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Abstract

Presented in this document are the theoretical aspects of capabilities contained in the Sierra/SM
code. This manuscript serves as an ideal starting point for understanding the theoretical
foundations of the code. For a comprehensive study of these capabilities, the reader is encouraged
to explore the many references to scientific articles and textbooks contained in this manual. It is
important to point out that some capabilities are still in development and may not be presented in
this document. Further updates to this manuscript will be made as these capabilities come closer
to production level.
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1 Nonlinear Behavior

1.1 Introduction

We begin our study of nonlinear computational solid mechanics in this chapter by surveying some
frequently encountered sources of nonlinearity in engineering mechanics. This will be done in a
rather elementary way, by discussing perhaps the simplest structural idealization, the truss
member, which is assumed to transmit loads in the axial direction only. By introducing various
nonlinearities into this system one at a time, we will motivate the more general discussion of
nonlinear continuum mechanics, constitutive modeling, and numerical treatments to follow. This
model system will serve as a template throughout the text as new continuum mechanical and
computational ideas are introduced.

Following this motivation will be an introduction to the prescription of initial/boundary value
problems in solid mechanics. This introduction will be provided by discussing a completely linear
system, namely linear elastic behavior in a continuum subject to infinitesimal displacements. This
treatment will include presentation of the relevant field equations, boundary conditions, and initial
conditions, encompassing both dynamic and quasistatic problems in the discussion. Also featured
is a brief discussion of the weak or integral form of the governing equations, providing a starting
point for application of the finite element method. Examination of these aspects of problem
formulation in the comparatively simple setting of linear elasticity allows one to concentrate on
the ideas and concepts involved in problem description without the need for an overly burdensome
notational structure.

In anticipation of nonlinear solid mechanics applications, however, we will find it necessary to
expand this notational framework so that large deformation of solids can be accommodated.
Fortunately, provided certain interpretations are kept in mind, the form of the governing equations
is largely unchanged by the generalization of the linear elastic system. This chapter therefore
provides an introduction to how this generalization can be made. However, it will be seen that the
continuum description and constitutive modeling of solids undergoing large deformations are
complex topics that should be understood in detail before formulating and implementing
numerical strategies. The closely related topics of nonlinear continuum mechanics and
constitutive modeling will therefore be the subjects of subsequent chapters, followed by
significant discussions of numerical strategies.

We conclude with a short list of references the reader may find useful as background material.
Throughout the text, we assume little or no familiarity with either the finite element method or
nonlinear solid mechanics, but we do assume a basic level of familiarity with the mechanics of
materials, linear continuum mechanics, and linear elasticity. The last section of this chapter
provides some basic references in these areas for those wishing to fill gaps in knowledge.
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1.2 Linear Structural Component

We consider the simple axial (or in structural terms, truss) member shown schematically in Fig.
1.1. We can think of this member as a straight bar of material, whose transverse dimensions are
small compared to its overall length, and which can only transmit loads in the axial direction.

Real-world examples include taut cables in tension, truss members, and similar rod-like objects.

Fig. 1.1 Axial model problem: schematic and local coordinate system.

We index the material with coordinates x with values between 0 and Ly. Assuming that all
displacement of the rod occurs in the axial direction, we write this displacement as u(x, t), with ¢
signifying time. The infinitesimal strain or engineering strain at any point x € (0, Lg) is given
by

ep(x,1) = %u(x, 1). (1.1)

The true stress or at any point in the bar and at any instant is described via

P(x,1)
A(x,1)’

or(x,t) = (1.2)

12



where P is the total axial force acting at location x and A is the current cross-sectional area at that
location. If the cross-sectional area does not change very much as a result of the deformation, it is
appropriate to define the nominal stress or engineering stress as

P(x,1)

_ oy 1.3
A0(x) (13

O

where A(x) is the initial cross-sectional area at point x. If the material behaves in a linear elastic
manner then o and eg are related via

O'E:EEE, (1.4)

where E is the elastic modulus, or Young’s modulus, for the material.

To begin we consider the case of static equilibrium where inertial effects are either negligible or
nonexistent and the response is therefore independent of time. One can in this case suppress the
time argument in (1.2) and (1.4). The balance of linear momentum for the static case is expressed
at each point x by

= (A0)oE () = (), (1.9

where f is the applied external body loading, assumed to be axial, with units of force per unit
length. Substitution of (1.4) into (1.5) gives the following ordinary differential equation for u(x)
on the domain (0, Lg):

d

& (Faogz ) = reo. (16)

If we assume that the cross-section is uniform so that Ay does not vary with x, and that the
material is homogeneous so that £ does not vary throughout the rod, then

d2
EA()@M(X) = f(x), (1.7)

We note that (1.7) is a linear, second order differential equation for the unknown displacement
field u. In order to pose a mathematical problem that can be uniquely solved it is necessary to
pose two boundary conditions on the unknown u. We will be interested primarily in two types,
corresponding to prescribed displacement and prescribed force (or stress) boundary conditions.
An example of a displacement boundary condition would be

u(0) =, (1.8)
while an example of a force boundary condition is
du
og(Lg) = Ea (Lg) =0, (1.9)

where it and ¢ are prescribed values for the displacement and axial stress at the left and right bar
ends, respectively. In mathematics parlance, the boundary condition in (1.8) is called a Dirichlet

13



boundary condition while the boundary condition represented by (1.9) is a Neumann boundary
condition. Dirichlet boundary conditions involve the unknown independent variable itself, while
Neumann boundary conditions are expressed in terms of its derivatives.

Virtually any combination of such boundary conditions can be applied to our problem, but only
one boundary condition (either a Neumann or Dirichlet condition) can be applied at each
endpoint. In the case where Neumann (stress) conditions are applied at both ends of the bar, the
solution u(x) is only determinable up to an arbitrary constant (this fact can be verified by applying
separation of variables to (1.7)).

We now consider a particular case of this linear problem that will be useful in considering some
of the various nonlinearities to be discussed below. In particular, suppose f = 0 on the domain
(0, L), and furthermore consider the boundary conditions

u=0atx =0, (1.10)

and

ext

Of = atx =L, (1.11)

0
where F* is an applied force on the right end of the rod.

In this case, examination of (1.5) yields

d
Ao (oe(x) =0, (1.12)

meaning that or does not vary along the length of the rod. Since o is proportional to €g (see
(1.4)), the strain must also be a constant value along the rod length.

Finally, in view of (1.1) we conclude that u(x) must vary linearly with x. In other words, we know
that the solution u(x) must take the form

X x
=u(0)+6 () =6(7). 1.13
w0 =u(0)+6(7) =5 (% (1.13)
where ¢ is the elongation, or difference between the left and right end displacement. The problem
therefore reduces to finding the elongation produced by the applied force F¢*'. This problem is
trivially solved and leads to the familiar linear relationship between F¢*’ and §:

EA
=205 = pet, (1.14)
Lo

in other words, we have a simple linear spring with stiffness £Aq/Lg. After solving for § one may
merely substitute (1.13) to obtain the desired expression for u(x).

14



1.3 Material Nonlinearity

We examine the case of a material nonlinearity by replacing (1.4) with generic relationship
between o and eg,

op = 0(€g), (1.15)

where ¢ is a smooth and generally nonlinear function, see Fig. 1.2.

Q>
—
35!
S

M
v

Fig. 1.2 Schematic of a nonlinear one-dimensional stress-strain relation.

We make few restrictions on the specific form of &, other than to assume that %6‘ > ( for all
values of eg. If we retain the assumption that f = 0 and impose boundary conditions (1.10) and
(1.11) then (1.12) is still valid, i.e.,

Fext

i (1.16)

O =

throughout the rod. Furthermore, since we assume that a one-to-one relation exists between og
and €, we conclude that, just as in the linear material case, the strain is a constant value in the rod

15



given by

0

= I (1.17)

€E

We can solve the problem by finding ¢ as before, but now we must solve the nonlinear equation

Aol (Lio) s (1.18)

We can express (1.18) as an equation for the displacement at the right end which we denote as
d;, = u(L). We can write

N (do) = F*¥, (1.19)
where N (dp) is a nonlinear function of the unknown d; defined in this case as

dr

N (do) = Ao (—) : (1.20)
Lo

In general, (1.20) will not have a closed-form solution and some sort of iterative procedure is
necessary. Nonlinear equation solving is discussed at length in Chapter Section 13. Here we resort
to one of the more recognized and widely-used procedures, Newton-Raphson iteration. In this
method one introduces a set of indices k corresponding to the iterations, and given a current iterate
d,’f, a first-order Taylor series expansion of (1.20) is utilized to generate the next iterate df“ via

d
0 — Fext - N (dlli+1) ~ F€Xl‘ - (N (dlli) + @N (di) AdL) . (121)

where
it = df + Ady. (1.22)
(1.21) can be expressed more compactly as
K (df) A= R (af), (1.23)
where R (d¥), the residual or out-of-balance force, is given by
R(df) = For = N (df), (1.24)
and K (d¥), the incremental or tangent stiffness, is written as

K (df) = %N (). (1.25)

The Newton-Raphson procedure is then carried out by recursively solving (1.23) and (1.22).

16



1.4 Geometric Nonlinearity

Geometric nonlinearities are induced by nonlinearities in the kinematic description of the
system at hand. We will identify and work with several nonlinearities of this general type in great
detail in Section 4, Section 5, and Section 6, but to begin we consider two particular cases in the
context of our simple model problem.

The first type of nonlinearity we consider is introduced by the use of nonlinear strain and stress
measures in definition of the stress-strain relation. As an example, let us consider alternatives to
(1.1) and (1.3), which defined the engineering stain ex and engineering stress og that we have
utilized to this point. When used in our model problem with f = 0 and boundary conditions
(1.10) and (1.11), we have seen that the engineering strain does not vary over the rod’s length,
having a constant value 6/L¢. For this strain measure to be appropriate, the deformation ¢ should
be infinitesimal. In the presence of larger deformations, the true strain or logarithmic strain is
often used,

L
eT:/ — =log (—) =log (1 +eg). (1.26)
Ly Y Ly

Similarly, if the cross-sectional area A changes appreciably during the process, it is likely that the
engineering stress g should be replaced by the true stress o7 defined in (1.2). In the case of our
model problem, this would imply

Fexl
or = ik

(1.27)

where A is to be interpreted as the cross-sectional area in the final (deformed) configuration.

Relating this area to the elongation ¢ requires a constitutive assumption to be made. For example,
if we assume the rod consists of an elastic material, we could approximate this variation by
considering the area to vary according to Poisson’s effect. This would require that for each
differential increment der in the axial true strain, each lateral dimension should change by a factor
of (1 — vder), where v is Poisson’s ratio for the material.

At a given instant of the loading process, therefore, an incremental change in the area A can be
approximated via

A+dA = (1 -vder)’ A
~ (1 —2vder) A.

(1.28) implies that

1
ZdA = —2vder
dET
= 2v—dL
YL
=-=2v|—=]|dL.
L

17



Integrating (1.28) between the initial and the final configurations gives

2v 2y
Ly Lo
A=Ap|—] =A . 1.28
(2] (2 a2
If we assume Hooke’s Law,
O'T:EET, (129)
we can use (1.26), (1.27), and (1.28) to conclude that
2y
Lo+0 Lo
EApl = F 1.30
Oog( LO )(L()+5) ’ ( )

which is a nonlinear equation governing the elongation 6. Note that this nonlinearity is not caused
by any sort of nonlinear stress-strain relation, but instead results from the observation that the
amount of deformation may not be small, necessitating more general representations of stress and
strain.

The second sort of nonlinearity we wish to consider is that caused by large superimposed rigid
body rotations and translations that introduce nonlinearities into many problems even when the
strains in the material are well-approximated by infinitesimal measures. Toward this end we refer
to Fig. 1.3, in which we embed our one-dimensional truss element in a two-dimensional frame.
We locate one end of the rod at the origin and consider this end to be pinned so that it is free to
rotate but not translate. The other end of the rod, initially located at coordinates x(l), xg, is
subjected to a (vector valued) force F¢*’, which need not be directed along the axis of the rod.

We note that under the restriction of small motions this problem is ill-posed because the rod is
incapable of transmitting anything but axial force (F¢*' would need to act in the axial direction).
However, in the current context we allow unlimited rotation with the result that the rod will rotate
until it aligns with F¢* in its equilibrium condition. In fact this observation allows us to guess the
solution to the problem. Since we assume that the axial response of the rod is completely linear,
we may deduce that the final elongation is given by

_ Lol[FY|

)
EAo

(1.31)

where ||[F¢*|| denotes the Euclidean length of the vector F**’. The final orientation of the rod must
coincide with the direction F¢*', so we can write the final position of the end of the rod, using the

f
*2

coordinates (x{ ,xg ) as

LO ”Fext ” Fext
=— (1+——||. L[|, 1.32
”Fext” ( + EA() erxt ( )

or, writing the solution in terms of the rod end displacements d; and d>,
dil_ Lo, IE)[Fe)
da|  ||Fe| EAy | |F5

18

0
xg)] . (1.33)

X



F ext

0
Xy

Fig. 1.3 Model problem with infinitesimal motions superposed on large rigid body motions.
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It is instructive to proceed as though we do not know the solution summarized in (1.33) and
formulate the equilibrium equations governing d; and d».

If we observe that the elongation ¢ of the rod can be written as

2 2
6:\/(d1 +x)) 4 (2 +x)) - Lo, (1.34)

then (1.31) gives the relationship between ||[F¢*|| and the unknown displacements. Furthermore,
as noted above, the direction of F* is given by

Fest 1 dy +xY
|Fext]| 2 2 |d2+x5)|° (1.35)
(d1 +x‘1)) + (dz +x(2))
Combining these facts gives the equation that governs d; and d,
0\ 0\
Flext A (d] +x1) + (dz +X2) - Lo di +x(6) (136
Fext| = =00 dy+x3| '

2 2
Lo\/(dl +x(1)) + (d2 +x(2))

The reader may wish to verify this equation by substituting the solution (1.33) into (1.36).

(1.36) is a nonlinear, vector-valued equation for the unknowns d; and d;. Recalling the generic
form for nonlinear equations we introduced in the one dimensional case in (1.19), we could write
this generically as

N(d) = F*¥, (1.37)
where
_ |4
d= [d2] (1.38)

and

0

d1 +Xx
d2+xé . (1.39)

\/(dl +x(l))2 + (dz +xg)2 - Lo
Lo\/(d1 +x(1))2 + (dz +xg)2

Just as was done in the last section for the one degree of freedom case, we could introduce a
Newton-Raphson strategy to solve (1.37) via

N(d) =FAg

K(d“)Ad = = * R * =(d%) = F*' — N(d"), (1.40)
and

d“! = d* + Ad, (1.41)

20



where

oNy ONy
od, ody
K(d") := g(d") = (1.42)
od dN, ON»
9, od,

d=d*

Carrying out the calculation of K(d¥) for the specific N(d) at hand gives

K(d") = Kuireer (%) + Kgeom (d°). (1.43)
Kdirect(dk) is given by
2
L EA, (d{‘ +x(1)) (d{‘ +x(1)) (dlz‘ +x(2))
Kairec:(d) = : ATRYI RS (1.44)
Jarest o (aeag)” ([ ) (8 020) (e )
and Kgeom (dX) by
1 1 10
ky .
Keeom(d¥) = EAg - [0 1]. (1.45)

\/(dl eat) 4 (ded)]

As the notation suggests, Kg;-.; is sometimes referred to as the direct stiffness, or that part of the
stiffness emanating directly from the material stiffness of the system at hand. K,.,,, on the other
hand, is sometimes called the geometric stiffness, and arises not from inherent stiffness of the
material but by virtue of the large motions in the problem.

To gain insight into these issues in the current context, consider the case where ||d*|| < ||x°||, the
case where the motions are small in comparison to the rod’s length. In this case we find

Kgeom(dX) — 0, (1.46)

and

EAg |cos8cos6 cosOsiné

_ k
Kiireai(d7) — Loy |cosfsin@ cosfcosf|’

(1.47)

0
where 6 = arctan (i—%) is the angle between the original axis of the rod and the positive x-axis. In
1
other words, when the motions become small, the geometric stiffness vanishes and the direct
stiffness reduces to the familiar stiffness matrix associated with a two-dimensional truss

member.
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1.5 Contact Nonlinearity

A final type of nonlinearity we wish to consider is that created due to contact with another
deformable or rigid body. As a simple model problem for this case we refer to Fig. 1.4, where we
consider a prescribed motion d of the left end of our one-dimensional rod and solve for the static
equilibrium of the unknown displacement d of the right end, subject to the constraint

g(d)=d-go <0, (1.48)

where g is the initial separation, or gap, between the right end of the rod and the rigid obstacle.

0

Rigid Obstacle

Fig. 1.4 Schematic of the rigid obstacle problem.

Even if we assume that the motions are small and the material response of the rod is elastic, the
equations governing the response of our rod are nonlinear. To see this, let us choose d as our
unknown and construct the following residual R(d) for our system:

EAy

Sd-d)+F., (1.49)

R(d) =
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Here F,, the contact force between the obstacle and the rod (assumed positive in compression), is
subject to the constraints

F.>0; g(d) <0 and F.g(d) = 0. (1.50)

Equations (1.50) are called Kuhn-Tucker complementary conditions in mathematical parlance
and physically require that the contact force be compressive, that the rod end not penetrate the
obstacle, and that the contact force only be nonzero when g = 0, i.e. when contact between the rod
and obstacle occurs. In fact F, is a Lagrange multiplier in this problem, enforcing the kinematic
constraint (1.48). We see that the condition operating on the right end of the bar is neither a
Dirichlet nor a Neumann boundary condition; in fact, both the stress and the displacement at this
point are unknown but are related to each other through the constraints expressed in Equations
(1.50).

Plots of the residual defined by Equations (1.49) and (1.50) are given in Fig. 1.5 for the two
distinct cases 9f interest: where contact does not occur (when d < g¢) and where contact does
occur (when d > g¢). The solutions (i.e. the zeros of R) are readily apparent. When no contact

occurs d = d, while in the case of contact d = go. The internal stresses generated in the bar are
then readily deduced.

One may note from Fig. 1.5 some important practical features of this problem. First, in both cases
the admissible region for d is restricted to be less than go. Second, at the value d = gg, each
diagram shows the residual be multiple valued, which is a direct consequence of the fact that in
this condition (i.e., where g = 0), F, can be any positive number.

Finally, although the solution to our simple model problem is readily guessed, we can see from
both cases that the plot of R versus d is only piecewise linear; the kink in each diagram indicates
the fact that a finite tangent stiffness operates when contact is not active, changing to an infinite
effective stiffness imposed by Equations (1.50) when contact between the rod and obstacle is
detected. This contact detection therefore becomes an important feature in general strategies for
contact problems, and introduces both nonlinearities and non smoothness into the global
equations as this rather simple example demonstrates.

The books [14], [15], [25], [33], [37], [44], [47] are suggested for those readers wishing to
reinforce their knowledge of linear elasticity, elementary continuum mechanics, and/or
fundamentals of solid mechanics. They are presented in alphabetical order, with no other
significance to be attached to the order of presentation.
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Fig. 1.5 Plots of residuals verses displacement for the rigid obstacle problem: (a) the case where
d < go (no contact); (b) the case where d > g.
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2 Linear Elastic Initial/Boundary Value Problem

2.1 Basic Equations of Linear Elasticity

Having reviewed some relevant nonlinearities in the context of a simple structural element in
Chapter Section 1, let us begin to generalize our problem description to encompass a larger group
of continuous bodies. We begin this development by first reviewing the basic equations of linear
elasticity, where we assume small motions and linear material behavior. This discussion will
provide the basis for a more general notational framework in the next section, where we will
remove the kinematic restriction to small motions and also allow the material to behave in an
inelastic manner.

The notation we will use in this section is summarized in Fig. 2.1, where we have depicted a solid
body positioned in the three dimensional Euclidean space, or R?. The set of spatial points x
defining the body is denoted by €2, and we consider the boundary 9Q to be subdivided into two
regions I', and I';, where Dirichlet and Neumann boundary conditions will be specified as
discussed below. We assume that these regions obey the following:

r,uT, =0Q
r,NT, =0.

The unknown, or independent, variable in this problem is u, the vector-valued displacement which
in general depends upon x € € and time 7.

2.1)

2.2 Equations of Motion

At any point € the following statement of local linear momentum balance must hold:

V-T+f:p—t]21. (2.2)

Note that V - T denotes the divergence operator applied to T, the Cauchy stress tensor. The vector
f denotes the distributed body force in €, with units of force per volume, and p denotes the mass
density, which need not be uniform. (2.2) represents the balance of linear momentum in direct
notation. Balance of angular momentum is enforced within the domain by requiring that the
Cauchy stress tensor is symmetric. We will frequently employ index notation in the work that
follows. Toward that end, (2.2) can be expressed as

82ui
or?’
where indices i and j run between 1 and 3 (the spatial directions), and unless otherwise indicated,

repeated indices within a term of an expression imply a summation over that index. For
example,

T+ f = (2.3)

3
oT;;
Tijj= ) = (2.4)



RS

Fig. 2.1 Notation for the linear elastic initial/boundary value problem.
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The notation 3 ; indicates partial differentiation with respect to x;.

As indicated above the independent variables are u;, so it is necessary to specify the relation
between the displacements and the Cauchy stress. In linear elasticity this is accomplished by two
additional equations. The first is the linear strain-displacement relation

1
€ij = Uj) = E(ui,j +uji), (2.5)

where €;; is the infinitesimal strain equal to the symmetric part of the displacement gradient
denoted by u(; ;). The second equation is the linear constitutive relation between T;; and ¢;;,
which is normally written

T:j = Cijki€xi- (2.6)

Note that C;jy; is the fourth-order elasticity tensor, to be discussed further below.

(2.5) and (2.6) can also be written in direct notation as

|
€=Vu=3 (Vu + VuT) , 2.7)

where V; denotes the symmetric gradient operator defined by V,00=1/2 (VO + VDT), and
T=C:e, (2.8)

where the colon indicates double contraction of the fourth-order tensor C with the second-order
tensor €.

The fourth-order elasticity tensor C is ordinarily assumed to possess a number of symmetries,
which greatly reduces the number of independent components that describe it. It possesses major
symmetry, which means C;j; = Cyi;, and it also possesses minor symmetries, meaning for
example that C;jx; = Cjix; = Cjiir = Cijix. Another important property of the elasticity tensor is
positive definiteness, implying in this context that

A;jCijxiAr > 0 for all symmetric tensors A (2.9)

and AijcijklAkl =0 iff A =0. (210)

In the most general case, assuming the aforementioned symmetries and no others, the elasticity
tensor has 21 independent components. Various material symmetries reduce the number greatly,
the most specific case being an isotropic material possessing rotational symmetry in all
directions. In this case only two independent elastic constants are required to specify C, which
under these circumstances can be written as

Cijk1 = A0;;0k1 + 1 [0S ji + 6ud ji | (2.11)

where ¢;;, the Kronecker delta, satisfies

sy=1t M= 2.12)
Yo otherwise, '

27



and A and u denote the Lam’e parameters for the material. These can be written in terms of the
more familiar Young’s (i.e., elastic) modulus and Poisson’s ratio via

A= Ev 2.13
(14 v)(1-2v) (2.13)
B 2.14
K=oa ) 2.14)

The quantity u is also known as the shear modulus for the material.

Substitution of (2.7) and (2.8) into (2.2) gives a partial differential equation for the vector-valued
unknown displacement field u. Full specification of the problem with suitable boundary and
initial conditions is discussed next.

2.3 Boundary and Initial Conditions

Paralleling earlier discussion of the one-dimensional example, we will consider the possibility of
two types of boundary conditions, Dirichlet and Neumann. Dirichlet boundary conditions will be
imposed on the region I', in Fig. 2.1 as

u(x,7) =u(x,t) vxel,, 1te€(0,7). (2.15)

Note that u(x, 7) denotes a prescribed displacement vector depending on spatial position and time.
The simplest and perhaps most common example of such a boundary condition would be a fixed
condition, which if imposed throughout the time interval of interest (0, 7') and for all of I', would
imply u(x,7) = 0.

The other type of boundary condition is a Neumann, or traction, boundary condition. To write
such a condition we must first define the concept of traction on a surface. If we use n to denote
the outward normal to the surface I'; at a point x € I', the traction vector t at x is defined via

t=T:-n, (2.16)
or, in index notation,
T; =T;jn;. (2.17)

Physically this vector represents a force per unit area acting on the external surface at x. A
Neumann boundary condition is then written in the current notation as

T(x,t) -n(x) =t(x,t) Vxel,, te(0,7). (2.18)

Note that t(x, ) is the prescribed traction vector field on I';, throughout the time interval of
interest (0, 7). One could identify several examples of such a boundary condition. An unfixed
surface free of any external force would be described by t = 0. A surface subject to a uniform
pressure loading, p, on the other hand, could be described by setting t(x, f) = —pn(x), where we
assume a compressive pressure to be positive.
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With these definitions in hand, we recall the restrictions in (2.1) on I', and I'; and physically
interpret them as follows: 1) one must specify either a traction or a displacement boundary
condition at every point of dQ; and 2) at each point of €2 one may not specify both the traction
and the displacement but must specify one or the other.

In fact these conditions are slightly more stringent than required. The problem remains well-posed
if, for each component direction i, we specify either the traction component #; or the displacement
component i; at each point x € d€, as long as for a given spatial direction we do not attempt to
specify both. In other words, we may specify a displacement boundary condition in one direction
at a point while specifying a traction boundary condition in the other. An example of such a case
would be the common roller boundary condition, where a point is free to move in a traction-free
manner to an interface (i.e., a traction boundary condition) while being constrained from
movement in a direction normal to an interface (i.e., a displacement boundary condition). Of
course a multitude of other boundary condition permutations could be identified. Thus, while we
choose a rather simple boundary condition restriction (summarized by (2.1)) for notational
simplicity, it is important to realize that many other possibilities exist and require only minor
alterations of the methodology we will discuss.

The final important ingredient in our statement of the linear elastic problem is the specification of
initial conditions. One may note that our partial differential equation ((2.2)) is second order in
time; accordingly, two initial conditions are required. In the current context these are the initial
conditions on the displacement u and the velocity i and can be rather straightforwardly specified
as

u(x,0) =up(x) onQ (2.19)

(Z—ltl(x, 0) =vp(x) onQ, (2.20)

where ug and vy are the prescribed initial displacement and velocity fields, respectively.

2.4 Problem Specification

We now collect the equations and conditions of the past two sections into a single problem
statement for the linear elastic system shown in Fig. 2.1. For the elastodynamic case, this problem
falls into the category of an initial/boundary value problem, since both types of conditions are
included in its definition. Our problem is formally stated as follows:

Given the boundary conditions # = 7 * % on ['; X (0,7) and * % & * = on I',, X (0, T), the initial
conditions uy and v on Q, and the distributed body force f on Q x (0, T'), find the displacement
field uw on Q x (0, T') such that

0’u

V-T+f=p— onQx(0,7), (2.21)
or?

u(x,r) =ua(x,r) onl, x(0,7), (2.22)
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t(x,1) =t(x,1) onIl, x(0,7), (2.23)
u(x,0) =ug(x) onQ, (2.24)

Z—l;(x, 0) =vo(x) onQ, (2.25)

where the Cauchy stress, T, is given by
T=C: (V,u). (2.26)

Equations (2.21) through (2.26) constitute a linear hyperbolic initial/boundary value problem for
the independent variable u.

2.5 The Quasistatic Approximation

Before leaving the elastic problem, it is worthwhile to discuss how our problem specification will
change if inertial effects are negligible in the equilibrium equations. This special case is often
referred to as the quasistatic assumption and considerably simplifies specification of the
problem.

Simply stated, the quasistatic assumption removes the second temporal derivative of u, i.e.,
acceleration, from (2.21), thereby also eliminating the need for initial conditions (Equations (2.24)
and (2.25)). Such an approximation is appropriate when the loadings do not vary with time or
when they vary over time scales much longer than the periods associated with the fundamental
structural modes of €.

It is convenient, however, to maintain time in our description of the problem for two reasons: 1)
the loadings t and f and the displacement condition @ may still vary with time; and 2) when we
consider more general classes of constitutive equations, we may wish to allow time dependence in
the stress/strain response, €.g., in creep plasticity. Accordingly, we state below a boundary value
problem appropriate for quasistatic response of a linear elastic system.

Given the boundary conditions t on I, x (0,7), @ on I, x (0, T), and the distributed body force f
on Q x (0,7), find the displacement field u on Q X (0, T') such that

V.-T+f=0 onQx(0,7), (2.27)
u(x,7) =ua(x,r) onl, x(0,7), (2.28)
t(x,7) = t(x,7) onT, x (0,7), (2.29)

where the Cauchy stress, T, is given by
T=C: (V,u). (2.30)

We note in that given a time ¢ € (0, T), Equations (2.27) through (2.30) constitute a linear elliptic
boundary value problem governing the independent variable u.
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3 Weak Forms

3.1 Introduction

A key feature of the finite element method is the form of the boundary value problem (or
initial/boundary value problem in the case of dynamics) that is discretized. More specifically, the
finite element method is one of a large number of variational methods that rely on the
approximation of integral forms of the governing equations. In this chapter we briefly examine
how such integral (alternatively, weak or variational) forms are constructed for the linear elastic
system we introduced in Chapter Section 2.

3.2 Quasistatic Case

Consider the quasistatic case first, we recall (2.27) — (2.30) and explore an alternative manner in
which the conditions can be stated. We consider a collection of vector-valued functions w, which
we call weighting functions for reasons that will soon be clear. We require that these functions
w: Q — R satisfy

w=0onT,. 3.1

Furthermore it is assumed that these functions are sufficiently smooth that all necessary partial
derivatives can be computed. Suppose we have the solution u of (2.27) and (2.28). We can then
take any smooth function w satisfying (3.1) and compute its dot product with (2.27), which must
produce

w-(V-T+f)=00nQ (3.2)
at each time ¢ € (0,T). We can then integrate (3.2) over Q to obtain
/Qw-(V-T+f)dQ:O. (3.3)
(3.3) can be manipulated further by noting that
w-(V-T)=V.-(Tw) — (Vw) : T (3.4)

(product rule of differentiation), and by also taking advantage of the divergence theorem from
multivariate calculus:

/V-(’I\v)dQ:/ (n-Tw)dr. (3.5)
Q 0Q

Note that n is the outward normal directed normal on dQ and dI' is a differential area of this
surface. Use of (3.4) and (3.5) in (3.3) and rearranging gives

/(VW):TdQ:/w-fdQ+/ (n- Tw)dr. (3.6)
Q Q 0Q
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Now, taking advantage of the symmetry of T and noting, from (2.16), that the surface traction t
equals Tn, we can write

/(n~Tw)dF:/ (w-Tn)dF:/ w - tdr. (3.7)
0Q 0Q 0Q

We now recall the restrictions in (2.1), which tell us that 9€2 is the union of I',, and I'-. Since by
definition w = O on I',,, we can write

/w-tdF:/w-tdF+/ W-tdF:/ w-tdl (3.8)
0Q Iy s Io

where the last equality incorporates the boundary condition t = t on ',

We collect these calculations to conclude that

/(VW):TdQ:/W-fdQ+/ w - tdr, (3.9)
Q Q I

which must hold for the solution u of (2.27) — (2.30) for any w satisfying condition (3.1).

To complete our alternative statement of the boundary value problem, the concepts of solution and
variational spaces need to be introduced. We define the solution space S; corresponding to time ¢
via

S;={u|u=1u(t) onl,, wuissmooth} (3.10)
and the weighting space W as

W={w|w=0 onl,, wissmooth}. (3.11)
With these two collections of functions in hand, we consider the following alternative statement of

the boundary value problem summarized by (2.27) — (2.30):

Given the boundary conditions t on I, X (0,T), * % ii * * on I, X (0, T) and the distributed body
force f on Q x (0,7), find the u € S, for each time ¢ € (0, T') such that

/(Vw):TdQ:/w-fdQ+/ w-tdr (3.12)
Q Q T

o

for all w € W, where S; is as defined in (3.10), W is as defined in (3.11), and the Cauchy stress, T,
is given by

T=C: (V,u). (3.13)

This statement of the boundary value problem is often referred to as a weak formulation, since it
explicitly requires only a weighted integral of the governing partial differential equations to be
zero, rather than the differential equation itself.

It should be clear, based upon the above derivation of the weak form, that the solution u of (2.27)
—(2.30), sometimes referred to as the strong form, will satisfy our alternative statement
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summarized by (3.12) and (3.13). Less clear is the fact that solutions of the weak form will satisty
the strong form whenever this formulation admits a solution. Since the continuity requirements
for existence of a strong solution are more stringent than for the analogous weak formulation
(hence the adjective strong), equivalence between these two forms is restricted to the case when
both exist, i.e., whenever a solution of the strong form of the boundary value problem exists, then
a weak solution also exists, and these solutions are identical.

It is important to note that the existence of a solution to the weak form of the boundary value
problem does not necessarily imply existence of a solution to the strong form. The strong form’s
constraints upon solution smoothness imply that for some problems (e.g., point sources that
induce jumps in derivative terms), a weak form might exist, but no strong form can be constructed
without substantially revising some basic principles of differential calculus. So the existence of a
weak solution does not necessarily imply that an identical strong solution exists: only that if a
strong solution can be found, it will be identical to the weak solution.

In practice, the existence of a weak solution in these cases turns out to be one of the most
important advantages of finite element techniques, because the integral formulations that form the
mathematical foundation of finite element approximations permit accurate simulation of
important problems that are not readily solved via competing differential techniques derived from
strong formulations. Many of the most important problems of computational mechanics (e.g.,
contact, material discontinuity, structural failure) often admit only weak solutions, and that is one
of the main reasons why weak formulations are important in practice.

So the equivalence between strong and weak forms is restricted to those cases where strong
solutions exist, and in that case, the strong solution is identical to the analogous weak solution.
Although not shown here this equivalence can be rigorously established; the interested reader
should consult Reference [25] at the end of this chapter for details. We simply remark in the
present discussion that the equivalent argument depends crucially on the satisfaction of (3.12) for
all w € W, with the arbitrariness of w rendering the two statements equivalent whenever the
strong solution exists.

Given the requirement of efficient numerical implementation, we can also remark that
approximate methods will in effect narrow our definitions of the solution and weighting spaces to
finite-dimensional subspaces. Simply stated, this means that rather than including an infinite
number of smooth u and w satisfying the requisite boundary conditions in our problem definition,
we will restrict our attention to some finite number of functions comprising subsets of S; and W.

In so doing we introduce a difference between the solution of our (now approximate) weak form
and the strong form, where the degree of approximation is directly related to the difference
between the full solution and weighting spaces and the subsets of them used in the numerical
procedure. In fact it is this difference that is at the heart of solution verification, an important
activity to ensure that an appropriate subset of spaces (i.e., discretization or mesh refinement) is
chosen. Solution verification as part of the broader question of verification is discussed in the
Solid Mechanics Verification Manual.

Finally, it is worthwhile at this point to make a connection to so-called virtual work methods
which may be more familiar to those versed in linear structural mechanics. In this derivation we
will work in index notation so that the meaning of the direction notation used above can be
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reinforced. Accordingly, for a possible solution u; of the governing equations, we write the
expression for the total potential energy of the system,

1 -
P(ui) = ilgu(i’j)Cijklu(k’l)dQ_ [/Q u,'f,' dQ —L Uu;t; dF] . (314)

Note that the first term on the right hand side represents the total strain energy associated with u;
and the last two terms represent the potential energy of the applied loadings f; and ;. A virtual
work principle for this system simply states that the potential energy defined in (3.14) should be
minimized by the equilibrium solution. Accordingly, let u; now represent the actual equilibrium
solution. We can represent any other kinematically admissible displacement field via u; + ew;,
where € is a scalar parameter (not necessarily small) and w; is a so-called virtual displacement,
which we assume to obey the boundary conditions outlined in (3.1). This restriction on the w;
causes u; + ew; to satisfy the Dirichlet boundary conditions (hence the term kinematically
admissible) because the solution u; does. We can write the total energy associated with any of
these possible solutions via

1
P(ui + ewi) = 5 /Q (i) + €wiiy) Cijra (Ui + €w k) dQ
(3.15)
—/(u,—+ewl~)f,-d§2—/ (i + ew) £ T
Q |

Note that if the potential energy associated with u; is to be lower that that of any other possible
solution u; + ew;, then the derivative of P(u; + ew;) with respect to € at € = 0 (i.e., at the solution
u;) should be zero for any w; satisfying the conditions in (3.1), since u; is an extremum point of
the function P. Computing this derivative of (3.15), and setting the result equal to zero, yields

d _
— P(ui + ew,-) = / W(,'J)C,'jklu(k’l)dﬁ - / W,‘f,' dQ - / wit;d' =0 (3.16)
de |- Q Q Ty

which must hold for all w; satisfying the boundary condition on I',. (3.16) can be manipulated
further by noting that

wi. ) Cijkihk,ry = Wi, )CijkiErt = wi j)Tij = wijTij. 3.17)

The last equality in (3.17), while perhaps not intuitively obvious, holds because of the symmetry
of T;;:

1 1
wipTij =5 Wij+wii)Tij = 5 Wi Tij+wjiTji) = wi,;Tij. (3.18)

Use of (3.17) in (3.16) yields

[umn- [ wran- [ wiar-o a
Q Q Lo

which is simply the index notation counterpart of (2.27). Summarizing, we see that the weak or
integral form of the governing equations developed previously can be interpreted as a statement of
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the principle of minimum potential energy. This alternative viewpoint is the reason that the
weighting functions w; are sometimes called variations or virtual displacements, with the
terminology used often depending upon the mathematical and physical arguments used to develop
the weak form.

Despite the usefulness of this physical interpretation, it should be noted that the presence of an
energy principle is somewhat specific to the case at hand and may be difficult or impossible to
deduce for many of the nonlinear systems to be considered in our later study. For example, many
systems are not conservative, including those featuring inelasticity, so at best our thermodynamic
understanding must be expanded if we insist on formulating such problems in terms of energy
principles. Thus, while the energy interpretation is enlightening for many systems, including
those featuring elastic continuum and/or structural response, insistence on this approach for more
general applications of variational methods can be quite limiting. Conversely, the derivation given
in (3.2) — (3.9) does not depend on the system being conservative, nor even upon the form of the
constitutive equation used. We will exploit the generality of this weighted residual derivation as
we increase the level of nonlinearity and complexity in the chapters to come.

3.3 Fully Dynamic Case

Another advantage of the weighted residual approach is that it can be straightforwardly applied to
dynamic problems. Before examining the dynamic case in detail, whose development parallels
that of quasistatic problems, it is worthwhile to emphasize again the definitions of the weighting
and solution spaces and to highlight the differences between them. Examining the definition of S,
in (3.10) and that of W in (3.11), we see that S; depends on ¢ through the boundary conditions on
I',, while W is independent of time. We retain these definitions in the current case and pose the
following problem corresponding to the quasistatic system posed previously:

Given the boundary conditions t on I’ X (0,7) and @ on I', X (0, T), the initial conditions uy and
vo on Q, and the distributed body force f on Q x (0, T), find the u € S; for each time ¢ € (0, T)
such that

/pw —dQ+/(VW) TdQ = /w-fd§2+/ w-tdr (3.20)
Q Q Iy

for all w € W, where S; is as defined in (3.10), W is as defined in (3.11), and the Cauchy stress, T,
is given by

=C: (Vsu). (3.21)
In addition, the solution u is subject to the following conditions at ¢ = O:
/w~ (u(0) —up) dQ =0 (3.22)
r

and

/w- (5—“(0) - vo) dQ =0, (3.23)
- \or
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both of which must hold for all w € W.

The integral form of the dynamic equations given in (3.20) is obtained, just as in the quasistatic
case, by taking the dynamic governing partial differential equation, (2.21), multiplying it by a
weighting function, integrating over the body, and applying integration by parts to the stress
divergence term. The new ingredients in the current specification are the initial conditions
summarized by (3.22) and (3.23), which are simple weighted residual expressions of the strong
form of the initial conditions given in (2.25).

Before leaving this section, we reemphasize the fact that the weighting functions are time
independent while the solution spaces remain time dependent. This fact will have important
consequences later when numerical algorithms are discussed, because we wish to use the same
classes of functions in our discrete representations of W and S;. These discretizations will involve
spatial approximation, which in the case of S; will leave the time variable continuous in the
discrete unknowns of the system to be solved.

This semi-discrete approach to transient problems is pervasive in computational mechanics and
has its origin in the difference between the weighting and solution spaces.

The reference for this chapter is [25].

36



4 Large Deformation Framework

4.1 Introduction

In this chapter and the next several chapters we extend our discussion of the linear elastic problem
to accommodate two categories of important nonlinearities: potentially large motions and
deformations, and nonlinear material response. We will do this by introducing a more general
notational framework. While the equations governing large deformation initial/boundary value
problems are similar in form to their counterparts from the small deformation theory just
discussed, a rigorous prescription and understanding of large deformation problems can only be
achieved through a careful examination of the concepts of nonlinear continuum mechanics, which
will be the concern of the next several chapters.

The organization of this material is as follows. This chapter establishes a notational framework for
the generic specification of a nonlinear solid mechanics problem. Section 5 and Section 6 discuss
large deformation kinematics in a general context. Section 7 will then discuss the various
measures of stress that are frequently encountered in large deformation analysis. Then, with these
preliminaries in hand, we will be in a position to state relevant balance laws in notation
appropriate for large deformation problems in Section 8. Finally, in Section 9, we will discuss the
important concept of material frame indifference, which demands that material laws be unaltered
by rigid body motions. We will see that this concept places important restrictions on the
kinematic and stress measures that are suitable for prescription of constitutive laws, providing
important background information for the chapter on material models.

4.2 Notational Framework

The system we wish to consider is depicted schematically in Fig. 4.1. We consider a body, initially
in a location denoted by , undergoing a time dependent motion ¢ that describes its trajectory
through space (assumed here to be R?).

The set  is called the reference configuration and can be thought of as consisting of points X
that serve as labels for the material points existing at their respective locations. For this reason,
the coordinates X are often called reference or material coordinates.

We assume, as before, that the surface 9€2 of € can be decomposed into subsets [, and T,
obeying restrictions in (2.1). The general interpretation of these surfaces remains the same.
Traction boundary conditions will be imposed on I' and displacement boundary conditions will
be imposed on I',,. Full specification of these boundary conditions must be deferred, however,
until some continuum mechanical preliminaries are discussed.

We have mentioned that the motion ¢ is in general time dependent. In fact, we could write this
fact in mathematical terms as ¢ : Q X (0,7) — R3. If we fix the time argument of ¢, we obtain a
configuration mapping ¢,, summarized as ¢, : Q — R>, which gives us the location of the body
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Fig. 4.1 Notation for large deformation initial/boundary value problems.
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at time ¢ given the reference configuration Q. Coordinates in the current location ¢(Q) of the
body will be denoted by x.

The current location is often called the spatial configuration and the coordinates, x spatial
coordinates. Given a material point X € Q and a configuration mapping ¢;, we may write

X = ¢/(X). 4.1)

A key decision in writing the equations of motion for this system is whether to express the
equations in terms of X € Q or x € ¢,(Q).

4.3 Lagrangian and Eulerian Descriptions

The choice of whether to use the reference coordinates X or the spatial coordinates x in the
problem description is generally highly dependent on the physical system to be studied.

For example, suppose we wish to write the equations of motion for a gas flowing through a duct,
or for a fluid flowing through a nozzle. In these cases the physical region of interest (the control
volume bounded by the duct or nozzle) is fixed, and does not depend on the solution or time. It
could also be observed that identification of individual particle trajectories in such problems is
probably not of primary interest, with such quantities as pressure, velocity, and temperature at
particular locations in the flow field being more desirable. In such problems, it is generally most
appropriate to associate field variables and equations with spatial points, or in the current
notation, X. A system described in this manner is said to be utilizing the Eulerian description
and implicitly associates all field variables and equations with spatial points x without specific
regard for the material points X involved in the flow of the problem. Most fluid and gas dynamics
problems are written in this way, as are problems in hydrodynamics and some problems in solid
mechanics involving fully developed plastic flow.

When thinking of Eulerian coordinate systems, it is sometimes useful to invoke the analogy of
watching an event through a window; the window represents the Eulerian frame and has our
coordinate system attached to it. Particles pass through our field of view, thereby defining a flow,
but we describe this flow from the frame of reference of our window without specific reference to
the particles undergoing the motion we observe.

In most solid mechanics applications, by contrast, the identity of specific material particles is of
central interest in modeling a system. For example, the plastic response of metals is history
dependent, meaning that the current relationship between stress and strain (the material model)
at a point in the body depends on the deformation history associated with that material point. To
construct and use such models effectively requires knowledge of the history of individual
particles, or material points, throughout a deformation process. Furthermore, many physical
processes we wish to describe do not lend themselves to an invariant Eulerian frame. In a forging
process, for example, the metal at the end of the procedure occupies a very different region in
space than it did at the outset. In addition, there may be periods of time over which boundary
conditions are applied requiring precise knowledge of the boundary of the region of interest. For
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these reasons, as well as others, the predominant approach to solid mechanics systems is to write
all equations in terms of the material coordinates, or to use the Lagrangian frame of reference.

Returning to the notation summarized in Fig. 4.1, for a Lagrangian description we associate all
field variables and equations with points X € Q, and keep track of these reference particles
throughout the process. One may note in the last subsection a bias toward this approach already.
We have written the primary unknown in the problem, ¢, as a function of X € Q and ¢ € (0, 7).
Sierra/SM uses the Lagrangian frame of reference though as we will see next, the spatial frame is
also of great interest to us.

4.4 Governing Equations in the Spatial Frame

We turn now to the equations governing the motion of a medium. If we adopt for the moment the
spatial frame as our frame of reference, the form of these equations is largely unchanged from the
linear elastic case presented previously (where we explicitly took advantage of the fact that for
linear problems there is no difference between material and spatial descriptions). We fix our
attention on some time ¢ € (0,7) and consider the current (unknown) location of the body Q.
Over this region ¢;(€), the following conditions must hold:

V-T+f=pa onyg(Q), 4.2)
o1 =@ on (L), 4.3)

and
t=t ong(Q,), 4.4)

subject to initial conditions at t = 0. Some explanation of these equations is necessary. The
operator V in (4.2) is with respect to spatial coordinates x. The acceleration a is the acceleration
of the particle currently at x written with respect to spatial coordinates, and ¢; is the prescribed
location for the particles on the Dirichlet boundary. We leave the constitutive law governing T
unspecified at this point but remark that in general the stress must depend on ¢, through
appropriate strain/displacement and stress/strain relations.

We see from (4.2) through (4.4) that the equations of motion are easily written in the form
inherited from the kinematically linear case, but that the frame in which this is done, the spatial
frame, is not independent of the unknown field ¢, but relies upon it for its own definition. Thus,
although the equations we now consider are essentially identical in form to those from linear
elasticity, they posses a considerably more complex relationship to the dependent variable.
Rigorous specification of this general boundary value problem requires an in-depth treatment of
the continuum mechanics of large deformation, as will be provided in the next chapters.

Before leaving this topic, we address an item which frequently causes confusion. Although we
have written the governing equations in (4.2) through (4.4) in terms of the spatial domain, this
does not imply an Eulerian statement of the problem. In fact, if we choose (as we have done) to
consider our dependent variable (in this case ¢;) to be a function of reference coordinates, the
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framework we have chosen is inherently Lagrangian. Another way of saying this is that (4.2)
through (4.4) are the Lagrangian equations of motion which have been converted through a
change-of-variables so that they are written in terms of X. In the remainder of this text, the reader
should assume a Lagrangian framework unless otherwise noted.
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5 Deformation Measures

5.1 Deformation Gradient

Furthering our discussion of large deformation solid mechanics, we continue to use the notation
presented in Fig. 4.1. We restrict our attention to some time ¢ € (0, 7), and consider the
corresponding configuration mapping ¢;, which can be mathematically represented via

¢; : Q — R3. The deformation gradient F is given by the gradient of this transformation,

0y,
F=—-ZL, 5.1
0X S
or in index notation,
0
F;; = . 5.2
178X, (5-2)

In (5.2) and throughout this documented unless otherwise noted, lower case indices are associated
with coordinates in the spatial frame and upper case indices with material coordinates. Repeated
indices of either case imply summation.

The deformation gradient is the most basic object used to quantify the local deformation at a point
in a solid. Most kinematic measures and concepts we will discuss rely on it explicitly for their
definition. For example, elementary calculus provides a physical interpretation of the determinant
of F. Consider a cube of material in the reference configuration (see Fig. 5.1) whose sides are
assumed to be aligned with the coordinate axes X;, I = 1, 2, 3. The initial differential volume dV
of this cube is given by

dV = dX;dX»dX5. (5.3)

If we now consider the condition of this cube of material after the deformation ¢; is applied, we
notice that its volume in the current configuration dv is that of the parallelepiped spanned by the

—_—> —_—> . .
three vectors ¢,(dX;), where the notation dX; is used to indicate a reference vector in coordinate
direction J with magnitude dX;. This volume can be written in terms of the vector triple
product,

dv = ¢, (dX)) - ¢, (dX3) - ¢, (dX3). (5.4)

H
If we consider any differential vector dR in the reference configuration, the calculus of
differentials tells us that application of the mapping ¢; will produce a differential vector

— —> . .
dr = ¢,(dR) whose coordinate are given by
i

(dr); = 9Xx (dR)k. (5.5)
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Fig. 5.1 Deformation of a volume element as described by the configuration mapping ;.
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Application of this logic to the particular differential vectors cﬁ leads one to conclude that

FidX,, J=1,
—
(0:(dXy))i = FndXp, J =2, (5.6)
FzdX3, J=3.

We can write (5.4) in index notation by first noting that the cross product of two vectors a and b is
written as

(axb); =e;jra;by, (5.7)
where e;, the permutation symbol, is defined as

1 if (i,7,k)=1(1,2,3)or (2,3,1)0r (3,1,2),
eijxk =—1 if (i,j,k) =(3,2,1) or (2,1,3) or (1,3,2), (5.8)

0 otherwise.

(5.4) can then expressed as

dv = FildX1 (eiijjngngng3)
=¢ejkFi1 Fj2Fr3dXdX,dX;3
— det(F)dV,

where we have used (5.3) and the fact that det(F) = e, Fi1 Fj2Fx3 (which can be verified through
trial). Introducing the notation J = det(F), we conclude

dv = Jdv. (5.9)

(5.9) tells us that the deformation ¢, converts reference differential volumes dV to current
volumes dv according to the determinant of the deformation gradient. For this mapping to make
physical sense, the current volume dv should be positive which then places a physical restriction
upon the deformation gradient F that must be obeyed point wise throughout the domain,

d¢
J = det(F) = det (6X) > 0. (5.10)
This physical restriction has important mathematical consequences as well. According to the
inverse function theorem of multivariate calculus, a smooth function whose gradient has a
nonzero determinant possesses a smooth and differentiable inverse. Since we have assumed ¢; to
be smooth and physical restrictions demand that J > 0, we can conclude that a function ¢; ! exists
and is differentiable; in fact, the gradient of this function is given by

-1
9 _p-1 (5.11)

0X

We will assume throughout the remainder of our discussion that J > 0, so that such an inverse is
guaranteed to exist.
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5.2 Polar Decomposition

With the definition of F in hand, we turn our attention to the quantification of local deformation in
a body. For any matrix such as F, whose determinant is positive, the following decomposition can
always be made:

F = RU = VR. (5.12)

In (5.12), R is a proper orthogonal tensor (right-handed rotation), while U and V are
positive-definite, symmetric tensors. One can show that under the conditions stated, the
decompositions in (5.12) can always be made and that they are unique. The interested reader
should consult Reference [19] of Chapter 1 for details. The decompositions RU and VR in (5.12)
are called right and left polar decompositions of F, respectively. R is often called the rotation
tensor, while U and V are sometimes referred to as the right and left stretches.

The significance of the polar decomposition is made more clear in Fig. 5.2, where we consider the
deformation of a neighborhood of material surrounding a point X € Q. (5.5) shows that the full
deformation gradient maps arbitrary reference differentials into their current positions at time z.
By considering the polar decomposition, we see that the deformation of material neighborhoods
of infinitesimal extent can always be conceptualized in two ways. In the right polar
decomposition, U contains all information necessary to describe the distortion of a neighborhood
of material, while R then maps this distorted neighborhood into the current configuration through
pure (right-handed) rotation. On the other hand, in the left polar decomposition, the rotation R is
considered first followed by the distortion V. In developing measures of local deformation, we can
thus focus on either U or V. The choice of which decomposition to use is typically based on the
coordinates in which we wish to write the strains. The right stretch U most naturally takes
reference coordinates as arguments, while the left stretch V is ordinarily written in terms of spatial
coordinates. This can be expressed as

F(X) = R(X)U(X) = V(¢(X))R(X). (5.13)

In characterizing large deformations, it is also convenient to define the right and left
Cauchy-Green tensors via

C=F'F (5.14)
and

B = FF!. (5.15)

The right Cauchy-Green tensor is ordinarily considered to be a material object C(X), while the
left Cauchy-Green tensor is a spatial object B(¢,(X)). Since R is orthogonal, one can write

R'R=RR” =1, (5.16)
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Fig. 5.2 Dotted outline indicates infinitesimal neighborhood of point X.)
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where I is the 3 X 3 identity tensor. Manipulating (5.13) through (5.15) reveals that

=

Uu=¢C (5.17)
and

V = B, (5.18)

One can see the connection with small strain theory by considering the Green strain tensor E
defined with respect to the reference configuration,

1
E:E(C—I). (5.19)
We define the reference configuration displacement field u, such that
u(X) = p(X) - X. (5.20)

Working in index notation, we write E in terms of u

1
Er = E(CIJ —01) =3 (FzIFzJ ~617)

1

:E (”1+X) (”1+X) 61])
1((0u; ou (5:21)

= ||+ ~+ 6| -6
2 (ax,+ )(ax,+ ”) ”)
1 0 aul‘ 8“/’

= s\ iz (i) + 61y 7o (i) + 75—
2 |9, o) ’ax,(” )+ 5%, ax,)

In the case where the displacement gradients are small, i.e., | | < 1, the quadratic term in

(5.21) will be much smaller that the terms linear in the dlsplacement gradients. If, in addition, the
displacement components u; are very small when compared with the size of the body, then the
distinction between reference and spatial coordinates becomes unnecessary and (5.21) simplifies
to

1 6u1 al/tj
Ejj~=—|—+— 5.22
1 2(6X1+<9X1)’ (5.22)

which is identical to the infinitesimal case (cf. (2.5)).

The references for Chapter 5 are [14, 19, 38].
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6 Rates of Deformation

The development of the last chapter fixed our attention on an instant ¢ € (0, T’), and proposed
some measurements of material deformation in terms of the configuration mapping ¢;. We now
allow time to vary and consider two questions:

* How are velocities and accelerations quantified in both the spatial and reference frames?

* How are time derivatives of deformation measures properly considered in a large
deformation framework?

The former topic is obviously crucial in the formulation of dynamics problems, while the latter is
necessary, for example, in rate-dependent materials where quantities such as strain rate must be
quantified.

6.1 Material and Spatial Velocity and Acceleration

One obtains the material velocity V and the material acceleration A by fixing attention on a
particular material particle (i.e., fixing the reference coordinate X), and then considering
successive (partial) time derivatives of the motion ¢(X, ¢). This can be written mathematically
as

V(X,1) = %(@(X, 1)) (6.1)

and
0 9*
AX,1) = E(V(X, 1) = @@(X, 1). (6.2)

Note in (6.1) and (6.2) that V and A take X as their first argument, hence their designation as
material quantities. A Lagrangian description of motion, in which reference coordinates are the
independent variables, would most naturally use these measures of velocity and acceleration.

An Eulerian description, on the other hand, generally requires measures written in terms of spatial
points x without requiring explicit knowledge of material points X. The spatial velocity v and the
spatial acceleration a are obtained from (6.1) and (6.2) through a change in variables:

v(x,1) =V (90;1 (x), r) =V, o7l (x) (6.3)
and

a(x,0) = A (¢ (%),1) = A ¢ (). (6.4)
The expression given in (6.4) for the spatial acceleration may be unfamiliar to those versed in fluid

mechanics who may be more accustomed to thinking of acceleration as the total time derivative
of the spatial velocity v. We reconcile these different viewpoints here through the introduction of

49



the equivalent concept of the material time derivative, defined, in general, as the time derivative
of any object, spatial or material, taken so that the identity of the material particle is held fixed.
Applying this concept to the spatial velocity gives

a(x, 1) = V(X, 1) lxep(x.n)

= -0 V(QO(X’ t)’t)

At X fixed 65)
_ov o [ ov ( _4 :
= &(x, t) - N (‘Pz (X)J) + a1 (% (X)J)

0
= a—: +Vv-v.

This may be recognized as the so-called total time derivative of the spatial velocity v. Exercising
the concept of a material time derivative a little further, we can see from (6.1) that the material
velocity is the material time derivative of the motion, so that

V=g (6.6)

Comparing (6.2) and (6.5), we conclude that A and a are, in fact, the same physical entity
expressed in different coordinates. The former is most naturally written in terms of V, while the
latter is conveniently expressed in terms of v.

(6.5) uses the superposed dot notation for the time derivative of v. Such superposed dots will
always imply a material time derivative in this document, whether applied to material or spatial
quantities. Furthermore, the gradient Vv is taken with respect to spatial coordinates and is called
the spatial velocity gradient. It is used often enough to warrant the special symbol L:

L :=Vv. (6.7)

6.2 Rate of Deformation Tensors

From the spatial velocity gradient L defined in (6.7), we define two spatial tensors D and W,
known respectively as the spatial rate of deformation tensor and the spatial spin tensor:

1
D:=Vyv=3 [L+LT], (6.8)
and
1
W:=V,v= E[L -L7]. (6.9)

It is clear that D is merely the symmetric part of the velocity gradient, while W is the
antisymmetric, or skew, portion.

The quantities D and W are called spatial measures of deformation. D is effectively a measure of
strain rate suitable for large deformations, while W provides a local measure of the rate of rotation
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of the material. In fact, in small deformations it is readily verified that (6.8) amounts to nothing
more than the time derivative of the infinitesimal strain tensor defined in (2.5). It is of interest at
this point to discuss whether appropriate material counterparts of these objects exist. Toward this
end, we calculate the material time derivative of the deformation gradient F. If F is an analytic
function, the order of partial differentiation can be reversed:

=£[i¢( [%( )

ot | 0X )] X
From (6.10), we conclude that the material time derivative F is nothing more than the material
velocity gradient. Manipulating this quantity further gives

ov

X - ﬁ (Vo) =Vv (%(X)) ax (#1(X) =L (¢:(X)) F(X). (6.11)

Examination of (6.10) and (6.11) reveals that

ov

=X (6.10)

L= (F : (,0,_1) F. (6.12)

Recalling the definition for the right Cauchy-Green strain tensor C in (5.14) Section 5, we
compute its material time derivative via
0

C= - [F'F] =F'F+F'F = (LF)'F + F' (LF) = F' (L + LT)F. (6.13)

which, in view of (6.8), leads us to conclude
C(X, 1) = 2F (X, )D(¢(X), )F(X, 1). (6.14)

(6.14) reveals why %C is sometimes called the material rate of deformation tensor. Noting that
F is the Jacobian of the transformation ¢;, readers with a background in differential geometry will
recognize %C as the pull-back of the spatial tensor field D defined on ¢, (). Conversely, D is the
push-forward of the material tensor field %C defined on €. The concepts of pull-back and
push-forward are outside the scope of this document, but the physical principle they embody in
the current context is perhaps useful. Loosely speaking, the push forward (or pull-back) of a
tensor with respect to a given transformation produces a tensor in the new frame of reference that
we, as observers, would observe as identical to the original tensor if we were embedded in the
material during the transformation. Thus, the same physical principle is represented by both %C
and D, but they are very different objects mathematically since the transformation that interrelates
them is the deformation itself. Recalling the definition of Green’s strain E given in (5.19), we can
easily see that

. 1.
E-= 5c = F'DF. (6.15)

This further substantiates the interpretation of D as a strain rate.

We have thus far developed measures of strain and strain rate appropriate for both the spatial and
reference configurations. Now we consider appropriate definitions of these quantities for the
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rotated configuration defined according to the polar decomposition and depicted schematically in

Fig. 4.1. This can be done by applying the linear transformation R relating the rotated
configuration to the spatial one.

The rotated rate of deformation tensor D is thus defined via
D(X,1) =R'(X,1) - D(e(X,1),1) - R(X, 1)
=RT' (Do ¢)R.

Noting that

C =2F' (Do ¢)F =2U'R'D 0 ¢)RU = 2U' DU,
we find
| -1/2¢~—1/2
D= U CU " =_Cl2CC

In connection with the rotated reference, another tensor, L, is sometimes introduced:
L =RR’.

Note that L is skew:
) . 0 ol
L+L" =RRT +RR” = —(RR") = — =0.
at( ) ot

We will return later in this document to the various measures associated with the rotated
configuration. They have particular importance in the study of material frame indifference.
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7 Stress Measures

7.1 Cauchy Stress

In this chapter we discuss the quantification of force intensity, or stress, within a body undergoing
potentially large amounts of deformation. We begin with the Cauchy stress tensor T and note
that, provided we associate this object with the spatial configuration, this object can be interpreted
exactly as in the infinitesimal case outlined in Section 2. In the current notational framework, we
interpret the components of T, denoted as T;;, which represent forces per unit areas in the spatial
configuration at a given spatial point x € ¢,(€Q).

It will be necessary in our description to consider related measures of stress defined in terms the
reference and rotated configurations. To motivate this discussion, we reconsider the concept of
traction discussed previously in the context of the infinitesimal elastic system. Recall that given a
plane passing through the point of interest X, the traction, or force per unit area acting on this
plane, is given by the formula

t; = Tijn;, (7.1)

where n; is the unit normal vector to the plane in question.

7.2 Nanson’s Formula

We consider two differential vectors, dr; and dr,, as illustrated in Fig. 7.1. We assume that dr
and dr; are linearly independent and that both have spatial point x as their base point. We further
assume that their orientations are such that the following relation from basic geometry holds:

dr; X dr; = nda, (7.2)
where da is the (differential) area of the parallelogram encompassed by dr; and dr;.

As discussed in Section 5 (see (5.5)), we can think of the differential vectors dr; and dr; as the
current positions of reference differential vectors dR; and dR,, which are based at X = cp,‘l (x). In
index notation, we can relate these two sets of differential vectors using the deformation gradient
via

(dry); = Fiy(dRy)y, (7.3)
and
(dr); = Fi7(dRy);. (7.4)

We now seek to re-express (7.2) in terms of reference quantities. Working in index notation, we
write

nida = e;;; Fj(dR); Frx (dR2)k
= e;jx01iFj7(dR1); Frx (dR2)g (7.5)
= 1k FiLF7 Fiy(dRy); Fiex (dRo)g
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Fig. 7.1 Notation for derivation of Nanson’s formula.
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We extract and manipulate a particular product in the last line of (7.5), namely e, Fjp FjjFyk.
One can show by a case-by-case examination that the following relation holds:

eljkbFiLFipFrg = epykerjkFin FiaFis. (7.6)
Recall from Section 5, (5.10) that J = det(F) has the following representation in index notation:
J = det(F) = e;jx FnFjaFi3 (7.7)
Combination of (7.5), (7.6), and (7.7) yields the following result:

nida = Jerjx F7; (dR1); (dRy)k

7.8
= JF;'m_dA. (7.8

In (7.8), dA is the differential reference area spanned by dR; and dR», and m is the reference unit
normal to this area.

In direct notation, we express this result as
nda = JF 'mdA. (7.9)
(7.9) is referred to as Nanson’s formula and it is important, among other reasons, because it

provides the appropriate change-of-variables formula for surface integrals in the reference and
current configurations.

7.3 First and Second Piola-Kirchhoff Stress

We want to compute a differential force, which is the product of the traction acting on our plane at
x and the differential area under consideration. Denoting this differential force by df, we write

df = tda = Tnda = JTF 'mdA. (7.10)

In examining (7.10), we find that the following definition is useful:
P(X) = J(X)T (¢/(X) F7 (¢:(X)) . (7.11)

This allows us to write

df = PmdA. (7.12)
In (7.12), the product Pm represents a traction, the current force, df, divided by the reference area,
dA. The tensor P is called the (First) Piola-Kirchhoff Stress and Pm is called the Piola Traction.
Similar to the Piola Traction, the First Piola-Kirchhoff Stress measures stress in terms of forces in

the current configuration and areas in the reference configuration. The one-dimensional
manifestation of this stress measure is the engineering stress, og, originally defined in (1.3).

55



It is worthy to note that P is neither a pure spatial nor a pure reference object. A reference object
for stress can be constructed by performing a pull-back of the spatial Cauchy stress tensor T to the
reference configuration:

S(X) =JF ! (¢,(X) T (¢:(X) F7 (¢/(X))

= F' (,(X)) P(X). (7.13)

S is called the Second Piola-Kirchhoff Stress and it is purely a reference object. We note, in
particular, that S is a symmetric tensor, while P is not symmetric in general.

This same concept of pull-back can be employed to define a stress tensor in the rotated
configuration, which we shall denote as T. This rotated tensor is defined as

T =R" (¢,(X) T (¢,(X)) R (¢/(X)).. (7.14)

As was the case with the rotated configuration quantities introduced in Section 6, this definition
will be of particular importance in the later examination of frame indifference.
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8 Balance Laws

In this chapter, we examine the local forms of the various conservation laws as expressed in the
various reference frames we have introduced (spatial, reference, and rotated). To expedite our
development, we first discuss how integral representations of balances can be converted to point
wise conservation principles, a process known as localization.

8.1 Localization

Suppose we consider an arbitrary volume of material in the reference configuration, V C Q, of a
solid body as depicted in Fig. 8.1. Suppose further that we can establish the following generic
integral relation over this volume:

/Vf(X)dV =0, (8.1)

where f is some reference function, be it scalar-, vector-, or tensor-valued, defined over all of Q. If
(8.1) holds true for each and every subvolume V of €, then the localization theorem states that

f = 0 pointwise in Q. (8.2)

The interested reader should consult reference [19] for elaboration on this principle.

It should be noted that the same procedure can be applied spatially. In other words, if we are
working with a spatial object, we might consider arbitrary volumes v in the spatial domain, and if
the following holds for a spatial object g for all v:

/g(x)dv =0, (8.3)

then g(x) = 0 throughout ¢, (Q).

Our primary interest in these localization principles will be to take the well known conservation
laws for control volumes and convert them to their local counterparts valid point wise throughout
the domain.

8.2 Conservation of Mass

For conservation of mass, we consider a fixed control volume, v, in the spatial domain, completely
filled with our solid body at the instant in question as the body moves through it. We can write a
conservation of mass for this control volume via

—/6 pv-nda:/%—fdv, (8.4)
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Fig. 8.1 Notation for the localization concept.
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where the left-hand side can be interpreted as the net mass influx to the control volume, and the
right-hand side is the rate of mass accumulation inside the control volume. Applying the
divergence theorem to the left-hand side gives

_ [
—/VV-(pV) dv _/vat dv. (8.5)

This can be further rearranged to yield

0
/(a—‘t’+vp-v+p(v.v))dv:o, (8.6)
which can be established for any arbitrary spatial volume v. Applying the localization theorem
gives the local expression of continuity, which may be familiar to those versed in fluid
mechanics:
0

a—/;+Vp-v+p(V-v):p+p(V-v):O, (8.7)

where the concept of the material time derivative has been employed (cf. (6.5)).

A reference configuration representation of continuity is desirable for the study of solid
mechanics. Therefore we convert (8.6) to a reference configuration integral to obtain:

/ (p+pF :FT)Jdv =0, (8.8)
V=¢;1(v)

where the transformation between dv and dV is accomplished using (5.9) and the chain rule is
used to convert V - v via

a9 = Vi (4 0)
= aixlv,- (¢ ) % (¢ ) (8.9)

_r (¢;1(x)) ol (go;l(x))’

which is the index notation form of F : F~7. Applying the localization theorem in the reference
configuration gives

pJ +pJF F T =0, (8.10)

which holds point wise in €.

Working in index notation, we can further simplify (8.10) by concentrating on the term JF : F~7.
We compute the material time derivative of J as

oJ

J=—"—F,u, 8.11
aFmM mM ( )
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where
o7 8
aFmM - aFmM
= €;jk0imOM Fj2F 3 + €10 jmOma Fit Fi3 + €k 0 xmOm3Fit F2

(eijxFitFi2Fy3)
(8.12)

-1 -1 -1
=ejjkFinFy,,0miFppFis + eijc FinFy,, 0m2Fit Fis + ejik Fin Fy,, 0 m3Fi1 F 2,

which simplifies to

aJ -1 -1 -1
=JF, om +JF, oyp2+JF; O

=JF; 61 = JF,) .

Substitution of (8.13) into (8.11) gives
J=JF,} Fuu, (8.14)
which is the index notation form of
J=JF 1 F. (8.15)

Finally, substitution of (8.15) into (8.10) gives
) . d
oJ+pJ = a(pJ) =0. (8.16)

(8.16) is the reference configuration version of the continuity equation, which tells us that the
product of the density and deformation gradient determinant must be invariant with time for all
material points. This is commonly enforced in practice by assigning a reference density pg to all
material points. If the current density p is computed via

1

= _ 8.17
p = 5P0- (8.17)

then (8.16) is automatically satisfied (recall that the Jacobian is unity in the reference
configuration).

8.3 Conservation of Linear Momentum

Considering once more a fixed control volume v, the control volume balance of linear momentum
can be expressed as

0
(pV)V-nda+/—(pv)dv:/fdv+/ tda. (8.18)
av v ot v av

On the left-hand side, the first term expresses the momentum out flux and the second term
represents the rate of accumulation inside the control volume. This net change of momentum is
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produced by the total resultant force on the system, i.e., the right-hand side of the equation, which
is equal to the sum effect of the body forces f and the surface tractions t.

Applying the divergence theorem to both surface integrals, we find that

(pv)v-nda = /[V - (pv)vV+ p(Vv)v] dv, (8.19)

/ tda:/ Tnda:/V-Tdv. (8.20)
av av v

Substituting (8.19) and (8.20) into (8.18), and rearranging, gives

av

and

/[V -T+f - p% - p(Vv)v — (Z—[t)v —(Vp-v)v=p(V-v)v[dv =0. (8.21)

Employing the spatial form of the continuity (8.6) and recalling the formula for the material time
derivative (6.5) gives

/[V-T+f—pv1 dv =0. (8.22)

1%

The localization theorem then implies
V- T+f=pv (8.23)

point wise, which is recognized as the same statement of linear momentum balance utilized in our
earlier treatment of linear elasticity, (2.2).

In large deformation problems it is desirable to also have a reference configuration form of (8.23).
Converting (8.22) to its index form, we have

/[T,-,,j + fi — pvi| dv =0. (8.24)

Working with the stress divergence term first, we write

aTij 6XJ _ aTl] -1

= = L 2
)¢ ox;  0Xy JJ (8.25)
Using (7.11), we can write
oT;; 0o (1 -1 0J 0F 1 0
— = —|=P;yF;| = — ——PyFi+ PiiFjr). 8.26
0X,  0X, (J ! J’) J2oFy ox;, ! JaX( 1F1) (8.26)
Now using (8.13), we can simplify (8.26) and post multiply F 1 to obtain:
6Tl-j -1 _ _1(9Fk1( 1(9P,1 1 1(9F]1
—F;, = F —Piy+-— —F —P; 8.27
ox, 7 Kox, VT 10X, ax, ! (827
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The first and last terms on the right-hand side of (8.27) cancel each other due to the fact that
9Fi1 _ 91 Therefore we have

0X; — 0X;
aTij 1 1 6P,-1
—F;; == . 8.28
ox, 1 Jox; (8:28)
Combining this result with (8.25) and (8.24), and applying a change of variables, gives
/(Pil,l +b; — poVi)dV =0, (8.29)
v

where b; = J f;, the prescribed body force per unit reference volume. Employing the localization
theorem gives

Vo-P+b=pyV (8.30)

point wise in €, which expresses the balance of linear momentum in terms of reference
coordinates. In (8.30), Vj is the gradient operator with respect to the reference configuration.

8.4 Conservation of Angular Momentum

Again considering an arbitrary control volume in the spatial frame, we write its balance of angular
momentum via

0

(x X pv)v-nda + /—(X X pv)dy = /(x x f)dv + / X X tda, (8.31)
av v ot v av

where the terms on the left-hand side are the out flux and accumulations terms, and the terms on

the right-hand side represent the total resultant torque.

Working this time in index notation, we apply the divergence theorem to the surface integrals as
follows:

/ eijrpxjvivinda = /(P,leijkxjvkvl + kPO JIVIVI + €ijkPX Vi Vi + €ijkpX;vicviy) dv,
v v

(8.32)
and
/ eijkijklnlda = /(el'jkijli + el-jkaj) dv. (8.33)
av v
Substituting (8.32) and (8.33) into (8.31), and rearranging terms, reveals that
avk avk
‘/v‘(eijkxj (Tkl,l + fr — Py pc?_xlvl)
dp JOp

—€ijkXjVk (E + a—x[V[ +pvl,l) (8.34)

+eijkT — peijkpvjvk)dv =0.

62



Using (8.24) and (8.7), and noting that the cross product of a vector with itself is zero, we can
simplify (8.34) and apply the localization theorem to conclude

eijxTi =0, (8.35)
which, in turn, implies the following three equations:
Toz = T3z, Ti3 = T31, To1 = Tha. (8.36)

In other words, the symmetry of the Cauchy stress tensor is a direct consequence of the
conservation of angular momentum. Use of (7.13) and (7.14), respectively, reveals that the
Second Piola-Kirchhoff stress S and the rotated stress tensor T are likewise symmetric. The First
Piola-Kirchhoff stress is not symmetric and is not, in fact, a tensor in the purest sense because it
does not fully live in either the spatial or reference frame.

8.5 Stress Power

We examine the consequences of a control volume expression of energy balance. We assume
herein a purely mechanical description and, to begin, that there is no mechanical dissipation, so
that the system we consider conserves energy exactly. In other words, all work put into the system
through the applied loads goes either into stored internal elastic energy or into kinetic energy.

With this in mind, the conservation of energy for a spatial control volume is written as

1 0 1
/ e+ =pv-v V~nda+/— e+ =pv-v dv:/f-vdv+/t~vda, (8.37)
av 2 vat 2 \ ov

where e is the internal stored energy (i.e., elastic energy) per unit spatial volume.

As we have done previously, we apply the divergence theorem to the surface integrals:

1
/ (e+—pv-v)v-nda:/
av 2 v

1
V-v(e+§pv-v)+Ve-v

(8.38)
1
+ EVp -V(V-v)+pv- (Vv)v|dy,
and
/t~vda:/[T:VV+(V~T)~V]dv. (8.39)
av v
Substituting (8.38) and (8.39) into (8.37), and rearranging, gives
0
0= /[(V-T+f—p—v— (va)v) -y
. ot
(8.40)

1 ap
—EV'V(E+(V'V)p+Vp-V)

+T:Vv—(V-v)e—¢é]dv.
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Using (8.24) and (8.7), we find
0:/[T :Vv—(V-v)e—¢é]dv. (8.41)
v
Splitting (8.41) into two integrals, we have

0= /T : Vvdy — /((V -V)e + ¢é)dv. (8.42)

We now convert (8.42) to the reference configuration and apply localizations. In so doing, we
recognize that the second integral in (8.42) can be treated directly analogous to that of (8.6), with
the density p in (8.6) replaced by the energy e in the current case. The result of this manipulation
will be analogous to (8.16) with e substituted for p. In other words, we have

/((V~V)e+é) dv :/V%(eJ)dV. (8.43)

Concentrating on the first integral and using (6.12) and (8.11) to aid in the calculation, we find

/T : Vvdy :/(TOtp_]) (Lo Jav
v v (8.44)

:/(Togp_l) : (FF‘I)JdV:/P:FdV.
Vv Vv

Plugging the results of (8.43) and (8.44) into (8.42) and employing the localization theorem, we
determine that

%(e]) =E=P:F (8.45)

point wise in ©, where E is the stored elastic energy per unit reference volume. Therefore, P : F
represents the rate of energy input into the material by the stress (per unit volume), commonly
known as the stress power. Taking into account the various measures of stress and deformation
rate we have considered, it can be shown that for a given material point, the stress power can be
written in the following alternative forms:

. 1 .
stress power =P : F = ESC =JT:D=JT :D. (8.46)
It should be noted that this definition can be used also for dissipative (i.e., non-conservative)

materials but the interpretation changes. The stress power in that case is the sum of the rate of
increase of stored energy and the rate of energy dissipated by the solid.

8.6 Thermodynamics

Finally we discuss the application of the laws of thermodynamics to large deformation Lagrangian
mechanics. Recalling the notation from Section 4, we consider the first and second laws applied to
a body Q in the reference (i.e., material) configuration.
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First Law

The first law states that the change in internal energy, change in kinetic energy, external power,
and heat flux over the body must be balanced:

E+K=W+Q
where

* &, the total internal energy, is given by

E= /pow dv,
Q

where w is the specific internal energy (both elastic and dissipated),

* K, the kinetic energy, is given by
1
%= [ SeolvP av.
Q2

* ‘W, the conventional external power, is given by

W:/ Tn-vdF+/de,
4Q Q

Q:—/ q-ndF+/qu,
oQ Q

where ¢ is the scalar heat supply, and q is the heat flux vector.

* Q, the heat flux, is given by

The corresponding local energy balance can be readily derived by applying the divergence
theorem and power balance on sub-regions:

pow=T:D-Vy-q+q, (8.47)
where V- is the divergence operator in the reference configuration.

Second Law

The second law of thermodynamics states that the entropy of an isolated system can not decrease.
The global inequality over Q corresponding to this statement is

/poﬁdVZ—/ gdr+/ﬁdv,
Q o0 0 ot

where 7 is the specific entropy, 6 is the absolute temperature, % is the entropy flux, and % is the
entropy supply. The corresponding local entropy imbalance can be derived using the divergence
theorem and localization to sub-regions:

> _V . (_) + =,
pon 2 0 9 9
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Using (8.47) and some manipulation this can be rewritten
T:D- po (é+né)—éq-V0620, (8.48)
where e, the specific free-energy (i.e., the elastic energy), is given by
e=w—0n.
In the absence of thermal effects, (8.48) reduces to
T:D > pgé,

which states that the internal power expenditure (stress power) must exceed the rate of increase of
stored energy. More simply put, the dissipated power in the body must always be positive.

The references for chapter 8 are [14, 19, 20, 38].
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9 Frame Indifference

An important concept in the formulation of constitutive theories in large deformations is frame
indifference, alternatively referred to as objectivity. Although somewhat mathematically involved,
the concept of objectivity is fairly simple to understand physically.

When we write constitutive laws in their most general form, we seek to express tensorial
quantities, such as stress and stress rate, in terms of kinematic tensorial quantities, most
commonly strain and strain rate. The basic physical idea behind frame indifference is that this
constitutive relationship should be unaffected by any rigid body motions of the material.
Mathematically, we evaluate frame indifference by defining an alternative reference frame that is
rotating and translating with respect to the coordinate system in which we pose the problem. For
our constitutive description to make sense, the tensorial quantities we use (stress, stress rate,
strain, and strain rate) should transform according to the laws of tensor calculus when subjected to
a change in reference frame. If a given quantity does this, we say it is material frame indifferent,
and if it does not, we say it is not properly invariant.

9.1 Objective Strain and Strain Rate Measures

Consider a motion, ¢(X, 7). We imagine ourselves to be viewing this motion from another
reference frame, denoted in the following by *, which is related to the original spatial frame via

x" =c(1) + Q(1)x, 9.1)

where x = ¢(X, 1). In (9.1), ¢(¢) and Q(¢) are rigid body translation and rotation, respectively,
between the original frame and observer *. To observer *, the motion appears as defined by

X' =¢"(X,1) =c(t) + Q()o(X, 1). (9.2)

The time derivative of this motion equation gives the relationship between the deformation
gradients in the two frames:

0 0

F' = ¢ = Qzc¢i(X) = QF. 9.3)

The spatial velocity gradient L™ is then
L' =V'v' =F(F) ! = %(QF)(QF)‘I = (QFF—IQT + QFF—IQT) : (9.4)
which simplifies to
L* = QLQ + QQ’. 9.5)

For LL = Vv to be objective, it would transform according to the laws of tensor transformation
between the two frames, i.e., only the first term on the right-hand side of (9.5) would be present.
Clearly, LL = Vv is not objective.
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Examining the rate of deformation tensor D*, on the other hand, one finds:

D° =3 (L4 (L)) = 3 [QLQ" +QQ" + QLQ" +QQ']. 9.6)
where
aYa Y4 T d T d
QQ' +QQ" = —[QQ"| = — [T =0. 9.7)
Hence, (9.6) simplifies to
D* = %Q [L+L"] Q" =QDQ’, 9.8)

which shows us that D is objective.

Therefore we have a tensorial quantity for the spatial rate-of-strain that is objective. The question
arises whether corresponding reference measures of rate are objective. It turns out that such
material rates are automatically objective, since they do not change when superimposed rotations
occur spatially. Consider, for example, the right Cauchy-Green tensor C:

C* = (F)T(F*) =F'QTQF = C. (9.9)
Similarly, the time derivative of (9.9) simplifies to

C=C. (9.10)

9.2 Stress Rates

Turning our attention to stress rates, examine the material time derivative of the Cauchy stress
T:

N L rourlewt= (9T, .
T_ldt(T got)] ¢ _(at” VT). 9.11)

T is itself objective by its very definition as a tensorial quantity. Thus, we can write
T* = QTQ’. (9.12)
Computing the material time derivative of (9.12) gives
T = QTQ" + QTQ" + QTQ". (9.13)

Since the first and third terms on the right-hand side of (9.13) do not, in general, cancel, we see
that the material time derivative of the Cauchy stress T is not objective.

It therefore becomes critical to consider a frame indifferent measure of stress rate when
formulating a constitutive description that requires a stress rate. A multitude of such rates have
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been contrived; the interested reader is encouraged to consult Reference [38] for a highly
theoretical treatment. For our discussion here, we consider two such rates especially prevalent in
the literature: the Jaumann rate and the Green-Naghdi rate. Both rates rely on roughly the same
physical idea. Rather than taking the derivative of the Cauchy stress itself, we rotate the object
from the spatial frame before taking the time derivative, so that the reference frame in which the
time derivative is taken is the same for all frames related by the transformation in (9.1).

For example, we consider the Jaumann rate of stress, which we denote here as T. Its definition is
given as

T=T-WI+TW, (9.14)

where W = L — D. We can verify that this rate of stress is truly objective by considering the
object as it would appear to observer :

T =T - W'T* + T"W*. (9.15)

The quantity T* is given by (9.13), T* is given by (9.12), and
W*iscomputedwiththeaidof : eq : ‘frame;ndif ference : eq : 05 and (9.8):

W*=L*-D* = QLQ" + QQ" - QDQ’. (9.16)
Substituting these quantities into (9.15), we find
i = QTQ" +QTQ" - QTQ"
- (QLQ" +QQ" - @DQ") QTQ" ©.17)
+QTQ" (QLQ" +QQ" - QDQ').
Canceling terms and using the fact that QQ” = —QQ7, we can simplify (9.17) to
T°=Q[T-WT+TW]Q" =QTQ’, (9.18)

which ensures us that, indeed, T is objective.

By considering the Green-Naghdi rate we can gain more insight into how objective rates are
defined. The Green-Naghdi rate of Cauchy stress is defined via

T = RTR?, (9.19)

where R is the rotation tensor from the polar decomposition of F, and T is the rotated Cauchy
stress defined in (7.14).

We examine how the rotation tensor R transforms. Utilizing (9.3) and the polar decomposition,
we get

F* =R"U* = QF = QRU. (9.20)
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We now note two things: first, the product QR is itself a proper orthogonal tensor; and second, the
polar decomposition is unique for a given deformation gradient. Therefore, comparing the second
and fourth terms of (9.20), we must conclude

U =0, (9.21)
and
R* = QR. (9.22)
Using (9.22) and (9.19), we can compute
T = R*T'R*T = QRT'R7Q". (9.23)

Returning to the definition of T in (7.14) and incorporating (9.12) and (9.22), we can write
T* =R"T'R* =RTQ"(QTQ)QR =R'TR =T. (9.24)

Therefore, the rotated stress tensor appears exactly the same in both frames of reference. It follows
that

T =T, (9.25)
which, when substituted into (9.23), gives

T* = QRTR’Q" = QTQ". (9.26)
This is recognized as the properly objective transformation of T.

One may note that this result gives considerable insight into how objective rates can be
constructed. In the current case, we transform the stress into the rotated configuration before
computing its time derivative, and then we transform the result back to the spatial configuration.
Since the rotated stress is exactly the same for all reference frames, related by (7.1), taking the
time derivative of it and then transforming produces an objective tensor. This idea can be
generalized as follows: construction of an objective rate of stress is achieved by considering the
time derivative of a stress measure defined in a coordinate system that is rotating about some set
of axes. In fact, one can show that the Jaumann stress rate can be similarly interpreted.

Finally, the Green-Naghdi rate can be manipulated further to a form more closely resembling the
form for the Jaumann rate ((9.14)). That is, we can write

. d
T= RE(RTTR)RT
SO -
=RR'T+T+TRR (927)

=T+L"T+TL
=T+TL-LT,

where (6.19) is used to define L, recalling also that this object is skew.

The reference for Chapter 9 is [38]
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10 Discretization

10.1 Weak Form for Large Deformation Problems

We begin by reviewing the field equations to be considered. The reference for this chapter is [38].
The problem to be solved is shown schematically in Fig. 10.1, in which we want to the compute
finite deformation response of a body €2 in its reference configuration.

I“ r:!

¥

@,

Fig. 10.1 Large deformation initial/boundary value problem

Assuming that this time dependent configuration mapping is denoted by ¢;, the following problem
is solved for each time, ¢, in the time interval of interest:

V-T+f = paon ¢ (Q), (10.1)
@1 = @ on ¢ (I,), (10.2)

and
t=ton ¢,(Ty), (10.3)
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where all notations are as discussed in Section 4. In particular, a is the material acceleration
expressed in spatial coordinates, f is the body force per unit (spatial) volume, and T is the Cauchy
stress tensor. The vector t is the Cauchy traction vector, obtained via t = Tn, where n is the
outward unit normal to the spatial surface ¢;(I';).

The problem is also subject to initial conditions of the form
¢(X,0) = ¢o(X) on L, (10.4)
and
d¢
E(X’ 0) = Xo(X) on Q. (10.5)

Recall that (10.1) through (10.3) are written in the so-called spatial configuration, but we still
consider ourselves working in a Lagrangian framework where all quantities are ultimately indexed
to material points through the mapping x = ¢,(X) (see Lagrangian and Eulerian Descriptions in
Section 4).

A prerequisite of the finite element method is that a weak, or variational, form of the above field
equations be available for discretization. This can be obtained following the general procedure
outlined for linear problems in Section 3 by considering weighting functions ¢* defined over Q
which satisfy the following condition:

¢*=0onT,, (10.6)

where we also assume that all ¢* are sufficiently smooth so that any desired partial derivatives can
be computed. In treating large deformation problems, it is useful to consider spatial forms of the
functions ¢* obtained by composition with the (unknown) mapping ¢, . We denote these spatial
variations by w and note that they may be obtained via

w(x) = ¢ (o7 () (10.7)
for any x € ¢;(X). (10.6) means
w = 0on ¢;(T,). (10.8)

Assuming the configuration mapping ¢; is smooth, all required partial derivatives of w can be
computed.

With these definitions, the development in Section 3 can be reproduced in the current context to
provide the following spatial representation of the variational form for large deformations:

Given the boundary conditions t on ¢, (I, @; on ¢;(I,), the initial conditions ¢ and V on €,
and the distributed body for f on ¢,(Q), find ¢, € S; for each time ¢ € (0, T) such that:

/ pw - adv +/ Vw : Tdv = / w - fdv +/ w - tda (10.9)
@i (Q) @i (Q) @ (Q) ¢:(Fo)
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for all admissible w, where S; is defined as
S ={¢iler = @(t) on T, , ¢; is smooth} (10.10)

and where admissible w are related in a one-to-one manner via (10.7) to the material variations
¢* € W with the definition of W being

W={¢*|l¢*=00nT,, ¢*is smooth} . (10.11)

Note that in contrast to the previous development, the constitutive relation governing T is left
unspecified, but it can in general be subject to both geometric and material nonlinearities.
Furthermore, it should be implied that geometric nonlinearities include consideration of large
deformation kinematics discussed in Section 5, Section 6, and Section 9. The notation a for the
acceleration is to be understood as the material acceleration as defined by (6.4).

In addition, the solution ¢ is subject to the following conditions at ¢ = 0:

/ 0" (@li=0 — ¢0)dQ =0 (10.12)
Q

o (2
Q()O ot

both of which must hold for all ¢* € W.

and

- Vo) dQ =0, (10.13)
=0

10.2 Finite Element Discretization

The process of numerically approximating a continuous problem is generically called
discretization. In the finite element method, the entity discretized is a weak form (alternatively,
variational equation). The variational form to be considered here is that just summarized in the
previous section. We now refer to Fig. 10.2 which gives the general notation to be used in the
description of the discretization process.

Referring to Fig. 10.2, the reference domain € is subdivided into a number of element
subdomains Q°. The superscript e is an index to a specific element, running between 1 and the
total number of elements in the discretization, n,;, of the domain Q. We assume in the figure and
throughout the ensuing discussion that Q is a subset of R3.

Note that a number of nodal points are indicated by the dots in Fig. 10.2. We assume that all
degrees of freedom in the discrete system to be proposed will be associated with these nodes.
These nodes may lay at corners, edges, and in interiors of the elements with which they are
associated. A key feature of the finite element method will be that a specific element can be
completely characterized by the coordinates and degrees-of-freedom associated with the nodes
attached to it. In the following we will index the nodes with uppercase letters A, B, etc. having
values running between 1 and 7,,,, the total number of nodal points in the problem
discretization.
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Fig. 10.2 General notation for finite element discretization of the reference domain.
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10.3 Galerkin Finite Element Methods

The essence of any finite element method lies in the discretization of the variational form. This
discretization process involves approximation of a typical member of both the solution space S;
and the weighting space W. These approximations are typically expressed as an expansion in
terms of prescribed shape or interpolation functions, usually associated with specific nodal
points in the mesh. Since the number of nodal points is obviously finite, the expansion is likewise
finite, giving rise to the concept of a finite-dimensional approximation of the space.

Roughly speaking, the idea of discretization is as follows. We know from earlier chapters that if
the variational equation is enforced considering all ¢; € S; and ¢* € W as mandated by its
definition, then the solution of the weak form is completely equivalent to that of the strong form
(i.e., the governing partial differential equation with boundary/initial conditions). This fact results
because of the arbitrary nature of ¢* and the very general definitions for S, and W. If we restrict
our attention only to some subset of the above spaces, we inherently incur some error with the
solution of our approximated weak form in that it no longer is identical to the solution of the
strong form. If our choice for the type of shape functions to be used is reasonable, however, we
can represent the full solution and weighting spaces with arbitrary closeness by increasing the
number of nodal points and/or the degree of polynomial approximation utilized in the
interpolation functions. In the limit of such refinement, we should expect recovery of the exact
solution (i.e., convergence).

We represent the shape function associated with node A as N4 and assume it to be as follows:
Na:Q—R (10.14)

Given a time, ¢, the finite dimensional counterpart of ¢, will be denoted as ¢! and is expressed in
terms of the shape functions as

Hnp

¢ = > Nadp(n), (10.15)
B=1

where dp(7) is a 3-vector containing the unknown displacements of nodal point B at time ¢.
Given a prescribed set of nodal shape functions Ng, B =1, ..., n,,, the finite dimensional
solution space S is defined as the collection of all such ¢!":

Nnp
S = {#‘ = Npdg(1)
B=1

In other words, we require members of the discrete solution space to (approximately) satisfy the
displacement boundary condition on I',. The approximation comes about because, in general, we
only force ¢! to interpolate the nodal values of @, on T, with the Np serving as the interpolation
functions. Note that I itself is typically geometrically approximated by the finite element
discretization, also contributing to the approximation.

o ~ @ (X forall X e Fu} . (10.16)

This notationally defines the discretization procedure for . It still remains, however, to
approximate the weighting space. The (Bubnov-) Galerkin finite element method is characterized
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by utilizing the same shape functions to approximate W as were used to approximate S;.
Accordingly, we define a member of this space, (¢*)", via

Nnp

(¢7)" = ) Naea. (10.17)
A=1

where ¢4 are 3-vectors of nodal constants. We can then express the finite dimensional weighting
space W via

fnp

wh = {(¢*)h = ZNACA

A=1

()" =0forall X € ru} . (10.18)

Analogous to the situation for S”, (10.18) features a discrete version of the boundary condition on
T,.. In other words, W consists of all functions of the form (10.17) resulting in satisfaction of this
condition. Note that the only restriction on ¢4 is that they result in satisfaction of the
homogeneous boundary condition on I',.

With these ideas in hand, the approximate Galerkin solution to the initial/boundary value problem
takes the form described below.

Given the boundary conditions t on gofl(l“g), @; on cp,h(Fu), the initial conditions ¢g and Vj on Q,
and the distributed body force f on (,oﬁl(Q), find (p? € Sf for each time ¢ € (0, T') such that:

/ pwh-ahdv+/ th:Thdv:/ wh-fdv+/ w" - tda (10.19)
¢r (Q) o1 (Q) o1 (Q) ¢ (To)

for all admissible w”, where S, is defined in (10.16) and where admissible w” are related to the
material variations (¢*)" € W via

wh(x) = (¢")" € (905‘)_1 (x). (10.20)

In (10.19), T" refers to the Cauchy stress field computed from the discrete mapping goﬁ’ through
the constitutive relations, whereas a’ is the discrete material acceleration.

The initial conditions are ordinarily simplified in the discrete case to read

dz(0) = ¢o(Xp) (10.21)
and

d5(0) = Vo(X5), (10.22)
both of which must hold for all nodes B =1, ..., n,,, where Xp are the reference coordinates of

the node in question.

section{ Notation for Discrete Problem }
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In preparation for generating vector/matrix equations for the discrete system, it will be helpful to
be explicit with our notation. We therefore express the nodal vectors ¢4 and dp in terms of their
components via
ca={cia},i=1,2,3 (10.23)
and
dg ={d;s}, j=1,2,3. (10.24)
Note that indices i and j are spatial indices, in general. It is useful in generating matrix equations
to have indices referring not to nodes A and B or spatial directions i and j, but rather to degree of
freedom numbers in the problem. Thus, we define for notational convenience the concept of an
ID array that is set up as follows:
ID(i, A) = P (global degree of freedom number). (10.25)
In other words, the /D array takes the spatial direction index and nodal point number as
arguments and assigns a global degree of freedom number to the corresponding unknown. For
three-dimensional deformation problems, the number of degrees of freedom ng, 7 is

Ndof =3 X M. (10.26)

With this notation, the equation numbers P and Q corresponding to the degrees of freedom are
defined as

P=1ID(i,A) (10.27)
and

Q=1D(j,B). (10.28)

10.4 Discrete Equations

We now generate the discrete equations by substitution of (10.15) and (10.17) into (10.19),
causing the variational equation to read

/g:ﬁ’(sz) P (nzmi Na ("O;l(x)) CA) : (:}ZE Np (‘Pt_l(x)) &B(t)) dv

A=1
nnp
+ / ( YN, (go,'l(x)) ® cA) - Thdy (10.29)
<Pfl(9) A=1
Nnp Nap
+/ ( N4 (th—l(x)) CA) -fdv+/ ( Na ((p[—l(x)) CA) - tda
‘P?(Q) A=1 cpﬁ'(l"(r) A=1
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where we note in particular that T” is a function of $varphi*h_t = sum_{B=1}*{n_{np}} N_B

mathbf{d}_B (t)$ through the strain-displacement relations (nonlinear, in general) and the
constitutive law (as yet unspecified and perhaps likewise nonlinear).

The inertial term in (10.29) can be expanded as

/wf’(sz)p (g Na (go,‘l(x)) CA) . (z Ng (%—l(x)) aB(;)) d

pNa (970 eia (Z

B=1

Np (SOZ_I(X)) JiB) dv

pNa (1)) 6 N5 (¢ (0) dvdp
B=1i=1 Y (@)

Ndo f Ndo f
P=1 0=1

where Mpg is defined as
Mpg = / PNA (SO;I(X)) 0ijNp (SOz_l(X)) dv.
¢ Q)

The second term of (10.29) can be simplified via

/w(sz) (f‘ vNA (4 0) @ °A) $Thdv

A=1

Npp 3 3 Ndof )
= / Z ZNA,j (@z_l(X)) ciaT}y |dv = Z cpFpt
A COR res s g Pol

where

3
Fit = / ) Na;j (<p;1(x))T,~,-NB dv
‘101 (Q) ]=1

Finally, the last two terms of (10.29) can be treated as

Nnp Nnp Ndof
/ ZNA (@fl(x)) ca |- fdv +/ Z Na (go,_l(x)) cal - tda = Z cpFp
e (Q) ¢ (o)

A=1 A=1 P=1

where

F;Xt:/mm Na (¢;1(x))ﬁdv+/h Na (go;l(x)) 7da.

o (Ty)
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10.5 Generation of Vector/Matrix Equations

We now define the following vectors and matrices of global variables, all with dimension ny, s:

c={cp}
d(r) = {do (1)}
F(d(r)) = {Fp"} (10.36)
Fext — {F;’,Xt}
M = [Mpo]

The results of (10.30)—(10.35) can now be summarized as
¢’ [Md(r) + F™(d(r)) - F*'] =0, (10.37)

which must hold for all ny, -vectors ¢ that result in satisfaction of the homogeneous boundary
condition imposed on W (i.e., (10.18)).

Finally we observe that not all of the members of d(¢) are unknown; for nodes lying on I, these
degrees of freedom are prescribed. Furthermore, the corresponding entries of ¢ at these nodes are
typically taken to be zero, so that the aforementioned condition on W" is obeyed. Since the
remainder of the vector c¢ is arbitrary, it must be the case that the elements of the bracketed term in
(10.37) corresponding to free degrees of freedom must be identically zero, so that (10.37) will
hold for arbitrary combinations of the cp. Thus we can write the nonlinear equation that expresses
the discrete equations of motion:

Md(7) + F"'(d(r)) = F. (10.38)

Here we employ a slight abuse of notation because we have asserted in (10.36) that all vectors and
matrices have dimension ng4, r, yet we only enforce (10.38) for free degrees of freedom. Denoting
the number of free degrees of freedom as 7.4, on can account for this difference in practice by
calculating the vector and matrix entries for all degrees of freedom and then merely disregarding
the ng, r — neq equations corresponding to the prescribed degrees of freedom. The members of
d(z) that are prescribed do need to be retained in its definition, however, since they enter into both
terms on the left-hand side of (10.38). It should simply be remembered that only n., members of
d(z) are, in fact, unknown. We will have an opportunity to visit the general topic of constraint
enforcement in greater detail when discussing solutions to these nonlinear equations (see Section
13).

10.6 Localization and Assembly

The description to this point is mostly a matter of mathematical manipulation with little insight
gained into the character of the interpolation functions, N4. In fact, the basic nature of these
interpolation functions distinguishes the finite element method from other variational solution
techniques.
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The detail of shape function construction will be discussed in Section 14 in the context of element
programming. However it is useful to discuss here the basic character of finite element
approximation functions to give general insight into the structure of the method. We refer to Fig.
10.3 which depicts a node A in €, along with the elements attached to it. A basic starting point for
the development of a finite element method is as follows: the shape function associated with Node
A, N4, is only nonzero in that sub-portion of Q encompassed by the elements associated with
Node A and is zero everywhere else in Q.

This property of the shape functions is crucial to the modular character of the finite element
method. Shape functions N4 having this property are said to possess local support.

Fig. 10.3 Local support of finite element interpolation functions. The region of support for N, shown
as shaded.

To gain insight into the effect of this property, we examine the expression given in (10.31) for an
element of the mass matrix Mpp. We note in particular that the integrand of (10.31) will be
nonzero if both nodes A and B share a common element in the mesh. Otherwise Mpp must be
zero. If we fix our attention on a given Node A in the mesh, we can conclude that very few Nodes
B will produce nonzero column entries in M. This matrix is therefore sparse, and it would be a
tremendous waste of time to compute M by looping over all the possible combinations of node
numbers and spatial indices without regard to elements and the node numbers attached to them.
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Instead the global matrices and vectors needed in the solution of (10.38) are more typically
computed using two important concepts: localization and assembly. Still considering the matrix
M as an example, we note that by the elementary properties of integration, we can write

MPQ = / pNA ((pt_l(X)) 6ijNB ((pt_l(X)) dv
o1 (Q)

Nel

= Z; /¢ ey P (so,‘ l(X)) SijNp (so? 1(X)) dv (10.39)
e= t
el

= Z M,
e=1

where
Mg, = /h(g PN (67 () 63Ns (97 (0 av. (10.40)
pr (L2

Thus the global mass matrix can be computed as the sum of a number of element mass matrices.
This fact in itself is not especially useful because each of the M¢ is extremely sparse, even more
so than M. In fact, the only entries of M¢ that will be nonzero will be those for which both P and
Q are degrees of freedom associated with element e.

This fact can be exploited by defining another local element matrix m® containing only degrees of
freedom associated with that element. We introduce element degrees of freedom indices p and g,
as indicated in Fig. 10.4. Assuming that p and ¢ can take on values between 1 and 7.4, r, where
Nedo s 18 the number of degrees of freedom associated with the element, an n.4, f X 1.4,y Matrix m
is constructed as

m’ = [m¢,]. (10.41)

The mj,, can be specified by introducing the concept of a local node number a or b as shown in
Fig. 10.4. With these definitions we can write

Mg = /¢ vy P (90? 1(X)) 6Ny (7 (%)) dv (10.42)

where a sample relationship between indices i, a, and p appropriate for the element at hand might
be

p=(a-1)xX2+i (10.43)

(similarly for j, b, and g). The notation N, simply refers to the shape function associated with
local Node a. By definition it is the restriction of the global interpolation function N4 to the
element domain.

Calculation of the local element entities, such as m®, turns out to be highly modular procedure
whose form remains essentially unchanged for any element in a mesh. Detailed discussion of this
calculation is deferred until Section 14.
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Fig. 10.4 Element (local) degrees of freedom for a sample finite element.
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Let us suppose for a moment, however, that we have a procedure in hand for calculating this
matrix. We might then propose the following procedure for calculating the global mass matrix M
and internal force vector F™™:

e Zero out M, Fint,
e Foreachelemente,e=1,...,n,:

— Prepare local data necessary for element calculations - e.g., X¢ (1.4, r - vector of
element nodal coordinates), d° (n.4, r-vector of element nodal configuration
mappings), etc.

— Calculate element internal force vector fi¢ = { finte

P
fint,e — /
p
e (Qe)

} and element mass matrix

m¢ = [mf,q] via

3
N (<p;1 (x)) 7| dv (10.44)
=

and (10.42).

— Assemble the element internal force vector and element mass matrix into their global
counterparts by performing the following calculations for all local degrees of freedom
p and g:

Mpo = Mpp + ml‘;q (10.45)
and

FIiJnt _ F}i)nt + Iijnt,e’ (10.46)

where local degrees of freedom are related to global degrees of freedom via the LM
array, defined so that

P=LM(p,e) (10.47)
and

Q=LM(q,e). (10.48)

Step 2a) above is referred to as localization; given a particular element, e, it extracts the local
information from the global arrays necessary for element level calculations. Step 2b) consists of
element level calculations; these calculations will be discussed in detail in Section 14. Step 2c) is
the process known as assembly and takes the data produced by the element level calculations and
assembles them in the proper locations of the global arrays.

We can thus now summarize the effect of localization and assembly in a finite element
architecture. They act as pre- and post-processors to the element-level calculations, enabling the
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entities needed for global equilibrium calculations to be computed in a modular manner as
summation of element contributions. Of course, the effectiveness of this procedure, as well as the
convergence behavior of the numerical method in general, depends crucially on the interpolation
functions chosen and their definitions in terms of elements. We defer this topic for now and

concentrate in the coming chapters on the classes of problems and global equation-solving
strategies to be utilized.
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11 Quasistatics

11.1 Quasistatic Assumption

As discussed previously in the context of a Linear Elastic IBVP, the quasistatic approximation is
appropriate when inertial forces are negligible compared to the internal and applied forces in a
system. The question of what is negligible generally relies on intuition, and numerical
experimentation is one way to gain this intuition.

Omission of the inertial term in the discrete equations of motion, (10.38), yields a quasistatic
problem of the form

F™(d(r)) = F* (11.1)
subject to only one initial condition of the form
d(0) =do. (11.2)

Note that the time variable,  may correspond to real time (e.g., if rate-dependent material
response is considered) but need not have physical meaning for rate independent behavior. For
example, it is common for 7 to be taken as a generic parameterization for the applied loading on
the system as discussed below.

11.2 Internal Force Vector

The quantity F™ (d(z)) is known as the internal force vector and consists of that set of forces that
are variationally consistent with the internal stresses in the body undergoing analysis. The generic
expression for an element in this vector is

3
F}D“t:/h(g) ZNA,,- (cp;l(x))Tl.’} dv. (11.3)
P

J=1

This vector-valued operator is generally a nonlinear function of the unknown solution vector d(z)
due to the possible material nonlinearity and/or geometric nonlinearity inherent in the definition

of the Cauchy stress Tl.h. in (11.3). As implied by our notation, we assume the solution vector d to
be smoothly parameterized by ¢ which may represent time or some other loading parameter.
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11.3 External Force Vector

The external load vector F*'() must equilibrate the internal force vector, as is clear from (11.1).
As presented in the previous chapter, the expression of an element Flej‘t of FX'(¢) is

FXt = / N (90;1 (x)) fi(n)dv + / N (got_l (x)) - 7;(1)da, (11.4)
o (Q) ¢/ (T)

where the explicit dependence of f; and 7; upon ¢ has been indicated and where P = ID (i, a) as

given in (10.27). In other words, we assume that the prescribed external force loadings f; and

prescribed surface tractions f; are given functions of ¢.

(11.4) implies no dependence of either #; or f; upon ¢,(x) (and thus d). Provided no such
dependence exists, the external force is completely parameterized by ¢, and the sole dependence of
the equilibrium equations on d occurs through Fi"*, However , it is important to realize that some
important loading cases are precluded by this assumption. Perhaps the most important being the
case of pressure loading, where the direction of applied traction is opposite to the surface normal,
which in large deformation problems depends upon ¢, (x). Such a load is sometimes called a
follower force and will, in general, contribute additional nonlinearities. Such nonlinearities are
handled notationally, simply by recognizing that the traction #; now depends on ¢;(X), i.e.,

F;_:)xt — / Ny (‘Pt_l(x)) fidv +/ Ny (()OI_I(X)) - 1;(t, ¢ (X))da. (11.5)
o (Q) ¢ (Te)

11.4 Incremental Load Approach

We may now summarize the global solution strategy applied to quasistatic nonlinear solid
mechanics applications. We assume that we are interested in the solution d(#) over some time
interval of interest for ¢:

t €[0,T] (11.6)

We subdivide this interval of interest into a set of sub-intervals via

N-1

[0,T] = |_J [tns tasr], (11.7)

n=0

where n is an index on the time steps or intervals, and N is the total number of such increments.
We assume that 79 = 0 and that t; = T, but we do not, in general, assume that all time intervals
[,, t,41] have the same width.

With this notation, the incremental load approach attempts to solve the following problem
successively in each time interval [¢,, f,41]:

Given the solution d,, corresponding to time level #,, find d,,+ corresponding to 7, satisfying:

F™ (d,y1) = F (dyy1) - (11.8)
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where we have included an assumed dependence of the external loading on deformation ¢;(x).

This governing equation is also often expressed by introducing the concept of a residual vector
r (dn+1 ):

r (dys1) = F* () = F™ (dyet) - (11.9)
Solution of (11.8), therefore, amounts to finding the root of the equation
r(d,+1) =0. (11.10)

The importance of stating equilibrium in this manner will be made much clearer in the Chapter
discussing nonlinear equation solving, (chapter Section 13). For the moment, the physical
meaning of this approach is depicted graphically in Fig. 11.1. Starting with an initial equilibrium
state t,,, so that r(d,,) = 0, we introduce an increment in the prescribed load and attempt to find
that displacement increment, d,+; — d,, that will restore equilibrium (i.e., result in satisfaction of
(11.10)). This will require a nonlinear equation solving technique for determination of d,4+1, a
topic that will be discussed further in Section 13.

| F.".rr.r (d)
— F(*.H (I_

n+l ) ------------------------------------------------------------------------------ /

ﬁFm.’ —

LF=(1) [y

v

[l i+l d

Fig. 11.1 Simple illustration of the incremental load approach to quasistatics problems
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12 Dynamics

12.1 Semi-Discrete Approach

We now include the inertial terms in the discrete equation system and consider solving
Md(?) + F"'(d(¢)) = F&(d(?)) (12.1)
for t € [0, T] subject to the initial conditions
d(0) =do (12.2)
and
d(0) = vy. (12.3)

Note that in (12.1) time remains continuous, whereas spatial discretization has already been
achieved by the finite element interpolations summarized in Section 10. This type of finite
element approach to transient problems is sometimes referred to as the semi-discrete finite
element method, since the approximation in space is performed first, leaving a set of equations
discrete in space but still continuous in time. To complete the approximation, a finite differencing
procedure is generally applied in time as discussed next.

12.2 Time-Stepping Procedures

As discussed in Section 11, we subdivide the time interval of interest [0, T] via

N-1

[0,T] = ] [tas tus] (12.4)

n=0
and consider the problem:

Given algorithmic approximations for the solution vector (d,), velocity (v,), and acceleration
(a,) at time t,, find approximations d,., V,+1, and a,4; for these quantities at time #,,;. Note
that, in contrast to the quasistatic problem, the variable ¢ here does have the interpretation of
actual time.

A thoroughly studied topic in dynamics is the construction of effective time integrators for
application to the semi-discrete equations of motion. An ideal approach possesses minimal
dispersion and dissipation. As shown in Fig. 12.1, a measure of numerical dispersion is period
error (T — T), and a measure of numerical dissipation is amplitude decay (A — A). Fig. 12.1
depicts a single wave with amplitude and period A and 7 that generically is the exact solution to
the wave equation (subject to the proper initial conditions and/or external force). Numerical
dispersion by the time integrator causes a wave’s frequency to decrease, thus dispersing its energy
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Fig. 12.1 Simple illustration of approximation error in transient time integrators.
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to the lower frequencies. Numerical dissipation by the time integrator causes the wave’s energy to
decrease and therefore is said to dissipate its energy.

The time integrators we consider here can all be described by a 3-parameter method called the
a-method of time integrators. It is also referred to as the Hilber-Hughes-Taylor Method, or HHT
method, as described in Reference [24]], which is a generalization of the well-known and
pervasive Newmark family of temporal integrators (Reference [[39]). The Newmark algorithm
can be summarized in a time step [?,, f,+1] as follows:

Ma,.1 + F™(d,s1) = F(d,.11)
Ar?
dyy1 =d, +Atv, + 7 [(1-2B)a, +2Ba,:1] (12.5)

Vel = Vo + AL [(1 = y)a, + yaua],
where 5 and y are algorithmic parameters that define the stability and accuracy characteristics of

the method.

The extension of the Newmark family of integrators to the @-method of integrators is
accomplished with the addition of the parameter, a:
May1 + (1+@)F" (dyi1) — F™(dy) = (1+ @)F*(dyi1) — aF™(dy)

Ar?
dyp1 =d, +Atv, + 7 [(1-2B)a, +2Ba,:] (12.6)

Vorl =V, + At [(1 - 7)3n + yan+1] s

where, as expected, setting @ to zero reduces the HHT integrator to Newmark’s method. Although
a wide range of algorithms exist corresponding to the different available choices of 5 and y, two
algorithms in particular are significant:

* Central Differences (@ = 0, 8 =0,y = 1/2). This integrator is second-order accurate in
time and only conditionally stable, meaning that the linearized stability is only retained
when At is less than some critical value. This algorithm is an example of an explicit finite
element integrator discussed in Section 12.3.

* Trapezoid rule (@ = 0, 8 = 1/4, v = 1/2). This integrator is also second-order accurate but
unconditionally stable for linear problems, meaning that the spectral radii of the integrator
remains less than one in modulus for any time step At (in linear problems). This algorithm
is an example of an implicit finite element integrator discussed in Section 12.4

12.3 Explicit Finite Element Methods

Examining the central differences algorithm, we substitute 8 = 0, y = 1/2 into (12.6) to obtain

Antl = M_l (FeXt(dn+l) - Fint(dn+l))

A%
dip = dy + Ay, + —-a, (12.7)

At
Vatl =V + ? [a, +a,41],
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where the first equation has been written as solved for a4 .

(12.7) can be used to explain why this formulation is termed explicit. Given the three vectors
{a,, v,,d,}, the data at t,,+1, {@,+1, Vat1, dpt1 } can be computed explicitly, i.e., without the need
for solution of coupled equations provided the mass matrix M is a diagonal matrix.

It is important to note approximation properties of the explicit time integrator (see Reference
[32]). By itself, the explicit time integrator causes the period to be shortened. However, a lumped
or diagonalized mass matrix as opposed to a consistent mass matrix causes the period to be
elongated. For one-dimensional problems with uniform meshes the period error cancels exactly.
In the words of Reference [32], these compensating errors generally produce a matched approach.
Thus a lumped mass matrix gives rise to the fully explicit algorithm, requiring only an inverse of a
diagonal matrix.

Although this form of the central difference formulation ((12.7)) is readily obtained from the
Newmark formulas, it does not give insight into the source of the central difference terminology
and, in fact, does not represent the (historical) manner in which the integrator is ordinarily
developed or implemented. To see the usual form, one starts with the difference formulas for
acceleration and velocity (see e.g., The Difference Calculus, Chapter 9 in Reference [21]):

Vut+1/2 = Vn-1/2
hy=——, (12.8)
the1/2 — In-1/2
and
dn+1 - dn

Inel — Iy ’

Vatl1/2 = (12.9)

where, as shown in Fig. 12.2, the time axis is discretized with notions of whole step
configurations at times #,_1, f,, ,+1 and half-step configurations at times #,,_1/2, Ly4+1/2, - - -
Rearranging, these difference formulas ((12.8) and (12.9)) can be converted into integration

formulas:

1
Viel/2 = Va-12+ 5 (Atuo12 + Aty y2) an (12.10)

d. =d, + Al‘n+1/2vn+1/2

Combining these integration formulas with the equilibrium equation evaluated at ¢,,, we can
express the algorithm as

a, =M [F*(d,) - F"(d,)]
1
Vis1/2 = V124 5 (Aty_1/2 + Atys1)2) Ay (12.11)
dpr1 =dy + Aty 2Vie1 )2

The velocity and displacement updates emanate from the central difference approximations to the
acceleration a, and velocity v,,1/2, respectively, giving the algorithm its name. The velocity
measures that are utilized by the algorithm are shifted by a half step (said to be centered at the
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Fig. 12.3 Graphical representation of the central difference time integrator.

93

AIH_I [2 AI n+l
e e
~ -~ =~
| | . | >
I | ! | -
n-—I n-1/2 n n+1 n+l
[ 4 t { time, 1
Fig. 12.2 Graphical construction of the central difference time integrator.
dn dﬂ VI’H»]"‘Z
dnfl ¥ dnfl P
Jr ‘I T 1 / I n-1 n-1/2 n n+i/2 n+l
tllfl tllfl-‘l n tl’H»].‘} tl'Hrl timey t I3 t = t t = time, t
V
AZ"_”Z ;[(“+L 2 Atn_“Z Atl1+l'2
dn+|
d“ a)ll V“+] /2
d™! a" 4" u
n-1 n-1/2 n I n+1/2 n+l . n-1 n-1/2 n n+l/2 .
t t t t time, I t t t t time, I
AII‘I*I.'Z AII1+L"2 Atl’lfl_2 Atl’l-He'Z



half-step), whereas accelerations and displacements are centered at the whole step. Fig. 12.3
graphically reveals the simplicity of the explicit time integration scheme.

As already mentioned, explicit finite element schemes are only conditionally stable, meaning that
they only remain stable when the time increment At is less than some critical limit. This limit,
sometimes called the Courant stability limit (see Reference [5]), can be shown to be as follows

At < z, (12.12)
w

where w is the highest natural frequency in the mesh. An important necessary step in the central
difference explicit time integrator is the estimation of this highest natural frequency in the
discretized problem. Explicit dynamics problems frequently involve large deformations with
potentially significant geometric, material, and contact nonlinearities, all of which can cause
significant changes in the critical time step. Therefore, estimation of the critical time step must be
made repeatedly throughout the problem simulation. It is thus important that the this calculation
be as accurate and efficient as possible to make the most of the explicit method.

12.3.1 Element-based Critical Time Step Estimate

Stable time step estimates for explicit finite element methods are traditionally based on the
conservative estimate of the frequency:

w="2 (%)max, (12.13)

where ¢ and 4 are the sound speed and characteristic mesh size, respectively, associated with the
element in the mesh having the largest ratio of these two quantities. Combining (12.12) and
(12.13) we find that

h
AF™X = (—) . (12.14)
€/ min

In other words, the time step may be no larger than the amount of time required for a sound wave
to traverse the element in the mesh having the smallest transit time. Such an estimation of the
critical time step is based solely on element level calculations and is, in fact, part of the element
internal force calculation. This is due in large part to the estimate of the sound speed of the
material, which is of a dilatational wave. The accuracy of directly applying this condition is
limited in practice due to the arbitrary finite element geometries in a typical mesh because the
definition of characteristic length is somewhat of an art for distorted elements. Alternatively, the
stability limit as reported in Reference [32] is related to the maximum global eigenvalue, Apax:

4

/1max

A? =

(12.15)

Because the maximum element eigenvalue is an upper bound on the maximum global eigenvalue
(Reference [11]), we can compute an element-based stable time step estimate using

2
Vi : (12.16)

max over e

AtE =
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Details of how this element-based time step is calculated for different elements are covered in the
chapter on element formulations.

12.3.2 Nodal-based Critical Time Step Estimate

A method is now described in which the maximum element modal stiffness are used to estimate a
maximum nodal stiffness which, when combined with the lumped nodal mass, gives a sharper
upper bound on the maximum global eigenvalue.

Let Amax denote the largest eigenvalue of the generalized problem
(K-AM)u =0 (12.17)
and up,x the eigenvalue corresponding to Apax. In (12.17), K is the stiffness matrix and M the

diagonal, lumped mass matrix. The Rayleigh quotient for the maximum eigenvalue is

T
umaxKumaX

= X = (12.18)

/lmax .
T
W MUpax

Noting that the numerator of (12.18) is twice the strain energy S of the system when deformed
into the mode shape up,,x, we can write

e

28 =l K = Y (06,)" K* (u,,,) - (12.19)

e=1
We observe that the eigenvalue problem for the element stiffness matrix K¢ may be stated as
K¢¢® = k°¢°. (12.20)

Consequently,

(mathbf{u}”e ) T mathbf{ K}”*e mathbf{u}”e leq k_{mathrm{max} }*e (mathbf{u}”e )T
mathbf{u}”e

for all u® where k¢ ,, is the maximum eigenvalue (so called modal stiffness) of the element
stiffness matrix. From this result, we define a global stiffness matrix K assembled from the
element stiffness matrices K¢ defined as

K¢ = k¢, I° (12.21)

where I¢ is an ndofe by ndofe identity matrix (ndofe is the number of degrees of freedom in the
element). Based on (12.18), (12.20) and (??),

25 < ) ()" K (ufyyy) (12.22)
e=1
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leading to

LK LK A
Ay = I o TSI _ § (12.23)

A
nmxhdunmx Wi Moy

Given the mode shape un,y, the expression for Ainax 18 easily evaluated since both K and M are
diagonal. Methods for predicting this mode shape have been developed for specific ‘template’
geometries (Reference [16], but for general finite element geometries this remains impractical.

Rather than directly calculating Aax, We seek an upper bound. To this end, we define the ratio for
every node [ as

- K

== (12.24)
M

where K’ and M are the diagonal elements in the I row of K and M, respectively. Without loss
of generality, the ratios are ordered such that Am > 31> ... > 2! in which case (12.23) can be
written as

Im—1
7 Zl max’ _qm [((umax)sz 1) /(( max)sz)] /l/lﬁ +... (12.25)
max — )
21 max1 1+ [ (u%axl)sz_l) /((umax)sz)] +
Since all the ratios A1 / A™ are less than or equal to one, it follows immediately that
" ~m KI
Amax < A" = -7 : (12.26)
M max over /

in which M! is the lumped mass at node 7, and K' is the assembly of the maximum element
modal stiffness at node /, that is

=) ke (12.27)

ecel
where e’ is the set of elements that are connected to node 1.

(12.15), (12.23), and (12.26) lead to a nodal-based stable time step estimate:

N ' (12.28)

max over e

Now we show that the nodal-based stable time step estimate is always greater than or equal to the
element-based estimate. Following a similar procedure outlined in (12.25), we can write

7> kmax 2 1 max
Fi K’ _ Qeee! Kinax _ Tl t (m”[m”) 5 +. < K hax (12.29)
ML Y me 1+(m2/m1)+... T oml’

where the element elgenvalues k
/m' > k2

¢ ax/m¢ are arranged in descending order,

/m? > . ... Thus the nodal-based estimate of the maximum eigenvalue at node /

max max
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1s bounded by the largest of all element eigenvalues connected to node /. It follows from (12.29)
that

k e
S max

me

e
kmax e

max |max over e

o R
AT =3

(12.30)

max over [ mé¢

max over / max over ece! max over e

Since A" < /lfnax|max over o 1t follows directly from (12.15) that the nodal-based estimate is always

greater than or equal to the element-based estimate.

The cost of the nodal-based estimate calculation includes the element eigenvalue analysis (which
must be done in the case of the element based calculation) plus the cost of an assembly procedure
every time step. (12.28) must be evaluated at each node as opposed to evaluating (12.16) for every
element.

12.3.3 Lanczos-based Critical Time Step Estimate

The paper [31], which is reproduced here, demonstrates the cost-effective use of the Lanczos
method for estimating the critical time step in an explicit, transient dynamics code. The Lanczos
method can give a significantly larger estimate for the critical time-step than an element-based
method (the typical scheme). However, the Lanczos method represents a more expensive method
for calculating a critical time-step than element-based methods. Our paper shows how the
additional cost of the Lanczos method can be amortized over a number of time steps and lead to
an overall decrease in run-time for an explicit, transient dynamics code. We present an adaptive
hybrid scheme that synthesizes the Lanczos-based and element-based estimates and allows us to
run near the critical time-step estimate provided by the Lanczos method.

12.3.3.1 Introduction

Codes using explicit time integration techniques are important for simulating transient dynamics
problems involving large deformation of solids with various nonlinear effects (contact, nonlinear
materials, element death, etc.). The second order central difference operator used in explicit codes
is stable if the time step is no larger than the critical time step. For most problems in solid
mechanics, the critical time step is extremely small and the number of time steps required for a
typical analysis is quite large. Therefore, the accurate, efficient, and reliable calculation of the
critical time step is of fundamental importance.

The element-based method [12] is an efficient method for producing a critical time step estimate
at every time step. However, it can produce a conservative estimate for the critical time step in
many cases. The Lanczos [34] method is a reliable procedure for producing a time step that is the
theoretical maximum value for a structure and is usually much better than the element-based
estimate. The cost of obtaining a Lanczos based estimate will not offset the cost benefit of the
increased value for the critical time step. Therefore, it is not feasible to call the Lanczos method at
every explicit dynamics time step. In this paper we outline a cost-effective method for utilizing the
Lanczos method (together with an element-based scheme) for the critical time step estimation.
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Benson [4] investigates estimating the critical time step by using the power iteration. Parlett [43]
presents analysis comparing the Lanczos method and power iteration. The Lanczos method
provides a more rapid approximation, in terms of matrix-vector products, relative to the power
iteration for approximating the largest eigenvalue as the relative separation of the largest
eigenvalue decreases. Hence, we can expect the Lanczos method to require less matrix-vector
products to approximate the critical time step to a specified tolerance. We also remark that in
contrast to our paper, Benson [4] does not present a scheme that addresses two crucial issues
when using the power iteration (or Lanczos method) for estimating the critical time step.

Two crucial issues must be addressed when using the Lanczos method to estimate the critical time
step. First, the Lanczos-based time step estimate must be used for two to three times the number
of explicit time integration steps required to recover the cost of the Lanczos method if we are to
see a noticeable reduction in overall computation times for a problem. (We explore the cost of the
Lanczos method in terms of internal force calculations in later sections.) Second, the Lanczos
method provides an overestimate of the critical time step, and so we need an effective scheme to
scale back the Lanczos-based critical time step estimate. We address both these issues and present
an adaptive hybrid scheme that synthesizes the Lanczos-based and element-based estimates and
allows us to run near the critical time-step estimate provided by the Lanczos method.

We also remark that in addition to the increased efficiency that can be achieved with the
Lanczos-based time step, we also have the added benefit of increased accuracy. For explicit
transient dynamic codes, using a time step as close as possible to the critical time step [32] gives
the most accurate answer. Reducing the time step in an explicit transient dynamics code actually
increases the error.

Our paper is organized as follows. Section Section 12.3.3.2 discusses the critical time step and
motivates a Lanczos-based estimate. The Lanczos iteration and method are briefly introduced in
section Section 12.3.3.3. A cost benefit analysis of the element-based and Lanczos-based
approximations to the critical time is considered in section Section 12.3.3.4. A practical
implementation within an explicit dynamics code is the subject of section Section 12.3.3.5.
Several numerical examples are presented in section Section 12.3.3.6, and we provide our
conclusions in section Section 12.3.3.7.

12.3.3.2 Critical time step

Let K and M be the stiffness and mass matrices arising in an explicit dynamics simulation so that
M is a diagonal matrix due to mass lumping. The critical time step for second order central time
differencing is bounded from above by 2w, 2, where w2,,, is the largest eigenvalue of the
generalized eigenvalue problem

Ku = Muw?

max?

(K,M € R™"), (12.31)

where we assume that w2, is positive. An inexpensive [27] upper bound to
w*‘isgivenbythemaximumelementeigenvalue : math :omega™2_{max.e}* over all the element
eigenvalue problems

Keu® = M‘u®w?, (Ke,Me e R""X"") : (12.32)
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where n¢ < n. Therefore, w;l%lx,e < w;2, and we have a lower bound for the critical time step.
The maximal element eigenvalue is typically computed analytically [12] for the finite elements

that are typically used in transient dynamics.

2

The Lanczos method rapidly provides a lower bound w to w2, so that

max,L max
-2 -2 -2
wmaX,e < Wimax < wmaX,L' (1233)

In fact, the Lanczos iteration is sharp so that wy2, < wr_nix ;. S0 that with care, an excellent
approximation to the critical time step is computed for a modest cost. This approximation may be
dramatically superior to the standard element based estimate. The details of a careful use of the

Lanczos-based estimate is the subject of section Section 12.3.3.5.

12.3.3.3 Lanczos iteration

The Lanczos reduction rapidly provides approximations to the maximum and minimum
eigenvalues of a symmetric A € R™", in particular the largest in magnitude eigenvalue. Suppose
that

AQ; = Q;T; +f;e!, (12.34)

is a Lanczos reduction of length j where f; € R”, and e; € R/ contains column j of the identity
matrix I, € R™". If we denote

ar B - 0
a -+ 0
T, = ﬁ.z ’ , , @, Pi €R
. T ,Bj
0 - Bj a
and
Q=(q @ - q ). geR

then the familiar Lanczos three-term recurrence is recovered by equating column j of ((12.34)) to
obtain

f; = Aq; - qja; - q;-18]_,. (12.35)
Furthermore, because of the orthonormality of Q;, we have
@j = q;Aq;,

q1‘+1,3j+1 = f_/,
qf; =0, i=1,....j

andso qjy =1 j,BJ_.il , where we assume that 3, is non-zero. We define a Lanczos iteration to be
that computing Aq;, @, 8;+1, and f;. We define the Lanczos method that of computing m
iterations and computing the largest in magnitude eigenvalue of T,,.
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The largest eigenvalue of the symmetric tridiagonal matrix T; approximates the largest in
magnitude eigenvalue of A. We can determine the quality of the approximation produced by an
eigenpair of T;. If we post multiply ((12.34)) by s where T ;s = s6 (and ||s|| = 1), then

A(Q;s) - (Qy9)0 =1;(els). (12.36)

In words, the residual of the approximate eigenpair (Q;s, #) is proportional to f; (note that eJT.s is
notation for the last component of s). The implication is that we can easily monitor the quality of
the approximation produced by the Lanczos method. If € is the largest in magnitude eigenvalue of

T;, then 6 < w2 < 11l |eJT.s| + 0 (see [43] for a discussion). Hence,

1 L, 1

e T S Wmax S -
;112 lefs| +6 = ™ T 0 (12.37)

We also remark that the norm of the residual is a non-increasing function of j; again see [43].

The Lanczos iteration is adapted for computing the largest eigenvalues of ((12.31)) by replacing A
with M~'K and computing an M-orthonormal Q;. This orthonormality is needed so that M~ 'K is
symmetric in the inner product induced by M. See [41], [43] for further discussion and
implementations.

The cost of a careful implementation of a Lanczos iteration, :math:* j>1°, is one matrix-vector
product with K and M~!, and two vector products and vector subtractions. Within an explicit
dynamics code, the cost of computing a Lanczos vector is approximately the cost of an internal
force calculation, represented by the matrix-vector product Kq;. Therefore, we approximate the
cost of computing the Lanczos-based time step estimate as

mt (12.38)

where m denotes the number of Lanczos iterations and 7 represents the CPU (central processor
unit) time needed for an element-based explicit dynamics time integration step.

The Lanczos method only requires knowledge of K via its application on a vector. If internal force
calculations are used for the needed matrix-vector products, the Lanczos vectors q; are scaled so
that they represent velocities associated with small strain. When these scaled vectors are sent to
the internal force calculation, the internal force calculation becomes a matrix-vector product with
a (constant) tangent stiffness matrix Kr.

12.3.3.4 Cost-Benefit Analysis

This section provides a simple model for assessing the cost of using the Lanczos method for
computing an estimate of the critical time step. We assume that Lanczos-based time step is valid
for ny time integration steps. We address the important issue of the adapting the time step when
we present the details for practical use of the Lanczos method in a subsequent section.

Denote by Az; and At, the time steps estimate of the critical time step computed by the Lanczos
and element-based methods, where the ratio p of Af; to At, is at least as large as one because of
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((12.33)). After ny time steps, the dynamics simulation is advanced in time ny Aty . Let n, be the
number of element-based time steps so that n,At, < npAt; < (n, + 1)At,. In terms of p, we have
the relationship

ne < pnp < ne + 1, (12.39)

so bounding the number of Lanczos-based explicit integration steps in terms of p and the number
of element-based integration steps.

Let us examine the computational costs in terms of CPU time in performing the above n;, and n,
integration steps. Denote by 7 the CPU time for an element-based time integration step and
assume that it is dominated by the cost of an internal force calculation. Using ((12.39)), the CPU
time of ny, time integration steps is

(np +m)t, (12.40)

and the CPU time of n, time integration steps is n,7. Equating these two CPU times, determines
when the cost of both approaches is equivalent and results in the relationship

e =m+nyg. (12.41)
Using ((12.41)) within ((12.39)) gives
m . m+1
<y < (12.42)
p—1 p—1

so bounding the minimum number of Lanczos-based time integration steps in terms of the number
of Lanczos iterations and p so that the cost of the computing the Lanczos-based time step is
amortized.

Our cost benefit analysis provides theb reak-even point at which the Lanczos method becomes
cost-effective by overcoming the associated overhead. For example, let p = 1.25 and m = 20 so
that 717 is bounded from below by 80, and by ((12.40)) 71, = 100. Hence, the time integration with
the Lanczos-based and element-based estimates of the critical time step give the same simulation
time for the same CPU time. If we use the Lanczos-based time step Az;, for more than 80 time
integration steps, then the Lanczos-based approach is cost-effective.

A Lanczos-based critical time estimate is cost effective if m is small and p is not close to one. The
size of m is dependent upon the ability of the Lanczos method to rapidly provide an accurate
approximation to w?2,,.. If p approaches one, then the Lanczos-based critical time step approaches
the element-based critical time step, implying that 7i;, must increase to offset the cost of the m
Lanczos iterations. Section Section 12.3.3.6 demonstrate that m is small and that p is not close to

one for realistic problems.

Our section ends by considering the additional cost involved with contact. The addition of contact
to an analysis can add computational costs to a time step that are as large as or larger than the
internal force calculations. Therefore, for an analysis with contact, running at a larger time step
than the element-based estimate can have an even greater impact on reducing CPU time for an
analysis.
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The above analysis is easily extended to the case where we have contact. If the CPU time of
contact over a time step is some multiple y of 7, then in analogy to ((12.41)) and ((12.42)), we
have

(1 +y)a,=m+ (1 +y)ig,

and

m m+1+
<A Y

(o =D(1+7y) (o= D(1+7y)
Again, for example, let p = 1.25 and m = 20 and assume the computational cost of contact
calculations is the same as an internal force calculation so that y = 1. Hence, the break-even point
is iy =40 and 71, = 50. The additional cost of the contact calculations within the time integration
reduces the break-even point over that with no contact (y = 0).

12.3.3.5 Using the Lanczos-based estimate

The previous section shows how the repeated use of a Lanczos-based time step estimate could be
cost-effective within an explicit transient dynamics simulation. This section presents an adaptive
scheme that combines the Lanczos-based estimate with an element-based estimate of the critical
times-step over a number of explicit time integration steps.

Section 12.3.3.2 explained that the Lanczos method provides an approximation to the maximum
eigenvalue of (12.31) from below so overestimating the critical time step. Therefore, we scale
back the Lanczos-based time. The scheme to determine a scaled-back value employs the
element-based time step estimate. Again, let A7y and Az, be the time steps computed by the
Lanczos and element-based methods. The scaled back estimate for the critical time step, Aty, is
computed from the equation

Aty = At, + fi (At — At,),

where f is a scale factor. (The value for f; ranges from 0.9 to 0.95 for our problems—a rigorous
estimate can be made by using ((12.37)).) This value of f; results in Az close to and slightly less
than the critical time step. Once At is determined, the ratio

A
AL,

Iy

is computed. This ratio is then used to scale subsequent element-based estimates for the critical
time step. If Az,,) is the n'" element-based time step after the time step where the Lanczos
method is computed, then the n”* time step computed is

At(n) = trAte(n) .

The ratio ¢, is used until the next call to the Lanczos method. The next call to the Lanczos method
is controlled by one of two mechanisms. First, the user can set the frequency with which the
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Lanczos method is called. The user can set a parameter so that the Lanczos method is called only
once every n time steps. This number remains fixed throughout an analysis. Second, the user can
control when the Lanczos method is called based on changes in the element-based time step. For
this second method, the change in the element-based critical time step estimate is tracked. At the
n'" step after the call to the Lanczos iteration, the element-based time step is Aty (). If the value

|Ate(n) - Atel
At,

is greater than some limit set by the user, then the Lanczos method is called. If there is a small,
monotonic change in the element-based time step over a large number of time integration steps,
this second mechanism will result in the Lanczos method being computed. If there is a large,
monotonic change in the element-based critical time step over a few time steps, the Lanczos
method will also be called.

These two mechanisms for calling the Lanczos method may be combined resulting in an adaptive
scheme for estimating the critical time step during an explicit transient dynamics simulation. For
example, suppose the second mechanism, the mechanism based on a change in the element-based
time step, results in a call to the Lanczos method. This resets the counter for the first mechanism,
the mechanism using a set number of time steps between calls to the Lanczos iteration.

12.3.3.6 Numerical experiments

This method for reusing a Lanczos-based time step estimate has been implemented in Presto [30],
and employed within a number of explicit dynamics simulations. We discuss several of these
examples.

Example one: The Lanczos method has been used to obtain a critical time step estimate for a
cubic block consisting solely of cubic elements—a 10 X 10 X 10 mesh of eight-node hexahedral
elements. We know that, for a cubic eight-node hexahedral element, the element-based estimate is
conservative by a factor of 1/vV3. The Lanczos method yields a critical time estimate for this mesh
that is p = V3 (approximately 1.732) times larger than the element-based estimate. This is done
by using 20 Lanczos vectors.

Example two: Critical time step estimates were made for two mechanical systems. The systems
consisted of cylindrical metal cans containing a variety of components. Some of these
components have relatively simple geometries, while other components have complex shapes. A
number of the components with complex shapes are a foam material used to absorb impact loads.
One component was modeled with approximately 250,000 degrees of freedom, and the other one
was modeled with approximately 350,000 degrees of freedom. For both of these models, a good
estimate for the maximum eigenvalue was obtained with the Lanczos method by computing only
twenty Lanczos vectors. For the model with 250,000 degrees of freedom, an actual analysis was
run. The value for p for this problem was 1.83. The break-even point for this case (n; = 20 and
p = 1.83) is n, = 45. It was possible to use the same scale factor for 1700 time steps for this
analysis, which is well above the break-even point. The extended use of the Lanczos based
estimate reduced the computation cost by over 56%.
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Example three: A study of a large-scale model involving 1.7 million nodes (5.1 million degrees of
freedom) showed that only 45 Lanczos vectors were required to obtain a good estimate of the
maximum eigenvalue. The value of p for this problems was 1.2. Use of this Lanczos based
estimated for this problem would be extremely cost-effective.

12.3.3.7 Conclusions

The Lanczos method is cost-effective for estimating the critical time step in an explicit, transient
dynamics code. The Lanczos method can give a significantly larger estimate for the critical
time-step than an element-based method (the typical scheme). The adaptive hybrid scheme
synthesizes the Lanczos-based and element-based estimates and allows us to run near the critical
time-step estimate provided by the Lanczos method.

Not all problems will lend themselves reuse of one Lanczos-based estimate for thousands of time
steps. However, if it is possible to use the Lanczos-based estimate for two to three times the
number of time steps required for break-even, we begin to see a noticeable reduction in the total
CPU time required for a problem.

In addition, to the increased efficiency we can achieve with the Lanczos iteration, we also have the
added benefit of increased accuracy. For explicit transient dynamic codes, using a time step as
close as possible to the critical time gives the most accurate answer. Reducing the time step in an
explicit transient dynamics code actually increases the error.

12.4 Implicit Finite Element Methods

To introduce the concept of an implicit time finite element method, we examine the trapezoidal
rule, which is simply the member of the Newmark family obtained by setting @ = 0, 8 = 1/4, and
v = 1/2. Substitution of these values into (12.6) yields

Man+1 + Fim(dn+1) = Fem(dn+1)
Ar?
dy1 =d, +Atv, + o [a, +a,41] (12.43)

At
Vel = Vo + — [a, +a,41] .

Insight into this method can be obtained by combining the first two equations in (12.43) and
solving for d,,4+| to get

4 - t 4
Mt + F(d) = F(dyer) + M 2+ Arv, + —d,

4

4
_ _ _ _ 12.44
Apt] = At2 (dn+1 dn) Atvn a, ( )

At
Vit =V t+ 7 [an + an+1]
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Solving the first equation is the most expensive procedure involved in updating the solution from
t, to t,4+1. This equation is not only fully coupled, but also non-linear in general due to the internal
force vector.

Note that we can write the first equation of (12.44) in terms of a dynamic incremental residual
I, via

4 4 .
r(dy.) = [F@“(dm) +M (an + Atv, + Pcln) - (EMdnH + F‘m(dn+1))] =0 (1245

This system has the same form as (11.10), which suggests that the same sort of nonlinear solution
strategies are needed for implicit dynamic calculations as in quasistatics (Section 11). Equation
solving is the topic of the next chapter, where we will discuss at some length the techniques used
to solve (11.9) and (12.45) in Sierra/SolidMechanics, particularly for parallel computing.
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13 Nonlinear Equation Solving

13.1 Introduction

This chapter discusses non-linear equation solving methods, specifically the use of iterative
algorithms for problems in solid mechanics. Although some of this work has taken place over
many years at Sandia National Labs and elsewhere, recent efforts have significantly added to the
functionality and robustness of these algorithms. This chapter primarily documents these recent
efforts. Some historical development is covered for context and completeness, hopefully showing
a complete picture of the current status of iterative solution algorithms for nonlinear solid
mechanics in Sierra/SolidMechanics.

Iterative algorithms have seen somewhat of a resurgent interest, possibly due to the advancement
of parallel computing platforms. Increases in computational speed and available memory have
raised expectations on model fidelity and problem size. Increased problem size has sparked
interest in iterative solvers because the direct solution strategy becomes increasingly inefficient as
problem size grows. A traditional implicit global solution strategy is typically based on Newton’s
method, generating fully coupled linearized equations that are often solved using a direct method.
In many applications in solid mechanics this procedure poses no particular problem for modern
computing platforms with sufficient memory. However, for large three-dimensional models of
interest, the cost of direct equation solving becomes prohibitive on any computer, except for the
largest supercomputers. This motivates the use of iterative solution strategies that do not require
the direct solution of linearized global equations.

Application of purely iterative solvers to the broad, general area of nonlinear finite element solid
mechanics problems has seen only modest success. Certain classes of problems have remained
notoriously difficult to solve. Examples of these include problems that are strongly geometrically
nonlinear, problems with nearly incompressible material response, and problems with frictional
sliding. Thus, much of this chapter is devoted to examining and discussing an implementation of a
multi-level solution strategy, where the nonlinear iterative solver is asked to solve simplified
model problems from which the real solution to these difficult problems is accumulated. This
strategy has greatly contributed to the functionality and robustness of the nonlinear iterative
solver.

13.2 The Residual

r(d,1) = F* (1) - F" (d,y) = 0 (13.1)

and the implicit dynamics problem using the trapezoidal time integration rule, (12.45), is written
as

4 4 .
() = [Fext(dm) +M (an + ALV, + Edn) - (EMdnH + Fmt(dnﬂ))] =0. (132
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In either case, the equation to be solved takes the form
r(d.) =0, (13.3)

where the residual r (d,,+) is, in general, a nonlinear function of the solution vector d,+. This
form allows us to consider the topic of nonlinear equation solving in its most general form, with
the introduction of iterations, j =0, 1,2, ..., as

r((d1);) =0, (13.4)
or simply
r;=r(d;)=0. (13.5)

For implicit dynamic Sierra/SM simulations, each load step from time n to n + 1 requires a new
nonlinear solve with sub-iterations j = 0, 1, 2, .... Here we have omitted the references to the load
step, yet it is understood that, e.g., d; isatn + 1.

We can rewrite (13.1) and (13.2) as

r;=F"-F"=0 (13.6)

and
_ ext 4 int ~_0 13.7
rj=Fj - —Md; - F}' +F = (13.7)

where Fijrlt = F" (d;) = F" ((d,4+1);) and F is the constant portion of the residual, defined as

4
—d,|.
At?

F=M/|a, +Atv, +
The task for any nonlinear equation solution technique is to improve the iterate (or guess) for the
solution vector d; such that the residual r; is close enough to 0. How that is done depends on the
method employed.

*

Fig. 13.1 depicts a generalized nonlinear loadstep solution with solution iterates j =0, 1,2, ..., j*,
where the iterates converge when ||r +|| = O at iteration j*.

In (a) of Fig. 13.1, the solution starts with iterate dy taken as the solution of the prior load step
from n — 1 to n. (Note that the zero iterate is not always taken to be the prior solution. See Section
13.6.4 on predictors for more details.) Iterate dy results in a residual of rg, which then informs the
next iterate d; such that ||r;|| < ||ro||. For details on how d; is formed, see the following Sections
Section 13.3 through Section 13.8. In (b) and (c) this procedure from iteration j to j + 1 is
depicted, and in (d) the solution procedure has converged at iteration j* with iterate d;-. The load
step from n to n + 1 is then solved, and the solution procedure for the next load step from n + 1 to
n + 2 starts over in (a).
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Fig. 13.1 Graphical depiction of nonlinear iterations.
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13.3 Gradient Property of the Residual

The residual has the very important property that it points in the steepest descent or gradient
direction of the function f:

1
f(d) =5 (d;-d)" x(d)), (13.8)
which is the energy error of the residual. Solving for d; = d* is equivalent to minimizing the

energy error of the residual, f (d;).

The importance of this property can not be overemphasized. Any iterative solver makes use of it
in some way or another. Even though the solution d* is not known, a non-zero residual points the
way to improving the guess. Mathematically, our nonlinear solid mechanics problem looks like a
minimization problem discussed at length in the optimization literature, see e.g. [35]. It is from
this viewpoint that the remainder of the nonlinear solution methods will be discussed. The
concept of the energy error of the residual reveals important physical insights into how iterative
algorithms are expected to perform on particular classes of problems.

An example of the energy error of the residual providing physical insight into a problem is
demonstrated in Fig. 13.2.

Two beams, one thick and one thin, are subjected to a uniform pressure load causing a downward
deflection to the equilibrium point (d1, d») indicated by the blue dot. If we think of modes of
deformation rather than the nodal degrees of freedom (d1, d), two modes of deformation come to
mind: a bending mode and an axial mode.

For the thick beam in Fig. 13.3, the red dashed line is the locus of points (d;, d») that induce only
bending stresses in the beam and is therefore called a bending mode. In contrast, the blue dashed
line is the locus of points (d, d») that induce only axial stresses in the beam and is therefore
called an axial mode. These bending and axial modes are characterized by the eigenvectors g,
and ¢, respectively.

Eigenvectors are typically written as linear combinations of the nodal degrees of freedom. The
bending modes, for example, can be written as g, = a;d; + a>d,. However, since we are dealing
with a nonlinear problem in our simple example (and in general), the coefficients a; and a, vary
with the deformation of the beam - which is precisely why the dashed red line is curved. The
energy error contours can thus be displayed, as shown in Fig. 13.4. Any displacement away from
the equilibrium point (dy, d>)* produces a nonzero residual and consequently requires work.

Now we compare moving the tip of the beam along the red dashed line, which invokes a bending
mode of deformation of the beam versus moving the tip along the blue dashed line, which invokes
an axial mode of deformation. The larger modal stiffness (eigenvalue) corresponding to the axial
mode induces a greater energy penalty for a given amount of displacement compared to the
bending mode. This produces the stretched energy contours shown. Since the ratio of stiffness
between the axial and bending modes is much larger for the thin beam<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>