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Abstract

This manual documents capabilities in Sierra/SolidMechanics which remain “in-development”
and thus are not tested and hardened to the standards of capabilities listed in Sierra/SM User
Manual. Capabilities documented herein are available in Sierra/SM for experimental use only
until their official release.

These capabilities include, but are not limited to, novel discretization approaches such as the
conforming reproducing kernel (CRK) method, numerical fracture and failure modeling aids such
as the extended finite element method (XFEM) and J-integral, explicit time step control
techniques, dynamic mesh rebalancing, as well as a variety of new material models and finite
element formulations.
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1 Introduction

This document is a manual for capabilities that are not considered mature but are available in
Sierra/SolidMechanics (Sierra/SM) for early adopters. The determination of maturity of a
capability is determined by many aspects: having regression and verification level testing,
documentation of functionality and syntax, and usability are such considerations. Capabilities in
this document are lacking in one or many of these aspects.
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2 Representative Volume Elements

This chapter describes the Representative Volume Element (RVE) capability, which is a
multi-scale technique that uses a separate finite element model to represent the material response
at a point.

The use of representative volume elements (RVEs) is a multi-scale technique in which the
material response at element integration points in a reference mesh is computed using an RVE
that is itself discretized with finite elements. RVEs are typically used to represent local, periodic
material inhomogeneities such as fibers or random microstructures to avoid the requirement of a
global mesh with elements small enough to capture local material phenomena.

In the current implementation of RVEs, periodic boundary conditions are applied to each RVE
representing the deformation of a parent element and the stresses are computed in the elements of
the RVE. These stresses are then volume-averaged over the RVE and the resulting homogenized
stresses are passed back to the parent element.

This chapter explains how to use the RVE capability. Section 2.1 gives a detailed description of
how RVEs are incorporated into an analysis. Details of the mesh requirements are delineated in
Section 2.2 and the commands needed in an input file are described in Section 2.3.

Known Issue
The capability to use RVEs with reference mesh multi integration point elements is still under
development and should be used with caution.

2.1 RVE Processing

The use of the RVE capability requires two regions, each with its own mesh file. One region
processes the reference mesh and the other processes all the RVEs. The commands used in the
input file for the reference mesh region are the same as any other Sierra/SM region with the
exception that a special RVE material model is used for every element block that uses an RVE.
The RVE region is similar to an ordinary region. The only differences are that an RVE region has
a line command for defining the RVEs’ relationship to parent elements in the reference region and
has restrictions on the use of boundary conditions.

The processing of an RVE essentially replaces the constitutive model of the parent element in the
reference mesh. The steps followed at each iteration/time step of the reference mesh during an
analysis using RVEs are as follows:

• Internal force algorithm is called in the reference region to compute rate of deformation.

• Each RVE gets the rate of deformation from its integration point on its parent element in the
reference region.
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• The rate of deformation is applied to each RVE as a periodic boundary condition using
prescribed velocity.

• The RVE region is solved to obtain the stress in each element of each RVE.

• The stresses in the elements of an RVE are volume-averaged over the RVE.

• Each RVE passes its homogenized or volume-averaged stress tensor back to its integration
point of its parent element in the reference mesh.

• The reference region computes internal force again. Element blocks whose elements have
associated RVEs do not compute a stress; they use the stress passed to them from their RVE.

2.2 Mesh Requirements

Two mesh files, one for the reference region and one for the RVE region, are required for an RVE
analysis. Fig. 2.1 shows an example of the two meshes. The reference mesh of a bar with six
single integration point elements is shown on the upper left. On the lower right is the mesh for the
RVE region containing six RVEs, one for each element (since the elements have only one
integration point) of the reference region. In this case, the first five RVEs each consist of two
element blocks and the last RVE has four.

In general, each RVE should be a cube with any discretization the user desires. All RVEs must be
aligned with the global x, y, and z axes. For stress computations, these axes are rotated into a local
coordinate system, which can be specified on the reference mesh elements if these reference
elements are uniform gradient hexahedra. In other words, if a local coordinate system is specified
on a reference mesh uniform gradient element, the RVE global axes will be rotated internally in
Sierra/SM to align with the local system on the associated parent element. The global X axis for
an RVE is actually the local X’ axis in the parent element.

Additional mesh requirements apply if the mesh does not match across opposing surfaces of the
RVE. In this case, the RVE must include a block of membrane elements on the exterior surfaces
with matching discretization on opposing surfaces (+x/-x, +y/-y, +z/-z). In order to minimize the
effects of this membrane layer on the RVE response, it should be made as thin as possible. This
membrane layer then must be tied to the underlying non matching RVE surfaces.

The RVE mesh must contain sidesets or node sets on each surface of every RVE. The RVE may be
enclosed with one sideset that spans all six surfaces of the curb, or the user may specify individual
sidesets or node sets on each face. These sidesets/node sets are used to apply the periodic
boundary conditions on the RVE. Sierra/SM generates the boundary conditions internally so the
user does not have to include them in the input file. However, this assumes that the sidesets/node
sets exist in the mesh file numbered in a specified order. If individual sidesets/node sets are used
on each face of the RVE, the six sidesets/node sets must be numbered consecutively, starting with
the positive-x face, followed by the negative-x face, positive-y face, negative-y face, positive-z
face, and ending with the negative-z face. The beginning sideset id (for the positive-x face) is set
by the user in the input file.
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Fig. 2.1 Example of meshes for RVE analysis.
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2.3 Input Commands

There are several input commands that are relevant to RVEs. In the reference region, these
commands include a special RVE material model and commands to define and use a local
coordinate system along which an associated RVE will be aligned. In addition to the reference
region, an RVE region is needed using the BEGIN RVE REGION command block. The RVE
region command block uses the same nested commands as any other Sierra/SM region (with some
restrictions as explained in this section) and an additional line command that relates the RVEs to
their parent elements in the reference region.

2.3.1 RVE Material Model

In an RVE analysis, any elements of the reference mesh that use an RVE must use the RVE
material model. This model is defined similar to other material models as described in the
Sierra/SM User Manual but uses the RVE keyword on the BEGIN PARAMETERS FOR MODEL
command line as follows:

BEGIN MATERIAL <string>mat_name
#
DENSITY = <real>density_value
#
BEGIN PARAMETERS FOR MODEL RVE
YOUNGS MODULUS = <real>youngs_modulus
POISSONS RATIO = <real>poissons_ratio

END PARAMETERS FOR MODEL RVE
#

END [MATERIAL <string>mat_name]

Currently, the RVE material model tells the reference element not to perform a constitutive
evaluation but to instead accept the stress tensor obtained from computation on an RVE. However,
the use of an RVE material model still requires the input of Young’s modulus and Poissons ratio.
These values may be used for time step estimation and hourglass computations, even though they
are not used in a constitutive evaluation.

Element blocks in the RVE region can use any material model that is supported in Sierra/SM
other than RVE.
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2.3.2 Embedded Coordinate System

The finite element model of an element block in the reference mesh that uses RVEs can use an
embedded coordinate system to orient the RVE relative to the reference element, if the reference
elements are uniform gradient hexes. A coordinate system is defined in the sierra scope as
described in the Sierra/SM User Manual. A local coordinate system is then associated with an
element block through the use of a COORDINATE SYSTEM command line within a BEGIN
SOLID SECTION command block.

BEGIN SOLID SECTION <string>section_name
#
COORDINATE SYSTEM = <string>coord_sys_name
#

END [SOLID SECTION <string>section_name]

The string coord_sys_name must be a name associated in the input file with one of the
COORDINATE SYSTEM command blocks in the sierra scope. This coordinate system will then
be used on all elements of a block associated with a BEGIN PARAMETERS FOR BLOCK
command block that includes the command line specifying this solid section.

Known Issue
Currently, the rotation of RVEs to a local element block coordinate system only works with
uniform gradient hexes in the reference mesh.

2.3.3 RVE Region

A representative volume element (RVE) region must be a quasistatic region specified with the
RVE keyword in the BEGIN RVE REGION command line. The RVE region uses the same block
commands and line commands as any other quasistatic region with the addition of line commands
that define which element blocks of the reference region are associated with RVEs. There are also
some restrictions on boundary conditions as described in Section 2.3.6.

BEGIN RVE REGION <string>rve_region_name
#
# Definition of RVEs
ELEMENTS <integer>elem_i:<integer>elem_j

<integer>num_intg_pts_per_elem
BLOCKS <integer>blk_i:<integer>blk_j
SURFACE|NODESET <integer> start_id INCREMENT

<integer> k
#
# Boundary Conditions

(continues on next page)
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(continued from previous page)
#
# Results Output Definition
#
# Solver Definition
#

END [RVE REGION <string>rve_region_name]

2.3.4 Definition of RVEs

One or more ELEMENTS command lines are used to associate elements of the reference region
mesh with RVEs in the RVE region. In the

ELEMENTS <integer>elem_i:<integer>elem_j
<integer>num_intg_pts_per_elem
BLOCKS <integer>blk_i:<integer>blk_j
SURFACE|NODESET <integer>start_id INCREMENT

<integer>incr

command line, elements numbered elem_i through elem_j of the reference mesh and their
num_intg_pts_per_elem integration points will be associated with RVEs (for a total
number of RVEs equal to (elem_j - elem_i + 1) * num_intg_pts_per_elem), and each
RVE will consist of blk_i - blk_j + 1 element blocks. Each integration point will be
associated with a separate RVE. The block IDs of the first RVE must be blk_i through blk_j
and subsequent RVEs (if elem_j is greater than elem_i or num_intg_pts_per_elem is
greater than 1) must have consecutively increasing numbers for their block IDs.

Similarly start_id gives the surface_id of the first RVE if a single, encompassing surface
is used, or the first surface_id or nodelist_id of the first RVE (the positive x surface as
explained in Section 2.2) if six individual sidesets/nodeset are used. The remaining surfaces
(nodesets) of the first RVE and all the surfaces of the following RVEs must be consecutively
numbered following start_id in the mesh file as explained in Section 2.2.

The increment value incr indicates the number of sidesets present on the exterior of the RVEs.
This is used to determine how to increment the IDs of the sidesets from one RVE to the next and
to determine how to prescribe periodic boundary conditions on the RVE. The increment can have
a value of either one or six. A value of one indicates that each RVE has one sideset that
encompasses all six faces, while a value of six specifies that six sidesets or nodesets are present,
one on each face. Nodesets are not allowed for the case where incr is one.

The following example shows the use of the ELEMENTS command line:

elements 1:5 1 blocks 1:2 surface 7 increment 6
elements 6:6 1 blocks 11:14 nodeset 15 increment 6

These commands generate the RVEs shown in Fig. 2.1.
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The first ELEMENTS command line specifies that elements with element IDs 1 through 5 in the
parent region mesh each have one integration point and that each integration point has an RVE
with two element blocks. The RVE associated with the integration point of element 1 of the
parent region will have two element blocks starting with block_id of 1 and ending with a
block_id of 2. Subsequent RVEs will have consecutively numbered element blocks. For
example: the integration point of parent element 2 will be associated with an RVE that consists of
element blocks 3 and 4 in the RVE region, the integration point of parent element 3 will be
associated with the RVE that has element blocks 5 and 6, etc. Again, this is the case for the first
five elements of the parent region mesh. The keyword SURFACE specifies that all the periodic
boundary conditions generated by the code for the RVEs for elements 1 to 5 will use sidesets in
the RVE region mesh. These sidesets will start with id 7 for the positive-x face of the RVE
associated with parent element 1 and continue consecutively for the other faces of the RVE and
the RVEs associated with the integration points of parent elements 2 through 5 (in the order
specified in Section 2.2). In other words, the positive-x face of the RVE for parent element 1 is
sideset 7, negative-x is sideset 8, positive-y is sideset 9, negative-y is sideset 10, positive-z is
sideset 11, and negative-z is sideset 12. The sidesets for the RVE for parent element 2 will start
with id 13 and continue consecutively in the same face order. The process continues for all five
RVEs specified in this command line.

The second ELEMENTS line specifies that the integration point of element 6 of the parent region
mesh will be associated with the RVE that consists of element blocks 11, 12, 13, and 14. The
NODESET keyword says this RVE has a nodeset associated with each face of the RVE, starting
with nodeset id 15 on the positive-x face, with id’s increasing consecutively for the other five faces
in the same order described in the paragraph above.

The six elements specified in these command lines must be in element blocks of the reference
region mesh that use the RVE material model.

2.3.5 Multi-Point Constraints

In the case in which the RVE has non matching surfaces, and therefore includes a block of
membrane elements on the exterior surfaces, the user must specify a set of multi-point constraints
(MPCs) to tie the membranes to the surface. This is done in the input file through use of an MPC
command block:

RESOLVE MULTIPLE MPCS = ERROR
BEGIN TIED MPC

TIED FACES = <string>membrane_surface_id
TIED NODES = <string>RVE_surface_id
SEARCH TOLERANCE = <real>tolerance

END

In this case, the membrane_surface_id corresponds to the single sideset that encompasses
the membrane block is the side-a surface and the single sideset that encompasses the exterior
surfaces of the RVE is the side-b surface. While the underlying RVE may have non matching
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exterior surfaces, the opposing surfaces of the membrane block must have matching
discretizations. More detailed information on the use of MPCs, is discussed in the Sierra/SM User
Manual.

2.3.6 RVE Boundary Conditions

Strain rates computed by elements in the reference region are applied through periodic prescribed
velocity boundary conditions on the faces of the associated RVEs. These are generated internally
by Sierra/SM so the periodic boundary conditions do not need to be in the user’s input file.
However, because the RVE region is quasistatic, each of the RVEs must be fixed against rigid
body motion. This must be done in the input file through use of the prescribed velocity boundary
conditions:

BEGIN PRESCRIBED VELOCITY pres_vel_name
NODE SET = <string>nodelist_name
FUNCTION = <string>function_name
SCALE FACTOR = <real>scale_factor
COMPONENT = <string>X|Y|Z

END [PRESCRIBED VELOCITY pres_vel_name]

This type of boundary condition is described in detail in the Sierra/SM User Manual but the use
for RVEs is restricted- Either the function must always evaluate to 0.0 or the scale_factor
must have a value of 0. This is essentially a way of using the prescribed velocity boundary
condition to fix the nodes in nodelist_name. However, in order for these conditions to work
with the periodic boundary conditions used to apply the strain rate, PRESCRIBED VELOCITY
must be used rather than FIXED DISPLACEMENT or PRESCRIBED DISPLACEMENT
boundary conditions.

Generally, three BEGIN PRESCRIBED VELOCITY command blocks will be needed, one each
for X, Y, and Z components. In order to eliminate rigid body motion without over constraining the
motion, each BEGIN PRESCRIBED VELOCITY block should constrain exactly one node of an
RVE in one component direction. (However, nodelist_name may contain nodes from
multiple RVEs. Separate boundary condition blocks are not required for each RVE.). To prevent
rigid body rotations, the three constrained nodes on each RVE should not be collinear.
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3 Explicit Subcycling

This chapter describes how to setup an analysis to use explicit subcycling. Subcycling can be used
to run different parts of the mesh at different time step sizes to improve speed.

Warning: Explicit subcycling is a capability still in the development stages. This capability
is not yet recommended for general use.

Explicit subcycling can be used in an explicit transient dynamics analysis to run one part of the
mesh at a small time step while running another connected part of the mesh at a large time step.
Explicit subcycling can provide a substantial model speedup only if two properties hold. First,
some region of the mesh must have a substantially smaller element critical time step than another
region of the mesh. Second, the portion of the mesh with the small critical time step must contain
a small fraction of the total number of elements used by the analysis.

Explicit subcycling divides the analysis domain into two regions: A coarse region iterating with a
large time step and a fine region iterating at a smaller time step that is some integer fraction of the
coarse time step. At the coarse mesh time step, both regions sync up to the same analysis time and
exchange information. Using the standard analysis technique, every element must run at the same
small time step. Testing has shown that an analysis run using subcycling can give equally accurate
results as an analysis run without subcycling. The accuracy of the simulation is subject to several
restrictions on cross region communication and compatible capabilities.

3.1 Specifying Subcycling in Input

The recommended method to turn on subcycling is to use a feature to automatically generate the
coarse and fine regions in the input deck. This is done by adding the following command to the
presto region.

SUBCYCLE BLOCKS = <string list>block_names

If this command is present, Sierra/SM will automatically generate and run a new input deck that
can be used for the subcycling. If the original input deck is named input.i the automatically
generated subcycling input deck will be named input.subcycle.i. The block_names
specified are the names of the blocks targeted for inclusion in the fine region (run with the small
time step).

The algorithm to split the regions is done as follows.

• Define the trial coarse region based off of everything not in the fine region.

• Compute the critical time step of the coarse region as the smallest element time step in that
region.
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• Compute the maximum time step each node can be integrated at as the smallest time step of
any element near the node.

• For every element in the mesh, if the element is attached to only nodes with time steps
greater than or equal to the coarse region time step, place the element in the coarse region.

• For every element in the mesh, if the element is attached to any node with time steps less
than the coarse region time step, place the element in the fine region.

• Split all boundary conditions defined on the coarse and fine region appropriately and write
to appropriate results files. Each region will generate independent output files.

The mathematical foundations of the subcycling algorithm used in Sierra/SM can be found in [7].
The portions of this paper specifically used in Sierra/SM are: Explicit-Explicit, Central
Difference, and Linear Interpolation method.

3.2 Limitations of Subcycling

Subcycling is currently incompatible either in whole or in part with many other capabilities. The
capabilities that have incompatibility with subcycling include but may not be limited to the
following:

• Subcycling is incompatible with most capabilities that require an auxiliary region. This
include representative volume elements (RVE), Gemini coupling, and multi-procedure
analysis coupled via hand-offs or solution control.

• Subcycling currently does not work with implicit dynamics, implicit statics, or modal
analysis.

• Subcycling is currently not compatible with rigid bodies.

• Subcycling is incompatible with any critical time step computation method other than the
default element based time step calculation. This includes nodal based and Lanczos
algorithm based time step computation methods.

Additionally several capabilities will not function correctly if that capability is operating at or near
the boundary between the coarse and fine region. If such a capability is included in the subcycling
analysis and that capability happens to cross the coarse/fine boundary, accuracy and stability
problems may result. The capabilities known to be have restrictions when used with subcycling
include but may not be limited to:

• Element death near the subcycling boundary may not be able to correctly determine when a
node shared between the two regions goes inactive (leading to accuracy and stability issues).

• Contact between any surface in the fine region and any surface in the coarse region cannot
be evaluated.

• Methods that define a force from an external load (such as CTH) can only be coupled to the
deformation of the coarse.

20



• No non-local element or boundary condition can span the coarse to the fine boundary. This
includes nodal based tetrahedra, MPCs, Spot Welds, Super Elements, Cylindrical Joints,
and the J-Integral computation.

• Nodal output quantities at the coarse to fine boundary may not be displayed properly in plot
files. Contributions to quantities such as nodal force may exist in both the fine and coarse
region and the outputs would need to be summed from both.

3.3 Other Subcycling Issues

In parallel, subcycling will perform best if a mesh rebalance is performed to ensure both the fine
and coarse regions are divided evenly among the processor sets. A mesh rebalance command
similar to the one below can be used to automatically performance such a mesh rebalance. See the
Sierra/SM User Manual for more information on mesh rebalancing.

BEGIN REBALANCE
PERIODIC REBALANCE = AUTO
DELETE DEACTIVATED ELEMENTS AFTER REBALANCE = ON

END
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4 Automatic Time Step Selector

For performance reasons, it is sometimes desired to run at the highest possible time step in
explicit dynamics. The NODE BASED TIME STEP and the LANCZOS TIME STEP have
proven to yield a higher time step than the default element time step for most problems. However,
because these routines take significantly more time to calculate, sometimes the performance
benefits are unseen. The automatic time step selector attempts to weigh the performance benefits
of each time step calculation. The time steps are compared every hundred steps, and the one
proving most beneficial is used for the proceeding hundred steps.

Currently, only the node based time step and the element time step are compared. Because the
node based time step takes longer to calculate than the element based time step (as noted above), a
scale factor is used when comparing the two. To run with the automatic time step selector, the
following must be included in the input file:

In the BEGIN PARAMETERS FOR PRESTO REGION block, the following line must be
included:

BEGIN PARAMETERS FOR PRESTO REGION <string>presto_region
TIME STEP SELECTOR = AUTO

END PARAMETERS FOR PRESTO REGION <string>presto_region

Additionally, the node based time step syntax must also be included in the input file:

BEGIN NODE BASED TIME STEP PARAMETERS <string>name
END NODE BASED TIME STEP PARAMETERS <string>name

4.1 Explicit Quasistatic Mode

BEGIN TIME CONTROL
BEGIN TIME STEPPING BLOCK <string>time_block_name
START TIME = <real>start_time_value
BEGIN PARAMETERS FOR PRESTO REGION <string>region_name
NUMBER OF QUASISTATIC TIME STEPS =

<int>quasi_step_count
END [PARAMETERS FOR PRESTO REGION <string>region_name]

END [TIME STEPPING BLOCK <string>time_block_name]
TERMINATION TIME = <real>termination_time

END [TIME CONTROL]

Explicit quasistatic mode provides an automated methodology to leverage explicit time stepping
to efficiently solve quasistatic problems. Quasistatic mode is enabled by providing a non-zero
input for the NUMBER OF QUASISTATIC TIME STEPS command for a solution time period.
Explicit solution of a quasistatic analysis may prove to be more robust or faster than implicit
solution in some cases.
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Explicit quasistatic mode can be particularly helpful for analyses with contact. Analyses with
several disjoint parts that are in static equilibrium only due to the contact and frictional forces
between those may cause great difficulty for the standard implicit static solver. Explicit quasistatic
mode can often solve these problems more robustly than the implicit solver. Additionally explicit
quasistatic mode is well suited to analyses that involve buckling, strong material nonlinearity, and
material failure or fracture. Such sharp nonlinearity cause substantial difficulty for standard
implicit solution.

Activating explicit quasistatic mode has several effects on the analysis.

• Implicit compatible defaults are used for element formulations for numerical parameters
such as effective modulus, quadratic bulk viscosity, and linear bulk viscosity.

• The analysis is automatically mass scaled (see the Sierra/SM User Manual) so that - steps
will be taken in the current time period. As dynamic terms still have some meaning in
explicit quasistatic analysis to function efficiently the size of the implied quasistatic time
step should be significantly larger than the standard explicit time step. For example if the
standard explicit time step is 1.0e-6 seconds and it is desired the load up quasi-statically
over 100,000 steps then the time over which to perform this loading should be one second
or greater. This would yield a quasistatic time step of 1.0e-5 seconds which is significantly
larger than the standard explicit time step.

• To minimize dynamic effects explicit quasistatic analysis should be run at a time step that
exceeds the explicit time step. Sometimes it is convenient to greatly exceed the standard
explicit time step. For stability reasons the time step is slowly increased from the standard
explicit time step when entering a quasistatic solution period and slowly decreased to the
standard explicit time step when exiting a quasistatic solution period.

• A dynamic viscous damping term is included to accelerate convergence to a static
equilibrium solution. This viscous term is automatically tuned based on the number of time
steps being taken and the current model velocity.

• A static residual norm is automatically computed and output to the global variable.
Monitoring of this residual can indicate how closely the current solution approximates the
target quasistatic state. The quasistatic residual is the 𝐿2 norm of the current nodal force
imbalance divided by the reference force (reaction or external force sum). The explicit
quasistatic residual has the same meaning as the implicit relative residual, generally a good
solution will have a quasistatic residual of 10−3 or below.
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4.1.1 Usage Guidelines

It is important to note that quasistatic mode is a dynamic analysis; dynamic terms and effects will
be present in the solution. However, if used properly, quasistatic mode will minimize these effects,
yielding a solution with comparable accuracy to an equivalent implicit static analysis. Generally,
the number of quasistatic explicit steps required to reach static equilibrium will be tens to
hundreds of thousands, although a sharp estimate of the actual number of steps required is not
available. Generally, dynamic effects are expected to reduce with increasing numbers of time
steps. The quasistatic residual norm variable may be used to monitor static equilibrium at various
steps of the analysis.

Quasistatic equilibrium is reached fastest on models with minimal potential low-mode vibrations.
The most difficult types of analyses for quasistatic mode to solve include long, slender structural
members that can vibrate at low frequencies.

Static equilibrium in explicit quasistatic mode is also sensitive to loading rate; more smoothly
applied external loads will result in more rapid convergence to the quasistatic solution. It is also
recommended that loads be held constant in the later part of the loading period. Ultimate
quasistatic equilibrium can be reached in the contact load. An example showing recommended
quasistatic mode loading is shown in Section 4.1.2.

Output results from quasistatic mode—particularly quantities such as reaction force and
energy—are valid only when the model has reached static equilibrium. The mass scaling used by
quasistatic mode can alter the results in the middle of a load step. Damping and other artificial
forces may be arbitrarily large when the model is in motion in an intermediate state, while they
tend to zero when a model reaches static equilibrium.

It is assumed that the ultimate material state obtained is strain path-independent as long as the
strain path is monotonic. This condition holds for elastic models, 𝐽2‘ plasticity models, soil foam,
and most other commonly used models, but does not hold for rate-dependent models. Quasistatic
mode will provide an answer for rate-dependent models, but a very large number of load steps
may be required to ensure the loading is applied smoothly.

Although the smoothness of the strain paths and reduction of dynamic effects will improve with
iterations, the most reliable way to detect possible material state overshoot error is to compare the
result with a solution based on a larger number of quasistatic iterations. Current evidence
indicates quasistatic material state integration errors reduce quadratically in iteration count.

4.1.2 Example Problem

The following input demonstrates the use of explicit quasistatic mode for a beam loaded by a
pressure boundary condition.

begin function pfunc
evaluate expression = cos_ramp(t, 0.0, 0.5)

end
(continues on next page)
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(continued from previous page)

begin time control
begin time stepping block p1
start time = 0.0
begin parameters for presto region presto
number of quasistatic time steps = 2000

end
end
termination time = 1.0

end

begin presto region
begin pressure
surface = surface_1000
function = pfunc

end
end
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5 Modal Analysis

This chapter describes a simple modal analysis capability. This capability will compute the lowest
few vibration eigenmodes and values at the end of each model load step. This capability only
works with solid uniform gradient hex elements and augmented Lagrange tied contact.

Warning: Modal analysis is still a capability in the early development stages. This capability
is not recommended for general use, nor will any use of this capability currently be supported
by Sierra/SM development.

BEGIN LANCZOS EIGEN SOLVER
MASS MATRIX = IDENTITY|LUMPED(LUMPED)
NUMBER OF EIGENPAIRS = <integer>N
DEBUG = OFF|ON(OFF)

END

The command NUMBER OF EIGENPAIRS defines the number of eigenvalues and modes to
compute. The lowest N modes will be computed. Significant expense is required to compute and
store each mode, thus N should be kept relatively small (no more than 25 or so).

The DEBUG command turns on or off additional debugging outputs from the eigensolver.

The MASS MATRIX allows the user to selectively compute the eigenvalues of the tangent
stiffness matrix when IDENTITY is set. Otherwise, the standard eigenvalue problem is computed
with both the tangent stiffness matrix and the lumped mass matrix. A consistent mass matrix is
not available at this time.
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6 Solvers and Solver Options

This chapter lists some solvers and solver options that are under development.

6.1 Newton Solver

BEGIN SOLVER
BEGIN NEWTON

#
# convergence criteria commands
#
TARGET RESIDUAL = <real>target_resid
[DURING <string list>period_names]

TARGET RELATIVE RESIDUAL = <real>target_rel_resid(1.0e-4)
[DURING <string list>period_names]

ACCEPTABLE RESIDUAL = <real>accept_resid
[DURING <string list>period_names]

ACCEPTABLE RELATIVE RESIDUAL = <real>accept_rel_resid
[DURING <string list>period_names]

REFERENCE = EXTERNAL|INTERNAL|BELYTSCHKO|RESIDUAL|ENERGY
(EXTERNAL) [DURING <string list>period_names]

RESIDUAL NORM TYPE = ALL|TRANSLATION|SCALE_RB_ROTATIONS
(ALL) [DURING <string list>period_names]

#
# iteration control
#
MINIMUM ITERATIONS = <integer>min_iter(0)
[DURING <string list>period_names]

MAXIMUM ITERATIONS = <integer>max_iter
[DURING <string list>period_names]

#
# Selection of the linear solver for use in solving
# linearized Newton iterations
#
LINEAR SOLVER = <string>linear_solver_name

END
END

The Newton solver is an nonlinear equation solver that is an alternative to the default conjugate
gradient (CG) solver. Each iteration of the Newton solver consists of reforming current tangent
stiffness matrix and re-solving the equation set with that current tangent. The Newton solver is
typically significantly more expensive than the CG solver but may be more robust if there is
substantial nonlinearity occurring over a time step. The Newton solver may also potentially
prevent overshooting of yielding or other material nonlinearity. If a model has highly nonlinear
materials and is failing to converge with the CG solver the Newton solver may be worth trying.
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The convergence criteria and iteration control commands in the Newton solver behave identically
to the equivalent commands in the CG solver. The LINEAR SOLVER specifies the solver to use
during the linearized equation solution step each Newton iteration. The FETI solver is
recommended but any available linear may work.

6.2 Control Contact: Control Subset

BEGIN CONTROL CONTACT
CONTROL SUBSET = ADAGIO|ALL|ARS|JAS|SST

END

By default all implicit contact constraints are enforced simultaneously. The CONTROL SUBSET
option to the control contact solver block is an experimental option for enforcing different types of
constraints at different levels of the multilevel solver. For example the following input will control
the node face (ADAGIO) contact constraints at level one and the analytic rigid surface contact
constraints (ARS) at level two. This means that ARS constraints are found held constant while
ADAGIO constraints are iteratively solved. Then the ARS constraints are updated and again held
constant while the ADAGIO constraints are iteratively solved again.

begin control contact control_al
level = 1
target relative residual = 5.e-04
control subset = ADAGIO

end control contact

begin control contact control_ars
level = 2
target relative residual = 1.e-3
control subset = ARS

end control contact

Use of the CONTROL SUBSET will substantially increase analysis cost, but may lead to more
robust convergence if the model contains potentially conflicting contact constraint types acting on
the same nodes.
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7 eXtended Finite Element Method (XFEM)

Warning: This capability is in development, and its behavior may change considerably due
to its status as an active research topic.

The XFEM command block may be used to introduce discontinuities in a finite element mesh via
the eXtended Finite Element Method (XFEM). Use cases for XFEM include modeling stationary
or propagating cracks in a finite element mesh, fast mesh generation via XFEM “carving,” and
adding or removing material layers to simulate, e.g., material wear or additive manufacturing
processes. At its simplest, the XFEM provides a framework supporting duplication of mesh
elements and subsequent partitioning and assignation of material on each side of the cut surface to
each duplicate. This duplication procedure is illustrated in Fig. 7.1. Piecewise planar element cuts
through both two-dimensional shell and three-dimensional mesh topologies are supported in the
current XFEM implementation. When an element is cut, the necessary quantities on the
duplicated elements are scaled by the volume fraction of the original cut element. The mass,
volume, and the internal force contribution are all scaled by the volume fraction. All other
element quantities are calculated as usual.

Fig. 7.1 Example of XFEM element cutting and duplication.

The effective or cut volume of the domain is represented by the XFEM “submesh,” a sub-element
geometry which captures the discontinuity surface within each cut element duplicate. Submesh
topologies for various element types are illustrated in Fig. 7.2. The submesh output block, named
<block_name>_submesh, will be created and output along with results for visualization
purposes. Visualization with the submesh block is recommended as it offers an accurate
representation of crack surface and fragment geometries, as well as relevant element and nodal
fields, whereas the XFEM computational elements themselves overlap and are therefore difficult
to visualize.
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(a) Four-node quadrilateral. (b) Four-node tetrahedral.

(c) Eight-node hexahedral.

Fig. 7.2 Illustration of XFEM submesh topology for various mesh element topologies.

7.1 General XFEM Commands

BEGIN XFEM <string>xfem_name
BLOCK = <string list>block_name
ASSEMBLY = <string list>assembly_name
INCLUDE ALL BLOCKS
ADD INFINITE PLANE = <real>px <real>py <real>pz

<real>nx <real>ny <real>nz
ADD DISC = <real>px <real>py <real>pz

<real>nx <real>ny <real>nz
<string>radius_function

MECHANICS GROWTH START TIME = <real>time(0.0)
MECHANICS GROWTH METHOD = <string>NOTHING|

MECHANICS FAILURE(NOTHING)
CRITERION = <string>\{AVG NODAL|MAX NODAL|

MIN NODAL|ELEMENT|GLOBAL\}
VALUE OF <string>variable
\{>=|>|=|<|<=\} <real>threshold

FAILURE SURFACE EVOLUTION = <string>PLANAR|PIECEWISE LINEAR|
SINGLE CRACK(PLANAR)

ANGLE CHANGE = <string>NONE|STRESS EIGENVECTOR|
ONE RING|LENGTH SCALE(NONE)

CREATE FACES = <string>ON|OFF(ON)
GENERATION BY NUCLEATION = <string>NO|ELEMENT-BASED(NO)

(continues on next page)
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(continued from previous page)
NUCLEATION CRITERION = <string>

\{AVG NODAL|MAX NODAL| MIN NODAL|ELEMENT|
GLOBAL\} VALUE OF <string>variable
\{>=|>|=|<|<=\} <real>threshold

CRACK BRANCHING = <string> RESTRICTED|ALLOWED(RESTRICTED)
BRANCHING CRITERION = <string>

\{AVG NODAL|MAX NODAL| MIN NODAL|ELEMENT|
GLOBAL\} VALUE OF <string>variable
\{>=|>|=|<|<=\} <real>threshold

PROPAGATION ANGLE LIMIT = <real> angle
ANGLE CHANGE LENGTH SCALE OUTER RADIUS = <real>outer_radius
ANGLE CHANGE LENGTH SCALE INNER RADIUS = <real>inner_radius
START TIME = <real>start\_time
INITIAL SURFACE COHESIVE = <string>FALSE|TRUE(FALSE)
COHESIVE SECTION = <string>cohesive_section_name
COHESIVE MATERIAL = <string>cohesive_material_name
COHESIVE MODEL = <string>cohesive_model_name
SOLID GROWTH DIRECTION VARIABLE =

<string>direction_field_name(stress)
SHELL GROWTH DIRECTION VARIABLE =

<string>direction_field_name(memb_stress)
VOLUME FRACTION LOWER BOUND = <real>lower_bound(0.0) DELETE|

RETAIN(DELETE)
CALCULATE FRAGMENT IDS = {OFF|ON}(OFF)
INITIAL CUT WITH \{SIDESET|STL\}

<string>file_or_surface_name
REMOVE \{INTERIOR|EXTERIOR|NOTHING(NOTHING)\}

CUT WITH DAMAGE VARIABLE = <string>variable_name
END [XFEM <string>xfem_name]

Assemblies may contain blocks, or assemblies of these.

7.2 XFEM for Fracture and Fragmentation

The most common application of XFEM is modeling of fracture, fragmentation, sand failure in
structures. Currently supported fracture capabilities are

• prescribed, static or stationary cracks,

• prescribed cracks with a specified direction and rate of growth,

• prescribed cracks which are allowed to propagate by mechanics-based growth criteria, and

• cracks which are nucleated and propagated via mechanics-based criteria.

These capabilities are detailed below.
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7.2.1 Fixed and Prescribed XFEM Discontinuities

A “fixed” XFEM discontinuity is stationary in both time and space; the failure surface does not
change after initialization. A fixed infinite plane discontinuity can be inserted via the ADD
INFINITE PLANE command, while a disc-shaped cut with a fixed radius may be inserted via
the ADD DISC command. Note that the specified surfaces are used to cut the mesh in the
reference configuration.

A “prescribed” XFEM discontinuity is restricted to propagate along a specific path in time. In
order to prescribe an XFEM discontinuity, a disc must be inserted via the ADD DISC command.
The discontinuity may “grow” by adding a time-varying function at the end of the ADD DISC
command or by mechanics growth, described in Section 7.2.2 below.

7.2.2 Spontaneous Crack Nucleation, Growth, and Branching

The current XFEM implementation enables the natural evolution of fractures in materials based
on mechanics nucleation, growth, and branching criteria.

7.2.2.1 Crack growth

Growth, or propagation, can be enabled via the following command lines:

MECHANICS GROWTH METHOD = MECHANICS FAILURE
CRITERION = <string>{AVG NODAL|MAX NODAL|

MIN NODAL|ELEMENT|GLOBAL}
VALUE OF <string>variable
{>=|>|=|<|<=} <real>threshold

FAILURE SURFACE EVOLUTION = PLANAR|PIECEWISE LINEAR|
SINGLE CRACK(PLANAR)

The CRITERION command line specifies the criterion for propagation or growth of the crack
from element to element. This command is precisely analogous to element death; refer to the
Sierra/SM User Manual for additional details. FAILURE SURFACE EVOLUTION specifies any
geometric restrictions on fracture growth:

• PLANAR is the default option, which restricts the crack to grow only in the plane in which it
is initialized, preventing the crack from turning or twisting.

• PIECEWISE LINEAR allows a crack to change directions such that it is planar within a
single element; however, this option may lead to a fracture surface which is discontinuous
from element to element.

Mechanics growth can be delayed in the analysis by specifying a start time (≥ 0) in the
MECHANICS GROWTH START TIME command.
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The way in which the crack growth angle change is computed can be specified via the ANGLE
CHANGE command line to smooth or regularize sharply varying stress fields in the neighborhood
of crack fronts. Available angle change options are

• STRESS EIGENVECTOR, which calculates the growth angle of the crack from the
maximum principal stress eigenvector in the element to be cut;

• ONE RING, which defines the new failure plane by the maximum principal stress
eigenvector of the emph{average} stress in the node-connected neighboring elements (or
one-ring) of the element to be cut; and

• LENGTH SCALE, which computes the crack failure plane as the maximum principal stress
eigenvector of the average stress in elements within a specified radial distance of the
element to be cut. This distance can be specified via the ANGLE CHANGE LENGTH
SCALE OUTER RADIUS command. By specifying ANGLE CHANGE LENGTH SCALE
INNER RADIUS, in addition to including elements inside a given outer length scale, the
growth algorithm will emph{exclude} elements within a given inner radius of the crack
front from the direction computation. Because the length scale entails a computation
involving, in general, a number of elements surrounding the crack front, this option may
incur significant additional simulation time within in each load step.

The variable used to calculate the angle change can be specified via

SOLID GROWTH DIRECTION VARIABLE = ...
SHELL GROWTH DIRECTION VARIABLE = ...

for solid and shell elements, respectively. The default variable used for solid elements is “stress,”
while the default variable used for shell elements is “membrane stress.”

7.2.2.2 Crack nucleation

Spontaneous nucleation, or initiation, of cracks may be controlled by the command lines

GENERATION BY NUCLEATION = <string>NO|ELEMENT-BASED(NO)
NUCLEATION CRITERION = ...

Currently, only element-based nucleation is supported, in which a single element is cut if it
exceeds the user-defined nucleation criterion (which follows the same form as the growth
criterion). Nucleated cracks then grow normally according to the specified mechanics growth
criterion.
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7.2.2.3 Crack branching

Branching behavior may also be modeled via the commands

CRACK BRANCHING = ALLOWED
BRANCHING CRITERION = ...

Currently, cracks may only branch from a single point on an element edge (i.e., from a virtual
node on the element edge created by the first cut). Examples of eligible and ineligible branching
locations are illustrated in Fig. 7.3. All presently cut elements are branching candidates. The
user-defined failure condition is examined for each element, and if the value exceeds the failure
criteria, the stress eigenvectors are calculated and used to determine the possible branching
direction.

Fig. 7.3 Example of allowed and restricted branching.

7.2.3 Cohesive Zone Insertion

Cohesive zones can be adaptively inserted between the XFEM discontinuities in order to better
capture fracture patterns, convergence, and energy dissipation. To insert cohesive zones with
XFEM,

• a cohesive section must be specified in the XFEM command block via the COHESIVE
SECTION command line,

• a cohesive material must be specified via the COHESIVE MATERIAL command line, and

• a cohesive model must be specified via the COHESIVE MODEL command line.

In order for the cohesive zones to be inserted with the stress initialized to that of the failing
element, the INITIAL SURFACE COHESIVE = TRUE option must be used.
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Warning: Cohesive zone insertion for tetrahedral elements is not yet supported.

7.2.4 Other Options

Several miscellaneous or experimental XFEM capabilities are available for fracture and
fragmentation analysis.

7.2.4.1 Volume Fraction Lower Bound

By default, the XFEM implementation in Sierra does not “clip” or remove elements with
arbitrarily small volume fractions. This can create issues with the conditioning of implicit
solves.

The VOLUME FRACTION LOWER BOUND command allows the user to specify a threshold. By
default, when a lower bound is provided with this command, elements whose volume fractions are
below the specified threshold will be removed from the calculation (DELETE). When the
RETAIN option is specified, elements whose volume fractions are below this specified threshold
will be retained, but have their volume fractions are reset to the lower bound specified by the
threshold value. This insures that the smallest volume fraction of any partial element anywhere in
the domain will not be smaller than the threshold.

Warning: The VOLUME FRACTION LOWER BOUND can result in the loss of mass
conservation for an embedded object, whether in the default mode when these small volume
fractions are removed or in the RETAIN mode when mass is added.

7.2.4.2 XFEM damage-based failure

XFEM can also be used to cut the mesh along a specific field on the mesh (such as a phase field
damage variable). The name of this variable is specified via the CUT WITH DAMAGE
VARIABLE command.

Warning: The CUT WITH DAMAGE VARIABLE option is in-development and not a
hardened capability.
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7.2.4.3 Identification of separate XFEM fragments

The CALCULATE FRAGMENT IDS command can be used to output both element and nodal
fragment ID fields. Turning this option to ON will set both the element variable called
element_fragment_id as well as the nodal variable called node_fragment_id at the
end of the simulation. Each ID corresponds to a distinct fragment from the XFEM simulation.
Elements and nodes within a fragment will all be assigned the same fragment ID. Labeling of the
fragment IDs is arbitrary, but the numbering always begins with 1 and goes to the total number of
fragments in the simulation. Post-processing scripts can be use in conjunction with these fields to
compute quantities such as fragment mass and momentum distributions.

7.3 XFEM Carving

In addition to modeling fracture and fragmentation, XFEM can also be used for fast mesh
generation or wearing of surfaces via “carving.”” The carving procedure is roughly equivalent to
an immersed boundary approach; boundary and contact surfaces are represented by the XFEM cut
surface, and the effective carved element response is computed via XFEM volume fraction
scaling.

The initial mesh may be carved with the command line

INITIAL CUT WITH {SIDESET|STL} = <string>file_or_surface_name
[REMOVE {INTERIOR|EXTERIOR|NOTHING(NOTHING)}]

where STL indicates to carve the mesh with a stereolithography (STL) file [24], while the
SIDESET option indicates to carve with a specified sideset from the input mesh file.

Carved material may be removed after the cut is made via the option REMOVE
{INTERIOR|EXTERIOR}, where the “exterior” consists of all material points lying outside of
the region bounded by the carving surface in the direction of its outward normal vector; similarly,
the “interior” is the region bounded by the carving surface in the direction opposite its outward
normal. As an example, the XFEM command block to cut all blocks with a surface defined in an
STL file file.stl and remove material interior to the surface is the following:

BEGIN XFEM
INCLUDE ALL BLOCKS
INITIAL CUT WITH STL file.stl REMOVE INTERIOR

END [XFEM]
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7.4 Use of XFEM with Existing Capabilities

An XFEM command block may be used in conjunction with a number of other core code
capabilities, as enumerated in the Sierra/SM User Manual. A brief list of compatible capabilities
and usage guidelines are given below.

7.4.1 Contact

BEGIN CONTACT DEFINITION <string>name
...
CONTACT SURFACE <string>name CONTAINS

<string_block_name>_CONTACT_SURFACE
BEGIN INTERACTION DEFAULTS
SELF CONTACT = ON
GENERAL CONTACT = ON

END
...

END [CONTACT DEFINITION <string> name]

Contact may be enforced on a block that has been cut using XFEM, including the cut surface
itself. Contact can be defined using the GENERAL CONTACT = ON command within the
INTERACTION DEFAULTS section of the contact definition. A contact surface called
<string_block_name>_CONTACT_SURFACE is created for each XFEM block; thus, a
contact surface may be defined on an XFEM block by using the CONTACT SURFACE
<string>name CONTAINS <string_block_name>_CONTACT_SURFACE command
line. The XFEM contact surface is also output to the results file as a shell element block for
visualization purposes.

7.4.2 CONWEP Blast Pressure

BEGIN BLAST PRESSURE <string> name
BLOCK = <string_block_name>_submesh
ASSEMBLY = <string_assembly_name>_submesh
...

END [BLAST PRESSURE <string> name]

XFEM can also be used in conjunction with a CONWEP blast pressure. The pressures that are
applied to the cut faces are scaled by the area fraction of that cut face. The pressures are applied to
the face throughout the duration of the blast. Assemblies may contain blocks, surfaces, or
assemblies of these.
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7.4.3 Implicit Dynamics

XFEM may be run in implicit dynamics. If an implicit simulation is run, it is highly
recommended to include an adaptive time stepping block, as shown below. Adaptive time
stepping helps to account for the increased complexity of the problem during crack growth. For
additional guidance and command syntax, consult the Sierra/SM User Manual.

Warning: Convergence of XFEM simulations in implicit dynamics mode is currently
tenuous; robustness issues may occur when using this analysis combination.
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8 External Loadstep Predictor

Warning: The external loadstep predictor is for implicit analyses only.

Production-ready loadstep predictor types are available in the Sierra/SM User Guide. The
LOADSTEP PREDICTOR command block controls the behavior of the predictor that is used to
predict the solution at the beginning of a new load step. This command block is placed in the
SOLVER scope.

The EXTERNAL, EXTERNAL_FIRST and TANGENT predictor types are special use capabilities
currently under development.

BEGIN LOADSTEP PREDICTOR
TYPE = <string>EXTERNAL|EXTERNAL_FIRST|TANGENT

END [LOADSTEP PREDICTOR]

The tangent predictor is selected with the TANGENT option, which is useful in combination with
the tangent preconditioner. This type of predictor uses the tangent preconditioner to estimate the
next load step’s solution.

at new load steps. For instance, the external predictor file can come from the results output of a
previous model run that included the command OUTPUT EXTERNAL PREDICTOR
VARIABLES in the output block, i.e.:

BEGIN RESULTS OUTPUT
OUTPUT EXTERNAL PREDICTOR VARIABLES

END [RESULTS OUTPUT]

If you would like to try the external predictor, please contact Sierra support for more information.
at new load steps. For instance, the external predictor file can come from the results output of a
previous model run that included the command OUTPUT EXTERNAL PREDICTOR
VARIABLES in the output block, i.e.:

BEGIN RESULTS OUTPUT
OUTPUT EXTERNAL PREDICTOR VARIABLES

END [RESULTS OUTPUT]

If you would like to try the external predictor, please contact Sierra support for more
information.
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9 Bolt

Warning: The Bolt section is known to have limited functionality in implicit analyses.

BEGIN BOLT SECTION <string>section_name
ATTACHMENT RADIUS = <real>radius
SURFACE 1 = <string>surf1
SURFACE 2 = <string>surf2
NORMAL DISPLACEMENT FUNCTION = <string>normFunc
SHEAR DISPLACEMENT FUNCTION = <string>shearFunc

END

The BOLT command block is used to define a two node beam or set of beams representing
individual bolts or other fasteners. This capability is similar to the SPOT WELD capability. The
beam elements should be meshed such that one beam end node is roughly on surface 1 and the
other beam end node is roughly on surface 2. The beam element does not need to be meshed
contiguous with the surface nodes.

The beam element is attached to all nodes and faces within a specified radius of the beam end
nodes given by the ATTACHMENT RADIUS command. To be valid the bolt must find at least one
face and three nodes within this radius on each surface.

The NORMAL DISPLACEMENT FUNCTION and SHEAR DISPLACEMENT FUNCTION
define normal and shear force displacement functions for the bolt. The normal displacement
function defines tensile response in positive x and compressive response in negative x. The shear
displacement function is radially symmetric and only the positive x portion of the function will be
used. The last point on the shear displacement function and the first and last points on the normal
displacement function implicitly define the bolt failure criteria. Once a bolt fails the strength will
ramp down over 10 steps and the bolt will provide zero force thereafter.

The bolt uses the same combined shear/normal mode failure as does the spot weld as defined in
(9.1). 𝑢𝑛 is the bolt normal extension. The maximum value given for 𝑢𝑛 in the normal
displacement curve is 𝑢𝑛𝑐𝑟𝑖𝑡 , but is different for positive and negative displacements. 𝑢𝑡 is the bolt
shear deformation. The maximum value given for 𝑢𝑡 in the normal displacement curve is 𝑢𝑡𝑐𝑟𝑖𝑡 .
The value 𝑝 is a exponent that controls the shape of the failure surface, currently this exponent is
defaulted to 2. (

𝑢𝑛
𝑢𝑛𝑐𝑟𝑖𝑡

) 𝑝
+
(
𝑢𝑡
𝑢𝑡𝑐𝑟𝑖𝑡

) 𝑝
< 1.0. (9.1)

The original direction defining normal and shear displacement is defined by the bolt element
orientation. This normal will rotate based on the rotation of attached faces, not rotation of the bolt
element itself.

Table 9.1 describes the output variables available on the bolt elements.
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Table 9.1 Bolt Element Output Variables
Name Description
displace-
ment_normal

Current normal displacement in bolt

displace-
ment_shear

Current shear displacement in bolt

force_normal Current normal force in bolt
force_shear Current shear force in bolt
bolt_death_status One for alive, zero for dead, some value between zero and one when fading out immediately after hitting the death

criteria.
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10 Linear Beam

Warning: The Linear Beam section is known to have limited functionality in implicit
analyses.

BEGIN LINEAR BEAM SECTION <string>section_name
T AXIS = <real>tx <real>ty <real>tz
AREA = <real>area
I11 = <real>i11
I22 = <real>i22
I12 = <real>i12(0.0)
J = <real>J
SHEAR AREA 1 = <real>val(AREA)
SHEAR AREA 2 = <real>val(AREA)

END

The LINEAR BEAM SECTION command block specifies the properties for a linear beam
element. If this command block is referenced in an element block of three-dimensional, two-node
elements, the elements in the block will be treated as beam elements. The name,
beam_section_name, can be used by the SECTION command line in a PARAMETERS FOR
BLOCK command block.

The beam geometry properties are defined via areas and moments of inertia for the beam section.
The linear beam will behave as a linear elastic element. If a linear beam has a nonlinear material,
only the elastic constants of that material, such as Young’s modulus and Poisson’s ratio, will affect
the beam behavior.

The beam element is formulated in a local orthogonal RST coordinate system. The R axis of the
beam lies along the beam element. The T axis direction is given in the input deck. If the provided
T axis is not orthogonal to R, the closest vector to T that is orthogonal to R will be used define the
T axis. The S axis is then constructed orthogonal to R and T based on the right hand rule (The
actual method of forming these axes is slightly different from this description.). The T AXIS
command in the linear beam behaves identically to the T AXIS command in the standard beam.
See the BEAM SECTION description in the TheusersguideSection~ref{user:ele:beamsec} for
more examples and discussion on use of the T AXIS command.

The following cross sectional properties are available for linear beams.

• AREA: Cross sectional area used to define axial and shear properties.

• I11: Bending moment of inertia in the T direction of the beam.

• I22: Bending moment of inertia in the S direction of the beam.

• I12: Product of inertial of the beam for asymmetric sections. This value is by default set to
zero.

45



• J: Polar moment of inertia used to define beam torsional properties.

• SHEAR AREA 1: Area used for shear resistance in the T direction. If unspecified the cross
sectional area AREA will be used.

• SHEAR AREA 2: Area used for shear resistance in the S direction. If unspecified the cross
sectional area AREA will be used.

This linear beam is a Timoshenko (also called a Reissner-Mindlin) shear deformable thick beam.
If the thickness is small relative to the length, it behaves like an Euler-Bernoulli beam. The
pre-integrated element stiffness was taken directly from [18].

Note, linear beam elements do not calculate element stress or stress based quantities. Linear beam
elements generate nodal internal forces however no element specific output quantities are
currently available on linear beam elements.
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11 Contact

This chapter describes contact features that are not fully tested or are still in development or have
usability issues.

11.1 Implicit Solver Control Contact Options

BEGIN CONTROL CONTACT
CONTROL SUBSET = <list> controlTypes(ADAGIO, ARS, JAS)

END [CONTROL CONTACT]

The CONTROL SUBSET command restricts a control contact block to only apply to some contact
enforcement types. The options to the command are ADAGIO to control kinematic and
augmented Lagrange contact, JAS to control JAS mode contact, and ARS (Goodyear specific) to
control analytic rigid surface contact. By default, the control contact block applies to all three
contact types. Use of the control subset logic may be useful if it is desired to have the different
enforcement types use different control contact option sets.

The CONTROL CONTACT block is described in the Sierra/SM User Manual.

The AREA UPDATE FREQUENCY is a performance option used to control how often the
analytic contact surfaces update the local areas and normal directions. Updating these values
more frequency (lower numStep) may lower performance but yield greater accuracy (especially
in derived output quantities such as contact traction).

If the CONTACT FORCE PREDICTOR option is on the previous step contact forces will be used
as an initial guess to the current step contact forces. This could improve results if the contact
forces are stable step to step or make results worse if the contact forces are highly volatile. The
default value for this option is ON as ARS contact is often used to model mostly static contacts.

11.2 Contact on Smooth Surfaces

A developmental option is available for contact on smooth surfaces (such as pins rotating in holes
or ball bearings). In its current implementation, contact constructs a patch for each face in Side
A that is in contact. For quad faces, this patch is a Gregory patch (following the method of [19]]),
while for tri3 faces, it is a Nagata patch (following the method of [[17]). This is done to predict
the curvature of the face from an average node normal calculation. The node normals are updated
every timestep in order to capture the deformation of the smooth surface. The contact gap and
resulting forces are computed in this current configuration, and the forces are distributed out to the
nodes via the linear shape functions of the original face. Convergence is achieved via this method
due to the Augmented Lagrangian enforcement iterations performed by DASH. Example syntax is
shown below:
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BEGIN CONTACT DEFINITION EXAMPLE_SMOOTH_CONTACT
CONTACT SMOOTH SURFACE SMOOTH_SURF CONTAINS SURFACE_1
CONTACT NODE SET NODE_SIDE CONTAINS NODELIST_1000
BEGIN INTERACTION SMOOTH_1
CONSTRAINT FORMULATION = NODE_FACE
SIDE A = SMOOTH_SURF
SIDE B = NODE_SIDE

END
END

Warning: Smooth contact is only available for solid quad and tri3 faces.

Warning: This option is only implemented for node-face contact. If unspecified it will
default to node-face.

Side A is the smooth surface side and Side B is the node side in a smooth contact node-face
interaction.

11.2.1 Surface Normals and Curvature Metrics

Smooth surfaces have two metrics that allow us to assess the curvature of the surface
smooth_surface_altitude and smooth_surface_curvature. Both of these are
calculated on the interior nodes of the smooth contact surfaces. Interior nodes are nodes that
belong to only one smooth surface. The nodal variables smooth_surface_curvature and
smooth_surface_altitude can be requested for output onto the results file.
smooth_surface_altitude is calculated as the average signed distance of adjacent nodes
to the plane created at the node with the nodal normal of the smooth surface, the average is scaled
with the characteristic length. The curvature is the mean curvature calculated using the
method of [21].

The min and max curvature metrics are collected and printed to the log file for each smooth
surface. For example:

-------- DASH SMOOTH SURFACE METRICS --------
Contact Entity Surf Index Node Normal Min Altitude ␣
↩→Max Altitude Min Curvature Max Curvature
--------------- ---------- ---------------------- ------------ ␣
↩→------------ ------------- -------------
smooth_surf 0 smooth_surface_normal 5.105e-02 ␣
↩→5.105e-02 2.500e-01 2.500e-01
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In addition the table in the log file indicates the nodal variable name used for the smooth surface
nodal normal for each smooth surface. Each smooth surface has a unique normal so nodes shared
between smooth surfaces will have multiple normals. The node normal variable can be used to
visualize the smooth surface normal, when visualizing surface normals care should be taken to
match the node normal variable name with the surface being visualized.

Warning: Multiple smooth surfaces can be defined but a maximum of 5 surfaces can share a
common node.

Warning: Node normals are crucial for accurate smooth surfaces. Symmetry boundaries
have a lack of information for the normal calculation, which leads to unexpected behavior.
Modeling with symmetry boundaries are not currently recommended.

11.2.2 Automatic Selection of Side A and Side B

The best way to guarantee that a surface is used as a smooth surface is to set Side A using the
side a = command to setup contact. The automatic selection of Side A and Side B occurs
when the surface are specified with surfaces =. The same selection logic applied to node-face
contact is used when the characteristic lengths of the two sides are not within 2x of each other.
Otherwise, if one side is smooth and the other surface is not the Side A is set to the smooth side.
Then if one side is flat and the other side has curvature, the side with curvature is used as Side
A. If both sides have curvature the side with the lower curvature is used as Side A.

Warning: In the case of two smooth surfaces, the current method will always assign a flat
surface (i.e. one with zero curvature) as Side B. If the intention is that the flat surface should
be smoothed, e.g. in the case where it is expected to deform substantially, then it must be
directly specified as Side A or it must be the only smooth surface in the interaction.

11.3 Auto Angle Contact Subsets

BEGIN CONTACT SURFACE <string>name
INCLUDE ALL BLOCKS
BLOCK = <string list>block_names
ELEMENT = <int list>elem_numbers
SURFACE = <string list>surface_names
ASSEMBLY = <string list>assembly_names
REMOVE BLOCK = <string list>block_names

(continues on next page)
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(continued from previous page)
REMOVE SURFACE = <string list>surface_names
CONTACT TYPE = STANDARD | SMOOTH (STANDARD)
AUTO SUBSET <string>subname [NUMBER OF SUBSETS <integer>] [ANGLE

↩→<real>(60)]
END [CONTACT SURFACE <string>name]

A contact surface can optionally be subdivided into multiple sub-surfaces based on the angle
between surface normals. Contact surfaces that are connected and whose normals are less than the
angle are grouped together into sub-surfaces. The angle can be specified in degrees with the
optional ANGLE argument. It will create the number of subsets specified by the optional
NUMBER OF SUBSETS argument. The angle is set to 60 degrees by default. By default, the
number of subsets created will be 360.0 divided by the angle defined or set by default rounded
down to the nearest integer. Thus, if both defaults are used, it will create 6 subsets. Only one auto
subset command line can be specified per contact surface. Shared nodes between created subsets
will go into the lowest numbered sub-surface. The ordering of auto subsets is based on the lowest
face ID on the surface. It is not based on the normal direction or any other identifying features of
the mesh. If the IDs on the mesh are changed, the surface indices will change.

For example, the following command:

BEGIN CONTACT SURFACE surf1
BLOCK = block_1
AUTO SUBSET sub1 NUMBER OF SUBSETS 6 ANGLE 45.0

END

on a unit hex will create six sub-surfaces, surf1_sub1_auto_1, surf1_sub1_auto_2, …
surf1_sub1_auto_6, since NUMBER OF SUBSETS is set to 6. Since the angle between each
set of surface normals exceeds the specified 45 degrees, each sub-surface will contain 1 contact
surface.

Warning: If more subsets are found than the number specified for NUMBER OF SUBSETS
or the default (6), the excess contact surfaces will be put into the default contact surface and
may give unexpected results.

Warning: Specifying an excessive number of subsets for NUMBER OF SUBSETS will create
empty subsets that will significantly slow down the simulation.

Warning: Within a contact surface, only one subset type can be specified. Thus, subset with
normal and auto subset cannot be specified for a given contact surface. For example, the
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following is not permitted:

BEGIN CONTACT SURFACE surf1
BLOCK = block_1
SUBSET sub1 WITH NORMAL 1 0 0
AUTO SUBSET sub2 NUMBER OF SUBSETS 6 ANGLE 45.0

END
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12 Nonlocal Regularization

Known Issue
Each nonlocal block must be uniquely paired with a material. A single material cannot have local
and nonlocal blocks. Future work will generalize the methodology.

Using material models that employ strain softening to capture the micromechanics of the failure
process will result in mesh-dependent solutions. Fundamentally, the partial differential equation is
changing character and the problem becomes ill-posed (for both elliptic and hyperbolic systems).
There are multiple methodologies to regularize the solution and nonlocality has been employed to
converge to a single solution from a multiplicity of solutions.

12.1 Variational Nonlocal Method

In the vein of nonlocality, a variational nonlocal method was derived such that one can identify
the state variable that controls softening 𝑍 and pose a variational principle such that the stored
energy is dependent on a nonlocal state variable 𝑍̄ . At a point, a Lagrange multiplier enforces
𝑍̄ = 𝑍 . When we minimize and discretize, however, we derive an 𝐿2 projection for the “coarser”
𝑍̄ and the balance of linear momentum for the “fine” scale. If we assume that the basis functions
for the coarser discretization 𝐷 are constant and discontinuous, we obtain the nonlocal 𝑍̄ as a
simple volume average of 𝑍 .

𝑍̄ =
1∫

𝐷
𝑑𝑉

∫
𝐷
𝑍𝑑𝑉

In this particular case, less is more. We do not want to recover the mesh-dependent solution
inherent in 𝑍 with a 𝑍̄ . Instead, we seek to specify an additional discretization (length scale)
independent of the discretization for 𝑍 . Because 𝑍̄ is just an average, we can consider a coarse
domain to be a patch of fine scale elements having volume 𝑉 that is consistent with a prescribed
length scale 𝑙 where 𝑉 = 𝑙3. For example, one might correlate the mesh dependence in the
solution with scalar damage 𝜙. The variational nonlocal method would construct a 𝜙 for each
nonlocal domain 𝐷. The stress would then evolve from 𝜙 and not 𝜙.

Domain decomposition algorithms are invoked to construct coarse scale domains of common
volume. For parallel execution, each processor (having nonlocal element blocks) is partitioned
during initialization. Nonlocal averages are calculated on the processor and no communication is
necessary between processors.

Warning: Because nonlocal domains are initially decomposed on each processor, nonlocal
geometries will not (a) be consistent with different parallel decompositions and (b) admit
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rebalancing. No infrastructure exists to maintain the character of the nonlocal domains during
rebalancing.

12.2 Nonlocal Partitioning

Because communication in parallel processing scales with the surface area of the domain, we
believed that software designed with the intent of limiting communication would be ideal for
application to nonlocal regularization. Hence, graph-based (METIS, Zoltan Hypergraph) and
geometric (Zoltan Recursive Coordinate Bisection, Zoltan Recursive Inertial Bisection)
decomposition algorithms were implemented and available for the analyst. Fig. 12.1 illustrates the
Zoltan partitioning methodologies for a circular region surrounding a sharp crack tip. We note
that non-contiguous domains can occur in graph-based methodologies. For these reasons,
ZOLTAN_RCB was selected to be the default partitioning scheme.

Fig. 12.1 Illustration of 400 nonlocal partitions at a sharp crack tip using Zoltan Recursive Coordi-
nate Bisection (RCB), Zoltan Recursive Inertial Bisection (RIB), and Zoltan Hypergraph partitioning
methodologies. Note that Zoltan Hypergraph can generate non-contiguous domains. The default
partitioning methodology in Sierra is Zoltan RCB.

Initial findings employing geometric partitioning illustrated a sensitivity to domain shape. A
re-examination of Fig. 12.1 will reveal that the aspect ratios of the domains are significant.
Because we are aligning the evolution of a nonlocal variable with the nonlocal domain shape,
domains of increasing aspect ratio result in anisotropic evolution. Although other researchers have
developed methods for domain decomposition that focus on domain shape [15]], we gravitated
towards clustering algorithms and the resulting isotropy [[8]. Fig. 12.2 illustrates the mesh, grid,
and result of k-means clustering, a centroid Voronoi Tessellation (CVT). Given a body on
processor with mesh size ℎ, we overlay a grid with uniform cell size 𝑐. We then find points both
inside (red) and outside (blue) the body. After calculating the number of nonlocal volumes 𝑁 for a
body of volume 𝐵 through 𝑁 = 𝐵/𝑙3, we seed the centroids of the nonlocal domains through
Zoltan RCB. K-means clustering of points inside the body evolves the locations of the centroids
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via Lloyd’s algorithm. The algorithm will converge to a CVT, independent of the FE
discretization. The tolerance for convergence 𝑡𝑜𝑙 is specified as a fraction of the cell size 𝑐. The
nonlocal domains are then populated by each element’s proximity to the nearest CVT centroid.
The resulting nonlocal domains are illustrated in Fig. 12.2. We note that the nonlocal domain size
is only illustrative. Nonlocality in damage, for example, would require a smaller length scale 𝑙
resulting in a finer discretization of Voronoi polygons.

12.3 Command Summary

In the specification of the block, one can invoke nonlocality in a state variable 𝑍 through

begin parameters for block block_1
material ductile_metal
solid mechanics use model elasto_thermo_visco_poro_plasticity
section = solid_1
NONLOCAL REGULARIZATION ON <string>varName WITH LENGTH SCALE =
<real>length [AND STAGGERING]
NONLOCAL REGULARIZATION PARTITIONING SCHEME =
{METIS|ZOLTAN_HYPERGRAPH|ZOLTAN_RCB|ZOLTAN_RIB|KMEANS} (ZOLTAN_RCB)

# Options for k-means clustering

NONLOCAL REGULARIZATION KMEANS CELL SIZE = <real>cell_size
NONLOCAL REGULARIZATION KMEANS MAXIMUM ITERATIONS = <int>max_iter
NONLOCAL REGULARIZATION KMEANS TOLERANCE = <real>tol

end parameters for block block_1

where the varName is the state variable 𝑍 to be averaged and length defines the nonlocal
volume 𝑉 = length3. The k-means clustering employs a uniform grid having a size cell_size
and tolerance for convergence tol. The maximum number of iterations for k-means clustering is
given by max_iter. One can output the partitions through the
NONLOCAL_ELEMENT_DOMAIN element variable. The output of element variables is described
in the Sierra/SM User Manual. In addition, each partition and its volume is noted in the log file.
The nonlocal variable 𝑍̄ can be output through the element variable
NONLOCAL_varName_AVERAGE while the local variable 𝑍 is output through varName. We
remind the reader that material points contain both 𝑍 and 𝑍̄ . The energy, stress, and tangent
depends on 𝑍̄ . The constitutive update evolves 𝑍 . This process, however, is not employed when
using AND STAGGERING. In this specific case, local variables are averaged after each time step
𝑡𝑛 and used as the initial conditions for 𝑡𝑛+1. Strictly speaking, AND STAGGERING approximates
the variational nonlocal method. A fundamental assumption of the nonlocal method is that one is
employing a constitutive model in which the state variable update is separate from the evaluation
of the energy, stress, or tangent. Currently, only one model in LAMÉ,
HYPERELASTIC_DAMAGE, separates these functions. All the other constitutive models,
however, update the internal state variables and the stress simultaneously. In an attempt to employ
the majority of models that do not adhere to this separation, the AND STAGGERING option was
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Fig. 12.2 Nonlocal domains derive from a Centroidal Voronoi Tessellation (CVT). A partitionedmesh
for parallel processing with element size ℎ determines the boundaries of a uniform grid with cell
size 𝑐. K-means clustering evolves a set of 𝑁 centroids into a CVT.
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implemented and does regularize the failure process. This approximation to the nonlocal method
is more accurate for small time steps and may require limited hourglass viscosity to stabilize the
evolved perturbations (post bifurcation) in uniform-gradient elements. Although we initially
envisioned the AND STAGGERING option to be most applicable to explicit dynamics,
simulations with nonlocal damage evolution for implicit dynamics have illustrated
mesh-independent solutions.

Warning: The tangent generated in Sierra/SM currently derives from 𝑍 and is local. Future
development will implement a nonlocal, finite-difference tangent.

Warning: Element death for nonlocal domains is work in progress. Additionally this
capability will not function with “death on inversion”.

12.4 Usage Guidelines

The nonlocal length scale length 𝑙 is a material parameter that will set the length scale over
which localization will occur. Although the parameterization of 𝑙 is indirect, it will control the
dissipation and should have an experimental basis.

For a typical application, the analyst might

• Identify a constitutive model that captures the failure process. This might include a local
damage model or any model that employs strain softening to facilitate strain localization.

• Conduct mesh-dependent simulations with bulk elements of size ℎ to understand potential
paths for crack initiation and growth in specimen geometries targeted for parameterizing
constitutive model parameters.

• Invoke nonlocality through a nonlocal length scale 𝑙. Mesh-independent solutions stem
from resolved nonlocal domains where 𝑙 > 3ℎ. The nonlocal domain size should be small
compared to the relevant dimensions (features) of the body.

• Specify KMEANS partitioning. Choose the cell size 𝑐 such that it is small compared to the
nonlocal length scale. We recommend 1

20 <
𝑐
𝑙 <

1
10 for the clustering algorithm to sample

between ∼ 1000 and ∼ 8000 points per nonlocal domain and obtain a converged CVT.
Please note that memory requirements will scale geometrically with the cell size. One can
easily run out of memory on a cluster given decrements in the cell size. Candidate values
for convergence and the maximum number of iterations are 0.02 and 256, respectively.
Because the clustering process is only performed during the initialization of the simulation,
decreased tolerances and increased iterations are not cost prohibitive.

• Inspect the character of the nonlocal volumes through NONLOCAL_ELEMENT_DOMAIN
and determine whether or not there are sufficient nonlocal volumes per partition for parallel
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processing. Because the nonlocal domains are formed on processor, processor boundaries
represent nonlocal domain boundaries. One can enable greater smoothness in the nonlocal
response through the mitigation of processor boundaries.

• Incorporate nonlocality into the fitting process. The fitting process may not be unique in
that the same far-field response might be obtained from multiple combinations of both 𝑙 and
the material parameters that govern the failure process.

• Understand the impact of 𝑙. If 𝑙 is too large, the failure process will be “lumped” over a
large region resulting in a non-smooth response. Please consider refitting model parameters
with smaller values of 𝑙 (and ℎ) to obtain the localized nature of the failure process.

• Explore component or system level geometries with nonlocality. Refine the mesh to ensure
that the far-field predictions are indeed mesh independent and that the process zone that
evolves from the given micromechanics is resolved.

• Reflect on the fields employed for model parameterization and the fields evolving in
component and system level models. Contrast the evolution of local field variables governed
by the mesh discretization with the nonlocal variable governed by the CVT discretization.
If possible, align field evolution in component/system geometries with field evolution in
specimen geometries. Disparities may drive the need for additional calibration experiments.

Although these usage guidelines have not focused on incorporating stochastic processes, one may
sample distributions in material parameters. The inclusion of a method for regularization enables
such findings in that the mesh-dependence associated with fracture/failure is not convoluted with
a stochastic representation of the micro mechanical process.
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13 POD

Proper Orthogonal Decomposition (POD) and Explicit Control Modes (ECM) should have almost
the same name according to the rule “the name of a method should describe what is done, not how
it is done” A difference from ECM is that POD does not require a coarse finite element mesh.
POD is intended for explicit analyses in which the time step is too small, and constructing a
coarser mesh for ECM is unfeasible.

Explicit only
POD is an experimental analysis technique.

13.1 Time Step Control Commands

The larger the time step is, the greater the mass scaling. Part of the Cylinder With Legs test input
file invokes POD and controls the way that it works.

BEGIN PARAMETERS PRESTO REGION
#USER TIME STEP = 1.2e-08

END PARAMETERS PRESTO REGION

BEGIN PROPER ORTHOGONAL DECOMPOSITION
NUMBER OF POD MODES = 21
SNAPSHOTS INTERVAL = 405
POD MODES COMPUTATION TIME STEP = 1.e-4
ENERGY PERCENTAGE = 99.999
POD FILTER = On
MODE REFRESH = Off
#USER FILTER TIME STEP = 1.2327e-08
USER FILTER TIME STEP = 6.1635e-08 #5X

END PROPER ORTHOGONAL DECOMPOSITION

The USER TIME STEP overrides the element time step, including any increase in the time step
due to POD.

The initialization needs the NUMBER OF POD MODES for post-processing. It is the number of
fields to allocate that will store POD modes. The way that POD is set up at this time, this is also
the number of snapshots and the number of eigenvalue eigenvector pairs.

SNAPSHOTS INTERVAL is the number of time steps taken between snapshots used to build the
correlation matrix. It is not the number of time steps between adding a POD vector.

POD MODES COMPUTATION TIME STEP is the time at which Adagio POD is activated.
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ENERGY PERCENTAGE is percentage that the sum of the eigenvalues used for the ECM/POD
run accounts for with respect to the sum of the total eigenvalue spectrum. It is related to the
kinetic energy of the system, but is not the ECM energy percentage [10].

POD FILTER activates the high frequency mass scaling. If OFF, then the simulation is
equivalent to a simulation without ECM/POD.

MODE REFRESH This refreshes the number of POD modes throughout the simulation.

USER FILTER TIME STEP This is the user defined time step.

In theory the Lanczos algorithm provides the time step, but this has not been implemented.

The Plastic Cylinder test of POD activates the MODE REFRESH.

MODE REFRESH=ON

Snapshots are stored throughout the simulation. At every POD MODES COMPUTATION TIME
STEP, 1e-4 seconds here, the POD modes are updated using the new information.
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14 Conforming Reproducing Kernel Method

Warning: The Conforming Reproducing Kernel method is a beta capability and is still in
active development.

14.1 Overview

The Conforming Reproducing Kernel (CRK) method uses ideas from meshfree methods, such as
the reproducing kernel particle method (RKPM), but uses a mesh to provide boundary
information and a structure for domain integration [14], [13]]. The goal of CRK is to provide the
advantages of meshfree methods (robustness in large deformation, greatly reduced sensitivity to
discretization quality) while overcoming some of the drawbacks (solution quality near convex
boundaries or material interfaces, enforcement of essential boundary conditions, computational
efficiency, etc.). CRK uses robust integration techniques for nearly incompressible materials
[[16]] and is being used to explore bond-based material failure methodologies [[13].

The domain of the CRK kernels are defined by “stars” of elements surrounding a given node.
Kernel functions are defined on the stars and then subject to the reproducing conditions to form a
basis for the CRK formulation. Examples kernel supports include one-star, two-star and
spherical-star. The one-star kernel includes all the elements attached to a node. For tetrahedral
elements, the one-star kernel recovers linear finite element shape functions after enforcing linear
reproducing conditions. The two-star includes the one-star plus an additional ring of elements (all
the elements attached to the one-star). The spherical-star uses all the elements fully or partially
contained in a ball about the node, providing the lowest discretization sensitivity of these kernel
shapes. All kernel shapes are modified to conform to essential boundaries and material interfaces.
Kernel values, and thus shape functions are forced to zero at these locations for nodes that are not
on the boundary (i.e., the functions “conform” to the boundary). This results in simple essential
boundary condition enforcement and greatly improved solution quality near these locations when
compared to RKPM or other common meshfree methods where kernel and shape functions
overlap boundaries and interfaces.

Domain integration is accomplished using strain-smoothing techniques [9]]. Derivatives are
consistently approximated using integration-cell boundary integrals of the field as opposed to
direct derivative evaluation at Gaussian quadrature points, as is done in most finite element
methods. The strain-smoothing method has proven to be robust for large deformation and an
efficient way to integrate consistently. However, as with finite elements and Gaussian quadrature,
nearly incompressible materials require additional considerations to avoid displacement and
pressure instabilities. CRK uses a sub-cell strain-smoothing approach in an F framework to
handle the near-incompressibility constraints [[16]. An integration cell is represented as a
collection of sub-cells. Each sub-cell provides a unique deviatoric portion of the deformation
gradient but the volumetric portion is the volume weighted average of the all the sub-cells in the
cell. Appropriate balancing of the number of cells, sub-cells and nodal degrees-of-freedom are
used to provide solutions that are stable in both pressure and displacement.
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CRK supports both hexahedral and tetrahedral meshes in general. Tetrahedral meshes are typically
preferred due to the relative ease of meshing. Many features are tailored to tetrahedral inputs.

14.2 Usage Guidelines

The following block command defines a CRK SECTION.

# Within Sierra scope...
BEGIN CRK SECTION <string>crk_name

# Commands controlling approximation properties
SHAPE FUNCTION TYPE = SPHERICAL|SPHERICAL_SURFACE_KRONECKER|

TWO_STAR|LINEAR_TET (SPHERICAL)
SUPPORT SIZE = <real>support_size (1.1)
SUPPORT SIZE TYPE = RELATIVE_LOCAL|RELATIVE_GLOBAL|

PHYSICAL (RELATIVE_LOCAL)
BLOCK CONFORMING = ON|OFF (ON)

# Commands controlling numerical integration
FORMULATION = ELEMENT|NODAL_FROM_THEX|TET_FROM_THEX (ELEMENT)
NUMBER OF INTEGRATION SUBCELLS = <int>num_sub_cells (1)

# Controls which stress-strain conjugate pairs to use
# ADAGIO uses a Cauchy-stress/rate-of-deformation conjugate
# LOGARITHMIC uses Hencky strain/”Hencky” stress
STRAIN MEASURE = ADAGIO|LOGARITHMIC (ADAGIO)

# Controls when post processing occurs for performance
POST PROCESS EVERY STEP = FALSE|TRUE (TRUE)

# Creates face entities to apply contact to. Required when
# using Dash contact with CRK.
CREATE CONTACT FACES = ON|OFF (OFF)

# Commands controlling bond-based failure modeling in CRK
FAILURE METHOD = BOND|NONE (NONE)
FAILURE INDEX = <integer>failure_index
FAILURE CRITERION = <real>bond_failure_criterion
BOND OPENING DISPLACEMENT = <real>bond_opening_displacement
BOND SECONDARY CRITERION = <real>bond_secondary_criterion
SHOW BONDS = ON|OFF (OFF)

# Controls which nodes are DOFs in the model
# (for nearly-incompressible media)
THEX ACTIVE NODES = NODES|EDGES|FACES|CENTROIDS (NODES)

END [CRK SECTION <string>crk_name]
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The SHAPE FUNCTION TYPE, SUPPORT SIZE SUPPORT SIZE TYPE, and BLOCK
CONFORMING options control the approximation properties of the CRK formulation.

The command SHAPE_FUNCTION_TYPE determines the kernel shape used in the CRK
analysis. The option SPHERICAL is for the spherical-star where the elements that are partially or
fully contained within a ball are included in the support. Similarly, the
SPHERICAL_SURFACE_KRONECKER uses spherical-star kernels for the interior of the domain
but with the support restricted to a one-star at surfaces, giving the same shape functions as a linear
tetrahedral finite element on the surface and thus possessing the Kronecker delta property at these
locations. The option TWO_STAR uses kernels with a two-star kernel definition. Finally, the
option LINEAR_TET, gives linear tetrahedral finite element shape functions, equivalent to using
a one-star kernel on a tetrahedral mesh.

Warning: The option SHAPE FUNCTION TYPE = TWO_STAR is only compatible with
FORMULATION = ELEMENT described below. Additionally, the input mesh must be a non
thex, tetrahedral topology.

The commands SUPPORT SIZE and SUPPORT SIZE TYPE control the support size and are
only valid for SHAPE FUNCTION TYPE = SPHERICAL or
SPHERICAL_SURFACE_KRONECKER. SUPPORT SIZE TYPE dictates whether the size is
relative to the maximum length of attached edges (RELATIVE_LOCAL), relative to the global
max element edge length (RELATIVE_GLOBAL), or absolute (PHYSICAL). The command
SUPPORT SIZE sets the absolute or relative support size. Relative support sizes near but greater
than 1 are recommended.

The command BLOCK CONFORMING = ON|OFF provides the option to make the kernel
functions to conform to block boundaries or not. Non-conforming will give a behavior similar to
traditional meshfree methods.

The command FORMULATION determines which type of numerical integration should be
performed and supports three options. The option ELEMENT integrates using the elements of the
input mesh as the strain-smoothing domains. NODAL_FROM_THEX specifies that nodal
integration/strain-smoothing domains should be used and requires tetrahedral elements that are
subdivided beforehand into hexahedral elements using the thex command in Cubit. The nodal
integration domains are formed by aggregating all of the sub-tet hex elements connected to each
node to form the barycentric dual, referred to as an integration “cell.” This results in the SCNI
strategy [9]. The option TET_FROM_THEX integrates over the original tetrahedra before
subdivision. For the latter two options, the sub-tet hex elements can be used for sub-cells in the F
integration technique as described in Section 14.2.2.

If NODAL_FROM_THEX or TET_FROM_THEX are specified above, the nodes in the CRK domain
will be divided into an “active” group and an “inactive” group. The “active” group will be the
DOF-carrying nodes and usually represents the original tet nodes before the thex command is
issued in Cubit. The “inactive” group will contain all other nodes which are effectively evaluation
points used to setup the nodal integration domains used in CRK. These complementary sets may
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be adjusted using the THEX ACTIVE NODES command as described in Section 14.2.2.

Given its nonlocal nature, the CRK method typically lacks the Kronecker delta property and thus
incurs additional post-processing steps for output purposes. The POST PROCESS EVERY
STEP command controls whether post-processing procedures occur every step (TRUE) or during
output steps only (FALSE). This improves overall performance as these computations are not
necessary for the internal force routine and will decrease the total runtime if set to FALSE
(contingent on the output frequency). However, derived output or user routines which depend on
CRK variables on every step will not function correctly as a result. As such, the command POST
PROCESS EVERY STEP = FALSE should only be used when user output, user functions, and
other derived variables do not depend on CRK fields. The default is TRUE.

The command STRAIN MEASURE = ADAGIO|LOGARITHMIC controls which strain to use
when evaluating the constitutive law. The default is ADAGIO which uses the rate of deformation
(the default in Thecode). The option LOGARITHMIC uses the logarithmic strain, or Hencky
strain, and its corresponding conjugate stress instead.

14.2.1 Contact

CRK currently supports Dash contact but the setup will be slightly different depending on
whether the command FORMULATION is set to ELEMENT versus NODAL_FROM_THEX or
TET_FROM_THEX. For both cases, the shape function type must be either
SPHERICAL_SURFACE_KRONECKER or LINEAR_TET.

In the case that FORMULATION = ELEMENT, every node in the mesh will be labeled as an
“active” node and Dash contact may be setup as if the simulation was using normal elements
without any additional modification as given in the Sierra/SM User Manual.

In the case of FORMULATION = NODAL_FROM_THEX or TET_FROM_THEX, the CRK
surface must be manually created using the command CREATE CONTACT FACES = ON. This
command will skin the CRK block(s) and create a new block with the name
<block_name>_contact_surface where <block_name> is the original block name.
This new surface is necessary to setup CRK shape function weights and area densities that Dash
requires. These weights spread the contact forces from inactive nodes to active ones associated
with the problem unknowns. Once this surface is created, it may be referenced within the contact
definition as, for example

# Within Sierra scope...
BEGIN CRK SECTION crk_section

SHAPE FUNCTION TYPE = SPHERICAL_SURFACE_KRONECKER
FORMULATION = NODAL_FROM_THEX
CREATE CONTACT FACES = ON

END CRK SECTION crk_section
...
# Within Region scope...
BEGIN CONTACT DEFINITION collide

(continues on next page)
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(continued from previous page)
SEARCH = Dash
CONTACT SURFACE crk_surface CONTAINS block_1_contact_surface
CONTACT SURFACE block_2 CONTAINS block_2

BEGIN INTERACTION DEFAULTS
GENERAL CONTACT = ON
FRICTION MODEL = FRICTIONLESS
INTERACTION BEHAVIOR = SLIDING

END INTERACTION DEFAULTS
END CONTACT DEFINITION collide

where in the above block_1 is the CRK block and block_2 is an FEM block. Dash will then
take the information present on the CRK surface including shape function values and weights in
order to create the contact representation.

14.2.2 Advanced integration methods

By default, the F integration technique [16] is activated if the command FORMULATION =
NODAL_FROM_THEX or TET_FROM_THEX and if the NUMBER OF INTEGRATION
SUBCELLS is greater than one. In this case, the sub-tet hex elements will be used for sub-cells in
the F method for improving performance with nearly incompressible materials. In this context a
“sub-cell” is a collection of sub-tet hex elements which share an original tet node and represents a
deviatoric domain of the integration cell. The number of sub-cells is specified with NUMBER OF
INTEGRATION CELLS. Elements will be grouped into sub-cells using a k-means clustering
algorithm if NUMBER OF INTEGRATION CELLS is less than the number of sub-tet hex
elements for an integration cell. Each sub-tet hex element will be used as a sub-cell if NUMBER
OF INTEGRATION CELLS is equal to or greater than the available elements for an integration
cell. The volumetric portion of the deformation gradient is calculated over the cell. These are the
nodal or tetrahedral domains for the NODAL_FROM_THEX and TET_FROM_THEX options,
respectively.

The THEX ACTIVE NODES command controls which nodes should be active and defaults to
NODES. This command is only valid with FORMULATION = NODAL_FROM_THEX or
TET_FROM_THEX where the input mesh has been subdivided using the thex command in cubit.
The thex command splits every tetrahedral element into four hexahedral elements, requiring the
creation of nodes at the edge and face midpoints and the centroid of the tetrahedron. Any of the
nodes in the resulting mesh can be activated (have degrees-of-freedom associated with them). The
option NODES activates the nodes that were in the original tet mesh. The options EDGES, FACES
and CENTROIDS activates the nodes that the thex process created on the input tetrahedral
edges, faces and centroids, respectively. This option is useful for specifying additional “bubble”
DOFs when using advanced integration methods such as F [16].
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14.2.3 Bond-based fracture

Warning: The bond-based fracture method is only compatible with the command
FORMULATION = NODAL_FROM_THEX.

CRK currently supports an experimental fracture formulation known as bond-based fracture. This
formulation creates a “bond” between each node-node pair and maintains a damage variable
associated with the bond which degrades the incremental deformation gradient and resulting
internal force [13]. The failure criterion is specified using the FAILURE INDEX command to
specify the emph{0-based} state variable index of the material model in use along with FAILURE
CRITERION command which specifies the threshold the state variable must exceed before the
node is considered “damaged.” When both nodes of a bond have reached the criterion, the bond is
marked as damaged and begins to degrade linearly over a distance given by the BOND OPENING
DISPLACEMENT command. This bond opening displacement is given by the relative
displacement between the two nodes (in an abuse of terminology, the “stretch” of the bond).

The criterion above requires both nodes of a bond to be flagged as “damaged” before the bond can
begin degrading. An alternative criterion may be specified via the command BOND SECONDARY
CRITERION = <real>𝑢second. For any bond that fails due to the first criterion, this option
creates a failure plane passing through that bond’s midpoint normal to the bond. Any bond which
shares a node with the first failed bond and intersects the failure plane may also fail due to a
second criterion given by

𝑢𝑎𝑏 − 𝑢̄𝑎𝑏 ≥ 𝑢second,

where 𝑢𝑎𝑏 = ‖u𝑏 − u𝑎‖ is the relative displacement between nodes 𝑎 and 𝑏, and 𝑢̄𝑎𝑏 is the relative
displacement at the time one of the bond’s nodes becomes damaged due to the criterion given by
FAILURE CRITERION and FAILURE INDEX described above. The bond will then begin to
degrade over the BOND OPENING DISPLACEMENT as before.

Warning: The bonds may be viewed using the SHOW BONDS = ON command. However,
this currently only works on a single processor.

14.2.4 Output

Note, CRK shape functions in general do not possess the Kronecker delta property, i.e.

𝑁𝐼 (𝑥𝐽) ≠ 𝛿𝐼𝐽 .

As such, nodal variables such as displacement and velocity are not true displacements
or velocities but rather the emph{generalized coefficients} of those fields. In addition, other
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quantities of interest will also be generalized (e.g. mass, force, etc.). These generalized values
must be converted to their physical counterparts by interpolating these coefficients with their
respective shape functions. These quantities are stored in the variables
physical_displacement and physical_velocity. As a workaround, one can provide
an alternative name in the results output to switch the meaning of displacement and
physical_displacement as follows:

# Within Region scope...
BEGIN RESULTS OUTPUT my_output

...
NODAL VARIABLES = physical_displacement as displacement
NODAL VARIABLES = displacement as gen_displacement
...

END RESULTS OUTPUT my_output

which will output the displacement in a form amenable to Paraview or Ensight.

Warning: If an analysis contains both FEM and CRK formulations, then the
displacement and velocity fields will be generalized for the CRK blocks and physical
for the FEM blocks. Since physical_displacement does not exist in the FEM portions,
the workaround mentioned above will output zero physical displacements for those blocks.

The output variables available for CRK are given below in Table 14.1 and Table 14.2 below.
Bond-based fracture specific variables are given in Table 14.3.

Table 14.1 Nodal Variables for the CRK Formulation
Name Type Comments
physi-
cal_displacement

Vec-
tor_3D

The true displacement predicted by CRK

physi-
cal_velocity

Vec-
tor_3D

The true velocity predicted by CRK

displacement Vec-
tor_3D

The generalized displacement predicted by CRK, i.e. the displacement coefficients

velocity Vec-
tor_3D

The generalized velocity predicted by CRK, i.e. the velocity coefficients

nodal_status Integer Indicates whether a node is active (carrying a DOF) or inactive
max_edge_length Real Maximum edge length connected to the node of the original, non thex mesh
lo-
cal_support_size

Real Local support size radius when SHAPE FUNCTION TYPE is one of SPHERICAL or SPHERI-
CAL_SURFACE_KRONECKER

num_neighbors Integer Number of active neighbors which have shape function value at the node
crk_contact_mass Real Generalized mass scattered to inactive nodes for Dash purposes

Table 14.2 Element Variables for the CRK Formulation
Name Type Comments
cell_id Integer The ID of the CRK strain smoothing cell
sub_cell_id Integer The ID of the CRK strain smoothing sub-cell
cell_volume Real The volume of the smoothing cell
sub_cell_volume Real The volume of the smoothing sub-cell

Table 14.3 Output Variables for Bond-Based FeFpmodelnameracture
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Name Type Com-
ments

node_damage Nodal In-
te-
ger

Flag indicating if the failure criterion is met at a given node’s material point

dam-
age_fraction

Ele-
ment

Real Fraction of damaged bonds over total bonds associated with an integration cell

bond_degradationEle-
ment

Real Scalar between 0 and 1 to indicate level of damage in the bond where 1 indicates no damage and 0
indicates fully damaged (only available when SHOW BONDS = ON)
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15 Material Models

This chapter describes materials available in Sierra that are currently under development.

15.1 Elastic Orthotropic Model

BEGIN PARAMETERS FOR MODEL ELASTIC_ORTHOTROPIC
#
# Elastic constants
YOUNGS MODULUS = <real>youngs_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
BULK MODULUS = <real>bulk_modulus
LAMBDA = <real>lambda
TWO MU = <real>two_mu
#
# required parameters
E11 = <real>e11
E22 = <real>e22
E33 = <real>e33
NU12 = <real>nu12
NU13 = <real>nu13
NU23 = <real>nu23
G12 = <real>g12
G13 = <real>g13
G23 = <real>g23
COORDINATE SYSTEM = <string>coordinate_system_name
#
# optional parameters
ANGLE_1_ABSCISSA = <real>angle_1_abscissa
ANGLE_2_ABSCISSA = <real>angle_2_abscissa
ANGLE_3_ABSCISSA = <real>angle_3_abscissa
ROTATION_AXIS_1 = <real>rotation_axis_1
ROTATION_AXIS_2 = <real>rotation_axis_2
ROTATION_AXIS_3 = <real>rotation_axis_3
ANGLE_1_FUNCTION = <string>angle_1_function_name
ANGLE_2_FUNCTION = <string>angle_2_function_name
ANGLE_3_FUNCTION = <string>angle_3_function_name
THERMAL_STRAIN_11_FUNCTION =
<string>thermal_strain_11_function_name

THERMAL_STRAIN_22_FUNCTION =
<string>thermal_strain_22_function_name

THERMAL_STRAIN_33_FUNCTION =
<string>thermal_strain_33_function_name

END [PARAMETERS FOR MODEL ELASTIC_ORTHOTROPIC]
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The elastic orthotropic model is a Kirchhoff linear elastic constitutive relation that is useful for
modeling polymer matrix composite structures undergoing small strains. Required inputs are

• two of the five general elastic material constants,

• directional properties, and

• the coordinate system.

The following is a brief description of each input.

• See the Sierra/SM User Manual for more information on elastic constants input.

• In each material direction, moduli 𝐸11, 𝐸22, and 𝐸33 are defined with the E11, E22, and
E33 command lines, Poisson’s ratios 𝜈12, 𝜈13, and 𝜈23 are given by the NU12, NU13, and
NU23 command lines, and shear moduli 𝐺12, 𝐺13, and 𝐺23 are defined using command
lines G12, G13, and G23.

• Principal material direction specification requires a user specified coordinate system given
by the COORDINATE SYSTEM command line, as detailed in the Sierra/SM User Manual.
The material orientation may then be specified using one of the following approaches:

– Three spatially varying, ordered Euler angle functions are given in terms of global
coordinates (X, Y, Z = 1, 2, 3) for rotations about a corresponding local axis:

∗ The rotation angle function abscissas 𝑥1, 𝑥2, and 𝑥3, corresponding to the global
system (X, Y, Z) = (1, 2, 3), are defined with the ANGLE_1_ABSCISSA,
ANGLE_2_ABSCISSA, and ANGLE_3_ABSCISSA command lines,
respectively.

∗ The axes of rotation 𝑖, 𝑗 , and 𝑘 are defined with the ROTATION_AXIS_1,
ROTATION_AXIS_2, and ROTATION_AXIS_3 command lines, respectively.

∗ The rotation angle functions 𝜃𝑖 (𝑥1), 𝜃 𝑗 (𝑥2), and 𝜃𝑘 (𝑥3) are defined with the
ANGLE_1_FUNCTION, ANGLE_2_FUNCTION, and ANGLE_3_FUNCTION
command lines, respectively. Angles are specified in degrees. The Sierra/SM
User Manual provides additional details about defining functions.

The rotation axis and angle are applied successively in order (1, 2, 3), or (X, Y, Z);
that is, each sequential Euler angle rotation defines a new coordinate system in which
the subsequent rotation axis and angle are defined.

– Alternatively, the angles and axes may be defined directly at each element integration
point using INITIAL CONDITION command blocks, as described in the Sierra/SM
User Manual. Angles may be specified in degrees using the variables ANGLE_1,
ANGLE_2, and ANGLE_3, while axes are given by AXIS_1, AXIS_2, and AXIS_3.

– A final option is to initialize the rotation tensor to correspond to the local coordinate
system defined in the COORDINATE SYSTEM command line.

The resulting material directions may be visualized by requesting the element fields
MATERIAL_DIRECTION_1, MATERIAL_DIRECTION_2, and
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MATERIAL_DIRECTION_3 in the results output block.

• Functions to describe normal thermal engineering strains along the principal material
directions are given by the THERMAL_STRAIN_11_FUNCTION,
THERMAL_STRAIN_22_FUNCTION, and THERMAL_STRAIN_33_FUNCTION
command lines. See the Sierra/SM User Manual for guidance on defining functions.

Warning: The ELASTIC_ORTHOTROPIC model has not been tested in conjunction with
the control stiffness implicit solver block.

Output variables available for this model are listed in Table 15.1.

Table 15.1 State Variables for ELASTIC ORTHOTROPIC ModelIndex Name Description
1 Q_XX X component of the material 11 unit vector
2 Q_YY Y component of the material 22 unit vector
3 Q_ZZ Z component of the material 33 unit vector
4 Q_XY Y component of the material 11 unit vector
5 Q_YZ Z component of the material 22 unit vector
6 Q_ZX X component of the material 33 unit vector
7 Q_YX X component of the material 22 unit vector
8 Q_ZY Y component of the material 33 unit vector
9 Q_XZ Z component of the material 11 unit vector
10 ANGLE_1 Rotation angle about axis 1 (degrees)
11 ANGLE_2 Rotation angle about axis 2 (degrees)
12 ANGLE_3 Rotation angle about axis 3 (degrees)
13 AXIS_1 First axis of rotation
14 AXIS_2 Second axis of rotation
15 AXIS_3 Third axis of rotation
16 TH_STR_XX Thermal stretch ratio in material 11 direction
17 TH_STR_YY Thermal stretch ratio in material 22 direction
18 TH_STR_ZZ Thermal stretch ratio in material 33 direction
19 MAT_STRAIN_XX Green Lagrange strain in material 11 direction
20 MAT_STRAIN_YY Green Lagrange strain in material 22 direction
21 MAT_STRAIN_ZZ Green Lagrange strain in material 33 direction
22 MAT_STRAIN_XY Green Lagrange strain in material 12 direction
23 MAT_STRAIN_YZ Green Lagrange strain in material 23 direction
24 MAT_STRAIN_ZX Green Lagrange strain in material 31 direction
25 MAT_STRESS_XX 2nd P-K stress in material 11 direction
26 MAT_STRESS_YY 2nd P-K stress in material 22 direction
27 MAT_STRESS_ZZ 2nd P-K stress in material 33 direction
28 MAT_STRESS_XY 2nd P-K stress in material 12 direction
29 MAT_STRESS_YZ 2nd P-K stress in material 23 direction
30 MAT_STRESS_ZX 2nd P-K stress in material 31 direction
31 MAT_LOG_STRAIN_XX Log (Hencky) strain in material 11 direction
32 MAT_LOG_STRAIN_YY Log (Hencky) strain in material 22 direction
33 MAT_LOG_STRAIN_ZZ Log (Hencky) strain in material 33 direction
34 MAT_LOG_STRAIN_XY Log (Hencky) strain in material 12 direction
35 MAT_LOG_STRAIN_YZ Log (Hencky) strain in material 23 direction
36 MAT_LOG_STRAIN_ZX Log (Hencky) strain in material 31 direction
37 MAT_CAUCHY_STRESS_XX Cauchy stress in material 11 direction
38 MAT_CAUCHY_STRESS_YY Cauchy stress in material 22 direction
39 MAT_CAUCHY_STRESS_ZZ Cauchy stress in material 33 direction
40 MAT_CAUCHY_STRESS_XY Cauchy stress in material 12 direction
41 MAT_CAUCHY_STRESS_YZ Cauchy stress in material 23 direction
42 MAT_CAUCHY_STRESS_ZX Cauchy stress in material 31 direction
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15.2 Elastic Orthotropic Damage Model

BEGIN PARAMETERS FOR MODEL ELASTIC_ORTHOTROPIC_DAMAGE
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
#
# Required parameters
#
E11 = <real>
E22 = <real>
E33 = <real>
NU12 = <real>
NU13 = <real>
NU23 = <real>
G12 = <real>
G13 = <real>
G23 = <real>
ALPHAD = <real>
BETAD = <real>
GAMMA0 = <real>
J1 = <real> j1
J2 = <real> j2
J3 = <real> j3
CN11 = <real> cn11
CN22 = <real> cn22
CN33 = <real> cn33
CS12 = <real> cs12
CS13 = <real> cs13
CS23 = <real> cs23
COORDINATE SYSTEM = <string> coordinate_system_name
#
# Optional parameters
#
ANGLE_1_ABSCISSA = <real>angle_1_abscissa
ANGLE_2_ABSCISSA = <real>angle_2_abscissa
ANGLE_3_ABSCISSA = <real>angle_3_abscissa
ROTATION_AXIS_1 = <real>rotation_axis_1

(continues on next page)
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(continued from previous page)
ROTATION_AXIS_2 = <real>rotation_axis_2
ROTATION_AXIS_3 = <real>rotation_axis_3
ANGLE_1_FUNCTION = <string>angle_1_function_name
ANGLE_2_FUNCTION = <string>angle_2_function_name
ANGLE_3_FUNCTION = <string>angle_3_function_name
E11 FUNCTION = <string>func_name
E22 FUNCTION = <string>func_name
E33 FUNCTION = <string>func_name
NU12 FUNCTION = <string>func_name
NU13 FUNCTION = <string>func_name
NU23 FUNCTION = <string>func_name
G12 FUNCTION = <string>func_name
G13 FUNCTION = <string>func_name
G23 FUNCTION = <string>func_name

END [PARAMETERS FOR MODEL ELASTIC_ORTHOTROPIC_DAMAGE]

The elastic orthotropic damage model is an empirically based constitutive relation that is useful
for modeling polymer matrix composite structures. Refer to SAND2013-7257 for a full
description of the material model theory and usage.

The command block for an elastic orthotropic damage material starts with the line:

BEGIN PARAMETERS FOR MODEL ELASTIC_ORTHOTROPIC_DAMAGE

and terminates with the line:

END [PARAMETERS FOR MODEL ELASTIC_ORTHOTROPIC_DAMAGE]

In the above command block, the required inputs are: two of the five general elastic material
constants, directional properties, and the coordinate system. The following is a brief description
of each input.

• The density of the material is defined with the DENSITY command line.

• The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT
command line.

• Any two of the following elastic constants are required:

-[textbullet] Young’s modulus is defined with the YOUNGS MODULUS command line.
-[textbullet] Poisson’s ratio is defined with the POISSONS RATIO command line.
-[textbullet] The bulk modulus is defined with the BULK MODULUS command line.
-[textbullet] The shear modulus is defined with the SHEAR MODULUS command line.
-[textbullet] Lambda is defined with the LAMBDA command line.

• The directional moduli 𝐸11, 𝐸22, and 𝐸33 are defined with the E11, E22, and E33
command lines.
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• The directional Poisson’s ratios 𝜈12, 𝜈13, and 𝜈23 are defined with the NU12, NU13, and
NU23 command lines.

• The directional shear moduli 𝐺12, 𝐺13, and 𝐺23 are defined with the G12, G13, and G23
command lines.

• The specification of the principal material directions begins with the selection of a user
specified coordinate system given by the COORDINATE SYSTEM command line (see
below).

• The damage surface evolution terms are given with the ALPHAD and BETAD command
lines.

• The initial damage threshold is defined with the GAMMA0 command line.

• The directional damage surface coefficients with the J1, J2 and J3 command lines.

• The directional normal crack closure coefficients defined with the CN11, CN22 and CN33
command lines.

• The directional shear crack closure coefficients are defined with the CS12, CS13 and
CS23 command lines.

• For material orientation definition instructions see the Sierra/SM User Manual.

Warning: The ELASTIC_ORTHOTROPIC_DAMAGE model has not been tested in
conjunction with the control stiffness implicit solver block.

15.3 Elastic Orthotropic Fail Model

BEGIN PARAMETERS FOR MODEL ELASTIC_ORTHOTROPIC_FAIL
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>
#
# Required parameters
#
E11 = <real>e11
E22 = <real>e22
E33 = <real>e33

(continues on next page)
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NU12 = <real>nu12
NU13 = <real>nu13
NU23 = <real>nu23
G12 = <real>g12
G13 = <real>g13
G23 = <real>g23
#
COORDINATE SYSTEM = <string>coordinate_system_name
#
# Normal thresholds
#
TENSILE_MATRIX_STRENGTH_11 = <real>f1mp
COMPRESSIVE_MATRIX_STRENGTH_11 = <real>f1mn
TENSILE_FIBER_STRENGTH_11 = <real>f1fp
COMPRESSIVE_FIBER_STRENGTH_11 = <real>f1fn
TENSILE_MATRIX_STRENGTH_22 = <real>f2mp
COMPRESSIVE_MATRIX_STRENGTH_22 = <real>f2mn
TENSILE_FIBER_STRENGTH_22 = <real>f2fp
COMPRESSIVE_FIBER_STRENGTH_22 = <real>f2fn
TENSILE_MATRIX_STRENGTH_33 = <real>f3mp
COMPRESSIVE_MATRIX_STRENGTH_33 = <real>f3mn
TENSILE_FIBER_STRENGTH_33 = <real>f3fp
COMPRESSIVE_FIBER_STRENGTH_33 = <real>f3fn
#
# Shear thresholds
#
SHEAR_MATRIX_STRENGTH_12 = <real>s12m
SHEAR_FIBER_STRENGTH_12 = <real>s12f
SHEAR_MATRIX_STRENGTH_23 = <real>s23m
SHEAR_FIBER_STRENGTH_23 = <real>s23f
SHEAR_MATRIX_STRENGTH_13 = <real>s13m
SHEAR_FIBER_STRENGTH_13 = <real>s13f
#
# Fracture parameters
#
TENSILE_FRACTURE_ENERGY_11 = <real>gi1p
COMPRESSIVE_FRACTURE_ENERGY_11 = <real>gi1n
TENSILE_FRACTURE_ENERGY_22 = <real>gi2p
COMPRESSIVE_FRACTURE_ENERGY_22 = <real>gi2n
TENSILE_FRACTURE_ENERGY_33 = <real>gi3p
COMPRESSIVE_FRACTURE_ENERGY_33 = <real>gi3n
SHEAR_FRACTURE_ENERGY_12 = <real>gii12
SHEAR_FRACTURE_ENERGY_23 = <real>gii23
SHEAR_FRACTURE_ENERGY_13 = <real>gii13
CHARACTERISTIC_LENGTH = <real>l_star

(continues on next page)
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#
# Damage evolution parameters
#
MAXIMUM_COMPRESSIVE_DAMAGE_11 = <real>dmax1n
MAXIMUM_COMPRESSIVE_DAMAGE_22 = <real>dmax2n
MAXIMUM_COMPRESSIVE_DAMAGE_33 = <real>dmax3n
COMPRESSION_COUPLING_FACTOR_11 = <real>a1pn
COMPRESSION_COUPLING_FACTOR_22 = <real>a2pn
COMPRESSION_COUPLING_FACTOR_33 = <real>a3pn
TENSILE_DAMAGE_MODULUS_11 = <real>k1p
COMPRESSIVE_DAMAGE_MODULUS_11 = <real>k1n
TENSILE_DAMAGE_MODULUS_22 = <real>k2p
COMPRESSIVE_DAMAGE_MODULUS_22 = <real>k2n
TENSILE_DAMAGE_MODULUS_33 = <real>k3p
COMPRESSIVE_DAMAGE_MODULUS_33 = <real>k3n
SHEAR_DAMAGE_MODULUS_12 = <real>k12
SHEAR_DAMAGE_MODULUS_23 = <real>k23
SHEAR_DAMAGE_MODULUS_13 = <real>k13
HARDENING_EXPONENT_11 = <real>n11
HARDENING_EXPONENT_22 = <real>n22
HARDENING_EXPONENT_33 = <real>n33
HARDENING_EXPONENT_12 = <real>n12
HARDENING_EXPONENT_23 = <real>n23
HARDENING_EXPONENT_13 = <real>n13
#
# Optional parameters follow
# Orientation Parameters
#
ANGLE_1_ABSCISSA = <real>angle_1_abscissa
ANGLE_2_ABSCISSA = <real>angle_2_abscissa
ANGLE_3_ABSCISSA = <real>angle_3_abscissa
ROTATION_AXIS_1 = <real>rotation_axis_1
ROTATION_AXIS_2 = <real>rotation_axis_2
ROTATION_AXIS_3 = <real>rotation_axis_3
ANGLE_1_FUNCTION = <string>angle_1_function_name
ANGLE_2_FUNCTION = <string>angle_2_function_name
ANGLE_3_FUNCTION = <string>angle_3_function_name
#
# Coefficient of thermal expansion functions
#
THERMAL_STRAIN_11_FUNCTION = <string>cte11_function_name
THERMAL_STRAIN_22_FUNCTION = <string>cte22_function_name
THERMAL_STRAIN_33_FUNCTION = <string>cte33_function_name
#
# Temperature dependent property functions

(continues on next page)
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#
E11_FUNCTION = <string>e11_function_name
E22_FUNCTION = <string>e22_function_name
E33_FUNCTION = <string>e33_function_name
NU12_FUNCTION = <string>nu12_function_name
NU23_FUNCTION = <string>nu23_function_name
NU13_FUNCTION = <string>nu13_function_name
G12_FUNCTION = <string>g12_function_name
G23_FUNCTION = <string>g23_function_name
G13_FUNCTION = <string>g13_function_name
#
# Strain rate dependent parameters
#
REFERENCE_STRAIN_RATE = <real>epsdot0
ELASTIC_RATE_COEFFICIENT_11 = <real>ce11
ELASTIC_RATE_COEFFICIENT_22 = <real>ce22
ELASTIC_RATE_COEFFICIENT_33 = <real>ce33
ELASTIC_RATE_COEFFICIENT_12 = <real>ce12
ELASTIC_RATE_COEFFICIENT_23 = <real>ce23
ELASTIC_RATE_COEFFICIENT_13 = <real>ce13
FIBER_STRENGTH_RATE_COEFFICIENT_11 = <real>cf11
FIBER_STRENGTH_RATE_COEFFICIENT_22 = <real>cf22
FIBER_STRENGTH_RATE_COEFFICIENT_33 = <real>cf33
FIBER_STRENGTH_RATE_COEFFICIENT_12 = <real>cf12
FIBER_STRENGTH_RATE_COEFFICIENT_23 = <real>cf23
FIBER_STRENGTH_RATE_COEFFICIENT_13 = <real>cf13
MATRIX_STRENGTH_RATE_COEFFICIENT_11 = <real>cm11
MATRIX_STRENGTH_RATE_COEFFICIENT_22 = <real>cm22
MATRIX_STRENGTH_RATE_COEFFICIENT_33 = <real>cm33
MATRIX_STRENGTH_RATE_COEFFICIENT_12 = <real>cm12
MATRIX_STRENGTH_RATE_COEFFICIENT_23 = <real>cm23
MATRIX_STRENGTH_RATE_COEFFICIENT_13 = <real>cm13

END [PARAMETERS FOR MODEL ELASTIC_ORTHOTROPIC_FAIL]

The elastic orthotropic fail model is an empirically based constitutive relation that is useful for
modeling polymer matrix composite structures. Refer to the SAND report by English [11] for a
full description of the material model theory and usage.

This model has identical input requirements to the Elastic Orthotropic Model detailed in Section
15.1, supplemented with additional parameters for failure modeling. The following is a brief
description of additional inputs required for the Elastic Orthotropic Fail Model.

• The strengths for each component of damage are given by the commands:

# Normal thresholds
TENSILE_MATRIX_STRENGTH_11 = <real>f1mp

(continues on next page)
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COMPRESSIVE_MATRIX_STRENGTH_11 = <real>f1mn
TENSILE_FIBER_STRENGTH_11 = <real>f1fp
COMPRESSIVE_FIBER_STRENGTH_11 = <real>f1fn
TENSILE_MATRIX_STRENGTH_22 = <real>f2mp
COMPRESSIVE_MATRIX_STRENGTH_22 = <real>f2mn
TENSILE_FIBER_STRENGTH_22 = <real>f2fp
COMPRESSIVE_FIBER_STRENGTH_22 = <real>f2fn
TENSILE_MATRIX_STRENGTH_33 = <real>f3mp
COMPRESSIVE_MATRIX_STRENGTH_33 = <real>f3mn
TENSILE_FIBER_STRENGTH_33 = <real>f3fp
COMPRESSIVE_FIBER_STRENGTH_33 = <real>f3fn
# Shear thresholds
SHEAR_MATRIX_STRENGTH_12 = <real>s12m
SHEAR_FIBER_STRENGTH_12 = <real>s12f
SHEAR_MATRIX_STRENGTH_23 = <real>s23m
SHEAR_FIBER_STRENGTH_23 = <real>s23f
SHEAR_MATRIX_STRENGTH_13 = <real>s13m
SHEAR_FIBER_STRENGTH_13 = <real>s13f

• The fracture energies (energy per unit area) for each plane of damage are given by the
commands:

# Fracture parameters
TENSILE_FRACTURE_ENERGY_11 = <real>gi1p
COMPRESSIVE_FRACTURE_ENERGY_11 = <real>gi1n
TENSILE_FRACTURE_ENERGY_22 = <real>gi2p
COMPRESSIVE_FRACTURE_ENERGY_22 = <real>gi2n
TENSILE_FRACTURE_ENERGY_33 = <real>gi3p
COMPRESSIVE_FRACTURE_ENERGY_33 = <real>gi3n
SHEAR_FRACTURE_ENERGY_12 = <real>gii12
SHEAR_FRACTURE_ENERGY_23 = <real>gii23
SHEAR_FRACTURE_ENERGY_13 = <real>gii13
CHARACTERISTIC_LENGTH = <real>l_star

The total energy density dissipated (the area under the stress-strain curve) is given by the
fracture energy divided by the characteristic length l_star.

• The maximum allowable damage values under compression on each plane are given by the
commands:

MAXIMUM_COMPRESSIVE_DAMAGE_11 = <real>dmax1n
MAXIMUM_COMPRESSIVE_DAMAGE_22 = <real>dmax2n
MAXIMUM_COMPRESSIVE_DAMAGE_33 = <real>dmax3n

• The proportion of tensile damage translating to compressive damage for each of the
orthotropic planes are given by the commands:
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COMPRESSION_COUPLING_FACTOR_11 = <real>a1pn
COMPRESSION_COUPLING_FACTOR_22 = <real>a2pn
COMPRESSION_COUPLING_FACTOR_33 = <real>a3pn

• The slopes of the matrix mode damage portion of the stress-strain curve, or damage moduli
terms, are given by the commands:

TENSILE_DAMAGE_MODULUS_11 = <real>k1p
COMPRESSIVE_DAMAGE_MODULUS_11 = <real>k1n
TENSILE_DAMAGE_MODULUS_22 = <real>k2p
COMPRESSIVE_DAMAGE_MODULUS_22 = <real>k2n
TENSILE_DAMAGE_MODULUS_33 = <real>k3p
COMPRESSIVE_DAMAGE_MODULUS_33 = <real>k3n
SHEAR_DAMAGE_MODULUS_12 = <real>k12
SHEAR_DAMAGE_MODULUS_23 = <real>k23
SHEAR_DAMAGE_MODULUS_13 = <real>k13

• Small nonlinearity in the matrix mode damage evolution can be added using the hardening
exponents for each of the orthotropic planes via the commands:

HARDENING_EXPONENT_11 = <real>n11
HARDENING_EXPONENT_22 = <real>n22
HARDENING_EXPONENT_33 = <real>n33
HARDENING_EXPONENT_12 = <real>n12
HARDENING_EXPONENT_23 = <real>n23
HARDENING_EXPONENT_13 = <real>n13

• Strain rate dependence is defined by the commands:

REFERENCE_STRAIN_RATE = <real>epsdot0
ELASTIC_RATE_COEFFICIENT_11 = <real>ce11
ELASTIC_RATE_COEFFICIENT_22 = <real>ce22
ELASTIC_RATE_COEFFICIENT_33 = <real>ce33
ELASTIC_RATE_COEFFICIENT_12 = <real>ce12
ELASTIC_RATE_COEFFICIENT_23 = <real>ce23
ELASTIC_RATE_COEFFICIENT_13 = <real>ce13
FIBER_STRENGTH_RATE_COEFFICIENT_11 = <real>cf11
FIBER_STRENGTH_RATE_COEFFICIENT_22 = <real>cf22
FIBER_STRENGTH_RATE_COEFFICIENT_33 = <real>cf33
FIBER_STRENGTH_RATE_COEFFICIENT_12 = <real>cf12
FIBER_STRENGTH_RATE_COEFFICIENT_23 = <real>cf23
FIBER_STRENGTH_RATE_COEFFICIENT_13 = <real>cf13
MATRIX_STRENGTH_RATE_COEFFICIENT_11 = <real>cm11
MATRIX_STRENGTH_RATE_COEFFICIENT_22 = <real>cm22
MATRIX_STRENGTH_RATE_COEFFICIENT_33 = <real>cm33
MATRIX_STRENGTH_RATE_COEFFICIENT_12 = <real>cm12

(continues on next page)
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MATRIX_STRENGTH_RATE_COEFFICIENT_23 = <real>cm23
MATRIX_STRENGTH_RATE_COEFFICIENT_13 = <real>cm13

The rate dependence is calculated with respect to the reference strain rate epsdot0. The
rate coefficients for the purely empirical rate equation in each material direction are given
for elastic moduli and failure parameters by the scalar values of the elastic rate coefficients
ceij and fiber and matrix strength rate coefficients cfij and cmij.

Warning: The ELASTIC_ORTHOTROPIC_FAIL model has not been tested in conjunction
with the control stiffness implicit solver block.

Output variables available for this model are listed in the Elastic Orthotropic Model in Table 15.1
and Table 15.2.

Table 15.2 Additional State Variables for ELASTIC ORTHOTROPIC FAIL Model.Index Name Description
43 R1MP Damage evolution variable 11, matrix, tension
44 R1FP Damage evolution variable 11, fiber, tension
45 R1MN Damage evolution variable 11, matrix, compression
46 R1FN Damage evolution variable 11, fiber, compression
47 R2MP Damage evolution variable 22, matrix, tension
48 R2FP Damage evolution variable 22, fiber, tension
49 R2MN Damage evolution variable 22, matrix, compression
50 R2FN Damage evolution variable 22, fiber, compression
51 R3MP Damage evolution variable 33, matrix, tension
52 R3FP Damage evolution variable 33, fiber, tension
53 R3MN Damage evolution variable 33, matrix, compression
54 R3FN Damage evolution variable 33, fiber, compression
55 D1MP Normal damage 11, matrix, tension
56 D1FP Normal damage 11, fiber, tension
57 D1MN Normal damage 11, matrix, compression
58 D1FN Normal damage 11, fiber, compression
59 D2MP Normal damage 22, matrix, tension
60 D2FP Normal damage 22, fiber, tension
61 D2MN Normal damage 22, matrix, compression
62 D2FN Normal damage 22, fiber, compression
63 D3MP Normal damage 33, matrix, tension
64 D3FP Normal damage 33, fiber, tension
65 D3MN Normal damage 33, matrix, compression
66 D3FN Normal damage 33, fiber, compression
67 D12M Shear damage 12, matrix
68 D12F Shear damage 12, fiber
69 D23M Shear damage 23, matrix
70 D23F Shear damage 23, fiber
71 D13M Shear damage 13, matrix
72 D13F Shear damage 13, fiber
73 ORTHOTROPIC_DAMAGE_XX Effective and active normal damage 11
74 ORTHOTROPIC_DAMAGE_YY Effective and active normal damage 22
75 ORTHOTROPIC_DAMAGE_ZZ Effective and active normal damage 33
76 ORTHOTROPIC_DAMAGE_XY Effective and active shear damage 12
77 ORTHOTROPIC_DAMAGE_YZ Effective and active shear damage 23
78 ORTHOTROPIC_DAMAGE_ZX Effective and active shear damage 31
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Warning: Strongly rate-dependent models may fare poorly in implicit quasistatic solution. In
implicit analyses the rate term used to evaluate the current load step is the rate seen by the
model in the previous load step. This may cause the solution to oscillate between high- and
low-rate equilibrium states from step to step.

15.4 Elastic Orthotropic Shell Model

BEGIN PARAMETERS FOR MODEL ELASTIC_ORTHOTROPIC_SHELL
#
# required parameters
#
YOUNGS MODULUS RR = <real>
YOUNGS MODULUS SS = <real>
YOUNGS MODULUS TT = <real>
POISSONS RATIO RS = <real>
POISSONS RATIO ST = <real>
POISSONS RATIO TR = <real>
SHEAR MODULUS RS = <real>
SHEAR MODULUS RT = <real>
SHEAR MODULUS ST = <real>

END [PARAMETERS FOR ELASTIC_ORTHOTROPIC_SHELL]

The ELASTIC ORTHOTROPIC SHELL model describes the linear elastic response of an
orthotropic material where the planar orientation of the principal material directions can be
arbitrary. This material uses the shell section orthotropic alignment commands described in the
Sierra/SM User Manual to define the local RST coordinate system.

The general 3D response of an orthotropic material is given above. For the shell model, the ABC
coordinate system is replaced with the RST coordinate system. For plane stress the stiffness is
calculated with the constraint that 𝜎𝑇𝑇 = 0. From this constraint the thickness strain, which is
used to calculate the thickness change for the shell, is

𝜀𝑇𝑇 = − 1
1 − 𝜈𝑅𝑆𝜈𝑆𝑅

[(𝜈𝑅𝑇 + 𝜈𝑅𝑆𝜈𝑆𝑇 ) 𝜀𝑅𝑅 + (𝜈𝑆𝑇 + 𝜈𝑆𝑅𝜈𝑅𝑇 ) 𝜀𝑆𝑆]

and results in the following stiffness


𝜎𝑅𝑅
𝜎𝑆𝑆
𝜎𝑅𝑆
𝜎𝑆𝑇
𝜎𝑇𝑅


=



C̄𝑅𝑅𝑅𝑅 C̄𝑅𝑅𝑆𝑆 0 0 0

C̄𝑅𝑅𝑆𝑆 C̄𝑆𝑆𝑆𝑆 0 0 0

0 0 2𝐺𝑅𝑆 0 0

0 0 0 2𝐺𝑆𝑇 0

0 0 0 0 2𝐺𝑇𝑅





𝜀𝑅𝑅
𝜀𝑆𝑆
𝜀𝑇𝑇
𝜀𝑅𝑆
𝜀𝑆𝑇
𝜀𝑇𝑅


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where

C̄𝑅𝑅𝑅𝑅 =
𝐸𝑅

1 − 𝜈𝑅𝑆𝜈𝑆𝑅
; C̄𝑆𝑆𝑆𝑆 =

𝐸𝑆
1 − 𝜈𝑅𝑆𝜈𝑆𝑅

; C̄𝑅𝑅𝑆𝑆 =
𝜈𝑆𝑅𝐸𝑅

1 − 𝜈𝑅𝑆𝜈𝑆𝑅
=

𝜈𝑅𝑆𝐸𝑆
1 − 𝜈𝑅𝑆𝜈𝑆𝑅

In the above command blocks, all the following are required inputs.

• Young’s modulus of the orthogonal R, S, and T axes are defined with the YOUNGS
MODULUS RR, YOUNGS MODULUS SS and YOUNGS MODULUS TT command lines.

• POISSONS RATIO RS defines the strain in the S direction when the material is pulled in
the R direction

• POISSONS RATIO ST defines the strain in the T direction when the material is pulled in
the S direction

• POISSONS RATIO TR defines the strain in the R direction when the material is pulled in
the T direction

• The shear moduli in each of shear directions are defined with the SHEAR MODULUS RS,
SHEAR MODULUS RT, and SHEAR MODULUS ST command lines.

Error messages for the ELASTIC ORTHOTROPIC SHELL model concern input that results in a
non-positive definite stiffness. The error messages, and their meanings, are

Model parameters chosen so that determinant of stiffness < 0

1 − 𝜈2
𝑅𝑆

𝐸𝑆
𝐸𝑅

− 𝜈2
𝑆𝑇

𝐸𝑇
𝐸𝑆

− 𝜈2
𝑇𝑅

𝐸𝑅
𝐸𝑇

− 2𝜈𝑅𝑆𝜈𝑆𝑇𝜈𝑇𝑅 < 0

Model parameters chosen so that RS sub-determinant of stiffness <
0

1 − 𝜈2
𝑅𝑆

𝐸𝑆
𝐸𝑅

< 0

Model parameters chosen so that ST sub-determinant of stiffness <
0

1 − 𝜈2
𝑆𝑇

𝐸𝑇
𝐸𝑆

< 0

Model parameters chosen so that TR sub-determinant of stiffness <
0

1 − 𝜈2
𝑇𝑅

𝐸𝑅
𝐸𝑇

< 0

Warning: In previous releases the ELASTIC_ORTHOTROPIC_SHELL model required
input parameter POISSONS RATIO SR, which could have led to an inconsistent set of
parameters. The model also previously did not require YOUNGS_MODULUS_TT, POISSONS
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RATIO ST, or POISSONS RATIO TR, which are now required parameters in the current
version. For backward compatibility emph{only}, the original input syntax remains valid.
However, the new behavior of the model is to ignore any input value of 𝜈𝑆𝑅 and compute it
automatically as 𝜈𝑆𝑅 = 𝜈𝑅𝑆 (𝐸𝑆𝑆/𝐸𝑅𝑅). If 𝐸𝑇𝑇 is not input, it is computed as
𝐸𝑇𝑇 = (𝐸𝑅𝑅 + 𝐸𝑆𝑆)/2 by default. If no value is input for 𝜈𝑆𝑇 or 𝜈𝑇𝑅, it will default to zero. For
best results emph{all required values should be input} in future usages of this model.

15.5 BCJ Model

BEGIN PARAMETERS FOR MODEL BCJ
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>
#
#
#
C1 = <real>c1
C2 = <real>c2
C3 = <real>c3
C4 = <real>c4
C5 = <real>c5
C6 = <real>c6
C7 = <real>c7
C8 = <real>c8
C9 = <real>c9
C10 = <real>c10
C11 = <real>c11
C12 = <real>c12
C13 = <real>c13
C14 = <real>c14
C15 = <real>c15
C16 = <real>c16
C17 = <real>c17
C18 = <real>c18
C19 = <real>c19
C20 = <real>c20
DAMAGE EXPONENT = <real>damage_exponent

(continues on next page)
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INITIAL ALPHA_XX = <real>alpha_xx
INITIAL ALPHA_YY = <real>alpha_yy
INITIAL ALPHA_ZZ = <real>alpha_zz
INITIAL ALPHA_XY = <real>alpha_xy
INITIAL ALPHA_YZ = <real>alpha_yz
INITIAL ALPHA_XZ = <real>alpha_xz
INITIAL KAPPA = <real>initial_kappa
INITIAL DAMAGE = <real>initial_damage
YOUNGS MODULUS FUNCTION = <string>ym_function_name
POISSONS RATIO FUNCTION = <string>pr_function_name
SPECIFIC HEAT = <real>specific_heat
THETA OPT = <integer>theta_opt
FACTOR = <real>factor
RHO = <real>rho
TEMP0 = <real>temp0

END [PARAMETERS FOR MODEL BCJ]

The BCJ plasticity model is a state-variable model for describing the finite deformation behavior
of metals. It uses a multiplicative decomposition of the deformation gradient into elastic,
volumetric plastic, and deviatoric parts. The model considers the natural configuration defined by
this decomposition and its associated thermodynamics. The model incorporates strain rate and
temperature sensitivity, and damage, through a yield-surface approach in which state variables
follow a hardening-minus-recovery format.

Because the BCJ model has such an extensive list of parameters, we will not present the usual
synopsis of parameter names with command lines. As with most other material models, the
thermal strain option is used to define thermal strains. See the Sierra/SM User Manual
for further information on defining and activating thermal strains. In addition, only two of the five
elastic constants are required. The user should consult [5], [4], [3] for a description of the various
parameters. The parameters for the SPECIFIC HEAT, THETA OPT, FACTOR, RHO, and
TEMP0 command lines are used to accommodate changes to the model for heat generation due to
plastic dissipation. For coupled solid/thermal calculations, the plastic dissipation rate is stored as
a state variable and passed to a thermal code as a heat source term. For uncoupled calculations,
temperature is stored as a state variable, and temperature increases due to plastic dissipation are
calculated within the material model.

If temperature is provided from an external source, theta_opt is set to 1. If the temperature is
calculated by the BCJ model, theta_opt is set to 1.

Output variables available for this model are listed in Table 15.3.

Table 15.3 State Variables for BCJ Model
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Name Description
BACK_STRESS_XX back stress tensor - xx component
BACK_STRESS_YY back stress tensor - yy component
BACK_STRESS_ZZ back stress tensor - zz component
BACK_STRESS_XY back stress tensor - xy component
BACK_STRESS_YZ back stress tensor - yz component
BACK_STRESS_ZX back stress tensor - zx component
KAPPA hardening scalar
DAMAGE damage term
DAMAGE_RATE rate of change of damage term
EQPS equivalent plastic strain
THETA temperature for adiabatic heating
HEAT rate of heating due to plastic dissipation
YM Young’s modulus
PR Poisson’s ratio

Warning: Strongly rate-dependent models may fare poorly in implicit quasistatic solution. In
implicit analyses the rate term used to evaluate the current load step is the rate seen by the
model in the previous load step. This may cause the solution to oscillate between high- and
low-rate equilibrium states from step to step.

15.6 Karagozian and Case Concrete Model

BEGIN PARAMETERS FOR MODEL KC_CONCRETE
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>
#
#
#
COMPRESSIVE STRENGTH = <real>compressive_strength
FRACTIONAL DILATANCY = <real>omega
HARDEN-SOFTEN FUNCTION = <string>harden_soften_function_name
LAMBDAM = <real>lambda_m
LAMBDAZ = <real>lambda_z
MAXIMUM AGGREGATE SIZE = <real>max_aggregate_size
ONE INCH = <real>one_inch
PRESSURE FUNCTION = <string>pressure_function_name
RATE SENSITIVITY FUNCTION = <string>rate_function_name
SINGLE RATE ENHANCEMENT = <enum>TRUE|FALSE

(continues on next page)
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TENSILE STRENGTH = <real>tensile_strength
UNLOAD BULK MODULUS FUNCTION = <string>bulk_function_name

END PARAMETERS FOR MODEL KC_CONCRETE

The Karagozian and Case (or K&C) concrete model is an inelasticity model appropriate for
approximating the constitutive behavior of concrete. Coupled with appropriate elements for
capturing the embedded deformation of reinforcing steel, the K&C concrete model can be used
effectively for simulating the mechanical response of reinforced concrete structures. The K&C
model has several useful characteristics for estimating concrete response, including
strain-softening capabilities, some degree of tensile response, and a nonlinear stress-strain
characterization that robustly simulates the behavior of plain concrete. This model is described in
detail in [2].

In the above command blocks:

• Consult the Sierra/SM User Manual for more information on elastic constants input.

• The compressive strength for a uniaxial compression test is defined with the
COMPRESSIVE STRENGTH command line.

• The tensile strength for the uniaxial tension test is defined with the TENSILE STRENGTH
command line.

• The abscissa of the hardening/softening curve where this curve takes on the value of one is
termed Lambda-M, and it is defined with the LAMBDAM command line ([2], pg. B-3).

• The abscissa of the hardening/softening curve where this curve takes on the value of zero
after its peak value has been attained is termed Lambda-Z, and it is defined with the
LAMBDAZ command line. This parameter should satisfy 𝜆𝑧 > 𝜆𝑚 ([2], pg. B-3). This input
is Sierra-specific, and differs from the previous PRONTO3D definitions.

• The SINGLE RATE ENHANCEMENT parameter indicates whether the rate enhancement
of the model should be independent of the sign of the deformation. If this parameter is set
to TRUE, the same enhancement function is used for both compression and tension. If it is
set to FALSE, the enhancement function must assign values for both positive and negative
values of strain rate ([2], pg. B-5). This parameter is also Sierra-specific, and is different
from the previous PRONTO3D definitions.

• The FRACTIONAL DILATANCY is an estimate of the size of the plastic volume strain
increment relative to that corresponding to straining in the hydrostatic plane. This value
normally ranges from 0.3 to 0.7, and a value of one-half is commonly used in practice.

• The MAXIMUM AGGREGATE SIZE parameter provides an estimate of the largest length
dimension for the aggregate component of the concrete mix. The American Concrete
Institute code [1] includes specifications for maximum aggregate size that are based on
member depth and clear spacing between adjacent reinforcement elements. This parameter
is also useful in modifying the post-peak fall-off of both compressive and tensile behaviors.
A large aggregate size (e.g. 2.5 inches) may result in a rapid drop after reaching peak stress.
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A small aggregate size (e.g. 0.5 inches) may result in a gradual decline after reaching peak
stress.

Warning: Simulations utilizing the K&C model can be subject to damage-failure waves
wherein the initiation of element damage can cause a rapid chain reaction of damage that
propagates through the entire simulation within a few time steps. This damage-failure wave
could be caused by a too-sudden drop in element strength after failure. One method to
stabilize the simulation is to lower the value used for MAXIMUM AGGREGATE SIZE,
allowing for a more gradual post-peak element strength decline.

• The parameter ONE INCH provides for conversion to units other than the pounds/inch
system commonly used in U.S. concrete venues. This parameter should be set to the
equivalent length in the system used for analysis. If centimeters are to be used, for example,
then ONE INCH = 2.54.

The following functions describe the evolution of material coefficients in this model:

• The function characterizing the enhancement of strength with strain rate is described via the
RATE SENSITIVITY FUNCTION ([2], pg. B-3).

Warning: The RATE SENSITIVITY FUNCTION command should be used with caution.
The implementation appears to overestimate concrete strength in tension, and users are
cautioned to provide rate sensitivity function values that have the value of 1.0 for positive
(tensile) values of strain rate. These values correspond to no additional strength in tension due
to strain rate, and are both physically realistic and conservative.

• The function describing the relationship between pressure and volumetric strain is
described via the PRESSURE FUNCTION.

• The function characterizing the relationship between bulk modulus and volumetric strain
during unloading is described via the UNLOAD BULK MODULUS FUNCTION.

• The function describing the hardening and softening functions function eta as a function of
the material parameters lambda (see LAMBDAM and LAMBDAZ) is defined via the
HARDEN-SOFTEN FUNCTION (see [2], pg. B-3). The HARDEN-SOFTEN FUNCTION
dictates damage accrual. ETA is a function of LAMBDA. At LAMBDA = ETA = 0, the
material is undamaged. At ETA(LAMBDA) = 1, damage = 1; the concrete has reached
maximum stress and cannot support more. At ETA(LAMBDA) = 0 (after ETA(LAMBDA) =
1), damage is approaching 2; the concrete is mostly rubble/cracked. At damage = 2, the
concrete has fully become rubble/cracked.

The above-listed functions are calculated as follows. The HARDEN-SOFTEN FUNCTION is
referenced in [2], pg. B-3.
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RATE SENSITIVITY FUNCTION CALCULATIONS
#
# Equation Constants
#
delta = 1/(1+8*fpc/1450) fpc in psi
beta = 10**(6*delta-2)
difmax = beta*(300/1e-6)**(1/3)
alpha = 1/(5+9*fpc/1450) fpc in psi
gamma = 10**(6.156*alpha-2)
difmaxc = gamma*(300/(30e-6)**(1/3))
#
# Value Calculations
#
-30.e5 difmax
-3.0e2 difmax
-100.0 beta*(100/1e-6)**(1/3)
-10.00 beta*(10/1e-6)**(1/3)
-1.000 (1/1e-6)**delta
-0.100 (0.1/1e-6)**delta
-0.010 (0.01/1e-6)**delta
0.000 1.0
0.010 (0.01/30e-6)**(1.026*alpha)
0.100 (0.1/30e-6)**(1.026*alpha)
1.000 (1/30e-6)**(1.026*alpha)
30.00 gamma*(30/30e-6)**(1/3)
100.0 gamma*(100/30e-6)**(1/3)
300.0 difmaxc
30.e5 difmaxc

PRESSURE FUNCTION CALCULATIONS
#
# Equation Constants
#
bulk0 = MATERIAL BULK MODULUS
p2 = bulk0*0.15e-2
#
# Value Calculations
# volume strain vs pressure
0.0 0.0
0.15e-2 p2
0.27e-2 p2*1.53
0.43e-2 p2*2.18
0.6e-2 p2*2.74
0.8e-2 p2*3.13
0.197e-1 p2*5.13
0.89e-1 p2*21.7

(continues on next page)
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0.1e1 p2*221.9
0.1e4 p2*221.9

UNLOAD BULK MODULUS FUNCTION CALCULATIONS
#
# Equation Constants
#
bulk0 = MATERIAL BULK MODULUS
#
# Value Calculations
# volume strain vs bulk modulus
0.0 bulk0
0.15e-2 bulk0
0.27e-2 min(10*bulk0,

bulk0*(1+10*(0.27e-2 - 0.15e-2)))
0.43e-2 min(10*bulk0,

bulk0*(1+10*(0.43e-2 - 0.15e-2)))
0.60e-2 min(10*bulk0,

bulk0*(1+10*(0.6e-2 - 0.15e-2)))
0.80e-2 min(10*bulk0,

bulk0*(1+10*(0.8e-2 - 0.15e-2)))
0.197e-1 min(10*bulk0,

bulk0*(1+10*(0.197e-1 - 0.15e-2)))
0.89e-1 min(10*bulk0,

bulk0*(1+10*(0.89e-1 - 0.15e-2)))
0.1e1 min(10*bulk0,

bulk0*(1+10*(0.1e1 - 0.15e-2)))
0.1e4 min(10*bulk0,

bulk0*(1+10*(0.1e1 - 0.15e-2)))

The following are sample values for a concrete with a compressive strength of 7000 psi (base units
inch-pounds):

RATE SENSITIVITY FUNCTION SAMPLE VALUES
-30.e5 9.4873
-3.0e2 9.4873
-100.0 6.5781
-10.00 3.0533
-1.000 1.0201
-0.100 1.0190
-0.010 1.0179
0.000 1.0
0.010 1.1310
0.100 1.1874
1.000 1.2468

(continues on next page)
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30.00 1.3399
100.0 2.0015
300.0 2.8867
30.e5 2.8867

PRESSURE FUNCTION SAMPLE VALUES
0.0 0.0
0.15e-2 3974
0.27e-2 6080
0.43e-2 8664
0.6e-2 10889
0.8e-2 12439
0.197e-1 20387
0.89e-1 86239
0.1e1 881861
0.1e4 881861

UNLOAD BULK MODULUS FUNCTION SAMPLE VALUES
0.0 2649423
.15e-2 2649423
.27e-2 2681216
.43e-2 2723607
.60e-2 2768647
.80e-2 2821636
.197e-1 3131618
.89e-1 4967669
.1e1 26494234
.1e4 26494234

HARDEN-SOFTEN FUNCTION SAMPLE VALUES
(for most concrete strengths)
(damage parameter d also shown for reference)

0 0.0 # --> d=0
8e-06 0.85 # --> d=0.25
2.4e-05 0.97 # --> d=0.6
4e-05 0.99 # --> d=0.8333333333
5.6e-05 1.0 # --> d=1
7.2e-05 0.99 # --> d=1.125
8.8e-05 0.97 # --> d=1.222222222
.00032 0.5 # --> d=1.70212766
.00052 0.1 # --> d=1.805555556
.00057 0.0 # --> d=1.821086262
1.00056 0.0 # --> d=1.999888013
10.00056 0.0 # --> d=1.9999888
1e+10 0.0 # --> d=2
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15.7 Kayenta Model

Note, many parameters of this model are undocumented.

BEGIN PARAMETERS FOR MODEL KAYENTA
B0 = <real> b0
B1 = <real> b1
B2 = <real> b2
B3 = <real> b3
B4 = <real> b4
G0 = <real> g0
G1 = <real> g1
G2 = <real> g2
G3 = <real> g3
G4 = <real> g4
RJS = <real> rjs
RKS = <real> rks
RKN = <real> rkn
A1 = <real> a1
A2 = <real> a2
A3 = <real> a3
A4 = <real> a4
P0 = <real> p0
P1 = <real> p1
P2 = <real> p2
P3 = <real> p3
CR = <real> cr
RK = <real> rk
RN = <real> rn
HC = <real> hc
CTPSF = <real> ctpsf
CUTPS = <real> cutps
CUTI1 = <real> cuti1
T1 = <real> t1
T2 = <real> t2
T3 = <real> t3
T4 = <real> t4
T5 = <real> t5
T6 = <real> t6
T7 = <real> t7
J3TYPE = <real> j3type
A2PF = <real> a2pf
A4PF = <real> a4pf
CRPF = <real> crpf
RKPF = <real> rkpf
FAIL0 = <real> fail0

(continues on next page)
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FAIL1 = <real> fail1
FAIL2 = <real> fail2
FAIL3 = <real> fail3
FAIL4 = <real> fail4
FAIL5 = <real> fail5
FAIL6 = <real> fail6
FAIL7 = <real> fail7
FAIL8 = <real> fail8
FAIL9 = <real> fail9
PEAKI1I = <real> peaki1i
STRENI = <real> streni
FSLOPEI = <real> fslopei
PEAKI1F = <real> peaki1f
STRENF = <real> strenf
FSLOPEF = <real> fslopef
SOFTENING = <real> softening
IEOSID = <real> ieosid
DILATLIM = <real> dilatlim
NU = <real> nu
YSLOPEI = <real> yslopei
YSLOPEF = <real> yslopef
CKN01 = <real> ckn01
VMAX1 = <real> vmax1
SPACE1 = <real> space1
SHRSTIFF1 = <real> shrstiff1
CKN01 = <real> ckn02
VMAX1 = <real> vmax2
SPACE1 = <real> space2
SHRSTIFF1 = <real> shrstiff2
CKN01 = <real> ckn03
VMAX1 = <real> vmax3
SPACE1 = <real> space3
SHRSTIFF1 = <real> shrstiff3

END [PARAMETERS FOR MODEL KAYENTA]

Kayenta is an outgrowth of the Brannon-Fossum-Strack isotropic geomaterial model that includes
features and fitting functions appropriate to a broad class of materials including rocks, rock-like
engineered materials (such as concretes and ceramics), and metals. Fundamentally, Kayenta is a
computational framework for generalized plasticity models. As such, it includes a yield surface,
but the term “yield” is generalized to include any form of inelastic material response including
micro-crack growth and pore collapse. Kayenta supports optional anisotropic elasticity associated
with ubiquitous joint sets. Kayenta supports optional deformation-induced anisotropy through
kinematic hardening (in which the initially isotropic yield surface is permitted to translate in
deviatoric stress space to model Bauschinger effects). The governing equations are otherwise
isotropic. Because Kayenta is a unification and generalization of simpler models, it can be run
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using as few as 2 parameters (for linear elasticity) to as many as 40 material and control
parameters in the exceptionally rare case when all features are used. Isotropic damage is modeled
through loss of stiffness and strength. If ever you are unsure of the value of a parameter, leave it
unspecified so that Kayenta can use an appropriate default. See [6] for a full description of the
model, inputs, and output variables.

The command block for a Kayenta material starts with the line:

BEGIN PARAMETERS FOR MODEL KAYENTA

and terminates with the line:

END [PARAMETERS FOR MODEL KAYENTA]

In the above command blocks, the following are valid parameters for the Kayenta material model.
If ever you are unsure of the value of a parameter, leave it unspecified so that Kayenta can use an
appropriate default.

• The initial elastic bulk modulus is defined with the B0 command line.

• The high pressure coefficient in nonlinear elastic bulk modulus function is defined with the
B1 command line.

• The curvature parameter in nonlinear elastic bulk modulus function is defined with the B2
command line.

• The coefficient in nonlinear elastic bulk modulus to allow for plastic softening is defined
with the B3 command line.

• The power in bulk modulus softening is defined with the B4 command line.

• The initial elastic shear modulus is defined with the G0 command line.

• The coefficient in shear modulus hardening is defined with the G1 command line.

• The curvature parameter in shear modulus hardening is defined with the G2 command line.

• The coefficient in shear modulus softening is defined with the G3 command line.

• The power in shear modulus softening is defined with the G4 command line.

• The joint spacing is defined with the RJS command line.

• The joint shear stiffness is defined with the RKS command line.

• The joint normal stiffness is defined with the RKN command line.

• The constant term for meridional profile function of ultimate shear limit surface is defined
with the A1 command line.

• The curvature decay parameter in the meridional profile function is defined with the A2
command line.

• The parameter in the meridional profile function is defined with the A3 command line.
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• The high-pressure slope parameter in meridional profile function is defined with the A4
command line.

• One third of the elastic limit pressure parameter at onset of pore collapse is defined with the
P0 command line.

• One third of slope of porosity vs pressure crush curve at elastic limit is defined with the P1
command line.

• The parameter for hydrostatic crush curve is defined with P2 command line.

• The asymptote of the plastic volumetric strain for hydrostatic crush is defined with the P3
command line.

• The parameter for porosity affecting shear strength is defined with the CR command line.

• The triaxial extension strength to compression strengt ratio is defined with the RK command
line.

• The initial shear yield offset [non negative] is defined with the RN command line.

• The kinematic hardening parameter is defined with the HC command line.

• The tension cut-off value of I1 is defined with the CUTI1 command line.

• The tension cut-off value of principal stress is defined with the CUTPS command line.

• The relaxation time constant 1 is defined with the T1 command line.

• The relaxation time constant 2 is defined with the T2 command line.

• The parameter no longer in use. [set to zero] is defined with the T3 command line.

• The parameter no longer in use. [set to zero] is defined with the T4 command line.

• The relaxation time constant 5 (stress) is defined with the T5 command line.

• The relaxation time constant 6 (time) is defined with the T6 command line.

• The relaxation time constant 7 (1/stress) is defined with the T7 command line.

• The type of 3rd deviatoric stress invariant function is defined with the J3TYPE command
line.

• The potential function parameter 1 (default=A2) is defined with the A2PF command line.

• The potential function parameter 2 (default=A4) is defined with the A4PF command line.

• The potential function parameter 3 (default=CR) is defined with the CRPF command line.

• The potential function parameter 4 (default=RK) is defined with the RKPF command line.

• The failed speed is defined with the FSPEED command line.

• The peak I1 hydrostatic tension strength is defined with the PEAKI1I command line.

• The peak (high pressure) shear strength is defined with the STRENI command line.
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• The initial slope of limit surface at PEAKI1I is defined with the FSLOPEI command line.

• PEAKI1F is the same as PEAKI1I, but for failed limit surface.

• STRENF is the same as STRENI, but for failed limit surface.

• FSLOPEF is the same as FSLOPEI, but for failed limit surface.

• The SOFTENING command line allows transition of limit surface from intact description to
failed description.

• The amount of time that passes with the stress state at the limit surface before the limit
surface collapses (i.e., softens) is defined with the TFAIL command line.

• The upper limit on plastic volume strain is defined with the DILATLIM command line.

15.8 Shape Memory Alloy

Please consult the LAMÉ manual.

15.9 Linear Elastic

BEGIN PARAMETERS FOR MODEL LINEAR_ELASTIC
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>

END [PARAMETERS FOR MODEL LINEAR_ELASTIC]

The LINEAR_ELASTIC material is used for modeling infinitesimal strain elastic response.
Generally this model is used for code verification work when comparing to infinitesimal strain
solutions. This differs slightly from the standard ELASTIC model which is formulated for general
finite strain.

15.10 Elastic Three-Dimensional Anisotropic Model

BEGIN PARAMETERS FOR MODEL ELASTIC_3D_ANISOTROPIC
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>

(continues on next page)
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BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>
#
# Material coordinates system definition
#
COORDINATE SYSTEM = <string> coordinate_system_name
DIRECTION FOR ROTATION = <real> 1|2|3
ALPHA = <real> (degrees)
SECOND DIRECTION FOR ROTATION = <real> 1|2|3
SECOND ALPHA = <real> (degrees)
#
# Required parameters
#
STIFFNESS MATRIX 11 = <real>
STIFFNESS MATRIX 22 = <real>
STIFFNESS MATRIX 33 = <real>
STIFFNESS MATRIX 12 = <real>
STIFFNESS MATRIX 13 = <real>
STIFFNESS MATRIX 23 = <real>
STIFFNESS MATRIX 44 = <real>
STIFFNESS MATRIX 55 = <real>
STIFFNESS MATRIX 66 = <real>
STIFFNESS MATRIX 45 = <real>
STIFFNESS MATRIX 46 = <real>
STIFFNESS MATRIX 56 = <real>
STIFFNESS MATRIX 14 = <real>
STIFFNESS MATRIX 15 = <real>
STIFFNESS MATRIX 16 = <real>
STIFFNESS MATRIX 24 = <real>
STIFFNESS MATRIX 25 = <real>
STIFFNESS MATRIX 26 = <real>
STIFFNESS MATRIX 34 = <real>
STIFFNESS MATRIX 35 = <real>
STIFFNESS MATRIX 36 = <real>
#
# Thermal strain functions
#
THERMAL STRAIN 11 FUNCTION = <real>
THERMAL STRAIN 22 FUNCTION = <real>
THERMAL STRAIN 33 FUNCTION = <real>
THERMAL STRAIN 12 FUNCTION = <real>
THERMAL STRAIN 23 FUNCTION = <real>
THERMAL STRAIN 13 FUNCTION = <real>
#
END [PARAMETERS FOR MODEL ELASTIC_3D_ANISOTROPIC]
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The ELASTIC 3D ANISOTROPIC model is an extension of the ELASTIC model which allows
for full anisotropy in both the material stiffness and thermal expansion. Each stiffness component
is labeled with 𝑖 and 𝑗 indices which correspond to the components of stress and strain vectors in
contracted notation, 

𝜎11
𝜎22
𝜎33
𝜎12
𝜎23
𝜎13


=



𝐶11 𝐶12 𝐶13 𝐶14 𝐶15 𝐶16
𝐶12 𝐶22 𝐶23 𝐶24 𝐶25 𝐶26
𝐶13 𝐶23 𝐶33 𝐶34 𝐶35 𝐶36
𝐶14 𝐶24 𝐶34 𝐶44 𝐶45 𝐶46
𝐶15 𝐶25 𝐶35 𝐶45 𝐶55 𝐶56
𝐶16 𝐶26 𝐶36 𝐶46 𝐶56 𝐶66





𝜖mech
11
𝜖mech

22
𝜖mech

33
𝜖mech

12
𝜖mech

23
𝜖mech

13


,

where the stress and strain components are with respect to principal material directions. The
thermal strains are defined in a similar manner,

𝜖 = 𝜖mech + 𝜖 th, 𝜖 th = [𝜖 th
11(𝜃) 𝜖

th
22(𝜃) 𝜖

th
33(𝜃) 𝜖

th
12(𝜃) 𝜖

th
23(𝜃) 𝜖

th
13(𝜃)]

T .

In a finite strain situation, the anisotropic model is formulated in a hypoelastic manner with a
constitutive equation of

¤𝜎𝑖 𝑗 = 𝐶𝑖 𝑗 𝑘𝑙
(
𝐷𝑘𝑙 − 𝐷th

𝑘𝑙

)
,

where 𝐷𝑘𝑙 and 𝐷th
𝑘𝑙 are the total and thermal strain rates, respectively, and the components of the

fourth order stiffness tensor 𝐶𝑖 𝑗 𝑘𝑙 are related to the contracted notation by

[C] =



𝐶1111 𝐶1122 𝐶1133 𝐶1112 𝐶1123 𝐶1113
𝐶1122 𝐶2222 𝐶2233 𝐶2212 𝐶2223 𝐶2213
𝐶1133 𝐶2233 𝐶3333 𝐶3312 𝐶3323 𝐶3313
𝐶1112 𝐶2212 𝐶3312 𝐶1212 𝐶1223 𝐶1213
𝐶1123 𝐶2223 𝐶3323 𝐶1223 𝐶2323 𝐶2313
𝐶1113 𝐶2213 𝐶3313 𝐶1213 𝐶2313 𝐶1313


.

15.11 Karafillis Boyce Plasticity Model

BEGIN PARAMETERS FOR MODEL KARAFILLIS_BOYCE_PLASTICITY
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>

(continues on next page)
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#
# Yield surface parameters
#
YIELD STRESS = <real>
A = <real> (4.0)
C = <real> (0.0)
COEFF = <real> (2.0/3.0)
ALPHA 1 = <real> (1.0)
ALPHA 2 = <real> (1.0)
GAMMA 1 = <real> (1.5)
GAMMA 2 = <real> (1.5)
GAMMA 3 = <real> (1.5)
#
# Hardening model
#
HARDENING MODEL = LINEAR | POWER_LAW | USER_DEFINED |
CUBIC_HERMITE_SPLINE

#
# Linear hardening
#
HARDENING MODULUS = <real>
#
# Power law hardening
#
HARDENING CONSTANT = <real>
HARDENING EXPONENT = <real> (0.5)
#
# User defined hardening
#
HARDENING FUNCTION = <string>hardening_function_name
#
# Spline based hardening curve
#
CUBIC SPLINE TYPE = <string>
CARDINAL PARAMETER = <real> val
KNOT EQPS = <real_list> vals
KNOT STRESS = <real_list> vals
#
# Material coordinates system definition
#
COORDINATE SYSTEM = <string> coordinate_system_name
DIRECTION FOR ROTATION = <real> 1|2|3
ALPHA = <real> (degrees)
SECOND DIRECTION FOR ROTATION = <real> 1|2|3
SECOND ALPHA = <real> (degrees)

END [PARAMETERS FOR MODEL KARAFILLIS_BOYCE_PLASTICITY]
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The Karafillis and Boyce model [12] is an anisotropic plasticity model. The stress is transformed,
based on the anisotropy, and the transformed stress is used in the yield function. The transformed
stress, using Voigt notation in the material coordinate system, is given by

s′ = C : 𝝈

[C] = 𝐶



1 𝛽1 𝛽2 0 0 0
𝛽1 𝛼1 𝛽3 0 0 0
𝛽2 𝛽3 𝛼2 0 0 0
0 0 0 𝛾1 0 0
0 0 0 0 𝛾2 0
0 0 0 0 0 𝛾3


where the terms 𝛽𝑘 are

𝛽1 =
𝛼2 − 𝛼1 − 1

2

𝛽2 =
𝛼1 − 𝛼2 − 1

2

𝛽3 =
1 − 𝛼1 − 𝛼2

2
The response is isotropic if 𝛼1 = 𝛼2 = 1, 𝛾1 = 𝛾2 = 𝛾3 = 1.5, and 𝐶 = 2/3.

The principal stresses of the transformed stress, s′, are used in the yield function

𝜙 = {(1 − 𝑐) 𝜙1 + 𝑐𝜙2}1/𝑎

𝜙1 =
1
2

(
|𝑠1 − 𝑠2 |𝑎 + |𝑠2 − 𝑠3 |𝑎 + |𝑠3 − 𝑠1 |𝑎

)
𝜙2 =

3𝑎

2𝑎 + 2

(
|𝑠1 |𝑎 + |𝑠2 |𝑎 + |𝑠3 |𝑎

)
The exponent, 𝑎, is similar to the exponent in the Hosford plasticity model and the constant, 𝑐 (not
to be confused with 𝐶 above), is a parameter that provides a mixture of two yield functions.

In the command blocks that define the Hosford plasticity model:

• Consult the Sierra/SM User Manual for more information on elastic constants input.

• The reference nominal yield stress, 𝜎̄, is defined with the YIELD STRESS command line.

• The exponent for the yield surface description, 𝑎, is defined with the A command line.

• The coefficient 𝐶 in the stress transformation is defined with the COEFF command line.

• The term 𝛼1 in the stress transformation is defined with the ALPHA 1 command line.

• The term 𝛼2 in the stress transformation is defined with the ALPHA 2 command line.
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• The term 𝛾1 in the stress transformation is defined with the GAMMA 1 command line.

• The term 𝛾2 in the stress transformation is defined with the GAMMA 2 command line.

• The term 𝛾3 in the stress transformation is defined with the GAMMA 3 command line.

• The type of hardening law is defined with the HARDENING MODEL command line, other
hardening commands then define the specific shape of that hardening curve.

• The hardening modulus for a linear hardening model is defined with the HARDENING
MODULUS command line.

• The hardening constant for a power law hardening model is defined with the HARDENING
CONSTANT command line.

• The hardening exponent for a power law hardening model is defined with the HARDENING
EXPONENT command line.

• The hardening function for a user defined hardening model is defined with the HARDENING
FUNCTION command line.

• The shape of the spline for the spline based hardening is defined by the CUBIC SPLINE
TYPE, CARDINAL PARAMETER, KNOT EQPS, and KNOT STRESS command lines.

Output variables available for this model are listed in Table 15.4.

Table 15.4 State Variables for KARAFILLIS_BOYCE_PLASTICITY Model
Index Name Description
1 EQPS equivalent plastic strain, 𝜀̄𝑝

15.12 Cazacu Plasticity Model

Please consult the LAMÉ manual.

15.13 Cazacu Orthotropic Plasticity Model

Please consult the LAMÉ manual.

15.14 Skorohod-Olevsky Viscous Sintering (SOVS)

Please consult the LAMÉ manual.
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15.15 Hydra Plasticity

Please consult the LAMÉ manual.

15.16 Honeycomb Model

BEGIN PARAMETERS FOR MODEL HONEYCOMB
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>
#
# Orthotropic response
#
MODULUS_TTTT = <real>
MODULUS_LLLL = <real>
MODULUS_WWWW = <real>
MODULUS_TTLL = <real>
MODULUS_TTWW = <real>
MODULUS_LLWW = <real>
MODULUS_TLTL = <real>
MODULUS_LWLW = <real>
MODULUS_WTWT = <real>
#
# Material orientation
#
TX = <real>
TY = <real>
TZ = <real>
LX = <real>
LY = <real>
LZ = <real>
#
# Yield behavior
#
YIELD_STRESS = <real>
A1 = <real>
B1 = <real>
C1 = <real>

(continues on next page)
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A2 = <real>
B2 = <real>
C2 = <real>
A3 = <real>
B3 = <real>
C3 = <real>

TS = <real>
LS = <real>
WS = <real>
TLS = <real>
LWS = <real>
WTS = <real>

ESTL = <real>
ESTW = <real>
ESLW = <real>
ESLT = <real>
ESWT = <real>
ESWL = <real>

MODULUS_FUNCTION = <string>
RATE_FUNCTION = <string>
T_FUNCTION = <string>
L_FUNCTION = <string>
W_FUNCTION = <string>
TL_FUNCTION = <string>
LW_FUNCTION = <string>
WT_FUNCTION = <string>
TTP_FUNCTION = <string>
LLP_FUNCTION = <string>
WWP_FUNCTION = <string>
TLTLP_FUNCTION = <string>
LWLWP_FUNCTION = <string>
WTWTP_FUNCTION = <string>
TTLP_FUNCTION = <string>
TTWP_FUNCTION = <string>

END [PARAMETERS FOR MODEL HONEYCOMB]

The honeycomb constitutive model is used to model the energy absorbing capabilities of
aluminum honeycomb. There are three orthogonal material directions for the model: 𝑇 , 𝐿, and𝑊 .
The 𝑡-direction is generally considered as the “strong” direction, the𝑊-direction is the “weak”
direction, and the 𝐿-direction has an intermediate strength. This convention, however, does not
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necessarily need to be followed when defining material inputs.

¤𝜎𝑇𝑇
¤𝜎𝐿𝐿
¤𝜎𝑊𝑊
¤𝜎𝑇𝐿
¤𝜎𝐿𝑊
¤𝜎𝑊𝑇


=



𝐸𝑇𝑇𝑇𝑇 𝐸𝑇𝑇𝐿𝐿 𝐸𝑇𝑇𝑊𝑊 0 0 0
𝐸𝑇𝑇𝐿𝐿 𝐸𝐿𝐿𝐿𝐿 𝐸𝐿𝐿𝑊𝑊 0 0 0
𝐸𝑇𝑇𝑊𝑊 𝐸𝐿𝐿𝑊𝑊 𝐸𝑊𝑊𝑊𝑊 0 0 0

0 0 0 𝐸𝑇𝐿𝑇𝐿 0 0
0 0 0 0 𝐸𝐿𝑊𝐿𝑊 0
0 0 0 0 0 𝐸𝑊𝑇𝑊𝑇




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¤𝑑𝑊𝑊
¤𝑑𝑇𝐿
¤𝑑𝐿𝑊
¤𝑑𝑊𝑇


Output variables available for this model are listed in Table 15.5.

Table 15.5 State Variables for HONEYCOMB Model
Index Name Description
1 CRUSH minimum volume ratio
2 EQDOT effective strain rate
3 RMULT rate multiplier
5 ITER iterations
6 EVOL volumetric strain

15.17 Viscoplastic Foam

Please consult the LAMÉ manual.

15.18 Thermo EP Power Model

Output variables available for this model are listed in Table 15.6.

Table 15.6 State Variables for THERMO EP POWER Model
Index Name Description
1 EQPS equivalent plastic strain
2 RADIUS radius of yield surface
3 BACK_STRESS_XX back stress - xx component
4 BACK_STRESS_YY back stress - yy component
5 BACK_STRESS_ZZ back stress - zz component
6 BACK_STRESS_XY back stress - xy component
7 BACK_STRESS_YZ back stress - yz component
8 BACK_STRESS_ZX back stress - zx component

15.19 Thermo EP Power Weld Model

Output variables available for this model are listed in Table 15.7.

Table 15.7 State Variables for THERMO EP POWER WELD Model
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Index Name Description
1 EQPS equivalent plastic strain
2 RADIUS radius of yield surface
3 BACK_STRESS_XX back stress - xx component
4 BACK_STRESS_YY back stress - yy component
5 BACK_STRESS_ZZ back stress - zz component
6 BACK_STRESS_XY back stress - xy component
7 BACK_STRESS_YZ back stress - yz component
8 BACK_STRESS_ZX back stress - zx component
9 WELD_FLAG

15.20 NLVE 3D Orthotropic Model

BEGIN PARAMETERS FOR MODEL NLVE_3D_ORTHOTROPIC
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>
#
# Material coordinates system definition
#
COORDINATE SYSTEM = <string> coordinate_system_name
DIRECTION FOR ROTATION = <real> 1|2|3
ALPHA = <real> (degrees)
SECOND DIRECTION FOR ROTATION = <real> 1|2|3
SECOND ALPHA = <real> (degrees)
#
#
#
FICTITIOUS LOGA FUNCTION = <string>fict_loga_function_name
FICTITIOUS LOGA SCALE FACTOR = <real>fict_loga_scale_factor
#
# In each of the five ”PRONY” command lines and in
# the RELAX TIME command line, the value of i can be from
# 1 through 30
#
1PSI PRONY <integer>i = <real>psi1_i
2PSI PRONY <integer>i = <real>psi2_i
3PSI PRONY <integer>i = <real>psi3_i
4PSI PRONY <integer>i = <real>psi4_i
5PSI PRONY <integer>i = <real>psi5_i
RELAX TIME <integer>i = <real>tau_i

(continues on next page)
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(continued from previous page)
REFERENCE TEMP = <real>tref
REFERENCE DENSITY = <real>rhoref
WLF C1 = <real>wlf_c1
WLF C2 = <real>wlf_c2
B SHIFT CONSTANT = <real>b_shift
SHIFT REF VALUE = <real>shift_ref
WWBETA 1PSI = <real>wwb_1psi
WWTAU 1PSI = <real>wwt_1psi
WWBETA 2PSI = <real>wwb_2psi
WWTAU 2PSI = <real>wwt_2psi
WWBETA 3PSI = <real>wwb_3psi
WWTAU 3PSI = <real>wwt_3psi
WWBETA 4PSI = <real>wwb_4psi
WWTAU 4PSI = <real>wwt_4psi
WWBETA 5PSI = <real>wwb_5psi
WWTAU 5PSI = <real>wwt_5psi
DOUBLE INTEG FACTOR = <real>dble_int_fac
REF RUBBERY HCAPACITY = <real>hcapr
REF GLASSY HCAPACITY = <real>hcapg
GLASS TRANSITION TEM = <real>tg
REF GLASSY C11 = <real>c11g
REF RUBBERY C11 = <real>c11r
REF GLASSY C22 = <real>c22g
REF RUBBERY C22 = <real>c22r
REF GLASSY C33 = <real>c33g
REF RUBBERY C33 = <real>c33r
REF GLASSY C12 = <real>c12g
REF RUBBERY C12 = <real>c12r
REF GLASSY C13 = <real>c13g
REF RUBBERY C13 = <real>c13r
REF GLASSY C23 = <real>c23g
REF RUBBERY C23 = <real>c23r
REF GLASSY C44 = <real>c44g
REF RUBBERY C44 = <real>c44r
REF GLASSY C55 = <real>c55g
REF RUBBERY C55 = <real>c55r
REF GLASSY C66 = <real>c66g
REF RUBBERY C66 = <real>c66r
REF GLASSY CTE1 = <real>cte1g
REF RUBBERY CTE1 = <real>cte1r
REF GLASSY CTE2 = <real>cte2g
REF RUBBERY CTE2 = <real>cte2r
REF GLASSY CTE3 = <real>cte3g
REF RUBBERY CTE3 = <real>cte3r
LINEAR VISCO TEST = <real>lvt

(continues on next page)
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T DERIV GLASSY C11 = <real>dc11gdT
T DERIV RUBBERY C11 = <real>dc11rdT
T DERIV GLASSY C22 = <real>dc22gdT
T DERIV RUBBERY C22 = <real>dc22rdT
T DERIV GLASSY C33 = <real>dc33gdT
T DERIV RUBBERY C33 = <real>dc33rdT
T DERIV GLASSY C12 = <real>dc12gdT
T DERIV RUBBERY C12 = <real>dc12rdT
T DERIV GLASSY C13 = <real>dc13gdT
T DERIV RUBBERY C13 = <real>dc13rdT
T DERIV GLASSY C23 = <real>dc23gdT
T DERIV RUBBERY C23 = <real>dc23rdT
T DERIV GLASSY C44 = <real>dc44gdT
T DERIV RUBBERY C44 = <real>dc44rdT
T DERIV GLASSY C55 = <real>dc55gdT
T DERIV RUBBERY C55 = <real>dc55rdT
T DERIV GLASSY C66 = <real>dc66gdT
T DERIV RUBBERY C66 = <real>dc66rdT
T DERIV GLASSY CTE1 = <real>dcte1gdT
T DERIV RUBBERY CTE1 = <real>dcte1rdT
T DERIV GLASSY CTE2 = <real>dcte2gdT
T DERIV RUBBERY CTE2 = <real>dcte2rdT
T DERIV GLASSY CTE3 = <real>dcte3gdT
T DERIV RUBBERY CTE3 = <real>dcte3rdT
T DERIV GLASSY HCAPACITY = <real>dhcapgdT
T DERIV RUBBERY HCAPACITY = <real>dhcaprdT
REF PSIC = <real>psic_ref
T DERIV PSIC = <real>dpsicdT
T 2DERIV PSIC = <real>d2psicdT2
PSI EQ 2T = <real>psitt
PSI EQ 3T = <real>psittt
PSI EQ 4T = <real>psitttt
PSI EQ XX 11 = <real>psiXX11
PSI EQ XX 22 = <real>psiXX22
PSI EQ XX 33 = <real>psiXX33
PSI EQ XX 12 = <real>psiXX12
PSI EQ XX 13 = <real>psiXX13
PSI EQ XX 23 = <real>psiXX23
PSI EQ XX 44 = <real>psiXX44
PSI EQ XX 55 = <real>psiXX55
PSI EQ XX 66 = <real>psiXX66
PSI EQ XXT 11 = <real>psiXXT11
PSI EQ XXT 22 = <real>psiXXT22
PSI EQ XXT 33 = <real>psiXXT33
PSI EQ XXT 12 = <real>psiXXT12

(continues on next page)
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PSI EQ XXT 13 = <real>psiXXT13
PSI EQ XXT 23 = <real>psiXXT23
PSI EQ XXT 44 = <real>psiXXT44
PSI EQ XXT 55 = <real>psiXXT55
PSI EQ XXT 66 = <real>psiXXT66
PSI EQ XT 1 = <real>psiXT1
PSI EQ XT 2 = <real>psiXT2
PSI EQ XT 3 = <real>psiXT3
PSI EQ XTT 1 = <real>psiXTT1
PSI EQ XTT 2 = <real>psiXTT2
PSI EQ XTT 3 = <real>psiXTT3
REF PSIA 11 = <real>psiA11
REF PSIA 22 = <real>psiA22
REF PSIA 33 = <real>psiA33
REF PSIA 12 = <real>psiA12
REF PSIA 13 = <real>psiA13
REF PSIA 23 = <real>psiA23
REF PSIA 44 = <real>psiA44
REF PSIA 55 = <real>psiA55
REF PSIA 66 = <real>psiA66
T DERIV PSIA 11 = <real>dpsiA11dT
T DERIV PSIA 22 = <real>dpsiA22dT
T DERIV PSIA 33 = <real>dpsiA33dT
T DERIV PSIA 12 = <real>dpsiA12dT
T DERIV PSIA 13 = <real>dpsiA13dT
T DERIV PSIA 23 = <real>dpsiA23dT
T DERIV PSIA 44 = <real>dpsiA44dT
T DERIV PSIA 55 = <real>dpsiA55dT
T DERIV PSIA 66 = <real>dpsiA66dT
REF PSIB 1 = <real> psiB1
REF PSIB 2 = <real> psiB2
REF PSIB 3 = <real> psiB3
T DERIV PSIB 1 = <real> dpsiB1dT
T DERIV PSIB 2 = <real> dpsiB2dT
T DERIV PSIB 3 = <real> dpsiB3dT
PSI POT TT = <real> psipotTT
PSI POT TTT = <real> psipotTTT
PSI POT TTTT = <real> psipotTTTT
PSI POT XT 1 = <real> psipotXT1
PSI POT XT 2 = <real> psipotXT2
PSI POT XT 3 = <real> psipotXT3
PSI POT XTT 1 = <real> psipotXTT1
PSI POT XTT 2 = <real> psipotXTT2
PSI POT XTT 3 = <real> psipotXTT3
PSI POT XXT 11 = <real> psipotXXT11

(continues on next page)
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PSI POT XXT 22 = <real> psipotXXT22
PSI POT XXT 33 = <real> psipotXXT33
PSI POT XXT 12 = <real> psipotXXT12
PSI POT XXT 13 = <real> psipotXXT13
PSI POT XXT 23 = <real> psipotXXT23
PSI POT XXT 44 = <real> psipotXXT44
PSI POT XXT 55 = <real> psipotXXT55
PSI POT XXT 66 = <real> psipotXXT66

END [PARAMETERS FOR MODEL NLVE_3D_ORTHOTROPIC]

The NLVE three-dimensional orthotropic model is a nonlinear viscoelastic orthotropic continuum
model that describes the behavior of fiber-reinforced polymer-matrix composites. In addition to
being able to model the linear elastic and linear viscoelastic behaviors of such composites, it also
can capture both “weak” and “strong” nonlinear viscoelastic effects such as stress dependence of
the creep compliance and viscoelastic yielding. This model can be used in both Presto and
Adagio.

Because the NLVE model is still under active development and also because it has an extensive
list of command lines, we have not followed the typical approach in documenting this model.

15.21 Other Undocumented Material Models

For a listing of other material models that exist in Sierra/SM see Table 15.8. Support for use of
these models is limited.

Table 15.8 Other Material Models Available (Undocumented)
Name Author
CDM_EP Shawn English
UNIVERSAL_CURING Kevin Long
JOHNSON COOK DAMAGE Bill Scherzinger
FROST_ASHBY_CREEP Bill Scherzinger
ELASTIC_PLASTIC_FAIL Bill Scherzinger
ELASTIC_ORTHOTROPIC_FAIL Shawn English
HAIL_ICE Bill Scherzinger
ELASTO_VISCOPLASTIC Arthur Brown
ELASTIC_UQ_SHELL Mark Merewether
MLEP_WILKINS_FAIL Mike Neilsen
UCP_FAIL Mike Neilsen
SOLDER
SOLDER_DAMAGE
COULOMBMIXMODE Shawn English
EVG Jake Ostien
SPECTACULAR Kevin Long
HILL_PLASTICITY_DAMAGE Jake Ostien
CRYSTAL_PLASTIC David Littlewood
CRYSTAL_PLASTICITY
LOCAL_CRYSTAL_PLASTICITY
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16 Cohesive Material Models

This chapter describes the theory and usage of cohesive models in development. There are
typically two different types of cohesive models, intrinsic and extrinsic. Intrinsic models are used
for cohesive surfaces that are known a priori and are included in the model from the beginning.
These models by definition produce zero traction for zero cohesive separation and have a loading
region before failure. Extrinsic models are used when cohesive surfaces are dynamically inserted
based on some material criteria. These models typically are initialized to produce an equilibrium
traction at zero separation based on the cohesive zone insertion criteria. Section 16.1 describes
the intrinsic cohesive zone models in development, whereas Section 16.2 describes the extrinsic
models.

16.1 Intrinsic Models

16.1.1 Mixed-mode Dependent Toughness

The MDGc CZM (Mixed-mode Dependent Toughness Cohesive Zone Mode) has two elements.
Mode I energy dissipation is defined by a trapezoidal traction-separation relationship that depends
only on normal separation. Mode II (III) dissipation is generated by shear yielding that depends
only on the tangential separation components. A perfect plasticity-like formulation is used to
define shear yielding by relating effective shear traction to effective slip rate. Shear yielding
occurs within the region where Mode I separation (softening) occurs and can also occur ahead of
that region. The MDGc CZM was developed to model crack propagation along an epoxy/solid
interface when there is small-scale crack-tip yielding and when the epoxy and solid materials can
be idealized as linear elastic. Nevertheless, this model might be applicable to other types of
interfaces, but the user needs to use care in doing so. The MDGc CZM is described in detail in
reference [20]]. Note that the current implementation of the MDGc CZM differs slightly from that
described in reference [[20]] in that shear unloading occurs after Mode I separation is complete
(i.e. the normal traction has dropped to zero). In the initial implementation described in reference
[[20], shear unloading commenced as soon as Mode I softening initiated. A clear preference for
either option is not obvious and the current choice generates a smoother solution.

BEGIN PARAMETERS FOR MODEL MDGc
PEAK NORMAL TRACTION = <real>
NORMAL LENGTH SCALE = <real>
TANGENTIAL LENGTH SCALE = <real>
LAMBDA_1 = <real>
LAMBDA_2 = <real>
PEAK SHEAR TRACTION = <real>
LAMBDA_3 = <real>
PENETRATION PENALTY = <real>
UNLOAD TYPE = ELASTIC

END [PARAMETERS FOR MODEL MDGc]
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In the above command blocks:

• The maximum normal traction is specified by the PEAK NORMAL TRACTION command.

• The normal separation at which the normal traction falls to zero is prescribed by the
NORMAL LENGTH SCALE command.

• The effective tangential separation over which plastic yield occurs before the interface fails
in shear is prescribed by the TANGENTIAL LENGTH SCALE command. This should be
large compared to NORMAL LENGTH SCALE. A recommended value is 100.0.

• LAMBDA_1 indicates the normalized separation at which the normal traction response
flattens with an additional increase in normal separation. The initial Mode I loading slope
𝐾 equals the PEAK NORMAL TRACTION/(LAMBDA_1× NORMAL LENGTH SCALE}).

• LAMBDA_2 indicates the normalized separation at which the normal traction begins to
decrease with additional increase in normal separation. Setting LAMBDA_1=LAMBDA_2
generates a triangular traction-separation relationship.

• The maximum shear traction is specified through the PEAK SHEAR TRACTION
command.

• LAMBDA_3 controls the rapidity with which the shear is released. The shear unloading
slope, 𝐾𝑢, equals the negative of the initial Mode I loading slope, 𝐾 , times the ratio of
LAMBDA_1/LAMBDA_3. One reasonable choice is LAMBDA_3=LAMBDA_1.

• The PENETRATION PENALTY parameter multiplies the Mode I loading slope, 𝐾 , to
provide an artificially increased penetration stiffness to help prevent interpenetration of
cohesive surfaces when crack closure occurs. It is recommended that this parameter be set
to zero (no penetration stiffness) and that Sierra/SM contact surfaces be used to prevent
interpenetration.

• The only currently supported option for UNLOAD TYPE is ELASTIC.

The state variables for this model are listed in Table 16.1.

Table 16.1 State Variables for MDGc CZM (Section 16.1.1)
Name Description
LAMBDA_MAX Maximum lambda the model has experienced (lambda equals the normal separation divided by the NORMAL

LENGTH SCALE)
TRACTION AT LAMBDA
MAX

Traction at LAMBDA_MAX
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16.2 Extrinsic Models

16.2.1 Tvergaard Hutchinson

This model is an extension of the trapezoidal traction-separation model proposed by Tvergaard
and Hutchinson [22] generalized to multiple dimensions. The generalization is performed by
appropriately scaling the normal and tangential components of the traction and separation into the
1D model depicted in Fig. 16.1. In Fig. 16.1, 𝜆𝑐 is the normalized final cohesive opening in the
effective space, 𝜆1 is the length of the initial loading branch of the model, 𝜆2 is the separation
length that begins the failure branch of the model, and 𝜎̂ is the maximum effective traction of the
cohesive zone. These parameters have the following restrictions on their values:

0 ≤ 𝜆1 ≤ 𝜆2 ≤ 𝜆𝑐 = 1, 𝜎̂ > 0.

Finally, as shown in Fig. 16.1, for 𝜆 > 𝜆1 unloading may be assumed towards the origin.

Fig. 16.1 The effective traction-separation model following Tvergaard and Hutchinson.

Assuming a loading condition (𝜆 > 0, ¤𝜆 > 0), the slope of the effective traction-separation model
is evaluated as follows

𝑡′ =


𝜎̂/𝜆1, 𝜆 ∈ [0, 𝜆1)
𝜎̂/𝜆, 𝜆 ∈ [𝜆1, 𝜆2)
𝜎̂(1 − 𝜆)/(𝜆(1 − 𝜆2)), 𝜆 ∈ [𝜆2, 𝜆𝑐)
0, 𝜆 ≥ 𝜆𝑐

and the effective traction is computed as 𝑡 = 𝑡′𝜆.

The effective traction-separation model is extended to 3D by defining the following additional
values:
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• The normal failure separation, 𝛿𝑐𝑛
• The tangential failure separation, 𝛿𝑐𝑡
• The ratio of failure separations, 𝑟 = 𝛿𝑐𝑛/𝛿𝑐𝑡
• The normalized normal separation, 𝜆𝑛 = 𝑢𝑛/𝛿𝑐𝑛
• The normalized tangential separations, 𝜆𝑖𝑡 = 𝑢𝑖𝑡/𝛿𝑐𝑡 , 𝑖 = 1, 2.

• The effective separation, 𝜆 =
√
𝜆2
𝑛 + (𝜆1

𝑡 )2 + (𝜆2
𝑡 )2

Then, the traction is computed as

𝑡1𝑡 =𝑡
′𝜆1
𝑡 𝑟,

𝑡2𝑡 =𝑡
′𝜆2
𝑡 𝑟,

𝑡𝑛 =𝑡
′𝜆𝑛.

The model is extended to the extrinsic behavior by computing an effective opening 𝝀̃ that recovers
the initialization traction. There are two modes of initialization: (1) where the initial effective
traction is below the peak traction specified in the input file, and (2) where the initial effective
traction exceeds the peak traction in the input file. In the first case, the components of the effective
opening (𝝀̃) are computed on the hardening branch of the cohesive model. In the second case, the
peak traction is reset to the initial effective traction and the components of the initial effective
opening are computed using the condition |𝝀̃ | = 𝜆1. Evaluation of the extrinsic effective opening
is given by the following:

𝜎̃ =
√
(𝑡𝑛𝑟)2 + (𝑡1𝑡 )2 + (𝑡2𝑡 )2,

𝜎̂ =max(𝜎̂, 𝜎̃),

𝜆̃𝑖𝑡 =
𝑡𝑖𝑡𝜆1

𝜎̂𝑟
, 𝑖 = 1, 2,

𝜆̃𝑛 =
𝑡𝑛𝜆𝑛
𝜎̂
.

After initialization, the model is evaluated using

𝜆 =
√
(𝜆𝑛 + 𝜆̃𝑛)2 + (𝜆1

𝑡 + 𝜆̃1
𝑡 )2 + (𝜆2

𝑡 + 𝜆̃2
𝑡 )2.

The model is specified in adagio by the following command block:

BEGIN PARAMETERS FOR MODEL TVERGAARD_HUTCHINSON
INIT TRACTION METHOD = {IGNORE|ADD|EXTRINSIC} (IGNORE)
LAMBDA_1 = <real>
LAMBDA_2 = <real>
NORMAL LENGTH SCALE = <real>
TANGENTIAL LENGTH SCALE = <real>
PEAK TRACTION = <real>

(continues on next page)
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PENETRATION STIFFNESS MULTIPLIER = <real>
USE ELASTIC UNLOADING = {NO|YES} (YES)

END [PARAMETERS FOR MODEL TVERGAARD_HUTCHINSON]

The INIT TRACTION METHOD = EXTRINSIC|ADD command line relates only to the
dynamic insertion of cohesive zone elements through element death or XFEM.

16.2.2 Thouless Parmigiani

This model is an extension of the Tvergaard Hutchinson effective traction-separation model
described in Section 16.2.1, but the normal and tangential traction components are treated
independently. The model is specified in adagio by the following command block:

BEGIN PARAMETERS FOR MODEL THOULESS_PARMIGIANI
INIT TRACTION METHOD = {IGNORE|ADD|EXTRINSIC} (IGNORE)
LAMBDA_1_N = <real>
LAMBDA_1_T = <real>
LAMBDA_2_N = <real>
LAMBDA_2_T = <real>
NORMAL LENGTH SCALE = <real>
PEAK NORMAL TRACTION = <real>
TANGENTIAL LENGTH SCALE = <real>
PEAK TANGENTIAL TRACTION = <real>
PENETRATION STIFFNESS MULTIPLIER = <real>
USE ELASTIC UNLOADING = {NO|YES} (YES)

END [PARAMETERS FOR MODEL THOULESS_PARMIGIANI]
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17 Multicriteria Rebalance

This chapter describes how to use the multicriteria rebalance capability in Sierra/SM.

When running a typical Sierra/SM analysis, there are many capabilities that have a much higher
computational cost than the other capabilities used in the simulation. An example of such
capabilities is contact. Because contact typically does not occur on every element in the finite
element model, the mesh can be decomposed (rebalanced) to split the contact work up across as
many processors as possible to run most efficiently. This rebalance can occur at a user defined
interval to account for contact patches coming in and out of contact with each other (consider a
tire rolling on the ground), or it can be done automatically. Multicriteria rebalance also takes into
account more expensive element formulations.

To activate multicriteria rebalance, use the following command:

BEGIN REBALANCE
INITIAL REBALANCE = ON
PERIODIC REBALANCE = AUTO
LOAD RATIO THRESHOLD = 1.25
REBALANCE STRATEGY = MULTICRITERIA

END

Warning: REBALANCE STRATEGY = MULTICRITERIA is still an experimental
capability and should be used with caution.

Known Issue
REBALANCE STRATEGY = MULTICRITERIA does not currently work with restart.
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18 Phase Field Fracture

A phase-field fracture model has been implemented as a means of providing a mesh-convergent
failure modeling capability. Usage of the phase-field fracture capability involves two primary
components: (1) using a specific phase-field material model (Phase Field FeFp) and (2)
establishing a solver to determine the phase field update. The phase-field material model is
implemented in the LAMÉ material library and includes all model form choices and model input
parameters; this is documented in the LAMÉ manual. The phase-field solver is implemented in
Sierra/SM (reaction-diffusion solver) and is documented in this chapter. This includes
documentation of the reaction-diffusion solver itself, as well as the control reaction diffusion
block, which is used in implicit analyses. Additional usage and debugging guidelines are
provided.

18.1 Reaction Diffusion Solver

The phase-field model solves the phase-field evolution using a reaction-diffusion solver
implemented in Sierra/SM. The reaction-diffusion command block is as follows:

BEGIN REACTION DIFFUSION rxndiffname
BLOCK = <string list>block_names
REMOVE BLOCK = <string list>remove_block_names
INCLUDE ALL BLOCKS

ASSEMBLY = <string list>assembly_names
REMOVE ASSEMBLY = <string list>remove_assembly_names

ACTIVE PERIODS = <string list> active_period_names
INACTIVE PERIODS = <string list> inactive_period_names

PHASE FIELD BOUND CONSTRAINTS

BEGIN PRESCRIBED FIELD
SURFACE = <string>surf_name
NODE SET|NODESET = <string>node_set_name
FUNCTION = <string>func_name

END
BEGIN PRESCRIBED FLUX
SURFACE = <string>surf_name
NODE SET|NODESET = <string>node_set_name
FUNCTION = <string>func_name

END

GRADIENT CONFIGURATION = MODEL|CURRENT(MODEL)
USE FINITE ELEMENT MODEL = <string>model_name

(continues on next page)
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(continued from previous page)
[Model Coordinates Are <string> nodal_variable_name]

SOLVE AT INITIALIZATION = OFF|ON(OFF)
SOLVE STEP INCREMENT = <integer>solv_step_incr(1)
SOLVE TIME INCREMENT = <real>solv_time_incr

EQUATION SYSTEM = LINEAR|NONLINEAR(LINEAR)
USE LINEAR SOLVER = FALSE|TRUE(TRUE)

BEGIN SOLVER OPTIONS
ACCEPTABLE RESIDUAL = <real>accept_resid(1.0e-14)
ACCEPTABLE RELATIVE RESIDUAL = <real>accept_rel_resid(1.0e-12)
TARGET RESIDUAL = <real>target_resid(1.0e-15)
TARGET RELATIVE RESIDUAL = <real>target_rel_resid(1.0e-13)
MAXIMUM ITERATIONS = <integer>max_iter(1000)
LINE SEARCH BACKTRACK [<real>min_step(1.0e-8) <real>reduction(0.1)

<real>init_step(1.0)
BISECTION|CUTBACK|SECANT|TRUST_REGION|CRITICAL_POINT(BISECTION)
<real>dispinc(0.5) <real>rotinc(0.0) ]

LINEAR SOLVER = <string>linear_solver_name(DEFAULT_FETI_SOLVER)
PRECONDITIONER = PROBE|IDENTITY(PROBE)

END

END

The commands regarding BLOCK, ASSEMBLY, and ACTIVE PERIODS are common to
Sierra/SM, and allow the user to specify reaction-diffusion solution only on the blocks or time
periods of interest.

The SOLVE AT INITIALIZATION command provides a way to solve the phase field before
any mechanical loading is applied. This is particularly useful when applying a phase boundary
condition (e.g. prescribed field, prescribed flux), as the phase field will not be in equilibrium prior
to the mechanics solve in the first time-step.

Explicit only
The commands SOLVE STEP INCREMENT and SOLVE TIME INCREMENT offer a way of
decreasing the frequency of reaction diffusion solves, particularly for the use-case involving
implicit reaction diffusion solves with explicit time incrementation of the solid mechanics
solution. Individually, the two commands define the period (in steps, or in time) between
successive reaction-diffusion solves. It is an error to specify both commands simultaneously.

The command PHASE FIELD BOUND CONSTRAINTS offers a way of ensuring satisfaction of
the phase field bound constraints. Specifically, this command restricts the reaction-diffusion
solution to the interval 𝜙 ∈ [0, 1] and also ensures that the field evolves monotonically Δ𝜙 ≤ 0.
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Implementation is done using a bound-constrained conjugate gradient method [23] with
modifications around the active set selection.

The commands BEGIN PRESCRIBED FIELD and BEGIN PRESCRIBED FLUX offer a
means to specify Dirichlet or Neumann boundary conditions on the phase field. The prescribed
field is commonly used to instantiate the model with an initial damage field, such as a phase field
pre-crack. Often this provides for better numerical performance than a meshed sharp crack with no
initial phase field. The prescribed flux has not been tested, as it lacks a clear physical motivation.
It is recommended to use the SOLVE AT INITIALIZATION command with these options to
ensure that the phase field is in equilibrium before performing any mechanical solution.

The command GRADIENT CONFIGURATION provides the option to compute the phase-field
gradient in model or current coordinates. Model coordinates are recommended.

The command USE FINITE ELEMENT MODEL provides the user the option to specify the
finite element model for the phase field. By default, the same finite element model as the Adagio
region is used. Using a different finite element mesh for the reaction-diffusion solve has not been
tested and is not recommended.

The commands EQUATION SYSTEM and USE LINEAR SYSTEM are used to determine
whether to solve the reaction-diffusion equation as a linear or nonlinear partial differential
equation. For the current Phase Field FeFp implementation, the phase-field evolution equation is a
linear partial differential equation when the degradation function parameter 𝛾 = 0 (corresponding
to 𝜓𝑐 = 3𝐺𝑐

16ℓ ), so the linear reaction-diffusion solve may be used: LINEAR, TRUE; this uses the
default FETI solver to solve the linear system. For other cases (𝛾 ≠ 0), it is the phase-field
evolution equation is a nonlinear partial differential equation, so it is recommended to use the
nonlinear reaction-diffusion solver: NONLINEAR, FALSE; this uses a preconditioned conjugate
gradient method to iteratively solve the system.

The BEGIN SOLVER OPTIONS block offers options to customize the preconditioned conjugate
gradient solve (EQUATION SYSTEM = NONLINEAR, USE LINEAR SYSTEM = FALSE),
with commands that reflect a limited set of the commands in the Sierra/SM BEGIN CG block.
Two nodal preconditioners are available: identity and probe. The probe preconditioner defines its
entries as the quotient of the phase system residual divided by the nodal phase stiffness; the phase
stiffness is computed as the derivative of the phase force-internal at that node with respect to
phase, estimated using a forward finite difference (Δ𝜙 = −1.0 · 10−10).

18.2 Control Reaction Diffusion

Implicit only
For implicit analyses, it is recommended to use the alternating minimization strategy to iterate
between the phase-field update and displacement solution to ensure that an equilibrium state is
reached. This is crucial for temporal convergence for implicit analyses with large time-steps.
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Explicit only
For explicit analyses, it is assumed that the time-step is sufficiently small that the phase field is
never far from equilibrium, so iteration between the two problems is unnecessary. In fact, given
the relative cost of the phase-field solve compared to the explicit integration of the displacement
system, alternating minimization would be prohibitively expensive.

The CONTROL REACTION DIFFUSION block within the implicit solver block provides the
means to perform this iteration. Using this capability, the solver iterates between the displacement
solve and the phase field solve until either convergence is realized or the maximum number of
iterations is reached. Convergence is assessed using the displacement system residual
immediately after the phase field solve; if the phase field update does not throw the displacement
system out of equilibrium, it is said to have converged.

Note: The phase field residual is not explicitly assessed. Implementation of a coupled
energy-residual norm is under consideration.

Warning: Due to the additional level of iteration, it is not recommended to use CONTROL
REACTION DIFFUSION together with other control iterations such as CONTROL
CONTACT, CONTROL STIFFNESS, CONTROL FAILURE, or CONTROL DAMPED
SOLVE.

BEGIN CONTROL REACTION DIFFUSION
ACCEPTABLE RELATIVE RESIDUAL = <real>accept_rel_resid
ACCEPTABLE RESIDUAL = <real>accept_resid
TARGET RELATIVE RESIDUAL = <real>target_rel_resid
TARGET RESIDUAL = <real>target_resid

ITERATION PLOT = <integer>iplot
ITERATION PLOT OUTPUT BLOCKS = <string_list>plot_blocks

LEVEL = <integer>control_rxndiff_level(1)

MAXIMUM ITERATIONS = <integer>max_iter(100)
MINIMUM ITERATIONS = <integer>min_iter(0)

REFERENCE = EXTERNAL|INTERNAL|RESIDUAL|BELYTSCHKO|ENERGY(EXTERNAL)
RESIDUAL NORM TYPE = ALL|ALLTRANSLATION|SCALE_RB_ROTATIONS(ALL)
RESIDUAL ROUNDOFF TOLERANCE = <real>resid_roundoff_tol

END

The commands in the CONTROL REACTION DIFFUSION mirror those found in other
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Sierra/SM control blocks.

18.3 Output Fields

This section lists output variables for the phase-field fracture capability.

• Table 18.1 Nodal Variables for Phase-Field Fracture

• Table 18.2 Element Variables for Phase-Field Fracture

Table 18.1 Nodal Variables for Phase-Field Fracture
Name Type Comments
rxndiff_bound_constraint Real bound constraint indicator (active if non-zero)
rxndiff_bound_constraint_prev Real previous iteration bound constraint indicator
rxndiff_gradient_direction Real PCG gradient direction
rxndiff_mass Real nodal phase field mass
rxndiff_rhs Real phase field evolution equation residual
rxndiff_scratch_sol Real PCG scratch solution
rxndiff_search_dir Real PCG search direction
rxndiff_sol Real phase field 𝜙

Table 18.2 Element Variables for Phase-Field Fracture
Name Type Comments
rxndiff_sol_grad Vector_3D phase field gradient ∇𝜙
rxndiff_sol_grad_ip Real phase field gradient inner product ∇𝜙 · ∇𝜙
rxndiff_sol_intpts Real phase field at integration points

18.4 Usage Guidelines

Some usage guidelines for the phase-field fracture capability are provided below:

• It is often convenient to rename the phase-field solution in the results output, e.g. NODAL
RXNDIFF_SOL AS PHASE.

• When building or debugging simulations, it may be useful to remove the phase-field
(fracture) aspect from the problem and verify the constitutive response. The FeFp

(development) and J2 Plasticity (production) models are the nearest approximations to the
base constitutive model of Phase Field FeFp. The REACTION DIFFUSION and
CONTROL REACTION DIFFUSION blocks should be removed accordingly.

• It is strongly recommended to have the element size be smaller than the phase field length
scale ℓ, e.g. half or smaller. The half-thickness of the phase field approximation of a fully
developed crack, i.e. from 𝜙 = 0 to 𝜙 = 1, is approximately 2ℓ. Sufficient resolution of this
phase gradient is needed to achieve a converged solution; insufficient resolution, especially
having the element size be greater than ℓ, is not faithful to the gradient-regularization
approach.

• While the Lorentz degradation function relieves the length scale ℓ of direct meaning as a
physical property, restoring it to be a numerical parameter that approximates Griffith
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fracture as ℓ → 0, there are practical recommendations for setting ℓ: - Due to the mesh
resolution requirements, an analyst would prefer to set ℓ as large as possible to enable using
a coarse mesh. - The degradation function convexity limit (𝛾 ≥ −1/3) establishes a bound
that ℓ ≤ 9

32
𝐺𝑐

𝜓𝑐
. - The length scale should be small compared to features of the structure and

smaller than the plastic zone size 𝑟𝑝 ≈ 1
3𝜋

𝐸𝐺𝑐

(1−𝜈2)𝜎2
𝑦
. - If possible, setting ℓ = 3

16
𝐺𝑐

𝜓𝑐
sets the

degradation function parameter 𝛾 = 0, enabling the use of the linear phase field solver,
which is often faster than the iterative nonlinear preconditioned conjugate gradient solver
used for the nonlinear system.

• The phase field solve adds expense to the simulation, especially when iterated over (control
reaction diffusion for implicit integration) or solved frequently (explicit integration). In an
effort to minimize this cost, it is recommended to use the Phase Field FeFp model and apply
the REACTION DIFFUSION block judiciously to specific regions where failure is
expected. The FeFp or J2 Plasticity models are recommended substitutes for consitutive
response in regions without damage.

• Be sure to select the appropriate phase-field solver (EQUATION SYSTEM and USE
LINEAR SOLVER pair) that reflects the linearity/non-linearity of the Phase Field FeFp

material model. If 𝛾 = 0, 𝜓𝑐 = 3𝐺𝑐

16ℓ (default), then the linear solver can be used. Otherwise,
the nonlinear preconditioned conjugate gradient solver must be used.

• When using phase field boundary conditions, such as pre-cracks, be sure to activate SOLVE
AT INITIALIZATION.

• When using explicit time integration: - Consider using SOLVE STEP INCREMENT or
SOLVE TIME INCREMENT to balance accuracy and computational expense.

• When using implicit time integration: - It is recommended to use the CONTROL
REACTION DIFFUSION block to ensure that the phase field and displacement solutions
are in equilibrium. Note that this adds a level of iteration, causing a non-trivial computation
time increase. Adaptive time-stepping is also useful with control reaction diffusion, as it
allows the solver to take smaller steps if converged equilibrium is not reached. - It is not
recommended to use the CONTROL REACTION DIFFUSION block together with other
control blocks, such as CONTROL CONTACT. The computational expense of two levels of
iteration is considerable, even on simple problems. If implicit contact must be used, the
contact iterations alone may be sufficient to achieve equilibrium with the phase field
problem, but this has not been investigated and is not guaranteed. - Convergence of the
alternating minimization approach (CONTROL REACTION DIFFUSION) becomes more
difficult as the increment of phase field grows. Quick, unstable crack propagation would be
such a case. Accordingly, the use of adaptive timestepping or implicit dynamics may aid
convergence. Similarly, for notched or pre-cracked geometries, adding an initial phase
boundary condition may aid solver performance.

• In some problems, removal of highly-damaged elements (i.e. via element death) may be
useful to prevent element inversion and maintain explicit time-step size.

• The usage of PHASE FIELD BOUND CONSTRAINTS has been shown to improve phase
field solutions, especially when fields with values outside the natural bounds ([0, 1]) or
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damage reversion have been observed. The bound constraint enforcement has been observed
to impact the convergence of the preconditioned conjugate gradient solver, however.
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19 Other In-Development Capabilities

This chapter describes other miscellaneous capabilities that are still in development or have
limited testing.

19.1 Element Birth (Element Activation)

BEGIN ELEMENT BIRTH <string>birth_name
BLOCK = <string list>block_names
BIRTH START TIME = <real>time
CRITERION IS ELEMENT VALUE OF
<string>var_name <|<=|=|>=|> <real>tolerance
[<integer>num_intg INTEGRATION POINTS REMAIN]

CRITERION IS AVG|MAX|MIN NODAL VALUE OF
<string>var_name <|<=|=|>=|> <real>tolerance

CRITERION IS GLOBAL VALUE OF
<string>var_name <|<=|=|>=|> <real>tolerance

END

A limited element birth/activation capability is provided for the target use cases of additive
manufacturing and welds.

Elements are birthed upon an element variable, nodal variable, or global variable criterion. See
Element Death section of the Sierra/SM User Manual for tips on properly setting up death/birth
criteria based on a registered variable.

This capability is currently implemented for UG Hex8 elements with isotropic hypoelastic
materials only.

Element birth works with thermal strains. Inactive elements do not accumulate thermal strains.

Element birth will error if a node is shared between an element birth block and a block involving:
contact, force external boundary conditions, and kinetic boundary conditions.

19.2 Initial Particle Conversion

BEGIN CONVERSION TO PARTICLES AT INITIALIZATION <string>name
BLOCK = <string list>block_names
ASSEMBLY = <string list>assembly_names
SECTION = <string>section_name

END

The initial particle conversion capability is provided to facilitate the creation of particle meshes
for particle based methods—such as smooth particle hydrodynamics (SPH) or reproducing kernel
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particle method (RKPM)—from an initial mesh of solid elements (e.g., hexes).

At the beginning of the analysis the solid element blocks listed in block_names, or assemblies
of solid element blocks listed in assembly_names are converted to spherical particles of the
type defined in the particle section section_name. It is important to note that the particle
section will thus supersede any section specified in the original solid element block definition
(consult Sierra/SM User Manual section on Element Block Parameters).

Note that elements may also be converted to particles via element death (consult Sierra/SM User
Manual section on Element Death); however, conversion at initialization should offer more robust
creation of particle meshes that are (a) compatible with the original mesh boundary conditions
and (b) amenable to the chosen particle formulation methodology.

19.3 Shell Contact Lofting Factor

Warning: The shell contact lofting factor only works with Dash contact.

BEGIN SHELL SECTION <string>shell_section_name
# ... see the Elements chapter of Sierra/SM User Manual
CONTACT LOFTING FACTOR = <real>contact_lofting_factor

END [SHELL SECTION <string>shell_section_name]

The CONTACT LOFTING FACTOR line command is available in the SHELL SECTION
command block to set a lofting factor specifically for use in contact. This contact lofting factor is
used in place of the kinematic lofting factor for creation of the shell lofted geometry in contact. If
no contact lofting factor is set, the kinematic lofting factor is used for contact.

The contact lofting factor has no effect on the shell element kinematics, and the LOFTING
FACTOR and CONTACT LOFTING FACTOR line commands may be used in combination to
independently set the kinematic and contact lofting factors, respectively.

19.4 Discrete Element Method (DEM)

The discrete element method is a particle based element formulation. This method is in early
development, experimental, and currently not recommended for use.

BEGIN DEM OPTIONS
...

END
BEGIN DEM SECTION

...
END
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19.5 Q1P0 Element

A selectively integrated formulation is specified with the command FORMULATION = Q1P0.
This is only available for 8-node hexahedral element blocks.

BEGIN SOLID SECTION <string>solid_section_name
...
FORMULATION = Q1P0
...
Q1P0 STABILIZATION THRESHOLD = <real>threshold(0.0)
Q1P0 TIMESTEP SCALE FACTOR = <real>scale_factor(0.95)
Q1P0 TIMESTEP WAVE SPEED = <string>VOLUMETRIC|SHEAR|
AUTOMATIC(AUTOMATIC)

Q1P0 TIMESTEP LENGTH SCALE = <string>DEFORMED_NODAL_DISTANCE|
MINIMUM_MAPPING_STRETCH|INSCRIBED_SPHERE_DIAMETER
(MINIMUM_MAPPING_STRETCH)

END [SOLID SECTION <string>solid_section_name]

In the Q1P0 element formulation, the internal forces arising from material stress are selectively
integrated. Forces arising from the pressure component of the stress are integrated using a single
integration point while forces arising from the deviatoric stress are integrated using a 2 × 2 × 2
Gauss rule.

The only STRAIN INCREMENTATION option available for this element is
STRONGLY_OBJECTIVE.

When post-processing information such as the plastic strain with this element, information at the
first integration point should typically be used as it is more accurate than at any other point. The
first integration point corresponds to the location at the center of the element where the pressure
response is evaluated.

Warning: Material model evaluations at the Q1P0 element’s deviatoric integration points
can result in spurious high and low locked pressures for incompressible (or nearly
incompressible) material models. The Q1P0 element avoids the pressure locking when
calculating the internal forces (for the balance of linear momentum) by discarding the
pressures calculated at the deviatoric integration points and replacing them with the pressure
from the central integration point. Note that the locked pressures are replaced during element
calculations, not inside the constitutive model. This means that material models and element
death criteria that fail or accumulate damage based on pressure may be adversely affected by
this deviatoric pressure locking. For this reason, the selective-deviatoric (SD) element is
generally preferred for material failure analyses. The SD element calculates a single average
element volumetric strain and passes that average volumetric strain to all material integration
points. The volume averaging of strain in the SD element prevents pressure locking in the
material constitutive equations and in the overall element response.
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Stress-based values such as stress and values derived from it such as von_mises are
evaluated using a stress tensor taken from a volumetric average of the 8 deviatoric Gauss points
for the deviatoric response combined with a pressure response at the central integration point.

The Q1P0 STABILIZATION THRESHOLD command modifies the formulation to provide
additional stabilization as elements become distorted at the cost of accuracy. If a simulation
produces inverted elements, these may be able to be mitigated by providing a value of 0.25. One
may look at the stabilization_factor element variable to determine if this option is
being activated in the analysis. A value of 0 in this variable corresponds to a fully q1p0
formulation while a value of 1 corresponds to a fully integrated formulation. Keep in mind that if
this is changed from the default value of 0, the formulation is no longer truly Q1P0.

Explicit only
Three additional parameters are available to select how the critical time step is evaluated, Q1P0
TIMESTEP SCALE FACTOR, Q1P0 TIMESTEP WAVE SPEED, and Q1P0 TIMESTEP
LENGTH SCALE. The critical time step is evaluated using the following formula:

timestep = scale factor × length scale
wave speed

The Q1P0 TIMESTEP SCALE FACTOR = scale_factor command scales the calculated
time step for elements with this section. The default of 0.95 should be sufficient for almost all
analyses. Lowering this slightly may provide better results in certain circumstances. If another
time step scale factor is specified within the PARAMETERS FOR PRESTO REGION block, they
are effectively multiplied together for elements using this section.

The Q1P0 TIMESTEP WAVE SPEED command chooses the wave speed used by the time step
calculation. The default, AUTOMATIC, should be sufficient for all analyses. The VOLUMETRIC
option calculates wave speed using the bulk modulus while the SHEAR option uses the shear
modulus. The AUTOMATIC option uses the maximum of the other two options.

The Q1P0 TIMESTEP LENGTH SCALE selects the method used to calculate the length scale
of the element. The default MINIMUM_MAPPING_STRETCH option calculates this as the
minimum stretch from the mapping between a unit cube and the current configuration of the
element. While this option is relatively slow, it is robust. The DEFORMED_NODAL_DISTANCE
option calculates this as the minimum non-zero node to node distance within the element. This is
the fastest option and a potential increase in speed is achieved by selecting it at the cost of
robustness. The INSCRIBED_SPHERE_DIAMETER option calculates this as the diameter of the
largest sphere which can fit inside the element.
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