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ABSTRACT

Presented in this document is a small portion of the tests that exist in the Sierra/SolidMechanics
(Sierra/SM) verification test suite. Most of these tests are run nightly with the Sierra/SM code
suite, and the results of the test are checked versus the correct analytical result. For each of the
tests presented in this document, the test setup, a description of the analytic solution, and
comparison of the Sierra/SM code results to the analytic solution is provided. Mesh convergence
is also checked on a nightly basis for several of these tests. This document can be used to confirm
that a given code capability is verified or referenced as a compilation of example problems.
Additional example problems are provided in the Sierra/SM Example Problems Manual. Note,
many other verification tests exist in the Sierra/SM test suite, but have not yet been included in
this manual.
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1. INTRODUCTION

This document presents example verification results for Sierra/SolidMechanics (Sierra/SM)!.
These are only example results in the sense that the verification manual contains a small subset of
the total Sierra/SM verification test suite.

1.1. Objectives

The audience for this document is rather diverse and as such we seek to both provide strong
evidence of the code’s correctness (tending to have a more mathematical nature), and evidence
that has more of a practical bent and can thus have potential utility for the analyst in defining a
model (e.g., by seeing how the mesh density affects the accuracy of a contact calculation).
Complete verification of Sierra/SM would be a long-term undertaking, especially since the code
is under continuous development. Oberkampf and Roy [4] note that, “V&V are ongoing activities
that do not have a clearly defined completion point, unless additional specifications are given in
terms of intended uses of the model and adequacy.” As such, the current verification manual
represents a snapshot of the verification tests that have been more formally documented, but it is
under ongoing development to address current applications of the code.

I'Significant verification evidence exists in other SAND reports, some problems of which are also included in the test
suite.
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1.2. Scope

To make this document more useful to some analysts, Section 1.3 contains some introductory
material on verification; that section focuses more upon tests that examine convergence (which
address two of the test types to be explained) than upon the other (five) test types that do not
address convergence. This emphasis is not because these are the only tests that are important, but
rather because they are more complex tests and thus their correct interpretation requires more
explanation of issues like “what is the effect of using a linear elastic ‘exact solution” when it is not
an exact solution to the underlying mathematical model that the code approximates?” The intent
is to provide discussions of these different issues that can be referenced by the individual test
write-ups for more details. The interested reader can consult more complete treatments of the
topics from textbooks such as those that influenced our work [4,5]. A much less comprehensive
discussion than the textbooks is presented in a report on the initial efforts to use Sierra tools to
perform verification of Sierra/SM using field responses [2], some text of which is incorporated in
this introduction.

24



1.3. Background?

Verification seeks to prove that a code is “solving the equations right,” not “solving the right
equations” [4,3,1]. The latter endeavor is the subject of validation. As such, verification seeks to
prove that a code will obtain the correct solution of the underlying mathematical model — partial
differential equations with corresponding initial and boundary values that define a
boundary-initial-value problem (BIVP), or equivalently the weak or variational statements of the
BIVP. Of course, the code solutions are based upon approximation theories that ‘reduce’ the
solution of our BIVP to the solution of algebraic equations amenable to computation.

1.3.1. Convergence

Two categories of tests that will be discussed below incorporate some measure of a code’s ability
to converge to a solution: convergence to the exact solution, and convergence to a reference
solution. That is, we seek to show that successive approximations with finer discretizations (mesh
and/or time steps) will be increasingly closer to the exact solution?, i.e., that we have convergence.
The concept of convergence has a rich mathematical foundation, but in this document we merely
touch on a few basic definitions to facilitate interpretation of the verification results.

As noted above, we describe convergence as occurring when a sequence of refined numerical
solutions becomes increasingly closer to the exact solution. This implies we have a way of
measuring the distance between two solutions (a metric, denoted by d(e,e)). For our verification
of Sierra/SM, we know that our exact solutions live in a function space with additional
topological measures for size (a norm, denoted by || ||) and for angle (an inner product, denoted
by < e,e >). Our distance measure is then defined in terms of the norm; that is, we measure the
distance as the size of the difference between two solutions (i.e., the size of the error):

d(uapprom Uexact) = ”uapprox — Uexactl (L.1)

where ugpprox 1s an approximate solution, and w4 is the exact solution. Note that the variable u
in this context represents an arbitrary field, not necessarily displacement. These are
generalizations of concepts we are familiar with in three-dimensional Euclidean space.* If we
have two vectors, one representing the exact solution and one representing the approximate
solution, their difference is the error vector, and the magnitude of that vector indicates the size of
the error.

The norm used for many of the verification problems is the L, norm of the error:

ZFor the reader familiar with verification, the only section that may be of interest is Section 1.3.2 which describes the
classification of verification problems for Sierra/SM.

3The weaker category of convergence tests generally deviates from using an exact solution. The issue of using an
inexact reference solution will be discussed further in sections below.

4A brief mathematical description that provides additional context for the concepts of function spaces and con-
vergence is presented in [2]. Details were omitted but commonly used terminology was introduced. For more
mathematical details on these concepts in the context of boundary value problems see, e.g., [6].
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1/2
||uappr0x —Uexacrll2 = |:/ [uapprox(x) - uexacl(x)]zdQ (1.2)
Q

Currently, the norm calculations are done with Encore [7] using Gaussian quadrature. For a
vector- or tensor-valued quantity, the difference in each component is squared in the integrand.
All results given in this document for L, norms of symmetric (second order) tensors are based
upon “vector” storage of the tensor components, consistent with Voigt notation and the Exodus
file storage scheme. As such, the L, norm applied to the vector of components reduces the
contribution of the off diagonal terms by a factor of 2, since symmetry is exploited to reduce the
number of terms in the vector. The Encore input can be modified to yield the true L, norm of the
tensor, but it complicates the input and the vector form constitutes an equivalent norm.

For some verification tests, we seek to know not only whether the increased resolution of a refined
mesh or time step produces better results, but also the rate at which these improvements are
realized. For the description below, assume the refinement is in the mesh (i.e., spatial). Ideally the
error in the approximation will satisfy a theoretically derived relationship of the form

leall = llu = texaerl = ch? + O(hP*1) (1.3)

for some constant ¢, where p denotes the theoretical rate of convergence, & is a measure of the
element size, uy denotes the approximate solution for 4, and ey, denotes the error vector associated
with 4. When we apply the above ideas to quantities of interest, like a beam tip displacement, the
tensors become scalars and we use an absolute value for the norm. Note that until 2 becomes
sufficiently small, the higher order terms on the right-hand side of Equation (1.3) can affect the
observed rate of convergence when evaluating a sequence of approximations. As & decreases, the
right hand side of Equation (1.3) asymptotically approaches the first term, ch”. When h is
sufficiently small for this first term to dominate, the approximate solutions are described as being
in the asymptotic range, and thus the theoretical rate of convergence, p, is often referred to as the
asymptotic rate of convergence. In the V&V literature, the rate obtained from theoretical analysis
is also referred to as the formal order of accuracy [4]. In the literature for finite element methods,
it is also often referred to as the optimal convergence rate, or simply the convergence rate. In a
later section, we will describe how an observed convergence rate is measured from a sequence of
numerical solutions.

1.3.2. Types of Verification Tests

Several types of tests are used in verification, and authors group them differently. For the
verification of Sierra/SM, we have adopted the following types of tests. The list of test types is
nominally presented in an order ranging from simplest to most complex, with the most complex
tests often being considered to be the most rigorous (with respect to being able to reveal subtle
code errors’).

>Note that in referring to the error as “subtle,” we are not implying its effect in an analysis would necessarily be
insignificant but rather that the source of the error in the coding is not obvious.
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1. Conservation test - checks the conservation of physical quantities such as mass,
momentum, and energy.

2. Symmetry test - checks the preservation of symmetry (symmetries).

3. Sanity check - determines if a known qualitative behavior or “sanity” is preserved. An
example would be inertial reference frame invariance, i.e., objectivity tests.

4. Code-to-code benchmark test - compares results of one code to another code that was
previously verified.

5. Discretization error test - compares a single numerical analysis to an analytical solution.
The analytical solution may or may not be exact. A common solid mechanics test of this
type is the patch test, where the reference solution is a constant stress/strain result.

6. Convergence test - loosely demonstrates the proper order of convergence at best, or at least
demonstrates a tendency to converge to a solution with mesh and/or time step refinement.

7. Error quantification test - generates empirical evidence that the code can enter the
asymptotic regime and that the computational error trends toward zero (with mesh or time
step refinement). This category of test requires the exact analytical solution. They are also
referred to as order-of-accuracy tests.

A balanced verification suite would contain tests from each category. The first four categories are
rather straightforward and will not be discussed further in this document (see [4] or [5] for
additional discussion). As a generic term to address tests that examine the rate of convergence, we
will call these tests convergence-rate tests. Category (6) tests may be convergence-rate tests, and
category (7) tests are always convergence-rate tests.

1.3.2.1. Reference Solutions

Before discussing the next three categories, we will clarify what we mean by the exact analytical
solution versus simply an analytical solution. Generically, we will refer to any solution used to
measure the correctness of numerical solutions as the reference solution. To evaluate the
correctness of the code rigorously, we need to have a reference solution that is the exact analytical
solution to the mathematical model that the code approximates (in our case, usually the weak
statement of the underlying BIVP). This consistency is a key point, because if the analytical
solution is for a mathematical model to a “nearby” problem (i.e., a surrogate solution) the
verification is weaker.

The common case of adopting a surrogate solution, for solid mechanics, is the use of analytical
solutions for linear elasticity problems. Obviously this is the class of solid mechanics problems
for which many closed form solutions exist. In the case of Sierra/SM, an analytical solution for
linear elasticity problems is not an exact solution to the underlying mathematical model, because
the code inherently addresses finite deformations, yielding a nonlinear strain-displacement
relationship and enforcement of equilibrium in the deformed configuration, whereas the linear
elastic response can only be obtained in the limit of infinitesimal displacements. Even when the
goal is to examine how well the code performs for a problem governed by linear elasticity, the
underlying nonlinearities can complicate the comparison, because there is the potential for these
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nonlinearities to affect the perceived error® As such, this issue is most evident for a highly
accurate solution where the first significant digit of the error corresponds to many digits into the
floating-point word representing the response quantity. For convergence tests, the issue is more
important (usually for finer the meshes) and will be discussed further below.

Of course, a challenge is that there are far fewer analytical solutions that are consistent with the
underlying mathematical model of Sierra/SM, i.e., for problems with finite deformations. If we
consider problems that have other sources of nonlinearities (like contact and nonlinear constitutive
behavior) and complexity (like integral operators, e.g., to characterize path dependence), the
chance of obtaining an exact analytical solution is reduced further. While we have started to apply
the manufacturing of solutions for problems with finite deformations, extension to problems with
contact and material models defined in an incremental manner needs further development.

1.3.2.2. Discretization Error Tests

Note that our current verification test suite is dominated by discretization error tests. This is a
rather natural state, since these tests can offer a good balance between verifying the code
correctness (or quality) and the investment required to develop the test. These tests are also easy
for an analyst to relate to since the comparison of two solutions is often limited to a tabular or
graphical representation of quantities of interest or their errors (e.g., a patch test stress state or a
load-deflection curve), and the problems are physically meaningful. The reference solution in this
case, while analytical, may not be the exact solution. Unfortunately these tests address accuracy
alone, and it is often difficult to assess if a level of accuracy is acceptable for a given
discretization. As such, these tests can reveal major code errors but are less useful at revealing
subtle code errors that error quantification tests can reveal.

1.3.2.3. Convergence Tests

These tests are the weaker of the tests that yield information on convergence. The source of their
weakness is typically either that they: (1) adopt an inexact reference solution; or, (2) demonstrate
a tendency to converge without reference to another solution. One type of convergence test that
the verification test suite adopts is an asymptotic analysis to estimate the rate of convergence.
This will be discussed more below, but it can be thought of as adopting an inexact reference
solution, since the analysis follows the asymptotic approach of Richardson’s extrapolation and
obtains an estimate of the exact solution that is one order higher than the numerical analysis.
While a test in this category may indicate a tendency to converge, and may even loosely
demonstrate convergence at the proper order of convergence, it does not show that the
convergence is to the exact solution; we can only say the approximation appears to be converging
to a solution. Detail on the characteristics of convergence tests adopting a surrogate reference
solution or using asymptotic analysis will be discussed more in separate sections that follow.

Technically, any difference between an inexact reference solution and a numerical solution is not an error, but
herein this reference is occasionally made, and it should be interpreted as a difference.
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1.3.2.4. Error Quantification Tests

This category of tests contains the strongest tests for convergence. They adopt an exact analytical
reference solution, consistent with the underlying mathematical model of the code and clearly
demonstrate the ability of the code to exhibit the asymptotic rate of convergence (with mesh or
time step refinement). While mathematical proofs of convergence generally address measures of
errors in fields, we include both field and quantity of interest measures of convergence in this
category.

1.3.3. Observed Convergence Rate

Verification has been referred to as being an inherently empirical process [4] in the sense that we
seek, via numerical experiments, to determine if the code works as intended. In the context of
order-of-accuracy tests, we seek to show that in the asymptotic range, the observed rate of
convergence matches that theoretically predicted. If so, confidence is increased that the code is
correctly approximating the underlying mathematical model. In the V&V literature, the rate
inferred from multiple numerical analyses with different levels of discretization is referred to as
the observed order of accuracy [4]. In this document, we will tend to use the more common Finite
Element Method (FEM) phrases, observed convergence rate or simply convergence rate (in the
latter case, the distinction between the theoretical rate and observed rate is determined by the
context).

To estimate the convergence rate from multiple finite element analyses, we assume that
Equation (1.3) is valid, and that the O(hP*1) terms are not significant, i.e., that we are obtaining
the asymptotic rates. Taking the log of both sides of the asymptotic part of Equation (1.3) gives

log(llexll) = log(c) + plog(h). (1.4)

Thus on a log-log plot of error versus element size, the slope of the line gives the observed rate of
convergence. Often the results for the coarser meshes are not in the asymptotic range, and then
the slopes obtained by sequences of results from two meshes changes, giving more accurate
convergence rates with finer meshes. For two results from a FEA where the exact solution is
known, we can estimate this convergence rate by comparing the errors from these two meshes,
and solving for p. For the problems that follow, most refinements involve halving the element
size, h, which leads to the following relation for estimating the convergence rate:

p =log(llen 2ll/llenll)/log(1/2) (1.5)

where ej,/; is the corresponding error for uniform (half-size) mesh refinement. When we have
multiple levels of refinement, we could apply linear regression to all of the results on a log-log
plot obtaining the rate of convergence over a larger range of meshes. However, obtaining rates of
convergence from sequences of two results provides an indication of the extent to which the
results are in the asymptotic range.

The above discussion of observed rate of convergence is based upon the assumption that we have
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the exact solution and is thus applicable to error quantification tests. For tests that fall in the
convergence test category, we usually do not have the exact solution, but we may still seek to
estimate the rate of convergence. If so, we attempt to obtain the rate of convergence either by
using a surrogate solution or by using asymptotic analysis. Both approaches can provide more
confidence in the code correctness for some problems, but they also have limitations that will be
discussed below.

1.3.4. Convergence Tests using a Surrogate Solution

As previously noted, a surrogate solution is not an exact solution to the underlying mathematical
model that the code approximates, but rather is the solution of a “nearby” problem. As such, the
surrogate solution has mathematical modeling errors due to the differences in the problem it
solves. The surrogate solution may be useful for estimating the rate of convergence when the
numerical modeling errors are greater than the mathematical modeling errors, that is, for
sufficiently coarse meshes it provides an accurate surrogate for the exact solution. When the
converse is true (i.e., the mesh is relatively fine), strictly speaking we are faced with the
uncertainty of whether the difference in solutions is due entirely to the inexactness of surrogate
solution, or due to a subtle error in the implementation that verification is designed to reveal.
Unfortunately for coarser meshes where the surrogate solution is sufficiently close to the exact
solution, the numerical solution may not be in the asymptotic range. As such, for a surrogate
solution to be useful in estimating the rate of convergence, we need a range where the surrogate is
sufficiently accurate and the numerical results are in the asymptotic range. For some sequences of
solutions, this range will not even exist.

For the case of an exact reference solution, one expects the code to yield the asymptotic rate with
increasing accuracy upon mesh refinement. For the case of a surrogate reference solution, if the
FEM solution is approaching the exact solution, one would expect the difference to approach a
constant value that quantifies the mathematical modeling error. That is, in the limit, the difference
is an indicator of the error in the surrogate solution, not the FEM solution. Generally however, we
do not know that the FEM solution is approaching the exact solution, so the constant difference
that the FEM solution approaches could be a combination of code error and mathematical
modeling error.

Another characteristic of using a surrogate reference solution is that the convergence to the
constant difference is not necessarily monotonic. This is true for field quantities and quantities of
interest, and can be illustrated in terms of a solution in a function space or on the real line,
respectively. For simplicity, consider a description for a quantity of interest, the values of which
are on the real line. Assume for example that our quantity of interest is a force response, and that
the exact solution for the response is 1000. Also assume that the surrogate solution gives a force
response of 1001. If the sequence of results from the FEM starts at 1400 (a 40% error) and
monotonically decreases toward the exact solution, apparent non-monotonic convergence can be
obtained relative to the surrogate solution. Note that at a load level of 1400, the surrogate solution
provides a reasonable measure of the error (~39.8%). For example, consider a sequence of FEM
force predictions having linear convergence given by {..., 1006, 1003, 1001.5, 1000.75,
1000.375,...} and that are converging to the exact solution. The actual sequence of errors are
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simply {..., 6, 3, 1.5, 0.75, 0.375,...} which exhibits monotonic convergence. However, the
perceived errors (actually differences) obtained relative to the surrogate solution are {..., 5, 2, 0.5,
0.25, 0.625....} (not monotonic). These differences approach a difference value of 1 — the
mathematical modeling error. Note that if the surrogate solution gave a value of 999, the
convergence would be monotonic, so the relative values of the exact and surrogate solutions can
determine the nature of the convergence.

1.3.5. Convergence Tests using Asymptotic Analysis

Asymptotic analysis is used in convergence tests when we are seeking an estimate of the rate of
convergence, sometimes when we have a surrogate solution and other times when we do not. We
tend to use them when we have a surrogate solution, for cases where we do not have an obvious
range for estimating the rate of convergence. As such, it can strengthen the convergence
argument, though it is still weaker than having an error quantification test. When we do not have
any surrogate solution, it provides an estimate of the rate of convergence when otherwise we
could only observe a tendency of the results to converge to some value (hopefully the exact
solution). In the latter case, it is being applied identically as one does for solution verification.

The asymptotic analysis can be considered as consisting of two steps. First, the results from
sequences of analyses based upon three mesh refinements, where each refinement halves the
characteristic length of the element (e.g., each hex is approximately subdivided into eight hex
elements) are used to estimate the rate of convergence. Second, the convergence rate obtained
from the finest sequence of meshes may be assumed to be accurate, and then is used with
Richardson extrapolation to obtain a higher-order estimate of the exact solution. The
Richardson’s extrapolated estimate is then often adopted as the reference solution to analyze the
results, sometimes with log-log plots of a difference measure versus an element size measure as
would be done with an analytical reference solution. For problems like contact, where we cannot
define the expected rate of convergence exactly, we have chosen to use the rate obtained in the
first step as the rate applied in the second step and solve three equations for three unknowns (as
we will outline below), but the rate is not an integer. The alternative is to use the rate obtained in
the first step to provide an estimate of the rate and round it to the next integer. If the formal rate of
convergence is known for the numerical method, that rate should be used in the Richardson
extrapolation.

Consider an outline of the asymptotic analysis as two steps. For more detail, see references [4]
or [5]. First consider a sequence of three scalar results for a quantity of interest or norm of a field
that will be denoted as {S;,S;:1,S:+2}, where S; denotes the scalar value for the coarsest mesh,
and S;;+1 and S ;2 denote the scalar values for one and two uniform mesh refinements,
respectively. These results correspond to meshes such that h;,| = h;/r where r = 2.7 As with
Equation (1.3), we assume that error can be expressed in a power series in £, as

Si =S exaer +ch? + O™ (1.6)

7Uniform mesh refinement as specified here is not a requirement of the methodology, but it is the approach that has
been adopted for all problems in the manual to date.
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for a p™-order method. Combining the higher order error terms with the exact solution gives

SRE =S exaer + O(hP™) (1.7)

where S gg denotes an approximation of the exact solution that, if the hf 1 term exists, is one
order higher in accuracy than the original p”*-order method would give. The notation of the RE
subscript denotes the Richardson Extrapolated value for S, which will be solved for in the second
step of the analysis. Combining Equations 1.6 and 1.7 gives

S,‘ZSRE+Chf. (18)

If we write this relationship for meshes i, i + 1, and i + 2, we have three equations and three
unknowns. Eliminating S gg and ¢ from the three equations and solving for p gives

S1-52
In S,
2793
=——=° 27 1.9
P In(r) (1.9
Note that the above analysis can be used for successive sequences of three meshes, as is done for
many verification problems, and consistency in the results for p then gives an indication if the
results are in the asymptotic range. If the results are not consistent, the asymptotic analysis is not
conclusive, though the result from the finest set of meshes may suggest a tendency in the rate of
convergence.

The second step of the analysis corresponds to the generalized Richardson extrapolation, where
the extrapolated value is given by

Ss_SZ

Sre=S3+ 1

(1.10)
As previously noted, this value can now be used as a reference solution. We have done that in
many of the tests to give a graphical representation of the results from the asymptotic analysis.
These types of graphical results must be interpreted carefully, because in most cases S gg 1s
considered to be more useful as an indicator of the uncertainly in the solution than as a proper
surrogate solution. Use of this solution, when p is obtained directly from Equation (1.10), also
tends to instill false confidence in the results. This is due to the fact that by definition the
convergence plot will show the results for the finest three meshes as lying perfectly on a straight
line. When this occurs with an exact solution, we infer that we are in the asymptotic range; when
it occurs in this case it is simply a result of solving the corresponding three equations to make it
occur. In this case, we need four values to lie along a line, which corresponds to getting consistent
p estimates from two overlapping sequences (as previously mentioned). Another caveat in
plotting the results for these tests is that when multiple tests are plotted on the same plot we have
to keep in mind that they each have their own reference solution, so comparisons of relative
accuracies can be questionable, though potentially meaningful if we know the extrapolated results
are based upon data from the asymptotic range.
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1.4. Manual Organization

The remainder of the Sierra/SM Verification Tests Manual is divided into chapters that represent
related capabilities. Each section of a chapter represents a distinct verification test group. In some
cases, the test group contains a single test, and in other cases it contains a group of related tests
(e.g., a patch test applied all of the hex elements). The verification test groups listed in each
chapter verify some aspect of that suite of capabilities. Some of these verification tests are run
nightly by the development team to continually verify code solution quality. Other tests that are
too computationally demanding to be run nightly are tested before each code release. The
graphics and charts in this document are automatically generated by the test runs. The test files
for these problems may be found in the Sierra regression test repository, in the sub-directory

adagio_rtest/VerificationTestManual
On many Sierra-supported platforms, the latest versions of these tests can be accessed at

/sierra/dev/nightly/Sierra.tests.master/adagio_rtest/VerificationTestManual
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2. CONTACT VERIFICATION TESTS

The following are tests that verify aspects of our contact capabilities. These tests cover contact
input definition, constraint creation, contact equation solution, and friction model behavior. These
tests span the full Sierra/SM solution spaces of explicit transient dynamics, implicit transient
dynamics, and implicit quasi-statics.

2.1. Contact Force Balance
Analysis Type Quasi-statics (Adagio)
Element Type Hex8
Strain Incrementation | Strongly Objective
Material Model Elastic

Verification Category

Discretization Error

Verification Quantities

Contact Force

Number of Tests

1

Keywords

Force Balance

2.1.1. Problem Description
This test checks that the computed nodal forces are balanced (in equilibrium). It is composed of a

unit cube sitting on top of a larger block. The unit cube block has an applied pressure on the top
surface while the bottom block is held fixed.

21.1.1. Boundary Conditions

The applied pressure on the top surface of the unit cube is ramped in a sinusoidal manner to 1000
psi (a force of 1000 Ibs) while the bottom block is held fixed in all directions.

2.1.1.2. Material Model

Each block uses an elastic material model. The parameters are shown in table 2-1. The
parameters were simply chosen for convenience.
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Table 2-1. Elastic Material Properties
Young’s Modulus | E | 30 x 10° psi
Poisson’s Ratio v | 0.3
Density p | 100.0 Ibf sec?/in*

2.1.1.3. Feature Tested

The balance of nodal contact forces.

2.1.2. Assumptions and notes

This problem assumes that the deformation does not significantly affect the loaded area and thus
magnitude of the load.

2.1.3. Verification of Solution

The prescribed pressure force serves as the analytic value. The summed y nodal contact force on
the top block should be equal and opposite in sign to the pressure force. The sum of the nodal
contact forces in the y direction on the bottom block should be equal to the pressure force.
Finally, the summed y reaction force on the bottom block should be equal and opposite in sign to
the pressure force. These collected forces can be seen in the figure.

All values are balanced in the final time steps to 0.05% error.

For input deck see Appendix B.1.
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Figure 2-1. Force Balance
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2.2, Hertz Sphere-Sphere Contact

Analysis Type | Quasi-statics (Adagio)
Element Type | Hex8

Material Model | Elastic

Keywords Contact

2.2.1. Problem Description

This problem presses an elastic sphere into a rigid plate and compares the resulting contact radius
and the maximum sphere deformation to analytic predictions from Hertzian contact theory.

2.2.1.1. Boundary Conditions

The boundary conditions are illustrated in the Figure 2-2.

Figure 2-2. Elastic Sphere on Rigid Plate Problem Setup

2.2.1.2. Material

The sphere’s elastic material parameters can be found in Table 2-2.

Table 2-2. Material properties
Young’s Modulus | E | 68.9 x 10°
Poisson’s Ratio v [ 0.33
Density p | 1.024x107°
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2.2.1.3. Feature Tested

The augmented Lagrange node-Face contact algorithm for fricitionless contact is tested and
compared to an analytic solution.

2.2.2. Assumptions and notes

The assumptions for this problem match those of Hertzian contact problems. The strains are
assumed small and within the elastic limit. The radius of contact is much smaller than the
characteristic radius of the body. The surfaces are frictionless, continuous, and
non-conforming.

2.2.3. Verification of Solution

The analytic solution based on Hertzian contact for the contact radius (a) and the resulting
deflection (0) as illustrated in the Figure 2-2 are given by Equations 2.1 and 2.2.

This problem ran has a sphere of radius R = 1.0, an applied load of P = 5.0 x 107 and an elastic
modulus of E = 68.9x 10°.

3PR\ 3

6= (2.2)

The percent error is computed by Equation 2.3 for the contact radius and the deflection.

|Analytic — Computed)|

*100.0 (2.3)

JoError =
? |Analytic|

The contact radius is within 0.5% of 4.5% error and the deflection is within 1% of 9.75% error.

Figure 2-3 shows the contact pressure in the compressed region of the sphere where the contact
radius is computed.

For input deck see Appendix B.2.
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Figure 2-3. Contact Pressure on Compressed Region of Sphere
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2.3. Deresiewicz Sphere-Sphere Contact

Analysis Type Quasi-statics (Adagio)
Element Type Hex8
Material Model Elastic

Verification Category | Discretization Error
Verification Quantities | Torque

Number of Tests 4
Keywords Contact
2.3.1. Problem Description

This problem presses two elastic spheres together, and then applies a rotational motion to them;
see Figure 2-4 and references [1, 2]. Since the spheres are in frictional contact, the rotation
requires the application of a twisting moment. Due to symmetry considerations, only one-half of
one sphere need be simulated; see Figure 2-5.

2.3.2. Exact Solution

Denote by M the twisting moment applied, N the contact normal force, a the contact radius, u the
coeflicient of friction, G the shear modulus, and g the angle of twist. Define the non-dimensional
angle

2
0:=P00 (2.4)
J7
and the non-dimensional torque
M
uNa

There exists an exact solution, in terms of elliptic integrals, relating the dimensionless parameters
T and 6 [1, 2]. In reference [3] the authors approximate the exact solution with the rational
function

4 4 -1
T(6) = [Zake"] [Zb;ﬂk] . (2.6)
k=0 k=0

The parameters are given in Table 2-3. Equation (2.6) is convenient for numerical evaluation and
can be used for verification purposes.

2.3.3. Numerical Solution
This problem can be simulated using Adagio. The code can output the applied twisting moment

M and normal force N as a function of time. The twisting angle 5 and contact radius a as a
function of time can also be computed with user defined functions.
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Figure 2-4. Two spheres pressed together and subjected to a torsional couple. N is the normal force, M
is the applied moment, and « is the radius of contact.

2.3.4. Verification
The results of non-dimensional torque versus time can be compared for the exact (2.6) and

numerical solutions. One can compute an L' integrated in time error, if desired. Typical results
are shown, for example, in Figures 2-6 and 2-7.
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Figure 2-5. One-half sphere used for computational simulation.

Table 2-3. Padé approximation data

ap 0 b() 1
ap 16/3 | by | 5.1193
ay | 6.0327 | by | 15.6833
az | 19.6951 | b3 | 30.8099
as | 42.5359 | by | 72.2111
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Figure 2-6. Non-dimensional torque versus time.
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Figure 2-7. Non-dimensional torque error versus time.
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For input deck see Appendix B.3.
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2.4. Hertz Cylinder-Cylinder Contact—Convergence Test

Analysis Type Quasi-statics (Adagio)

Element Types Hex8

Element Formulations | Mean Quadrature, Fully Integrated

Strain Incrementation | Strongly Objective

Material Models Elastic

Verification Category | Convergence

Verification Quantities | Boundary Displacement (¢), Contact Force (P)

Number of Tests 4
Keywords Hertz, Contact, Convergence
2.4.1. Brief Description

This series of analyses demonstrates the convergence of contact for a classical Hertz problem.
This problem is a quasistatic version of the (inactive) Sierra/SM heavy test examining the
dynamic impact of two cylinders. Dash contact using both the face/face and node/face
formulations is tested. Two types of 8-noded, hexahedral elements are examined, namely (1)
uniform gradient (mean quadrature) elements, and (2) fully-integrated elements both with a
strongly objective strain incrementation. The first element is the most commonly used element
and the second one (loosely speaking) provides a bound on the element formulations (in terms of
integration).

24.1.1. Functionality Tested

Primary capabilities:

- Dash contact face-face and node-face formulations
Secondary capabilities:

- The following element formulations:

(1) eight-node hexahedron with the fully-integrated formulation and strongly objective
strain incrementation.

(2) eight-node hexahedron with the mean quadrature formulation and strongly objective
strain incrementation.

- prescribed displacement boundary conditions

2.4.1.2. Mechanics of Test

The in-plane geometry of the cylinder-cylinder contact problem is depicted in Figure 2-8. SI units
are adopted for this problem, and thus the radius of the cylinders is 4 meters. The half-cylinders,
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as shown in the figure, have equal radii, but also have equal thicknesses (lengths). The thicknesses
are defined for each mesh such that the elements in the contact region are approximately cubes.
The problem is defined as a quasistatic problem under displacement controlled deformation.

o

b

Figure 2-8. Hertz cylinder-cylinder contact problem.

2.4.1.3. Material Model

The primary material model used for this problem is the elastic model implemented in
LAME [1].
The selected properties were given as follows.

Table 2-4. Material model properties
Young’s Modulus | E | 1.0x10° Pa
Poisson’s Ratio y | 0.2

To examine the effect upon the convergence of the temporal integration of the elastic model (a
hypoelastic model), limited analyses using a hyperelastic model were conducted as well, but these
results are “document static”, i.e., are not updated automatically.

24.1.4. Boundary Conditions

The boundary conditions for this problem, as depicted in Figure 2-8, show the horizontal surfaces
(symmetry cuts) of the two half-cylinders have prescribed vertical displacements, denoted as 6.
The maximum value of ¢, which is the state at which the response is measured, is 2 cm. The
half-cylinders geometrically thus look more like half-disks, but plane strain boundary conditions
are applied to both “z-faces.” The horizontal symmetry cuts of the cylinders allow us to define
these surfaces as displacement reference planes; physically this corresponds to a unit cell out of a
stack of cylinders. If the objective were to reduce the problem size, it could be reduced further (in
this case) to a cylinder-plane contact problem.
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2.4.1.5. Meshes

Four of the five meshes used in this study are shown in Figure 2-9. Each mesh contains four times
as many elements (in the plane) as the coarser mesh that it is refined from, since h; = h;j_1/2,
where h; denotes the characteristic in-plane element size for mesh i. The mesh refinements
conform to the defining geometry, not the coarser mesh, and as such the solution space for the
coarser mesh is not a proper subspace of the solution space for the finer mesh. Through the
thickness, we examined mesh refinements that (1) maintained a constant thickness with one
element through the thickness and mesh refinements that (2) varied the thickness with one
element through the thickness. Approach (1) varies the element aspect ratios (at a given point in
space) with mesh refinement, while approach (2) approximately maintained the aspect ratios (at a
give point in space) by varying the element thickness to give approximately cube elements in the
contact region. The apparent rates of convergence differed for the different mesh cases, but the
value of “error” they converged to was essentially the same. Since approach (1) varies the mesh
quality with mesh refinement it is not used here to examine the rates of convergence.

Table 2-5 below contains the number of elements for each of the meshes.

Table 2-5. Mesh refinements

Mesh name | Number of Elements
Mesh-1 308

Mesh-2 1232
Mesh-3 4928
Mesh-4 19712
Mesh-5 78848

2.4.2. Expected Results

For this problem we have evaluated the results in two ways: (1) using an analytical reference
solution based upon the Hertz approach, and (2) using asymptotic estimates of the rate of
convergence based upon results from sequences of three meshes. The analytical reference solution
is briefly discussed below. The asymptotic analysis leading to the rate of convergence based upon
a sequence of approximate results (like the development of Richardson’s extrapolation) is based
upon the assumption that the form of the dominant error term for each mesh is as ch;”. Once the
observed rate of convergence is obtained, it can be used in the generalized Richardson
extrapolation to give a higher order estimate of the exact solution. The motivation for using the
analysis to determine the observed rate of convergence first is two fold: (1) it provides an
indicator that the approximate solutions are in the asymptotic range, and (2) for quantities of
interest like the reaction force we are treating the rate of convergence as an unknown since in
general we do not expect the contact algorithm to maintain the optimal rates of convergence that
are observed for simpler continuum problems. A detailed description of the analysis that provides
the estimated rate of convergence is presented in the text by Oberkampf and Roy [2]. Roach [3]
indicates that the analysis leading to the rate of convergence is from G. de Vahl Davis [4].
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Figure 2-9. Four of the five meshes used in this study

The analytical reference solution used in this study is taken from the Contact Mechanics text of
K.L. Johnson [5]. The relation for the displacement on the flat surface of the cylinder for this
problem can be obtained as

2 VAR

[(1-v*)PR
E 2.7)

where R ~ radius of the cylinder, E ~ Young’s modulus, v ~ Poisson’s ratio, and P ~ contact
force. Note that the form of the equation does not lend itself to the algebraic solution for P. As

(1-vHP | -1+2In

5=

Ern

49



such, we apply the equation in its current form in the following manner: (1) the FE model applies
displacements of magnitude ¢ to the two horizontal cuts of the cylinders, (2) the reaction force
(equivalent in magnitude to the contact force, P) is calculated in the FE analysis, and (3) this
value is used in the analytical expression above to determine the theoretical value for ¢ that should
have caused this level of force. The difference between the values of ¢ applied to the model, and
that obtained from the analytical expression are the quantity of interest type “error measure” used
in this study.

For readers that have additional interest in the source of the above equation, the results from
symbolic calculations within Mathematica are included in this test file’s directory for reference.
In particular, the above form reflects the particular data used to specify this problem: identical
cylinders with respect to both geometry and material. Note that the Mathematica results also
present the graphical relationships 6 vs. P and a vs. P, where a ~ contact width.

The analytical solution for this problem is not exact not only because it is based upon linear
elasticity, but also because it is based upon the simplifying approximations presented by Hertz.
These approximations include: (1) a representation of the contact surfaces by quadratic surfaces,
(2) a component of the deformation response of each body can be approximated by the solution of
a loaded half-space, and (3) relative displacement between the center and edge points of contact
are small compared to the contact radius. These approximations require both the geometric
dimensions of the body and the radii of curvature in the contact region (one in the same for this
problem) to be much larger than the contact radius. Thus the ideal, in terms of using these
approximations, is to adopt an extremely small contact area, but then that makes it more difficult
to define a mesh that efficiently uses small elements near the contact but transitions to larger
elements away from this region (for the sake of numerical efficiency). In defining this problem,
we initially sought to find a balance between test run times and sufficient accuracy to obtain a
measure of convergence, but admittedly pushed the upper limit of the contact size. Figure 2-10
depicts how localized the contact response is even with the selected contact area.

elem_stress_yy

v
9.918e+01
X -1.067e+03
-2.233e+03

-3.399e+03

-4.565e+03

Figure 2-10. Concentrated stress response for the cylinder-cylinder contact problem.

Since the reference solution is not exact the difference in the solutions is not really the error,
though it may be close to the actual error for coarser meshes. The “error” value that the solution
levels off to (in the limit) is a measure of the error in the reference solution, assuming that the
finite element solution is actually converging to the exact solution. The convergence to a fixed
difference between the analytical reference solution and the finite element solutions, can occur
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from above or below and is not necessarily monotonic in nature. Because of this convergence
behavior for finer meshes, it can be difficult to find a range of discretization for which the
approximate reference solution is sufficiently accurate to serve as a “surrogate” for the exact
solution and yet the meshes are sufficiently fine to be in the asymptotic range. As we will see in
this case, we did not obtain a region where the inexact reference solution allowed us to estimate
the rate of convergence, but we will observe it converging to a fixed difference. To strengthen the
argument that it is converging and to address the question of rate, we will estimate the rate of
convergence using the approach discussed above and apply Richardson Extrapolation to estimate
the exact solution.

2.4.3. Verification Results

As noted above, the quantity of interest in this test (for the analytical reference solution) is the
boundary displacement, 6. The slopes of the relative error curves between the data points
(corresponding to two meshes, on the log-log plots) yield observed rates of convergence. For an
exact reference solution, the observed rate of convergence approaches the asymptotic rate with
mesh refinement, assuming other sources of numerical error (e.g., solver accuracy) do not corrupt
the results. For this problem we are not using an exact solution, so an improvement in the
convergence estimate is not guaranteed. As previously noted, typically for problems without an
exact solution there is (or we hope for) a “sweet range” where the approximations are in the
asymptotic range but not refined enough to measure the inexactness of the references solution. Of
course the size of this “sweet range” is problem dependent, e.g., in this problem we have not only
the approximations associated with linear elasticity but also those associated with the Hertz
solution.

Initially we will examine the observed rates of convergence based upon the approximate reference
solution.

2.4.3.1. Results based on Hertz reference solution

The following tables give the observed rates of convergence for the two variations of the Dash
contact algorithm and the two Hex8 element formulations between each sequential pair of
meshes, where £, denotes the relative element size of the finer mesh of the pair (i.e., where 1
denotes the coarsest mesh - mesh 1). The following plots show the corresponding graphical
representations of the error data as a function of the element size.

51



|6diff|/ |6analyt|

Table 2-6. Observed convergence rates based upon the Hertz reference solution.

Face/face
Mean quadrature Fully integrated
hfine |5error|/|5analyt| hfine |5error| / |5analyt|
0.5000 2.6467 0.5000 3.0268
0.2500 0.8739 0.2500 -0.0444
0.1250 -0.8244 0.1250 -0.6605
0.0625 -0.1643 0.0625 -0.1594
Node/face
Mean quadrature Fully integrated
hfine |6err0r|/|5analyl| hfine Iéerr0r|/|6analyt|
0.5000 2.6140 0.5000 3.0102
0.2500 0.8709 0.2500 -0.2830
0.1250 -0.8362 0.1250 -0.6493
0.0625 -0.1671 0.0625 -0.1605

0.01 ‘ ‘ ‘ —————
! face—face_hex8—meanq—so —— /
face—face_hex8—full-so {
node—face_hex8—meang—so VA ]
node—face_hex8—full-so ]
0.001 | ]

0.0001 ——— ‘ ‘ ‘ E—
0.1 1

h/h,

Figure 2-11. Convergence of the displacement boundary condition versus element size.
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While the results suggest that each test case is converging (just not to the analytical reference
solution), as previously noted, the inexactness of the reference solution makes an estimate of the
rate of convergence intractable for the selected models. To examine the convergence rate we
resort to asymptotic analyses of the numerical results alone (i.e., without assuming a reference
solution) in the following section.

2.4.3.2. Results based on asymptotic analysis

The asymptotic analysis applied in this verification problem can be considered as consisting of
two steps. First, the results from sequences of analyses based upon three mesh refinements, where
each refinement halves the characteristic length of the element (i.e., each hex is approximately
subdivided, into eight hex elements), are used to estimate the rate of convergence. (Note that only
four of the elements are present in the finer mesh since the thickness is halved in the refinement.)
Second, the convergence rate obtained from the finest sequence of meshes is assumed to be
accurate, and then is used with Richardson extrapolation to obtain a higher order estimate of the
exact solution. The Richardson extrapolated estimate is then adopted as the reference solution to
analyze the results, as the analytical reference solution was used in the previous section.

Using sequences of three numerical results one can solve for the observed rate of convergence.
Two values are presented in the table, one for the normal force (P), and one for the contact radius
(a) calculated from P . Calculating the contact radius from P, in a sense just makes it a measure
of P, and both quantities yield nearly the same rates of convergence. The rates of convergence are
nearly quadratic for the reaction force with the mean quadrature element formulation. Also note
that the relative consistency of the convergence rates (more so for the mean quadrature results
with the finer two sequences of three meshes) suggests the results are in the asymptotic range.

Table 2-7. Observed convergence rates based upon asymptotic analysis.

Face/face
Mean quadrature Fully integrated
hfine ‘ P a hfine ‘ P a
0.2500 | 1.80 1.79 0.2500 | 1.84 1.83
0.1250 | 1.89 1.89 0.1250 | 1.77 1.77
0.0625 | 1.85 1.84 0.0625 | 1.65 1.63
Node/face
Mean quadrature Fully integrated
hfine ‘ P a hfine ‘ P a
0.2500 | 1.76 1.75 0.2500 | 1.69 1.69
0.1250 | 1.86 1.86 0.1250 | 1.69 1.68
0.0625 | 1.84 1.82 0.0625 | 1.62 1.62

Since we use a sequence of three numerical results in the asymptotic analysis (giving us three
equations), we can solve for the two remaining unknowns: the constant (c¢) and the estimate of the
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exact solution (which is one order more accurate than that given by the finite element solution,
assuming the next term in the error expansion is one order higher); this part of the asymptotic
analysis corresponds to Richardson extrapolation. We then use the higher order estimate of the
exact solution (labeled by RE) as our reference solution. Admittedly, this higher order solution
estimate is better suited for uncertainty quantification [2, 3], but we will still use it here as a
reference solution to show that it yields the desired linear relationship between error and
discretization on a log-log plot (for P). Following the same order as we did above for the
analytical solution, first consider the convergence rates obtained using Prg and agg as the
reference solutions, in tabular form. These results are obtained from pairs of meshes, and by
definition approach the same values obtained from the asymptotic analyses with mesh
refinement.

Table 2-8. Observed convergence rates based upon the Richardson extrapolation references, Pz and
ARE-

Face/face
Mean quadrature Fully integrated
hfine P a hfine P a
0.5000 | 1.8204 1.8133 0.5000 | 1.8091 1.8043
0.2500 | 1.8773 1.8775 0.2500 | 1.7327 1.7306
0.1250 | 1.8544 1.8439 0.1250 | 1.6507 1.6335
0.0625 | 1.8544 1.8439 0.0625 | 1.6507 1.6335
Node/face
Mean quadrature Fully integrated
hfine P a hfine P a
0.5000 | 1.7845 1.7771 0.5000 | 1.6847 1.6812
0.2500 | 1.8535 1.8505 0.2500 | 1.6680 1.6625
0.1250 | 1.8446 1.8176 0.1250 | 1.6246 1.6215
0.0625 | 1.8446 1.8176 0.0625 | 1.6246 1.6215
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Figure 2-12. Convergence of the normal force, P, versus element size.
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The above results suggest that reasonable accuracy is obtained (less than 1% difference) for the
contact force, except for the coarsest meshes. The asymptotic results also enforce the
interpretation that the convergence to a constant difference when using the analytical reference
solution was an indication of the weaknesses in the analytical solution not the contact
algorithm.

While the above results indicate that the algorithm is giving nearly quadratic convergence in the
response, it does beg the questions of whether these results are as close as the algorithm can come
to producing quadratic convergence, whether there is an error in the algorithm producing a
reduced rate of convergence, or whether other aspects of the numerical simulation are polluting
the observed rates of convergence. Frankly, we do not expect the algorithm to maintain the
optimal rate of convergence associated with the elements, but it is still worth considering the other
factors that can reduce the observed rate of convergence; among the other factors are relaxed
solver tolerances that reduce the accuracy of the solution, and a mixture of the order of the
algorithms that has not been accounted for in the convergence study. The solver tolerances were
adjusted to be as tight as possible while still yielding a converged solution. The second issue
however was purposefully not completely addressed in the above results to keep the analysis
times smaller; specifically, the elastic material model is a hypoelastic model and thus is
numerically integrated in time. At best we would expect quadratic convergence in time, and thus
for the asymptotic terms associated with both space and time to be consistently reduced
(assuming quadratic convergence in time) we should have reduced the time step by a factor of one
half with each mesh refinement. We assumed this effect would be relatively small—though not
necessarily negligible, but used the elastic model because it is the underlying elastic model for
several commonly used models in LAME [1].

To indirectly examine the effect that the elastic model may have had on the accuracy, let’s
consider some results obtained with the neo-Hookean model (a hyperelastic model which thus
does not require temporal integration). The table below presents the convergence results for the
two tests based upon node/face contact.

Table 2-9. Observed convergence rates based upon asymptotic analysis.
Cases: neo-Hookean material model, and node/face contact.

Mean quadrature Fully integrated
hfine ‘ P a hfine ‘ P a
0.2500 | 1.13 1.12 0.2500 | 1.60 1.60
0.1250 | 1.88 1.87 0.1250 | 1.71 1.70
0.0625 | 1.90 1.91 0.0625 | 1.64 1.66

For the finest mesh sequence and the mean quadrature element, the convergence rate for P
increased from 1.84 to 1.90. This change is not negligible and would be important if we expected
to obtain quadratic convergence in the limit. The improvement for the fully integrated element is
less significant.
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Summary of results: the contact algorithm appears to converge for this classical contact prob-
lem, and the difference between the Hertz reference solution and the FEM solutions for the finer
meshes is less than one percent. The difference results (referencing the Hertz solution) do not lend
themselves to directly evaluating the rate of convergence of the contact algorithm, as there are
not sufficient data that exhibit asymptotic behavior without being tainted by the inaccuracy of the
reference solution. Using the Hertz solution the numerical results approach a constant difference
which we interpret in the limit as representing the error in the analytical solution. To enforce this
interpretation, we estimated the rate of convergence for the reaction force using asymptotic anal-
ysis which “approached quadratic convergence.” We interpret these results as positive verification
results; however, these results must be weighted with the facts that the analytical reference solution
is not exact and the use of asymptotic analysis does not provide as strong of verification as having
an exact reference solution [2, 3, 6].
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2.5. Mindlin Cylinder-Cylinder Contact—Convergence Test

Analysis Type Quasi-statics

Element Types Hex8

Element Formulations | Mean Quadrature, Fully Integrated

Strain Incrementation | Strongly Objective

Material Models Elastic

Verification Category | Convergence

Verification Quantities | Boundary Displacement (6), Contact Shear (Q)

Number of Tests 4
Keywords Mindlin, Hertz, Contact, Friction, Convergence
2.5.1. Brief Description

This series of analyses demonstrates the convergence of contact for the classical Mindlin
problem [6]. This problem builds on the Hertz problem (cylinder on cylinder) to develop the
normal preload, and then follows that with a lateral shear applied to the flat surfaces of both
half-cylinders. Dash contact using both the face/face and node/face formulations is tested. Two
types of 8-noded, hexahedral elements are examined, namely (1) uniform gradient (mean
quadrature) elements, and (2) fully-integrated elements both with a strongly objective strain
incrementation. The first element is the most commonly used element and the second one
(loosely speaking) provides a bound on the element formulations (in terms of integration).

2.5.1.1. Functionality Tested

Primary capabilities:
- Dash contact face-face and node-face formulations

Secondary capabilities:
- The following element formulations:

(1) eight-node hexahedron with the fully-integrated formulation and strongly objective
strain incrementation.

(2) eight-node hexahedron with the mean quadrature formulation and strongly objective
strain incrementation.

- Prescribed displacement boundary conditions

2.5.1.2. Mechanics of Test

The geometry consists of two half-cylinders in contact, as depicted in Figure 2-13. SI units are
adopted for this problem, and thus the radius of the cylinder is 4 meters. The half-cylinders, as
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shown in the figure, have equal radii. The problem is defined as a quasistatic problem under
displacement controlled deformation. Note that because we have posed this in terms of
displacement boundary conditions, the normal and shear forces will change with mesh
refinement, as the cylinders change in compliance. The problem consists of two loading periods.
The first period corresponds to the Hertz problem with normal displacements applied to the
cylinder-halves (flat surfaces) to establish a normal force. The second period applies lateral
displacements to the flat surfaces of the cylinder halves, developing shear loads on both the
reaction faces and the contact surfaces.

15,

Followed
by

. I - s

Figure 2-13. Mindlin cylinder-cylinder contact problem.

2.5.1.3. Material Model

The primary material model used for this problem is the elastic model implemented in LAME [2].
The selected properties were given as follows.

Table 2-10. Material model properties.
Young’s Modulus | E | 1.0x10° Pa
Poisson’s Ratio v | 0.2

2.5.1.4. Boundary Conditions

The boundary conditions for this problem, as depicted in Figure 2-13, show the horizontal
surfaces (symmetry cuts) of the two half-cylinders have prescribed vertical displacements,
denoted as 6, followed by prescribed lateral displacements, denoted as ¢,. The half-cylinders
geometrically thus look more like half-disks, but plane strain boundary conditions are applied to
both z-faces. In the second time period, the vertical displacements on the boundaries are held
constant, and the horizontal displacements are varied linearly in time. The prescribed
displacements end at maximum magnitudes of 1 cm.
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2.5.1.5. Meshes

Four of the five meshes used in this study are shown in Figure 2-14. Each mesh contains four
times as many elements (in the plane) as the coarser mesh that it is refined from, since h; = h;_1/2,
where /; denotes the characteristic in-plane element size for mesh i. The mesh refinements
conform to the defining geometry, not the coarser mesh, and as such the solution space for the
coarser mesh is not a proper subspace of the solution space for the finer mesh. We varied the
thickness, with one element through the thickness, to approximately maintain the element aspect
ratios (at a give point in space); this approximately gave cube elements in the contact region.

Table 2-11. Mesh characteristics.

Mesh label | #/h; | Number of Elements
Mesh-1 1 308
Mesh-2 1/2 1232
Mesh-3 1/4 4928
Mesh-4 1/8 19712
Mesh-5 1/16 78848

2.5.2. Expected Results

For this problem we have evaluated the results using an analytical estimation of the rate of
convergence based upon results from sequences of three meshes. The analysis leading to the rate
of convergence based upon a sequence of approximate results (like the development of
Richardson’s Extrapolation) is based upon the assumption that the form of the error for each mesh
is as ch;”. The three equations for the shear loads in terms of the higher order estimate of the
exact solution and the error term are solved for the rate of convergence (eliminating the unknowns
c and the higher order estimate of the exact solution). Once the observed rate of convergence is
obtained, it can be used in the generalized Richardson extrapolation to obtain a higher order
estimate of the exact solution. The motivation for using the analysis to determine the observed
rate of convergence first is two fold: (1) it provides an indicator that the approximate solutions are
in the asymptotic range, and (2) for quantities of interest like the reaction force we are treating the
rate of convergence as an unknown since in general we do not expect the contact algorithm to
maintain the optimal rates of convergence that are observed for simpler continuum problems. For
the results to indicate that the sequences of results are in the asymptotic range, we expect the
predicted rates of convergence from sequential sets of three meshes (e.g., meshes 2,3,4 and
meshes 3,4,5) to give nearly the same rates of convergence. A detailed description of the analysis
that provides the estimated rate of convergence is presented in the text by Oberkampf and

Roy [3]. Roach [4] indicates that the analysis leading to the rate of convergence is from G. de
Vahl Davis [5].
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Figure 2-14. Four of the five meshes used in this study

2.5.3. Verification Results

As noted above, the quantity of interest in this test (for the analytical reference solution) is the
shear load, Q. The slopes of the relative error curves between the data points (corresponding to
two meshes, on the log-log plots) yield observed rates of convergence; for the convergence plots
shown here, these slopes correspond to the asymptotic rate of convergence for the two finest sets
of meshes. This result is by definition since the three meshes were used to solve for the rate. The
slopes corresponding to coarser meshes will match those of the finer meshes if they are in the
asymptotic range.

Because the analyses associated with the finest mesh can be very time consuming, a different
approach is being taken in presenting the results. The nightly analyses only use the finest three
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meshes, and as formulated here will obtain a different solution for the Richardson extrapolation
than results based upon finer meshes (extended results). As such nightly and extended results are
presented separately.

2.5.3.1. Results based on asymptotic analysis

The asymptotic analysis applied in this verification problem can be considered as consisting of
two steps: one to obtain the rate of convergence, and one to obtain a higher order estimate of the
solution from Richardson’s Extrapolation. This is discussed in more detail in the introduction of
this manual. The tables below present the results from the first step: the estimated convergence
rates from sequences of three meshes.

The shear load (Q) is again treated as the quantity of interest from which that rate of convergence
is estimated. Note that for this problem we do not have sufficient consistency between the results
(for successive sequences of three meshes) to definitely claim that we are in the asymptotic range
of convergence.

Table 2-12. Observed convergence rates based upon asymptotic analysis—Extended results.

Face/face
Mean quadrature Fully integrated
h fine P h fine P
0.2500 | 1.74 0.2500 | 1.80
0.1250 | 1.67 0.1250 | 1.61
0.0625 | 2.94 0.0625 | 1.83
Node/face
Mean quadrature Fully integrated
h fine P h fine P
0.2500 | 1.12 0.2500 | 1.16
0.1250 | 1.61 0.1250 | 1.43
0.0625 | 1.84 0.0625 | 1.14

Table 2-13. Observed convergence rates based upon asymptotic analysis—Nightly results.

Face/face
Mean quadrature Fully integrated
hfine ‘ P hfine ‘ P
0.2500 | 1.73 0.2500 | 1.79
Node/face
Mean quadrature Fully integrated
hfine ‘ P hfine ‘ P
0.2500 \ 1.13 0.2500 \ 1.15
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Given the higher order estimate of the exact solution from Richardson’s extrapolation we now use
this result (labeled by RE) as our reference solution. Admittedly, this higher order solution
estimate is better suited for uncertainty quantification [3, 4], but we will still use it here as a
reference solution to show that by design it yields the desired linear relationship between error
and discretization on a log-log plot. First we present the convergence rates obtained using Qrg as
the reference solution, in tabular form. These results are obtained from pairs of meshes, and by
definition approach the same values obtained from the asymptotic analyses with mesh refinement.
As previously presented, extended results are followed by nightly results. For this set of results,
the extended and nightly results do not match because the extrapolated reference solution is not
based upon the same sets of meshes.

Table 2-14. Observed convergence rates based upon the Richardson extrapolation references,
Orr—Extended results.

Face/face
Mean quadrature Fully integrated
hfine P hfine P
0.5000 | 1.79 0.5000 | 1.76
0.2500 | 1.91 0.2500 | 1.68
0.1250 | 2.94 0.1250 | 1.83
0.0625 | 2.94 0.0625 | 1.83
Node/face
Mean quadrature Fully integrated
hfine P hfine P
0.5000 | 1.32 0.5000 | 1.22
0.2500 | 1.68 0.2500 | 1.31
0.1250 | 1.84 0.1250 | 1.14
0.0625 | 1.84 0.0625 | 1.14

Table 2-15. Observed convergence rates based upon the Richardson extrapolation references,
QOrr—Nightly results.

Face/face
Mean quadrature Fully integrated
h fine ‘ P h fine ‘ P
0.5000 | 1.7319 0.5000 | 1.7929
0.2500 | 1.7319 0.2500 | 1.7929
Node/face
Mean quadrature Fully integrated
h fine ‘ P h fine ‘ P
0.5000 | 1.1328 0.5000 | 1.1489
0.2500 | 1.1328 0.2500 | 1.1489
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Figure 2-15. Convergence of the shear force, O, versus element size, Richardson extrapolation reference
solution using extended results.
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Figure 2-16. Convergence of the shear force, Q, versus element size, Richardson extrapolation reference
solution using nightly results.
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The inconsistency in the convergence rates makes it difficult to definitively assess the rate of
convergence, but two test cases (face/face + fully integrated and node/face + mean quadrature)
gave closer agreement and indicated convergence closer to quadratic than linear. The other two
test cases showed greater variation in the rates of convergence and for the finest meshes gave rates
of convergence that were closer to linear and cubic.

The plot of the asymptotic results graphically depicts the differences in the rates of convergence.
Each test has its own extrapolated reference solution, so using the asymptotic results to compare
the relative accuracies can be misleading without examining the agreement of the extrapolated
reference solutions. If we take the results at face value the face/face + mean quadrature test yields
both the highest rate of convergence and accuracy. Furthermore all the test cases yield better than
one percent difference for all but the coarsest mesh.

All of the asymptotic results indicate convergent behaviors and some give nearly quadratic
convergence, but the results beg the questions of whether these results are as close as the
algorithm can come to producing quadratic convergence, whether there is an error in the algorithm
producing a reduced rate of convergence, or whether other aspects of the numerical simulation are
polluting the observed rates of convergence. Frankly, we do not expect the algorithm to maintain
the optimal rate of convergence associated with the elements, but it is still worth considering the
other factors that can reduce the observed rate of convergence; among the other factors are
relaxed solver tolerances that reduce the accuracy of the solution, and a mixture of the order of
the algorithms that has not not been accounted for in the convergence study. The solver tolerances
were adjusted to be as tight as possible while still yielding a converged solution.

The second issue however was purposefully not addressed in the above results to keep the
analysis times smaller; specifically, the elastic material model is a hypoelastic model and thus is
numerically integrated in time. At best we would expect quadratic convergence in time, and thus
for the asymptotic terms associated with both space and time to be consistently reduced
(assuming quadratic convergence in time and space) we should have reduced the time step by a
factor of one half with each mesh refinement. We assumed this effect would be relatively
small—though not necessarily negligible, but used the elastic model because it is the underlying
elastic model for several commonly used models in LAME [2]. To examine the effect of using a
model that does not require temporal integration, in the Hertz cylinder-cylinder contact test we
examined how the results differed when using a hyperelastic model; in summary, the effect was
second order relative to our deviations from second order. In order to investigate the effect of time
step size, another series of tests (3 meshes) with smaller time steps (within the shear part) were
ran. The results revealed a change in the convergence rates. Table 2-16 shows the percentage
change in the convergence rates.

Table 2-16. Effect of time step size on convergence rate.

Case Percentage change in convergence rates
Face-Face-Meanq 1.14
Face-Face-Full 1.11
Node-Face-Meanq -5.36
Node-Face-Full -6.90
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Summary of results: the contact algorithm appears to converge for this classical contact problem,
and the differences between the Richardson extrapolation solutions and the FEM solutions for for
all but the coarsest mesh were less than one percent. The asymptotic estimates for the rates of
convergence were not sufficiently consistent to definitively identify the actual convergence rates of
the tests, but two of the results indicated convergence rates closer to quadratic than to linear con-
vergence. We interpret these results as positive verification results; however, these results must be
weighted with the fact that the use of asymptotic analysis does not provide as strong a verification
as having an exact reference solution [3, 4, 7]; it merely indicates that the FEM solution for the
shear load is converging to some value.
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For input deck see Appendix B.5.
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2.6. Hertz Sphere-Sphere Contact—Convergence Test

Analysis Type Quasi Statics

Element Types Hex8

Element Formulations | Mean Quadrature, Fully Integrated
Strain Incrementation | Strongly Objective

Material Models Elastic

Verification Category | Convergence

Verification Quantities | Boundary Displacement (6)

Number of Tests 4
Keywords Hertz, Contact, Convergence
2.6.1. Brief Description

This series of analyses demonstrates the convergence of contact for a classical Hertz solution.
This problem is a quasistatic version of the Sierra/SM heavy test examining the quasistatic
compression of two hemispheres. Two types of 8-noded, hexahedral elements are examined,
namely (1) fully-integrated elements, and (2) uniform gradient elements with a strongly objective
strain formulation.

2.6.1.1. Functionality Tested

Primary capabilities:
- Dash contact face-face and node-face formulations

Secondary capabilities:
- The following element formulations:

(1) eight-node hexahedron with the fully-integrated formulation and strongly objective
strain incrementation.

(2) eight-node hexahedron with the mean quadrature formulation and strongly objective
strain incrementation.

- Prescribed displacement boundary conditions

2.6.1.2, Mechanics of Test
The side-view geometry of the sphere-sphere contact problem is depicted in Figure 2-17. SI units

are adopted for this problem, and thus the radii of the hemispheres are 4 meters. The problem is
defined as a quasistatic problem under displacement controlled deformation.
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2.6.1.3. Material Model

b

Figure 2-17. Hertz sphere-sphere contact problem.

The material model used for this problem is the elastic model implemented in LAME [1].

The selected properties were given as follows.

Table 2-17. Material model properties

Young’s Modulus | E | 1.0x10° Pa

Poisson’s Ratio

y 0.2

2.6.1.4. Boundary Conditions

The boundary conditions for this problem, as depicted in Figure 2-17, show the horizontal
surfaces (symmetry cuts) of the hemispheres have prescribed vertical displacements, denoted as 6.
The horizontal symmetry cuts of the hemispheres allow us to define these surfaces as
displacement reference planes. If the objective were to reduce the problem size, it could be
reduced further to a sphere-plane contact problem. Table 2-18 contains the mesh label, relative
element size, and number of elements for each of the meshes.

Table 2-18. Mesh characteristics.

Mesh label | #/h; | Number of Elements
Mesh-1 1 392
Mesh-2 1/2 3136
Mesh-3 1/4 25088
Mesh-4 1/8 200704
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2.6.1.5. Meshes

The meshes used in this study are shown in Figure 2-18. Each mesh contains eight times as many
elements as the coarser mesh that it is refined from, since #; = h;_; /2, where h; denotes the
characteristic element size for mesh i. The mesh refinements conform to the defining geometry,
not the coarser mesh, and as such the solution space for the coarser mesh is not a proper subspace
of the solution space for the finer mesh.

(a) Mesh-1 (b) Mesh-2
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Figure 2-18. Meshes used in this study

2.6.2. Expected Results

The analytical reference solution used in this study is taken from the Contact Mechanics text of
K.L. Johnson [5]. The relation for the mutual displacement of the hemispheres is represented
by
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where R denotes the radii of the hemispheres, E denotes Young’s modulus, v denotes Poisson’s
ratio, and P denotes contact force. Consistent with the approach used for Hertz cylinder-cylinder
tests, we apply the equation in its current form in the following manner: (1) the FE model applies
displacements of magnitude ¢ to the two horizontal cuts of the hemispheres, (2) the reaction force
(equivalent in magnitude to the contact force, P) is calculated in the FE analysis, and (3) this
value is used in the analytical expression above to determine the theoretical value for ¢ that should
have caused this level of force. The difference between the values of ¢ applied to the model, and
that obtained from the analytical expression are the quantity of interest type "error measure" used
in this study.

The analytical solution for this problem is not exact (and is thus a surrogate solution) not only
because it is based upon linear elasticity, but also because it is based upon the simplifying
approximations presented by Hertz. These approximations include: (1) a representation of the
contact surfaces by quadratic surfaces, (2) the deformation response of each body can be
approximated by the solution of a loaded half-space, and (3) relative displacement between the
center and edge points of contact are small compared to the contact radius. These approximations
require both the geometric dimensions of the body and the radii of curvature in the contact region
(one in the same for this problem) to be much larger than the contact radius. Thus the ideal, in
terms of using these approximations, is to adopt an extremely small contact area, but then that
requires a mesh that efficiently uses small elements near the contact but transitions to larger
elements away from this region for the sake of numerical efficiency. In defining this problem, we
sought to find a balance between test run times and sufficient accuracy to obtain a measure of
convergence.

Again note that since the reference solution is not exact the difference in the solutions is not really
the error, though it may be close to the actual error for coarser meshes. The difference value that
the solution levels off to, actually is a measure of the error in the reference solution, assuming that
the finite element solution is actually converging to the exact solution.

2.6.3. Verification Results

As noted above, the quantity of interest in this test (for the analytical reference solution) is the
boundary displacement, 6. The slopes of the relative error curves between the data points
(corresponding to two meshes, on the log-log plots) yield observed rates of convergence. For an
exact reference solution, the observed rate of convergence approaches the asymptotic rate with
mesh refinement, assuming other sources of numerical error (e.g., solver accuracy) do not corrupt
the results. For this problem we are not using an exact solution, so an improvement in the
convergence estimate is not guaranteed. As previously noted, typically for problems without an
exact solution there is (or we hope for) a "sweet range" where the approximations are in the
asymptotic range but not refined enough to measure the inexactness of the references solution. Of
course the size of this "sweet range" is problem dependent, e.g., in this problem we have not only
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the approximations associated with linear elasticity but also those associated with the Hertz
solution.

Initially we will examine the observed rates of convergence based upon the approximate reference
solution.

2.6.3.1. Results based on Hertz reference solution

In this section, we are showing results that are labeled as extended and nightly, the former of
which have longer run times. Extended results have four meshes, and the nightly results have two
meshes. The following tables give the observed rates of convergence (nightly) for the node-face
variation of the Dash contact algorithm and the two Hex8 element formulations between each
sequential pair of meshes, where ;. denotes the relative element size of the finer mesh of the
pair. The face-face variation of the Dash contact algorithm is not shown for the nightly results
because it takes longer to run than currently allowed in the nightly testing process. The following
plot shows the corresponding graphical representations of the difference data as a function of the
element size. The results appear to be converging to a difference, that is on the order of two
percent.

Table 2-19. Observed convergence rates based upon the Hertz reference solution—Nightly.

Node/face
Mean quadrature Fully integrated
hfine ‘ ||5err0r||2/||6analyt”2 hfine ‘ IléermrHZ/”éanalyt”Z
0.5000 4.6057 0.5000 1.3373
0.2500 -2.9255 0.2500 0.9518
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face—face_hex8—meang—so (extended)
face—face_hex8—meang—so (nightly) =
face—face_hex8—full-so (nightly)
node—face_hex8—-meang—so (extended)
node—face_hex8—meanq—so (nightly)
node—face_hex8—full-so (extended) *
0.1 node—face_hex8—full-so (nightly) .

0.01 | ;

0.001

h/h,

Figure 2-19. Convergence of the displacement boundary condition versus element size.
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2.6.3.2. Results based on asymptotic analysis

The asymptotic analysis applied in this verification problem can be considered as consisting of
two steps: one to obtain the rate of convergence, and one to obtain a higher order estimate of the
solution from Richardson’s Extrapolation. This is discussed in more detail in the introduction of
this manual. The tables below present the results from the first step: the estimated convergence
rates from sequences of three meshes. Two values are presented in the table, one for the normal
force (P), and one for the contact radius (a) calculated from P. Calculating the contact radius
from P, in a sense just makes it a measure of P, and both quantities yield nearly the same rates of
convergence. The rates of convergence are nearly quadratic for the reaction force for all test
cases. The consistency of the convergence rates (for a given quantity of interest but different sets
of three meshes) suggests the results are approaching the asymptotic range, but the ideal is to have
rates that are much closer.

Table 2-20. Observed convergence rates based upon asymptotic analysis.

Face/face
Mean quadrature
hf ine ‘ P a

0.2500 | 1.84 1.87
0.1250 | 1.94 1.95

Node/face
Mean quadrature Fully integrated
hfine ‘ P a hfine ‘ P a
0.2500 | 1.85 1.89 0.2500 | 1.86 1.78
0.1250 | 2.06 2.08 0.1250 | 1.90 1.87

Since we use a sequence of three numerical results in the asymptotic analysis (giving us three
equations), we can solve for the two remaining unknowns: the constant (¢) and the estimate of the
exact solution (which is one order more accurate than that given by the finite element solution,
assuming the next term in the error expansion is one order higher); this part of the asymptotic
analysis corresponds to Richardson extrapolation. We then use the higher order estimate of the
exact solution (labeled by RE) as our reference solution. Admittedly, this higher order solution
estimate is better suited for uncertainty quantification [2, 3], but we will still use it here as a
reference solution to show that it yields the desired linear relationship between error and
discretization on a log-log plot (for P). Following the same order as we did above for the
analytical solution, first consider the convergence rates obtained using Prg and agg as the
reference solutions, in tabular form. These results are obtained from pairs of meshes, and by
definition approach the same values obtained from the asymptotic analyses with mesh
refinement.
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Table 2-21. Observed convergence rates based upon the Richardson extrapolation references, Pz and
ARE -

Face/face
Mean quadrature
hfine ‘ P a

0.5000 | 1.87 1.89
0.2500 | 1.94 1.95
0.1250 | 1.94 1.95

Node/face

Mean quadrature
hfine ‘ P a

0.5000 | 1.90 1.94
0.2500 | 2.06 2.08
0.1250 | 2.06 2.08
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Fully integrated
hfine ‘ P a

0.5000 | 1.87 1.80
0.2500 | 1.90 1.87
0.1250 | 1.90 1.87
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Figure 2-20. Convergence of the normal force, P, versus element size, Richardson extrapolation reference
solution.
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The above results suggest that reasonable accuracy is obtained (about 2 percent difference) for the
contact force, using the finest meshes. The asymptotic results also enforce the interpretation that
the convergence to a constant difference when using the analytical reference solution was an
indication of the weaknesses in the analytical solution not the contact algorithm.

While the above results indicate that the algorithm is giving nearly quadratic convergence in the
response, it does beg the questions of whether these results are as close as the algorithm can come
to producing quadratic convergence, whether there is an error in the algorithm producing a
reduced rate of convergence, or whether other aspects of the numerical simulation are polluting
the observed rates of convergence. Frankly, we do not expect the algorithm to maintain the
optimal rate of convergence associated with the elements, but it is still worth considering the other
factors that can reduce the observed rate of convergence; among the other factors are relaxed
solver tolerances that reduce the accuracy of the solution, and a mixture of the order of the
algorithms that has not been accounted for in the convergence study. The solver tolerances were
adjusted to be as tight as possible while still yielding a converged solution. The second issue
however was purposefully not completely addressed in the above results to keep the analysis
times smaller; specifically, the elastic material model is a hypoelastic model and thus is
numerically integrated in time. At best we would expect quadratic convergence in time, and thus
for the asymptotic terms associated with both space and time to be consistently reduced
(assuming quadratic convergence in time) we should have reduced the time step by a factor of one
half with each mesh refinement. We assumed this effect would be relatively small—though not
necessarily negligible, but used the elastic model because it is the underlying elastic model for
several commonly used models in LAME [1].

Summary of results: the contact algorithm appears to converge for this classical contact prob-
lem, and the difference between the Hertz reference solution and the FEM solutions for the finest
meshes is about two percent. The difference results (referencing the Hertz solution) do not lend
themselves to directly evaluating the rate of convergence of the contact algorithm, as there are
not sufficient data that exhibit asymptotic behavior without being tainted by the inaccuracy of the
reference solution. Using the Hertz solution the numerical results approach a constant difference
which we interpret in the limit as representing the error in the analytical solution. To enforce this
interpretation, we estimated the rate of convergence for the reaction force using asymptotic anal-
ysis which “approached quadratic convergence.” We interpret these results as positive verification
results; however, these results must be weighted with the facts that the analytical reference solution
is not exact and the use of asymptotic analysis does not provide as strong of verification as having
an exact reference solution [2, 3, 6].
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2.7. Lubkin Sphere-Sphere Contact—Convergence Test

Analysis Type Quasi-statics

Element Types Hex8

Element Formulations | Mean Quadrature, Fully Integrated
Strain Incrementation | Strongly Objective

Material Models Elastic

Verification Category | Convergence

Verification Quantities | Non-dimensional Contact Torque (T)

Number of Tests 4
Keywords Lubkin, Hertz, Contact, Friction, Convergence
2.7.1. Brief Description

This series of analyses demonstrates the convergence of contact for the classical Lubkin [1]
problem. This problem builds on the Hertz problem (sphere on sphere) to develop the normal
preload, and then follows that with a torque applied about an axis connecting the center of both
hemispheres. Dash contact using both the face/face and node/face formulations is tested. Two
types of 8-noded, hexahedral elements are examined, namely (1) uniform gradient (mean
quadrature) elements, and (2) fully-integrated elements both with a strongly objective strain
incrementation. The first element is the most commonly used element and the second one
(loosely speaking) provides a bound on the element formulations (in terms of integration). Note
that there are two other closely related verification problems in the manual: Elastic Spheres in
Frictional Torsional Contact (sphere on plate load-deflection test), and Elastic Spheres in
Frictional Torsional Contact (sphere on plate convergence test).

2711, Functionality Tested

Primary capabilities:
- Dash contact face-face and node-face formulations

Secondary capabilities:
- The following element formulations:

(1) eight-node hexahedron with the fully-integrated formulation and strongly objective
strain incrementation.

(2) eight-node hexahedron with the mean quadrature formulation and strongly objective
strain incrementation.

- Prescribed displacement boundary conditions
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2.7.1.2. Mechanics of Test

The geometry consists of two hemispheres in contact, as depicted in Figure 2-21. SI units are
adopted for this problem, and thus the radius of the spheres is 4 meters. The hemispheres, as
shown in the figure, have equal radii. The problem is defined as a quasistatic problem under
displacement controlled deformation. The problem consist of two loading periods. The first,
corresponds to the Hertz problem with normal displacements applied to the hemispheres flat
surfaces to establish a normal force. Note that because we have posed this in terms of
displacement boundary conditions, the normal force will change with mesh refinement, as the
hemispheres change in compliance. Though symmetry does not necessitate it for this problem,
the contact surfaces are frictionless during this first period, so that no tangent frictional forces
exist at the start of the second time period. The second period of loading, applies a torque to each
of the hemispheres’ flat surfaces. The torque loading is also applied by a displacement boundary
condition. During this period of loading contact friction is turned on, with a coefficient of friction
of 0.3. (For the current version of the input, the means used to change the coefficient of
friction—or the friction model in this case—is by applying each friction model in a separate
procedure block.)

Ro

followed
by

Yo

Figure 2-21. Lubkin sphere-sphere contact problem.

ts

2.7.1.3. Material Model

The primary material model used for this problem is the elastic model implemented in
LAME [4].
The selected properties were given as follows.

Table 2-22. Material model properties.
Young’s Modulus | E | 1.0x10° Pa
Poisson’s Ratio v | 0.2
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2.71.4. Boundary Conditions

The boundary conditions for this problem, as depicted in Figure 2-21, show the horizontal
surfaces (symmetry cuts) of the two hemispheres have prescribed vertical displacements, denoted
as ¢. The maximum value of §, which is the state at which the response is measured, is 2 cm. The
horizontal symmetry cuts of the spheres allow us to define these surfaces as displacement
reference planes; physically this corresponds to a unit cell out of a stack of spheres. If the
objective were to reduce the problem size, it could be reduced further (in this case) to a
sphere-plane contact problem; a sphere-plane version of this test exists too. In the second time
period, the vertical displacements on the boundaries are held constant, and the in-plane
displacement components consist of prescribed displacements in the azimuthal direction. As such
the free degrees of freedom correspond to the radial displacements. The prescribed displacements
about the cylindrical axis correspond to a maximum rotation of 0.1 radians.

2.7.1.5. Meshes

Figure 2-21 depicts two hemispheres in contact. A contact surface view of the sequence of
meshes used in this study (of one hemisphere) are shown in Figure 2-22. Each mesh contains
eight times as many elements as the coarser mesh that it is refined from, since h; = h;_1/2, where
h; denotes the characteristic element size for mesh i. The number of elements in each mesh is
presented in the table below. The mesh refinements conform to the defining geometry, not the
coarser mesh, and as such the solution space for the coarser mesh is not a proper subspace of the
solution space for the finer mesh. The table below contains the mesh label, relative element size,
and number of elements for each of the meshes.

Table 2-23. Mesh characteristics.

Mesh label | #/h; | Number of Elements
Mesh-1 1 392
Mesh-2 1/2 3136
Mesh-3 1/4 25088
Mesh-4 1/8 200704

2.7.2. Expected Results

For this problem we have evaluated the results in two ways: (1) using an analytical reference
solution, and (2) using asymptotic estimates of the rate of convergence based upon results from
sequences of three meshes. The analytical reference solution used in this study is taken from the
work of Segalman, Starr, and Heinstein [3] and is briefly discussed below. For additional
discussion of the asymptotic analysis, please refer to the expected results section of the Hertz
cylinder-cylinder contact tests.

The analytical reference solution adopted here [3] is a fourth-order Padé rational function
approximation to the analytical solution given by Lubkin [1]. Lubkin’s original solution is
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Figure 2-22. Meshes used in this study

expressed in terms of complete elliptic integrals, while the approximate form given in

reference [3] is readily amenable to verification and is reported to agree with numerical evaluation
of the original solution by Lubkin to within 2 x 107> over the full range. The Padé approximation
expresses a non-dimensional torque (7') as a function of a non-dimensional twisting angle (6),
defined respectively as

2
o= ﬁg\‘; , (2.9)
and
T = % (2.10)
uNa

where M ~ the twisting moment applied, N ~ the contact normal force, a ~ the contact radius, u ~
the coefficient of friction, G ~ the shear modulus, and  ~ the angle of twist.
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4 4 -1
T(0) = [Zakek] [Zbkek] : 2.11)
k=0 k=0

where the parameters are given in Table 2-24.

Table 2-24. Padé approximation data
ap 01 bo 1
ai 16/3 | by 5.1193
a 6.0327 | by | 15.6833
asz | 19.6951 | b3 | 30.8099
ag | 42.5359 | by | 72.2111

We apply the this equation in the following manner:
1. the hemispheres are preloaded with a prescribed normal displacement dy,
2. the hemispheres are then displaced laterally to a prescribed displacement dy,

3. the vertical force (equivalent in magnitude to the contact force, N) is calculated in the FE
analysis,

4. the contact radius is calculated from the Hertz solution for the given preload (N),

5. N and ¢, are used in the analytical expression above to determine the non-dimensional
rotation 0, and then

6. Equation 2.11 is used to calculate the theoretical value for the non-dimensional torque.

The model value for the torque (M) is obtained from the cross product of all the contact forces
(on a single hemisphere) with their respective in-plane position vectors from the vertical axis
(connecting the sphere centers). The quantity of interest, for which errors are calculated, is the
non-dimensional torque.

The analytical solution for this problem is not exact not only because it is based upon linear
elasticity, but also because it is based upon the simplifying approximations presented by Hertz.
These approximations include: (1) a representation of the contact surfaces by quadratic surfaces,
(2) a component of the deformation response of each body can be approximated by the solution of
a loaded half-space, and (3) relative displacement between the center and edge points of contact
are small compared to the contact radius. These approximations require both the geometric
dimensions of the body and the radii of curvature in the contact region (one in the same for this
problem) to be much larger than the contact radius. Thus the ideal, in terms of using these
approximations, is to adopt an extremely small contact area, but then that makes it more difficult
to define a mesh that efficiently uses small elements near the contact but transitions to larger
elements away from this region (for the sake of numerical efficiency). In defining this problem,
we initially sought to find a balance between test run times and sufficient accuracy to obtain a
measure of convergence, but admittedly pushed the upper limit of the contact size.

Since the reference solution is not exact the difference in the solutions is not really the error,
though it may be close to the actual error for coarser meshes. The error value that the solution
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levels off to (in the limit) is a measure of the error in the reference solution, assuming that the
finite element solution is actually converging to the exact solution. The convergence to a fixed
difference between the analytical reference solution and the finite element solutions, is not
necessarily monotonic in nature. Because of this convergence behavior for finer meshes, it can be
difficult to find a range of discretization for which the approximate reference solution is
sufficiently accurate to serve as a surrogate for the exact solution and yet the meshes are
sufficiently fine to be in the asymptotic range. As we will see in this case, we did not obtain a
region where the inexact reference solution allowed us to estimate the rate of convergence, but we
will observe it converging to a fixed difference. To strengthen the argument that it is converging
and to further examine the question of rate, we will estimate the rate of convergence using the
approach discussed above and apply Richardson’s Extrapolation to estimate the exact solution;
unfortunately even the asymptotic solutions for this problem, and corresponding models, do not
provide a good estimate of the rate of convergence. Finer meshes would be needed to establish
that several of the approximate analyses were in the asymptotic range.

2.7.3. Verification Results

As noted above, the quantity of interest in this test is the non-dimensional torque, 7. The slopes
of the relative error curves between the data points (corresponding to two meshes, on the log-log
plots) yield observed rates of convergence. For an exact reference solution, the observed rate of
convergence approaches the asymptotic rate with mesh refinement, assuming other sources of
numerical error (e.g., solver accuracy) do not corrupt the results. For this problem we are not
using an exact solution, so an improvement in the convergence estimate is not guaranteed. As
previously noted, typically for problems without an exact solution there is (or we hope for) a
sweet range where the approximations are in the asymptotic range but not refined enough to
measure the inexactness of the references solution. Of course the size of this sweet range is
problem dependent, e.g., in this problem we have not only the approximations associated with
linear elasticity but also those associated with the Hertz solution.

Because the analyses associated with the finest mesh can be very time consuming, a different
approach is being taken in presenting the results. The nightly analyses only use the coarsest three
meshes, but they are plotted (in one case) with the results for finer meshes too for graphical
comparison. Likewise, tables are presented based upon nightly results and those obtained from
analyses that include the finest mesh (extended results). As such passing of the tests is not based
upon results from the finest mesh, but rather upon change in the convergence rates for the nightly
tests. Note that the tabular results can differ between the extended and nightly analyses; currently
the extended and nightly analyses both use 30 time steps for the compression preload (Hertz part)
but use 20 and 30 time steps for the torsional loading, respectively. (The intent is to obtain
extended analyses results that use 30 steps for the torsional loading as well.) Also, due to time
constraints of nightly testing, the nightly results are only for the node-face contact formulation.

Initially we will examine the observed rates of convergence based upon the approximate reference
solution.
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2.7.3.1. Results based on Hertz reference solution

The following tables give the observed rates of convergence for the two variations of the Dash
contact algorithm and the two Hex8 element formulations between each sequential pair of
meshes, where hz;,. denotes the relative element size of the finer mesh of the pair. The following
plots show the corresponding graphical representations of the error data as a function of the
element size. The first set of tables present the extended results, and the second set present the
nightly results.

Table 2-25. Observed convergence rates based upon the Lubkin reference solution—Extended results.

Face/face
Mean quadrature Fully integrated
hfine \ T orque convergence rate hfine \ Torque convergence rate
0.5000 1.25 0.5000 1.00
0.2500 0.82 0.2500 0.52
0.1250 0.36 0.1250 0.21
Node/face
Mean quadrature Fully integrated
hfine | Torqueconvergencerate hfine | Torque convergencerate
0.5000 1.29 0.5000 0.41
0.2500 1.32 0.2500 1.09
0.1250 0.43 0.1250 0.40

Table 2-26. Observed convergence rates based upon the Lubkin reference solution—Nightly results.

Node/face

Mean quadrature
hfine \ Torque convergence rate

0.5000 1.3199
0.2500 1.3240
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Fully integrated
hfine \ Torque convergence rate
0.5000 0.6168
0.2500 1.0739
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Figure 2-23. Convergence of the non-dimensional Torque versus element size (analytical reference solu-
tion).

The difference in the solutions (Torquey;rr) for the finer two meshes is about 3 percent or less,
thus giving reasonably good agreement with the analytical reference solution. While the results
suggest that each test case is converging (just not to the analytical reference solution), as
previously noted, the inexactness of the reference solution makes an estimate of the rate of
convergence intractable for the selected models. To examine the convergence rate further we
resort to asymptotic analyses of the numerical results alone (i.e., without assuming a reference
solution) in the following section.

2.7.3.2. Results based on asymptotic analysis

The asymptotic analysis applied in this verification problem can be considered as consisting of
two steps. First, the results from sequences of analyses based upon three mesh refinements, where
each refinement halves the characteristic length of the element (i.e., each hex is approximately
subdivided, into eight hex elements), are used to estimate the rate of convergence. Second, the
convergence rate obtained from the finest sequence of meshes is assumed to be accurate, and then
is used with Richardson extrapolation to obtain a higher order estimate of the exact solution. The
Richardson’s extrapolated estimate is then adopted as the reference solution to analyze the results,
as the analytical reference solution was used in the previous section.
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Using sequences of three numerical results one can solve for the observed rate of convergence.
The non-dimensional torque (7') is again treated as the quantity of interest from which that rate of
convergence is estimated. Note that for this problem we do not have sufficient consistency
between the results (for successive sequences of three meshes) to definitely claim that we are in
the asymptotic range of convergence. As done previously for with the analytical reference
solution, we again include results using finer meshes (extended results) and results based upon
nightly results.

Table 2-27. Observed convergence rates based upon asymptotic analysis—Extended results.

Face/face
Mean quadrature Fully integrated
hfine \ Torque convergence rate R fine \ Torque convergence rate
0.2500 1.68 0.2500 3.16
0.1250 1.84 0.1250 2.02
Node/face
Mean quadrature Fully integrated
hfine \ Torque convergence rate hfine \ Torque convergence rate
0.2500 1.37 0.2500 4.80
0.1250 2.36 0.1250 0.27

Table 2-28. Observed convergence rates based upon asymptotic analysis—Nightly results.

Node/face
Mean quadrature Fully integrated
htine \ Torque convergence rate hfine \ Torque convergence rate
0.2500 | 1.39 0.2500 | 4.32

88



Since we use a sequence of three numerical results in the asymptotic analysis (giving us three
equations), we can solve for the two remaining unknowns: the constant (¢) and the estimate of the
exact solution (which is one order more accurate than that given by the finite element solution,
assuming the next term in the error expansion is one order higher); this part of the asymptotic
analysis corresponds to Richardson’s extrapolation. We then use the higher order estimate of the
exact solution (labeled by RE) as our reference solution. Admittedly, this higher order solution
estimate is better suited for uncertainty quantification [5, 6], but we will still use it here as a
reference solution to show that by design it yields the desired linear relationship between error
and discretization on a log-log plot (for the finest meshes). Following the same order as we did
above for the analytical solution, first consider the convergence rates obtained using Tgg as the
reference solution, in tabular form. These results are obtained from pairs of meshes, and by
definition yield the same values obtained from the asymptotic analyses with mesh refinement. As
previously presented, extended results are followed by nightly results. For this set of results, the
extended and nightly results do not match because the extrapolated reference solution is not based
upon the same sets of meshes. In each case the Richardson’s extrapolation for the exact solution
is obtained from the finest meshes (meshes 2, 3, and 4 for most of the extended analyses and
meshes 1, 2, and 3 for the nightly analyses).

Table 2-29. Observed convergence rates based upon the Richardson extrapolation references,
Trg—Extended results.

Face/face
Mean quadrature Fully integrated
hfine \ Torque convergence rate hfine \ Torque convergence rate
0.5000 1.73 0.5000 2.95
0.2500 1.84 0.2500 2.02
0.1250 1.84 0.1250 2.02
Node/face
Mean quadrature Fully integrated
hfine \ Torque convergence rate hfine \ Torque convergence rate
0.5000 1.62 0.5000 2.50
0.2500 2.36 0.2500 0.27
0.1250 2.36 0.1250 0.27

Table 2-30. Observed convergence rates based upon the Richardson extrapolation references,
Tre—Nightly results.

Node/face
Mean quadrature Fully integrated
hfine \ Torque convergence rate hfine \ Torque convergence rate
0.5000 1.3938 0.5000 4.3235
0.2500 1.3938 0.2500 4.3235
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Figure 2-24. Convergence of the non-dimensional Torque versus element size, Richardson extrapolation
reference solution using extended results.
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Figure 2-25. Convergence of the non-dimensional Torque versus element size, Richardson extrapolation
reference solution using nightly results.

For this problem it is difficult to make a strong statement about the rate of convergence even from
the results of the asymptotic analysis. The lack of consistency (for a given test, but different
sequences of 3 meshes) in the convergence rates (Table 2-25) generally does not indicate that the
convergence rate is obtained from results within the asymptotic range. This is reflected in the
scatter of the apparent rates of convergence in Tables 2-25 and 2-29 and Figure 2-24. The results
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suggest that the accuracy of the finite element solutions are within about 2 percent for meshes 3
and 4. The most consistent asymptotic rates fortunately occur for the test case that corresponds to
features commonly used by analyst: the face/face contact algorithm and the mean-quadrature
element formulation. For this test case the asymptotic rates are much closer (Table 2-25) and
indicate that the rate of convergence is much closer to quadratic than linear.

Summary of results: the contact algorithm appears to converge for this classical contact problem,
and the difference between the reference solution and the FEM solutions for the finer meshes is
less than three percent. The difference results, referencing the Lubkin solution and the Richardson
extrapolation approximation of the exact solution, do not lend themselves to directly evaluating the
rate of convergence of the contact algorithm with certainty. Nonetheless it is encouraging to note
that the test case adopting face/face contact and the mean quadrature element formulation indicate
a convergence rate that is closer to quadratic than linear.

We interpret these results as positive verification results, from the view point that all the results
show a convergent behavior and yield reasonable agreement with the analytical solution. While,
these results must be weighted with the facts that neither an inexact analytical reference solu-
tion nor use of asymptotic analysis provide as strong a verification as having an exact reference
solution [5, 6, and 9], for sliding friction it appears to be the best we can do. We have a manu-
factured solution approach that can potentially be applied to frictionless contact, but extension of
the approach to frictional contact has yet to be considered and promises at best to be extremely
challenging. Further optimization of the mesh, reduction of the Hertz loading, and extension of
the analyses to five meshes are among the candidates that might help us obtain more results in the
asymptotic range and thus more convincing data on the convergence rates.
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For input deck see Appendix B.7.
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2.8. Sticking-Slipping Block and Spring - Explicit Dynamics

Analysis Type ExplicitDynamics
Element Type Hex8, Spring

Strain Incrementation | Midpoint Increment
Material Model Elastic

Verification Category | Discretization Error
Verification Quantities | Tangent Reaction Force

Number of Tests 1
Keywords Coulomb Friction, Contact
2.8.1. Problem Description

This test checks the computed frictional force after slipping occurs for a Coulomb friction test.
The test has one block placed on top of a larger block. A known vertical force and an increasing
horizontal force are applied to the top block such that the maximum frictional force is eventually
exceeded. The bottom block is fixed on one side and the top block is held in place by a spring
with one end equivalenced to a node at the center of one of that block’s faces. The frictional force
is measured through the reaction on the fixed end of the spring.

There are three versions of this test that share the bulk of this documentation: quasi-statics,
implicit dynamics, and explicit dynamics. These tests solve essentially the same problem, with
minor differences due to the differing solution techniques (i.e., implicit versus explicit).

2.8.1.1. Boundary Conditions

The applied vertical force on the top block is a gravity load sinusoidally ramped and then held
constant. The horizontal force is sinusoidally ramped after the vertical force has reached its
maximum, and the horizontal force is applied at the interaction surface to avoid creating moments
around the interaction surface. The bottom block is held fixed in all directions on the side away
from the interaction.

2.8.1.2. Material Model

Each block uses an elastic material model where the values were picked for convenience.

Table 2-31. Material model properties
Young’s Modulus | £ 108 Pa (blocks), 107 Pa (spring)
Poisson’s Ratio v | 0.0
Density p | 10° kg/m?
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2.8.1.3. Contact Interaction Model

The two blocks interact through a constant coefficient Coulomb friction model. This model
provides no resistance to surface separation (though none is induced here) and a maximum
tangential contact force directly proportional to the normal contact force.

Table 2-32. Coulomb friction properties
Coeflicient of Friction | u | 0.5 |

2.8.1.4. Feature Tested

Sliding frictional contact force calculations.

2.8.2. Assumptions and notes
2.8.3. Verification of Solution

There is an analytic solution since we use a standard Coulomb friction model, which says

Ftang < uFhorm, (2.12)

where Fy,g is the tangential contact force, u is the coefficient of friction, and Fyorm is the normal
contact force. After the sinusoidal ramp (used to minimize dynamic effects) the applied external
vertical force is held constant, which implies that the normal contact force is held constant. While
the normal contact force is constant, the applied tangential force is ramped up. At time

tsip = 13.33 (determined from the applied force functions in the input file) this tangential applied
force exceeds the maximum of the tangential frictional force (given by the above equation). At
that point the spring will load and support the applied force that is in excess of the maximum
tangential contact force. Thus, the analytic solution for the spring reaction is

For 1< Lslips Rspring =0;
For > tslip’ Rspring = Fapp_tang _/JFnorm~ (2.13)

In the following figure the spring reaction is plotted with an analytic curve that is the solution for
the spring reaction for 7 > fg;,. As you can see, the spring reaction is zero for 7 < #y;, and matches
the analytic solution for 7 > fgj;,. For the quasistatic, implicit dynamics, and explicit dynamics
cases these results are checked to within 1%, 2%, and 5%, respectively, of the maximum
tangential contact force.

For input deck see Appendix B.8.

94



Spring Reaction (N)

-2

Spring Reaction and Expected Spring Reaction (valid only after slip occurs)

Reaction
Expected Reactign (valid after slip occurs) —— ‘
5 10 15
Time (sec)

Figure 2-26. Spring Reaction Comparison
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2.9. Sticking-Slipping Block and Spring - Implicit Dynamics

Analysis Type ImplicitDynamics
Element Type Hex8, Spring

Strain Incrementation | Midpoint Increment
Material Model Elastic

Verification Category | Discretization Error
Verification Quantities | Tangent Reaction Force

Number of Tests 1
Keywords Coulomb Friction, Contact
2.9.1. Problem Description

This test checks the computed frictional force after slipping occurs for a Coulomb friction test.
The test has one block placed on top of a larger block. A known vertical force and an increasing
horizontal force are applied to the top block such that the maximum frictional force is eventually
exceeded. The bottom block is fixed on one side and the top block is held in place by a spring
with one end equivalenced to a node at the center of one of that block’s faces. The frictional force
is measured through the reaction on the fixed end of the spring.

There are three versions of this test that share the bulk of this documentation: quasi-statics,
implicit dynamics, and explicit dynamics. These tests solve essentially the same problem, with
minor differences due to the differing solution techniques (i.e., implicit versus explicit).

2.9.1.1. Boundary Conditions

The applied vertical force on the top block is a gravity load sinusoidally ramped and then held
constant. The horizontal force is sinusoidally ramped after the vertical force has reached its
maximum, and the horizontal force is applied at the interaction surface to avoid creating moments
around the interaction surface. The bottom block is held fixed in all directions on the side away
from the interaction.

2.9.1.2. Material Model

Each block uses an elastic material model where the values were picked for convenience.

Table 2-33. Material model properties
Young’s Modulus | £ 108 Pa (blocks), 107 Pa (spring)
Poisson’s Ratio v | 0.0
Density p | 10° kg/m?
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2.9.1.3. Contact Interaction Model

The two blocks interact through a constant coefficient Coulomb friction model. This model
provides no resistance to surface separation (though none is induced here) and a maximum
tangential contact force directly proportional to the normal contact force.

Table 2-34. Coulomb friction properties
Coeflicient of Friction | u | 0.5 |

2.9.1.4. Feature Tested

Sliding frictional contact force calculations.

2.9.2. Assumptions and notes
2.9.3. Verification of Solution

There is an analytic solution since we use a standard Coulomb friction model, which says

Ftang < uFhorm, (2.14)

where Fy,g is the tangential contact force, u is the coefficient of friction, and Fyorm is the normal
contact force. After the sinusoidal ramp (used to minimize dynamic effects) the applied external
vertical force is held constant, which implies that the normal contact force is held constant. While
the normal contact force is constant, the applied tangential force is ramped up. At time

tsip = 13.33 (determined from the applied force functions in the input file) this tangential applied
force exceeds the maximum of the tangential frictional force (given by the above equation). At
that point the spring will load and support the applied force that is in excess of the maximum
tangential contact force. Thus, the analytic solution for the spring reaction is

For 1< Lslips Rspring =0;
For > tslip’ Rspring = Fapp_tang _/JFnorm~ (2-15)

In the following figure the spring reaction is plotted with an analytic curve that is the solution for
the spring reaction for 7 > fg;,. As you can see, the spring reaction is zero for 7 < #y;, and matches
the analytic solution for 7 > fgj;,. For the quasistatic, implicit dynamics, and explicit dynamics
cases these results are checked to within 1%, 2%, and 5%, respectively, of the maximum
tangential contact force.

For input deck see Appendix B.9.
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Figure 2-27. Spring Reaction Comparison
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2.10. Sticking-Slipping Block and Spring - Implicit Quasi-statics

Analysis Type Quasistatics
Element Type Hex8, Spring

Strain Incrementation | Midpoint Increment
Material Model Elastic

Verification Category | Discretization Error
Verification Quantities | Tangent Reaction Force
Number of Tests 1

Keywords Coulomb Friction, Contact

2.10.1. Problem Description

This test checks the computed frictional force after slipping occurs for a Coulomb friction test.
The test has one block placed on top of a larger block. A known vertical force and an increasing
horizontal force are applied to the top block such that the maximum frictional force is eventually
exceeded. The bottom block is fixed on one side and the top block is held in place by a spring
with one end equivalenced to a node at the center of one of that block’s faces. The frictional force
is measured through the reaction on the fixed end of the spring.

There are three versions of this test that share the bulk of this documentation: quasi-statics,
implicit dynamics, and explicit dynamics. These tests solve essentially the same problem, with
minor differences due to the differing solution techniques (i.e., implicit versus explicit).

2.10.1.1. Boundary Conditions

The applied vertical force on the top block is a gravity load sinusoidally ramped and then held
constant. The horizontal force is sinusoidally ramped after the vertical force has reached its
maximum, and the horizontal force is applied at the interaction surface to avoid creating moments
around the interaction surface. The bottom block is held fixed in all directions on the side away
from the interaction.

2.10.1.2. Material Model

Each block uses an elastic material model where the values were picked for convenience.

Table 2-35. Material model properties
Young’s Modulus | £ 108 Pa (blocks), 107 Pa (spring)
Poisson’s Ratio v | 0.0
Density p | 10° kg/m?
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2.10.1.3. Contact Interaction Model

The two blocks interact through a constant coefficient Coulomb friction model. This model
provides no resistance to surface separation (though none is induced here) and a maximum
tangential contact force directly proportional to the normal contact force.

Table 2-36. Coulomb friction properties
Coeflicient of Friction | u | 0.5 |

2.10.1.4. Feature Tested

Sliding frictional contact force calculations.

2.10.2. Assumptions and notes
2.10.3. Verification of Solution

There is an analytic solution since we use a standard Coulomb friction model, which says

Ftang < uFhorm, (2.16)

where Fy,g is the tangential contact force, u is the coefficient of friction, and Fyorm is the normal
contact force. After the sinusoidal ramp (used to minimize dynamic effects) the applied external
vertical force is held constant, which implies that the normal contact force is held constant. While
the normal contact force is constant, the applied tangential force is ramped up. At time

tsip = 13.33 (determined from the applied force functions in the input file) this tangential applied
force exceeds the maximum of the tangential frictional force (given by the above equation). At
that point the spring will load and support the applied force that is in excess of the maximum
tangential contact force. Thus, the analytic solution for the spring reaction is

For 1< Lslips Rspring =0;
For > tslip’ Rspring = Fapp_tang _/JFnorm~ (2.17)

In the following figure the spring reaction is plotted with an analytic curve that is the solution for
the spring reaction for 7 > fg;,. As you can see, the spring reaction is zero for 7 < #y;, and matches
the analytic solution for 7 > fgj;,. For the quasistatic, implicit dynamics, and explicit dynamics
cases these results are checked to within 1%, 2%, and 5%, respectively, of the maximum
tangential contact force.

For input deck see Appendix B.10.
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Figure 2-28. Spring Reaction Comparison
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211, Coulomb Friction with Sliding

Analysis Type Explicit/Implicit Dynamics, Quasi-statics
Element Type Hex8, Tet4, Rigid Body
Material Model Elastic

Verification Category | Discretization Error
Verification Quantities | Contact Force, Displacement
Number of Tests 10

Keywords Force Balance, Contact

2.11.1. Problem Description

This problem puts a scrubbing bubble geometry through a loading history that exercises all the
regimes of the Coulomb friction law. Figure 2-29 shows the computational mesh. The green
block is a rigid body to which normal prescribed forces and displacements are applied to drive the
problem. Contact occurs between the yellow Tet4 block and the red hex8 block. The four blue
cubes are used in the analytic rigid surface contact test cases to define an analytic rigid plane.

Figure 2-29. Mesh View

2.11.1.1. Boundary Conditions
The loading is accomplished through a combination of prescribed normal forces and

kinematically prescribed sliding. The loading conditions are covered using Figure 2-30 and
Table 2-37.

2.11.1.2. Material Model
2.11.1.3. Feature Tested

This test exercises the contact enforcement algorithms in explicit dynamics, implicit dynamics,
and quasi-statics. This includes the different constraint formulations; node-face augmented
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Table 2-37. Loading history

Load Period Loading Time Process

1 0.000 Initial condition, pad is located directly
above surface, no contact forces produced

2 0.000-0.005 Normal loading force is ramped up

3 0.005-0.010 Block slides a small amount, total x
displacement 0.0002

4 0.010-0.015 Block is held

5 0.015-0.020 Normal force released

6 0.020-0.025 Normal force re-applied

7 0.025-0.030 Slide block diagonally a small amount.
Total x displacement -0.0002. Total y
displacement 0.0002.

8 0.030-0.035 Block is held

9 0.035-0.040 Normal force released

10 0.040-0.045 Normal force re-applied

11 0.045-0.050 Slide block diagonally quickly. Total x
displacement 0.05. Total y displacement
0.05.

}— 2cm

Figure 2-30. Loading History

Table 2-38. Material model properties

Young’s Modulus | E | 1000
Shear Modulus G | 500
Density p | 40x107*

Lagrange, node-face kinematic, face-face augmented Lagrange, and analytic rigid surface contact.
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The test includes loading histories that test normal gap enforcement, stick/slip transition of
Coulomb friction law, constant velocity sliding, and variable direction and velocity sliding with a
Coulomb friction law.

Also tested is total iteration counts and solver efficiency to solve contact systems in implicit
dynamics and quasi statics.

2.11.2. Assumptions and notes

Analytic solution assumes quasi-statics. Material densities are set low enough so that the dynamic
loading approximates a quasi-static solution. However, in the high slip rate regime dynamics
calculations will see some deviation away from a static result.

2.11.3. Verification of Solution

Figure 2-31 shows results of augmented Lagrange static node-face contact (the dash quasistatic
enforcement method). For this method all results nearly exactly match the analytic static
solutions.

Figure 2-32 shows results of augmented Lagrange static face-face contact (the dash quasistatic
enforcement method). For this method all results nearly exactly match the analytic static
solutions.

Figure 2-33 shows results for analytic rigid surface contact (the ARS quasistatic enforcement
method). For this case the bubble is sliding on an analytic plane, the corners of which are defined
by the four blue cubes. This method gives good agreement to analytic results for loading period 1
to 10. However, in loading period 11, rapid and large motion sliding, the rigid surface
enforcement method shows substantial deviations from the correct analytic solution. The reasons
for these deviations is currently unknown. Because of these deviations analytic rigid surface
contact has only been verified to give the correct results in small sliding regimes.

Figure 2-34 shows results for kinematic node-face contact (the ACME quasistatic enforcement
method). For this case the contact forces are computed accurately. However, as seen in

plot (2-34d), Z displacement, the displacements may have errors. Kinematic enforcement is
computed via a velocity constraint. Any inconsistency in the velocity constraint tend accumulate
and after a significant run time may lead to a noticeable error in the displacement. This is an
undesirable, but known and expected, limitation of the kinematic contact algorithm.

Figure 2-35 shows results of augmented Lagrange implicit dynamic node-face contact (the dash
implicit enforcement method). For this method all results nearly exactly match the analytic static
solutions.

Figure 2-36 shows results of augmented Lagrange implicit dynamic face-face contact (the dash
implicit enforcement method). For this method all results nearly exactly match the quasistatic
solution for small sliding rates (loading periods 1-10). Period 11 is a high sliding velocity period.
In period 11 some high frequency oscillation is introduced into the sliding block. The analytic
solution assumes quasistatics, for this case the actual problem does include dynamics thus some
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Figure 2-31. Static Node-Face

deviation from the analytic solution is expected. In the dynamic regime the code results should

and do match the analytic results in the average sense once the high frequency noise is filtered
out.

Figure 2-37 shows results of analytic rigid surface implicit contact (the ARS implicit enforcement
method). As with static ARS contact this method shows good agreement to the analytic solution
for small sliding, but large and unexpected deviations from the analytic solution during large
magnitude and large velocity sliding.

Figure 2-38 shows results of augmented Lagrange explicit dynamic node-face contact (the dash
explicit enforcement method). This method shows good agreement with the static analytic results
for small sliding. Period 11 is a high sliding velocity period. In period 11 some high frequency
oscillation is introduced into the sliding block. The analytic solution is modeled quasistatics, for
this case the actual problem does include dynamics thus some deviation from the analytic solution
is expected. In the dynamic regime the code results should and do match the analytic static results
in the average sense once the high frequency dynamic vibration noise is filtered out.

Figure 2-39 shows results of augmented Lagrange explicit dynamic face-face contact (the dash
explicit enforcement method). This method has the same character as the node-face method.

105



T
Analytic Contact Force
el Contact Force

Analytic Contact Force
Model Contact Force

Contact Force (lbs.)
)
o
S|

Contact Force (lbs.)

Time (sec.) Time (sec.)

(a) X Contact Force (b) Y Contact Force

Analytic Contact Force
Model Contact Force

Analytic D\splécemen[
Model Displacement

0
01 F

-5x107° |-
0.08 |-

—1x107° |-
0.06 |-

~1.5x105 |

Contact Force (lbs.)
Cap Displacement (in.)

—2x1075 |

-25x1075 |-

-3x107°
0

L L L .
o 0.01 0.02 0.03 0.01 0.02 0.03 0.04 0.05
Time (sec.) Time (sec.)

(¢) Z Contact Force (d) Z Displacement

Figure 2-32. Static Face-Face

Good agreement to the analytic static results is obtained in the regime where the problem is
loaded statically and some expected high frequency dynamic based noise shows up in the high
sliding rate period 11. Thus in period 11 the code should and do match the analytic static results
in the average sense once the high frequency dynamic vibration noise is filtered out.

Figure 2-40 shows results of analytic rigid surface explicit contact (the ARS explicit enforcement
method). As with static and implicit dynamic ARS contact this method shows good agreement to
the analytic solution for small sliding. In the large sliding rate period 11 there are unexpected
deviations from the analytic solution. The high frequency noise in this loading period is expected
and is seen in other explicit dynamics enforcement methods. However, unlike the node-face and
face-face enforcement method the ARS contact method does not match the analytic solution in
the average sense. Thus as with the quasistatic and implicit dynamics ARS enforcement methods,

explicit ARS enforcement is only verified to give correct answers for small magnitudes and rates
of sliding.

For input deck example see Appendix B.11.
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Figure 2-37. Implicit Dynamics ARS
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2.12, Oscillating Block Spring With Friction

Analysis Type Explicit Dynamics
Element Types Hex8, Spring

Strain Incrementation | Midpoint Increment
Material Model Elastic

Verification Category | Discretization Error Test
Verification Quantities | Displacement
Keywords Coulomb Friction, Contact

2.12.1. Problem Description

This test checks the contact stick behavior in the context of a dynamic response. The analytical
reference solution is based upon a single degree of freedom, dynamic system subjected to
Coulomb damping. Specifically, consider a point mass m attached to a spring of stiffness &,
resting on a surface with coeflicient of friction y, and acted upon vertically by gravity g, as
depicted in Figure 2-41. The dynamic system is excited by prescribing an initial displacement of
the mass toward the spring (compressing the spring). The mass is then released. If the spring
force is greater than the frictional force, motion of the mass will ensue, and if not it will remain at
rest with the spring deformed. If the spring has sufficient energy in the initial deformed state, the
mass will not only move but will oscillate in a damped motion until friction stops it.

*8 fz

Figure 2-41. Analytical model: Single degree of freedom, dynamic system subjected to Coulomb friction.

The finite element model represents the mass and substrate as blocks of hexahedral elements, as
depicted in Figure 2-42. The moving block of mass m is a cube with an edge dimension of 3
meters. The spring is depicted by the blue bar element attached at the center of the left face (top
block) and has an initial length of 1.5 meters. The test is run as an explicit dynamic problem.

2.12.1.1. Boundary Conditions and Body Forces

A vertical body force exists on the top block due to a gravity load that is sinusoidally ramped
(during the first 10 seconds) and then held constant. During this same initial loading time interval
the block is displaced (via a sinusoidal ramping) to the left by 1 meter. In the second time interval
the spring is released to either stick or move, depending upon the relative magnitudes of the
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Figure 2-42. Mesh for block-spring dynamic system subjected to Coulomb friction.

friction and spring forces. The substrate is fixed at all nodes. The fixed end of the spring is fixed
with respect to x and y translations.

2.12.1.2. Material Models

Each block uses an elastic material model where the values were picked for convenience, i.e., stiff
enough to make the moving block act as a rigid body and compliant enough to not drive the time
step too small for the explicit analysis.

Table 2-39. Material model properties
Young’s Modulus | £ 1x10° Pa
Poisson’s Ratio | v 0.0
Density p | 0.148148 kg/m>

Note that the density was set to give a mass of 4 kg for the moving block.

The spring stiffness was selected to be 167> N/m, so that the frequency of vibration would be 1
Hz. The linear force versus strain function (spring F' vs € ) used as input for the spring element
has force values of magnitude 247> N for strains of magnitude unity (1.5 times the stiffness since
the initial length of the spring is 1.5 meters, and an engineering strain measure is used to define
the strain in the spring).

2.12.1.3. Contact Interaction Model
The two blocks interact through a constant coefficient, Coulomb friction model. This model

provides no resistance to surface separation (though none is induced here) and a maximum
tangential contact force directly proportional to the normal contact force. The coefficient of
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friction is set in this problem to yield two cycles of oscillation for the block before it sticks due to
friction.

Table 2-40. Coulomb friction properties
Coeflicient of Friction | u | 0.4471448

2.12.1.4. Feature Tested

This test examined the frictional contact force calculations, in the context of an initially dynamic
response. It examines both sliding and stick conditions, but the emphasis of the test was upon the
stick response.

2.12.2. Assumptions and notes

The FEM model used in this test is assumed to provide a sufficiently accurate representation of a
single degree of freedom dynamic system. As such, the stiffness of the moving block must be
high enough to not introduce any significant deformation, e.g., where the spring connects to the
block or stress waves traveling through the block. Furthermore, tipping of the block due to the
spring load acting above the plane of the frictional surface is assumed to have an insignificant
effect upon the response.

2.12.3. Verification of Solution

The frictional force obeys the inequality
Ftang < i Fnorm, (2.18)

where Fy,, is the tangential contact force, u is the coeflicient of friction, and Fyorm is the normal
contact force. When F'apg is less than uFpom, motion is prevented by the frictional force, i.e., the
stick condition. During motion of the block the above inequality is satisfied as an equality. This
frictional behavior introduces a nonlinearity in the governing equations. Fortunately however, it is
linear for each half-cycle and thus is amenable to analytical solution. Unlike viscous damping the
friction force is not proportional to the velocity, but it does oppose the motion and thus acts in the
opposite direction of the velocity. As such, for a given velocity direction, the equations of motion
are those of an undamped system with a constant force opposing the motion, as given below.

i+wiu= wUp ifi<0

2u=-w2Up ifi>0

Pt (2.19)

where Up = ug/w,’.

The solution approach is to solve the linear ordinary differential equations for each half-cycle, for
which the velocity direction remains constant. Each half-cycle solution inherits its initial
conditions (prescribed displacement and zero velocity) from the end of the previous half-cycle
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solution. At the end of each half-cycle the frictional stick condition is evaluated to determine if
the spring has sufficient force to continue the motion (i.e., overcome friction). Thus the final
solution is a sequence of solutions for each half-cycle - initial value problem solutions stitched
together to give the response over time.

The solution to the equations of motion for each half-cycle case are given by

A = U, cos(wp(t—19)) + Upll —cos(w,(t—19))] ifu<0
wt) = U, cos(wp(t—19)) — Upl1 —cos(w,(t—19))] if >0

Each half-cycle ends when the velocity reduces to zero, which occurs on intervals of 1/2 seconds.
The positions at the start of each half cycle are given by the sequence {-1, 1-2Up, -1+4Up,
1-6Up, -1+8Up} m. These are the displacement initial conditions for the corresponding
half-cycle solutions. The solution for the i¢*"" half cycle is then given by

) = { (1-(4i-2)Up)cos(wn(t—19))+ Up[l —cos(wy(t—19))] ifi<0
(=1+@4i-4)Up)cos(wn(t—1ty)) — Up[l —cos(wy(t—19))] ifi>0

In the following figures the displacement history is presented for both the analytical and FEM
solution. Note that over the three seconds depicted in Figure 2-43 the FEM solution shows good
agreement with the analytical solution, especially during the oscillations. The deviation between
the solutions once the block sticks, though slight, reveals a numerical artifact that is not physical
and is related to the algorithm used for stick enforcement. Figure 2-44 examines, in more detail,
the displacement response near when sticking occurs. The problem was designed to allow the
block to oscillate for two cycles, so that there would be a sufficient number of steps for the
solutions to differ when the stick condition occurred; this effect is apparent at a time of about 12
seconds.

The code solution does not stick at the precisely predicted analytic location. It is unknown at this
time what the exact cause of the discrepancy is, may be related to the computational model have
multiple degrees of freedom to capture rocking and vibration modes that are not relevant to the
single degree of freedom analytic solution. An additional important feature of the response is the
continued frictional creep behavior that is not consistent with the exact solution. This frictional
creep is numerical artifact that causes the block to continue to slide at a very small velocity once
the stick condition is reached.

The verification check on this problem requires the relative error in the displacement to be within
the interval [0.009, 0.0101], i.e., approximately 1%. Specifically a one-norm in time is used for
the evaluation.

An additional check is made on the frictional energy at the problem end time. The expected
frictional energy should equal the frictional force times the displacement through which the block
moves. The frictional force is constant at block mass times gravity times friction coefficient. The
expected displacement is found by integral of the analytic displacement history function as shown
in Figure 2-43.
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2.12.4. References

1. Craig RR. Structural Dynamics, An Introduction to Computer Methods. John Wiley &
Sons, 1981, pp 65-66.

For input deck example see Appendix B.12.
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2.13. Friction Wedge

Analysis Type Explicit Dynamics
Element Types Hex8, Rigid Body
Strain Incrementation | Midpoint Increment
Material Model Elastic

Verification Category | Discretization Error and Convergence
Verification Quantities | Contact Stick/Slip
Keywords Coulomb Friction, Contact slip

2.13.1. Problem Description

This test checks the contact stick behavior in the context of an essentially quasistatic response.
The expected solution is simply that no slip is expected to occur in the problem due to Coulomb
friction. The geometry and mesh for the problem are depicted in Figure 2-45. Boundary
conditions for the tests are such that the top and bottom wedges squeeze the middle wedge, like
two fingers squeezing a water melon seed, and consistent with this analogy under the right
conditions the middle wedge can be dynamically expelled.

For the problem specification examined in this test, the middle block will only exhibit “contact
creep” response, not dynamic motion. (Contact creep, which may also be referred to as frictional
creep, is a slow slip response that occurs for a body in frictional contact and subjected to a
tangential load; this response is an artifact of the contact algorithm and is not physical in nature.)
The slope on the wedge faces is 0.2. A such, a simple examination of the statics for this problem
shows that in resolving the vertical forces transferred from the top and bottom wedges to the
middle wedge, the ratio of tangential to normal force is 0.2. Thus we expect any coefficient of
friction greater than 0.2 to hold the block in place. We refer to this value as the critical coefficient
of friction. Other tests using this geometric configuration have been previously studied with
Sierra/SM but with a different emphasis. A performance test having the same geometry uses a
finer mesh than used here. Our focus for this test is upon examining the stick enforcement of the
contact algorithm.

In the finite element model, the wedges are modeled with hexahedral elements, but the top and
bottom wedges are prescribed to have rigid body motion, as such only the middle wedge will
deform elastically. The bounding cube on the stack of wedges has edges with a length of 1 inch.
The top and bottom wedges have a thickness that increases from 0.2 inches to 0.4 inches.

2.13.1.1. Boundary Conditions

The top and bottom wedges are prescribed to displace toward the middle wedge via velocity
boundary conditions. The magnitude of these velocities (in the -y and +y directions, respectively)
is depicted in Figure 2-46. Note that there are four stages in the wedge loading:

1. positive acceleration (time € (0, 0.001)),
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%Z'x

Figure 2-45. Mesh for the stack of wedges subjected to Coulomb friction.

2. constant velocity (time € [0.001, 0.002])
3. negative acceleration (time € (0.002, 0.003), and
4. constant position (time € (0.003, c0)).

The corresponding displacement for this input is shown in Figure 2-47. The top and bottom
wedges are restrained against rigid body translation in the xz-plane and against all rigid body
rotations. The middle wedge is restrained against displacement in the z-direction.

v

y-velocity (in/sec)

0 L L L L L L L L L
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
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Figure 2-46. History of top and bottom wedges’ absolute velocity, |v|.
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Figure 2-47. History of top and bottom wedges’ absolute displacement, |u,|.

2.13.1.2. Material Models

The middle wedge is modeled as elastic with material model parameters as given in the table
below. The stiffness and density of the material should have no effect on the ultimate stick/slip
behavior of the wedge. However, the wedge must be stiff enough such that the dynamic effects
due to the transient loading are relatively small.

Table 2-41. Material model properties
Young’s Modulus | E | 1 x10* psi
Poisson’s Ratio v 0.0
Density p | 7.4x107% 1bf sec?/in*

2.13.1.3. Contact Interaction Model

The middle wedge interacts with the top and bottom wedges through a constant coefficient,
Coulomb friction model. This model provides no resistance to surface separation and a maximum
tangential contact force directly proportional to the normal contact force. The coeflicient of
friction in this problem is set to u = 0.201 and is just above the critical coefficient of friction (0.2),
though parameter studies with larger values (e.g., 0.3) yielded qualitatively similar results in
terms of the contact creep behavior.

2.13.1.4. Feature Tested

This test examined the frictional contact force calculations, in the context of quasi-static response.
The emphasis of the test was upon the stick response, and this version of the code exhibited an
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erroneous contact creep behavior where slip slowly occurs even when the friction law should
require no slip. A parameter study, on the effect of the number of contact momentum balance
iterations, will show contact creep can be significantly reduced by increasing the number of
iterations.

2.13.2. Assumptions and notes

The loading is assumed to be sufficiently slow to not induce significant wave propagation within
the middle wedge; dynamic response of this type could affect the normal tractions and thus the
evaluation of the stick condition. While there is a variation in the normal traction along the
wedge, due to the compliance variation that occurs with the changing height. During the initial
loading small lateral (x) deformation in the wedge should occur until equilibrium is reached
where the stick/slip condition is exactly reached everywhere on the contact surface. At this point
the ratio of tangential to normal tractions is governed by the geometry. To verify that qualitatively
the response was not sensitive to this assumption, we examined cases with coeflicients of friction
as large as 0.3.

2.13.3. Verification of Solution

The frictional force obeys the inequality

Ftang < /JFnorm, (2.20)

where Fiang is the tangential contact force, u is the coefficient of friction, and Fyorm 1s the normal
contact force. When Fang is less than uFporm, motion is prevented by the frictional force, i.e. the
stick condition. During motion of the block the above inequality is satisfied as an equality.

For the following results, the effect of the number of contact iterations for momentum balance is
examined, since it is expected to affect the results for problems of this type. Figure 2-48 shows
the history of the slip at the leading edge (bottom left corner of the front face, node 55) of the
wedge. Clearly increasing the number of contact iterations results in a better enforcement of the
stick condition, but the contact creep may still occur. Note that significant changes (albeit on a log
scale) in the slip can occur in any stage of the loading (depending upon the number of contact
iterations). Even in the last stage where the edge blocks are not moving slip continues to occur a
significant rate if relatively few contact iterations are used.

Figure 2-49 depicts the average slip response over both contact surfaces and thus is inherently
smoother. Examining the slip behavior alone can lead to a false positive interpretation of the
response, because the slip can remain constant when either perfect stick or separation occurs. One
can distinguish between these cases by examining the motion of the middle wedge; Figure 2-50
depicts the magnitude of the average nodal displacement of this wedge, and clearly reflects the
contact creep motion. This displacement response is averaged over the whole body and is less
sensitive to the number of contact iterations.

For any given time, Figure 2-49 indicates that average slip decreases with an increase in the

124



Slip (in)

Figure 2-48. Slip history for bottom left corner, front face, of the middle wedge.
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Figure 2-49. Average slip history of the middle wedge.

125

number of contact iterations. Figure 2-51 plots the average slip, i.e., average error in the stick
enforcement, as a function of the number of contact iterations.

Figure 2-51 shows the average slip that occurs late in time. Included is the accumulated slip half
way through the analysis, at the end of the analysis, and a normalized slip rate between these two
times. It is assumed that any dynamic or load driven displacement have occurred by the half way
point of this analysis. Any additional slip past this point is likely a numerical error. The
normalized slip rate plotted is given by Equation 2.21. The slip rate is normalized by the current
value of contact normal force on the wedge. If the wedge slips then the compressive forces are
lessened. This reduces the expelling force on the wedge and thus will reduce slip rate, the
normalization will eliminate this effect. When run with a small number of contact iterations the
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Figure 2-51. Average slip versus humber of contact iterations, at two values of time.

wedge may slip a significant distance lowering the compressive stress on the wedge by a factor of
two or more. For relatively large number of contact iterations the wedge stays well stuck and the
compressive stress remains constant between the different iteration cases.

. . : . 1
rate = ((Slipend — $lipnaif)/(timeend — timenair))/( E(f OrCeend + forcenair)) (2.21)

It is assumed that this long duration slip rate should ideally be as close to zero as possible. At a
large number of iterations the slip rate starts to approach the numerically obtainable zero value of
roughly 1.0x 10712, Certainly internal waves within the wedge could reduce the normal force
point-wise on the interface and could contribute to contact creep. For the case presented above,
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the coeflicient of friction is close to the critical value (within 0.5%), which makes the contribution
of this possible effect more suspect.

The nightly verification for this test confirms that the slip rates given by Equation 2.21 match
within 5% of those in Figure 2-51. For input deck example see Appendix B.13.
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2.14. Analytic Sphere Contact

Analysis Type Explicit Dynamics (presto)

Element Types SPH, Hex8, & BT Shell

Element Formulations | Uniform Gradient

Strain Incrementation | Strongly Objective

Material Models Elastic

Verification Category | Contact

Verification Quantities | Displacement (s) and Contact Energy (CE)
Number of Tests 4

Keywords Analytic Sphere, Contact

2.14.1. Brief Description

This problem demonstrates the validity of analytic sphere contact (i.e., an analytic sphere lofted
about a particle) with and without friction. A single SPH particle is set upon an inclined plane and
is subjected to gravity loads and slides down the surface of the plane. An analytic sphere is lofted
about the particle to enforce contact, rather than using the traditional 20-face icosahedron. The
plane is given a fixed displacement boundary condition for all nodes on the plane to simulate a
rigid body, and the problem is simulated with explicit dynamics. The plane is simulated using
both solid Hex8 and planar BT shell elements with friction coefficients of 0.0 and 0.5 for a total of
four test cases.

2.141.1. Functionality Tested

The primary capability tested is node-face contact for particles lofted with analytic spheres in
Dash. The analytic spheres are tested in conjunction with Hex8 solid and BT Shell elements.

2.14.1.2. Mechanics of the Problem

The gravity load in combination with the inclined surface causes the particle to slide in the
downbhill direction. This case tests the “slip” condition, where the force of gravity outweighs the
frictional forces and causes the particle to slide. The distance traveled, s, during sliding is given
by
1 .

5= Egtz(smﬁ— pcosf) (2.22)
where g is the gravitation constant, ¢ is time, u is the coefficient of friction, and 6 is the angle of
surface inclination. The contact energy, CE, is given by

CE = —mgucosfs (2.23)
where m is the mass of the particle. Note the contact energy is negative because it opposes the

direction of motion. The angle is chosen to be 6 = 7/4 (i.e., 45°). Two coefficients of friction are
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tested, u = 0.0 and 0.5, and are selected such that the particle will slip. The gravitation constant is
given as g = 981cm/s.

2.14.1.3. Material Model
The material model used for this problem is the elastic model implemented in LAME [1], which

implements a mock steel material. The CGS unit system is used (Centimeter-Gram-Second). The
selected properties are given as follows:

Table 2-42. Material model properties

Material Parameter Symbol Value
Young’s Modulus E 200.0 x 10° dyne/cm?
Poisson’s Ratio 14 0.3
Density Jol 7.85 g/em®

Note, the stiffness of the elastic material is artificially lowered to increase the critical time step of
the elements. Since the quantities of interest are distance traveled and contact energy, which do
not rely on the material stiffness, this will not affect the results.

2.14.1.4. Boundary Conditions and Meshes

The SPH particle with a lofted sphere is unconstrained and initially at rest, placed initially at the
top of the plane. The SPH radius (used to determine the mass of the particle) is set at 0.95 cm
giving a total mass of 29.7 grams, while the lofted sphere radius used for contact is 1.0 cm. The
inclined surface has dimensions of 5x 1 X 0.5 cm (5% 0.5 cm for the shell case) and is fixed in all
directions to simulate a rigid body. The inclined surface consists of five elements, each of length 1
cm along the sliding direction. A total of four cases are tested given in the table below.

Table 2-43. Mesh characteristics.
Element Formulation Coefficient of Friction (u)

Case-1 Hex8 0.0
Case-2 Hex8 0.5
Case-3 BT Shell 0.0
Case-4 BT Shell 0.5

2.14.2. Verification Results
The four cases tested are shown in Figure 2-52 and are shown to agree exactly with the reference

solutions for both distance traveled and contact energy given above in Equation (2.22) and
Equation (2.23), respectively.
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Figure 2-52. Verification results of analytic sphere contact on an inclined surface. The sliding displace-
ment and contact energy of the particle are shown in the left and right columns, respectively. The top
row shows results for a Hex8 surface and the bottom row shows results for a BT Shell surface.
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2.14.3. References

1. W.M. Scherzinger, and D.C. Hammerand, Constitutive Models in LAME. Sandia Report
SAND2007-5873, September 2007.

For input deck example see Appendix B.14.
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2.15. Tied Contact with Rigid Body Motion

Analysis Type Explicit Dynamics
Element Type Hex8

Element Formulations | Mean Quadrature
Strain Incrementation | Midpoint Increment
Material Model Elastic

Verification Category | Conservation
Verification Quantities | External Moment
Number of Tests 40

Keywords Overlap Offset

2.15.1. Problem Description

This test checks that the accumulated external moment remains zero during rigid body rotation of
a model that has a tied contact interface with small mesh overlaps. The model is named the
"mushroom" based on its appearance, as shown in Figure 2-53. The geometry consists of two
cylinders, one solid and one hollow. The radius of the solid cylinder is equal to the inner radius of
the hollow cylinder, and one end of the solid cylinder is inside the hole of the hollow cylinder.
The hollow cylinder is meshed coarser than the solid cylinder, thus causing some overlap of the
two meshes, representing a very common occurence in analyses. These two surfaces, the coarse
meshed "side_a" and the finer meshed "side_b", are held together during analysis by tied contact.
A rigid body rotation is then applied such that the accumulated moment at the nodes with the
prescribed rotation should remain zero. However, imperfect contact constraint can introduce
forces in the model that cause a non-zero moment.

Figure 2-53. Geometry and mesh of the "mushroom" model.
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Combinatorics of the following contact modeling options are evaluated and compared:
e Friction model and overlap/offset removal technique:
1. tied + overlap removal
tied + overlap removal + offset removal

tied_offset + overlap removal

Sl

tied_offset + overlap removal + offset removal
5. tied_offset (no overlap removal)
e Enforcement technique:
1. face-face
2. node-face
e Contact surface definition:
1. sidesets
2. block skins
e Which surface(s) move during overlap removal:
1. both (side_a and side_b)
2. side_a
3. side_b

2.15.1.1. Boundary Conditions

The boundary conditions consist of initial and prescribed angular velocities. The entire model is
prescribed an initial angular velocity of 50x radians per unit time about the z-axis of the two
cylinders. This same angular velocity is prescribed throughout the analysis to a rigid body
consisting of the nodes on the far end of the solid cylinder (the end farthest away from the contact
interface). This should result in zero z-axis moment in the rigid body throughout the analysis.

2.15.1.2. Material Model

A (hypo-)elastic material model is used, with the parameters shown in Table 2-44.

Table 2-44. Elastic Material Properties
Young’s Modulus | E | 29 x 10°
Poisson’s Ratio v | 0.28
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2.15.1.3. Feature Tested

This set of tests evaluates whether the z-axis moment of the rigid body nodeset is approximately
zero. Some contact options tested here are known to have significant error in the solution; one
purpose of this test is to show which contact options are best and worst for models that have small
mesh-induced overlap at the contact surfaces and significant difference in mesh size. The
maximum error in the z-axis moment ranges from 5.0¢™> to 1.5 among the combinatorics

tested.

2.15.2. Assumptions and Notes

This test does not evaluate changes in the solutions and errors due to varying the mesh and mesh
size.

2.15.3. Verification of Solution

The current results of all test runs of the mushroom model are presented here. Figure 2-54 shows
the results when defining each contact surface with a node-face constraint formulation.

Figure 2-55 shows the results when using skin all blocks with a node-face constraint formulation.
Figure 2-56 shows the results when defining each contact surface with a face-face constraint
formulation. Figure 2-57 shows the results when using skin all blocks with a face-face constraint
formulation. ’Remove overlap from’ defines which contact surface will move during
overlap/offset removal. Side_A is the coarser meshed block while *Side_B’ is the finer one in this
case. Note the y-axis ranges vary among these plots to aid in showing solution trends and *Of_R’
is for offset removal while *Ov_R’ is for overlap removal in the plot legend.

The following conclusions are drawn from these plots:
e The tied_offset friction model gives the most accurate solutions.

e Several other options are slightly less accurate but still give solutions that oscillate near
zZero.

e Multiple combinatorics result in a divergent solution (accumulation of z-axis moment with
increased time/rotation). This includes the default tied friction model with overlap removal
(but without offset removal) and only allowing overlap removal to be applied on the coarser
meshed side_a.

However, these conclusions do not mean there are definitive best and worst tied contact modeling
approaches. The following, significant caveats come with these conclusions:

e This is one specific model and mesh. The geometry and mesh were chosen to highlight
variations in the external moments produced by the contact combinatorics tested here.

e The tied_offset friction model is expected to have a higher performance cost due to the
root-mean-square deviation (RMSD) algorithm that it must calculate at every contact
interaction and iteration.
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e The tied friction model is the most thoroughly tested and used model.

For input deck example see Appendix B.15.

135



le-6
0.45 A 5.0
= o
g g
§ g 251
o
E 0.30 1 £
© -
g g
¢ g 004
L x
wn Qo
2 "
3 0.15 % A
N ® 254
0.00 A =5.0 1
0 2 4 6 0 2 4 6
time le-5 time le-5
—— Tied —— Tied_Offset
—— Of_R_norm_over_2.31e-08_rel_norm_over_2.05e-05_gap_-0.00077 —— Of_R_norm_over_2.31e-08_rel_norm_over_2.05e-05_gap_-0.00077
—— Ov_R_norm_over_2.02e-08_rel_norm_over_1.73e-05_gap_NA —— Ov_R_norm_over_2.02e-08_rel_norm_over_1.73e-05_gap_NA
(a) Tied Friction with ‘remove overlap from Both’ (b) Tied Offset Friction with 'remove overlap from Both’
le—6
0.8 5.01
o
c
v
£ 06 5 257
£ £
5 =
g
2 0.4+ g 009
@ o]
g
s %
. E -2.54
s 0.2 '
N
~5.04
0.0 4 T T T T
0 2 4 6
T T T T time le-5
0 2 time4 6 le—5 —— Tied_Offset
—— Of_R_norm_over_5.70e-08_rel_norm_over_4.83e-05_gap_-0.00229
Tied —— OvV_R_norm_over_1.47e-10_rel_norm_over_1.26e-07_gap_NA

~—— Of_R_norm_over_5.70e-08_rel_norm_over_4.83e-05_gap_-0.00229
—— Ov_R_norm_over_1.47e-10_rel_norm_over_1.26e-07_gap_NA

(d) Tied Offset Friction with ‘remove overlap from
(¢) Tied Friction with 'remove <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>