equilibrium after three Newmark beta time steps. Once this
equilibrium is reached, the target displacement for the constraint becomes zero and for all future steps the
constraint is a standard homogeneous constraint. Two examples of the equations of motion utilizing the
constraint update coefficients are given in figures 7-6 and 7-7.

1 2 3 4 5
Step

100

200

300

400

500

Disp

Figure 7-6. – Equilibration from 𝑢𝐴 = 100 𝑢𝐵 = 500.

Implementation. The user interface is described in [122] in the General Commands chapter, GDSW
section, especially in the Troubleshooting subsection. A few more detailed comments on contact
enforcement are provided here.

In Sierra SD node-face tied contact, rigid elements, RBE3s, MPC equations introduce linear constraint
equations to the linear system. In the GDSW linear solver linear constraint equations are segregated into
Type 1 constraints and Type 2 constraints. Type 1 constraints are constraints where the number of terms in
the constraint equation is less than a threshold (the default is 250). For example, a tied contact node
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1 2 3 4 5
Step

500

1000

1500

Disp

Figure 7-7. – Equilibration from 𝑢𝐴 = 200 𝑢𝐵 = 700 ¤𝑢𝐴 = −200 ¤𝑢𝐵 = 1600 ¥𝑢𝐴 = −1000 ¥𝑢𝐵 = 400.

constrained to the interior of a QUAD4 face would have 5 terms (1 for the node and 4 for the nodes of the
face). Rigid elements like RBE2s also have few terms and are thus Type 1 constraints. Type 1 constraints
are directly eliminated in GDSW prior to solving the linear system. This reduces the total number of
equations to solve by the number of Type 1 constraints.

Type 2 constraints typically occur when RBE3 elements are used. RBE3 elements are "averaging"
constraint equations used as a modeling convenience to distribute a load from a node to a larger surface.
For example, one may like to connect a concentrated mass "uniformly" to the top of a cylindrical surface.
An RBE3 element will introduce at most 6 constraint equations, but each constraint equation can have
many terms proportional to the number of nodes on the "surface". Applying the constraint elimination
algorithm used for Type 1 constraints to Type 2 constraints may introduce large dense blocks in the
coefficient matrix. This increases the memory required to store the matrix and the factorizations of
subdomain matrices. The current algorithm in GDSW for handling Type 2 constraints avoids potentially
large increases in memory by requiring all constraints to be of Type 1.

Users may change it by setting max_numterm_C1 in the GDSW solver block. The big benefit of ensuring
that all constraints are Type 1 is that the rate of convergence for the iterative solves is much higher.

7.9. Spot Welds

Spot Welds in Sierra/SD are defined as node-face connections between dissimilar meshes with user defined
stiffnesses in the normal and tangential directions of the face.

Conceptually, spot welds can be represented by a 3-DOF linear spring attaching the constrained node at one
end to a node-face contact MPC at the other. In practice however, we represent spot welds using 9-node
quad elements which are exactly equivalent.

Element Matrices. We currently only define stiffness matrices for spot welds, but damping may be
possible in the future.

Each 27-by-27 spot weld stiffness matrix is defined as:

[𝐾𝑒𝑙𝑒𝑚] =
[
𝐶𝑒𝑞𝑛

] [
𝐾𝑠𝑝𝑟𝑖𝑛𝑔

] [
𝐶𝑒𝑞𝑛

]𝑇 (7.9.1)
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Where 𝐶𝑒𝑞𝑛 is a 27-by-3 set of node-face contact constraints, and 𝐾𝑠𝑝𝑟𝑖𝑛𝑔 is the 3-by-3 spring stiffness
matrix in the global coordinate system.

Given the user defined normal(𝐾𝑛) and tangential(𝐾𝑡 ) stiffnesses, 𝐾𝑠𝑝𝑟𝑖𝑛𝑔 is defined as:

[
𝐾𝑠𝑝𝑟𝑖𝑛𝑔

]
= [𝑅]


𝐾𝑡

𝐾𝑡
𝐾𝑛

 [𝑅]𝑇 (7.9.2)

Where the rotation matrix 𝑅 is chosen such that the local z axis(𝑧) is parallel to the normal vector of the
constrained face(𝑛̂).

For non-planar faces, the normal vector 𝑛̂ is evaluated at a point defined by projecting node 9 onto the
contact face. The projection process is done by DASH during setup.

7.9.1. An element block of possibly degenerate quad9 elements

The ordering of quad 9 vertices shown in Figure 7-8 means that a spot weld assigns a quadrilateral to the
first 8 quad nodes, with the dependent node last. A contact search may find triangles with 3 or 6 nodes, and
quadrilaterals with 4 and 8 nodes. The element block consists only of quad9s, with varying repeated nodes
depending on the number of nodes in the face. The repeated nodes always come from the face.

Figure 7-8. – Quad9 Element Topology.

Stiffness Per Unit Area The user can build spot welds with either a constant stiffness at every node, or
stiffness per unit area. When specifying stiffness per unit area, the area is evaluated on the surface owning
the constrained nodes, not the constrained faces. This preserves solution convergence with mesh
refinement.
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