SANDIA REPORT

SAND2025-12835 Sandia
Printed October 8, 2025 National _
Laboratories

FUSED - User’s Manual — 5.26

FUSED Development Team:
Wilkins Aquino, Mark Chen, Andrew Kurzawski, Elizabeth R. Livingston,
Cam McCormick, Clay Sanders, Chandler Smith, Ben Treweek, and Tim Walsh

Latest Software Release:
5.26-Release 2025-10-02

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports @osti.gov

Online ordering: http://www.osti.gov/scitech
Auvailable to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road

Alexandria, VA 22312

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders @ntis.gov

Online order: https://classic.ntis.gov/help/order-methods

NYSH

National Nyclear Security Adminisfration

ABSTRACT

The Fusion of Simulation, Experiment, and Data (FuSED) team provides a set of tools for solving
inverse problems in structural dynamics (InverseSD) and thermal physics (InverseAria), a sensor
placement optimization tool via Optimal Experimental Design (OED), and a decision boundary
tool using SVMs (TRACE). These methods are used for designing experiments, model
calibration, and verification/validation analysis of systems. This document provides a user’s guide
to the input for the four apps that are supported for these methods. Details of input specifications,
output options, and optimization parameters are included.

: I FuSED Team:What We Do POC: Tim Walsh (tfwalsh@sandia.gov)
|
TRACE r 2 [Optimal Experimental Design (OED)]
Active learning to B g" Sensor placement

Electromagnetic Vibration

calculate critical
thresholds in models -
and/or experiments w

optimization for tests
Physics-agnostic tool

Based on ‘input-output’
snapshots

“Decision surfaces”, a.k.a.
performance envelopes.

I —

Uni-axial and/or tri-axial

Support Vector Machines and = Flexible sensor budget

Active learning NO-GO
G s s 8 10 o Mo i 1.0 200
InverseSD InverseAria
Align model response in InverseAria solves inverse heat
Sierra/SD with measured or k . .
target data ‘ transport problems with Aria by
Structural parameter identification 2 enabhng ad]()lnt'based gradlent 1
Structural/aero load identification calculations I
Force/pressure estimation Material identification
Residual stress inference Bound i .
Supported Test Data: oundary heat flux inversion
Frequency response functions (FRFs) Thermal contact

Modal data (mode frequencies, shapes) Source term inversion
Transient displacement & acceleration

Overview of the tools produced by the FuSED team.

Results from the use of this software should cite:

Wilkins Aquino, Mark J. Chen, Andrew J. Kurzawski, Elizabeth R. Livingston, Cameron A.
McCormick, Clay M. Sanders, Chandler B. Smith, Benjamin C. Treweek, and Timothy F. Walsh.
FuSED — User’s Manual — 5.26. Sandia National Laboratories, 2024.

This page intentionally left blank.

CONTENTS

1.

Release Notes 1
L1, ReIease 5.26 . . . oottt 1
1.2, Release 5.24 . ..o e 2
L3, Release 5.2 e 2
Inverse Methods in Sierra/SD 4
2.1. Inverse Solution Methods in Sierra/SD 4
2.2. DirectFRF-Inverse Solution Caseouiuiiiiniineiniinneennn. 5
2.2.1. Load Identification.ouiuiitie ittt 6
2.2.2. Material Identification. i 7
2.2.3. Multi-Experiment Material Identification 8
2.2.4. Circuit Parameter Identification For Piezoelectric Modeling 8

2.3. Eigen-Inverse Solution Casecuuuiiiiineineine i, 9
2.3.1. Eigenvalue Material Identification..............ciivin.... 10
2.3.2. Eigenvector Material Identification i, 11
2.3.2.1. Repeated Modesouuiiiiiiiiiii i 11

2.3.22. RigidBodyModeso 12

2.3.2.3. Mode Swapping/Crossingouuueeueineeneeneennnn. 13

2.3.24. Singular Solve 13

2.3.2.5. Computed Eigenvector Scaling............................. 13

2.3.2.6. Eigen Objectiveot 14

2.3.2.77. Projection Mode Selection 14

2.4. ModalFRF-Inverse Solution Caseouiiiiiniinein i, 15
2.4.1. Load Identification.ouuiitine ittt 16
2.4.2. PSD Load Identificationouuiiiniiieniieiienennnnn. 17
2.4.3. Random PSD Load Identification i, 19

2.5. ModalTransient-Inverse Solution Casecouiiniiienenenennnnn. 22
2.6. Transient-Inverse Solution Casec.iiiniiiiiiniinineiiinnennn. 24
2.6.1. Design Variablesoiiiiiiii i e 25
2.6.1.1. LoadIdentificationiiiiiininiieinnennenn.n. 25

2.6.1.2. Material Identification i 26

2.6.2. Objective FUNCtionSot 26
2.6.2.1. Tracking Objective Function................ 27

2.6.2.2. SRS Objective Functioncoiviiiiininnen.... 27

2.7. Inverse Options in Sierra/SD i 28
2771, OptMIZALION . ..ottt ettt ettt e e e e e e e e e e e e 29
2.77.2. Inverse-Problem i e 34
2.7.2.1. Regularization Parameters.............. 34

2.7.2.2. Multi-Experiment Parameters 35

2.7.2.3. Transfer Matrix Optionc.oiiiiiiiiinnnnenn... 35

2.7.2.4. Link Blocks Option, 35

273, Inverse DataFiles i e 36
2.7.4. Block section for Material Identification.............................. 44
2.7.5. Material section for Material Identification 46
2.7.6. Loads section for Load Identification 56
2.7.7. Limitations for Inverse Load Problems 58
2.7.8. ROL Output for Inverse Problems, 59

2.8. Example Inverse Problems i e 60
2.8.1. Experimental Data........ e 60
2.8.2. Inverse Problems -Load-ID 60
2.8.2.1. Experimental Model.............. 60

2.8.2.2. Forward Problem 60

2.8.2.3. Inverse Problem with knownloads.......................... 61

2.8.2.4. Inverse Problem with unknownloads........................ 62

2.8.2.5. Verificationt 62

2.8.3. Inverse Problems - Material-ID 62
2.8.3.1. Experimental Model.............. 62

2.8.3.2. Inverse Problem inputformat 63

2.8.3.3. Running the Inverse Problem 65

2.8.3.4. Verificationttt 65

2.8.3.5. Design Variables History Output 65

3. Inverse Methods with InverseAria 67
3.1, INtrodUCHONottt e e 67
3.2, OUHNE ..o 67
3.2.1. Beta Capabilities and Limitationscoiuiiiininnenen .. 67
3.2.2. Getting Started with Inverse Aria....... 68
3.2.3. Optimization .xml Inputs for Inverse Aria 69

3.3, Inverse Problems i e 70
3.4, Thermal ConducCtiVity vtu ittt e e e ettt 70
3.5. Steady Boundary Heat Flux i 73
3.6. Transient Boundary Heat Flux i 73
3.7. Thermal Contact ResiStance.t e 76
3.8. Arrhenius Source Terms with Finite Differences.............................. 77
4. Optimal Experimental Design 79
4.1. Introduction to InverseOED i 79
4.2. Input Deck Introductioniiuiiiiit it 80
4.3. ParameterList: OED e 80
4.3.1. Initial Designooo i 81
4,32, Baseline SEIMSOIS . . v vt vttt ettt e e 81

4.4. ParameterList: Linear Model i 82
44.1. General Framework e 83

il

4.4.2. Frequency Domaino ottt 84

443, TimeDomaint 85

4.5. Robustness to Sensor Dropoutt e 85
4.6. Executing InverseOED and Results........... 87
4.6.1. InverseOED executable........... 87

4.6.2. Parallel Runs 87

4.6.3. Results 88

4.77. Greedy Algorithm e 88
4.7.1. Multi-axis sensor placement (Original Version)........................ 89

4.7.2. Multiple Budgets and Multiple Sensor Types........... 90

4.7.3. Greedy Mean Squared Error Objective Functions 93

4.8. Source Placement with Greedy 96
49. RobustModel OED i e e e 96

5. TRACE 98
S.1. IntroduCtion 98
5.2. Minimal Working Example 99
5.3. Input Deck Format i e 100
5.3.1. Algorithmic Parameters, 101

5311, Required ..ot e 101

5312, Optional. e 102

5.3.20 Variableso 104

5.3.3. Model Parameterst e 104

5.3.4. Output Parameterst e 105

5.3.5. MEIIICS v vttt 105

5.4. Postprocessing Probabilities. e 106
5.4.1. Required Parameters ittt 107

5.4.2. Optional Parametersouiiiininn i 108

6. Appendix 109
6.1. Optimal Experiment Design Theory i ... 109
6.1.1. Inverse problem framework 109

6.1.2. Gradient-based optimization formulation 112

6.1.3. Greedy-based optimization formulation 113

6.1.4. Optimality CTIteria . . . oottt ettt e e et e ettt 113

6.1.5. Structural dynamics inverse problem examples 116

Index 119
Distribution 121

iii

LIST OF FIGURES

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 2-9.
Figure 2-10.

Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.

Figure 3-5.

Figure 5-1.

Figure 5-2.

Figure 6-1.

Sample Data Truth Table Input for Acoustic Problem 37
Example Data Truth Table for Structural-only problem..................... 37
Example data truth table for Structural Acoustics 38
Sample Real Data File Input for an acoustics-only problem 39
Sample Real Data File Input for a structural-only problem 40
Sample Real Data File Input for a data type moduli problem 41
Sample Transient Data File Input for a structural-only problem 43
Example of ROL_Messages.txt file for Inverse Problem Solution 59
Inverse Football Problem Geometry............. i, 60
Foam block model with finite element mesh and force location 63
Domain of the example thermal conductivity inverse problem. 71
Objective function and gradient norm at each iteration of the optimizer. 72
Domain of the example heat flux inverse problem (left) and residuals for the

inverse problem (right). 73
Transient heat flux with inverse solution (left) and residuals for the inverse

problem (Fight).t 75

Domain of the example contact resistance inverse problem (left). Contact ar-
row colors correspond to line colors in the plot of design variable progress
at each optimization iteration (right). Dashed lines indicate the “true” values
used to generate synthetic temperature data., 77

Example decision boundary. Red indicates region of predicted failure. Each
point represents a training sample used by TRACE 98
Quad-chart of different flavors of stochastic/deterministic decision boundaries. 107

An example probability distribution function of the prediction variance where
the R-criteria equals the average taken over the shaded region 116

v

LIST OF TABLES

Table 2-1.
Table 2-2.
Table 2-3.
Table 2-4.
Table 2-5.
Table 2-6.
Table 2-7.
Table 2-8.
Table 2-9.

Table 2-10.
Table 2-11.
Table 2-12.
Table 2-13.
Table 2-14.
Table 2-15.
Table 2-16.
Table 2-17.
Table 2-18.
Table 2-19.

Table 4-1.

Table 5-1.
Table 5-2.
Table 5-3.
Table 5-4.
Table 5-5.
Table 5-6.
Table 5-7.
Table 5-8.

Table 6-1.

Inverse Solution Types.ot 4
Matrix of Supported Inverse Solution Types and Corresponding Design Variables. 5
DirectFRF-Inverse Solution Case Parameters. 5
Eigen-Inverse Solution Case Parameters. 9
ModalFRF-Inverse Solution Case Parameters. 15
ModalTransient-Inverse Solution Case Parameters. 22
Transient-Inverse Solution Case Parameters. 24
Optimization Section Parametersttt nneenn.n. 33
Optimization Section Parameters for Line Search 33
Optimization Section Parameters for Trust Region 33
Inverse-Problem parameters oot 34
Block Section Parameters for Material Inversion 44
Block Section Parameters for Material Inversion 45
Table of Supported Material Parameters for Inverse Methods 46
Material Section Parameters for Material Inversion 50
Parameters in material section for Damage Identification................... 52
Parameters in inverse-problem section for Damage Identification............ 53
Loads Section Parameters for Force Inversion 57
Inverse Load Type Optionsottt et et 57

Optimality Criteria: C € R is the covariance matrix of the design parameters. 81

Required Algorithmic Parameters 101
Optional Algorithmic Parameters............. 102
Supported Variable Distributions i 104
Model Parameters e 104
Output Parameters i e 105
Metrics Parameterst e 106
Required Postprocessing Parameters, 107
Optional Postprocessing Parametersccoiiiiiiiinennenn... 108
Optimality Criteria.vt et e e e e e e e 114

This page intentionally left blank.

vi

1. RELEASE NOTES

The sections in this chapter mainly describe new features, bug fixes, performance improvements,
and features deprecated or removed in each new version of FuSED.

1.1. Release 5.26

New or Improved Features

New features:
* TRACE (TRACE Rapidly Acquires Contour Estimates)
— Full release in 5.26

— Automatic hyperparameter tuning uses multi-dimensional bisection to choose the best
settings for the user at each training iteration

* OED (Optimal Experimental Design)
— Budget constraints can now be enforced with gradient-based optimization.
— Robust formulation for handling sensor drop-out/loss-of-data
* InverseAria
— Support for sensors with arbitrary spatial locations
— Support for adaptive time-stepping
Usability

* InverseSD: Eigen MAC objective no longer supported; similar functionality can be achieved
with the Matching objective with a scalar. Changes improved code robustness and usability.

* TRACE:

— Improved output options and re-factor of input deck

— More frequent and more informative messages to users

— Use of duck-typing to allow users more flexibility in defining their models
* OED:

— Input option xml checker

— Expanded output information (objective function, sensors)

— Training example on team wiki page for Electromagnetics sensor placement
optimization

Bug Fixes

* TRACE: Added saving of initial training data along with printouts for user debugging

1.2. Release 5.24

New or Improved Features
* TRACE (TRACE Rapidly Acquires Contour Estimates) improved post-processing enables
more rapid construction of decision surfaces with uncertain model parameters.

* A new objective function enables model parameter estimation (stiffness, damping) to match
SRS (Shock-Response Spectra) objective function in InverseSD.

* Improved Optimal Experimental Design (OED) code enhances runtime performance of
gradient-based optimization algorithm for multi-observation (e.g. frequency domain)
problems.

* InverseAria now supports hyper-reduction for adjoint solves when coupling with Pressio

* Training examples for using TRACE with Sierra/SM and Aria and video of quick-start
tutorial added to team wiki page

Bug Fixes

* Allow consistent output between ROL and design variable output files for inverse methods

1.3. Release 5.22

New or Improved Features
* TRACE (TRACE Rapidly Acquires Contour Estimates) has been released as a beta
capability for finding decision boundaries in high-dimensional parameter spaces.

* InverseSD supports interface identification through the inverse solution of distributed
stiftness in spot weld elements in SD.

* The OED app now supports multi-sensor, multi-budget optimization of sensor placement.

* InverseAria now supports multiple design variable types, e.g. cases where it is desired to
invert for flux and conductivity simultaneously

* In InverseSD, the MAC objective function for matching mode shapes and frequencies of
SD models to test data has been improved with increased robustness of mode-matching and
several bug fixes.

* InverseAria supports L2 regularization to mitigate effects of non-unique solutions for
thermal inverse problems.

2. INVERSE METHODS IN SIERRA/SD

2.1. Inverse Solution Methods in Sierra/SD

Sierra/SD supports a wide variety of different analyses or solution methods. Input consists of an
Exodus mesh file and a text input file. Solution methods are specified in the text input file in the
solution section. For details on using Sierra/SD, including analysis types and solution methods
not related to inverse problems, the reader is directed to the Sierra/SD User’s

Manual [SDusers].

The Solution section of the input file defines the type of physics to simulate. Analysis types
relevant to inverse problems are shown in Table 2-1.

Table 2-1. — Inverse Solution Types.

Solution Type

Description

eigen-inverse
ModalFrf-inverse
modaltransient-inverse
directfrf-inverse

transient-inverse

Inverse solution to find material properties to produce
given eigen solution

Inverse solution to find load or power spectral density
(PSD) to produce given modal frf

Inverse solution to find load to produce given modal
transient

Inverse solution to find load or material properties to
produce given frequency response

Inverse solution to find load or material properties to
produce given transient solution

Each of the inverse solution methods described in Table 2-1 supports particular variables that can
be inverted for in the solution process. Table 2-2 shows the matrix of supported inverse solution
methods and the corresponding variables that can be extracted for each solution method. More
details on the each inverse solution method and supported variables are given in the next

sections.

Table 2-2. — Matrix of Supported Inverse Solution Types and Corresponding Design Variables.

Data Types | Material ID | Blk-Beta ID | Force ID | Interface ID | Objective Functions
FRF X X X X L2 MECE (beta)
CPSD X L2
Modal X X L2, MPE, MAC
transient X X X L2
2.2. DirectFRF-Inverse Solution Case
Parameter Type Default | Description

Table 2-3. — DirectFRF-Inverse Solution Case Parameters.

The direct frf-inverse solution method is used to solve an inverse problem for a direct
frequency response analysis. As in a forward solution, most of the parameters of an inverse
frequency response method are found in other sections'. The user provides complex
displacements and/or pressures at a set of nodes in the model, and the solution to the inverse
problem is a set of loads, materials, etc. that best correspond with the user’s input.

The forward problem is defined in Eq. (2.2.1)

K+ioC—o’M | i= f(o)

=A(w)

(2.2.1)

where 7 is the Fourier transform of the response u, and f is the Fourier transform of the applied
force.The inverse equation is identical, but must be solved with optimization subject to
regularization because measurements are available only at a subset of the analysis degrees of
freedom.

The basic requirements for a direct frf-inverse simulation are as follows:

Optimization: Control over the optimization problem is specified in the optimization block.
See Sec. 2.7.1 for further details.

Inverse-Problem: The inverse-problem block provides the connection to the measurement
data. It is also where design_variable is specified (e.g., load, material, etc.).

Truth Table: The truth table data_truth_table from the inverse-problem block is a list
of the indices of the global node numbers (a.k.a. target nodes) where displacements or
acoustic pressures are measured. See Sec. 2.7.3 for file format details.

'The forward solution supports a Padé expansion. This is not supported for inverse methods.

Data File: Experimentally determined “target” displacements are read from
real_data_fileand imaginary_data_file specified in the inverse-problem
block. See Sec. 2.7.3 for file format details.

Frequency: The frequencies at which the problem is solved are specified in the frequency
block.

Sierra/SD uses the Rapid Optimization Library (ROL) for solving optimization problems. During
the optimization solution ROL writes an output file, ROL_Messages.txt that contains convergence
information. Section 2.7.8 contains a discussion of the output file that is written by ROL.

2.2.1. Load Identification

solution
directfrf-inverse

end

inverse-problem
design_variable = load
data_truth_table = ttable.txt
real _data_file = dataReal.txt
imaginary_data_file = datalmag.txt

end

optimization

% optimization_package = ROL_1ib
ROLmethod = trustregion
TRstep = truncatedcg
Max_iter_ Krylov = 20

Use_FD_hessvec = false
Use_inexact_hessvec = false
opt_tolerance = le-12
opt_iterations = 2
end
loads
sideset 301
inverse_load_type = spatially_constant
pressure=10
function = 1
end

Input 2.2.1. Direct frequency response load identification example input

Specifying design_variable = load applies inverse methods to determine sideset loads
which best correspond with the measured displacements and/or acoustic pressures provided by
the user. The material and model parameters do not change during the solution. For structures, the

loads are pressures or tractions, and for acoustics, the loads are acoustic accelerations. Note that
for structures, inversion is based on the signed magnitudes of the tractions; the direction of each
traction is fixed.

An example input deck is given in input 2.2.1. In addition to the input blocks discussed in the
beginning of this section, there are several others specific to
design_variable = load:

Loads: See Sec. 2.7.6 for a description of the inverse parameters in the loads block for load
identification problems.

Frequency: For unknown loads, the frequencies at which the problem is solved are
independent. That is, a separate load identification is performed at each frequency.

Pressure or traction load identification through modal frequency response is also supported for
structures (see Sec. 2.4.1). Because modal solutions are significantly cheaper than direct
solutions, one approach might be to begin the inverse optimization with modalfrf-inverse,
then use the output as the initial guess for a follow-up directfrf-inverse case.

Section 2.7.7 contains a discussion of the current limitations with inverse load methods.

2.2.2. Material Identification

Specifying design_variable = material withthe directfrf-inverse method
applies inverse methods to determine material parameters when provided with both loads and
structural displacements and/or acoustic pressures in a given finite element model?. The load
parameters do not change during the solution. As in the previous section, the forward problem is
defined in Eq. (2.2.1), and the inverse equation is identical but must be solved with optimization
subject to regularization because measurements are available only at a subset of the analysis
degrees of freedom. The solution provides the material parameters for elements in the model that
are specified to have unknown materials.

In addition to the input blocks discussed at the beginning of this section, there are several others
specific to design_variable = material:

Block: See Sec. 2.7.4 for a description of the block specifications for material inverse problems.

Material: See Sec. 2.7.5 for a description of the provides material specifications for material
inverse problems.

Frequency: For unknown materials, the same set of material properties apply for every
frequency in the simulation, except in the case of frequency-dependent material properties.

Viscoelastic material identification is also supported using measured homogenized complex bulk
and shear moduli. This capability is limited to structural-only problems where all material blocks
are isotropic viscoelastic.

ZMoments and point forces are not currently supported.
3As the system matrices (and consequently the modes) change at every inverse iteration, design_variable
cannot be set tomaterial formodalfrf-inverse problems.

2.2.3. Multi-Experiment Material Identification

In the same manner as design_variable = material described in the previous section,
design_variable = multi_material may be used to apply inverse methods in the
frequency domain to determine material parameters. Here, multiple inverse problems are
combined. For instance, if two different load and displacement conditions result in two separate
responses for the same set of material properties, this method will use both responses to
determine a single set of material properties.

Most parameters for a multi-experiment inverse frequency method are similar to those for a
single-experiment inverse frequency method. The differences occur in the following sections:

Loads: The loads block must be empty for this solution case; anything the user specifies here
will be overwritten by what they specify in the load block.

Load: Eachload block provides a separate set of loads for each experiment individually.

Inverse-Problem: In addition to the parameters discussed earlier, the inverse-problem section
must include values for nresponses for the number of experiments and 10adID to
specify a list of loads, one for each experiment.

2.24. Circuit Parameter Identification For Piezoelectric Modeling

In piezoelectric modeling with electric circuits, the circuit parameters are real constants, and can
be any combination of resistance, capacitance and inductance values. Specifiying
inverse_material_type = homogeneous in a circuit block input can be used to
identify these constants. This capability is currently only supported for the
directfrf-inverse solution case. User must also specify upper and lower bounds for each
circuit parameter used in a given circuit block. For example, input 2.2.2 inverts for three circuit
parameters defined in Block 1. The keyword inverse_material_type = homogenous
declares that circuit parameters in this block are treated as inverse parameters. The upper and
lower bounds for each parameters are specificed with keywords capacitance_bounds,
resisance_bounds and inductance_bounds. The upper and lower constants are user
specified real values.

If needed, user can also identify circuit parameters concurrently with material model as decribed
in 2.2.2.

BLOCK 1
electrical_circuit
inverse_material_type = homogeneous
capacitance = 1le-9
resistance = 50
inductance = le-6
capacitance_bounds = le-12 le-6
resistance_bounds = 1 100

inductance_bounds = 1le-9 le-3

END
Input 2.2.2. Directfrf circuit parameter identification example input
2.3. Eigen-Inverse Solution Case
Parameter Type Default | Description
nmodes Integer 10 Number of modes to extract.
shift Real 1066 Shift to apply tQ matrix system to
allow solving singular systems.
untilfreq Real Inf Target frequency to reach.
ModalFilter string none Modal filter to define modes to retain.
dalAdioi Select solver for the inverse problem
modalAdjoint- gdswl campl both camp (eigenvector material identification
Solver
only)
repeatKigenval- Real l.e-4 Tolerance for repeated eigenvalues.
ueTolerance

Table 2-4. — Eigen-Inverse Solution Case Parameters.

The eigen—-inverse solution method is used to solve an inverse problem for an eigen
analysis. In this solution method, only material identification is currently supported. Specifying
design_variable = material applies inverse methods in the modal domain to determine
material properties on a block or element when provided with modal frequencies and mode
shapes. The user specifies some of the lowest modes of the structure, and optionaly the mode
shapes of the structure at locations in the model.

The standard parameters for modal analysis also apply here. The analysis requires input both for
measurement data and for control of various optimization parameters. See the following sections
for details:

Optimization: Control over the optimization problem is specified in the optimization block.
See Sec. 2.7.1 for further details.

Inverse-Problem: The inverse-problem block provides the connection to the measurement
data. Of particular importance are the parameters modal_data_file and
modal_weight_table, which are described further in Sec. 2.7.3. Also necessary is the
parameter design_variable = material.

Block: For material ID problems, the optimization strategy for 3D element blocks is specified
using the inverse_material_type keyword within the block section. This is also the
section in which optimization parameters are specified for joint2g elements. See
Sec. 2.7.4 for details.

Material: For material ID problems, additional options to control the identification of 3D
elements are specified in the material section. These include which material parameters
are being inverted for and the bound constraints on those parameters. For details, see
Sec. 2.7.5.

Sierra/SD uses the Rapid Optimization Library (ROL) for solving optimization problems. During
the optimization solution ROL writes an output file, ROL_Messages.txt that contains convergence
information. Section 2.7.8 contains a discussion of the output file that is written by ROL.

2.3.1. Eigenvalue Material Identification

solution
eigen—-inverse
nmodes=12
shift=-1e5
end
inverse-problem
design_variable = material
modal_data_file modal_data.txt
modal_truth_table = modal_truth.txt
end
optimization
optimization_package = ROL_1lib
ROLmethod = trustregion
TRstep = secant

scaleDesignVars = yes
Max_iter_Krylov = 50
Use_FD_hessvec = false
Use_inexact_ _hessvec = true
opt_tolerance = 1le-10
opt_iterations = 30

end

Input 2.3.1. Eigen material identification example input

In the case of eigenvalue optimization, only the modal frequencies are included in the objective
function. An example input is shown in input 2.3.1. The theory for this problem is available in

10

[paperInverseEigen]. The objective function for the eigen value problem is given as:

N Bi (A= A
J(A,u,p)=Y %(T

i=1

2
) +Z(p). (2.3.1)

Where m is the number of modes, f3; is zero or one, A; is the computed eigenvalue, A,,; is the
measured eigenvalue, and Z(p) is the regularization term.

2.3.2. Eigenvector Material Identification

In this case, both the eigenvalues (modal frequencies) and eigenvectors (mode shapes) are
matched in the inverse solution. A detailed description of the theory and implementation details
of this solution case is given in [paperInverseEigen]. To use this capability, it is necessary to
specify the keywords data_file and data_truth_table for the eigenvector data and
eigenvector truth table, respectively, which specify the modal shape amplitude data and truth table
information. The latter allows one to differentiate between a tri-axial and uni-axial

accelerometer.

The objective function extends Eq. (2.3.1) by adding the eigenvector term.

NLB (=i N2 i — i1y
J(A,u,p) = —’<J> +2—— 2|+ Z(p), (2.3.2)
L1503) 2 T

where u; is the computed eigenvector, u,,; is the measured eigenvector, and Q is the observation
matrix obtained from the truth table.

The issues an implementation must handle include repeated modes, crossing modes, the singular
adjoint linear system, and eigenvector scaling.

2.3.2.1. Repeated Modes

When the computed or measured data contain repeated eigenvalues, the associated eigenvectors
are not deterministic and steps are taken to orthogonalize these modes with respect to the
measured data. The measured data must be sufficient enough for this orthogonalization for the
inverse problem to converge.

Modes with repeated roots commonly occur in structures exhibiting geometric symmetry (e.g. a
beam with a symmetric cross section about two axes). A collection of measurement locations that
is not geometrically symmetric may introduce minor numerical error into the orthogonalization
operation, as the geometric symmetry of the rotated repeated modes will not be preserved. When
repeated modes are expected in a structure, specifying geometrically-symmetric measurement
locations can improve the unique rotation of computed mode shapes into the direction of
measured shapes. Furthermore, repeated modes can also occur at iterations in the inverse process
even when no repeated modes are present in the measured data. In the SOLUTION section, the

11

user can set repeatEigenvalueTolerance (default value is 1e —4) as the threshold value
to decide whether two computed eigenvalues are repeated.

When a pair of repeated modes is detected, such that the |A; — Ay || < &, (Where &, is the
repeated root tolerance), we employ a rotation and mass-reorthonormalization strategy to create
consistent, unique pairings from the pair of computed modes to a pair of measured repeated
modes.

Let {u;,u;} represent two mode shapes with repeated roots; {v;,v;} are a pair of measured mode
shapes targeted for the rotation operation. (Note, the indices i, j of target measured shapes do not
necessarily correspond to the indices of the computed repeated modes.) We form linear
combinations of the computed modes as their projected components in the direction of the
measured mode shapes:

Qv ujlQvi
i; Vl-T[Q]Vil ViT[Q]viuJ (2.3.3)
__ul[ov; w0l
YV VTl 2349

where [Q] is the observation matrix. We then follow by mass orthonormalizing the two rotated,
computed eigenvectors. We first scale &; by o; = ﬁlT [M]i;, the mass inner product for i;:

_ I _
u;,— Eiui (2.3.5)
We then form u; as:
iy =it — (] [M)ia;) ; (2.3.6)
1
uj= —fg (2.3.7)

where o/ = ﬁJT M.

We note that the resulting {#;,#;} remain mass-orthonormal,

l_llT[M]l_lj = 0jj. (2.3.8)

2.3.2.2. Rigid Body Modes

Eigen-inverse solution method uses modal test data to invert for material properties in structures.
As such, it does not match any model information to test data for the rigid body modes of the
system. Thus, we recommend using the num_rigid_mode parameter in the parameters
section to specify how many rigid modes are expected to be in the model and test data to avoid
rigid body modes being matched in the optimization process. We also recommend using the truth
table to exclude rigid body modes from being matched to test data.

12

PARAMETERS
num_rigid_modes 6
END

Input 2.3.2. Rigid Body Modes example input

2.3.2.3. Mode Swapping/Crossing

If the computed eigenvalues of a structure are ordered from smallest to largest, the ordering of
mode shapes will typically change as the material parameters are varied. This also causes
non-differentiability in the objective function, which causes difficulties in gradient-based
optimization. Mode tracking refers to maintaining a correspondence of eigenpairs (eigenvalue
and eigenvectors) between an original and an updated system throughout changes in the
eigenproblem. Measured data is often incomplete, having only a few measured data points
(physical accelerometer locations) on a model with millions of degrees of freedom. An incorrect
mode swap results in a discontinuity in the slope of the objective function.

A mode tracking algorithm is used to minimize eigenvector misfit at each optimization step.

2.3.2.4. Singular Solve

The Adjoint Solution is singular due to the fact that the eigenvector u; is in the kernel of the
coefficient matrix. In order for a solution to exist, the right hand side must be orthogonal to u; .
Additionally, if rigid body modes (A = 0) or repeated mode are present, components of the
corresponding eigenvectors must also be removed from the right hand side before the solve. Even
when this is done, however, the resulting system of equations is singular and a Helmholtz
(indefinite) problem, which presents significant computational cost and robustness challenges for
iterative linear solvers.

The modalAdjointSolver = camp (default for eigenvector inversion) option enables a
new solver that uses a modal superposition of the previously computed eigenvectors to solve this
system of equations. When using the camp solver, it is recommended to request more modes than
contained in the measured data, and use the truth table file to remove these modes from the
optimization part of the solution.

2.3.2.5. Computed Eigenvector Scaling

An important consideration in eigenvector optimization is that the mode shapes computed in
Sierra/SD are by default mass normalized. Measured modal shape amplitudes, on the other hand,
could present with very different scalings, since any eigenvector can be scaled by an arbitrary
scale factor and will still be a valid eigenvector. Thus, the eigen-inverse solution method includes
an automatic re-scaling of the computed mode shapes in the optimization so that they have the
same norm as the measured mode shapes. This re-normalization allows them to be properly

13

differenced in the objective function. We note that this internal re-scaling requires no user
intervention.

If the norms of the measured eigenvectors differ substantially from the norms of the eigenvectors
computed in Sierra/SD, then the re-scaling described in the previous paragraph is necessary to
correctly determine the next iteration of the design variables. The scaled computed eigenvector i;
can be written as

;= oGu;, (2.3.9)

where ; = |uy,|/|u;| such that the norm of #&; is identical to the norm of eigenvector u,,;. With
this change, the eigenvector term in Eq. (2.3.2) becomes

(2.3.10)

A corresponding change to the gradient J,, is also required, but this change is not discussed
here.

2.3.2.6. Eigen Objective

Instead of the default matching objective in Eq. (2.3.2), the user can specify a modal projection
error (MPE) objective by setting the eigen_objective parameter to mpe in the inverse-problem
section. The two options are a least squares MPE objective, specified by setting the
mpe_algorithm to 1s (along with setting eigen_objective = mpe), and a singular value
decomposition (SVD) based MPE objective, specified by setting the mpe_alorithm parameter to
svd.

2.3.2.7. Projection Mode Selection

By default, the modes used in the MPE objective are selected according to the indices of their
respective eigenvalues, using the N modes with the lowest eigenvalues. If the user wishes to select
the N modes with the greatest modal assurance criterion (MAC) values, they can set the
projection_mode_selection parameter to mac instead of 1owest.

14

2.4. ModalFRF-Inverse Solution Case

Parameter Type Default | Description

nmodes Integer 10 Number of modes to extract.
untilfreq Real Inf Target frequency to reach.
ModalFilter string none Modal filter to define modes to retain.

Exclude any modes below this
frequency from the modal
computation. Often used to exclude
rigid body modes.

Ifcutoff Real -Inf

Table 2-5. — ModalFRF-Inverse Solution Case Parameters.

The modalfrf-inverse solution method is used to solve an inverse problem for a modal
frequency response analysis. The modal FRF method is similar to the direct FRF method, except
the user must specify the number of modes nmodes. As in a forward solution, most of the
parameters in an inverse modal frequency response analysis are found in other sections, and as in
adirectfrf-inverse problem, the user provides complex displacements and/or acoustic
pressures at a set of nodes in the model.

The forward problem is defined in equation (2.2.1). The inverse equation is identical, but must be
solved with optimization subject to regularization because measurements are available only at a
subset of the analysis degrees of freedom.

The basic requirements for a modalfrf-inverse simulation are as follows:

Optimization: Control over the optimization problem is specified in the optimization block.
See Sec. 2.7.1 for further details.

Inverse-Problem: The inverse-problem block provides the connection to the measurement
data. It is also where design_variable is specified (e.g., load, material, etc.).

Truth Table: The truth table data_truth_table from the inverse-problem block is a list
of the indices of the global node numbers (a.k.a. target nodes) where displacements or
acoustic pressures are measured. See Sec. 2.7.3 for file format details.

Data File: Experimentally determined “target” displacements are read from
real_data_fileand imaginary_data_file specified in the inverse-problem
block. See Sec. 2.7.3 for file format details.

15

Frequency: The frequencies at which the problem is solved are specified in the frequency
block.

Sierra/SD uses the Rapid Optimization Library (ROL) for solving optimization problems. During
the optimization solution ROL writes an output file, ROL_Messages.txt that contains convergence
information. Section 2.7.8 contains a discussion of the output file that is written by ROL.

24.1. Load Identification

solution
modalfrf-inverse
nmodes 100

end
inverse-problem
design_variable = load

data_truth_table = ttable.txt
real data_file = data.txt
imaginary_data_file = data_im.txt
end
optimization
ROLmethod = trustregion
TRstep = truncatedcg
Max_iter_Krylov = 50

Use_FD_hessvec = false
Use_inexact_hessvec = false
opt_tolerance = 1le-10
opt_iterations = 2
end
loads
sideset 6
inverse_load_type = spatially_constant
pressure=1
function = 1

sideset 6
inverse_load_type
ipressure=1
function = 2

end
function 1

type linear

data 1 3

data 2 4

end
function 2

spatially_constant

16

type linear

data 1 5

data 2 6
end

Input 2.4.1. Modal frequency response load identification example input

Specifying design_variable = load applies inverse methods to determine sideset loads
which best correspond with the measured displacements and/or acoustic pressures provided by
the user. The material and model parameters do not change during the solution. For structures, the
loads are pressures or tractions?, and for acoustics, the loads are acoustic accelerations. Note that
for structures, inversion is based on the signed magnitudes of the tractions; the direction of each
traction is fixed.

An example input deck is given in input 2.4.1. In addition to the input blocks discussed in the
beginning of this section, there are several others specific to design_variable = load:

Loads: See Sec. 2.7.6 for a description of the inverse parameters in the loads block for load
identification problems.

Frequency: For unknown loads, the frequencies at which the problem is solved are
independent. That is, a separate load identification is performed at each frequency.

Section 2.7.7 contains a discussion of the current limitations with inverse load methods.

2.4.2. PSD Load Identification

solution
modalfrf-inverse
nmodes 100

end

inverse-problem
design_variable = psd_load
data_truth_table = ttable.txt
data_file = data.txt

end

optimization
ROLmethod = trustregion
TRstep = truncatedcg
Max_iter_Krylov = 50

Use_FD_hessvec = false
Use_inexact_hessvec = false
opt_tolerance = 1e-10
opt_iterations = 2

4Moments and point forces are not currently supported.

17

end
loads
sideset 6
inverse_load_type = spatially_constant
pressure=1
function = 1
sideset 6
inverse_load_type = spatially_constant

ipressure=1
function = 2
end
function 1
type linear
data 1 3
data 2 4
end
function 2
type linear
data 1 5
data 2 6
end

Input 2.4.2. Modal frequency response PSD load identification example input

Specifying design_variable = psd_load applies inverse methods to determine a load
PSD (power spectral density) as an output when provided with the PSD of acoustic pressures or
structural displacements and a finite element model. The input is similar to modal FRF load
identification, with a key exception. The design variables must be defined such that there are
independent real and imaginary parts of the force, traction, or pressure. Thus, there should be
twice the number of design variables as the dimension of load PSD, corresponding to real and
imaginary parts of the load. These design variables must be entered into the input file in the order
of the load index. Furthermore, for each load index, the design variable for the real part should be
immediately followed by the design variable for the imaginary part. It is also important to note
that this example is not demonstrating a random load. That is shown in the next section.

An example input deck is given in input 2.4.2. In addition to the input blocks discussed in the
beginning of this section, there are several others specific to design_variable =
psd_load:

Data File: Experimentally determined “target” response PSDs are read from the
psd_data_file described in Sec. 2.7.3.

Loads: See Sec. 2.7.6 for a description of the inverse parameters in the loads block for load
identification problems. loads block.

18

Frequency: For unknown loads, the frequencies at which the problem is solved are
independent. That is, a separate load identification is performed at each frequency.

2.4.3. Random PSD Load Identification

solution
modalfrf-inverse
nmodes 100

end

inverse-problem
design_variable = psd_load
data_truth_table = ttable.txt
psd_data_token = inputCPSD
data_type = accel

end

optimization
check_grad = no
optimization_package = ROL_1lib
ROLmethod = linesearch
LSstep = Newton-Krylov

LS _curvature_condition = null
Max_iter_ Krylov = 50
Use_FD_hessvec = false
Use_inexact_hessvec = false
opt_tolerance = le-6
opt_iterations = 1
use_SimOpt = no

end

LOADS

nodeset 117
force 1 0 0
inverse_load_type SPATIALLY_ CONSTANT
function approx_zerol
nodeset 117
iforce 1 0 O
inverse_load_type SPATIALLY CONSTANT
function approx_zero4
nodeset 219
force 0 1 O
inverse_load_type SPATIALLY_ CONSTANT
function approx_zero?2
nodeset 219
iforce 0 1 O

19

inverse_load_type SPATIALLY_CONSTANT
function approx_zerob
nodeset 353
force 0 0 1
inverse_load_type SPATIALLY CONSTANT
function approx_zero3
nodeset 353
iforce 0 0 1
inverse_load_type SPATIALLY_ CONSTANT
function approx_zero6
END
FUNCTION approx_zerol
type linear
data 0.0 1le-6
data 1el0 le-6
END
FUNCTION approx_zero2
type linear
data 0.0 1le-6
data 1el0 1le-6
END
FUNCTION approx_zero3
type linear
data 0.0 1le-6
data 1el0 1le-6
END
FUNCTION approx_zero4
type linear
data 0.0 1e-6
data 1el0 1le-6
END
FUNCTION approx_zerob
type linear
data 0.0 1le-6
data 1el0 1le-6
END
FUNCTION approx_zerob
type linear
data 0.0 1le-6
data 1el0 1le-6
END

Input 2.4.3. Modal frequency response PSD random load identification example input

Specifying design_variable = psd_load applies inverse methods to determine a load

20

PSD (power spectral density) as an output when provided with the PSD of acoustic pressures,
structural accelerations (like in this example) or structural displacements and a finite element
model. The input is similar to modal FRF load identification, with two exceptions. First, the
design variables must be defined as a cpsd matrix with real and imaginary parts representing the
force, traction, or pressue. Thus, there should be twice the number of design variables as the
dimension of load CPSD matrix, corresponding to real and imaginary parts of the load. These
design variables must be entered into the input file in the order of the load index. Furthermore, for
each load index, the design variable for the real part should be immediately followed by the
design variable for the imaginary part. Second, a different data file format is required, although
the truth table format is identical. See Sec. 2.7.3 for further details.

An example input deck is given in input 2.4.3. In addition to the input blocks discussed in the
beginning of this section, there are several others specific to design_variable =
psd_load:

Data File: Experimentally determined “target” response PSDs are read from a file with a name
identical to the psd_data_token with "Response.txt” appended to the end described in
Sec. 2.7.3.

Loads: See Sec. 2.7.6 for a description of the inverse parameters in the loads block for load
identification problems. loads block.

Frequency: For unknown loads, the frequencies at which the problem is solved are
independent. That is, a separate load identification is performed at each frequency.

21

2.5. ModalTransient-Inverse Solution Case

Parameter Type Default | Description
nmodes Integer 10 Number of modes to extract.
Shift to apply to matrix system to
shift Real -1.0e6 PPyH y
allow solving singular systems.
untilfreq Real Inf Target frequency to reach.
ModalFilter string none Modal filter to define modes to retain.
Exclude any modes below this
Icutoff Real Inf frequency from the modal
cuto cd i computation. Often used to exclude
rigid body modes.
time_step Real Time step size.
nsteps Integer Number of time steps to take.
start_time Real 0.0 Solution case start time.
nskip Integer 1 Results output frequency.
rho Real 1 Select time integrator.
load Integer Load to apply during solution case.
) alll nonel output/ Controls which result files are written
write_files . all . . .
history during this solution.

Table 2-6. — ModalTransient-Inverse Solution Case Parameters.

solution
modaltransient—-inverse
nsteps = 100
time_step = le-3
nskip = 1
nmodes = 100

end

inverse-problem
design_variable = load
data_truth_table = ttable.txt
data_file = dataReal.txt
tikhonovParameter 1.0e-5

end

22

optimization
% optimization_package = ROL_1ib
ROLmethod = trustregion
TRstep = truncatedcg

Max_iter_Krylov = 20

Use_FD_hessvec = false
Use_inexact_hessvec = false
opt_tolerance = le-12
opt_iterations = 2
end
loads
sideset 301
inverse_load_type = spatially_constant
pressure=10
function = 1
end

Input 2.5.1. Modal transient load identification example input

The modaltransient-inverse solution method is used to solve an inverse problem for a
modal transient analysis. In this solution method, only load identification is supported.
Specifying design_variable = load applies inverse methods to determine sideset loads
with best correspond with measured displacements and/or acoustic pressures provided by the user
in the modal time domain. This capability differs from load identification in a
transient-inverse problem (Sec. 2.6.1.1) only in that modal superposition is used to
reduce computation time. As with forward analysis, the modaltransient solution will converge to
the direct solution as the number of modes increases. See the SierraSD verification manual for an
example of this convergence[SDverification].

The parameters for load identification in a direct t ransient-inverse problem also apply in
the modaltransient—-inverse case. The latter also requires the parameter nmodes, the
number of eigen modes calculated in the forward solve, as well as any additional parameters
needed for the eigen solution case. The eigen modes need only be calculated once, and then can
be re-used for each inverse iteration. Note that the Tikhonov parameter can be used to mollify
instability in the early time history.

An example is shown in input 2.5.1. The following input blocks are needed for
modaltransient—inverse with design_variable = load:

Optimization: Control over the optimization problem is specified in the optimization block.
See Sec. 2.7.1 for further details.

Inverse-Problem: The inverse-problem block provides the connection to the measurement
data. It is also where design_variable = load must be specified.

23

Truth Table: The truth table (data_truth_table from the inverse-problem block is a list
of the indices of the global node numbers (a.k.a. target nodes) where displacements or
acoustic pressures are measured. See Sec. 2.7.3 for file format details.

Data File: Experimentally determined “target” displacements are read from data_file
specified in the inverse-problem block. See Sec. 2.7.3 for file format details.

Loads: See Sec. 2.7.6 for a description of the inverse parameters in the loads block for load
identification problems.

Section 2.7.7 contains a discussion of the current limitations with inverse load methods.

Sierra/SD uses the Rapid Optimization Library (ROL) for solving optimization problems. During
the optimization solution ROL writes an output file, ROL_Messages.txt that contains convergence
information. Section 2.7.8 contains a discussion of the output file that is written by ROL.

2.6. Transient-Inverse Solution Case
Parameter Type Default | Description
time_step Real Time step size.
nsteps Integer Number of time steps to take.
start_time Real 0.0 Solution case start time.
nskip Integer 1 Results output frequency.
rho Real 1 Select time integrator.
load Integer Load to apply during solution case.
write_files 31'1/ nonel output/ Al Cor}trols yvhich rhesult files are written
history during this solution.

Table 2-7. — Transient-Inverse Solution Case Parameters.

The transient—-inverse solution method is used to solve in inverse problem for a time
domain analysis. With a few exceptions, the parameters for the forward t ransient solution
case apply to this solution method as well. The user provides a time series of displacements
and/or pressures at a set of nodes in the model, and the solution to the inverse problem is a set of
loads, materials, etc. that best correspond with the user’s input.

The basic requirements for a t ransient-inverse simulation are as follows:

Optimization: Control over the optimization problem is specified in the optimization block.
See Sec. 2.7.1 for further details.

24

Inverse-Problem: The inverse-problem block provides the connection to the measurement
data. It is also where design_variable is specified (e.g., load, material, etc.).

Truth Table: The data_truth_table from the inverse-problem block is a list of the
indices of the global node numbers (a.k.a. target nodes) where displacements or acoustic
pressures are measured. See Sec. 2.7.3 for file format details.

Data File: Experimentally determined “target” displacements are read from data_file
specified in the inverse-problem block. See Sec. 2.7.3 for file format details.

Sierra/SD uses the Rapid Optimization Library (ROL) for solving optimization problems. During
the optimization solution ROL writes an output file, ROL_Messages.txt that contains convergence
information. Section 2.7.8 contains a discussion of the output file that is written by ROL.

2.6.1. Design Variables
2.6.1.1. Load Identification

Specifying design_variable = load applies inverse methods to determine sideset loads
which best correspond with the measured displacements and/or acoustic pressures provided by
the user. The material and model parameters do not change during the solution. For structures, the
loads are pressures or tractions’, and for acoustics, the loads are acoustic accelerations. Note that
for structures, inversion is based on the signed magnitudes of the tractions; the direction of each
traction is fixed.

solution
transient-inverse
nsteps = 100
time_step = le-3

nskip = 1

end

inverse-problem
design_variable = load

data_truth_table = ttable.txt
data_file = dataReal.txt

end

optimization

% optimization_package = ROL_1lib
ROLmethod = trustregion
TRstep = truncatedcg

Max_iter_Krylov = 20

Use_FD_hessvec = false
Use_inexact _hessvec = false
opt_tolerance = le-12

>Moments and point forces are not currently supported.

25

opt_iterations = 2
end
loads
sideset 301
inverse_load_type = spatially_constant
pressure=10
function =1
end

Input 2.6.1. Transient Load Identification Example

An example input deck is given in input 2.6.1. In addition to the input blocks discussed in the
beginning of this section, there is another that is specific to design_variable = load:

Loads: See Sec. 2.7.6 for a description of the inverse parameters in the loads block for load
identification problems.

Section 2.7.7 contains a discussion of the current limitations with inverse load methods.

2.6.1.2. Material Identification

Specifying design_variable = material withthe transient-inverse method
applies inverse methods to determine material parameters when provided with both loads and
structural displacements and/or acoustic pressures in a given finite element model® The load
parameters do not change during the solution, which provides the material parameters for
elements in the model that are specified to have unknown materials.

In addition to the input blocks discussed in the beginning of this section, there are several others
specific to design_variable = material:

Block: See Sec. 2.7.4 for a description of the block specifications for material inverse problems.

Material: See Sec. 2.7.5 for a description of the provides material specifications for material
inverse problems.

2.6.2. Objective Functions

The objective function used in the transient problem is selected in the INVERSE-PROBLEM
block using the t ransient_objective keyword.

As the system matrices (and consequently the modes) change at every inverse iteration, design_variable
cannot be set to material for modaltransient—-inverse problems.

26

2.6.2.1. Tracking Objective Function

This is the default objective function if the t ransient_objective keyword is not defined.
All design variables (i.e. load,material,shape) will work with the default tracking
objective.

2.6.2.2. SRS Objective Function

Instead of using time history data, a user may specify the shock response spectra (SRS) across a
range of frequencies. This is still contained within the t ransient-objective because the
full time history data is used in evaluating the SRS reponse. The objective function is selected by
applying srs for the t ransient_objective keyword in the INVERSE-PROBLEM block.

solution
transient-inverse
nsteps = 100
time_step = le-3
p_norm = 10

end

inverse-problem
design_variable = material
transient_objective = srs

data_type accel
data_truth_table = ttable.txt
data_file = data.txt
end
frequency
freg min 300.
freqg_max 800.
freq_step 50.
nodeset 1
acceleration
end
optimization
scaleDesignVars = on
xml _file = rolInput.xml
end

Input 2.6.2. Transient SRS Material Identification Example

An portion of an example input deck is given in input 2.6.2. In order to formulate the inverse
problem using SRS data, the maximum is replaced with a p-norm, which must be specified in the
solution block. The implementation of SRS also relies on acceleration data, so the

27

data_type listed in the inverse-problem block must be accel. Finally, although this is
a transient solution case, a frequency block must be specified, listing the range of frequencies
used for evaluating the SRS.

2.7. Inverse Options in Sierra/SD

Inverse problems optimize parameters to reproduce experimental results. Inverse methods include
transient and direct frequency response load identification, direct frequency response material
identification, and material identification from eigenvalues. The methods are based on solving
optimization problems, with the goal to minimize the norm of the difference between measured
and predicted data. More detail is provided in the references found in the theory notes. Inverse
methods for identifying an unknown material (2.3, 2.2.2) or an unknown load (2.2.1, 2.6.1.1)
require solution block input. There may be additional input required, such as the specification of
test data results 2.7.3 and the specification of the parameters in the Optimization 2.7.1 and Inverse
Problem 2.7.2 sections. Input 2.7.1 illustrates a partial input for a “directfrf-materialid” problem.
Highlighted portions of the input are outlined below.

Sierra/SD uses the Rapid Optimization Library (ROL) as an optimization engine. Portions of the
ROL documentation can be found on the Trilinos website.’

solution
directfrf-inverse

end

optimization
optimization package = ROL 1lib
ROLmethod = trustregion
TRstep = secant
opt_tolerance = le-10

end

inverse—-problem
design variable = material
data truth table = ttable.txt

real data file = data.txt
imaginary _data file = data_im.txt
end
block 1

inverse material type=homogeneous
material 1

end

block 2
inverse material type=known

7 m https://trilinos.org/packages/rol

28

material 2
end
material 1
isotropic
density 10
G 1
K1
end
material 2
isotropic
density 1
G 2
K 2
end

Input 2.7.1. Sample “directfrf-inverse’’ input for material identification. Portions of the
input that are specific to inverse methods are emphasized.

2.7.1. Optimization

The optimization section provides options to control the optimization strategy as part of an
inverse method such as material identification. Parameters for the optimization section are listed
in Table 2-8, and an example is shown in input 2.7.3.

Sierra/SD uses the Rapid Optimization Library (ROL) [ROL], which is a Trilinos [TRILINOS]
package for large-scale optimization. ROL is particularly well suited for the solution of optimal
design, optimal control and inverse problems in large-scale engineering applications. The
currently supported methods are trust region and line search, and the corresponding parameters
for these methods are listed in Tables 2-8, 2-9 and 2-10. We note that the abbreviations ¢ and s
stand for trust region and line search, respectively. We use these abbreviations to keep the
parameter names succinct.

The parameters in tables 2-9 and 2-10, are only a subset of the parameters available in ROL. In
place of defining parameters in the optimization section, the user may instead define the ROL
parameters directly using ROL’s XML input format and including the line xm1_file =
<filename> in the optimization section, where <filename> is the name of the ROL XML file.
An example XML file can be provided upon request.

We note that for source inversion problems that involve directfrf-inverse , transient-inverse or
modaltransient-inverse solution cases, we recommend using Krylov-based methods such as line
search with the newton-krylov option, or trust region with truncatedcg option. An example for
that case is given in 2.7.2.

29

optimization
ROLmethod = trustregion
TRstep = truncatedcg
Max_iter_ Krylov = 50

opt_tolerance = 1le-8

opt_iterations = 5

scaleDesignVars = yes | no
END

Input 2.7.2. Optimization Section Example for Source Inversion

In the case of material inversion problems, the best algorithm is problem-dependent, and may
require some experimentation to arrive at the optimal parameters. We note that for material
inverse problems, the parameter scaleDesignVars has been shown to significantly help
convergence. Accordingly, this parameter defaults to yes, but can be set to no to facilitate
convergence.

Sierra/SD currently uses ROL methods for unconstrained and bound-constrained optimization
with line searches and trust regions (ROLmethod, boundConstraints, Table 2-8). To provide the
context for the parameter tables, we review some notation and provide references to optimization
textbooks.

Suppose 2" is a Hilbert space of functions mapping = to R. For example, £ C R” and 2™ = Lz(E)
or E={l,...,n} and 2" = R". We assume that the objective function f : 2~ — R is twice
continuously Fréchet differentiable and that the bound constraints a, b € 2~ are given witha < b
almost everywhere in Z. We focus on methods for solving unconstrained and bound-constrained
optimization problems,

minimize f(x) and minimize f(x) subjectto a<x<b,
X X

respectively. The methods implemented in ROL utilize derivative information and two strategies
for guaranteed (global) convergence from remote starting points, line searches and trust regions.
We use the notation V f(x) to the note the gradient of f at x and V2 f(x) to denote the Hessian of f
at x.

Line-search methods. Let x; be the k-th optimization iterate. For unconstrained problems, line
search methods compute an update to x; in the form of

Xi+-1 = Xk + OSk

where s, is a descent vector, and o > 0 is a scalar. The vector s; can be computed using a variety
of methods, including steepest descent, nonlinear conjugate gradients, quasi-Newton (secant)
methods and Newton-Krylov methods, see [nocedal] and [JEDennis_RBSchnabel_1996].

Table 2-9 lists the parameters corresponding to the choice of the method to compute the descent
vector si (LSstep, Table 2-9). To compute the scalar o, a line search approximately minimizes

30

the one-dimensional function ¢ () f (x; + osy), i.e., it approximately solves the optimization
problem
mini&nize Or () f (x4 osy) -

In general, the approximate minimizer oy must satisfy sufficient decrease and curvature
conditions to guarantee global convergence [nocedal]. Sierra/SD uses the cubic interpolation
line search from ROL, which includes a backtracking procedure that satisfies the Armijo
sufficient decrease condition

O (o) < 9 (0) + ¢ 0y (0) = f O+ ogse) < f () +crou{Vf(xi), 1) 2

where 0 < ¢; < 1, and does not require a curvature condition. An initial guess for the line-search
parameter can be specified if steepest descent or nonlinear conjugate gradient methods are used
for the computation of the descent vector s (initial_LS_Par, Table 2-9). For bound constrained
problems, the line search is a projected search. That is, the line search approximately minimizes
the one-dimensional objective function

Pr(0) = f(Plap) (X + ask)) s

where P, ; denotes the projection onto the upper and lower bounds. Such line-search algorithms
result in projected gradient, projected quasi-Newton and projected Newton algorithms (see
below).

Trust-region methods. For unconstrained problems, given the k-th iterate x; trust-region
methods compute the trial step s; by approximately solving the trust-region subproblem

1
minimize §<Bksvs>£f + (gk,8) 2 subject to Isll2- < A,
N

where By € L(2", Z") is an approximation of V2 f(x;), gx approximates V f(x), and A; > 0 is the
trust-region radius. The approximate minimizer s; must satisfy the fraction of Cauchy decrease
condition

1 : gkl 2
——<BkS,S>g{ - <gk7s>% > KOHng%mln Akv
2 L+ {[Billr(27,27)

for some xp > 0 independent of k. ROL implements several trust-region methods, including
Cauchy point, dogleg, double dogleg, and truncated conjugate gradient methods, see [nocedal]
and [JEDennis_RBSchnabel_1996]. Table 2-10 lists the parameters corresponding to the choice
of the method (TRstep, Table 2-10). Additionally, the user can specify the initial trust-region
radius, Ag (initial_TR_Radius, Table 2-10). For bound constrained problems, ROL employs
projected gradient, projected secant, and projected Newton-type methods. These methods prune
variables based on the binding set (see below) and run standard trust-region subproblem solvers
on the remaining variables. To ensure sufficient decrease, ROL then performs a modified
projected line search.

Bound Constraints. The bound constraint methods in ROL require the active set of an iterate
Xkes

d={8 €& :x(s)=alg)}N{ceZ : x(8)=0b(5)}

31

The active set is the subset of = corresponding to points in which xy, is equal to the upper or lower
bound. The complement of the active set (called the inactive set), % = &/ = E\ %, is the
subset of E corresponding to points in which x; is strictly between a and b. Given 7, and the
gradient g = VJ(x), we define the binding set as

F={5 B x()=a(§), —a(s) <0}N{g € E:x(§) =b(3), —g(§) >0}

The binding set contains the values of & € E such that if x; (&) is equal to either the upper and
lower bound, then (x; — gx) (&) will violate bound. For both projected line-search and trust-region
methods, the step is computed by fixing the variables in the active set and only optimizing over
the inactive variables. That is,

Skl =0 and s| g are free.

Considering active, inactive and binding variables results in poor overall performance. To
circumvent this behavior, ROL employs € variations of this set. Namely, if € > 0, then

gt ={8 B :x(8) <all)+e}n{EcE:x(E) =b(8)—¢}
={S€E:x(8) <a(l)+& —g(8) <O}N{E €E: x(5) =b(§) — €, —gk(§) >0}

The € inactive set is similarly defined as the complement of the € active set. ROL dynamically
controls € so that as an algorithm approaches the optimal solution, € decreases to zero.
[CTKelley_EWSachs_1999, DPBertsekas_1982b, CJLin_JJMore_1999a,
JVBurke_JJMore_GToraldo_1990, PHCalamai_JJMore_ 1987].

Krylov methods. Both line-search and trust-region methods may involve iterative methods of the
Krylov type in the step computation. If such methods are requested, the stopping conditions for
these sub-solvers can be defined through the parameters Absolute_Krylov_tol,
Relative_Krylov_tol and Max_iter_Krylov described in Table 2-8. Scenarios requiring Krylov
methods are triggered, for instance, if TruncatedCG is selected for a trust-region algorithm or if
newtonkrylov is selected for a line-search algorithm.

optimization
ROLmethod = trustregion
TRstep = truncatedcg
Max_iter_Krylov = 50

opt_tolerance = le-8
opt_iterations = 5
END

Input 2.7.3. Optimization Section Example

32

Parameter type | default | Description

ROLmethod select | required | LineSearch, TrustRegion

boundConstraints Yes/No Yes Bound constraints on design variables

scaleDesignVars Yes/No Yes Controls scaling of desigr} Variaples by initial

guess to make them nondimensional

opt_tolerance real le-10 Gradient tolerance

opt_iterations int 20 Maximum iterations; an iteration may in-
- clude one solve of the Newton system

objective_tolerance real le-20 | Objective function tolerance

Absolute_Krylov_tol real le-6 Krylov absolute tolerance

Relative_Krylov_tol real le-3 Krylov relative tolerance

Max_iter_Krylov int 20 Krylov iteration limit

Table 2-8. — Optimization Section Parameters

Parameter type | default | Description

LSste select | secant nonlinearcg, steepest, secant, newtonkrylov,
P newton (require useTransferMatrix=on 2-11)

initial_ LS_Par | real 1.0 only applicable for nonlinearcg and steepest.

Table 2-9. — Optimization Section Parameters for Line Search

Parameter type default Description
. TruncatedCG, CauchyPoint, Dogleg, Dou-
TRstep select | Cauchypoint bleDogleg
initial TR Radius | real 1 initial radius; if -1, ROL computes an initial
- value

Table 2-10. — Optimization Section Parameters for Trust Region

33

2.7.2. Inverse-Problem

The inverse-problem block of the input deck connects externally defined data describing the
test. The format for the files is described in the Inverse Data Files section (2.7.3). This section
also controls parameters of the optimization (such as regularization). Options for the
inverse-problem section are included in Table 2-11.

Inverse Problem Parameters Load Id Material Id
Transient | FRF | FRF | Eigen
General Parameters
design_variable R R R R
data_file R NA | NA NA
data_truth_table R R R NA
data_weight_table NA NA | NA -
real_data_file NA R* R NA
imaginary_data_file NA R* R NA
psd_data_token NA R* R NA
modal_data_file NA NA | NA R
modal_weight_table NA NA | NA R
data_type - - - -
useTransferMatrix NA - - NA
link_blocks NA NA - -
Regularization Parameters
gradientSurfaceRegParameter - - NA NA
tikhonovParameter - - - -
gradientTikhonovRegularizationParameter NA NA - -
MECE_penalty NA NA - NA
Multi-Experiment Parameters
nresponses NA NA | NA NA
loadID NA NA - NA

Table 2-11. — Inverse-Problem parameters. Items marked with “-” are optional. Items marked 'R’ are
required, and items marked NA are not applicable. An asterisk is present for FRF-Load Id because
either the real and imaginary data parameters or the psd data token are required, depending on if we are
solving for a random signal.

2.7.21. Regularization Parameters

gradientSurfaceRegParameter a penalty term, penalizing jumps in load input parameters
between neighboring patches. Increasing the regularization parameter decreases
checker-boarding on multi-patch outputs.

tikhonovParameter a penalty term penalizing large values of the design variables. A larger
term forces smaller design variables.

34

MECE_penalty a penalty term, penalizes the size of the misfit error between the measured and
predicted data. Unlike least squares methods, MECE methods to not strive to exactly
reproduce the measured data. Increasing the penalty term decreases the misfit error.

2.7.2.2. Multi-Experiment Parameters

nresponses the number of experients in a multi-experiment inverse problem. If not specified
by the user, this parameter defaults to 1. This parameter must match the number of data
files listed for ‘real_data_file’ and ‘imaginary_data_file’.

loadID list of load identifiers, each corresponding to a separate experiment in a multi-experiment
inverse problem. The length of this list must match the value specified for ‘nresponses’.

2.7.2.3. Transfer Matrix Option

The transfer matrix is a linear map between the design space and the state space for linear inverse
problems such as source inversion. When the useTransferMatrix is set to true, the transfer
matrix is internally computed and stored, and explicitly used to compute the gradient and the full
hessian matrix. This option may signficantly decrease computational time at the expense of in
core memory for select optimization problems with some or all of the following characteristics: 1.
small number of design variables, 2. linear inverse problems with uncertainty, and 3. PSD source
inversion problems (future release capability). In addition to increased computational
performance, this option will allow the user to solve linear inverse problems using the full newton
method (see Table 2-8).

Currently, the useTransferMatrix is only applicable to solution type inverse-directfrf problems,
and must be flagged with beta when executing Sierra/SD.

2.7.24. Link Blocks Option

The link_blocks keyword enables connection of two inverse material blocks to the same, shared
set of unknown material properties. By default, referencing the same material from multiple
unknown blocks will otherwise cause a fatal error in Sierra/SD. Linking blocks reduces the
number of design variables in the inverse problem and should result in faster convergence than if
the linked blocks arrived at the same set of material properties independently.

Note, the ‘link_blocks’ option is only applicable to material identification problems and is limited
to connecting two blocks with shared, homogeneous material properties. Additionally, only one
‘link_blocks’ command is currently permitted. Usage of ‘link_blocks’ is indicated by including
link_blocks <integer> <integer> in the inverse-problem section, where the two integer
arguments are the linked block ID numbers. For example, with link_blocks 1 2, both block 1
and block 2 will share the same unknown material properties.

35

2.7.3. Inverse Data Files

The interface for measured data involves several data files. The specific files needed depends on
the solution method, as summarized in Table 2-11. This section describes the data files and data
files formats. Input 2.7.4 provides an example of a frequency domain inverse problem.

inverse-problem
design_variable = load | material
data_truth_table = truthTable.txt
real_data_file = dataReal.txt
imaginary_data_file = datalmag.txt
data_type = disp | accel | moduli | wvoltage
end

Input 2.7.4. The inverse problem section for direct frequency response sets the names of the
files that contain user specified data.

In the case of a structural-only problem, the data_type can be set to either disp or accel,
indicating that the incoming data is in the form of displacements or accelerations, respectively. In
addition to displacement and acceleration data, the data_type can also be set to moduli for
viscoelastic material identification problems. For acoustics-only problems, data_type is not
applicable as the incoming data always corresponds to acoustic pressure. For models
incorporating piezoelectric materials, setting data_type to voltage indicates that the
experimental data is in the form of voltages. The parameter data_t ype defaults to disp if not
specified.

Data Truth Table

The data_truth_table file contains the global node numbers (a.k.a. target nodes) where
the experimental data measurements are given. The first line in the file contains the number of
points where measurements are given, and the remaining lines contain the global node numbers
where the experimental data is specified. If data_type is set to moduli, the
data_truth_table file contains the node numbers where the displacements are computed.
IMPORTANT: If superelements are used, the data truth table must not include superelement
internal degrees of freedom.

Figure 2-1 provides a simple example of the truth table format for an acoustics-only problem,
Figure 2-2 provides an example for a structural-only problem, and Figure 2-3 provides an
example for a structural acoustics problem. Note that for acoustics-only, the file consists of the
list of nodes where the acoustic measurements were taken. For voltage based problem, the file
looks identical to an acoustic-only problem, where the listed nodes represent the locations where
voltage measurements were taken. For structural-only problems, each line in the truth table
contains 4 columns that indicate the node numbers where measurements were taken, and then 3
columns of binary (0/1) input that indicate which dofs (i.e. x, y, and z) are active in the

36

optimization. For structural acoustics problems, Fig. 2-3 shows that each line contains 5 columns,
with the first column again indicating the node number, and the remaining four columns contain
either 1 or 0, which allows to turn on/off the x, y, z, and pressure degrees of freedom in the
optimization.

The data truth table identifies the location of measurement data. For example, if the
experimental data is collected at three microphones, which correspond to nodes 10,
120, and 3004, then the data_truth_table file is as follows.

3

10
120
3004

Thus there are a total of 4 lines in the file, even though the first line specifies three
nodes for the measurement data. The global node numbers correspond to the global
ID in the exodus input to Sierra/SD. The order of the nodes in this list corresponds
to the order of the data in the corresponding real or imaginary data files. Other than
that, there is no restriction on the ordering of the node numbers (i.e. they do not
need to be in ascending or descending order).

Figure 2-1. — Sample Data Truth Table Input for Acoustic Problem

4
25 1 1 1
9 1 1 1
13 1 1 1
17 1 1 1

Figure 2-2. — Example Data Truth Table for Structures. There are 4 nodes, with numbers 25, 96, 13,
17. The second through fourth columns of 1, 1, 1 mean that all structural degrees of freedom are active,
the fifth column is acoustic and implied to be zero.

37

0NN B~
[eNelNeNe)
SO = =
o O OO
— - O O

Figure 2-3. — Example data truth table for Structural Acoustics. There are 4 nodes, with numbers 5 to
8. Nodes 5 and 6 are structural where only the y component of displacement is measured. Nodes 7 and
8 are acoustic, where only the pressure is measured.

Real Data File

For inverse problems in the frequency domain, the real_data_file contains the real
component of the measurement data at each frequency, corresponding to the nodes that are
specified in the data_truth_table file. For a multi-experiment inverse problem, several files
must be specified.

An example of the real_data_file for an acoustics-only problem is shown in Figure 2-4.
The first line of the file contains the number of nodes where measurement data is provided,
followed by the number of frequencies of data. Starting on the second line, the real part of the
data at the first node is given for all frequencies. In particularly, starting on the second line the
data corresponds to the first node in the truth table list, not the node with the lowest ID number.
Similarly, subsequent lines contain the real part of the data, at all frequencies, for the remaining
nodes. Note that, since this an acoustics-only example, only one line of data is needed for each
node in the truth table. The format for the data files describing voltages exactly matches the
format of the acoustics-only data file.

An example of the real_data_file for a structural-only problem is shown in Figure 2-5.
Starting on the second line, the real part of the data at the first node is given for all frequencies. In
particularly the first node is the node first in the truth table list, not the node with the lowest ID
number. The x displacements for all nodes in the truth table is listed first, followed by the y
displacements for all nodes, followed by the z displacements for all nodes.

For viscoelastic material identification problems in the frequency domain with data_type set
tomoduli, the real_data_file contains the real part of the shear and bulk modulus. An
example of the real_data_file is shown in Fig. 2-6. The first line of the file is always 2,
followed by the number of frequencies of data. Currently, this feature only supports one
frequency of data, hence the first row should read 2 1. The second and third lines are respectively
the shear modulus and bulk modulus. There is only one column, corresponding to a single
frequency of measured data.

The frequencies of the measured data are specified in the frequency section. The frequencies
given by frequency section must correspond to the frequencies where the experimental data was
measured. These frequencies can be either uniformly or non-uniformly spaced, as specified in the
frequency section.

38

We build on the small example given in Figure 2-1 that has measurements at nodes
10, 120, and 3004, and consider the case where there are 2 frequencies in the data
set. The real_data_file file for an acoustics-only problem could look as fol-
lows

3 2

1.1 2.4
0.7 3.3
2.1 1.4

The actual values in the above table were chosen arbitrarily, but observe that there
is one “header row” followed by 3 data rows. There are 2 columns, corresponding
to the two frequencies of the measured data. The units of the measurements must
correspond to appropriate units in the analysis. One row of data is required for each
DOF in the truth table. Data is required even if the value in the truth table is zero.
If the truth table value for a DOF is zero, the data is not used in the analysis.

Figure 2-4. — Sample Real Data File Input for an acoustics-only problem

39

We build on the small example given in Figure 2-2 that has measurements at nodes
25, 96, 13, and 17, and consider the case where there is only 1 frequency in the
data set. The real_data_file file for a structural-only problem could look as
follows

12 1

1.1 // x-displacement for node 25
0.7 /I x-displacement for node 96
2.1 // x-displacement for node 13
1.1 // x-displacement for node 17
0.7 /I y-displacement for node 25
2.1 // y-displacement for node 96
1.1 // y-displacement for node 13
0.7 /I 'y-displacement for node 17
2.1 /] z-displacement for node 25
1.1 // z-displacement for node 96
0.7 // z-displacement for node 13
2.1 // z-displacement for node 17

The actual values in the above table were chosen arbitrarily, but observe that there is
one “header row” followed by 12 data rows. There is only one column, correspond-
ing to the single frequency of the measured data. The units of the measurements
must correspond to appropriate units in the analysis. For structures these are units
of displacement. Rows 2 — 5 correspond to the x components of the displacements
at the nodes from the truth table, rows 6 — 9 correspond to the y components of
displacement, and rows 10 — 13 correspond to the z components. Note that the x
components of displacements for all nodes are listed first, followed by the y com-
ponents for all nodes, followed by the z components for all nodes. One row of data
is required for each DOF in the truth table. Data is required even if the value in the
truth table is zero. If the truth table value for a DOF is zero, the data is not used in
the analysis.

Figure 2-5. — Sample Real Data File Input for a structural-only problem

40

The real_data_file file for a viscoelastic material identification problem with
data_type = moduli could look as follows

2 1
5.7 // Shear modulus
3.1 // Bulk modulus

The actual values in the above table were chosen arbitrarily, but observe that there
is one “header row” followed by 2 data rows.

Figure 2-6. — Sample Real Data File Input for a data type moduli problem

41

Imaginary Data File

The imaginary_data_file has the exact same format as the real_data_file except
that it contains the imaginary part of the data rather than the real part.

Random PSD Data File

In the context of PSD inversion, instead of specifying the real and imaginary data files, a single
psd_data_file is needed, which contains the complex (Hermitian) PSD matrices for all the
frequencies. The first two numbers in the psd_data_ file must be the number of frequencies
and the number of (measured) response degrees of freedom. The remainder of the file contains
the PSD matrices, one matrix each for each frequency. The format of the PSD matrix should be in
the natural row-oriented format, with each line containing a row of the matrix. The complex
values should be entered in (real part, imaginary part) format, with space between the numbers.
Sierra-SD automatically checks if each of the PSD matrices is Hermitian and positive definite, as
each PSD matrix should be.

Data File

Transient time history data is stored in the data_file. The format is identical to the
real_data_file except for the addition of the time step as the third column in the first row.
Each column of data now corresponds to a time step of analysis. An example is shown in Fig. 2-7.
No interpolation is performed, and the measured data must exactly match the time steps of the
analysis. Asin the real_data_file, the rows of data are grouped as all of the x components
of displacements at the measured nodes, followed by all of the y displacements, followed by the z
displacements.

We note that for time-domain inverse problems, the data in the data_file must be padded with
zeros at the beginning, since the sensor data is typically started at time t = 0. The maximum
time-of-flight from the input loads to the sensors can be estimated easily (an upper bound is fine).
Then, dividing the maximum time-of-flight by the time step gives the number of zeros to be added
to the beginning of each time history. Without these zeros, the forward problem would not be able
to come up with loads that match the sensor data in the early time response, due to the finite wave
propagation speed.

42

0.0 0.0 2.1 23
0.0 0.0 23 35
0.0 0.0 3.6 4.1
0.0 00 1.5 1.8
0.0 0.0 09 14
0.0 00 34 95

Figure 2-7. — Sample Transient Data File Input for a structural-only problem

Modal Data File

The modal_data_file contains measured modal results for inversion with the eigen
solution. The first line of the file is the number of eigenvalues. Each subsequent line contains only
the eigen frequency of the measured mode. It is important that the simulation modes are in the
same order as the test modes.

Modal Weight Table

Not all computed eigenvalues may correspond to a test (or measured) mode. Further, even those
modes identified may be more or less important. The modal_weight_table contains the
weights applied to each computed mode.

The first line contains the number of weights, which must match the number of modes computed
in the analysis, and each subsequent line contains the weight for the corresponding computed
mode. All weights must be non-negative, and computed modes with no corresponding measured
data should have zero weight.

Data Weight Table

In the case of eigenvector inversion (described in Sec. 2.3.2), the data_weight_table
contains weights applied to each computed eigenvector error. This parameter allows for
independent weighting of the eigenvalues and eigenvectors, but is not required; by default, it is
the same as the modal_weight_table.

As above, the first line contains the number of weights, which must match the number of modes
computed in the analysis, and each subsequent line contains the weight for the corresponding
computed mode. All weights must be non-negative, and computed modes with no corresponding
measured data should have zero weight.

43

2.7.4. Block section for Material Identification
inverse_material_type

For material inverse problems, the block section provides an additional option to control the
optimization strategy. In particular, blocks can be specified as known,

homogeneous, or heterogeneous, as shown in Table 2-12, and an example is shown in
input 2.7.5.

The default behavior for the inverse_material_type keyword is known, which implies that the
material parameters given in the corresponding material are fixed, and are not modified in the
optimization process. In the case where all blocks are known, there is no need to solve the
material inverse problem at all.

The remaining two options for the inverse_material_type keyword are:

* homogeneous. In this case, the material parameters are unknown and will be optimized
during the inversion process, but are treated as constant over the entire block. This option is
best used in the case when material properties are unknown in a block, but not expected to
vary much over the block.

* heterogeneous. In this case, the material parameters are also unknown, will be
optimized in the inversion process, but each element in the block will be given its own
material properties. This is typically referred to as spatially varying material properties.

For a block to be used in the inverse problem, the in-
verse_material_type must be included and specified to either
homogeneous or heterogeneous.

In input 2.7.5 Block 1 is heterogeneous, Block 2 is homogeneous, and Block 3 is
known.

Parameter type | Description
inverse_material_type | string | block inverse type

Table 2-12. — Block Section Parameters for Material Inversion

block 1

material 1

inverse_material_ type heterogeneous
END
block 2

material 2

inverse_material_ type homogeneous

44

END
block 3
material 3
inverse_material_type known
END

Input 2.7.5. Basic Block Section Example for Material Inversion

joint2g and blkbeta

Additional material parameters that can be optimized include joint2g elements and block
proportional stiffness damping blkbeta. Since these parameters live in the block section rather
than in the material section, their bound constraints are specified in the block section. These
blocks must also be marked for inversion by setting inverse_material_type ro be
HOMOGENEOQUS. If the inverse_material_type is not set, the joint2G block will be silently
ignored during the inverse routines. An example of input syntax for joint2g and blkbeta
inputs for material optimization are given in Table 2-13 and input 2.7.6.

The joint2g elements involve 6 parameters that can be optimized. The
joint_truth_table specifies which of these parameters will be included in the optimization
solution. For example, in input 2.7.6, only the first (i.e. x-component) of the joint2g
parameters will be optimized. The remaining parameters will stay fixed in the optimization,
including those that are specified as NULL. In the case of blkbeta, the optimal blkbeta for the
specified block will be computed and written to the result file.

Parameter type Description

joint_elastic_bounds | real real | bounds on joint2g spring stiffnesses
joint_damper_bounds | real real | bounds on joint2g dashpot (damper) parameters
blkbeta_bounds real real | bounds on block stiffness proportional damping

Table 2-13. — Block Section Parameters for Material Inversion

block 50
joint2g
kx = elastic 2.474e5
ky = elastic 2.e8
kz = elastic 2.e8
krx = NULL
kry = NULL
krz = NULL
joint_elastic_bounds = 2.0e5 1e9

joint_truth_table = yes no no no no no
inverse_material_type = homogeneous
end

45

block 51
inverse_material_ type = homogeneous
material 1
blkbeta 2.0e-4

end

Input 2.7.6. Block Section Example for joint2g and blkbeta Material Inversion

2.7.5. Material section for Material Identification

For material inverse problems, the material section provides additional options to control the
optimization strategy. Currently, for 3D elements, only isotropic, orthotropic,
isotropic_viscoelastic_complex, and acoustic material types are supported for
material inverse problems.

Table 2-14 shows which material parameters can be optimized in the different solution
procedures. Details of these parameters are discussed in the following sections and are
summarized in Table 2-15. In general, parameters associated with damping can only be optimized
in directfrf solutions, and those associated with stiffness can be optimized in either directfrf of
eigen .

Parameter directfrf-inverse | eigen-inverse
K yes yes
G yes yes
E yes yes
Nu yes yes
K_real yes no
K_imag yes no
G_real yes no
G_real yes no
Cyj yes no
c0 yes no
density yes no
joint2g elastic yes yes
joint2g damper yes no
blkbeta yes no
spotweld yes yes

Table 2-14. — Table of Supported Material Parameters for Inverse Methods
For isotropic, orthotropic, and acoustic materials, the set of unknown material parameters may be

customized by explicitly specifying the parameter num_material_parameters and a list of
strings following material_parameters. These strings may include bulk and/or shear

46

for elastic materials, ort hot ropic for orthotropic elastic materials, sound_ speed for
acoustic materials, and rho for all of the above. Examples of specifying the
num_material_parameters and material_parameters will be shown in the
following sections.

Isotropic Material Inversion

For isotropic elastic materials, the user can invert for density and/or any two of K, G, E, or nu.
Isotropic materials are the default material type for 3D elements and the keyword isotropic is not
required. Bounds on the parameters are specified as shown in Table 2-15 and discussed on

page 50. Example material sections for isotropic inversion are shown in input 2.7.7. Note that
the parameters G_bounds, K_bounds, E_bounds, and Nu_bounds only apply to isotropic
materials. Additionally, note that K and G are the default material inversion parameters. To invert
for E and/or nu, specify the num_material_parameters andmaterial_ parameters,
as seen in input 2.7.7.

material 1
isotropic
G_bounds 0 1le4
K_bounds 0 1e4
G 100.0
K 200.0
density 10.0
end
material 2
isotropic
E_bounds 1e-10 1e40
Nu_bounds —-0.9999 0.49999

E 1.0e6

Nu 0.25

density 10.0

num_material_parameters = 2

material_parameters = youngs poissons
end

Input 2.7.7. Material Section Example for Isotropic Material Inversion

Orthotropic Material Inversion

Unlike isotropic inversion, orthotropic inversion requires special care with respect to inadvertent
material instabilities, i.e., during the inversion iterations, the elasticity tensor may not satisfy
positive definiteness, potentially leading to the failure of even the forward solution. To avoid this,
we parametrize the material tensor using the standard normal moduli E;;, shear moduli G;;, and

47

special dimensionless parameters A;; = E;;/\/E;E;;. This is referred to as Alpha
parametrization. Such parametrization lends to easier imposition of material stability constraint
which is done through a single inequality constraint and several bound constraints. Further details
will be provided in an upcoming SAND report. Notwithstanding the theoretical details, the user is
asked to pay special attention to the definition of A;;, when applying bound constraints on these
parameters. Bound constraints can be specified as as shown in Table 2-15, and an example is
shown in input 2.7.8. Note that the parameters Ei j_bounds, Gij_bounds and Aij_bounds
apply only to orthotropic elastic materials. These parameters constrain the optimizer to work in a
restricted space of possible design variable values, and prevent convergence to physically
unrealistic values of the parameters. An alternative to Alpha parametrization is Cholesky
parametrization, where the modulus matrix is parametrized through Cholesky factorization,
avoiding the need of inequality constraints. This can be utilized by setting the flag
alphaparametrization to no.

Transverse Isotropic Material Inversion is performed essentially through orthotropic inversion,
by setting the flag t ransverselyisotropic to yes, followed by the plane of isotropy
represented by a two-digit number, i.e., 12, 23, or 13, where 1,2,3 represent the three axes of
material symmetry consistent with the coordinate system within the element block. Input 2.7.8
contains an example for transversely isotropic inversion.

material 3 // Full orthotropy
density = 1.0
orthotropic
Cij =4.0 1.0 2.0

.0 3.0

w = DN oy Ol
O O O O

Eii_bounds = 0.01 20.0 0.01 20.0 0.01 20.0

Gij_bounds = 0.01 10.0 0.01 10.0 0.01 10.0

Aij_bounds 0.0 0.707 0.0 0.707 0.0 0.707
end

material 4 //Transeverse isotropy
density = 1.0
orthotropic
alphaparametrization no
inequalityconstraints no
transverselyisotropic yes 23
Cij=5 1 1

16 6

16
5

48

1

1

Eii_bounds

Gij_bounds
end

1 100 1 10 1 100
0.1 50.150.15

Input 2.7.8. Material Section Example for Orthotropic Material Inversion

Viscoelastic Material Inversion

For isotropic viscoelastic materials, the user inverts for the real and imaginary components of the
shear and bulk moduli, Greal, Gimag» Kreal> and Kimag. Because these four components are
frequency-dependent, the initial guesses are specified in functions that define the values of these
parameters as a function of frequency. As shown in input 2.7.9, in this example functions 1 —4
specify the initial guesses for the real and imaginary components of G and K. Note that
Greal_bounds, Kreal_bounds, Gim_bounds, and Kim_bounds only apply for
viscoelastic materials.

The direct frf-inverse method supports viscoelastic material identification using
homogenized moduli data by setting data_type to moduli in the inverse-problem block
(see section 2.7.3). This feature is only available for the inverse_material_type
homogenous option. In addition, all material blocks, including known materials, must be
specified as isotropic_viscoelastic_complex.

material 5
isotropic_viscoelastic_complex
Greal_bounds 0 1le4
Kreal_bounds 0 1le4
Gim_bounds 0 1le2
Kim_bounds 0 le2
Greal = function 1
Gim = function 2
Kreal = function 3
Kim = function 4
density = 10.0
end

Input 2.7.9. Material Section Example for Viscoelastic Material Inversion

Acoustic Material Inversion

For acoustic materials, the user may invert for sound speed ¢y and/or density. Alternatively, the
parameter impedance_match may be specified. This has the effect of optimizing for sound

49

speed co and density py under the condition where impedance Z = pycy is constant. Note that the
parameters impedance_match and cO_bounds apply only to acoustic materials.

Material Bounds

Bounds on the material parameters are specified using a keyword for each parameter. Generally,
this keyword will have the form <parameter>_bound. The lower and upper bounds are then
specified as the first and second numbers, respectively, to follow this keyword. For example, in
input 2.7.7, E 1is restricted to be within 1e-10 and 1e40. A full list of the keywords that can be
specified in the material section, including those used to define bounds, is given in Table 2-15.

Important: The optimizer considers the endpoints of the bounds to be within the set of valid
parameter values. Therefore, the specified bounds must also be physical. As an example, if the
user specifies Nu_bounds = 0.0 0.5, then it is possible that nu will be evaluated at 0.5 and
Sierra/SD will throw a fatal error. As an alternative, the user may specify

Nu_bounds = 0.0 0.49999 and avoid early termination of the optimization due to this
error. Similarly, £, G, and K must be strictly positive. Instead of a lower bound of 0, the user
should set a lower bound of 1e-10 or some similarly small number.

Note that boundConstraints = yes is required for all material-ID type problems and will
be activated automatically for design_variable = material,
design_variable = multi_material,design_variable = damage, etc.,

regardless of the user-defined value for boundConstraints.

Parameter type Description

G_bounds real real lower and upper bounds on shear modulus

K_bounds real real lower and upper bounds on bulk modulus

E_bounds real real lower and upper bounds on Young’s modulus
Nu_bounds real real lower and upper bounds on Poisson’s ratio
Greal_bounds real real lower and upper bounds on real part of shear modulus
Kreal_bounds real real lower and upper bounds on real part of bulk modulus
Gimag_bounds real real lower and upper bounds on imag part of shear modulus
Kimag_bounds real real lower and upper bounds on imag part of bulk modulus
Eij_bounds 6 reals lower and upper bounds on the three normal moduli
Gij_bounds 6 reals lower and upper bounds on the three shear moduli
Aij_bounds 6 reals lower and upper bounds on the three o parameters
density_bounds real real lower and upper bounds on density

c0_bounds real real lower and upper bounds on sound speed
impedance_match real value of poco to match for acoustic materials
num_material_parameters int (optional) number of material parameters
material_parameters list of strings | (optional) bulk, shear, rho, orthotropic, and sound_spe

Table 2-15. — Material Section Parameters for Material Inversion

50

Material Initial Guess

Initial guesses for the material parameters are also given in the material block. In general, if the
block section does not define the inverse_material_type as known, then the initial guess
will be taken from whatever parameter values are given in the material block. As a concrete
example, in the case of isotropic elastic materials the initial guess is taken as the values for G and
K (or alternatively, E and nu) that are included in the material block. In the example shown in
input 2.7.7, the shear and bulk moduli are given initial guesses of 100 and 200, respectively.

Damage ldentification

Damage identification is a design variable implemented for direct frf-inverse problems as
a special case of elastic material identification. In damage identification, a damage phase field
variable is used to interpolate between damaged (weak) and full-strength material, ideally
converging to near-binary values to indicate presence of material damage. Damage ID is activated
by design variable = damage in the inverse-problem block.

Damage identification employs techniques originated for topology optimization problems but
may used for a variety of applications, including identification of weakened material regions,
determination of contact area in a thin layer of elements at an interface, or two-phase material
design. The elastic damage model uses a Solid Isotropic Material with Penalization (SIMP)
model [bendsoel19890ptimal] that interpolates the isotropic elastic and mass density properties in
the unknown material between two phases using the scalar phase field variable 8 € [0, 1],
expressed as

G(B) = Go+(G.—G)B? (2.7.1)
K(B) =Ko+ (K, —K;)B” (2.7.2)
p(B) = po+ (pu—p1)BY, (2.7.3)

where {G,,K,,p,} and {G}, K}, p;} are the upper and lower bounds for the bulk modulus, shear
modulus, and density, respectively. Definition of different powers p > g > 1 for the elastic and
mass density components renders elastic properties relatively weaker, for a given mass density,
thus disincentivizing intermediate density values. Powers p and ¢ are specified with
penalizationElasticity and penalizationMass, respectively.

Bounds of the material interpolation are specified by setting limits for shear modulus G_bounds,
bulk modulus K_bounds, and mass density density_bounds in the material block.
Meanwhile, the initial damage phase field value is controlled using the G, with respect to
G_bounds, as

(G—-Gy)

) e V0 2.7.4
ﬁ (Gu - Gl) ()

Initial density and K values must still be given, though are not used to determine the initial
phase field value. The solution for f3 is not available for output, but rather the material parameters

51

are output as evaluated within the penalized elastic and mass density models using the phase field
solution.

Damage identification is enabled for both homogeneous and hetereogeneous unknown material
blocks. In the homogeneous unknown material block case, only the penalization powers for the
mass density and elastic properties must be specified. In heterogeneous unknown material blocks,
additional filtering and projection operations are employed to control solution length scale and to
encourage binary quality. Kernel filtering prevents development of mesh dependent or
checkerboard (i.e. alternating 0-1 phase field density) patterns. In this strategy, a weighted kernel
is convolved with the density field, producing a locally-averaged filtered field. The filter kernel
radius is defined in the inverse-problem block as filter_radius (default =0.1), which
should be set no smaller than the minimum distance between element centroids in the unknown
material block.

A Heaviside-approximating function is then used to map filtered values closer to 0 or 1 bounds
and recover a more-binary valued field. The smooth Heavisde function is defined

= o tanh({n)+tanh($(B —1))
BB):= tanh({n) +tanh({(1—-7))"

Here, the slope of the smooth Heaviside > 1 is specified by smooth_heaviside_slope,
while its inflection threshold) € (0, 1) is specified by smooth_heaviside_threshold.
Typically, modest values for smooth_heaviside_slope (5-10) can produce high contrast
fields without creating an excessively severe projection, which can impede optimization
convergence.

(2.7.5)

Below, we summarize the necessary parameters in the material and inverse-problem sections
for damage identification problems.

Parameter type | Description

G real initial value of shear modulus (determines initial phase field value)
K real initial value of bulk modulus

density real initial value for mass density

G_bounds real real | lower and upper bounds on shear modulus interpolation

K_bounds real real | lower and upper bounds on bulk modulus interpolation
density_bounds | real real | lower and upper bounds on mass density interpolation

Table 2-16. — Parameters in material section for Damage Identification

52

Parameter type | Description

design_variable string | damage

penalizationElasticity integer | elasticity penalty exponent (default = 3)
penalizationMass integer | elasticity penalty exponent (default = 1)
filter_radius real | filter kernel radius (default = 0.1)
smooth_heaviside_slope real | smooth heaviside projection slope (default = 1)
smooth_heaviside_threshold real smooth heaviside inflection threshold (default = 0.5)

Table 2-17. — Parameters in inverse-problem section for Damage Identification

Spot Weld Stiffness Inversion

Material parameter identification techniques can be extended to calibrate contact stiffness by
employing the spot weld construct in Sierra/SD. Spot welds are virtually-constructed element
blocks at a contact interface, in which node-face interactions are assigned stiffnesses in normal
and tangential directions. Spot weld elements offer multiple benefits for representing contact:
they are minimally instrusive from the model construction perspective, they can provide
spatially-varying, tunable interface stiffness, and they are more scalable than tied data constraints,
as they are stored on the subdomain level. In SD inverse problems, these normal and tangential
stiffness parameters can be updated to improve the model’s match to supplied target or
experimental data.

Spot weld stiffnesses can be enabled as design variables by specification of several keywords in
the spot weld block definition. In the material identification solution context, the normal and
tangential stiffness parameters are treated as independent design variables. Syntax for spot weld
stiffness inversion involves including a few keywords in the conventional spot weld block
definition:

* Set inverse_material_type as either heterogeneous , homogeneous , or known .
Heterogeneous spot welds treat stiffnesses of each spot weld element as independent
design variables, whereas homogeneous spot welds have uniform stiffness parameters
assigned to all elements. Known treats the spot weld stiffnesses as known and deactivates
the design variables.

* Set initial stiffness guesses with normal displacement scale factor and tangential
displacement scale factor keywords.

* Define bounds on the normal and tangential stiffness values using keywords normal
displacement scale bounds and tangential displacement scale bounds. Lower bound
values must be positive and default to zero if not supplied.

Refer to Input 2.7.10 for an example definition of spot weld design variables. Currently, spot weld
inversion is tested for directfrf-inverse and eigen-inverse solution cases. For additional spot weld
syntax suggestions, refer to the Sierra/SD User’s Manual [SDusers]. Note, as with conventional
spot welds, it is recommended to define a linear function with positive slope for the normal

53

displacement function and tangential displacement function keywords and allow the optimizer
to adjust the scale factors further.

Include keyword spot_weld in the OUTPUTS section to export spot weld stiffness solutions,
which are written to the spot_weld_norm_stiffness and spot_weld_tang_stiffness variables in
the output exodus file. Additionally, for homogeneous design variables, values are reported to
the DesignVariablelterations.txt file at each iteration.

54

INVERSE-PROBLEM
modal_weight_table = val_weights.txt // data for eigen-inverse
modal_data_file = val_data.txt
data_truth_table = vec_ttable.txt
data_file = vec_data.txt
eigen_objective = matching

design_variable = {material | damage}
penalizationElasticity = 4 // penalty parameter for damage
END

BEGIN SPOT WELD

sideset = side_1

second surface = side_2

search tolerance = 0.01

normal displacement function = y_equals_x

normal displacement scale factor = 5el // initial guess
tangential displacement function = y_equals_x

tangential displacement scale factor = 5el //initial guess
inverse_material_type = {known | homogeneous | heterogeneous
normal displacement scale bounds = 1e0 1le3

tangential displacement scale bounds = 1e0 1e3

END

FUNCTION y_equals_x

type analytic

evaluate expression “x”
END

Input 2.7.10. Example definition of spot weld for stiffness inversion

55

solution

Spot Weld Damage Identification

In contact calibration or debond detection problems, identification of regions with full contact or
no contact is often desired. These scenarios can be addressed by using a “damage"
parameterization of the spot weld stiffness: here, the normal and tangential stiffnesses are
connected to a phase-field variable which is encouraged to converge to binary (i.e. 0 or 1) values
that represent soft or stiff contact. We employ a Rational Approximation of Material Properties
(RAMP) model to evaluate the normal and tangential stiffnesses, using the phase-field variable to
interpolate between the lower and upper stiffness bounds. For phase-field parameter € [0, 1], the
stiffness property k = k() is evaluated

k(B) = ki + (ky — k) (2.7.6)

B
I+p(1-p)
for bound values {k;,k,} and penalty parameter p > 0 (we suggest p > 3).

This parameterization of the spot weld stiffness encourages convergence to binary stiffness fields
for multiple reasons. As the tangential and normal stiffnesses are connected together, an update to
one stiffness direction informs the value of the other stiffness direction, preventing disagreement
between the normal and tangential stiffness fields. Furthermore, the RAMP model reduces the
relative stiffness of intermediate phase-field values, allowing only phase-field values near 1 to
attain full stiffness. Finally, the dimensionality of the design variable is reduced under the
condensed phase-field parameter, which tends to improve convergence behavior.

Damage parameterization of the spot weld stiffness is specified with similar syntax to the material
damage parameter (see Table 2-17):

» Set design_variable = damage to select the damage parameterization for spot weld blocks.

* Define the penalty parameter p in Eq. 2.7.6 with penalizationElasticity=<double> . The
default value is 3.

* Set the initial guess for a spot weld damage block by defining the initial normal
displacement scale factor ; the initial phase-field value is inferred as the inverse of the
RAMP model for the initial normal stiffness. The tangential stiffness value is then
evaluated using the RAMP model and the initial phase-field value.

Example syntax is also shown in Input 2.7.10.

2.7.6. Loads section for Load Identification

For inverse load problems, the loads section provides additional options to control the
optimization strategy. Inverse loads are currently supported for acoustics and structures. Inverse
acoustic loads are only supported for sidesets. Inverse structural loads are supported on both
sidesets and nodesets. On sidesets, both pressures and traction loads may be optimized in the
inverse problem. For nodesets, both forces and moments can be optimized, the latter only being
applicable in the case when the nodeset in question has rotational degrees of freedom (e.g. a

56

concentrated mass). Table 2-18 summarizes the load options which apply to inverse methods. The
inverse_load_type options are detailed in Table 2-19.

The default behavior for the inverse_load_type keyword is known, which implies that the
loads on that sideset or nodeset are fixed, and are not modified in the optimization process. In the
case where all blocks were known, there would be no need to solve the inverse loads problem.

In input 2.7.11 sideset 1 is known, sideset 2 is a real-valued, unknown acoustic load that is
spatially_constant, and sideset 3 is an imaginary-valued, unknown acoustic load that is
spatially_constant. We note that in the case of a transient problem, the loads block in an
inverse loads problem would look the same except that there would be no imaginary loads in that
case.

For acoustic problems currently inverse acoustic loads are limited to the acoustic_accel
option. The acoustic_vel keyword is not supported for acoustic loads.

Input 2.7.12 shows a similar example for a structural pressure, traction and force load case. This
example contains a known pressure load, and unknown pressure, traction, and force loads. Note
that in the case of traction and force loads, the direction of the traction load (in this case 111) is

fixed, and only the function amplitudes are calculated in the inverse problem.

In input 2.7.12, functions 1 — 4 contain the initial guesses for the load amplitudes for sidesets

1 — 3 and forces/moments on nodeset 4. These load amplitudes are then refined during the
optimization process. The resulting loads are written to a text file called force_function_data.txt,
which could then be included in a subsequent forward or inverse loads case in a restart analysis.

Parameter type | Description
inverse_load_type | string | load inverse type

Table 2-18. — Loads Section Parameters for Force Inversion

Parameter Description

spatially_constant | Load amplitude is unknown and will be optimized during the inver-
sion process, but is treated as constant over the entire sideset or node-
set.

spatially_variable | Load amplitude is unknown and will be optimized during the inver-
sion process. Each dof on the sideset or nodeset is optimized.
known default. No optimization performed.

Table 2-19. — Inverse Load Type Options

loads
sideset 1
acoustic_accel = 1
function = 1
sideset 2

57

acoustic_accel = 1

function = 2

inverse_load_type

sideset 3

iacoustic_accel =1

function = 3

inverse_load_type = spatially_constant
end

spatially_constant

Input 2.7.11. Loads Section Example for Acoustic Force Inversion

loads

sideset 1
pressure = 1
function =1

sideset 2
pressure = 1
function = 2
inverse_load_type = spatially_ constant

sideset 3

traction = 1 1 1

function = 3

inverse_load_type = spatially_constant
nodeset 4

force = 0 1 1

function = 4
inverse_load_type = spatially_constant
nodeset 4

moment = 0 1 1

function = 5

inverse_load_type = spatially_constant

end
Input 2.7.12. Loads Section Example for Structural Force Inversion
2.7.7. Limitations for Inverse Load Problems

There are a number of limitations which apply to transient load identification. These include the
following.

1. Structural, acoustic and structural-acoustic domains may be addressed.

2. Only the simple Newmark integrator should be used, i.e. do not use generalized alpha
integration and do not use the rho keyword.

58

3. Pressure is always applied along the surface normal, and tractions are applied along the
direction specified in the loads block. Inverse methods do not support follower pressures.

4. Load identification applies to acoustic_accel loadings on acoustic sidesets,
pressures/tractions on structural sidesets, and forces and moments on structural nodesets.

5. In force identification problems, a pressure, traction or force may be applied on a shell. The
measured displacement fields in the truth table for shells can be applied to nodes with
rotational DOFs; however, only displacement DOFs can be specified in the data files.
Specifying rotational DOFs as measured data at nodes is not supported.

2.7.8. ROL Output for Inverse Problems

Sierra/SD uses the Rapid Optimization Library (ROL), which is part of Trilinos [TRILINOS]
for solving optimization problems. During the optimization process, ROL writes out a text file
called ROL_Messages.txt that contains information about the convergence of the optimization

solution. It is important to examine this file to assure that the solution is adequately converged.

An example of a ROL_Messages.txt is given in Figure 2-8. The first 2 lines show the optimization
method that was used by ROL, and the following lines contain convergence information. Each
line corresponds to a single optimization iteration. The first column shows the iteration number
under the iter heading. The second column shows the value of objective function at that iteration,
under the value heading. The third column shows the absolute norm of the gradient (i.e. the
derivative of the objective function with respect to the optimization variables). In Figure 2-8 we
only show the first three columns of output as these will typically be of most interest to the user,
but the remaining columns contain information about step size, number of function evaluations,
etc... (Denis, Drew, any input here would be great).

For a typical Sierra/SD user, the first three columns in the ROL_Messages.txt file will typically
be of the most important to pay attention to. As the goal is to minimize the objective function, a
substantial decrease in the second column should be observed. Also, the desired minimum of the
optimization corresponds to a zero gradient, and thus the third column should be observed to be
as close to zero as possible.

Newton-Krylov with Cubic Interpolation Linesearch satisfying
Null Curvature Condition Krylov Type Conjugate Gradients

iter value gnorm

0 5.171112e-03 7.337197e-03
1 1.160506e-10 1.245979¢e-06
2 1.453148e-17 4.667996e-10

Figure 2-8. — Example of ROL_Messages.txt file for Inverse Problem Solution

59

2.8. Example Inverse Problems

Inverse problems are class of problems where some portion of the solution to an analysis is
known, but the inputs to the problem are not. Inverse methods solve an optimization problem
where the inputs are optimized to match the solution. The current types of input problems
supported are Load ID (transient or FRF) and Material ID (Eigen and FRF).

2.8.1. Experimental Data

For inverse problems, experimental data is typically gathered in a lab. In acoustics, microphones
are used to measure acoustic pressure For the transient case, these are measured over a period of
time. For the FRF case, these are measured over a series of frequencies. Introducing additional
measurements at new data points generally improves the fidelity of the computed solution. On the
other hand, the computational difficulty of solving the inverse problem increases too. For this
demonstration, synthetic data is generated by solving a forward acoustic problem.

2.8.2. Inverse Problems - Load-ID
2.8.2.1. Experimental Model
The experimental model is shown in Figure 2-9. The Football Model is an ellipsoidal acoustic

mesh, with a cylindrical hole in the middle. 70 sidesets are placed around the exterior of the
football, allowing for different loading on each sideset.

ol

Figure 2-9. — Inverse Football Problem Geometry. On the left, the sideset definitions on the surface.
On the right, the interior of the problem.

2.8.2.2. Forward Problem

To generate the experimental data, the model is solved with the solution method direct-frf.
A set of human generated loads is used to generate “‘experimental” pressures at a select set of
nodes. Any set of loads can be used. The Matlab function
inputDataProcDynFregAcoustic_Exo.mis used to generate the experimental data files:

60

ttable.txt,dataReal.txt,and dataImag.txt. This Matlab function requires the
results from the forward run, and a nodeset containing the nodes of interest. In practice, this data
is generated experimentally, with the measured acoustic pressures being inserted in dataReal.txt
and datalmag.txt.

solution
directfrf
end

loads

sideset 4

acoustic_accel = 1.0

scale = 2

function = 10001

inverse_load_type = spatially_constant \\ ignored
end

Inverse keywords are ignored when running a forward problem.

2.8.2.3. Inverse Problem with known loads

Next, the experimental model is solved with solution method directfrf-inverse. and
design_variable = load. For the first run of the inverse problem, the synthetic loads
were left in place, as the “initial guess". The inverse problem converges on the first iteration, as
the initial guess is the exact solution to the inverse problem. This is an easy way to make sure the
input file are correct. The relative tolerance is shown in the first column of ROL_Messages.txt,
and the absolute tolerance is shown in the second column of ROL_Messages.txt. If the exact
loading is used as the initial guess, the relative error norm should be on the order of machine
precision.

solution
directfrf-inverse
end

optimization
check_grad = no
optimization_package = ROL_1lib
LSstep = Newton-krylov // recommended
LS _curvature_condition = null
max_iter_Krylov = 50 // tolerance on gradient
opt_tolerance = 1le-8 // of objective function
// with respect to parameters
objective_tolerance = le-4 // tolerance on
// objective function value
opt_iterations = 50 // before stopping
end

inverse-problem

61

design_variable = load

data_truth_table = ttable.txt

real_data_file = dataReal.txt

imaginary_data_file = datalmag.txt
end

2.8.2.4. Inverse Problem with unknown loads

Next, the synthetic loads are removed, and the initial guess for the loading is set to be O at all time
steps. The inverse problem converged in four iterations, with an objective tolerance of 10~*. The
objective norm is a relative measure, and any objective norm of 10~® or smaller is considered
more than sufficient. Alternatively opt_tolerance can be used to set the absolute tolerance.
Recommended values for opt_tolerance are problem dependent.

2.8.2.5. Verification

Finally, the loading output from the inverse run, force_function_data.txt, is used to run
the forward problem again. This file is designed so that it can replace the function file with no
changes. The problem is verified by checking the pressures at the selected nodes against the
initial run. Though the loading may not be exactly the same between the initial forward run and
the verification forward run, the inverse problem has been solved successfully, as the objective
function has been solved to the selected tolerance. To generate loading closer to the initial
loading, more nodal data can be added or tolerances can be tightened.

2.8.3. Inverse Problems - Material-ID
2.8.3.1. Experimental Model

The experimental model is a solid assembly of two steel blocks joined by a region of viscoelastic
foam material. Figure 2-10 shows the geometry of the test model.

As shown in Figure 2-10, the model assembly consists of two equally-sized steel blocks, depicted
in yellow and green, joined by a region of viscoelastic foam material, shown in red. The model
was discretized with a finite element mesh of Hex-8 elements. A periodic point load with a
frequency of 500 Hz was applied to the yellow block, also as shown in the figure. It was desired
to calculate the frequency-dependent viscoelastic material properties of the foam block, including
complex values for the bulk (K) and shear (G) moduli.

62

Figure 2-10. — Foam block model with finite element mesh and force location

2.8.3.2. Inverse Problem input format

The relevant sections of the input used for this example are shown below, followed by some notes
about each section.

solution
directfrf-inverse

end

inverse-problem
design_variable = material
data_truth_table = ttable.txt
real data_file = data.txt
imaginary_data_file = data_im.txt

end

optimization
optimization_package = ROL_1lib
ROLmethod = trustregion

TRstep = secant
opt_tolerance = 1e-13
opt_iterations = 100

end

block 1
inverse_material_ type = homogeneous
material 4
hex8f

end

63

material 4
isotropic_viscoelastic_complex
Greal_bounds -1000 100000
Kreal bounds -1000 100000
Gim_bounds —-1000000 1000000
Kim_bounds —-1000000 1000000

Greal =

Gim

Kreal =

Kim

function
= function
function
= function

g bW N

density=0.010804

end

* solution section: defines the type of solution (inverse DirectFRF).

* inverse-problem section: specifies the design variable (material) and connects externally
defined data describing the test.

— The data truth table file contains the global node numbers where the experimental

data measurements are given. For example, the input below gives the number of nodal
locations (1) in the first line, followed by the single node id (212) showing all
structural dof active (1 1 1), and an inactive acoustic dof (assumed 5th column = 0).

1
212 111

— The real_data_file and imaginary_data_file contain the real and

imaginary parts of the measurement data at each frequency. For example, the input
below (from a real data file) gives the number of nodes (3) and frequencies (2),
followed by the data at each node. Each frequency requires a separate column of data.

3 2

—-4.385640897908e-02
2.898761003889e-02
-1.167004279970e-01

—-3.985611576838e-02
3.478175302036e-03
-8.319040683879e-02

 optimization section: provides options to control the optimization strategy. See the users
manual for more information on available optimization options.

* block section: provides an information on the material of the block. Options include,

known - The material parameters of the block will not be varied in the inverse solution.

homogeneous - Material properties are uniform within the block, and are varied to

arrive at the best fit for the data.

64

heterogeneous - Material properties vary element by element within the block, and are
varied to arrive at the best fit.

* material section: provides additional options to control the optimization strategy.

2.8.3.3. Running the Inverse Problem

Next, the experimental model is solved as indicated above. A good choice for the first run of the
inverse problem is to use the actual material data used as the “initial guess". This causes our
problem to converge much faster than with a general guess, and is a good verification step for
problems where the material data is known a priori. Next, initial guesses for the material data is
set to be something other than the actual value to represent a typical initial guess. Convergence
data can be found in the file ROL_Messages. txt. The objective norm is a relative measure,
and any objective norm of 10~ or smaller is sufficient. Alternatively opt_tolerance can be used
to set the absolute tolerance.

2.8.3.4. Verification

For the problem presented here, the following material data is obtained from running the inverse
problem (taken from the name_0.rs1t file):

Block 1 Viscoelastic Material Properties
Real Part of K: 40000.002012
Imaginary Part of K: -0.005544
Real Part of G: 15999.999313
Imaginary Part of G: 5000.000812

This gives us values that we can then use as part of an input for a forward problem, and see if we
obtain the same values given in the input data from the truth table and data files. Though the
displacements may not be exactly the same between the initial forward run used to generate the
inverse data files and the verification forward run, the inverse problem has been solved
successfully, as the objective function has been solved to the selected tolerance. To generate more
exact results, more nodal data can be added or tolerances can be tightened.

2.8.3.5. Design Variables History Output

A file called DesginVariableIterations.txt is generated by each material
identification problem. The file contains changes in the values of each design variable throughout
ROL iterations. The file has several purposes, in addition to giving user an opurtunity to monitor
the progress of inversion algorithms, user can also restart inversion from any given ROL

65

iterations. An example of the output file for viscoeleastic material model inversion is given below.

ROL iteration: O

Block 1 Viscoelastic Material Properties
Real Part of K: 30000.000000
Imaginary Part of K: 0.000000
Real Part of G: 13000.000000
Imaginary Part of G: 0.000000

ROL iteration: 1

Block 1 Viscoelastic Material Properties
Real Part of K: 29999.999988
Imaginary Part of K: 0.000020
Real Part of G: 12999.999932
Imaginary Part of G: 0.000119

ROL iteration: 81

Block 1 Viscoelastic Material Properties
Real Part of K: 40000.002797
Imaginary Part of K: 0.000000
Real Part of G: 15999.999549
Imaginary Part of G: 4999.999960

66

3. INVERSE METHODS WITH INVERSEARIA

3.1. Introduction

Inverse Aria enables solving inverse problems with SIERRA/Aria using adjoint-based gradients
through an interface to the Rapid Optimization Library (ROL). The major advantage of
calculating gradients with adjoints comes in the form of computational savings as the design
space grows in size. Only one forward solve and one adjoint solve are required to compute the
gradient of the reduced objective function with respect to the design variable vector regardless of
the number of design variables. Contrast this with finite difference gradients where N+1 forward
solves are required for N design variables.

3.2. Outline

* Overview of inverse heat transfer capabilities
* How to build and run
* Inverse problems with example inputs

— Thermal conductivity

— Boundary heat flux

— Contact resistance

— Arrhenius source term (with FD gradients)

3.2.1. Beta Capabilities and Limitations

Inverse Aria is a still in early development and should be treated as a beta feature. There are three
over-arching problem types that Inverse Aria targets with each in various states of development.
Currently, only problems with the energy equation are supported by the adjoint solver. The three
classes of target problems are material property, boundary condition, and heat source inversion.
For the first two years of development (FY20 and FY21), Inverse Aria has been limited to solving
linear conduction problems. Typically, thermal engineering problems of interest contain
non-linear effects such as temperature dependent material properties, chemical decomposition,
and thermal radiation among others. In FY22, development shifted from adding new inverse
design variables to focusing on supporting non-linear heat conduction physics.

67

Thermal conductivity was the first target material property to be developed. Currently, thermal
conductivity inversion is possible in Inverse Aria for basic (non-porous) materials with a limited
number of boundary conditions. The user can invert for conductivity on a block by block or
element by element basis (see Sec. 3.4).

Heat flux to a surface was the first target boundary condition inversion problem. Both steady and
transient heat flux inversion are available in Inverse Aria as described in Sections 3.5 and 3.6.
Another important boundary condition in thermal problems occurs at the interface between two
materials. Typically, this represented by a Robin boundary conditions characterized by a thermal
contact resistance or its inverse, thermal gap conductance (Sec. 3.7).

Specific combinations of parameters can be inverted for at once. Heat flux and contact resistance
on different boundaries can be solved together. To solve for a combination of thermal
conductivities and fluxes or contact resistances, the unknown conductivity block must not touch
any of the unknown surfaces.

Many real problems involve at least one reacting material. Examples include pyrolysis of organic
materials, ablation of thermal protection systems, and thermal runaway of batteries. These
reactions can add or remove heat from the system and are represented in Aria as volumetric heat
source/sink terms. Typically, these reactions can be model by Arrhenius forms. To achieve wider
ranging applicability, Inverse Aria must be able to solve problems with reacting source terms,
either inverting directly for the source term model parameters or inverting for other parameters
(material or boundary conditions) in problems where reacting materials are present. As a first step
towards enabling this functionality, inversion for the Arrhenius activation energy and frequency
factor with finite-difference gradients has been enabled in Inverse Aria. Development of this
feature serves to put the building blocks in place for solving this class for problems while further
research is conducted on deriving and implementing the adjoint solve.

Computation of the objective function requires experimental data and will typically benefit from
some form of regularization. Inclusion of experimental data is currently limited to time histories
of temperatures at user specified node locations.

A finial limitation is that problem size is currently constrained by available memory. To execute
an adjoint solve, all state variables at every node and time step must be saved in memory. This
constraint will be alleviated in future releases by using checkpointing schemes such as Wang et
al. [wang2009minimal].

3.2.2. Getting Started with Inverse Aria

Inverse Aria is included in the SIERRA module as of 5.17. It can be loaded with
$ module load sierra
and run as follows

$ inverse_aria -i <input_file> -opt <ROL_inputs> --beta

68

where the input file is the target Aria input deck, ROL inputs is an xml file containing inputs to
ROL, and the --beta flag is required. Among the inputs contained in the xml file is the location of
the experimental data file, optimization algorithm inputs, and termination criteria. Example ROL
input files can be provided upon request.

To build Inverse Aria, compile with the following command (e.g. for the release build)
$ Dbake InverseAria -e release

An adjoint source term must always be present on all blocks when using adjoint-based gradients.
This is not required for optimization with finite difference gradients such as the Arrhenius source
terms. This term will be zero on the forward solves, and it is filled with the derivative of the
reduced objective function with respect to temperature during the adjoint solves. The adjoint
source term is specified as follows:

Source for energy on all_blocks = Optimization value = 0

Input 3.2.1. Adjoint source term syntax

A subset of boundary conditions are supported by Inverse Aria. These boundary conditions are no
flux (default), Dirichlet, flux, generalized convection, and generalized radiation. Usage of
boundary conditions outside of these will result in unexpected behavior in the adjoint solve. The
optimization keyword is no longer required for specifying boundary conditions.

Two output files are produced in addition to the normal output from Aria simulations that allow
the user to track the optimizer’s progress. “ROL_Messages.txt” displays optimizer convergence
values at each iteration such as the objective and gradient norms. “DesignVariablelterations.txt”
summarizes the design variable values at each iteration, where the values are tagged by material
or surface names. In the case of heterogeneous material property inversion, the minimum and
maximum values are reported with the material name.

3.2.3. Optimization .xml Inputs for Inverse Aria

In addition to the required parameters for a ROL optimization problem, there are a few Inverse
Aria specific inputs in the “.xml” optimization input file. First, the optimization data file is always
required. It consites of a text file with rows corresponding to individual measurement locations
where the first entry in the row is the node number on the mesh followed by a time history of
experimental measurements separated by commas. The syntax for pointing Inverse Aria to this
file is shown in Input 3.2.2.

<ParameterList name="Problem Data">
<Parameter name="Data File" type="string" value="data_file.txt
</ParameterList>

m

Input 3.2.2. Problem data file

69

/>

Regularization methods can improve the stability of the inverse problem. Currently, Tikhonov
regularization is available in Inverse Aria, and it is activated by adding an “Inverse Aria”
parameter list with the regularization weight(s) to the “.xml” optimization input file. Examples
are shown for a single design variable problem and multi-design variable problem by Inputs 3.2.3
and 3.2.4 respectively.

<ParameterList name="Inverse Aria">
<Parameter name="tikhonovParameter" type="double" value="500.0
</ParameterList>

W

Input 3.2.3. Single design problem regularization input

<ParameterList name="Inverse Aria">
<ParameterList name="tikhonovWeights">
<Parameter name="Material" type="double" value="2.0" />
<Parameter name="Flux" type="double" value="10.0" />
<Parameter name="GapConductance" type="double" value="5.0" /
</ParameterList>
</ParameterList>

Input 3.2.4. Multi-design problem regularization input

3.3. Inverse Problems

The chapter covers the current capabilities of Inverse Aria with examples of the required inputs.
The problems covered are thermal conductivity inversion, steady boundary heat flux inversion,
contact resistance inversion, and Arrhenius source term inversion with finite difference gradients.
The input decks and meshes for the examples can be found at

docs/fused/InverseAria/Examples.

3.4. Thermal Conductivity

An example use case for thermal conductivity inversion can arise in situations where two
materials are joined together by some sort of adhesive and the quality of the bond is unknown. A
simplified example is shown in Figure 3-1, where two cylinders are joined by a thin material of
unknown thermal conductivity. The domain is modeled as 2D axi-symmetric with a heat flux
applied to the outside of the outer cylinder and temperature measurements are only available at
this outer surface. In this example, synthetic data at each surface node were generated from an
Aria simulation with specified thermal conductivities in the joining layer.

There are two options in the material specification when inverting for thermal conductivity.
Choosing homogeneous will result in inverting for a single thermal conductivity value for the

70

/>

<4
<4

Symmetry
Axis External
Heat Flux
Unknown '
Layer
T, | ﬁ

Figure 3-1. — Domain of the example thermal conductivity inverse problem.

entire material, whereas using heterogeneous will invert for a thermal conductivity value for every
element with that material. the syntax for a homogeneous thermal conductivity inversion problem
is

Begin Aria Material MatA

Density = Constant rho = 2702.

Specific Heat = Constant cp = 903.

Thermal Conductivity = Optimization type = homogeneous k = 3
Heat Conduction = Basic

End Aria Material MatA

0O

Input 3.4.1. Homogeneous thermal conductivity inversion

and a heterogeneous problem is defined by

Begin Aria Material MatA
Density = Constant rho = 2702.
Specific Heat = Constant cp = 903.
Thermal Conductivity Optimization type = heterogeneous k =
Heat Conduction Basic

300

71

End Aria Material MatA

Input 3.4.2. Heterogeneous thermal conductivity inversion

The user has the option to provide lower and upper bounds for the design variable on the thermal
conductivity line with the keywords 1ower_bound and upper_bound and values separated
by equals signs.

A simple example can be found at Examples/Thermal_Conductivity/Homogeneous_1_Block.
The key files are:

* layered_2D_inv.1i - Inverse Aria input deck

* inverseInput.xml - ROL input parameters

layered_2D_data.txt - Synthetic temperature data

layered_2D. 1 - Aria input deck for generating synthetic data

* layered_2D. jou/g - Mesh journal file and genesis file

In this example, a 500 kW/m? heat flux is applied to the outside of the cylinder, and the thermal
conductivity of the joining layer is treated as homogeneous. The inverse solution is found quickly
for this simple problem as shown by the objective function and gradient norm in Figure 3-2.

1073

10-15{ —— Objective Function
Gradient Norm

0 2 4 6 8 10
Iteration Number

Figure 3-2. — Objective function and gradient norm at each iteration of the optimizer.

72

3.5. Steady Boundary Heat Flux

To invert for a steady heat flux on a surface, the “Optimization_Design” keyword is used.

BC Flux for Energy on surface_2 =

Optimization_Design value = -1

Input 3.5.1. Steady heat flux inversion

The example problem is composed of three materials with different material properties and a
steady flux on the right half of the top surface as shown in Figure 3-3 (left). Material A is a
conductive material, and materials B and C represent different internal layers with varying
material properties. In real experiments, data may only be available on one surface of the test
article, and for this example synthetic data are generated at the nodes along the bottom surface.

Heat Flux

ST
T

>

10~ 12

10-13

1074

—— Objective Function
Gradient Norm

2 4 6 8
Iteration Number

Figure 3-3. — Domain of the example heat flux inverse problem (left) and residuals for the inverse

problem (right).

For the inverse problem we imagine a scenario where the heat flux along the entire top surface is
unknown, and we search for the fluxes on the left and right halves of the top surface (i.e. two
design variables). In the example input deck (Examples/Heat_Flux/Steady/layered_2D_inv.i), we
set an initial guess of 5 kW/m? on both halves and the optimizer quickly finds the solution

(Fig. 3-3 right) of 30 kW/m? on the top right half of the domain. The values of the heat fluxes at
the top surface can be viewed in the heartbeat file: layered_2D_flux_inv.txt.

3.6. Transient Boundary Heat Flux

Reconstructing an unknown transient heat flux can be accomplished in a variety of ways that all
require the specification of a functional dependence of the heat flux on time. In the present
formulation, the heat flux is modeled as a piecewise linear function between a set of

73

user-specified times. Two options are available for specifying these times: constant time intervals
and arbitrary time points.

To use constant time intervals, the “num_times” keyword is added to the boundary condition
specification.

BC Flux for Energy on surface_2 = Optimization_Design $
value = -1le6 num_times = 2

Input 3.6.1. Transient heat flux inversion with constant time intervals

In this example input line, the total simulation time is divided in to two equal intervals with three
design variables (unknown heat fluxes) located at time 0, one half the simulation time, and the
final simulation time. For example, if the total simulation time is 300 seconds and the user selects
“num_times” = 2, the transient heat flux will be reconstructed at 0 s, 150 s, and 300 s with
piecewise linear functions between each of these points. The initial guess for the optimization
problem is a constant heat flux specified with the “value” keyword.

If the user desires more control over the specific time points and initial guess for the heat flux,
they can use a tabular user function. This input syntax will be familiar to current Aria users, as it
is commonly used to specify time varying boundary conditions or temperature dependent material
properties. The syntax for the boundary condition line is as follows

NAME = input_flux X = time

Input 3.6.2. Transient heat flux inversion with time intervals specified by a user function

This requires the specification of a user function in the Sierra domain of the input file. The name
of this function must match the name in the boundary condition line (“input_flux” in this case).

BEGIN DEFINITION FOR FUNCTION input_flux
type 1s piecewise linear
begin values

t(s), W/m2

0 -2.0e4
200 =1.0e5
300 -5.0e4

end values
END DEFINITION FOR FUNCTION

Input 3.6.3. Transient heat flux inversion user function example

74

BC Flux for Energy on surface_2 = Optimization_Design_User_Functfion $

In the function above, the optimizer will invert for the heat flux at times 0 s, 200 s, and 300 s
using the values provided in the table as the initial guess.

An example transient heat flux inverse problem was created based on the steady heat flux
simulation in Section 3.5. This example uses the same geometry, heat flux location, and
temperature measurement locations on the bottom of the domain as the steady heat flux example.
Synthetic temperature data is generated using a heat flux profile that begins at 50 kW/m? and
remains constant for 60 seconds (Fig. 3-4 left). The heat flux then decreases linearly to 0 kW/m?
over the next 40 seconds and remains at zero until the end of the simulation time.

The time interval for the inverse solution of the heat flux was set to 20 seconds, and the initial
guess was set at 10 kW/m? for 100 seconds decreasing to 0 kW/m? at 120 seconds as seen in
Figure 3-4 left. It is important to note that the time intervals are informed by the heat conduction
time between the heated surface and the measurement locations. This heat conduction time is
modeled as ¢ = 62/, where § is the distance between the heat must travel and ¢ is the thermal
diffusivity of the material. For the thermally “closest” thermocouple to the surface in this
geometry, the heat conduction time is approximately 9 seconds. This is effectively a lower limit
on the fidelity of the transient reconstruction as there is insufficient information to resolve smaller
times.

50 —— Synthetic 10-3 — .
——— Initial Guess _— ObJeFtlve Function
Gradient Norm
® Inverse

40 10-5
&
£
E 30 1077
4
=]
x =2
z 2 107
.
= 20
©
9]
I

10—11
10
10713
0
0 20 40 60 80 100 120 0 5 10 15 20
Time (s) Iteration Number

Figure 3-4. — Transient heat flux with inverse solution (left) and residuals for the inverse problem
(right).

Figure 3-4 right shows the objective function and norm of the gradient versus optimization
iteration. Note that after a large initial decrease in the objective function and gradient, several
iterations are required to reach the “true” synthetic solution due to the loss of thermal information
as heat diffuses from the heated surface to the temperature measurement locations.

75

3.7. Thermal Contact Resistance

Thermal contact resistance is used to model is used to model resistance to heat transfer across a
gap between two materials in contact. This interaction is a function of multiple properties such as
material hardness, surface finish, interstitial material, etc. The reader is directed to the Aria User
Guide for a detailed description of the numerical implementation of this

model [aria_user_5-16].

Currently, three enforcement options for thermal contact resistance are available in Aria:
CONDUCTANCE, CONTACT_RESISTANCE, and GAP_CONDUCTANCE. Of these,
CONDUCTANCE and CONTACT_RESISTANCE are supported by Inverse Aria. The design
variable is specified by the gap conductance coefficient, which is the inverse of the contact
resistance. This is done in the enforcement block of the contact definition in the Aria input file
with the “Optimization” keyword as follows, where the “value” is set to the initial guess for the
optimization problem.

Begin Enforcement enf_1

Enforcement for Energy = Conductance
Gap Conductance Coefficient = Optimization value = 100
End Enforcement enf 1

Input 3.7.1. Gap conductance coefficient design variable specification

An example is provided in Examples/Contact_Resistance. The domain consists of an 2D
axi-symmetric cylinder where two materials are in contact, but the contact at different sections of
the material interface is uncertain. One could imagine a scenario where two materials are bound
together similar to the example in Section 3.4, where the interface is instead represented by
thermal contact boundaries. In this example, we choose three surfaces to have unknown contact
as highlighted in Figure 3-5 (left), with a heat flux applied to the outside of the cylinder and
temperature measurements along the central axis and outside surface. We generate synthetic
temperature data with Aria and defined thermal contact resistances and use this to solve the
inverse problem with an initial guess of 100 W/m?/K for the conductance at each interface.
Inverse quickly finds the synthetic conductance values in 9 iterations as shown in Figure 3-5
(right).

76

Symmetry
Axis

Unknown
Contacts

450

<4
<4

—_

v 400

= 350
External

Heat Flux

—— surface_10_surface_14
——— surface_10_surface_13
—— surface_10 surface_11

W
o
o

Conductance (W/m

N
o
o

100

<4
<4

Iteration Number

Figure 3-5. — Domain of the example contact resistance inverse problem (left). Contact arrow colors
correspond to line colors in the plot of design variable progress at each optimization iteration (right).
Dashed lines indicate the “true” values used to generate synthetic temperature data.

3.8. Arrhenius Source Terms with Finite Differences

The reaction source term inversion feature differs from the other inverse problems in that it uses
finite differences and not adjoint solves to compute gradients of the objective function. This
requires less modification of the input file for inverse problems, but the inverse solution suffers
from the lack of adjoint-based gradients. This feature has been primarily implemented as a
stepping-stone towards adjoint solves with reaction source terms in Inverse Aria.

The Arrhenius form of a reaction is given as

k = Ae Ea/RT (3.8.1)

where the rate constant (k) is a function of the pre-exponential factor (A), activation energy (E,),
ideal gas constant (R), and temperature (7). Typically, calibration of reaction models involves
searching for an A and E,, that fit experimental calorimetry data. Other parameters such as the
heat of reaction and concentration function are also candidates for inversion.

Inverse Aria currently supports inversion for A and E, for an arbitrary number of reactions using
the following syntax in the General Chemistry block.

77

Begin Optimization Reaction_Name

Optimize = A log_transform = true

Optimize = Ea lower_bound = 1 upper_bound = 1elO0
End

Input 3.8.1. Reaction source term inversion

In this example syntax, React ion_Name must match the name of the reaction block with
unknown parameters. Initial guesses are set in the reaction block and the rate function must be
Arrhenius. The user can specify A and/or E, as design variables with the Optimize =
command. Providing lower and upper bounds on the potential values for the design variable are
optional. Log transforming the design variable before sending it to ROL is also optional, with the
default being false.

Unlike problems that use adjoint-based gradients, solving a problem with finite differences does
not require modification of the boundary condition specification or the addition of an adjoint
source term in the input file. Only the optimization block must be provided by the user in the
General Chemistry block of the Aria input file. Additionally, the ROL input file must have the
following line to enable finite difference gradients

<Parameter name="Use FD Gradient" type="bool" value="true" />

Input 3.8.2. Switching to finite difference gradients in the ROL input file

The user is directed to the regression test suite (InverseAria_rtest) for examples with one and two
reactions (inverseProblems/one_rxn_one_param and inverseProblems/two_rxn_two_param).

78

4. OPTIMAL EXPERIMENTAL DESIGN

4.1. Introduction to InverseOED

Inverse Optimal Experiment Design (InverseOED) is a massively parallel, nightly tested,
physics-agnostic Sierra app that rapidly optimizes sensor locations in order to minimize targeted
forms of uncertainty in the types of experiments used to estimate hidden parameters. In other
words, InverseOED performs sensor placement optimization for inverse problems.

Inverse problems and experiments are inherently coupled since it is often difficult to directly
measure the required quantities of interest and because the measured data is restricted to a small
subset of the spatial domain. Many experiments aim to estimate unknown parameters or boundary
conditions from a finite set of discrete measurements using an inverse problem. For example, in
acoustics vibration tests, the loudspeaker inputs that are needed to excite a structure to emulate a
flight environment are estimated via a frequency domain inverse problem.

InverseOED is based on the classical OED theory for linear inverse problems. The theory
includes additive noise models and uses the covariance of the estimated model parameters to
quantify the suitability of an experiment design. In general, an optimal design is a solution to the
optimization problem
g* € argmin ¥(C(q)), 4.1.1)
q

where W is a scalar function acting on matrices, C is the covariance matrix associated with the
estimated parameters, and ¢ are candidate sensor weights. One can interpret the optimal design as
the design that minimizes uncertainty in the estimated parameters. An equivalent interpretation is
that the optimal design maximizes sensor information.

InverseOED provides a variety of objective functions and options so that the optimal design is
catered to the experimenter’s needs. For example, InverseOED provides different scalar functions
P, called optimality criteria, that result in different measures of uncertainty such as average
prediction variance, maximum prediction variance, and average parameter variance. There are
also options for controlling the robustness of an experiment design using risk-adapted optimality
criteria. Finally, InverseOED also provides mechanisms for enforcing total sensor budgets,
enforcing fixed sensor locations, and placing multi-measurement devices such as triaxial
accelerometers.

79

4.2, Input Deck Introduction

The input deck is an XML formatted file (.xml) that is used to specify the optimality criterion, the
transfer matrix, and the parameters of the optimization algorithm. This section explains the input
deck parameters needed to run InverseOED.

XML files have parameter lists and parameters. The syntax for a parameter list and parameter are
given below.

(ParameterList name="IList Name"/)
(Parameter name="name" type="string/int/bool/double" wvalue="value")
(/ ParameterList)

For the remainder of the document, we will remove the angular brackets and the type for
convenience and space.

All input decks must have a ParameterList name = "'Inputs'' at the beginning that encompasses
all the parameters the user wishes to pass to the algorithm.

ParameterList name = "Inputs"
User provided parameters
ParameterList

4.3. ParameterList: OED

The solution of the OED depends on the optimality criterion selected. This is specified with the
Optimality Type parameter within the OED parameter list as shown below.

Input Deck: OED
ParameterList name="OED"

Parameter name="Optimality Type" value="A/B/C/D/I/R/E"
ParameterList

For the gradient-based optimization algorithm, the user can choose between A, C, D, I and R. D
and E are available for the greedy algorithm, which is discussed in greater detail in section 4.7.
Table 4-1 provides a brief description for each criterion. The theory documentation describes
each optimality criterion in greater detail.

80

Criterion Y(C(p)) Description

Tr(C) Average estimation variance (MSE)
vI'Cy Variance of v € R™ times the estimator
det(C) Volume of the uncertainty ellipsoid

E[hTCh] Average prediction variance (MSPE)
AVaRg[h" Ch] | Tail average prediction variance for f € [0, 1]
max(A(C)) | Maximum eigenvalue

=R =S

Table 4-1. — Optimality Criteria: C € R™" is the covariance matrix of the design parameters.

4.3.1. Initial Design

By default, the initial design weights are equal across all candidate sensors. If desired, the user
can specify the initial design weights, which may be useful if the user wants to warm start the
algorithm at a set of specified weights or if an optimization run terminated early and a restart is
needed.

* Uniform Initial Guess: If true, then the initial weights at each sensor are equal. If false,
then an initial design guess must be provided. Default value is true.

* Initial Design Guess: A user specified text file containing the initial weights on each
sensor. This file will have the same format as a resulting optimal design text file. See
section 4.6 for a description of the results file format. This option can be used to restart an
optimization problem if the previous optimization algorithm terminated early. Note that the
sum of the weights should equal one.

Input Deck: Initial Design
ParameterList name="OED"
Parameter name="Uniform Initial Guess" value="true"
Parameter name="Initial Design Guess" value="initial.txt"
ParameterList

4.3.2. Baseline sensors

The user can specify a set of sensors that must be included in the final sensor design. This option
is available for both the greedy and Rapid Optimization Library’s (ROL) gradient-based OED
algorithms. In terms of the algorithm, the transfer matrix degrees of freedom associated with the
fixed sensor set is always included in the covariance calculation. The algorithm optimizes only
the excluded set of sensors. To enable this feature, the user needs to specify a list of indices
corresponding to the rows of the transfer matrix via a text file. This file must begin with the total
number of baseline sensors followed by the indices. These indices are written for C++, so 0
indicates the first sensor. The list is provided to the xml file via the following parameter sublist:

81

Input Deck: Baseline Sensors
ParameterList name = "OED"
Parameter name = "Use Baseline Sensors" value = "true"
Parameter name = "Baseline Sensors File" value = "baseline.fxt"
ParameterList

The following example baseline sensor text file includes three total sensors: the fourth (3), first
(0), and seventh (6) sensor.

Example Baseline Sensor File
3 // Total number of sensors
3
0
6

4.4. ParameterList: Linear Model

Currently, optimal experiment design assumes a linear regression model. In other words, there
exists a matrix H(g) € C"" that maps the design parameters of interest 8(g) € C™ to the
measured response data y(q) € C", where m represents the number of design parameters and n
represents the number of measurement locations. We refer to the linear operator H as a transfer
matrix. The modal matrix used for modal expansion, the frequency response function for
frequency domain control problems, or the convolution matrix for time domain control problems
are a few common examples of the transfer matrix.

The simplest case is where each row of the transfer matrix corresponds to a single candidate
sensor and correspondingly a sensor weight. The more complex case is when there are multiple
observations of the data at a single sensor location. For example, in the frequency domain the
number of observations is equal to the number of frequency lines.

The transfer matrix is provided in the Linear Model parameter list. There are three options for
parsing the transfer matrix based on the domain type.

* General: Any transfer matrix can be specified using the general framework

* Frequency Domain: Specific to the frequency domain where the response at each
frequency line is independent

* Time Domain: Specific to the time domain where the response at each time step is

dependent

The following sections describes each domain type and the associated input deck.

82

4.4.1. General Framework

The user must write the transfer matrix to a .zxt file. In the general framework, the user provides a
transfer matrix text file, a transfer matrix dimension file, and specifies the number of models
where models indicates the number of observations per sensor.

Input Deck: General Domain

ParameterList name="Linear Model"
Parameter name="Domain Type" value="General"
Parameter name="Number of Models" value="2"

Parameter name = "Transfer Matrix" value = "transferMatrix|txt"
Parameter name="Transfer Matrix Dimension" value = "tmDimFifle.txt"
ParameterList

Further details on each parameter:

* Transfer Matrix: User provided transfer matrix text (.txt) file that contains the full transfer
matrix.

* Transfer Matrix Dimension: User provided transfer matrix dimension text (.txt) file. The
first and second entry are respectively the total number of rows and columns of the full
transfer matrix.

* Number of Models: Total number of possible measurements at a sensor. For a frequency
domain problem, this value is the total number of frequencies, and in the time domain, the
total number of time steps. The user should check that the total number of rows of the
transfer matrix divided by the specified Number of Models is equal to the number of
possible sensors.

For example, consider a frequency domain problem with real valued (no-imaginary part) transfer
matrices. Let ng be the number of frequency lines. The full transfer matrix will have n * n, rows
and m * n, columns. The format of the transfer matrix is as follows:

H@o) 0 - - - 0
0 H(w) 0 - - 0
He . 0 .
. . . 0
0 0 - - 0 H(w,)

where H (@) is the frequency response function (FRF) at frequency w;. Again H(@;) has n rows
for the n sensor locations, and m columns for the number of design parameters associated with the
i'" frequency. The rows and columns of H(®;) must be ordered consistently for each frequency,
and the number of sensors and number of parameters must be equal for all frequencies. Note that
the full transfer matrix H is block diagonal since the measured response at ®; is independent of

83

parameters of @; for i # j. This format becomes more complex if H(w;) is complexed value. In
that case, H(;) contains both the real and imaginary parts in the following block form.

_ (Hg —H;
n= (4)
where Hp, is the full transfer matrix containing the real part, and H; contains the imaginary part.

4.4.2. Frequency Domain

To avoid the parsing confusion for a complex-valued frequency domain transfer matrix, we
provide a simpler parsing interface where the user only needs to specify the real part of the
transfer matrix and the imaginary part as two separate files in the following format:

H(en,)

Instead of providing a transfer matrix dimension file, the dimensions of the transfer matrix are
provided in the Linear Model parameter list as shown below. If there is no imaginary component
then set the Complex Valued parameter to false. The user can also use the frequency domain
parser to parse a transfer matrix that has only a single observation, such as the case of the modal
matrix, by setting the Number of Frequencies equal to one.

Input Deck: Frequency Domain

ParameterList name = "Linear Model"
Parameter name = "Domain Type" value = "Frequency"
Parameter name = "Number of Parameters" value = "3"
Parameter name = "Number of Outputs" value = "10"
ParameterList name = "Frequency Domain"
Parameter name = "Complex Valued" value = "true"
Parameter name = "Number of Frequencies" value = "2"
Parameter name = "Real Frequency Response Function" value = "realf"
Parameter name = "Imaginary Frequency Response Function" value = "imagf"
ParameterList
ParameterList

84

4.4.3. Time Domain

The third parsing option is for time domain type problems. When the transfer matrix is a function
of time, the user specifies the impulse response for each parameter-output combination. The
Domain Type option should be set to Time. By doing so, the code internally converts the impulse
responses into a convolution matrix which takes a Hankel matrix form. The number of models
will be equal to the total number of time steps. The time domain transfer matrix takes the
following form:

H(tn,)

where H(t;) € R™™ is the impulse response at the i’ time step between the m parameters and
outputs (the measurement locations). For example, the first row of H(¢;) is the response at t =i at
outputs 1...m due to a delta function at the first parameter.

Input Deck: Time Domain
ParameterList name = "Linear Model"

Parameter name = "Domain Type" value = "Time"

Parameter name = "Number of Models" value = "2"

Parameter name = "Transfer Matrix" value = "matrix.txt"

Parameter name = "Transfer Matrix Dimension" value = "dimFille.txt"
ParameterList

Time domain inverse problems typically have hundreds of thousands of time steps, which appear
as observations in the OED app. The current version of the InverseOED app struggles with a large
number of observations due to the significant computational demand. We typically do not
recommend solving time domain OED problems with this app.

[Time domain problems may be too computationally costly for the OED app.]

4.5. Robustness to Sensor Dropout

InverseOED also employs a gradient-based approach to determine optimal sensor locations that
are robust to sensor dropout or missing data. Sensor dropout parameters are specified under the
OED.Robust parameter sublist. The following is an example of the input deck configuration for
specifying sensor dropout parameters:

85

Input Deck: Sensor Dropout

ParameterList name = "OED"
ParameterList name = "Robust"
Parameter name = "Use Sensor Dropout" value = "true"
Parameter name = "Dropout Type" value = "User-Defined/Berno
Parameter name = "Number of Dropout Samples" value = "3"
Parameter name = "Dropout Values" value = "pof.txt"

ParameterList
ParameterlList

nllii"

Using Bernoulli dropout type, the sensor dropout is modeled by a Bernoulli random variable.
The Bernoulli random variable returns a one or zero with a specified probability indicating
whether the sensor has or not. The user must provide a list of probabilities in a text file specified
in Dropout Values. The Dropout Values file should contain a column of probabilities of failure,
where row i corresponds to the probability of failure of sensor i. Each value must be between 0
and 1, with 1.0 indicating a 100% chance of dropout (i.e., guaranteed sensor failure). The number
of rows in the file should match the number of candidate sensors. The Number of Dropout
Samples parameter indicates how many draws from the Bernoulli random variable should be
taken. Decreasing the number of dropout samples reduces computational runtime but at the
expense of design robustness. For example, if there are three candidate sensors, the Dropout

Values might look like this:

Example of Dropout File
0.1 // Low probability of failure
0.9 // High probability of failure
0.5 // 50-50 chance of failure

Using the User-Defined dropout type, the user provides specific samples of sensor probability of
failures. Each column in the Dropout Values represents a dropout sample. The number of

dropout samples specified in Number of Dropout Samples must equal the number of columns in

the file. A value of 0.0 indicates a zero POF and hence that the sensor is included in the design

calculation.

For example, if there are three candidate sensors and the goal is to ensure robustness to a single
sensor failing, the Dropout Values might look like this:

o O -
O = O
R O O

Example of Dropout File

where column one (1, 0, 0) indicates that the first sensor has failed, column two (0, 1, 0) indicates

that the second sensor has failed, and column three (0, 0, 1) indicates the third sensor has failed.

We recommend running a gradient check before attempting to solve the optimization problem,

86

Input Deck: Gradient Check
Parameter name = "Check Optimization Problem" value = "true"

There is a chance that the covariance matrix becomes rank deficient if the number of failed
sensors is large. In this scenario, the optimization algorithm may become unstable or fail
completely. A passing gradient check will indicate an adequate number of sensors.

4.6. Executing InverseOED and Results

4.6.1. InverseOED executable

To execute the InverseOED app, type the following in the command line:

mpirun -np numProcs oed_inverse —opt inputXML. xml

NumProcs is the number of processors used for parallel runs and inputXML.xml is the xml file
which contains the user specified options.

4.6.2. Parallel Runs

InverseOED splits the number of processors between algebraic operations for design variables
(sensor weights) and the stochastic objective function evaluations. InverseOED automatically
selects a reasonable processor configuration for each type of OED problem. In some cases, the
user can improve the algorithm’s performance by playing around with the Number of Design
Processors value, however the default tends to render sufficient performance.

The user specifies which fraction of processors are devoted to algebraic operations as follows:

Input Deck: Processors
ParameterList name = "Problem"
ParameterList name = "Design"
Parameter name = "Number of Design Processors" value =
ParameterList
ParameterList

For example, if Number of Design Processors is set to 5, and there are 60 processors, then 12
processors are devoted to the objective function and each of the 12 has 5 processors devoted to
algebraic operations. We recommend that Number of Design Processors roughly be 10 percent of
the total number of processors.

87

"4"

4.6.3. Results

After the optimization algorithm converges 3 (4 for I optimality) text files are outputted to the
current directory. I_optimal_design_final.txt contains the solution to the OED on the first
processor. The first column corresponds to the sensor label. This label is ordered consistently
with the order in which sensors appear in the transfer matrix. Columns 2 and 3 can be ignored.
Column 4 represents the probability measure of that sensor location. For a fully converged
solution where the optimization constraints are met, this value is between 0 and 1. The sum of all
probabilities equals 1. The probability measures can be interpreted as the percentage that the
sensor should be experimentally sampled. The candidate sensors with weights that are non-zero
should be selected for the experiment design.

If InverseOED is ran in parallel then numProcs total number of I_optimal_design files are printed
and concatenated into I_optimal_design_final.

The user can also specify the tail of the file outputs generated from the greedy algorithm as shown
below.

Input Deck:Output File Tail
ParameterList name = "Inputs"
Parameter name = "Output File Tail" value = "userDefinedTaill"
ParameterList
4.7. Greedy Algorithm

The default OED algorithm in InverseOED is ROL’s convex optimization algorithm. This
algorithm may not be suitable if the user needs to constrain the final design by a total sensor
budget. In order to enforce a total sensor budget, InverseOED offers a greedy optimization
algorithm that strictly enforces the sensor budget. Greedy optimization is a heuristic approach
that does not guarantee the solver reaches the global optimal solution. However, the optimality
criteria that are available for Greedy are submodular or near-submodular, which guarantees that
the greedy solution will be close to optimal.

The greedy algorithm is available for the D-criterion and E-criterion. The E-criterion is the
maximum eigenvalue of the covariance matrix and is only available for the greedy algorithm. In
order to run the greedy algorithm, the user provides the following parameters to the input deck:

Input Deck: Greedy

ParameterList name = "Inputs"
Parameter name = "Use Greedy Method" value = "true"
ParameterList

The total sensor budget is specified in the greedy parameter list as follows:

88

Input Deck: Greedy

ParameterList name = "Greedy"

Parameter name = "Budget" value = "5"
ParameterList
4.7.1. Multi-axis sensor placement (Original Version)

There are two ways to specify multi-axis sensor placement. This section is the original
method, maintained for backwards compatability. However, we recommend the new ver-
sion, section 4.7.2, which also support mutliple sensor types and multiple budgets.

The greedy algorithm in InverseOED is capable of optimizing multi-axis sensors such as triaxial
accelerometers.

The user provides a map between the rows of the transfer matrix and an unique sensor label. The
first row is the total number of sensors. The number of rows (not including the first row) should
be equal to the total number of rows of the transfer matrix. Here is an example of a triaxial sensor
mapping (3 degrees of freedom (DoFs) per unique sensor):

Example Transfer Map File
3 // Total number of sensors
0

N NN P PO O

In the above example, there are 3 total sensors where DoFs 1-3 correspond to sensor 1, DoFs 4—6
correspond to sensor 2, and DoFs 7-9 correspond to sensor 3. Finally, the user specifies the
multi-axis option and the transfer map file in the xml under the Linear Model sublist as shown
below

Input Deck: Multi-axis Sensors
ParameterList name = "Linear Model"
Parameter name "Use Transfer Map" value = "true"
Parameter name = "Transfer Map File" value = "transferMap.t
ParameterList

xt nw

89

4.7.2. Multiple Budgets and Multiple Sensor Types

The greedy algorithm supports the optimization of multiple sensor types. For example, this
method can optimize triaxial and uniaxial sensors simultaneously. The method supports either
one total sensor budget or multiple sensor budgets: one budget for each sensor type. If one budget
is specified, the algorithm optimizes all sensor types until the total sensor budget is satisified. If
multiple budgets are specified, then the algorithm runs until each sensor budget is satisified.

We will use the following keywords throughout this section of the user manual:

» Sensor Label: An integer representing the sensor type. For instance, uniaxial sensors are
labeled as 0, and triaxial sensors as 1.

» Sensor ID: A unique integer assigned to each sensor, ranging from O to N, where N is the
total number of candidate sensors.

* Transfer Indices: The rows of the transfer matrix to which a sensor is mapped. For
example, a triaxial sensor might correspond to indices 10, 11, 12, while a uniaxial sensor
might map to index 10.

In summary, the user needs to provide the following information in order to solve multiple sensor
budget problems:

* A unique sensor label that identifies the type of sensor. This can be done via the Sensor
Labels xml parameter.

* For each candidate sensor, a unique sensor ID and its mapping to the transfer matrix
indices. This can be specified using the Transfer Map File xml parameter

* A budget for each unique sensor label. These budgets should be provided as a list using the
Budgets xml parameter list.

Multi-Budget: Sensor Label Specification

When using multiple budgets, a sensor labels file must be provided in the Greedy xml sublist as
shown below.

Input Deck: Sensor Labels

ParameterList name = "Greedy"
Parameter name = "Sensor Labels" value = "sensor_ labelp.txt"
ParameterList

The first line of the sensor labels file specifies the total count of candidate sensors. Following this,
each line contains a sensor label, indicating the sensor type, with each line corresponding to a
unique sensor ID. In the provided example, there are three triaxial sensors labeled as 0 and two
uniaxial sensors labeled as 1, making a total of five candidate sensors.

The sensor labels file structure is as follows.

90

Example Sensor Labels File
5 // Total Candidate Sensors
O // ID = 0, Label = 0 (Tri)
O // ID = 1, Label = 0 (TIri)
O // ID = 2, Label = 0 (Tri)
1 // ID = 3, Label = 1 (Uni)
1 // ID = 4, Label = 1 (Uni)

It is important to note that sensor labels cannot be arbitrary integers. The first sensor type must be
zero, and each subsequent sensor type should be assigned the next consecutive integer value (e.g.,
one, two, three, and so on).

Multi-Budget: Transfer Map Specification

The transfer map file links each sensor ID to specific rows in the transfer matrix (indices). The
original transfer map format is still compatible for single sensor/budget scenarios (see section
4.7.1). However, the following new format must be used for multiple budget problems. In
addition, we recommend this new format for single budget problems as well.

The new transfer map file format is as follows. The first line indicates the total number of
candidate sensors. An error occurs if this count mismatches the number provided in the sensor
labels file. Each following line represents a candidate sensor. The first column represents the
unique sensor ID (ranging from O to N, where N is the total sensor count), followed by n columns
of transfer map indices.

Let’s provide an example. Consider a structure with two possible sensor locations, each with
three measurable directions (DoFs). The goal is to optimize a combination of triaxial sensors and
uniaxial sensors. In this example, assume that the uniaxial sensors can only measure the
x-direction. There are four candidate sensors: two triaxial sensors, and two uniaxial sensors. Let’s
assume the rows of the transfer matrix H are ordered as

[Node 1, DoF x|
Node 1, DoF y
Node 1, DoF z
Node 2, DoF x
Node 2, DoF y
Node 2, DoF z |

Then in this example, the transfer map is given by

Example Transfer Map File

4 // Total Candidate Sensors

0O 0 1 2 // Node 1, Dofs x,y,z
3 4 5 // Node 2, Dofs x,Vy,z
0 // Node 1, Dof x only
3 // Node 2, Dof x only

w N =

91

The corresponding sensor labels would look like

Example Transfer Map File
4

R P O O

Now consider a second example where the candidate uniaxial sensors could measure any of the
three directions. In this example, the transfer map file would look like

Example Transfer Map File
8 // Total Candidate Sensors

0O 0 1 2 // Node 1, Dofs x,y,z
1 3 4 5 // Node 2, Dofs Xx,vy,z
2 0 // Node 1, Dof x only
3 3 // Node 2, Dof x only
4 1 // Node 1, Dof y only
5 4 // Node 2, Dof y only
6 2 // Node 1, Dof z only
7 5 // Node 2, Dof z only

and the corresponding sensor labels are given as

Example Transfer Map File
8

= N S e e

Multi-Budget: Overlapping Nodes

By default, the greedy algorithm does not select two sensors with overlapping dofs. This
implemenation prevents the algorithm from placing a uniaxial sensor and triaxial sensor at the
same location. Consider the previous example. If the algorithm selects the triaxial sensor with ID
1, which measures dofs 3, 4, 5, then the uniaxial sensors with IDs 3, 5, 7 will not be selected. To
turn off this behavior, set Allow DOF Overlap to true.

92

Input Deck: Sensor Overlap

ParameterList name = "Greedy"
Parameter name = "Allow DOF Overlap" value = "true"
ParameterList

When Allow DOF Overlap is true, then the algorithm can select two sensors that share DoFs.

Multi-Budget: Budget Specification

We use the Multiple Budgets parameter list to specify a sensor budget for each sensor type. The
budget label corresponds to the sensor label provided in the sensor label file.

Input Deck: Multiple Budget
ParameterList name = "Budgets"
Parameter name = "Sensor Type 0" int = "3"
Parameter name = "Sensor Type 1" int = "2"
Parameter name = "Sensor Type N" int = "n"
ParameterList

4.7.3. Greedy Mean Squared Error Objective Functions

In addition to the classical alphabet criteria, the greedy algorithm also supports mean squared
error (MSE) and mean squared prediction error (MSPE) objective functions.

MSE and MSPE are currently enabled for the Greedy algorithm ONLY.

The MSE objective function is specified using the OED parameter list. MSE is computed in a
Monte Carlo fashion by sampling two random variables. The first is a prior distribution on the
inverse problem solution. The second is an additive measurement noise term. The additive noise
is an IID Gaussian with zero mean and variance provided by the user. The objective and variance
are specified in the XML file as shown below.

Input Deck: OED MSE

ParameterList name = "OED"

"Optimality Type" value = "MSE"
"Noise Variance" value = "1.0"

Parameter name
Parameter name
ParameterList

The solution prior is specified as a list of samples under the Sampler parameter list. The sample
files are provided in a sampler parameter list. The user specifies the total number of samples,
which must be equal to the total number of rows in the sample file. The user also specifies a
weights file, which can simply be one column of ones with a total number of rows equal to the

93

total number of samples. This file is currently ignored, but still must have consistent dimensions.
If the samples are complex then two files are provided: one for the real part and another for the
imaginary part. The sampler parameter list is shown below.

Input Deck: MSE Sampler

ParameterList name = "Sampler"
Parameter name = "Type" value = "User Defined Complex"
Parameter name = "Number of Samples" value = "# of Samples"
ParameterList name = "User Defined Complex"
Parameter name = "Points File Real" value = "realSamples.txt|
Parameter name = "Points File Imag" value = "imagSamples.txt|
Parameter name = "Weights File" value = "weights.txt"
ParameterList
ParameterList

Let’s provide some additional details for the sample text files. The total number of rows of the
sample list corresponds to the number of prior samples. Each row of the samples file corresponds
to a single realization of the prior with n total columns, where 7z is the number of unknown
parameters. In other words, 7 is the total number of columns of the provided transfer matrix. If
the problem contains multiple observations (e.g. multiple frequencies for frequency domain type
problems), then the number of columns is equal to the number of observations times the number
of parameters. For example, consider a source inversion problem in the frequency domain with

®
ij
corresponds to the i’ source location, j corresponds to the j'* frequency, and k corresponds to the
k' sample. N is the total number of samples. Then the sample file takes the following form:

three unknown source locations and two frequencies. Let x;;” represent a sample where i

1 1 1 1 1 1
xgl) xél) xgl) xgz) xéz) xgz)

X =

N N NV N N
XEl) xél) xgl) xgz) xéz) xgz)

The MSPE objective function targets prediction error. The MSPE objective is enabled in a similar
fashion to the MSE objective,

Input Deck: OED MSPE
ParameterList name = "OED"
Parameter name = "Optimality Type" value = "MSPE"
Parameter name = "Noise Variance" value = "1.0"
ParameterList

Additionally, the user can specify specific degrees of freedom (DoFs) to compute the MSPE
objective at. The specified DoFs are provided as a text file through the following parameter list
interface.

94

Input Deck: MSPE Prediction Dofs

ParameterList name = "OED"
Parameter name = "Optimality Type" value = "MSPE"
Parameter name = "Noise Variance" value = "1.0"
ParameterList name = "MSE"
Parameter name = "Use Prediction Dofs" value = "true"
Parameter name = "Prediction Dofs File" value = "predDofs.txt"
ParameterList
ParameterList

In the prediction DoFs file, each listed index corresponds to a row in the transfer matrix. The

index corresponding to the first row of the transfer matrix is zero. The first row of the prediction
DoF:s file should be the total number of prediction DoFs.

Example Prediction DoFs File

4 // Total number of prediction DoFs
0 // 1st row of transfer matrix

3 // 4th row of transfer matrix

10 // 11th row of transfer matrix

53 // 54th row of transfer matrix

Unlike the MSE objective, the MSPE objective can handle a different noise-generating model.
One can provide a second transfer matrix that is used to generate data. The number of parameters
in the data-generating transfer matrix does not need to equal to the number of parameters in the

OED transfer matrix. To specify a data-generating transfer matrix, first indicate the Data Model is
on.

Input Deck: MSPE Data Generating Model
ParameterList name = "OED"
Parameter name = "Optimality Type" value = "MSPE"
Parameter name = "Noise Variance" value = "1.0"
ParameterList name = "MSE"
Parameter name = "Data Model" value = "true"
ParameterList
ParameterList

With Data Model set to true, the OED algorithm will look for a model labeled Data Model in the
XML file. The Data Model is identical to how we specify the transfer matrix. The number of
outputs and frequencies must match the OED transfer matrix, however the number of parameters
may be different. When data model is on, the parameter provided in the sample list will propagate
through the provided data model. Hence the number of parameters in the data model must be

consistent with the provided parameter samples. An example of the Data Model interface is
shown below.

95

Input Deck: MSPE Data Model
ParameterList name = "Data Model"
Parameter name = "Domain Type" value = "Frequency"
Parameter name = "Number of Parameters" wvalue = "3"
Parameter name = "Number of Outputs" value = "10"
ParameterList name = "Frequency Domain"
Parameter name = "Complex Valued" wvalue = "true"
Parameter name = "Number of Frequencies" value = "2"
Parameter name = "Real Frequency Response Function" value = "replF"
Parameter name = "Imaginary Frequency Response Function" wvalue & "imagF"
ParameterList
ParameterList
4.8. Source Placement with Greedy

In some cases, the user may wish to optimally select the columns of the transfer matrix. We call
this problem source placement. For example, in multi-axis vibration testing, designers are
interested in placing electrodynamic shakers in order to excite the system of interest.

InverseOED can be used for source placement with the E-criterion and D-criterion objective
functions. Since these objective functions are invariant to the transpose of the transfer matrix,
InverseOED can be used to solve source placement problems.

The app is not specifically setup for source placement. However, one can transform their sensor
placement problem into a source placement problem by providing the app the transpose of the
transfer matrix. When the app parses the provided transposed transfer matrix, it treats the
columns of the (non-transposed) transfer matrix as candidate source locations. Ensure that the
listed outputs and parameters in the xml file reflect the transposed matrix dimensions.

4.9. Robust Model OED

The greedy algorithm also supports multiple models. This feature can be used to optimize a single
set of sensors for multiple models to achieve sensor locations that are robust to expected changes
in models such as changes to boundary conditions or changes to subassemblies. There are two
Risk Type options to select from: Neutral and Averse. The risk neutral option minimizes the
average D-criteria (or E-criteria) across all models, while the risk averse option minimizes the
maximum D-criteria across all models.

The user specifies the risk type and total number of models in the Greedy sublist as shown
below

Input Deck: Robust Multi-Model OED
ParameterList name = "Greedy"

96

"Risk Type" value = "Neutral" (Averse)
"Linear Model Total" wvalue = "10"

Parameter name
Parameter name
ParameterlList

When multiple models are specified (i.e. Linear Model Total is greater than one), then the user is
expected to provide corresponding Linear Model sublists for each model. These models are
distinguished by appending the sublist with the corresponding number. For example, if the user
lists only two models then the following sublists are needed:

Input Deck: Multi-Model List
ParameterList name = "Linear Model 1"
Provide parameters for linear model one

ParameterList

ParameterList name = "Linear Model 2"
Provide parameters for linear model two

ParameterList

By default, the risk neutral option is used. For frequency domain problems, each frequency is
treated in a manner similar to a model. When risk neutral is used, the algorithm minimizes the
D/E criterion averaged across frequencies. When risk averse is used, the algorithm minimizes the
maximum D/E criterion over all frequencies. Note that this still holds true even for the
deterministic setting when only one Linear Model is provided.

97

5. TRACE

5.1. Introduction

TRACE (TRACE Rapidly Acquires Contour Estimates) is currently in beta release and under
active development. The purpose of TRACE is to efficiently estimate inputs to a black box model
(aka high fidelity model) that will result in some failure criterion. For example, these inputs may
be the material characteristics in a structural FEM model and the failure criterion might be
exceeding some internal deformation threshold. We call the hypersurface separating these inputs
from inputs that do not result in failure the ‘decision boundary’. For example, this decision
boundary is given by the dashed line in Figure 5-1, which separates the input combinations that
result in failure (shown in red) from the input combinations that don’t produce failure (shown in
green).

20

18

16

var2

14

12

10
20 40 60 80 100 120 140 160 180 200

wvarl
Figure 5-1. — Example decision boundary. Red indicates region of predicted failure. Each point

represents a training sample used by TRACE

Currently, TRACE is based on the machine learning technique of support vector machines
(SVMs). See references [FailureProb, SAND2022-11061] for details. TRACE efficiently
estimates the decision boundary by actively querying the high fidelity model over multiple

98

iterations, adaptively learning which input combinations result in the user-defined failure
condition and which do not. Read further to learn the many ways the TRACE algorithm can be
adjusted for different use cases.

5.2. Minimal Working Example

The code below provides a minimal working example. There are two required files: the input
deck input . in and the Python implementation (or wrapper) of the high fidelity model in
Model . py. To run the tool, navigate to the directory where the files exist and run the following
command:

fused_trace.py train —-i input.in

A directory called output will be created where the trained classifier (model .pickle), alog
file (trace. 1og), and other outputs will be saved.
g Many users have reported that when running TRACE an error occurs similar to

ModuleNotFoundError: No module named ’'Model’

If you encounter this error, a simple fix is to execute

PYTHONPATH="SPWD: SPYTHONPATH"

in the current directory, prior to executing fused_trace.py. This only needs
to be done once for each new shell session. If the command printenv
PYTHONPATH shows the current directory, then you should be able to run TRACE
as usual.

The input deck input . in contains all the configuration details required to run TRACE:

input.in

"iterations" = 100

"tolerance" = le-3

"background samples"™ = 5000
"test samples" = 5000

"initial training samples" = 10

Required only for repeatability
"seed" = 65537

[variables]

99

"x" = [-2, 2, "uniform"]
"y [-2, 2, "uniform"]
[model]

"file" = "Model.py"

The Model . py file contains the user-specified high fidelity model. The user’s model must
implement the predict function, which accepts a 1D array of numbers and returns either 0
(pass) or 1 (fail).

Model.py
class Model:
def predict(self, point):
x = point [0]
y = point[1]
return 1 x ((x**x2 + y*x%x2) > 1.0)

Rather than call the tool from the command line, users can also call the tool from a Python script.
For example:

import sys
sys.path.append ("path/to/src")
from fused_trace import trace

if name == "__main__ ":
trainer = trace("input.in")

By default, the results of TRACE are stored inside the out put directory. This directory contains
the training data that the surrogate used, a pickled version of the surrogate itself, and a log file that
describes TRACE’s progress while training. Users are able to query a set of data points for their
predicted class labels using the trained surrogate. To access the surrogate model trained by
TRACE, run the following command to predict the labels of the samples named dataPoints
stored in input_data.mat:

predict.py -1 input_data.mat -m output/model.pickle -n dataPointg

For more information on any of the command line interfaces, run fused_trace.py -hor
predict.py -h.

5.3. Input Deck Format

An input deck is required to configure and run TRACE. The format of the input deck is TOML
(Tom’s Obvious Minimal Language). The general format for specifying a configuration parameter
is

100

Strings with spaces in them must be enclosed by single or double quotes. It is recommended
always to enclose strings in quotes to avoid inadvertent errors. Lists use the format typical of
Python lists, with opening and closing brackets and with elements separated by commas.
Dictionaries are similar but use braces in place of brackets. Lists and dictionaries may be nested
and can span multiple lines.

5.3.1. Algorithmic Parameters

Both the required and optional algorithmic parameters must appear at the beginning of the input
deck, before the [variables], [model], and [output] sections.

5.3.1.1. Required

The input deck has several required top-level entries or else the tool will raise an error. These are
given in Table 5-1 and described in detail below.

Parameter Type

background samples int € [1,00)
test samples int € [1,00)
initial training samples int € [1,00)
iterations int € [0,)
tolerance float € [0, 1]

Table 5-1. — Required Algorithmic Parameters

background samples The number of background samples from which the adaptive training
algorithm draws when selecting new points to train on.

test samples The number of background samples that the adaptive training algorithm uses to
check for convergence.

initial training samples The number of initial training samples that the adaptive trainer
attempts to train on.

iterations The number of maximum iterations TRACE will use for training. If 0, only the initial
samples will be used for training.

tolerance The tolerance used for the convergence criteria. Closer to 0 means more difficult to
converge. We suggest le-5.

101

"option name" = int, float, bool, "str", [list], or {dictionary_key

vall

5.3.1.2. Optional

In addition to the required top-level input deck parameters, there are several optional top-level
parameters that the user can specify. These are given in Table 5-2 and described in detail below.

Parameter Type Default
adaptive algorithm str € {"greedy", "basmis"} "greedy"
regularization float € (0,00) 1000
restart bool false
restart filename str initial TrainingData.mat
plot frequency int € [0,00) 0
num plot steps int € [1,0) 100
plot samples bool true
run in parallel bool false
number of processors int € [1,00) All available
use lock bool false
iteration concurrency int € [1,00) 1
vertex N x 2 list of coordinates in None

the input space
kernel str € {"linear", "poly", "rbf", "rbf"

"sigmoid"}

sampling method str € {"random", "LHS"} "random"
seed int € [0,4294967295] None
enrich samples bool false

Table 5-2. — Optional Algorithmic Parameters

adaptive algorithm The adaptive learning algorithm TRACE uses.

regularization The regularization TRACE will use for the SVM classification. The higher this
number is, the more the classes will be strictly separated, but the longer each iteration will
take. 1000 is a good balance for most problems.

restart If set to t rue, TRACE will read in a matlab file and set the initial training points from
the matlab file. If labels are not provided, it will run the HiFi model to ascertain them.

restart filename The name of the matlab file that the restart option uses. The matlab
variables should be

* training (required): N x M array, N number of points, M dimensions of input
parameter space

* labels (optional): N x 1 array containing labels for the training points. 1 means fail,
0 means pass.

plot frequency At the end of training, a convergence plot is automatically generated. For cases
with exactly two input parameters, a plot of the decision boundary is also automatically

102

generated. The user may optionally request that these plots be produced after every N™
iteration using this option. A value of 0 means only generate plots after training has
completed.

num plot steps The resolution of the decision boundary plot generated for 2D cases. For N
plot steps, an (N + 1) x (N + 1) grid is used for plotting. Each axis is divided into the same
number of steps, regardless of the input parameter ranges.

plot samples If enabled, the samples used for training the classifier will be plotted as points on
top of the colored regions in the decision boundary plot. The colored regions are always
plotted for 2D cases.

run in parallel If enabled, the multiple points that the adaptive algorithm identifies as the next
training points will be evaluated in parallel rather than one at a time.

number of processors How many processors to use for parallel evaluation of new training
points. If not specified, all available processors will be used. Unused if run in parallel is
not activated.

use lock If activated, pass amultiprocessing.Lock () instance to the user-defined
predict () function. Note that the user-defined predict () function must accept a
lock keyword argument. This may be helpful if there is a risk of race conditions that could
adversely affect the HiFiModel evaluation.

iteration concurrency How many iterations into the future to look when deciding which new
training points to evaluate. A value of 1 means the default sequential adaptive learning.
NOTE: The number of points that get passed to the HiFiModel will vary depending on the
number of classes and the algorithm chosen, but generally grows quite quickly. For
example, using the greedy algorithm with two classes, a concurrency of 1 means 2 points
must be evaluated; a concurrency of 2 means 10 points must be evaluated; a concurrency of
3 means 42 points must be evaluated; a concurrency of 4 means 170 points must be
evaluated.

vertex If supplied, only the polygonal subspace defined by the vertices will be considered when
selecting new training points to evaluate. NOTE: Only supported in 2D and vertices must
be in the correct order.

kernel The kernel used for kernelized SVM. If setto "1inear™", the classifier is equivalent to a
standard SVM. We strongly recommend the default of "rbf".

sampling method Method used for generating random samples. "random" (the default) will
use simple uniform random sampling of the ranges specified in the [variables] block
(see below). "LHS" instead uses a custom implementation of Latin hypercube sampling.

seed The seed used for random number generation within TRACE. Specifying a value will
ensure repeatable results. If unset, a random seed is chosen.

103

enrich samples Boolean that specifies whether to add additional samples near the boundary
for the purposes of visualization. If true, once the surrogate is trained, additional samples
will be placed near the decision boundary, whose labels are predicted by the classifier.
These points will be saved in the output directory under "enrichedSamples.mat".

5.3.2. Variables

Specifying the variables is required, although it’s done separately from the other options. Under
the [variables] header of the input deck, each line will have a variable, e.g.

varl = [3, 7, "uniform"] creates the variable varl ~ Uniform[3,7]. The variables
have names, and are ordered from top to bottom when reading in data. That is, order does matter
and the user’s high-fidelity model should expect the variables in the order in which they occur in
the input deck. Each variable consists of a list of three elements: the first distribution parameter,
the second distribution parameter, and the name of the distribution. A list of supported
distributions and their corresponding variables are in Table 5-3.

Distribution Variable List

var ~ Uniform[a, b] var = [a,b,"uniform"]
var ~ Normal(u, o) var = [M,0,"normal"]
var ~ Beta(a,) var = [a,B,"beta"]

Table 5-3. — Supported Variable Distributions

5.3.3. Model Parameters

It is required to specify the high-fidelity model that will be used by TRACE. Model specification
is done under the [model] header. The full list of model parameters is in Table 5-4.

Parameter Type Required
file str Yes
type str No
class str No
parameters dict No

Table 5-4. — Model Parameters

file The file path (relative or absolute) to the model to load.

type Type of high-fidelity model with which TRACE will interface. Right now, only
"python" is supported. In the future, we hope to support models defined directly in
MATLARB or a shell script.

class The name of the class to import from f£ile. If omitted, defaults to the name of the file.

104

parameters A dictionary of parameters passed to the model’s initializer. If omitted, defaults to
an empty dictionary. The parameter dictionary is always passed to the model’s initializer
(even if it’s not specified) so the model’s initializer should always except an input
parameters dictionary even if it’s not used.

5.34. Output Parameters

While output parameters are not required, the [output] block will allow the user to specify
output file names.

Parameter Type Default

path str "output"
saved data filename str "trainingData.mat"
saved model filename str "model.pickle"
overwrite bool false
log_file bool "trace.log"
console bool true
verbose bool false

Table 5-5. — Output Parameters

path Directory for TRACE’s output. An error will be raised if the directory already exists.
saved data filename Filename for the training data that will be saved.
saved model filename Filename for the surrogate model that will be saved.

overwrite Whether or not TRACE will overwrite any data contained in the specified output
folder.

log_file Filename for the log file containing informational messages.
console Whether or not to print informational messages to the console (i.e., stdout).

verbose Whether or not to print extra information to the console and log file.

5.3.5. Metrics

The metrics block is optional and when enabled, TRACE will calculate the desired metrics listed.

The options are "accuracy", "balanced accuracy", "precision”, "recall", "specificity", and "f1". For
an overview of what these metrics calculate, please check SciKit-Learn’s documentation.

105

Parameter Type Default
training metrics filename str "trainingMetrics.csv"
training metrics list[str] None
validation metrics filename str "validationMetrics.csv"
validation metrics list[str] None
validation samples str None
validation labels str None

number of validation samples int € [1,0) None

Table 5-6. — Metrics Parameters

training metrics filename Specify the filename for the training metrics.

training metrics Specify the training metrics you would like to save as a list of strings. The

n n nn

options are "accuracy", "balanced accuracy", "precision”, "recall", and "f1".
validation metrics filename Specify the filename for the validation metrics.
validation metrics Same as training metrics.

validation samples Filename for the validation samples to be used, with data saved as "X". If
set to "random", TRACE will automatically generate samples to be used.

validation labels Filename for the validation labels to be used, with data saved as "y". If
validation samples is set to "random", this must be left empty.

number of validation samples Number of samples to be generated when validation
samples is set to "random".

5.4. Postprocessing Probabilities

As of Sierra 5.26, this capability is not fully supported and may not work as doc-
A umented. If you wish to use this capability, it is strongly recommended to use the
Sierra version of the day (i.e., sierra/daily) to get the latest fixes. If you do
not have access to the version of the day, please reach out to the FUSED team for
assistance.

It may be that some of the variables in the user’s high-fidelity model represent uncertain
parameters. Alternatively (or additionally), the user’s high-fidelity model may not output a
deterministic pass/fail condition, but rather a probability of failure. These use cases are
summarized in Figure 5-2, where we consider the model u = f(&). & is the model input, and all,
some, or none of it may be stochastic. i is the model output, and either u € {0, 1} (for
deterministic labels) or u € [0, 1] (for probabilities).

106

Output Pass/Fail Condition

1 Deterministic i Probabilistic
Ex: Ex:
+ Calibrated model with chosen [+ Calibrated model with each
threshold on max stress stress level having a probability

§ Deterministic of failure (e.g., from Weibull

distribution)

Input Model

Parameters Ex: Ex:

* Uncertain material properties |+ Uncertain material properties
. but threshold on stress is and each stress level has a
§ Probabilistic certain probability of failure

Figure 5-2. — Quad-chart of different flavors of stochastic/deterministic decision boundaries.

Rather than a classifier that gives a completely deterministic prediction (0 or 1, pass or fail), the
trained surrogate model in TRACE can be postprocessed to predict probability of failure. After
training on the full variable space, the user can add a [postprocessing] block to the input
deck with the required parameters listed in Table 5-7. To run the postprocessing step, execute
TRACE using the postprocess argument as shown below:

fused_trace.py postprocess —-i input.in

A new directory named postprocess will be created, with a subdirectory therein for each
value specified in contours.

5.4.1. Required Parameters

Parameter Type
model file str
uncertain variables list[str]
contours list[float] € (0,1)
number of samples int

Table 5-7. — Required Postprocessing Parameters

model file The path to the surrogate model trained by TRACE, e.g.,
output/model.pickle.

107

uncertain variables Names of the variables that are considered uncertain. These names must
also occur in the [variables] block.

contours Probabilities for which TRACE will estimate contours. For example, [0.80,
0.90, 0.95] specifies that TRACE should separately find the 80% failure contour, 90%
failure contour, and 95% failure contour.

number of samples Number of samples used in the Monte Carlo estimation of probabilities.
For details of the approach, see [FailureProb].

5.4.2. Optional Parameters
Parameter Type Default
iterations int 100
enrich samples bool false

Table 5-8. — Optional Postprocessing Parameters

iterations Specify the number of iterations used to train the postprocessing model. Since this is
done on the trained surrogate model, they are not computationally expensive.

enrich samples Boolean that specifies whether to add additional samples near the boundary
for the purposes of visualization. If true, once each probability of failure contour is trained,
additional samples will be placed near the decision boundary, whose labels are predicted by
the classifier. These points will be saved in their respective contour folder under
"enrichedSamples.mat".

108

6. APPENDIX

6.1. Optimal Experiment Design Theory

6.1.1. Inverse problem framework

This section introduces an abstract framework for OED applied to linear inverse problems. To
begin, we consider an abstract linear model of a system’s response for the i experiment

yi=h{ 6, 6.1.1)

where 6 € K7 are the unknown model parameters, th € K"*" is the parameter-to-response map
associated with the i experiment, and K = R or C. In modal expansion and in MIMO control, the
i" experiment corresponds to placing a sensor at the location of the i degree of freedom (DoF),
1.e., mesh vertex. In general, hiT is a matrix that maps the parameters 0 to a set of n, observations.
For the MIMO control example, th is a block diagonal matrix that models the frequency response
function and 0 represents the forces acting on the system. For modal expansion, th models the
system’s mode shapes and 6 represents the expansion coefficients. In this report, we use the
standard transpose symbol x ' to refer to the complex conjugate when K = C.

Assume that we perform the i experiment ¢; € N times and assume that the measured response
of the j™ instance of the i™ experiment satisfies the additive noise relationship

Jij=h0+&,; for j=1,...q; and i=1,...,n, (6.1.2)

where g; ; € K" is a random vector representing the measurement noise and other modeling
errors. In addition, we assume that the noise is homoscedastic (i.e., &; ; does not depend on the
experiment 7 or the instance j) and that it is independent and identically distributed (iid) with
mean zero and covariance Gzlno. Here, I denotes the k x k identity matrix. In particular, the iid
assumption ensures that

2 e ./ . .
el _ Glno lfl:land]:J
E[&,JSZVJI] = { On, otherwise) 6.13)

Here, 0y denotes the k x k matrix of zeros.

Inverse problems seek to estimate 6 from selected experiments. In InverseOED, we formulate
inverse problems as the least-squares problem

N 1 & & 2
6 € argmin =)y - —hTOH 6.1.4)
rgmi 2;]_; ij—hi 0|,

109

or

6 € argmin —Z Z |55 9“ +R(6 (6.1.5)
6cK"p i=1j=

where R(0) is a regularization term.

To simplify notation, we define the quantities

n n qi
) = ZQihih,Ta Y(q) = Zhi Z)N/i’j, and E(q) = Zh,‘ Z & j.
i=1 i=1 j=1 j

With this notation, the optimal solutions to the least-squares problem (6.1.4) solve the linear
system of equations

Nonsingular M(q)

If M(q) is invertible, then the estimator 6 that solves (6.1.4) is unique and is given by
0=M(q)"'Y(q). (6.1.6)

Using the model (6.1.2) and the assumptions on the noise, we further see that the estimator
satisfies

6=Mq)"! (i gihih; 0 +E(4)> =0+M(q) 'E(q),

where the expected value of E(q) is zero since E[g; j| =0forall j=1,...,¢;andi=1,...,n
From this, we see that the expected value of the estimator @ (averaged over the measurement
noise) is £ [é] = 0. That is, 6 is an unbiased estimator of 6. Moreover, the covariance matrix of
the estimated parameters in (6.1.6) is given by

A

Clg)=E[(6-6)(6-6)"]=M(q)'E[E(q)E(q) ' 1M (q)~".

From this, we notice that

M:

n qi
Z Z ZhEeuef Ay —czquhh?,

E[E(9)E(q)'] =

i

where the final equality follows from the assumption that &; ; are iid with covariance matrix 621,10,
cf. (6.1.3). Hence, the covariance matrix associated with the estimator 0 is given by

A A

Clq) =E[(6-6)(0-6)"]=0"M(q)". (6.1.7)

110

Measures of estimation and prediction variance

The mean-squared error committed when solving the estimation problems (6.1.4) or (6.1.5) is

E[|6 - 6|*)=E[||6 — E[6]]*] +2E[6 — E[6] " (E[6] - 6) + ||E[6] - 0]
=E[|6 - E[8]|) +||IE6] - 6], (6.1.8)

where the first term in (6.1.8) is the variance of the estimator 6 and the second is its bias. If 0 is
the solution to (6.1.4), then E[0] = 0 and the bias term is zero. On the other hand, if 6 is the
solution to (6.1.5), then the bias term is given by

IE[6]—6|>=||((M(q)+R)"'M(q) — I, GH = ||(M(q)+R) 1R9H
and can be bounded above by
A _ 2 2
IE[6] - 611> < [|[(M(q) +R)~'R||"[|6]>.
The first term in (6.1.8), the estimation variance, is the trace of the covariance matrix, i.e.,

E[|6 —E[6]|°] = u(C(q)),

and is typically referred to as the A-optimality criterion. According to the previous discussion, a
reasonable approach to designing experiments is to minimize the function

g a(C(g)+ (1 —a) || (M(q)+R)'R||”

for a fixed convex combination parameter ¢ € (0, 1). Note that if & = (1+/8|>) !, then this
function is an upper bound for the mean-squared error, scaled by (1 +||0]/?)~!. Unfortunately, 6
is typically not known, leading one to select & based on their preference to emphasize the
variance or bias terms.

Using the estimator 6, we arrive at an estimator for the predicted response given by g?é, where
gi = h;ju for a user-provided vector u € K. As we did for the estimation error, we can compute
the mean-squared prediction error for the i experiment as

A

Ellg{ 6 -/ 6] Ellg/ 0 —Elg; 6]]°] +|E[g/ 6] — g, 6]
E[lg] (0 —E[6])] + s/ (E[6] - 6)
The first term is the prediction variance, which is given by
Ells{ (6 —E[B])]*] = &/ C(9)s:. (6.1.9)

whereas the second term is the prediction bias, which is zero if 0 solves (6.1.4). When 6 solves
(6.1.5), the prediction bias is given by

8 (E[6]—6)]” =g/ (M(q) +R)”'RO

111

and is bounded above by
&/ (E[6]—0)]” < |R(M(q)+R)"'&ill*|6]1* = | & (M(q) +R)"'R*(M(q) +R)_1gi] l6]*.

Given a weight vector w € R" with nonnegative entries, it is reasonable to choose the vector g to
minimize the function

g Ywi (o gl Clasi+ (1~ @) |R(M(g) + B) i)
i=1

for a fixed convex combination parameter o € (0, 1). The first term is called the I-optimality
criterion, which quantifies the average prediction variance.

In the forthcoming section, we discuss additional optimality criteria based on both the estimation
and prediction variance. In the current version, InverseOED does not support the nonsingular
covariance case, which includes the regularization term and the convex combination parameter.
However, these features maybe implemented for future versions of the InverseOED library.

6.1.2. Gradient-based optimization formulation

InverseOED implements two classes of algorithms for performing OED: gradient-based
optimization algorithms and greedy algorithms. Each algorithm class determines the design
vector ¢ by approximately minimizing a functional of the estimated parameter covariance
matrix.

We first present the exact design formulation of OED, which seeks a vector of nonnegative
integers g € N". The entries of g correspond to the number of times each experiment is
performed. Given an experiment budget b € N, we seek to compute an optimal design g* by
solving the integer optimization problem

n
q* € argmin W(C(q)) subjectto Y g;i=b. (6.1.10)
geN” i=1

Again, the optimality criterion ¥ is a scalar function acting on matrices that quantifies estimation
or prediction uncertainty. The exact design problem (6.1.10) is difficult to solve since g is a
required to be a vector of nonnegative integers. To circumvent this challenge, we can set p = ¢/b
and note that if ¢ satisfies the budget constraint in (6.1.10), then0 < p; < 1fori=1,...,n. f ¥Yis
positively homogeneous (a condition that is typically satisfied by optimality criteria), then
substituting ¢ = bp with p € [0, 1]" into (6.1.10) produces the approximate design problem

n
p* € argmin W(C(p)) subjectto Y pi=1. (6.1.11)
pel0,1]? i=1

The components of an optimal solution p* to (6.1.11) represent the frequency for which each
experiment is run. Multiplying p* by the budget b then produces an approximate design, which
can be rounded to the nearest integer value to produce a schedule of experiments.

112

For many common optimality criteria P, the objective function ¥(C(p)) in (6.1.11) is
differentiable and convex. In this case, the globally optimal solution to (6.1.11) can be computed
using a gradient-based optimization. The InverseOED app uses the Rapid Optimization Library to
formulate and solve (6.1.11) [ROL2017]. Note that from a practical point of view, the experiment
schedule g are only realizable if it is feasible to perform an experiment multiple times and we
note that running an experiment multiple times can reduce uncertainty in the estimated
parameters by improving the estimate of the noise in that experiment.

6.1.3. Greedy-based optimization formulation

For the greedy formulation, we consider only binary designs, i.e., ¢; € {0,1} fori =1,...,n. This
models the situation in which each experiment can be performed only once. The greedy
algorithm, Algorithm 1, approximately solves the binary optimization problem

n
q* € argmin W(C(g)) subjectto) g;=b. (6.1.12)
q€{0,1}" i=1

In the desciption of Algorithm 1, we employ the notation lf’(S), where S is a subset of integers
between 1 and n, to denote W(C(q)), where g; = 1 if i € S and ¢; = 0 otherwise.

Algorithm 1 The Greedy Algorithm
1: Initialization: S=0and M =0
2. whileM <bdo
3 j = argmin ¥(SU{,j})

Je{l,..n}\S
4: S=Su{j*}, M=M+1
5: end while

Although the greedy approach is a heuristic and results in a suboptimal solution, it is known to
work very well. In cases where the objective function is submodular it can be proven that the
greedy solution produces an objective function value that is within (1 —e~!) of the optimal
objective value, where e is Euler’s constant [submodular2014]. Currently, the greedy algorithm
implemented in InverseOED is specialized for D-optimalty; one reason being that the
D-optimality criterion is submodular. We note that, in contrast to (6.1.11), the greedy algorithm
naturally enforces the sensor budget simply by terminating the search once the budget is
reached.

6.1.4. Optimality criteria

The goals of an inverse-based experiment are to use measured data to either (i) estimate the
parameters of a model or (ii) predict the unobserved response using the estimated parameter. By
choosing the optimality criterion W in the objective function of (6.1.11), we can achieve
experiment designs that minimize either parameter or prediction uncertainty. Table 6-1 provides a

113

list of the optimality criteria that are implemented in the gradient-based version of the
InverseOED app.

Table 6-1. — Optimality Criteria

Criterion ¥Y(C) Description
A Tr(C) Average estimation variance
C vICy Variance of v € R™ times the estimator
D det(C) volume of the covariance
I Elg'Cg] Average prediction variance
R AVaRg [¢"Cg] Tail average prediction variance for B € [0, 1]

Based on our definition of experiment, we understand the prediction variance to mean the
variance of uTthé = gl-Té, where u € K" is a user-defined vector (e.g., the vector of ones). It
then follows that the prediction variance is given by (6.1.9). We treat this quantity as a random
variable with respect to the sensor locations (DoFs). This interpretation allows us to formulate the
I- and R-optimality criteria in order to minimize statistics of the prediction uncertainty.

In the context of unregularized least-squares (6.1.4), it is customary to define ¥ so that
Y(C(g)) = +oo if M(q) is singular. For example, the D-optimality criterion is given by
Y(C) = det(C). Using the form of C(g) when M(q) is invertible, we can rewrite ¥(C(g)) as

¥(C(q)) = o™rdet(M(q)) "
In this form, ¥(C(q)) is defined even when M(q) is singular; in which case, ¥(C(q)) is infinite.
A-optimality

The A-optimality criterion seeks to minimize the estimation variance of @ and is given by

T@zMQ:ZQ (6.1.13)

C-optimality
The C-optimality criterion seeks to minimize the variance of v for user-provided v € K" and is

given by
¥(C)=v'Cv. (6.1.14)

114

D-optimality

The D-optimality criterion seeks to minimize the volume of the parameter uncertainty ellipsoid
associated with 6 and is given by
Y(C) = det(C) (6.1.15)

In the case of homoscedastic noise, D- and G-optimality are equivalent [Kiefer1960], where
G-optimality minimizes the maximum prediction variance over all experiments.

l-optimality

The I-optimality criterion seeks to minimize the average prediction variance over all candidate
experiments. Given a nominal probability distribution defined on the set of experiments {1,...,n}
with probabilities wy; > 0, the [-optimality criterion is given by

n
P(C) =Y wig(Cgx (6.1.16)
k=1
For example, setting wy = 1/n for k = 1,...,n produces the I-optimality criterion associated with

the uniform distribution of experiments. Owing to the linearity and cyclic invariance properties of
the trace, we can rewrite the [-optimality criterion as

Y(C) =Y wytr (ngCgk) =tr|C

k=1 k=1

Z wkgkg,j] =tr(CB).

=:B

By computing the matrix B offline, the online computational expense for solving the I-optimal
design problem is comparable to solving the A-optimal design problem.

R-optimality

In general, G-optimality can be overly conservative as it minimizes the worst-case prediction
variance, while [-optimality does not penalize heavy tailed statistics. R-optimality is a new
risk-adapted optimality criterion that seeks a design that represents a trade-off between
G-optimality and I-optimality [KouriRisk2022, Kouri2022]. R-criteria is the average
value-at-risk of the prediction variance for a provided confidence level B € (0,1). Given a
nominal distribution of experiments with probabilities wy > 0, the R-optimality criterion is
defined as
. 1 ¢ T
¥(C) :mm{t+m Y wimax{0, g, Cgk—t}} (6.1.17)
k=1

teR

The average value-at-risk is a statistical measure of the tail of a random variable’s distribution. It
can be thought of as the the average of the (1 — 3) x 100% largest scenarios for a fixed confidence

115

level B € (0,1). For clarity, Figure 6-1 presents the probability distribution function of an
example prediction variance distribution and highlights the R-optimality value, which equals the
average taken over the shaded region. The user’s aversion to risk is reflected in the specified
confidence level, which sets the quantile at which the average value-at-risk is computed. It is
instructive to understand the cases when 8 = 0 and 8 = 1. As 3 approaches one, the R-optimality
criterion approaches the G-optimality criterion whereas if = 0, the R-optimality criterion is the
I-optimality criterion.

Probability density

B-AVaR
Average of red region

B-quantile

Prediction Variance

Figure 6-1. — An example probability distribution function of the prediction variance where the R-
criteria equals the average taken over the shaded region

6.1.5. Structural dynamics inverse problem examples

We apply InverseOED to two structural dynamics inverse problems: modal expansion and MIMO
source inversion. This section provides a brief overview of these problems. For additional details
see [Mayes2020].

Modal expansion

We begin by modeling the structure’s dynamic response as the solution to the system of
differential equations defined by the following governing equations of motion

Mii(t) + Cui(t) + Ku(t) = £(1) (6.1.18)

where M € RVN C € RMN and K € RMN are respectively the mass, damping, and stiffness
matrices. In cases where the structure is lightly damped, the mode shapes ¢, € R" for
r=1,2,...,N can be found from the solution of the eigenvalue problem

(M 'K-2,1)¢, =0 (6.1.19)

The mode shapes form a basis for the dynamic response u(#;) at any instance of time f. To simply
notation, let u := u(r;). We assume that u can be approximated by the span of a subset of ny mode

116

shapes, where ny < N. Then by definition, there exists a set of expansion coefficients z € R"®
such that

Ng
wi @i =Y iz (6.1.20)
j=1

The modal expansion inverse problem seeks to estimate z := z(#;) from the measured data. We
apply the inverse and associated OED framework to the modal expansion problem by
transforming (6.1.20) into the form of (6.1.1) using the following substitutions,

yi =i, hl =o', and 0=z

Note that the covariance of the estimated expansion coefficients is time independent since the
mode shapes are independent of time .

MIMO control

We now turn to our application of the OED to MIMO control problem in the temporal frequency
domain. The control problem entails estimating loads at a subset of ny < N DoFs associated with
the control input locations in order to generate the measured response. We denote a particular
frequency in the temporal frequency domain by @ € R. The frequency domain transformation of
(6.1.18) is given by the following system of algebraic linear equations

i(w)=Al0)f(o). (6.1.21)
where A(@) € CV*V is the frequency response function (FRF) defined as
A(w) = (K— joC + o*M) . (6.1.22)
Let f(®) € C" denote the forces associated with the control input DoFs and a; (@) € C"/

represent the appropriately indexed FRF that maps the control forces to the response ;(®) € C. It
follows that the response at DoF i is given by

(o) =a; (0)f(o) (6.1.23)

Assuming the frequency domain is discretized into ng, frequencies, we can express the MIMO
control OED problem in a form compatible with (6.1.1) by making the following substitutions

yi = [ﬁi(a)l), ﬁ,’((l)z), cee ﬁi(a)n)]

al (@) o0
0 a; 0
hl=1 ’(.wz) , . (6.1.24)
0 0 oa (@)

0 :=[f(w), f(mm), ..., f(0n,)]

Note in the MIMO control problem, the number of observations n, is equal to the number of
frequencies n.

117

This page intentionally left blank.

118

INDEX

block, 7, 10, 26, 44, 45, 51
material identification, 44

data_file, 42
data_truth_table
inverse-problem, 36
superelements, 36
data_weight_table, 43
design variables
transient, 25
design_variable = damage, 56
directfrf, 46
directfrf-inverse, 5, 29

eigen, 46
eigen-inverse, 9
eigen_objective, 14

frequency, 6, 16, 38

Heterogeneous, 53
heterogeneous, 53
homogeneous, 53, 54

imaginary_data_file, 42
Inverse Problems, 60
DirectFrf
LoadID, 60
MateriallD, 62
experimental data, 60
Forward Problem, 60
Load Identification, 61
Material Identification, 65
inverse solutions
directfrf, 5
eigen, 9
modalfrf, 15
modaltransient, 22
transient, 24
inverse-directfrf, 35

119

inverse-problem, 5, 6, 8, 9, 14, 15, 23-25,
34, 35, 49, 51-53
data, 36
data_file, 42
data_truth_table, 36
data_type, 36
data_weight_table, 43
imaginary_data_file, 42
modal_data_file, 43
modal_weight_table, 43
psd_data_file, 42
real_data_file, 38
inverse_material_type, 10, 44, 45, 53
inverseBlock
heterogeneous, 44
homogeneous, 44
known, 44
inverseMaterial
acoustic, 46
Aij_bounds, 48
boundConstraints, 50
bulk, 46
c0_bounds, 50
density_bounds, 51
E_bounds, 47
Eij_bounds, 48
filter_radius, 52
G_bounds, 47, 51
Gij_bounds, 48
Gim_bounds, 49
Greal_bounds, 49
impedance_match, 49
isotropic, 46
isotropic_viscoelastic_complex, 46
K bounds, 47, 51
Kim_bounds, 49
Kreal bounds, 49
material_parameters, 46, 47

Nu_bounds, 47 material identification

num_material_parameters, 46, 47 directfrf, 7

orthotropic, 46, 47 eigenvalue, 10

penalizationElasticity, 51 eigenvector, 11

penalizationMass, 51 multi directfrf, 8

rho, 47 transient, 26

shear, 46 block entry, 44

smooth_heaviside_slope, 52 material entry, 46

smooth_heaviside_threshold, 52 modal_data_file, 43

sound_speed, 47 modal_weight_table, 43
InverseOED modalfrf-inverse, 15

baseline sensors : parameter, 81 modaltransient-inverse, 22, 29

executing oed, 87 mpe_algorithm, 14

gradient-based optimization, 112 mpe_alorithm, 14

greedy, 88, 113

initial design : parameter, 81 normal displacement scale factor, 56

linear model : parameter-list, 82
mse-objectives, 93
multi-axis sensors, 89
multi-budgets, 90
oed : parameter-list, 80
optimality criteria, 80, 113
results, 88
robust oed, 96
sensor dropout, 85

isotropic, 47

objective functions

transient, 26
optimization, 5, 9, 15, 23, 24, 29
OUTPUTS, 54

parameter identification

directfrf, 8
parameters, 12
penalizationElasticity=<double>, 56
power spectral density

Known, 53 load identification, 17, 19
known, 53 projection_mode_selection, 14
link_blocks, 35 real_data_file, 38
load, 8 regularization, 34
load identification ROL output, 59
directfrf, 6
limitations, 58 scaleDesignVars, 30
load entry, 56 Solution, 4
modalfrf, 16 spot_weld, 54
modaltransient, 22 spot_weld_norm_stiffness, 54
transient, 25 spot_weld_tang_stiffness, 54
PSD modalfrf, 17, 19
loads, 7, 8, 17, 18, 21, 24, 26, 56, 57, 59 transient-inverse, 24, 29
material, 7, 10, 26, 4547, 50-52 useTransferMatrix, 35

120

DISTRIBUTION

Email—Internal

Name Org. Sandia Email Address
Technical Library 1911 sanddocs@sandia.gov
Hardcopy—Internal
Number of :
Copies Name Org. Mailstop
1 T. F. Walsh 1543 0897

121

This page intentionally left blank.

122

This page intentionally left blank.

123

Sandia
National
Laboratories

Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.

	Release Notes
	Release 5.26
	Release 5.24
	Release 5.22

	Inverse Methods in Sierra/SD
	Inverse Solution Methods in Sierra/SD
	DirectFRF-Inverse Solution Case
	Load Identification
	Material Identification
	Multi-Experiment Material Identification
	Circuit Parameter Identification For Piezoelectric Modeling

	Eigen-Inverse Solution Case
	Eigenvalue Material Identification
	Eigenvector Material Identification
	Repeated Modes
	Rigid Body Modes
	Mode Swapping/Crossing
	Singular Solve
	Computed Eigenvector Scaling
	Eigen Objective
	Projection Mode Selection

	ModalFRF-Inverse Solution Case
	Load Identification
	PSD Load Identification
	Random PSD Load Identification

	ModalTransient-Inverse Solution Case
	Transient-Inverse Solution Case
	Design Variables
	Load Identification
	Material Identification

	Objective Functions
	Tracking Objective Function
	SRS Objective Function

	Inverse Options in Sierra/SD
	Optimization
	Inverse-Problem
	Regularization Parameters
	Multi-Experiment Parameters
	Transfer Matrix Option
	Link Blocks Option

	Inverse Data Files
	Block section for Material Identification
	Material section for Material Identification
	Loads section for Load Identification
	Limitations for Inverse Load Problems
	ROL Output for Inverse Problems

	Example Inverse Problems
	Experimental Data
	Inverse Problems - Load-ID
	Experimental Model
	Forward Problem
	Inverse Problem with known loads
	Inverse Problem with unknown loads
	Verification

	Inverse Problems - Material-ID
	Experimental Model
	Inverse Problem input format
	Running the Inverse Problem
	Verification
	Design Variables History Output

	Inverse Methods with InverseAria
	Introduction
	Outline
	Beta Capabilities and Limitations
	Getting Started with Inverse Aria
	Optimization .xml Inputs for Inverse Aria

	Inverse Problems
	Thermal Conductivity
	Steady Boundary Heat Flux
	Transient Boundary Heat Flux
	Thermal Contact Resistance
	Arrhenius Source Terms with Finite Differences

	Optimal Experimental Design
	Introduction to InverseOED
	Input Deck Introduction
	ParameterList: OED
	Initial Design
	Baseline sensors

	ParameterList: Linear Model
	General Framework
	Frequency Domain
	Time Domain

	Robustness to Sensor Dropout
	Executing InverseOED and Results
	InverseOED executable
	Parallel Runs
	Results

	Greedy Algorithm
	Multi-axis sensor placement (Original Version)
	Multiple Budgets and Multiple Sensor Types
	Greedy Mean Squared Error Objective Functions

	Source Placement with Greedy
	Robust Model OED

	TRACE
	Introduction
	Minimal Working Example
	Input Deck Format
	Algorithmic Parameters
	Required
	Optional

	Variables
	Model Parameters
	Output Parameters
	Metrics

	Postprocessing Probabilities
	Required Parameters
	Optional Parameters

	Appendix
	Optimal Experiment Design Theory
	Inverse problem framework
	Gradient-based optimization formulation
	Greedy-based optimization formulation
	Optimality criteria
	Structural dynamics inverse problem examples

	Index
	Distribution

