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ABSTRACT
Verification and validation (V&V) of scientific computing programs are important at Sandia
National Labs due to the expanding role of computational simulation in managing the United
States nuclear stockpile. The complexities of structural response calculations used to analyze
physical problems, the varieties of codes applied to the calculations, and the importance of
accurate predictions when assessing field conditions demand confidence in the consistency and
accuracy of computer codes. Confidence in the accuracy of the predictions arising from computer
simulations must ultimately be gained through verification and validation.
The Sierra salinas structural dynamics analysis code, Sierra/SD, is used at the DOE Laboratories,
and in several DOD projects. The roles of Sierra/SD in the qualification of weapon systems and
components for normal and hostile environments throughout the Stockpile-to-Target Sequence
include to,

• Redesign weapon components.
• Certify weapon components and systems for target environments such as hypersonic

vehicles.
• Certify that components will survive the thermal mechanical shock loads associated with

hostile environments.
• Evaluate current stockpile issues, including issues associated with uncertainty

quantification.
• Address many other problems that are encountered in stockpile management.

The Sierra/SD verification plan is described, and an evolving set of key verification tests are
described in detail. The verification tests ensure the correctness of the mathematics and numerical
algorithms associated with functionality describing engineering phenomena. Development is in
accordance with a set of tailored Software Quality Engineering (SQE) practices.54 SQE practices
guide the overall verification and validation effort.
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1. INTRODUCTION

This document covers the verification of Sierra/SD.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element
analysis. This capability is required for high fidelity, validated models used in modal, vibration,
static and shock analysis of weapons systems. General capabilities for modal, statics and transient
dynamics are provided.

Sierra/SD is similar to commercial codes like Nastran or Abaqus. It has some nonlinear
capability, but excels in linear computation. It is different than the above commercial codes in that
it is designed to operate efficiently in a massively parallel environment.
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2. SOLUTION CASES

2.1. Craig Bampton Reduction

The goal of the test is to verify both generation of a Craig-Bampton (CB) reduction and associated
matrix sensitivities as well as the Taylor series expansion of the resulting matrices to generate a
point evaluation of a parameter.

In the two hexahedron element structure in Figure 2-1. the yellow right-hand side element is
reduced to a superelement. The red left-hand side element is the “residual structure.” It is
clamped on the far left surface, and will use the superelement.

After the CB reduction, sensitivity matrices 𝑑𝐾𝑟/𝑑𝑝 and 𝑑𝑀𝑟/𝑑𝑝 are generated. The reduction is
performed in two ways: by constant vector, and by finite difference approaches. The last
simulation step is a system analysis (of the two element structure). Finally 𝑑𝐾𝑟/𝑑𝑝 and 𝑑𝑀𝑟/𝑑𝑝
are used in a Taylor series expansion for comparison purposes.

For this analysis, we use the material density as the sensitivity parameter. The model is selected
so there are no repeated frequencies.

Figure 2-1. – One hexahedron superelement model.

In the constant vector sensitivity analysis uses the reduced order matrices, Identical relations exist
for the mass matrix.

𝑘̃𝑜 = 𝑇
𝑇
𝑜 𝐾 (𝑝𝑜)𝑇𝑜, 𝑘̃1 = 𝑇𝑇𝑜 𝐾 (𝑝𝑜 + Δ𝑝)𝑇𝑜, 𝑞𝑢𝑎𝑑

𝑑𝑘̃

𝑑𝑝
∼ 𝑘̃1 − 𝑘̃𝑜

Δ𝑝

In our example, the density of a single element is the only sensitivity parameter. The density has
no impact on the stiffness matrix, so 𝑘̃1 = 𝑘̃𝑜, and 𝑑𝑘̃/𝑑𝑝 = 0. There is a change in the mass
matrix, which will affect the system eigen frequencies.
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𝑇𝑜 transformation matrix evaluated at 𝑝𝑜
𝑝𝑜 sensitivity parameter value
Δ𝑝 change in 𝑝𝑜
𝑘̃ reduced stiffness matrix
𝐾 () unreduced stiffness matrix

A finite difference sensitivity analysis uses the transformation matrix 𝑇1 evaluated at 𝑝𝑜 + Δ𝑝,

𝑘̃𝑜 = 𝑇
𝑇
𝑜 𝐾 (𝑝𝑜)𝑇𝑜, 𝑘̂1 = 𝑇𝑇1 𝐾 (𝑝𝑜 + Δ𝑝)𝑇1,

𝑑 𝑘̃

𝑑𝑝
∼ 𝑘̂1 − 𝑘̃𝑜

Δ𝑝

Because 𝑇1 depends on the density, the reduced stiffness matrix is affected by the transformation.
Interestingly enough, the reduced mass matrix is impacted less because of normalization of the
fixed interface nodes, which counter the effect of increased mass. The 1,2 and 2,2 sections of the
matrix do change.
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Figure 2-2. – Frequency variation with Density (left) and errors (right).

The right plot in Figure 2-2 of system level solutions as a function of density actually shows three
curves. The exact solution shows results obtained by rebuilding the superelement using the
parameter, and without sensitivities. The other two curves evaluate 𝑑𝑘/𝑑𝑝 at the nominal value,
and estimate the superelement contribution using a Taylor series expansion. Results are shown for
mode 3. The left plot shows the errors.

These analyses compare results for application of sensitivity matrices to superelement analysis. In
this extremely simple example, the constant vector method is exact, while finite difference
methods introduce a slight error. That is not a general case. For input deck see Appendix 9.1.
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2.2. Beam-Beam with Craig-Bampton Reduction

This model exercises CBR reductions on a beam. The full model consists of 200 beam elements,
each of length 0.01, for a total length of 2 units. The beam is free floating in the 𝑋 direction, but
constrained in all other directions. It is driven by a simple force on the left (𝑥 = 0) end. The load
is a saw tooth force with a period and duration of 1.5𝑚𝑠. The system is integrated with a fixed
time step of 0.1𝑚𝑠.

An “equivalent” model is generated by separating the model into two equal sections of 100
elements each. The right-hand side segment is converted into a superelement, and then attached to
the left-hand structure. The superelement includes the single fixed dof on the left end, and 90
internal generalized dofs representing most of the modes of the system. The loading and
integration are identical to the full structure.

Figure 2-3 compares the 𝑋 component of displacement on node 101 of both models. Node 101 is
located at the junction of the superelement. Clearly the superelement and residual structure
represent the solution very well. Figure 2-4 shows the difference of the solutions.

For comparison, Figure 2-5 compares results with a CBR model that includes no generalized dofs.
As anticipated, the results are not nearly as good.

Figure 2-3. – Comparison of Full Model with CBR Reduction.

For input deck see Appendix 9.2.
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Figure 2-4. – CBR Reduction Error.

Figure 2-5. – Comparison of Full Model with Guyan Reduction. Without the generalized DOFs, the
comparison is poor.
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2.3. Craig-Bampton Output Transfer Matrix (OTM)

CBR including the Output Transfer Matrix (OTM) are discussed in43 and.42 The following steps
are to be used for verification. The model used is the multi-element/olio_cbr_test.

1. ensure eigenvalues are consistent between models (reduced versus full)

This portion of the test that is evaluated as part of the automated test.

2. check OTM for displacement in serial.

a) Is data consistent with 𝜙 and 𝜓?

This is checked in the debugger.

b) does the product make sense,
𝑥𝑘 = [𝑂𝑇𝑀] [𝑥1]
𝑥𝑘 = 𝐾

−1𝑥1

and,
𝑥𝑘 ≈ 𝑥𝑘

This is done as follows.

a) The model is clamped away from the interface to eliminate the confusion caused by
redundant modes and zero energy modes. The system response is computed for mode
1 (a flexible mode). This is done by pulling in Kssr and Mssr and computing the
eigenvalues, E, and eigenvectors, V.

b) The reduced model is also computed for mode 1. We do this by computing the
eigenvalues and eigenvectors of Kr and Mr, [vr, er]=eig(Kr,Mr);

We ensure that the eigenvalues are approximately the same. See figure 2-6.

c) The first eigenvectors is expanded to the system from both systems. The reduced
eigenvectors contain both a physical coordinate and a modal coordinate component.
MATLAB code to do this expansion is shown in Figure 2-8. A comparison of the two
vectors is shown in Figure 2-7. Note that there is a scale factor difference of -1 in the
two vectors. This is acceptable as eigenvector scaling is arbitrary to that factor.

35



1 2 3 4 5 6 7

x 10
8

1

2

3

4

5

6

7
x 10

8

Reduced Eigenvalue

F
u
ll 

E
ig

e
n
v
a
lu

e

Figure 2-6. – Comparison of reduced and full eigenvalues.

−2000 −1000 0 1000 2000 3000 4000 5000
−5000

−4000

−3000

−2000

−1000

0

1000

2000

Figure 2-7. – Comparison of reduced and full eigenvectors.

36



function [dispgr,nodes]=expandRmodel( cbmap, OTM, OutMap, vr )
% expands a vector in the reduced, Craig Bampton space into the
% full physical space.
% cbmap - map to interface DOFs. Output into cbr.m
% OTM - Output transfer matrix. also in cbr.m
% OutMap - map to interior (and interface) nodes in output.
% vr - the reduced space vector.
% vr(1:numeig) is the amplitude of the fixed interface modes
% vr(numeig:end) is the amplitude of the constraint modes (physical
% degrees of freedom).
% results are output sorted by node number. 6 DOFs per node are output.

nodes=[cbmap(:,1)’ OutMap];
nodes=unique(nodes);
nout=size(nodes,2);
nr=max(size(vr));
nc=size(cbmap,1);
nmodes=nr-nc;

dispgr=zeros(nout*6,1);
ur=OTM*vr; % compute vector on OTM space, ur

% store components from OTM space.
for i=1:size(OutMap,2)
n=OutMap(i);
k=find(nodes==n);
for cid=1:6
k2=(k-1)*6+cid;
k1=(i-1)*6+cid;
dispgr(k2)=ur(k1);

end
end

% transfer interface DOFs directly
for i=1:nc
n=cbmap(i,1);
cid=cbmap(i,2);
k=find(nodes==n);
k2=(k-1)*6+cid;
dispgr(k2)=vr(i+nmodes);

end

Figure 2-8. – MATLAB code to convert from reduced space.
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2.4. Residual Vectors

As a small problem to test the residual vector computations in Sierra/SD, two beams are
connected to each other to simulate a longer beam. To keep the overall number of DOFs as small
as possible, the finite element mesh of the beam cross-section is limited to two elements in each
direction. This is the bare minimum required to model bending vibrations. The physical
parameters for the beams are listed in Table 2-1.

Table 2-1. – Physical parameters for the beams.

Parameter Beam 1 Beam 2
Density 7860 Kg/m3 7860 Kg/m3

Poisson Rs Ratio 0.29 0.29
Modulus of Elasticity 200 GPa 200 GPa
Width (Y-direction) 0.01 m 0.01 m
Height (Z-direction) 0.005 m 0.005 m

Length 0.25 m 0.225 m

When the two beams are combined the overall length is 0.475 m. Analytical solutions for the
resonance frequencies are available in the book by Weaver, Timoshenko and Young52 for a variety
of boundary conditions.

The analysis strategy is standard. Component modes synthesis (CMS) has been in use for a long
time and many variations on the general analysis procedure are available. The basic idea of all
CMS computations is to divide the structure into Scomponents T whose displacements are
represented as a summation of Snormal modes T with the mode sets truncated above an upper
limiting frequency. This representation is adequate to accurately compute displacements, but not
nodal forces or stresses (which represent spatial derivatives of the displacement field). Thus, some
method must be used in a CMS analysis to account for truncated modes, especially at locations
where the forces must be computed accurately. One simple method is to add Sresidual T or
Smodal truncation augmentation T vectors to the analysis for specified nodal locations and DOFs.
An excellent derivation of modal truncation augmentation vectors is given in.16 The vectors are
orthogonal to the normal modes, have same normalization, and may be added to the basis.

In the most general form of CMS analysis, interfaces are defined between each of the components
and Sinterface modes T are used to represent the connections themselves. Here, a simplified form
of CMS is used where the connections between components is at discrete nodal locations instead
of interfaces. This eliminates the need to compute Sinterface modes T. It applies to problems
(and frequency ranges) where the interfaces can be considered to vibrate as rigid bodies. For the
current example of two connected beams, rigid elements are used to make all the nodes at the ends
of the beams dependent on nodes at the beam center line. Figure 2-9 illustrates the
implementation of one of the rigid elements in NASTRAN.
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Figure 2-9. – Illustration of a rigid element making all the nodes at the end of the beam dependent on
a single node.

This is a reasonable assumption for the beams under consideration because modes with significant
variations across the cross-section occur above the frequency range of interest.

As mentioned previously, the user must specify the nodes for the residual vectors calculations.
The connection forces between the components must be computed accurately in a CMS solution,
and thus residual vectors are included in the basis set for all 6 DOFs at any location where two
components are connected to each other. It is often useful to also include residual vectors for
nodal locations where boundary conditions are to be applied instead of explicitly including the
boundary conditions as nodal constraints in the finite element analysis. The the normal modes and
residual vectors are extracted only once, and a variety of boundary conditions can be applied
subsequently. Since forces also have to be computed accurately at the locations where boundary
conditions are to be applied, residual vectors are also included for all the DOFs at these nodes.
For the present case, one end of each beam connects to the other beam and the other end may
possibly be used to apply boundary conditions. Residual vectors are not extracted for all the nodes
at the ends of the beams. Instead rigid elements are used to make all the nodes dependent on a
single node at the beam centerline. Ultimately, this means that residual vectors are extracted for
nodes at both ends of each beam, thus adding 12 residual vectors to the basis set for each beam.

The computations for the single beam were performed in a variety of ways and validated in
NASTRAN first before proceeding with the component modes synthesis (CMS) analysis. The
goal is to allow 6 DOF for each beam at the connection location and at the ends, RBar elements
are used at the ends of the beams to force all the nodes to move together as rigid entities. This
representation does not allow the cross-section at the beam ends to deform. It is first compared to
a contiguous model without RBars to verify that it does not significantly change the resonance
frequencies for the bending modes. Table 2-2 lists the analytical solution for the resonance
frequencies assuming free boundary conditions along with the two NASTRAN computations.

The integer N in the table lists the number of nodal lines along the beam’s length. The table does
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Table 2-2. – Analytical solution for the resonance frequencies of a free-free beam along with solutions
from NASTRAN.

N Primary Direction Analytical Contiguous RBar at Connection
2 Y 114.9 Hz 114.8 Hz 115.0 Hz
2 Z 229.8 Hz 229.3 Hz 229.6 Hz
3 Y 316.7 Hz 316.2 Hz 316.3 Hz
4 Y 621.0 Hz 619.3 Hz 620.0 Hz
3 Z 633.5 Hz 630.0 Hz 630.0 Hz
5 Y 1026.4 Hz 1022.4 HZ 1022.6 Hz
4 Z 1242.0 Hz 1229.5 Hz 1230.7 Hz
6 Y 1533.4 Hz 1525.0 Hz 1526.5 Hz

not include N = 0 and N = 1 modes because they represent rigid body vibrations (and are at 0 Hz).
The beam’s width was chosen to be twice its height, and thus the resonance frequencies in the
Z-direction are double those for the Y-direction. The results show that the mesh is refined enough
to give accurate results, although it is not clear why the resonance frequencies from NASTRAN
are lower than those for the analytical solution.

The next step is to perform the calculations as a CMS analysis with the resonance frequencies,
mode shapes and residual vectors computed separately for each beam. For both beams in both
CMS analyses, 10 normal modes are retained and residual vectors are included for all 6 DOFs for
a single node at both ends of the beams. For reference purposes, Table 2-3 lists the resonance
frequencies for both the normal modes (excluding rigid body modes) and residual vectors for the
two shorter beams.

For the CMS analyses, a separate computer program is used to combine the mode sets and apply
the connections between the components and the boundary conditions. The calculations are
performed in "modal space" similar to that discussed in the NASTRAN Basic Dynamics User’s
Guide.8 The connections and boundary conditions are applied with user-specified stiffnesses
between two nodes or between a single node and ground. Specifying large stiffnesses (1x1012
N/m for the current analysis) has the effect of rigidly constraining two nodes to each other or
constraining specific DOFs to zero displacement at a single node.

Once the CMS analysis is set-up, it is possible to rapidly perform the computations for the beam
with a variety of specified boundary conditions. The NASTRAN solution with the two beams
connected to each other with a rigid RBar element is used as the reference since the CMS analysis
should produce identical results. Table 2-4 Table 2-5 Table 2-6 Table 2-7 list the beam resonance
frequencies for various boundary conditions using the NASTRAN solution with an RBar
connection and for the two CMS analyses.

The results in the tables show good agreement between the NASTRAN model and the CMS
analyses that include residual vectors. Without residual vectors, the resonance frequencies are
considerably too high. While the CMS analyses require some extra effort to set-up, it is possible
to perform all the computations with a single model by changing the stiffnesses applied at the ends
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Table 2-3. – Resonance frequencies for the normal modes and residual vectors in NASTRAN and
Sierra/SD.

Type Beam 1 Beam 1 Beam 2 Beam 2
NASTRAN Sierra/SD NASTRAN Sierra/SD

Normal Mode 414.5 Hz 414.5 Hz 511.7 Hz 511.7 Hz
825.7 Hz 825.7 Hz 1018.3 Hz 1018.3 Hz
1142.1 Hz 1142.1 Hz 1409.6 Hz 1409.6 Hz
2237.7 Hz 2237.9 Hz 2761.4 Hz 2761.7 Hz

Residual Vector 2335.3 Hz 2335.2 Hz 2877.5 Hz 2877.4 Hz
4030.5 Hz 4030.8 Hz 4976.4 Hz 4976.9 Hz
4684.9 Hz 4684.7 Hz 5767.6 Hz 5767.3 Hz
5521.6 Hz 5520.6 Hz 6133.1 Hz 6131.8 Hz
6181.5 Hz 6182.3 Hz 7634.8 Hz 7636.1 Hz
11174.2 Hz 11164.8 Hz 12422.1 Hz 12410.5 Hz
12270.5 Hz 12265.1 Hz 13622.0 Hz 13615.9 Hz
16403.7 Hz 16399.7 Hz 20131.7 Hz 20126.7 Hz
22639.3 Hz 22627.8 Hz 27801.1 Hz 27789.8 Hz
25214.8 Hz 25151.2 Hz 28060.7 Hz 27981.9 Hz
28419.4 Hz 28412.3 Hz 34774.4 Hz 34766.1 Hz
32990.6 Hz 32980.5 Hz 40458.6 Hz 40453.8 Hz

of the beams. The NASTRAN computations for the model required a separate mode extraction
analysis for each boundary condition.
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Table 2-4. – Comparison of the NASTRAN solution with an RBar connecting the beams to the CMS
solutions using NASTRAN and Sierra/SD for free-free boundary conditions.

N Primary RBar at CMS, CMS, CMS, NASTRAN
Direction Connection NASTRAN Sierra/SD w/o Residual

Vectors
2 Z 115.0 Hz 115.1 Hz 115.1 Hz 132.4 Hz
2 Y 229.6 Hz 229.8 Hz 229.8 Hz 319.3 Hz
3 Z 316.3 Hz 316.7 Hz 316.7 Hz 319.2 Hz
4 Z 620.0 Hz 621.3 Hz 621.4 Hz 706.1 Hz
3 Y 630.0 Hz 631.3 Hz 631.3 Hz 654.6 Hz
5 Z 1022.6 Hz 1025.9 Hz 1026.0 Hz 1053.9 Hz
4 Y 1230.7 Hz 1235.5 Hz 1235.6 Hz > 2000 Hz
6 Z 1526.5 Hz 1533.7 Hz 1533.9 Hz 1769.0 Hz

Table 2-5. – Comparison of the NASTRAN solution with an RBar connecting the beams to the CMS
solutions using NASTRAN and Sierra/SD for clamped-clamped boundary conditions.

N Primary RBar at CMS, CMS, CMS, NASTRAN
Direction Connection NASTRAN Sierra/SD w/o Residual

Vectors
2 Z 115.2 Hz 115.3 Hz 115.3 Hz 167.3 Hz
2 Y 229.9 Hz 230.0 Hz 230.0 Hz > 2000 Hz
3 Z 317.2 Hz 317.4 Hz 317.4 Hz 411.3 Hz
4 Z 622.0 Hz 622.7 Hz 622.9 Hz 877.8 Hz
3 Y 631.2 Hz 631.8 Hz 631.8 Hz > 2000 Hz
5 Z 1026.1 Hz 1028.2 Hz 1028.4 Hz 1346.5 Hz
4 Y 1232.8 Hz 1235.4 Hz 1235.6 Hz > 2000 Hz
6 Z 1532.0 Hz 1537.0 Hz 1537.4 Hz > 2000 Hz
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Table 2-6. – Comparison of the NASTRAN solution with an RBar connecting the beams to the CMS
solutions using NASTRAN and Sierra/SD for simply supported boundary conditions.

N Primary RBar at CMS, CMS, CMS, NASTRAN
Direction Connection NASTRAN Sierra/SD w/o Residual

Vectors
2 Z 50.7 Hz 50.7 Hz 50.8 Hz 56.5 Hz
2 Y 101.4 Hz 101.4 Hz 101.4 Hz 126.8 Hz
3 Z 202.6 Hz 202.7 Hz 202.8 Hz 203.9 Hz
3 Y 404.4 Hz 404.7 Hz 404.7 Hz 412.8 Hz
4 Z 456.2 Hz 456.7 Hz 456.7 Hz 527 6 Hz
5 Z 809.5 Hz 811.0 Hz 811.1 Hz 839.5 Hz
4 Y 907.7 Hz 909.4 Hz 909.5 Hz > 2000 Hz
6 Z 1264.6 Hz 1268.3 Hz 1268.4 Hz 1444.3 Hz

Table 2-7. – Comparison of the NASTRAN solution with an RBar connecting the beams to the CMS
solutions using NASTRAN and Sierra/SD for clamped-free boundary conditions.

N Primary RBar at CMS, CMS, CMS, NASTRAN
Direction Connection NASTRAN Sierra/SD w/o Residual

Vectors
1 Z 18.1 Hz 18.1 Hz 18.1 Hz 20.4 Hz
1 Y 36.1 Hz 36.2 Hz 36.2 Hz 46.1 Hz
2 Z 113.4 Hz 113.4 Hz 113.4 Hz 148.1 Hz
2 Y 226.3 Hz 226.4 Hz 226.4 Hz 458.6 Hz
3 Z 316.9 Hz 317.2 Hz 317.2 Hz 362.1 Hz
4 Z 621.0 Hz 622.0 Hz 622.1 Hz 798.1 Hz
3 Y 630.9 Hz 631.8 Hz 631.8 Hz > 2000 Hz
5 Z 1024.3 Hz 1027.0 Hz 1027.2 Hz 1172.5 Hz
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2.5. Waterline of a ship

A code to code comparison was performed between Sierra-SD and the Navy’s finite element code
Float. This is a ship model, that utilizes the waterline solution case in Sierra-SD. An image of the
model is shown in Figure 2-10. Three key parameters were analyzed between the two codes the

Figure 2-10. – uhwmGeometry.

draft which is the distance from the bottom of the ship to the waterline, the pitch which is the
rotation about the y-axis, and the roll which is the rotation about the x-axis. The results can be
seen in Table 2-8. For input deck see Appendix 9.3.

Table 2-8. – Sierra-SD solution vs. Float (Navy code).

Sierra-SD Float
Draft 187.0580 187.0579

Pitch (about y-axis) 0.0503 0.0497
Roll (about x-axis) -0.0001 0.0000
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2.6. Transient Convergence

A verification test was created for temporal convergence of the transient solution. A vertical load
was applied at the end of a cantilever beam, and the vertical displacement at the end of the beam
after 4.5 seconds was calculated, and plotted in Figure 2-11.

Figure 2-11. – Beam.

Figure 2-12 shows on the left the time history result for the problem, solved at three different
time-steps. The Richardson Convergence of the problem, shown on the right in Figure 2-12,

Figure 2-12. – Transient Time History (left) and Richardson Extrapolation (right).

demonstrates second order convergence. For input deck see Appendix 9.4.
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2.7. Modal Transient Temporal Convergence

The modal transient temporal convergence The test consists of a 100 element cantilevered beam
that is loaded using a triangle pulse function. The modal transient test was run using 3 different
time steps, and the results of these tests are compared to the results obtained from the same tests
run using the direct transient method.

Figure 2-13 shows the plot of the deformed beam. The loading for the three tests is the same and it
consists of a ramp load applied at the free end of the beam. The load has a duration of 2 seconds
and a max value of 1 at 1 second.

Figure 2-13. – Verification Problem - Beam.

Figure 2-14 shows the time history of the beam end point for the problem for three time steps.

Figure 2-14. – Time History of Modal Transient Verification Problem.

Richardson convergence was used by determining the order of convergence for the modal transient
method. Figure 2-15 shows the Richardson Convergence of the problem. Convergence values
𝑛 = 2 implies second order convergence. This result is similar to the Richardson convergence
obtained from the direct transient method.

The modal transient tests were run using only 3 modes for verification purposes. Figure 2-16
shows the difference in displacement at the end of the beam between the direct transient method
and the modal transient method for Δ𝑡 = 0.001.

This difference decreases as the number of modes used in the modal transient method are
increased. The three modes retained are sufficient to approximate most of the solution for this low
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Figure 2-15. – Richardson Extrapolation of Modal Transient Verification Problem.

frequency loading. This corresponds well to the analysis use case where modal transient is used to
represent the lower frequency response of complex systems. Temporal convergence depends on
adequate modal basis. A similar study with high frequency input could not be expected to
converge without a much larger modal basis.

Figure 2-16. – Displacement Difference for Modal and Direct Transient Solutions.

For input deck see Appendix 9.5.
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2.8. Transient Restart

Analysts should be able to restart from any of the transient analysis capabilities into any of the
others. Of course, there are differences in the solutions with respect to accuracy, and output
quantities. For example, the nonlinear transient integrator outputs the number of nonlinear steps
as a global output variable. This is unavailable for modal transient. In addition, there are internal
variables associated with nonlinear elements and viscoelastic materials which may not be
propagated across the restart boundary.

Verification of this use case involves the following steps.

1. Computation of 40 normal modes.

2. Computation and output of 30 ms of time history with the first integrator.

3. Exit Sierra/SD, and start a new Sierra/SD analysis.

4. Restart read the previous normal modes.

5. Restart read the previous time history data, and computation of the next 10𝑚𝑠 of data.

6. Check of the .rslt to ensure that the time history data was restarted (as opposed to
recomputed from scratch).

7. Check the history file for accuracy. Note that the tolerances are loose on this check. Each
integrator provides a somewhat different solution (as expected).

8. Visual comparison of the results.

Table 2-9 indicates the tests that have been performed. Nonlinear transient as the first integrator is
not currently tested. Figure 2-17 provides the data for the second row of Table 2-9, which includes
all cases where the direct transient was the first integrator. Likewise, figure 2-18 shows data for
modaltransient as the initial integrator.

Integrator NLtransient transient modaltrans Explicit modaltrans
NLtransient Untested Untested Untested Untested NA
transient TESTED TESTED TESTED TESTED NA
modaltransient TESTED TESTED TESTED TESTED NA
Explicit TESTED TESTED Untested TESTED NA
modaltrans NA NA NA NA NA

Table 2-9. – Tested restart capabilities for transient integrators in Sierra/SD.
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Figure 2-17. – Restart from Direct Transient Analysis. In each case, 30𝑚𝑠 of analysis is completed
using a direct transient run, and is followed by a restart.
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Figure 2-18. – Restart from Modal Transient Analysis. In each case, 30𝑚𝑠 of analysis is completed
using a Modal transient run, and is followed by a restart.
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2.9. Generalized Alpha Time Integration

Though it is not always done in finite element code verification, it was deemed appropriate to
verify that the generalized alpha time integrator13 was implemented correctly. To isolate that
feature, a single degree of freedom simple harmonic oscillator problem was solved. In this
problem, the mass and stiffness were each set to unity. The period of free vibration would be 2. A
unit load was imposed for a half a period and the resulting free vibration was calculated. The
exact solution to this problem is

𝑢(𝑡) = 2 cos 𝑡

The Sierra/SD results for time steps 2𝜋/200, 2𝜋/400, 2𝜋/800, and 2𝜋/1600 were computed. The
resulting displacements for all four cases are almost identical and are shown in Figure 2-19.

Figure 2-19. – The time integrator is tested against a simple harmonic oscillator. Values of displacement
at time 8𝜋 are compared and tested for convergence.

Values at time 8𝜋 were compared and the resulting convergence plot is shown in Figure 2-20. We
see that the convergence rate is almost exactly two – the theoretical value.

51



Figure 2-20. – Convergence of Simple Harmonic Oscillator.

2.10. Prescribed acceleration capability

Prescribed accelerations are verified using a cantilever beam model 10 meters in length, with a
square cross-section of 1 meter dimension. The beam is subjected to an end-loaded acceleration
in the axial direction given by

𝑎(𝑡) = 𝑐𝑜𝑠(𝜔𝑡),
where 𝜔 = 2𝜋 𝑓 , and 𝑓 = 16Hz. The initial conditions, including initial displacement and initial
velocity of the beam are set to zero. Given these conditions, we can integrate the acceleration
equation twice to obtain the following expression for the displacement at the loaded end

𝐷 (𝑡) = 1
(32𝜋)2 (1 − 𝑐𝑜𝑠(32𝜋𝑡)).

Figure 2-21 shows a comparison of the analytical solution for displacement against the Sierra/SD
result. Excellent agreement is observed. We note that this example can be found in the test suite at
the following location.

Salinas_rtest/verification/transient/bar_prescribed.xml

For example inputs, see Appendix 9.7. The model is shown in Figure 2-36.
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Figure 2-21. – Comparison of Sierra/SD result with analytical solution of a beam with end-loaded
prescribed acceleration.
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2.11. Modal Transient

The modal solution method is a standard Newmark-beta integrator that is applied in parallel on the
modal space. It is limited to boundary conditions that are space/time separable, and all outputs
must fit on single processor. Verification is applied to four cases.

1. Constant force on a floating body, with limited modal interaction. The behavior is rigid
body only, and analytic solutions are trivial.

2. Repeat the above, but eliminate the rigid body motion. A comparison with the standard
modal solution provides the verification.

3. We repeat case 2, but add modal damping. Again, the analytic solution is straightforward.

4. A complex loading.

The above examples exercise the primary elements of the software. The model is shown in Figure

Z

Y

X

Figure 2-22. – A thin cylinder has beams on its base attached to a large mass, and the load is applied
to the mass.

2-22.
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2.11.1. Constant Force Applied to Floating Structure

In this example the load activates only a rigid body mode, and the body behaves as a point mass.
The analytic solution for a constant force applied to a point mass is,

𝑎(𝑡) = 𝐹𝑜

𝑚

𝑣(𝑡) =
∫ 𝑡

𝑜

𝑎(𝑡′)𝑑𝑡′

=
𝐹𝑜

𝑚
𝑡

𝑑 (𝑡) =
∫ 𝑡

𝑜

𝑣(𝑡′)𝑑𝑡′

=
𝐹𝑜

2𝑚
𝑡2

The dimensionless load is set to 105 in the input file, and the result file indicates that the total
dimensionless mass of the structure is 1001.25 · 𝑤𝑡𝑚𝑎𝑠𝑠=2.5932375.

Figure 2-23 compares the analytic and numerical solutions for displacement. Figure 2-24 provides
similar results for acceleration. While the agreement is excellent, a small discrepancy is observed
if differencing the solutions. This occurs because the numerically integrated solution tends to lag
the analytic solution by a half step.
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Figure 2-23. – Response of Rigid Body Mode.

This example ensures that the modal force is being computed properly for rigid body modes. As
they are identical to elastic modes, that follows as well. It verifies the behavior of the integrator,
except that there are contributions from the damping matrix which are not considered.
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Figure 2-24. – Acceleration Response of Rigid Body Mode. The analytic acceleration is a constant of
𝐹/𝑚 ≈ 38561.8. The error in the figure is much smaller than this, and represents the elastic response
of higher frequency elastic modes, that are just slightly active in the analysis.

2.11.2. A single Elastic Mode

While the analytic expression for an analytic mode is not quite as complete as for a rigid body
response, we may still proceed with verification. We assume that the eigenvalues are computed
correctly. We also assume that the modal force, 𝑓𝑞 (𝑡) = 𝜙𝑇 𝑓 (𝑥, 𝑡), has been verified. The previous
example addresses this. Then, the analytic response may be computed.

𝑎(𝑡) = 𝐹𝑜𝛼 cos(𝜔𝑖𝑡)

𝑣(𝑡) =
∫ 𝑡

𝑜

𝑎(𝑡′)𝑑𝑡′

= 𝐹𝑜𝜔𝑖𝛼 sin(𝜔𝑖𝑡)

𝑑 (𝑡) =
∫ 𝑡

𝑜

𝑣(𝑡′)𝑑𝑡′

=
𝐹𝑜

𝜔2
𝑖

𝛼(1 − cos (𝜔𝑖𝑡))

where 𝛼 represents the modal contribution from mode 𝑖 at natural frequency 𝜔𝑖, i.e., 𝛼 = 𝜙2
𝑖 𝑗

. The
analytic and numeric results for this case are shown in Figure 2-25.
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Figure 2-25. – Step Function response of Undamped Oscillator.

2.11.3. Damped Simple Harmonic Oscillator

The solution of the previous solution can be neatly modified by applying damping. The phase 𝜙
satisfies cos 𝜙 = 𝜁 . The analytic solution is,

𝑥(𝑡) = 𝐴
(
1 − 𝑒−𝜁𝜔𝑖𝑡

sin (
√︁

1 − 𝜁2)𝜔𝑖𝑡 + 𝜙
sin(𝜙)

)
(2.11.1)

Results for the analytic and numeric solutions are shown in Figure 2-26.
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Figure 2-26. – Step Function response of Damped Oscillator.
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2.11.4. Complex Loading

The last verification example (case 4) utilizes code to code comparison. We apply a triangle pulse
of unit amplitude and duration 1 ms. Comparison is with the standard modaltransient method.
This boundary condition is essentially an impulse which causes a linear increase in displacement.
There is no difference between the modaltrans and modaltrans solutions. For input deck see
Appendix 9.6.
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2.12. Fluid Structure Interaction Added Mass

The following test is used to determine to what extent that SierraSD accounts for an added fluid
mass to a structure when computing the angular frequencies. The test consists of a hollow steel
sphere with a spring attached to the outer surface. Tests were run with the steel sphere submerged
in water as shown in Figure 2-27 and a steel sphere with no added mass. The fluid is an acoustic
medium.

Figure 2-27. – Model of the hollow sphere and spring submerged in water.

The analytical solution for this test is based on the natural frequency equation of an object
attached to an oscillating spring. Assuming that the spring is ideal, weightless, and without
damping 𝜔 =:

𝜔 =

√︂
𝐾

𝑚
(2.12.1)

When the fluid is added around the sphere and is submerging the spring, the added mass must be
accounted for. This changes 𝜔 to:

𝜔 =

√︂
𝐾

𝑚 + 𝑚𝑎
(2.12.2)

The formulas for various shapes are documented [10]. In the case of a spherical structure, the
added mass is given by:

𝑚𝑎 =
2
3
𝜋𝜌𝑎3 (2.12.3)

The first mode computed in Sierra/SD should match the analytical solution.

There are several parameters for this test. A steel sphere is fixed in the x and y directions, allowing
displacements only in the direction of the spring. Also, the steel sphere is constrained from
rotating. The outer surface of the fluid region follows the Dirichlet boundary conditions where
p=0. A fixed node attached to the end of the spring prevents translation. The only displacement
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allowed in the system is in the direction of the spring. As a result, the global structure has no rigid
body modes. The steel sphere has a high modulus of elasticity to ensure a very stiff structure. For
this verification problem the steel sphere is essentially rigid.

The coupled structural acoustic system modes are determined by the quadratic eigenvalue
problem, with gyroscopic (skew) coupling matrix, C, C is the gyroscopic coupling matrix.

(𝐾 + 𝐶𝜆 + 𝜆2𝑀)𝑢 = 0. (2.12.4)
As if there was no damping at all, 𝜆 = 𝑖𝜔. Two solution methods are applied. Like ABAQUS, the
modal projection algorithm for structural SA_eigen generates and solves the reduced sense
problem. The Anasazi method the full problem without the a modal projection approximation.
Modal projection is easier to use, but assessing its accuracy is more difficult.

Shell elements were investigated using and inner sphere of thickness as thin as 1.e-4. The number
of modes, refinements, and test parameters varied to maximize accuracy. Table 2-10 summarizes
the results. A visual representation of the frequencies in SierraSD using SA-eigen and Anasazi

Table 2-10. – Frequency results for SA-eigen, Anasazi, and analytical results.
Model Frequencies
Sphere size 0.1 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 0.00025 0.0001
analytic 0.1529 0.1945 0.2385 0.2881 0.3136 0.3293 0.3400 0.3438 0.3458 0.3470
sa-eigen 0.1522 0.2040 0.2628 0.3381 0.3825 0.4123 0.4340 0.4419 0.4459 0.4480
anasazi 0.1477 0.1934 0.2412 0.2955 0.3237 0.3412 0.3532 0.3574 0.3595 0.3605

compared to the analytical solution is shown in Figure 2-28. For Anasazi, when the shell begins to
get thick (above 0.010), the parameters have to be changed in order for the test to converge. The
conditioning of the matrices begins to act up, so changing parameters such as young’s modulus
will help this. SA-Eigen will work for all models and parameters.

This figure shows that the impact of the fluid loading is largest for thin shells. The Anasazi
method tracks the analytical solution well. Although SA_eigen solution is somewhat less
accurate, but does capture the impact of the coupling.

Validation of the SierraSD code is most visible when the size of the inner steel sphere is the
thinnest. When the steel sphere is very thin, the added mass has a greater impact on the results.
The weight of the steel sphere will be considerably less than the weight of the surrounding fluid
and the ratio between the mass added and the mass of the structure has an immense impact on the
frequencies of the system. Figure 2-29 shows the comparison of having an added mass to your
system and shows the results between SierraSD and the analytical solution.

This model was also investigated using hexahedron and tetrahedron solid elements with a
QEVP/SA-eigen solution case. For thicker models using either solid element produced more
accurate results. However, the overall system was to be modeled as a rigid body and when using
the solid elements this process increased complexity as the steel sphere became increasingly thin.
The number of elements increased exponentially with the thinner the structure. Also, adjustments
to the parameters of the model had to be constantly maintained to ensure a stiff structure. For the
shell elements, the thickness is defined in the input deck and the stiffness is easily accounted for.
For input deck see Appendix 9.8.
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Figure 2-28. – Frequencies in SierraSD compared to the analytical solution.

Figure 2-29. – Frequencies in SierraSD vs the mass ratio of the system.
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2.13. Fluid Structure Cavitation

An important class of fluid-structure interaction (FSI) problems involve the numerical calculation
of the response of a structure that is excited by a transient acoustic pressure wave. These complex
models have been created and well represented with the development of the doubly asymptotic
approximations that describe the fluid-structure interaction in terms of a radiation boundary that
truncates the fluid-volume mesh to finite extent. In Sierra-SD we do not use the DAA, but apply a
volumetric acoustic mesh with infinite elements representing the radiation boundary. A model
was created in Sierra-SD that represents a solution that has already been obtained [9]. This is a
one-dimensional problem, which involves a flat plate initially resting on the surface of a half space
of fluid. An acoustic pressure wave is prescribed on the plate causing excitations that consist of a
step-exponential plane wave superimposed upon an ambient hydrostatic pressure field. Figure
2-30 is an illustration of the model.

Figure 2-30. – 1D FSI Plate Shell Model in SD.

The model is a 1.5 inch by 1 inch rectangular plate. QuadT shell elements of unit thickness are
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used. The fluid volume is 300 hex elements of similar rectangular dimensions. The boundary of
the fluid mesh has infinite elements to serve as absorbing boundary conditions, as well as far-field
calculators. Imperial units are used. The mass density of the plate was 5.329686e−4 lb 𝑠𝑒𝑐2𝑖𝑛4,
while that of the fluid was 9.3455e−5 lb 𝑠𝑒𝑐2𝑖𝑛−4. The speed of sound of the fluid was 57120
𝑖𝑛/𝑠𝑒𝑐.

A peak pressure of the incident wave that is applied to the plate is 103 𝑝𝑠𝑖 with a decay time of
0.9958e−3 𝑠𝑒𝑐. For the transient analysis, 1200 time steps were used, with time step size
1.313e−5 𝑠𝑒𝑐.

The Sierra-SD results were compared to and verified against published results [21]. Figure 2-31
of the 𝑦 component of velocity versus time reproduces the published results.

Figure 2-31. – Velocity vs Time, Results from Felippa and DeRuntz.

The model without cavitation was reproduced in Sierra-SD and compared to [21]. This is shown
in Figure 2-32. The actual velocities in 𝑖𝑛/𝑠𝑒𝑐 can be obtained by multiplying by 57.12, while the
time scale is given in decay time units. The decay time units can be expressed as 𝑡 = 1/𝜆 ∗ (𝑡𝑖𝑚𝑒).
The velocity of the plate is essentially zero by six decay times.

Comparisons of the models is very good. For input deck see Appendix 9.9.
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Figure 2-32. – Velocity vs Time, Results from Sierra-SD.
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2.14. Buckling of Constant Pressure Ring

Most analytic solutions for linear buckling are derived using Euler-Bernoulli beam theory. These
solutions are ideal for meshes built with beam and shell elements, but are only approximate
verification examples for 3D solid meshes. In this section we present the buckling analytic
solution of buckling of a circular ring. We only present the results using 3D solid elements. The
model is shown in Figure 2-33.

Figure 2-33. – Buckling Ring Example. Model parameters

Diameter: 40

Material: aluminum

Cross Section I: 1/12

Cross Section Area: 2.0

Cross Section Thickness: 1.0

In this example, we consider buckling of a circular ring subjected to a uniform, external pressure.
The critical buckling pressure is given [50] as

𝑃𝑐𝑟 =
3𝐸𝐼
𝑅3 (2.14.1)

For the geometry of the problem, the critical buckling load is predicted to be

𝑃𝑐𝑟 =
3 × 107 × 1

12
203 = 312.5 (2.14.2)
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The computed buckling load was 395.408. Since the exact solution is for Euler-Bernoulli beam
theory we expect some difference, however this may be a little too high. We will re-try with beam
elements once they are on-line for buckling.

For input see Appendix 9.10
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2.15. Buckling of a Cantilever Beam

The buckling of a cantilever beam modeled using solid elements is verified. The geometry for this
example consists of a cantilever beam with one end clamped, and with the other subjected to a
compressive load 𝑃. The buckling load predicted by Euler-Bernoulli beam theory is

𝑃𝑐𝑟 =
2.4674𝐸𝐼

𝐿2 . (2.15.1)

A simple mesh of this example was created, consisting of an 2 × 2 × 20 hex elements. The critical
buckling load is predicted to be

𝑃𝑐𝑟 =
2.4676 × 30 × 106 × 1

12
102 = 61675 (2.15.2)

The computed buckling load was 61370.1. The model is shown in Figure 2-34.

Figure 2-34. – Cantilever Beam Buckling Model parameters.

Material: steel

Length: 20

Area: 2×2

For input see Appendix 9.11
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2.16. Eigenvalue Restart with Virtual Nodes and Elements

A transient restart model was created and tested including virtual nodes and elements, tied joints
and superelements. The model is shown in Figure 2-36. For restart analysis two solution cases
and input decks are needed. An initial simulation with restart=write has the output needed for to
restart. The next simulation has restart=read. A 20 step simulation restarted from a 10 step
simulation. This test includes superelements, infinite elements, and tied joints. A truth model was
constructed with no restart and used for verification. Figure 2-35 shows the comparison of the
truth model with no restart and the model with restart.
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Figure 2-35. – Comparison between truth model and restart.

In Figure 2-35 the 20th node in the y direction was compared between the two cases. The error is
on the magnitude of 10−13 which is expected due to the solvers, therefore, validating transient
restart capability in Sierra-SD.

Eigen Restart This model was also analyzed using an eigen restart capability. The difference in
this model is that there are no infinite elements only superelements and tied joints. This model
was compared to a truth model and is showing accurate results. The transient and eigen restart
tests were created and run in serial and in parallel.

For input deck see Appendix 9.12.
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Figure 2-36. – Restart “Ninjabot” Mesh.
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2.17. Solutions in Rotating Coordinate Frames

Sierra/SD supports solutions in a rotating coordinate frame. Tests in this section address this
verification.

2.17.1. Rotating rigid bodies: statics

2.17.2. Model Description and Purpose

The model consists of a symmetric bar 6 units long with equal masses on either end. The bar is
stationary in a rotating coordinate frame. To avoid singularities, the center point of the bar is
clamped. The mass of the bar is zero. See Figure 2-37.

The test evaluates a very simple geometric problem, and insures that centrifugal forces are
correctly applied to concentrated masses. It insures that rotations will work properly about the
default coordinate axis.

Figure 2-37. – Dumbbell Geometry.

Analysis Type linear statics
Element Type Hex8
Loading centrifugal
Keyword centrifugal force

Each mass on either end of the rotating bar should experience only centrifugal boundary
conditions. The left-hand side includes the centrifugal softening matrix (but no geometric
stiffening). The magnitude of the loading is,

𝐹𝑎𝑥𝑖𝑎𝑙 = Ω × (Ω × ®𝑟) Δ𝑀

where,

Ω = 1.1 in the 𝑍 direction.

®𝑟 is 3.0, radial direction.

Δ𝑀 is 2.0

The resulting force is 7.26 units in the radial direction. It is applied only at the end nodes where
the concentrated mass is located. For input deck see Appendix 9.13.
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2.17.3. Rotating rigid bodies: transient

It is useful to verify a simple point mass in a rotating frame. We consider a system rotating at a
constant angular velocity ®Ω = Ω𝑘̂ . The angular acceleration is zero. A single point mass, 𝑚, is
observed in the rotating frame. The point mass is frictionless. The geometry is illustrated in
Figure 2-38.

x

xo

z
y

Ω

Figure 2-38. – Rotating Frame Geometry.

2.17.4. Mass at Rest in Inertial Frame

This is by far, the simplest case. In the inertial frame we have a mass located at (𝑥𝑜, 0). It does not
move. In the rotating frame, 𝑟 = 𝑥𝑜 and 𝜃′ = −Ω𝑡’, or in the Cartesian rotating frame,

𝑥′ = 𝑥𝑜 cos (−Ω𝑡) (2.17.1)
𝑦′ = 𝑥𝑜 sin (−Ω𝑡) (2.17.2)

2.17.5. Mass Initially at Rest in Rotating Frame

We consider a mass initially at the point (𝑥𝑜, 0) with an initial velocity of ®𝑣 = Ω𝑥𝑜𝑒𝑦. In the
rotating frame this mass appears initially at rest at location (𝑥′𝑜, 0). However, because of the
rotation of the frame, the mass will begin to move away from the center of the rotating frame.
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2.17.5.1. Without Coriolis Contribution

In the rotating frame, the only force acting on the body is the centrifugal force, ®Ω× ( ®Ω× ®𝑟). As all
the forces are in the radial direction, the differential equation reduces to a single degree of
freedom system.

𝑚 ¥𝑟 = Ω2𝑟

This equation is very similar to that of a harmonic oscillator. With the given initial conditions the
solution is,

𝑟 = 𝑥𝑜𝑐𝑜𝑠ℎ(Ω𝑡)
where 𝑐𝑜𝑠ℎ() is the hyperbolic cosine.

This solution is not physical, as there is no Coriolis force. At time progresses, the velocity
continues to grow unbounded, but the angular position remains zero.

2.17.5.2. With Coriolis Contribution

We solve this by computing the solution in the inertial coordinate system, and transforming back
to the rotating frame.

In the inertial frame, there are no forces acting on the body. The solution in Cartesian frame is,

𝑥 = 𝑥𝑜 (2.17.3)
𝑦 = 𝑣𝑜𝑡 (2.17.4)

= 𝑥𝑜Ω𝑡 (2.17.5)

This may be transformed to polar coordinates, still in the inertial frame.

𝑟 =

√︃
𝑥2 + 𝑦2 (2.17.6)

= 𝑥𝑜

√︁
1 + (Ω𝑡)2 (2.17.7)

𝜃 = tan−1 (𝑦/𝑥) (2.17.8)
= tan−1 (Ω𝑡) (2.17.9)

We use the relation that 𝜃′ = 𝜃 −Ω𝑡 and 𝑟′ = 𝑟. Then,

𝜃′ = tan−1 (Ω𝑡) −Ω𝑡

This solution may then be transformed to rotating cartesian frame in the usual way.
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Small Angle Approximations

For solutions with Ω𝑡 << 1 the solutions in this section may be compared with the previous
section. We use,

tan−1(𝜃) ≈ 𝜃 − 𝜃3

3
+ 𝜃

5

5
+ ... (2.17.10)√︁

1 + 𝜖2 ≈ 1 + 𝜖
2

2
(2.17.11)

(2.17.12)

For both solutions,

𝑟′ ≈ 𝑥𝑜
(
1 + (Ω𝑡)2

2

)
,

while 𝜃′ = 0 with no Coriolis term. Including the Coriolis term we obtain,

𝜃′ ≈ −(Ω𝑡)3

3

Figure 2-39 shows the solution to this problem. Both analytic and finite element solutions are
shown. A good degree of agreement is obtained even for a very large displacement.

Figure 2-39. – Point Mass initially at rest in rotating frame.

2.17.6. Mass Moving in the X axis

This example starts at the same location, i.e., (𝑥𝑜, 0) in the inertial frame, but the initial velocity in
the inertial frame is −2 𝑥𝑜Ω/𝜋𝑒𝑥 . Thus, at time Ω𝑡 = 𝜋/2, the mass will be at the origin. At time
Ω𝑡 = 𝜋, the particle will be located at (−𝑥𝑜, 0). In the inertial frame,

𝑦 = 0 (2.17.13)
𝑥 = 𝑥𝑜 (1 − 2Ω𝑡/𝜋) (2.17.14)
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or,

𝑟 = 𝑥𝑜 (1 − 2Ω𝑡/𝜋) (2.17.15)
𝜃 = 0 (2.17.16)

In the rotating frame, 𝑟′ = 𝑟 and 𝜃′ = −Ω𝑡. The Cartesian description is therefore,

𝑥′ = 𝑥𝑜 (1 − 2Ω𝑡/𝜋) cos (Ω𝑡) (2.17.17)
𝑦′ = 𝑥𝑜 (1 − 2Ω𝑡/𝜋) sin (Ω𝑡) (2.17.18)

For input deck see Appendix 9.14.
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2.17.7. Angular Velocity, Beams, Statics

Consider a beam of length 𝐿 with constant cross-sectional area 𝐴, elastic modulus 𝐸 , and mass
density 𝜌. The root of the beam is at 𝑥 = 0 and its tip at 𝑥 = 𝐿. The axis of rotation passes through
the origin and is in the 𝑧-direction. Further, the angular velocity is constant and denoted by Ω.

With the assumption of all mass being concentrated along the axis of the beam, the net force in the
𝑥-direction at radial position 𝑟 is given by

𝐹 = Ω2
∫ 𝐿

𝑟

𝑥 𝑑𝑚

= Ω2
∫ 𝐿

𝑟

𝑥𝜌𝐴 𝑑𝑥

= 𝜌𝐴Ω2(𝐿2 − 𝑟2)/2. (2.17.19)

Thus, the axial stress at 𝑟 is
𝜎(𝑟) = 𝐹/𝐴 = 𝜌Ω2(𝐿2 − 𝑟2)/2. (2.17.20)

The axial strain is assumed constant across each cross-section and given by

𝜖 (𝑟) = 𝜎(𝑟)/𝐸 = 𝜌Ω2(𝐿2 − 𝑟2)/(2𝐸). (2.17.21)

The axial displacement is obtained by integrating the axial strain. Since the axial displacement
vanishes at 𝑥 = 0, we obtain

𝑢(𝑟) =
∫ 𝑟

0
𝜖 (𝑥) 𝑑𝑥

= 𝜌Ω2/(2𝐸)
∫ 𝑟

0
(𝐿2 − 𝑥2) 𝑑𝑥

= 𝜌Ω2/(2𝐸) (𝐿2𝑥 − 𝑥3/3) |𝑟0

=
𝜌Ω2𝐿3

6𝐸
[3(𝑟/𝐿) − (𝑟/𝐿)3] . (2.17.22)

For input deck see Appendix 9.15

2.17.8. Angular Acceleration, Statics

We consider a beam with its root at the origin and its free end at (𝐿, 0, 0). Unit vectors 𝒃1, 𝒃2, 𝒃3
are fixed in a rotating coordinate system, which is attached to the root of the beam. The angular
acceleration of the rotating coordinate system is ¤Ω𝒃3, while axial and transverse displacements
are denoted 𝑢1(𝑥)𝒃1 and 𝑢2(𝑥)𝒃2, respectively, where 𝑥 is the position along the beam. The axis
of rotation of the rotating coordinate system is located at (0, 𝑑, 0)
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When considering the effects of angular acceleration (see Theory Manual), the governing
differential equations for static analysis of an Euler-Bernoulli beam model are given by

− 𝑑

𝑑𝑥

(
𝐴𝐸

𝑑𝑢1(𝑥)
𝑑𝑥

)
− 𝜌𝐴 ¤Ω𝑢2(𝑥) = −𝜌𝐴 ¤Ω𝑑,

𝑑2

𝑑𝑥2

(
𝐸𝐼
𝑑2𝑢2(𝑥)
𝑑𝑥2

)
+ 𝜌𝐴 ¤Ω𝑢1(𝑥) = −𝜌𝐴 ¤Ω𝑥,

where 𝐴 is the cross section area, 𝐼 is the cross section moment of inertia, 𝐸 is Young’s modulus,
and 𝜌 is the mass density. All these properties are assumed to be constant.

The presence of ¤Ω causes coupling between 𝑢1(𝑥) and 𝑢2(𝑥). As a result, closed-form solutions
for 𝑢1(𝑥) and 𝑢2(𝑥) are not obvious. Thus, we consider approximate solutions of the form

𝑢1(𝑥) =
𝑛∑︁
𝑖=1

𝑢1𝑖𝜙𝑖 (𝑥), 𝑢2(𝑥) =
𝑛∑︁
𝑖=1

𝑢2𝑖𝜙𝑖 (𝑥),

where 𝑢1𝑖 = 𝑢1(𝑥𝑖), 𝑢2𝑖 = 𝑢2(𝑥𝑖), and 𝑥1, . . . , 𝑥𝑛 are the positions of the nodes. The 𝜙𝑖 (𝑥) are
shape functions associated with the spectral element method. That is, each 𝜙𝑖 (𝑥) is a polynomial
of degree 𝑛 − 1 and the 𝑥𝑖 are the Gauss-Lobatto points transformed from 𝜂 ∈ [−1, 1] to
𝑥 ∈ [0, 𝐿]. We consider only a single element.

A Galerkin method is used whereby the test functions are the same as the trial functions 𝜙𝑖 (𝑥). The
basic idea is to substitute the above expressions for 𝑢1(𝑥) and 𝑢2(𝑥) into the governing equations
for axial and transverse displacements, multiply each equation by 𝜙 𝑗 for 𝑗 = 1, . . . , 𝑛, integrate by
parts, and apply boundary conditions. The net result is the linear system of equations

(𝐾𝑚 + 𝐾𝑎)𝑢 = 𝑔,

where 𝑢 = [𝑢11, 𝑢12, . . . , 𝑢1𝑛, 𝑢21, 𝑢22, . . . , 𝑢2𝑛]𝑇 is a vector of nodal displacements,

𝐾𝑚 =

[ ∫ 𝐿

0 𝐴𝐸𝜙′(𝑥)𝜙′𝑇 (𝑥) 𝑑𝑥 0
0

∫ 𝐿

0 𝐸𝐼𝜙′′(𝑥)𝜙′′𝑇 (𝑥) 𝑑𝑥

]
with 𝜙(𝑥) =

[
𝜙1(𝑥) . . . 𝜙𝑛 (𝑥)

]𝑇 and 𝜙′(𝑥) denotes the derivative of 𝜙(𝑥) with respect to 𝑥.
Similarly,

𝐾𝑎 =

[
0 − ¤Ω

∫ 𝐿

0 𝜌𝜙(𝑥)𝜙𝑇 (𝑥) 𝑑𝑥
¤Ω
∫ 𝐿

0 𝜌𝜙(𝑥)𝜙𝑇 (𝑥) 𝑑𝑥

]
=

[
0 − ¤Ω𝑀
¤Ω𝑀 0

]
,

where
𝑀 =

∫ 𝐿

0
𝜌𝜙(𝑥)𝜙𝑇 (𝑥) 𝑑𝑥.

The right hand side vector 𝑔 is obtained using standard methods and is given by

𝑔 =

[
𝑃𝜙(𝐿) − ¤Ω

∫ 𝐿

0 𝜌𝐴𝑑𝜙(𝑥) 𝑑𝑥
− ¤Ω

∫ 𝐿

0 𝜌𝐴𝑥𝜙(𝑥) 𝑑𝑥

]
,
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Figure 2-40. – HEX20 mesh used for angular acceleration statics verification problem.

where 𝑃𝒃1 is the concentrated axial load applied to the beam tip at 𝑥 = 𝐿. The boundary
conditions 𝑢1(0) = 0, 𝑢2(0) = 0, and 𝑢′2(0) = 0 can be enforced by constraint equations of the
form

𝐶𝑢 = 0

where the constraint matrix 𝐶 has 3 rows and 2𝑛 columns. The total potential energy for the
structure is given by

𝑊 = 𝑢𝑇 (𝐾𝑚 + 𝐾𝑎)𝑢/2 − 𝑢𝑇𝑔,
and the associated Lagrangian is

𝐺 = 𝑊 + 𝜆𝑇𝐶𝑢,
where 𝜆 is a vector of Lagrange multipliers. The stationarity conditions for the Lagrangian are
𝜕𝐺/𝜕𝑢 = 0 and 𝜕𝐺/𝜕𝜆 = 0, which give us[

𝐾 𝐶𝑇

𝐶𝑇 0

] [
𝑢

𝜆

]
=

[
𝑔

0

]
, (2.17.23)

where 𝐾 = 𝐾𝑚 + 𝐾𝑎. We wrote a Python script to construct and solve the linear system in
(2.17.23).

Several different Sierra/SD element types were considered for this verification problem. As an
illustration, the HEX20 mesh used is shown in Figure 2-40. Comparisons between Sierra/SD and
our semi-analytical solution (Python) for axial and transverse deformations are shown in
Figure 2-41 for meshes of BEAM2, HEX8, HEX20 and TET10 elements. Notice the very good
agreement for all these element types. Similar results are shown in Figure 2-42 for TRIA3 shell
elements. The results for the shell model are different from the previous ones because cross
section properties needed to be adjusted in order for thin shell assumptions to hold. Again, there is
very good agreement between the semi-analytical and Sierra/SD results.

For the BEAM2 input deck, see Appendix 9.16
For the HEX20 input deck, see Appendix 9.17
For the TRIA3 input deck, see Appendix 9.18
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Figure 2-41. – Comparisons of axial and transverse displacements of BEAM2, HEX8, HEX20 and
TET10 models with semi-analytical solution.

Figure 2-42. – Comparisons of axial and transverse displacements of a TRIA3 shell model with semi-
analytical solution.
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2.17.9. Rotating Shell Statics

The rotating shell example is similar to the rotating beam 2.17.7 with 𝐸 = 19.5 × 1010, 𝐿 = 10,
𝜌 = 7700, 𝐴 = 1, and Ω = 5. The beam is aligned with the x-axis, and has dimensions 10 × 1 × 1.
A 50 by 5 by 5 tensor product mesh, a 50 by 5 quadrilateral mesh and a 50 element beam mesh are
studied. The 2D mesh is in the x y plane. Comparisons of axial deformations for three finite
element analyses are shown in Figures 2-43 and 2-44. Notice that all three finite element results
are close to the exact solution, with the QUADT results being the least accurate. We note that much
more accurate results were obtained when the QUADT elements were replaced by NQUAD elements.
We think that the less accurate predictions for the mesh of QUADT elements is caused by
anisotropies introduced by representing each quadrilateral element as the union of two triangular
elements.

For input deck see Appendix 9.19.
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Figure 2-43. – Comparisons of axial deformations with exact solution for a beam.

Figure 2-44. – Zoomed in view of Figure 2-43 showing differences for QUADT elements.
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2.17.10. Rotating Ring Statics

This test examines a simple ring in a rotating frame. Verification of the forces is made here. We
intentionally do not verify displacements as these depend on the element formulation.

The ring, shown in Figure 2-45 is a two unit radius thin structure. A constant angular velocity, ®Ω,
is applied at 1.1 radians per second in the 𝑍 direction. The ring is not centered on the origin, but
is centered on a user defined coordinate system.

The resulting forces are given by,

®𝐹 =

∫
𝜌 ®Ω × ®Ω × ®𝑟 𝑑𝑉

= 1.122.0 (𝜌𝑉𝑛) 𝑟

Where 𝜌𝑉𝑛 represents the mass associated with a node. For this model, there are 148 nodes on the
ring which each share equally the total ring mass of 12.5626 units. The resulting force is 0.2054
units outward.

For the Euler force,
®𝐹 =

∫
𝜌
𝑑

𝑑𝑡
®Ω × ®𝑟 𝑑𝑉

= 1.12.0 (𝜌𝑉𝑛) 𝑟
and the resulting force is 0.2054/1.1 units outward.

Figure 2-45. – Rotating Ring Geometry and Results.

The test evaluates:

• Centrifugal force in a rotating system,
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• Force on shells with rotational degrees of freedom. The moment vanishes,

• And coordinate translation.

It does not test,

• Coordinate rotation.

• Solid or point mass elements.

• Solution when there is no symmetry.

For input deck see Appendix 9.20.
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2.17.11. Rotating Ring Acceleration

This is a variation on the static analyses of a rotating ring described in Section 2.17.10. Here an
angular acceleration is applied instead of the angular velocity in 2.17.10. By hand, the angular
acceleration is .2054/1.1 force units. For input deck see Appendix 9.21.
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2.17.12. Rotating Superelement Statics

Models (including Superelements) must be loaded by centrifugal forces if they are to be analyzed
in a rotating coordinate frame. However, as discussed in the analysis section, there are inherent
problems in loading a Superelement with a centrifugal force. In this test, we examine one case
where the loading is exact.

The model is a single hex element which is rotated about an edge. The unreduced model force
may be computed as,

𝐹𝑐𝑒𝑛𝑡𝑟𝑖 𝑓 𝑢𝑔𝑎𝑙 = ®Ω × ( ®Ω × ®𝑟)
= [Ω]𝑇 [𝑀] [Ω] [𝑟]

where ®Ω is the angular velocity vector, [Ω] is a rotation matrix, [𝑀] is the mass matrix and [𝑟]
represents the position coordinates. This solution is as accurate as possible for a finite element
representation of the continuous model. See details in the theory manual.

The geometry is shown in Figure 2-46.

Figure 2-46. – Rotating Hex Geometry.

2.17.13. Tests

We evaluate several steps of the test.

1. We look at the loading of a single hex in rotation. This is our truth model.

2. We ensure that the model reduction process is consistent.

3. We examine the loading of a Superelement equivalent to the single hex element.

Each test is described in a little more detail in what follows.
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Single Hex Rotation

Equation 2.17.12 describes the load calculation for a single hex in a coordinate frame rotating at a
constant angular velocity. Visually the results of the loading appear reasonable. As expected, the
loading is not purely radial.

The analysis is singular, i.e., the body has a zero energy mode and is free to rotate about the axis
of rotation. The displacements are solutions of a singular linear system. Because of this, only the
forces are evaluated. The force response is shown in Figure 2-47.

Figure 2-47. – Rotating Hex Response.

2.17.13.1. Superelement Reduction

A critical part of this evaluation is “reduction” of the hex to a Superelement. In most such
reductions, a combination of interior “fixed interface” modes are combined with interface or
“constraint” modes to generate a reduced basis. Here we have no interior modes and all the
interface nodes are retained. One of those nodes has only 2 degrees of freedom, so there is a slight
reduction. As a consequence, the Superelement model is of dimension 23, while the original hex
has 24 degrees of freedom. The most important point is that the Superelement model may now be
run through the software, which follows an entirely different path from the original.

In the final stage, the Superelement is inserted into a new model. In this case, we re-use the
original mesh. However, the block definitions are those of a Superelement. The Superelement is
loaded using the centrifugal force routines. The result must be identical to the original test.
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2.17.14. Analysis

Superelements are problematic for computation of internal integrals. Typically, all the internal
shape functions and data are available only during the Superelement reduction stage. During
subsequent analyses, only the interface information and reduced order matrices are retained.

For computation of the centrifugal force, an integral must be evaluated over the volume of the
element.

®𝑓 = 𝜌
∫
𝑒𝑙𝑒𝑚𝑒𝑛𝑡

®Ω × ( ®Ω × ®𝑟) 𝑑𝑉

If the shape functions are available, this can be evaluated using equation (2.17.12). However, the
model reduction process condenses out information from the interior of the Superelement to the
nodes of the interface. The total mass is conserved, but information required to compute the
interior integrals is no longer available. This verification test is structured so that no internal
information is lost and the integrals may be computed exactly.

This set of tests insures the following:

• The software can successfully exercise a Superelement.

• Identical results are obtained to the original hex, indicating no transposing of degrees of
freedom.

• All the nodes on the interface are being exercised.

• Superelements are supported with other than 3 DOFs on a node. Node 1 has 2 degrees of
freedom, and there are 23 degrees of freedom total.

However, because of the details of the test, we do not evaluate the following:

• Superelements with internal degrees of freedom.

• Superelements with a reduced set of interface nodes.

For input deck see Appendix 9.22.
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2.17.15. Rotating Superelement Beam Statics

We build on the analysis of a rotating hex beam. As shown in the hex beam example, the analytic
solution can be written,

𝑢(𝑟) =
∫ 𝑟

0
𝜖 (𝑥) 𝑑𝑥

= 𝜌Ω2/(2𝐸)
∫ 𝑟

0
(𝐿2 − 𝑥2) 𝑑𝑥

= 𝜌Ω2/(2𝐸) (𝐿2𝑥 − 𝑥3/3) |𝑟0

=
𝜌Ω2𝐿3

6𝐸
[3(𝑟/𝐿) − (𝑟/𝐿)3] .

We next consider an example with 𝐸 = 19.5 × 1010, 𝐿 = 10, 𝜌 = 7700, 𝐴 = 1, and Ω = 5. A
superelement is generated by extracting all the nodes down the center of the beam. There are 101
nodes retained in the superelement, with 40 generalized degrees of freedom associated with fixed
interface modes. Comparison of axial deformations for the finite element analysis is shown in
Figure 2-48. Finite element results are close to the exact solution, but there differences because
the superelement integration is not fully accurate for computation of centrifugal force moments.

For input deck see Appendix 9.23.
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Figure 2-48. – Comparisons of axial deformations with exact solution for a beam.
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2.18. High Cycle Fatigue and Damage

A single hex (and single degree of freedom) model is used to verify the computations of the
random vibration problem. Four nodes of the 8 node brick are clamped. The remaining nodes are
constrained to move in only the 𝑋 direction. In addition, multipoint constraints tie three nodes to a
single master node. The model has only one active degree of freedom, and a single element. Each
of the results may be examined individually without a need for a summation over mode shapes.

Comparison is made to a MATLAB calculation found in “byhand.m”. Each result is listed in
following paragraphs.

Eigenvector normalization is checked using the mass matrix. From the output of Maa.m, the mass
is 8.6333e-5. The eigenvector, 𝜙, is of length 1, and value 107.6244. Then,

𝜙𝑇𝑚𝜙 = 107.6244 · 8.6333e-5 · 107.6244 = 1

The eigenvalues and vectors may be compared with results in onehex-eig.exo.

The modal transfer function at frequency 𝜔 describes the contribution of one mode to the
resulting displacement,

𝐻𝑖 (𝜔) =
1

𝜔2 − 𝜔2
𝑖

, 𝑢 =

𝑁𝑚𝑜𝑑𝑒𝑠∑︁
𝑖

𝐻𝑖 (𝜔)𝐹𝑖 (𝜔).

In our example the sampling frequency is 10:100 Hz, while the modal frequency is 62,846. Thus,
𝜔𝑖 >> 𝜔. We can approximate,

𝐻𝑖 = 1/(2𝜋 · 62846)2 ≈ 6.4133e-12

Thus, the modal amplitude is,

𝑢𝑖 = 𝐻𝑖𝐹𝑖 ≈ 𝜙𝑇𝐹/𝜔2
𝑖 ≈ 6.2121e-9.

The modal amplitude for FRF is not directly output, but the physical amplitude is output.

2.18.1. Determine the physical transfer function, H(𝜔) and Displacement

Physical space is simply related to modal space, 𝑥 = 𝜙𝑞. Likewise,

𝑈 = 𝐻𝐹

or,
𝐻 (𝜔) = 𝜙𝐻𝑖 ≈ 𝜙2/(2𝜋 𝑓 )2

Thus, the physical transfer function, 𝐻 ≈ 7.4286E-8. Likewise, the amplitude is the transfer
function multiplied by the force.

𝑈 (𝜔) = 𝐻 (𝜔) ∗ 𝐹𝑜𝑟𝑐𝑒 ≈ 𝜙𝐹𝜙𝑇/𝜔2
𝑖 ≈ 6.6857E-7,
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and is essentially independent of frequency. This physical amplitude may be compared with
results in onehexran-frf.frq. Salinas computes: 6.6857E-07.

Likewise, the acceleration response can be predicted. The acceleration is simply 𝜔2 times the
displacement. At 𝑓 = 10, ¥𝑈 = 4𝜋2𝜙2𝐹/𝜔2

𝑖
. At 𝑓 = 10, ¥𝑈 (10) = 0.0026394. At the top end of

frequency band, ¥𝑈 (100) = 0.26394.

Salinas computes 0.0026394 and 0.26394.

2.18.2. Determine the Displacement and Acceleration Spectral Density

The output is generated by a computation of a modal sum.

𝑋𝑟𝑚𝑠 =

√√√𝑁𝑚𝑜𝑑𝑒𝑠∑︁
𝑖, 𝑗

𝜙𝑖𝜙 𝑗Γ𝑖 𝑗

Here Γ contains the integral of the frequency component of the load.

Γ𝑖 𝑗 =

∫ ∞

0
𝐻𝑖 (𝜔)𝐻 𝑗 (𝜔)𝑆(𝜔)𝑑𝜔

And, 𝑆 is the PSD of the input force. The similar relation for acceleration includes 𝜔4,

Γ𝐴𝑖 𝑗 =

∫ ∞

0
𝜔4𝐻𝑖 (𝜔)𝐻 𝑗 (𝜔)𝑆(𝜔)𝑑𝜔

We use a simple trapezoidal integration strategy. Thus, we can weight the final and initial
intervals at half the value of the central intervals.

Γ ≈ 2𝜋
∑︁
𝑓

𝐻2
𝑞𝑆Δ 𝑓 𝑤𝑖

≈ 2𝜋𝐻2
𝑞9.0[5 10 10 10 10 10 10 10 10 5]

≈ 2𝜋(2.7249e-8)2(9.0) (90)
≈ 3.7789e-12

Likewise

Γ𝐴 ≈ (2𝜋)5
∑︁
𝑓

𝐻2
𝑞𝑆 𝑓

4Δ 𝑓 𝑤𝑖

≈ (2𝜋)5𝐻2
𝑞9.0[10 20 30 40 50 60 70 80 90 100]4 [5 10 10 10 10 10 10 10 10 5]

≈ (2𝜋)5(2.7249e-8)2(9.0)2.0332e9
≈ 0.13306

The ratio of GammaA/Gamma is 3.5211e10. This same ratio should be found in the square of
𝐴𝑟𝑚𝑠/𝑋𝑟𝑚𝑠 found in the random vibration output of onehex-ran.exo.

Salinas has: 𝑋𝑟𝑚𝑠 = 1.4799E-5. 𝐴𝑟𝑚𝑠 = 2.7770. These are found in onehex-ran.exo. The ratio
(𝐴𝑟𝑚𝑠/𝑋𝑟𝑚𝑠)2 = 3.5212E10.
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2.18.3. Fatigue Parameters

For fatigue life predictions, we are interested in several parameters. The first of these is the stress
moments, 𝑀𝑜, 𝑀2 and 𝑀4. These are important as the ratios of these moments provide
information on the rate of zero crossing, 𝜈+𝑜 , and the number of zero crossings, 𝑛𝑐 = 𝜈+𝑜𝜏.

The ratio of Vrms2/Vrms is related to ratios of moments. In particular,
𝑉𝑅𝑀𝑆2/𝑉𝑅𝑀𝑆 =

√︁
𝑀2/𝑀𝑜. These are related to the ratios of Γ𝑣/Γ.

Γ𝑉 ≈ (2𝜋)4
∑︁
𝑓

𝐻2
𝑞𝑆 𝑓

2Δ 𝑓 𝑤𝑖

≈ (2𝜋)3𝐻2
𝑞9.0 [10 20 30 40 50 60 70 80 90 100]2 [5 10 10 10 10 10 10 10 10 5]

≈ 5.5447E-7

Salinas has 𝑉𝑅𝑀𝑆 = 1.1384E2 and 𝑉𝑅𝑀𝑆2 = 4.3607E4. Therefor
(𝑉𝑅𝑀𝑆2/𝑉𝑅𝑀𝑆)2 = 1.4673E5, which can be compared to the closed form ratio 5.5447E-7 /
3.7789E-12 = 1.4673E5.

This is Salinas_rtest/verification/fatigue/onedof/onehexran.test.

2.18.4. Fatigue Solution

One unit cube Hex8 element is used in the fatigue analysis verification. This is an entirely
contrived example, with material properties invented to simplify the calculation. Results from
within Sierra/SD are compared to independent MATLAB computations.

2.18.4.1. Assumptions

We begin the solution with a previously verified random vibration solution with results in Table
2-11.

Variable Value
Vrms 113.8421029
Vrms2 4.360736489E+04
Vrms4 2.136176695E+07

Table 2-11. – Input Moments.

We also construct a fictitious material with S-N curves that make computation simple. The S-N
curve is represented in Figure 2-49. It is constructed such that with an RMS value of stress equal
to 113.8421029, a solution of 𝑁 of 1 million is obtained. The associated material parameters are
listed in Table 2-12.
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Figure 2-49. – S-N Curve for Fictitious Material.

Variable Value
A2 -3
m 3
A1 Log(N)-A2*Log(113.84)

≈ 12.1

Table 2-12. – Fatigue Material Parameters.

Damage Rate Calculation The narrow band damage rate is,

𝐷𝑁𝐵 =
𝜈+𝑜

10𝐴1

(√
2𝑉𝑟𝑚𝑠

)𝑚
Γ (1 + 𝑚/2)

This may be evaluated in terms of the above parameters.

𝜈+𝑜 =
𝑉𝑟𝑚𝑠2

2𝜋𝑉𝑟𝑚𝑠
≈ 61.0

10𝐴1 ≈ 1.475 × 1012

(
√

2𝑉𝑟𝑚𝑠)𝑚 ≈ 4.173 × 106

Γ (1 + 𝑚/2) = Γ(2.5) ≈ 1.3293

For which we have 𝐷𝑁𝐵 ≈ 2.2919 × 10−4.

This is the test Salinas_rtest/verification/fatigue/onedof/onehexfatigue.test
onehexran.test. For input deck see Appendix 9.24.

2.18.5. Fatigue Stress Scaling

We verify the fatigue analysis scaling on a single, 1x1x1 Hex8 element. This is an entirely
contrived example, with material properties invented to simplify the calculation. The model is
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identical to a fatigue example previously verified, we simply scale the geometry and loads, and
verify the solution. The experimental material data is unchanged.

2.18.5.1. Model Definition and Scaling

• The model is a 1x1x1 in3 cube. It is scaled to SI units 0.0254 meters on a side.

• Input pressure is 7 psi, multiplied by a frequency function. In SI units, this becomes 7 ×
6894.76 = 48263.32 pascals, multiplied by the same function.

• Young’s Modulus of 1e7 psi becomes 68.947573e9 pascals. Handbook value is 69 GPa.

• Density of 0.000259 slinch/in3 (0.1000776 lbm/in3) becomes 2770.138 kg/m3. Handbook
values of 2700 kg/m3.

2.18.5.2. Results

The damage rate and stress must be independent of units. This is ensured by using the same
comparison file for both. In addition, we have the following correspondence.

Result English Units SI Units Status
Eigen Frequency 62846.1 Hz 62820.8 Hz ✓

max(Axrms) 2.7770 in/s2 0.070537 m/s2 ✓
Vrms 113.84 psi 0.78492×106 Pa ✓

ZeroCrossingRate 60.965 60.965 ✓
PeakFrequency 77.965 77.965 ✓
NbDamageRate 2.2923E-13 2.2923E-13 ✓

DamageRate 1.9324E-13 1.9324E-13 ✓
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2.18.6. Fatigue Output of Dogbone Test

Scope: Verification of Sierra/SD in the frequency domain builds upon a verification of “Siesta”,
a python post-processing tool for evaluation of high cycle fatigue damage. These solutions
represent evaluation of the same damage quantities through a variety of means. Sierra/SD will
evaluate the damage using frequency domain methods only.

Siesta has been evaluated using both the time domain and frequency domain. Computations were
performed to individually compare both domains to an analytical solution for the simple case of a
5 Hz sine wave input. Two additional computations were conducted with the same model
verifying that time domain and frequency domain both result in the same solution when provided
more complex inputs. These evaluations were conducted on an element by element basis, and so
some discrepancies to the single DOF analytical solution are expected.

Methodology: The dog-bone specimen described by Anes et al.[4] was chosen as a sufficiently
simple model to solve damage analytically, with the additional benefit that experimentally derived
results were available for our load case. Note that calculations were done using English units: IPS
in Salinas, converted to Ksi during import into Siesta.

34

12 6.3

34

R50

101

Figure 2-50. – Dog-bone Specimen Dimensions (mm).

Figure 2-51. – Boundary conditions of mesh.

For all tests, the mesh is constrained via two points at either end of the specimen. Both points are
fixed in all degrees of freedom except axial translation, and affixed to the mesh by rigid elements
to the surfaces of the mesh near the ends. Results are output only for the narrow highlighted
potion at the center of the model. Forces are applied at the end points with equal and opposite
magnitudes. There are no point masses in the system; frequency domain input PSDs are truly
provided as force squared per Hz.

To verify the results in both time domain and frequency domain, three test scenarios were
evaluated, as illustrated by the PSDs shown in Figure 2-52, with details in Tables 2-13 through
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2-15. The first was a 5 Hz fully reversed sine wave with 3141 lbf peak magnitude, the second was
an example input matching a test specification with relatively narrow band frequency content, and
the third was an example test specification with a wide band of frequency content. Note that the
first elastic mode of the system occurs at 929 Hz, and modal random vibration solves included
calculation of 150 modes to capture what is effectively a static solution at 5 Hz. Modes are
computed to about 340 KHz.
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Frequency (Hz)

10 -4

10 -3
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Figure 2-52. – Power Spectral Density of Input Force.

In the absence of an easy way to define a single-frequency PSD, the 5 Hz test was represented in
the frequency domain using a PSD with the appropriate RMS magnitude, centered around 5 Hz,
and with a band width of 1 Hz. Time domain realizations of the wide and narrow band test PSDs
were generated such that their RMS values could not differ from the specification by more than
1 dB, the PSD of the generated signals could not differ by more than 6 dB at any frequency, and
could not differ by more than 3 dB over 80% of the frequency range.

Frequency (Hz) PSD (lbs2/Hz)
4.00 1e-13
4.49 1e-13
4.50 4.93128e6
5.50 4.93128e6
5.51 1e-13
6.00 1e-13

Table 2-13. – 5 Hz PSD representation.
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Frequency (Hz) PSD (lbs2/Hz)
10 0.1400
12 0.4000
23 0.4000
37 0.0110
102 0.0110
153 0.0002
500 0.0002

Table 2-14. – Narrow-Band PSD.

Frequency (Hz) PSD (lbs2/Hz)
10 0.0200
28 0.0200
41 0.0400
72 0.0400
112 0.0029
221 0.0029
237 0.0060
265 0.0060
285 0.0029
581 0.0029
650 0.0075
1000 0.0075
1200 0.0200
1700 0.0200
2200 0.0800
3000 0.0800

Table 2-15. – Wide-Band Force PSD.

Domain Damage
Model

Vrms (ksi) Cycling
Rate (Hz)

Damage Rate

Time Minor’s
Rule

44.3-47.1 4.17 1.8E-6 - 4.2E-6

Frequency
Steinberg

42.9-46.3 5.01
3.0E-3 - 8.7E-3

Narrow
Band

9.4E-3 - 2.7E-2

Wirsching-
Light

4.8e-3 - 1.4e-2

Documentation Experiment 46.36 5.00 5.0E-6

Table 2-16. – Preliminary 5 Hz Results.
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Table 2-16 shows the preliminary results of the 5 Hz test of frequency and time domains. The
ranges indicate spatial changes. Sierra/SD and Siesta results are very close for this model.
However, it is important to note that neither domain’s damage formulations are intended to be used
on a sine input. Because this is a sine input, three adjustments must be made to the raw data.

1. The rainflow algorithm consistently misses one half cycle on the input, and interprets a 0.6
second 5 Hz tone as a 4.17 Hz tone instead. As the time history increases, the recorded
cycling rate converges to 5 Hz, so we will act as though it detected 5 Hz. It is recommended
that you use the longest time history feasible, preferably 50-100 cycles of the lowest
frequency.

2. Narrow band damage, and Wirsching-Light by extension, includes a scale factor of
Γ(1 + 𝑚/2) on the damage, where Γ is the gamma function, and 𝑚 is the fatigue exponent.
For a sine input, this is not appropriate, as it makes the calculated damage wildly
conservative, so we will reduce the damage by this same factor.

3. The Steinberg method for calculating damage includes the assumption that the magnitude of
Vrms is a one sigma event, and adjusts the damage to reflect the influence of 2-sigma and
3-sigma events as well. These cycles do the majority of the damage on a system, and so this
approach is not appropriate for modeling a strictly controlled experiment with 100% of the
cycles at the same value.

After adjusting the results and removing Steinberg from the chart, we are left with Table 2-17. It
is worth noting that the Wirsching-Light damage metric is intended to compensate for
conservatism on wide-band signals; as this signal is very narrowband, the correction is
unnecessary. In summary, the narrow band results are as expected.

✓ The preliminary results for Siesta and Sierra/SD agree very well.

✓ With appropriate corrections, these results are consistent with both rainfall computations
and with experiment.

Domain Damage
Model

Vrms
(ksi)

Cycling
Rate (Hz)

Damage Rate

Time Minor’s Rule 44.3-47.1 5 2.2E-6 - 5.0E-6

Frequency Narrow Band 42.9-46.3 5.01 1.7E-6 - 5.0E-6
Wirsching 0.9E-6 - 2.5E-6

Anes Experiment 46.36 5.00 5.0E-6

Table 2-17. – 5 Hz test after adjustments. Ranges indicate spatial variation.

2.18.6.1. Narrowband and Wide-Band Evaluation

Tables 2-18 and 2-19 show the results under representative wide and narrow-band PSD inputs.
Narrow band damage represents the time domain solution well, and is strictly conservative in our
selected band of elements, but the wide band test revealed that the frequency domain is only an
estimate of damage expected from the time domain analysis under wide-band loading. Why this
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discrepancy exists is not well understood, but may be caused by the shape of the wide-band PSD
used. It may be possible to better represent the wide-band test with 2-3 narrow band tests under
the order-independent assumption of Minor’s rule, but this was not tested.

As with the 5 Hz test, the rainflow algorithm used in the time domain calculated an inaccurate
cycling frequency when provided with a narrow-band signal. This is not considered to be a
problem because the overall damage appears to be well accounted for.

Domain Damage
Model

Vrms (ksi) Cycling
Rate (Hz)

Damage Rate

Time Minor’s Rule 0.046-0.049 532 5.6E-43 - 1.7E-42

Frequency
Steinberg

0.051-0.055 47
2.0E-43 - 5.8E-43

Narrow Band 6.3E-43 - 1.8E-42
Wirsching 2.9E-43 - 8.4E-43

Table 2-18. – Narrow-Band Test Results. Ranges indicate spatial variation.

Domain Damage
Model

Vrms (ksi) Cycling
Rate (Hz)

Damage Rate

Time Minor’s Rule 0.22 - 0.24 2486 - 2487 21E-33 - 56E-33
Siesta results

Frequency
Steinberg

0.20 - 0.22 2293
2.2E-33 - 6.3E-33

Narrow Band 6.8E-33 - 20E-33
Wirsching 3.1E-33 - 9.0E-33

Sierra/SD results

Frequency Narrow Band 0.201 - 0.217 2293 6.5E-33 - 19E-33
Wirsching 3.0E-33 - 8.6E-33

Table 2-19. – Wide-Band Test Results. Ranges indicate spatial variation.

Narrow-band and Wide-band results are very similar for Siesta and Sierra/SD, but they are not
identical. We expect that there are round off errors and integration differences leading to those
differences. These are particularly difficult in an undamped system with numerical integration
crossing peak resonance. Table 2-20 compares these results. Overall, the comparison is good, and
well within the differences of the other methods.

Parameter Narrow-Band Wide-Band
Siesta Sierra Diff Siesta Sierra Diff

Vrms (psi) 55 55.45 0 220 220 0%
𝜈+𝑜 47 47 0 2293 2293 0%
NB Damage 1.8e-42 1.74-e42 3% 2.0e-32 1.9E-32 5%

Table 2-20. – Maximum of Siesta and Sierra/SD Computations.
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2.18.6.2. Integration and Damping

The PSD spectrum is integrated through frequency to determine the RMS stress and the stress
moments. For undamped systems, that function is singular at the resonance points. Two factors
influence the accuracy of that solution. First, damping removes the singularity in the solution.
Second, the size of the frequency step addresses the accuracy of the integral.

Figure 2-53 provides some information on the convergence of the solution as these parameters are
varied. The variation of the narrowband damage, 𝐷𝑁𝐵, versus damping is shown on the left. For
damping below 1%, there is no significant impact on the solution. The graphic on the right
illustrates the same data, sliced another way. We observe that the frequency step, Δ𝐹, has a
significant effect on the solution. For our problem, independent of damping, the frequency step
should be below 1 Hz. However, with no damping and a small frequency step, very different
(non-convergent) results are obtained. This is consistent with numerical integration across a
singularity. For input deck see Appendix 9.25.
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Figure 2-53. – Convergence of PSD Integration.

2.18.7. Fatigue Output of Pinned Shell

A narrowband and wideband example are tested to ensure,

• The stress is evaluated at all three surfaces (top, middle, bottom), and the larger of these
values is used for evaluation of damage.

• The zero crossing and peak frequency make sense in the context of the PSD input. This is
easier to evaluate for narrowband processes.

• Von Mises stress is consistent between modalranvib and FRF solutions.

• The von Mises stress is consistent with a static solution.

• Damage Rate is consistent with independent MATLAB calculations.
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We do not have a comparison with time domain rain fall calculations. We also have no
convergence study, either with mesh, or with modes.

2.18.8. Narrow Band Pinned Plate

The model is a simple rectangular plate, shown in Figure 2-54. The plate is 10 units in 𝑋 , 1 unit in

Figure 2-54. – Pinned Plate Geometry, and First Mode.

𝑌 , 0.01 units thick, and all deformation is in the 𝑍 direction. In modal analysis, only the first mode
is retained, which is a bending mode, shown in the lower portion of Figure 2-54. The +/- 𝑋
surfaces are pinned, with no other Dirichlet boundary conditions. Loading is a uniform pressure
in the −𝑍 direction. The narrowband loading is shown in Figure 2-55, where the entire loading is
in the 4 Hz to 5 Hz range. The first mode is at about 8.9 Hz, so this loading is below that first
mode.
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Figure 2-55. – Pinned Plate. Random Vibration Loading.

2.18.8.1. Statics:

The static response on the bottom surface, to a uniform pressure load is shown in Figure 2-56.
Stress on the top surface is the negative of this, and there is no stress on the midplane.
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Figure 2-56. – Pinned Plate. Statics Response.

2.18.8.2. FRF:

The input is modified, and a modal FRF computed from 0.01 to 8 Hz, as shown in Figure 2-57.
The stress response is very similar to the static solution, as evidenced in Figure 2-58. There are
expected deviations, as the FRF response includes only a single mode. However, the stresses are
as expected, and they increase at the sample frequency of 4.55 Hz, as the solution approaches
resonance.

✓ FRF and Statics displacements and stresses are consistent.
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Figure 2-57. – Pinned Plate. Modal FRF Response.
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Figure 2-58. – Pinned Plate. Comparison of Static and FRF Solutions.
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2.18.8.3. Random Vibration Analysis:

The next step of the computation is evaluation of the RMS von Mises stress through the modal
random vibration analysis. The peak value of this stress is 1.037×106, which occurs in the center
of the structure. This value is consistent with the stresses computed in the FRF and Statics
portions of the analysis. The following are confirmed.

✓ The zero crossing and peak frequency, determined from Vrms𝑖, are both about 4.5 Hz,
consistent with the narrow band sweep in this analysis.

✓ RMS stresses are consistent with the FRF values. Note however, that these are all axial
stresses.

2.18.8.4. Fatigue Damage Analysis:

The final step is the fatigue analysis. Output of this analysis confirms,

✓ The zero crossing and peak frequency are correct.

✓ Damage rates are consistent with hand calculations.

𝐷𝑁𝐵 =
𝜈+𝑜
𝐴
(
√

2𝜎𝑠𝐹𝑆𝑆)𝑚Γ
(𝑚

2
+ 1

)
For our structure, 𝐷𝑁𝐵 ≈ 5 in the center of the plate.

𝐴1 = 12.1689
𝐴 = 10𝐴1 = 1.475 × 1012

𝑚 = 3
𝐹𝑆𝑆 = 0.0001
𝜈+𝑜 = 4.534

Γ(5/2) = 1.3293
𝜎 ≈ 1.0377 × 106

𝐷𝑁𝐵 = 1.2911 × 10−5 (from hand calculations)

The value from the output is 𝐷𝑁𝐵 = 1.291125933 × 10−5.

2.18.9. Wideband Calculations

Wideband calculations use the same model as narrowband. Only a single mode is retained as
shown in Figure 2-54, however the band selected is from 10 -100 Hz. Figure 2-59 shows the
displacement response over this band, with a 1% damping. Above the 8.9 Hz mode, the response
rolls off.

For this model, the zero crossing rate at all locations is 𝜈+𝑜 = 12.351. The peak frequency is
somewhat higher (as expected), at 𝜈𝑝 = 20.115 Hz. Both reflect the much higher energy at lower
frequency because the dominant mode is at 8.9 Hz.
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Figure 2-59. – Pinned Plate. Wide Band FRF Response.

✓ The zero crossing and peak frequency are reasonable.

The peak Damage occurs in the middle of the plate. Peak values for NbDamageRate and
DamageRate are 6.8259 × 10−4 and 5.6715 × 10−4 respectively.

The RMS von Mises stress can be computed in two ways. First, the modal random vibration
method can be used. Second, a frequency response method is used. Each method is applied here
for the element of maximum stress, in the center, with id 51.

ModalRanVib: This method, described in the Sierra/SD manuals, computes the RMS von Mises
stress. The value from the method is 𝑉̂𝑅𝑀𝑆 = 2.7886 × 106.

FRF: This method uses the transfer functions. From the output of the modalFRF calculation,

𝑉̄2
𝑅𝑀𝑆 =

∫ ∞

0
𝐻†(𝜔)𝑆𝐹𝐹 (𝜔)𝐻 (𝜔)𝑑𝜔

where 𝐻 (𝜔) is a stress transfer function, and 𝑆𝐹𝐹 is the force input power spectral density.
For element 51, 𝑉̄𝑅𝑀𝑆 = 2.8695 × 106. Here we assume that the stress is uniaxial, and 𝐻
applies to 𝜎𝑥𝑥 , the axial portion of the stress. The MATLAB code to approximate this
integral is,

h1 = evar23(51,:) + sqrt(-1)*evar01(51,:);
h1 = h1.’;
df = 0.1;
Sff = 1;
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Vrms2 = h1’*Sff*h1*df;
Vrms = sqrt(Vrms2)

The difference between these two values is about 3 percent. That would appear to be too large.
However, evaluation of convergence as the frequency step is decreased indicates much less error
in the modal random vibration solution. See Figure 2-60. The RMS stress depends on damping.
Setting the damping ratio to 50%, results in stresses of 1.2721e6 and 1.262251e6 using an FRF
and random vibration method respectively. As expected, the integration error is lower for these
values, and relative error is about 0.8%.

✓ Computation of the RMS stress is consistent between the two methods.
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Figure 2-60. – Convergence of Frequency Integrals.

For input deck see Appendix 9.26.
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2.18.10. Nodal Loading vs Sideset Loading for Modal Random Vibration

Modal random vibration verification test of the flat plate of hexshells is shown in Figure 2-61 for
pressure loading on the top surface. The plate is fixed at nodeset 3 and nodeset 4 and is fixed in
the z direction at nodeset 1 and 2.

Figure 2-61. – Schematic of flat plate geometry with nodesets and sidesets labeled. A pressure load
is applied to the top surface on sideset 1 and a force load is applied to the top surface on nodeset 10.
Frequency output shown in Figure2-62 is taken at nodeset 5.

A pressure loading is compared to three other loading scenarios for verification. The four
solutions to this problem are presented in Figure 2-62 for measurements taken at the center node
of the plate, nodeset 5 in Figure 2-61.

These four solutions are:

1) Modalranvib with pressure applied to the top surface of the plate, sideset 1 in Figure 2-61.
Results are shown in blue in Figure 2-62.

2) Modalranvib with nodal forces applied to the entire top surface, nodeset 10 in Figure 2-61. The
load is scaled to be equivalent to the pressure load in case 1. Note that the exodus mesh for
nodeset 10 has a distribution factor of 0.5 so the force load is scaled by 2 in the input file. Results
are shown in red in Figure 2-62. Note that there are no noticeable differences for cases 1 and 2.

3) A time history solution post-processed to give the power spectral density shown in red.

4) NASTRAN solution for modalranvib shown in green.

All the input files and MATLAB scripts required to run these simulations are in the test
directory.

The Salinas results for pressure loaded modalranvib are the same as the other solution methods.
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For input deck see Appendix 9.27.
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2.19. Coupled Electro-Mechanical Physics

2.19.1. Static Response for Electric Field Induced Beam Deformation

In this section, we verify the electro-mechanical coupling in the stiffness matrix using the static
response of two bimorph beam models (2-63) that were presented in work by X.D. Zhang and C.T.
Sun [55]. The first test verifies the part of the stiffness matrix that couples the electric field to
transverse strain, and the second verifies the coupling of the electric field to shear strain. To verify,
we compared the transverse displacements generated from Sierra/SD with the analytic solutions
derived in the referenced paper [55].

2.19.2. Bimorph Beam in Bending

The first model is an aluminum cantilevered beam pressed between two piezoelectric strips
(Figure 2-63a). The piezoelectric strips are PZT5H and are polarized in the direction parallel to
their thickness (z-axis). The constitutive properties of the piezoelectric and aluminum materials
are presented in Table 2-21. Ten volt voltages (𝑉𝑖𝑛 = 𝑉𝑜𝑢𝑡 = 10) are prescribed to the outermost
surfaces parallel to the length of the beam and the aluminum core is grounded (𝑉𝑔 = 0). Figure
2-64 presents the analytic and Sierra/SD generated transverse displacements over the length of
the beam.

Figure 2-63. – Cantilevered bimorph beams with piezoelectric layer (hatch) and aluminum layer (solid).
Model (a) verifies the electric field transverse strain coupling, and model (b) verifies the electric field
shear strain coupling.
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Figure 2-64. – The FE and analytic transverse displacements along the length of the bimorph beam
from Figure 2-63.

Table 2-21. – Material Properties for PZT5H [55].
PZT5H Al

𝐺𝑃𝑎 𝐶/𝑚2 𝐺𝑃𝑎

𝑐11 𝑐12 𝑐13 𝑐33 𝑐44 𝑒31 𝑒33 𝑒15 𝐸 𝜈

126 79.5 84.1 117 23 -6.5 23.3 17 70.3 0.345
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2.19.3. Sheared Bimorph Beam

The second model is a piezoelectric cantilevered beam pressed between two aluminum strips
(Figure 2-63b). The piezoelectric material is PZT5H and it is polarized in the direction parallel to
the length of the beam (x-axis). A twenty volt voltage (𝑉𝑖𝑛 = 20) is prescribed to the upper
interface between the aluminum and piezoelectric strip, while the lower interface is grounded
(𝑉𝑔 = 0). Figure 2-65 presents the analytic solution superimposed over the transverse
displacements generated from Sierra/SD over the length of the beam.
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Figure 2-65. – The FE and analytic transverse displacements along the length of the shear beam from
Figure 2-63.
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2.19.4. Transient Response for Electric Field Induced Beam Deformation

In this section, we verify the transient solution method for a piezoelectric model subject to
prescribed time-varying voltage boundary conditions. The details of the bimorph beam are
provided in Figure 2-63a and Section 2.19.1. A constant voltage of 20 volts (𝑉𝑖𝑛 = 20) is
prescribed to the top surface, and the aluminum core is grounded. An equipotential surface is
enforced at the bottom surface (𝑉𝑜𝑢𝑡) with a voltage rigid set. In other words, the voltage is
spatially constant along the equipotential surface. The piezoelectric material is isotropic in
permittivity where its permittivity is set to the permittivity of free space.

To verify the transient solution method, we performed a transient solve using an identical model
with the FE software COMSOL [14] and compared its generated time-histories with those
generated from Sierra/SD. Figure 2-66 presents the displacement time-history of the output node
(see Figure 2-63a) in the transverse direction (z-axis) and the axial direction (x-axis). Figure 2-67
presents the voltage time-history at (𝑉𝑜𝑢𝑡). We observe excellent agreement between Sierra/SD
and COMSOL.
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Figure 2-66. – Time-histories of transverse (z) and axial (x) displacements generated from COMSOL
(dashed) and Sierra/SD (solid).
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Figure 2-67. – Voltage time-history of 𝑉𝑜𝑢𝑡 generated from COMSOL (dashed) and Sierra/SD (solid).
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2.19.5. Frequency Response for Electric Field Induced Beam Deformation

The frequency response of the bimorph beam subjected to a prescribed frequency dependent
voltage boundary condition is verified. The details of the bimorph beam are provided in Figure
2-63a and Section 2.19.1. In this example, a voltage of 20 volts is prescribed to the top surface of
the beam (𝑉𝑖𝑛 = 20) and the aluminum core is grounded. Like the transient example, we enforce
an equipotential surface at the bottom surface of the beam (𝑉𝑜𝑢𝑡) using a voltage rigid set.
Stiffness proportional damping, with coefficient 𝛽 = 8𝑒 − 7, is prescribed to the piezoelectric
blocks. The aluminum core is undamped.

To verify the direct frequency response solution method, we performed a frequency domain solve
using an identical model with the FE software COMSOL [14] and compared its solution with the
solution generated from Sierra/SD. Figure 2-68 presents the response amplitudes of the output
node (see Figure 2-63a) for the following: 1) the transverse direction (z-axis), 2) the axial
direction (x-axis), and 3) the voltage at 𝑉𝑜𝑢𝑡 . We observe excellent agreement between Sierra/SD
and COMSOL.
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Figure 2-68. – The frequency response amplitudes generated from Sierra/SD and COMSOL for 1) the
transverse direction (z-axis), 2) the axial direction (x-axis), and 3) the voltage at 𝑉𝑜𝑢𝑡 .
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2.19.6. Eigenvalue Verification of a PZT5A Disc

The eigenvalues of coupled electro-mechanical physics are verified based on a published example
[25]. The specified problem is a PZT5A disc with D/T ratio of 20. The properties used are in Table
2-22. The disc is 40.10𝑚𝑚 in diameter and 2.03𝑚𝑚 thick, giving it a 𝐷/𝑇 ratio of 20, which is
the same ratio as many transducers. The piezoelectric material is polarized in the Z (or 3) axis.

Table 2-22. – Properties of PZT-5A [25].
Property Units PZT-5A
𝜀0 F/m 8.854 × 10−12

𝜀𝑆11/𝜀0 916
𝜀𝑆33/𝜀0 830
𝑐𝐸11 1010𝑁/𝑚2 12.1
𝑐𝐸33 1010𝑁/𝑚2 11.1
𝑐𝐸12 1010𝑁/𝑚2 7.54
𝑐𝐸13 1010𝑁/𝑚2 7.52
𝑐𝐸44 1010𝑁/𝑚2 2.11
𝑐𝐸66 1010𝑁/𝑚2 2.26
𝑒31 𝐶/𝑚2 -5.4
𝑒33 𝐶/𝑚2 15.8
𝑒15 𝐶/𝑚2 12.3
𝜌 103𝑘𝑔/𝑚3 7.75

Thus, the elasticity matrix:

𝐶𝐸 = 1010 ×



12.1 7.54 7.52 0 0 0
7.54 12.1 7.52 0 0 0
7.52 7.52 11.1 0 0 0

0 0 0 2.11 0 0
0 0 0 0 2.11 0
0 0 0 0 0 2.26


𝑁/𝑚2 (2.19.1)

the dielectric matrix:

𝜀𝑆 = 8.854 × 10−12 ×


916 0 0
0 916 0
0 0 830

 𝐹/𝑚 (2.19.2)

and the piezoelectric coupling matrix:

𝑒 =


0 0 0 0 12.3 0
0 0 0 12.3 0 0

−5.4 −5.4 15.8 0 0 0

 𝐶/𝑚2 (2.19.3)
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Figure 2-69. – PZT5A disc verification problem.

Figure 2-70. – First Radial Model of PZT-Disk. Literature 49.56 kHz, Sierra/SD 49.603 kHz. Red
shows undeformed disk, blue shows radial extension mode shape.

The referenced paper [25] uses radially symmetric elements, thus only the radially symmetric
modes are presented. Additionally, the authors claim that the bending modes can not be used to
excite the mechanical system, so only the radial extension modes are presented [25] . Sierra/SD
calculated all modes, including radially symmetric bending modes, as well as non-symmetric
modes. In the referenced paper[25], the first two radial extensional modes occur at 49.56 kHz and
128.1 kHz. From the Sierra/SD runs, the first radial mode is represented by the 35th eigenpair,
and has a natural frequency of 49.603 kHz. The second radial mode is represented by the 104th
eigenpair, and has a natural frequency of 128.757 kHz. When the material is modeled as a purely
elastic orthotropic material, with no consideration of the piezoelectric effect, these modes also
appear at the same frequencies. In the pure elastic-orthotropic case, other modes change
frequency, ordering and numbering, but the radial modes remain at the same frequency. Figure
2-70 shows the first radial extension mode calculated in Sierra/SD, and Figure 2-71 shows the
second radial extension mode calculated in Sierra/SD.
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Figure 2-71. – First Radial Model of PZT-Disk. Literature 128.1 kHz, Sierra/SD 128.757 kHz. Red
shows undeformed disk, blue shows radial extension mode shape.
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2.20. Sierra/SM to Sierra/SD Coupling

2.20.1. Deflection of Axially Loaded Beam

This verification test computes deflections of beams with axial preload. Comparisons are made
between analytic solutions, nonlinear static Sierra/SM analysis, and linear static Sierra/SD
analysis with geometric stiffness from preload.

An idealized model, see Figure 2-72, has the geometry shown in Figure 2-73. A uniform elastic
material is colored red, and green dots represent nodes at which boundary conditions are applied.
The left node is fixed in 𝑥 and 𝑦 to represent a pin, and the right node is fixed in 𝑦 and has the
applied axial force 𝑃, and the whole model is fixed in 𝑧. A very stiff material, colored gray, is used
on the beam ends to prevent large local deformations around the pinned nodes. The small yellow
sideset at the center of the beam is used for applying a traction to generate the applied lateral force
𝐹.

Figure 2-72. – Idealized Model Setup.

Figure 2-73. – Meshed Beam.
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Verification checks of the model vs. analytic solutions are made looking at the maximum lateral
deformation 𝛿 under various conditions. This maximum lateral deformation always occurs at the
beam mid-span. Deflections are kept small to approximate the linearized simple beam equations.
The specific geometry and loads considered are given in Table 2-23. The test directory contains a
Mathematica notebook file that gives the beam analytic solutions and detailed numeric results for
the specific geometry and loads considered.

Table 2-23. – Model Parameters.

Parameter Value Description
𝐿 20 Beam Length in X direction
𝐻 1 Beam Height in Y direction
𝑊 0.1 Beam Width in Z direction
𝐸 7.8e+7 Material Young’s Modulus
𝐹 2000 Lateral Force
𝑃 -5000, 0, or 5000 Axial Force

2.20.1.1. Basic Beam Deflection

The beam moment of inertial 𝐼 is given by Equation 2.20.1.

𝐼 =
𝑊𝐻3

12
(2.20.1)

In absence of an axial load, the expected beam deflection 𝛿𝑏𝑒𝑛𝑑 is given by Equation 2.20.2.

𝛿𝑏𝑒𝑛𝑑 =
𝐹𝐿3

48𝐸𝐼
(2.20.2)

The expected numeric result for the geometry is 𝛿𝑏𝑒𝑛𝑑 = 0.512. Sierra/SM computes a value of
0.521 and Sierra/SD a value of 0.516. The discrepancy is due to limited mesh resolution and
small deviations between idealized Euler-Bernoulli beam theory and the 3d model. Generally, the
comparison is good, indicating that the finite element model closely aligns with the beam theory
assumptions.

2.20.1.2. Beam Deflection with Axial Preload

With the addition of an axial preload 𝑃, an additional 𝑃 − 𝛿 effect becomes relevant. A lateral
deformation at the end of the beam causes the axial force 𝑃 to generate an extra moment on the
beam. When 𝑃 is compressive, this extra moment magnifies the lateral displacement. When 𝑃 is
tensile, this extra moment reduces the lateral displacement. The analytic solution can be found by
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considering half the beam as a cantilever as shown in Figure 2-74. Equation 2.20.3 describes end
loaded cantilever beam deformation.

Figure 2-74. – Cantilever Beam With Axial Load.

𝛿𝑏𝑒𝑛𝑑 (𝑥) =
3𝐹𝐿𝑥2 − 𝐹𝑥3

6𝐸𝐼
(2.20.3)

The axial preload applied to the deformed shape generates a distributed moment given in
Equation 2.20.4.

𝑀1(𝑥) = 𝑃
𝑑𝛿𝑏𝑒𝑛𝑑 (𝑥)

𝑑𝑥
=
𝑃𝐹 (2𝐿 − 𝑥)𝑥

2𝐸𝐼
(2.20.4)

The additional increment of deformation 𝛿1 of a cantilever subjected to the extra moment from
Equation 2.20.4 is given in Equation 2.20.5.

𝛿1(𝑥) =
∫ ∫

𝑀1(𝑥)
𝐸𝐼

𝑑2𝑥 = −𝐹𝑃(20𝐿3𝑥2 − 5𝐿𝑥4 + 𝑥5)
120𝐸2𝐼2 (2.20.5)

This additional deformation causes additional cycles of moment and deflection given in
Equations 2.20.6 and 2.20.7.

𝑀𝑛+1(𝑥) = 𝑃
𝑑𝛿𝑛 (𝑥)
𝑑𝑥

(2.20.6)

𝛿𝑛+1(𝑥) =
∫ ∫

𝑀𝑛+1(𝑥)
𝐸𝐼

𝑑2𝑥 (2.20.7)
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The exact result for expected deformation can be found by summing the series shown in
Equation 2.20.8.

𝛿(𝑥) = 𝛿𝑏𝑒𝑛𝑑 (𝑥) + 𝛿1(𝑥) + 𝛿2(𝑥) + ... + 𝛿𝑛 (𝑥) (2.20.8)

This series converges to a high-precision value after a few terms (unless 𝑃 is above the buckling
load, in which case the series diverges). A Mathematica notebook included in the test directory
sums many terms of the series to produce the solution. The analytic and computed solution for
tensile and compressive preload are given in Table 2-24.

The Sierra/SM nonlinear static solution can directly solve for the preloaded beam deflection. To
solve in Sierra/SD, first Sierra/SM is used to apply the axial preload. The preload stress state is
imported into Sierra/SD with the receive_sierra_data solution case. A lateral load is then
applied as a linear static load in Sierra/SD. The preloaded stress state alters the element geometric
stiffness allowing the correct ultimate deflection to be extracted in Sierra/SD.

Table 2-24. – Max Displacement Preloaded Beam.

Preload Exact Sierra/SM Sierra/SD after
Result Sierra/SM Preload

Compressive 0.741 0.757 0.748
Tensile 0.392 0.399 0.394

A close match is obtained using both the direct Sierra/SM solution method and the Sierra/SM
axial preload followed by Sierra/SD lateral load on the preloaded structure.

2.20.1.3. Preload Equilibrium and Preload Options

By default, the Sierra/SD receive_sierra_data solution case imports the preload stress state
and computes the initial internal force produced by that stress state. The internal force computed
from a stress state should be in equilibrium with the external force that caused that stress state. If
Sierra/SD imports a stress state and applies the same external loads as were applied in
Sierra/SM, the model should be in equilibrium and compute zero displacement in the Sierra/SD
solution. The result for this case is given in the first row of Table 2-25. Some small deformation
happens in Sierra/SD, but it is small compared to the nominal displacement of the system (0.512).
The small discrepancy is related to incompatibilities in element formulation between Sierra/SM
and Sierra/SD as well as minor geometric nonlinearities in the Sierra/SM solution that cause the
Sierra/SM equilibrium state to not exactly match the Sierra/SD equilibrium state.

As a corollary to maintaining equilibrium, if the preloaded stress state is read into Sierra/SD
using default options, but no loads are applied in Sierra/SD, then the initial forces computed from
the stress preload should snap the deformation back to the unloaded state. This result is given in
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the second row of Table 2-25. The comparison is good, with small discrepancies related to the
formulation differences between Sierra/SD and Sierra/SM.

The option include_internal_force for the receive_sierra_data solution case controls
whether the internal force associated with the stress state is added to the solution right-hand side.
By default, this option is true and this force is included, which accounts for the expected results in
the first two columns of Table 2-25. This option can be turned off, in which case the resultant
internal force from integrating the stress state is not included. If a model is preloaded in
Sierra/SM and the preload-causing external forces are not included in the Sierra/SD model
definition, then the include_internal_force option should be off. Effectively, this asserts that
the preloaded state should be treated as an exact equilibrium state. The check on this result is
given in the third row of Table 2-25. When the initial model state is treated as an exact
equilibrium, exactly no displacement is produced in the unloaded Sierra/SD model.

A second check of the include_internal_force option is given in the fourth row of
Table 2-25. In this example, a tensile preload is applied in Sierra/SM, and Sierra/SD imports this
stress state. The Sierra/SD model turns off the initial internal force calculation, and consistent
with that, does not apply the tensile external force. When this Sierra/SD model is subjected to
lateral force, it produces the expected deformation of a cantilever with axial tension.

Table 2-25. – Equilibrium Test Cases.

Sierra/SM Sierra/SD Options Analytic Expected Computed
Load Load Max Displacement Sierra/SD

Sierra/SD Result Result
Lateral Lateral Defaults 0.0 0.0023

Lateral None Defaults -0.512 -0.513

Lateral None include_internal_force 0.0 0.0
off

Tensile Lateral include_internal_force 0.392 0.395
off

2.20.1.4. Geometric Stiffness Options

Usually, the primary reason to include preload is to take into account the geometric stiffing or
softening effects of that preload stress. Sierra/SD has an option no_geom_stiff to ignore this
effect. This option can be used to debug models and to see whether the geometric stiffness is
causing issues for solvers. Sufficiently large compressive stress can cause stiffness to go negative
(physically buckling). Such states will often not solve or could cause stability problems. With the
geometric stiffness turned off, Sierra/SD will still import the deformed shape and parameters that
relate to the material tangent stiffness. A check of the no_geom_stiff option is given in
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Table 2-26. Here, the deformation of the beam ignoring geometric stiffness is nearly the
deformation of a beam without any axial preload. The slight deviation between the tensile and
compressive preload state relates to reading the initial model geometry from the
Sierra/SM-deformed shape, which is slightly different for the compressive and tensile preloads.
This result demonstrates that for this example, correct calculation of geometric stiffness is very
important to obtain analytic results, while use of the deformed state has very little effect.

Table 2-26. – Geometric Stiffness Test Cases.

Sierra/SM Sierra/SD Options Analytic Expected Computed
preload load Max Displacement Sierra/SD

Sierra/SD Result Result
none lateral 0.512 0.516

compressive lateral no_geom_stiff 0.741 0.515

tensile lateral no_geom_stiff 0.392 0.517

For input deck see Appendix 9.28.1.
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2.20.2. Preloaded Beam Eigen Mode, Abaqus Comparison

This is a verification test comparing Abaqus to Salinas using selective deviatoric hex8 elements.
The geometry of this model can be seen in Figure 2-75. The model is a bar that is fixed on one
end and constrained in the 𝑦 and 𝑧 direction on the other. A prescribed displacement is applied in
the 𝑥 direction in Adagio, and then a modal analysis is performed in Salinas. For verification, the
first 4 modes are compared to the Abaqus finite element code. The Eigenvalue results are shown
in Table 2-27.

Figure 2-75. – Geometry of Bar.

Table 2-27. – Beam Preload Verification.

Mode Number Salinas Abaqus
1 1834.47 1834.50
2 10175.2 10176.0
3 12469.1 12472.0
4 12469.1 12472.0

2.20.3. Preloaded Plate Eigen Mode, Abaqus Comparison

This example is a similar to the previous model, except that it has the geometry of a plate, as
shown in Figure 2-76. The plate consists of selective deviatoric hex8 elements and is fixed on one
side and constrained in the 𝑦 and 𝑧 directions on the other. A prescribed displacement is applied in
the 𝑥 direction in Adagio, and then a modal analysis is performed in Salinas. For verification, the
first 5 modes are compared to the Abaqus finite element code. The Eigenvalue results are shown
in Table 2-28.
The path to these verification tests is
Salinas_rtest/verification/adagio_coupling/barModelPreload.

For input deck see Appendix 9.28.2.
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Figure 2-76. – Geometry of plate.

Table 2-28. – Plate Preload Verification.

Mode Number Salinas Abaqus
1 1380.37 1406.60
2 1834.47 1834.50
3 5208.10 5212.80
4 7234.86 7236.60
5 8911.89 8914.00
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2.20.4. Comparison of Sierra/SD and Sierra/SM Element Formulations

This verification test compares the equivalency of SD and SM element formulations. When
developing code-to-code comparison tests, the use of a compatible element formulation greatly
aids drawing meaningful conclusions. Additionally, when performing hand-off between
Sierra/SM and Sierra/SD, the use of similar element formulations reduces the differences between
the approximate solutions.

In this test the response of an arbitrary statically loaded structure is compared between Sierra/SM
and Sierra/SD using a wide variety of element formulations. The loading used induces very small
strains to minimize any SM to SD difference related to geometrically nonlinear response. An
equivalent response between SM and SD indicates the same stiffness matrix is being calculated
and used in the two codes.

A moderately refined (r3) solid model for the study is shown in figure 2-77. The solid model is a
solid cantilever beam, and the shell model is effectively a hollow cantilever box-beam. Figure
figure 2-78 shows the coarse shell element mesh (r1). One end is fixed, and a traction is applied at
the opposite end. Comparison is made using the displacement at the end of the body (the marked
red dot.) The model is purposely generated with a mixture of skewed elements, curved edges, and
a variety of material properties to expose any differences in SD vs. SM handling of these
features.

The comparison metric between two solutions with end displacements u and v is given in
equation (2.20.9). A value of 𝑤𝑒𝑖𝑔ℎ𝑡 of 0.0 indicates the two displacements (and thus element
formulations) are identical while a 𝑤𝑒𝑖𝑔ℎ𝑡 of 1.0 indicates the two displacements are totally
unrelated.

Figure 2-77. – Solid Element Model (R3) Refinement.

𝑤𝑒𝑖𝑔ℎ𝑡 = 1.0 − 𝑚𝑎𝑔 · 𝑐𝑜𝑠𝑖𝑛𝑒 (2.20.9)
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Figure 2-78. – Shell Element Model (R1) Refinement.

where

𝑚𝑎𝑔 = 𝑚𝑖𝑛(∥u∥, ∥v∥)/𝑚𝑎𝑥(∥u∥, ∥v∥)
𝑐𝑜𝑠𝑖𝑛𝑒 = (u · v)/(∥u∥ · ∥v∥)

Several of the shell elements were not functional for SM static solutions at the time of this study.
Thus, when generating shell element results in SM a long, damped, explicit dynamics analysis
was done. Every attempt was made to equilibrate this result to the true static solution. When
comparing results where the element formulation is known to be identical between SM and SD, a
difference metric of below 0.00005 was obtained. The small remaining difference between SM
and SD can be attributed to slight geometric nonlinearity in the SM solution as well as the finite
solver tolerance used in both codes.

The intent is to study most formulations considered in a production state for mesh topologies
generated. To limit scope, only the default parameters for these formulations where considered.
Additionally, only element topologies that could be handled by both SD and SM were
considered.

2.20.4.1. Solid Element Results

Tables 2-29 and 2-30 list details of the element formulations studied. SM has a Hex27 element
formulation while SD does not so this was excluded from the study. Additionally, wedge elements
are not currently considered in the study, partially due to the difficulty of generating wedge
element meshes.

A matrix for the difference metrics obtained comparing each code and element formulation to
each other formulation is shown in figure 2-79. The matrix is color-coded such that a difference
metric at or below 0.0001 is green (assumed exact formulation match) a metric at or below 0.01 is
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Figure 2-79. – Solid elements comparisons on coarsest models (R1).

Table 2-29. – Details for SD solid element formulations.
Formulation Block input Description
SD_Hex20 (default) hex20 Standard fully integrated Hex20
SD_Hex8_B (default) hex8b Bubble function Hex8
SD_Hex8_Full hex8f Standard fully integrated Hex8
SD_Hex8_U hex8u Selective deviatoric Hex8
SD_Tet10 (default) tet10 Standard fully integrated Tet10
SD_Tet10_Cu cutet10 Tet10 formulated by Carlos Felippa

(CU stands for U.C. Boulder)
SD_Tet4 (default) tet4 Standard fully integrated Tet4

yellow (a close but not exact match) and values above 0.02 are red (substantial deviation between
formulations.)

Based on the coarse model results a handful of solid elements have identical behavior in Sierra/SD
and Sierra/SM. These include the Tet4, Hex20, and fully integrated Hex8 elements. These
elements are all fully integrated using standard published element integration rules. Additionally,
the selective deviatoric Hex8 element formulations (hex8u in SD) exactly match between SM and
SD. This indicates that not just the formulation matches for this element, but also the default
parameters for the formulation such as the factor mixing the bulk and deviatoric response.

Unsurprisingly, the default Hex8 (bubble in SD, uniform gradient in SM) and default Tet10 (fully
integrated in SD, composite tetrahedron in SM) show substantial differences. Up to 15%
difference in results were seen on the coarse meshes for the metric used in this study. In these
cases the formulations are indeed fundamentally numerically different. As such care must be
taken when handing results between SD and SM or comparing results from SD to SM when using
these default elements.

Another interesting finding from figure 2-79 is that the Tet4 result is vastly different from all other
results (roughly 25% different in the metric used.) This is consistent with the usual experience of
Tet4 element being much worse than other element formulations and producing overly stiff results
for a given refinement. However, note that in general no attempt has been made to ascertain which
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Table 2-30. – Details for SM solid element formulations.
Formulation Section input Description
SM_Hex20 (default) fully_integrated Standard fully integrated

Hex20
SM_Hex8_Full fully_integrated Standard fully integrated

Hex8
SM_Hex8_Q1P0 q1p0 Fully integration of deviatoric

terms with single point
integration of pressure terms

SM_Hex8_SelDev selective_deviatoric Fully integration of deviatoric
terms with volumetric averaging
of pressure terms

SM_Hex8_UG (default) mean_quadrature Uniform gradient Hex8 with
hourglass control

SM_Tet10_Comp (default) < blank > Composite tetrahedral formulation
SM_Tet10_Full fully_integrated Full integration of deviatoric

terms with volumetric averaging
of pressure terms

SD_Tet4 (default) fully_integrated Standard fully integrated Tet4

element formulations are potentially more accurate in the study; the purpose of the study is solely
to determine which formulations are numerically compatible between Sierra/SD and Sierra/SM.

It is mildly surprising that the fully integrated Tet10 responses do not match between Sierra/SM
and Sierra/SD. On a coarse mesh, these Tet10 responses are roughly 1% different. The root cause
of this difference for the tet10 elements is that SD uses a traditional fully integrated Tet10
formulation while the SM Tet10 formulation introduces additional volume averaging operations
akin to the selective deviatoric element. Without volume averaging, the fully integrated SM tet10
will exactly match the SD tet10.

Though not shown directly in the tables it was observed that the SM total Lagrange formulations
exactly match the fully integrated formulations at the small strains used in this study. Additionally,
it was observed that the SM total Lagrange hex8 with volume averaging turned on exactly matches
the SM and SD selective deviatoric elements.

2.20.4.2. Shell Element Results

Tables 2-31 and 2-32 list details of the element formulations studied. SD has Tri6, Quad8, and
Quad9 shell formulations where SM does not have formulations for these topologies. Thus, these
higher order shell topologies were excluded from the study.

A matrix for the difference metrics obtained comparing each code and element formulation to
each other formulation is shown in figure 2-80. The matrix is color-coded such that a difference
metric at or below 0.0001 is green (assumed exact formulation match) a metric at or below 0.01 is
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yellow (a close but not exact match) and values above 0.02 are red (substantial deviation between
formulations.)

Figure 2-80. – Shell elements comparisons on coarsest models (R1).

Table 2-31. – Details for SD shell element formulations.
Formulation Block input Description
SD_Quad4_NQUAD nquad Isoparametric shell with bending

and membrane stiffness. The ’N’
is for Navy

SD_Quad4_QUADT (default) quadt Effectively two triangles stuck
together. The ’T’ is for triangle

SD_Tri3_TRI3 (default ) tria3 Triangular shell formulation from
Carlos Felippa of C.U. Boulder

SD_Tri3_TRISHELL triashell Combines Allman’s triangle
formulation for membrane behavior
and discrete Kirchhoff triangle for
bending behavior

It was observed that no shell formulations were exactly equivalent between SD and SM. Though
for quad elements the SD nquad, SM nquad, and SM BL formulations are all very similar and for
most purposes could be considered equivalent. Again the default quad formulations (SD QuadT
and SM BT) are substantially different. The QuadT is effectively two triangles joined at the
diagonal while the BT is the Belytschko-Tsay formulation which is formulated for explicit
dynamics speed and is missing certain terms for transverse shear found in the nquad and BL
(Belytschko-Leviathan) formulation. Care should be taken using these default quad elements
when handing off or comparing results between SD and SM. For triangular shells there are no
formulations that appear to even be approximately similar between SD and SM.
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Table 2-32. – Details for SM shell element formulations.
Formulation Section input Description
SM_Quad4_BL bl_shell Belytschko-Leviathan formulation
SM_Quad4_BT bt_shell Belytschko-Tsay formulation
SM_Quad4_KH kh_shell Key-Hoff formulation
SM_Quad4_NQUAD nquad Isoparametric shell with bending and

membrane stiffness. The ’N’ is for
Navy

SM_Tri3_C0 c0_tri_shell Kennedy, Belytschko, Lin formulation
SM_Tri3_ORIG orig_tri_shell Original default triangular shell

formulation later replaced by C0.
Formulation from Sam Key

2.20.4.3. Refinement Study

An additional refinement study was performed to confirm the expected result that with refinement
the differences between element formulations become less relevant as all well posed formulations
coverage to the same result. The properties of the refined meshes are given in table 2-33. All
refinements are approximately uniform.

Table 2-33. – Meshes for refinement study.
Topology Refinement Number of Elements
Hex20 / Hex8 r1 60
Hex20 / Hex8 r3 1440
Hex20 / Hex8 r6 7860
Tet10 / Tet4 r1 1018
Tet10 / Tet4 r3 10421
Tet10 / Tet4 r6 77703
Quad4 r1 84
Quad4 r3 756
Quad4 r6 2892
Tri3 r1 178
Tri3 r3 1618
Tri3 r6 6525

The metric comparison plots for the refinement study are given in figures 2-81 to 2-84.
Qualitatively, it is observed that with refinement the SD and SM solid and shell results for all
formulations become much more similar to one another. E.g. the difference metric plots transition
from mostly red (greater than 2% difference in results) to mostly green (less than 0.01% difference
in results.) This is expected and indicates that each element formulation converges towards the
same result with refinement. However, no detailed quantitative study has been done looking at
convergence rates.
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Figure 2-81. – Solid elements comparisons on moderate refinement models (R3).

Figure 2-82. – Solid elements comparisons on high refinement models (R6).

Figure 2-83. – Shell elements comparisons on moderate refinement models (R3).

Figure 2-84. – Shell elements comparisons on high refinement models (R6).
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Note that even when using identically formulated elements differences can arise between
Sierra/SD and Sierra/SM for a variety of other reasons. At larger strains SD and SM results will
diverge due to fundamentally different small strain vs. large strain assumptions. Additionally,
when considering dynamics or gravity loads, SD and SM can diverge due to different default mass
matrix representations (consistent in SD vs. lumped in SM.) Finally, for more complex models
some boundary conditions, loads, or constraint conditions can have different formulations in the
codes.

For input deck see Appendix 9.28.3.
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2.20.4.4. One Dimensional Element Results

Spring elements A spring of unit length is used, fixed at one end. At the opposite end, tangential
displacements are also fixed. Note that in SD zero length springs are recommended. The mass of
the SM spring is set to 0 for consistency. The force function used in SM is also consistent with the
stiffness. The SD and SM spring elements match.

Truss elements The geometry figure 2-85 consists of 3 disconnected aluminium bars with
cross-sectional area 1/4 and length 10. Eight elements are used per line. The mesh consists of
two element blocks, each block containing half of each of the 3 lines. Each bar is fixed at one end.
At the opposite end, the tangential displacements are also fixed, and an axial load of magnitude
1000 is applied. The deformations are tested, but only the 𝑥 component is tabulated. The SD and
SM truss elements match.

Figure 2-85. – Truss Element Model.

Beam elements with axial force Four cross sections are tested: bar, box, rod, and tube. The mesh
consists of 4 disconnected beams, each of length 5, one per cross section. The dimensions of each
cross section are chosen so that each cross section has unit area. The second moments of area,
𝐼1 = 𝐼2, are determined from the diameters. The thickness direction is chosen to a direction
normal to the beam.The SD and SM beam elements match for axial forces.

Beams in bending The SD and SM beams do not match. The bar cross section is used here for
simplicity. As was the case for the axially loaded beam, the material properties are chosen so that
each beam cross section has unit area. Here the length is 20. Figure 2-86 compares the maximum
displacements from the SM (maise) and SD (green) simulations. As the number of elements
increases, the discrepancy decreases, from 4 percent on a two element mesh to 0.3 percent on a 32
element mesh. Figure 2-87 shows the maximum rotations from the SM (blue) and SD (green)
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Figure 2-86. – The maximum deflection is plotted versus the number of elements. The displacements
results converge under mesh refinement.

Figure 2-87. – Bending Comparison of Beam Elements: Rotations. The amount of rotation is plotted
versus the number of elements. The inconsistency remains constant with mesh refinement.
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simulations. The 0.3 percent discrepancy in the rotations appears to be independent of the number
of elements, i.e. The SD and SM beams do not match under a twisting force.

Beam element torque The model is a beam of length 5. The mesh consists of one element. All
dofs are fixed except for rotations about the x-axis. One end of the beam is fixed. A moment about
the x-axis if magnitude 100 is applied at the opposite end.

For input decks see Appendix 9.28.3.
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2.21. Sensitivity to Parameters

Sensitivity to parameters is available for multiple solution types. The primary application is in
eigen analysis where the semi-analytic solutions can provide significant computation and accuracy
benefit over a finite difference approach. A script was developed for testing different parameters
using the finite difference method in Sierra-SD. The script checks that, as the step size decreases,
the finite difference approximation to the modal sensitivity converges to the value provided in the
code. A simple model was developed and analyzed for verification. This model is two hex
elements that are connected via a tied joint. The 𝐾𝑧 = 𝑒𝑙𝑎𝑠𝑡𝑖𝑐1𝑒7 + /−10 parameter in the
Joint2G block is where the sensitivity analysis is preformed. Figure 2-88 is a plot of the results
and shows this capability. The Eigenvalue sensitivity information can be found in the result file
and matches the value shown in Figure 2-88.

Figure 2-88. – 𝑑Λ/𝑑𝑝 vs. dp.

Figure 2-89 shows the frequency vs. 𝑑𝑝. For input deck see Appendix 9.29.

Figure 2-89. – Frequency vs. dp.
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2.22. Shock Tube

Analysis Type Nonlinear Acoustics
Element Type Hex8
Boundary Conditions absorbing, fixed velocity
Keywords nonlinear acoustics, run time compiler

2.22.1. Problem Description

This is the verification test of nonlinear acoustics.

2.22.2. Verification of Solution

The SierraSD nonlinear acoustics equation is the Kuznetsov equation. In the SierraSD Verification
manual, see Section 8.1 and specifically Section 8.2. Fubini’s exact solution to a wave guide is
used. A MATLAB script, shocktube_exact_solution.m generates the exact solution.
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Figure 2-90. – Shock Tube.

For input deck see Appendix 9.30.
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3. MATERIALS

3.1. Linear Viscoelasticity

Linear viscoelasticity is a physics whose implementation in structural dynamics code is not
uncommon. The most conventional implementation is that which employs Prony series (see
Theory and User’s manuals.) Again, the purpose of verification is to assure that the conventional
implementation is done correctly.

For this test, we consider a beam of isochoric, isotropic viscoelastic material subject to normal
displacements in one direction consistent with a uniform compression. The imposed displacement
is ramped up and held at a fixed value. After the material is deformed at a rate ¤𝛾 for a period Δ𝑡

and then held, the resulting stress will be,

𝜎(𝑡) = ¤𝛾𝐸∞Δ𝑡 − ¤𝛾
∑︁
𝑛

(𝐸𝐺 − 𝐸∞)𝜏𝑛 (1 − 𝑒Δ𝑡/𝜏𝑛)𝑒−(𝑡+Δ𝑡)/𝜏𝑛 (3.1.1)

A plot of the above exact solution and the predictions of Sierra/SD are presented in Figure 3-1.

Figure 3-1. – Viscoelastic Relaxation. The Sierra/SD results reproduce the exact solution viscoelastic
relaxation after ramp and hold deformation.
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3.2. Thermally Induced Elastic Waves: Hollow Sphere

This test compares thermally induced elastic vibrations in a hollow sphere with an analytic
solution from the 1965 paper Thermal Stress-Wave Propagation in Hollow Elastic Spheres by Tsui
and Kraus. The inner surface is heated suddenly while the outer surface is held at the initial
temperature, causing an elastic wave to propagate from the inner surface to the outer surface. It
should be noted that the properties chosen are implausible for real materials: the elastic wave
speed is unphysically low, and the thermal diffusivity is unphysically high. Thus, the time required
for the temperature to reach equilibrium is on the order of the time required for the elastic wave to
travel to the outer surface. This results in a more challenging dynamic test because the quasi-static
approximation is not valid.

Table 3-1. – Parameter Definitions in Tsui and Kraus.
𝑎 sphere inner radius
𝑏 sphere outer radius
𝜇 shear modulus
𝜈 Poisson ratio
𝛽 density
𝛼 coefficient of thermal expansion
𝜅 thermal diffusivity

We begin by describing the solution found in the paper, with key parameter definitions given in
Table 3-1. The temperature 𝑇 (𝑟, 𝑡) solves the heat equation

𝜕𝑇

𝜕𝑡
= 𝜅∇2𝑇 (3.2.1)

𝑇 (𝑎, 𝑡) = 𝑇𝑎 (3.2.2)
𝑇 (𝑏, 𝑡) = 0 (3.2.3)
𝑇 (𝑟, 0) = 0, (3.2.4)

where 𝜅 is the thermal diffusivity. The Sierra code Aria is used to compute 𝑇 , but it solves an
energy conservation equation which reduces to the heat equation provided that the specific heat
capacity 𝐶𝑝, density 𝛽, and thermal conductivity 𝑘 are related to the thermal diffusivity 𝜅 in the
heat equation as follows:

𝜅 =
𝑘

𝛽𝐶𝑝
. (3.2.5)

The change from zero temperature induces a thermal strain 𝜖𝑖𝑖 = 𝛼𝑇 , which drives the
elastodynamic equations.

Tsui and Kraus introduce a dimensionless “inertia” parameter

𝛾 =
𝜅

𝑐𝑎
, (3.2.6)
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Figure 3-2. – This is Figure 1 from Tsui and Kraus. Plotted are the dimensionless radial displacement
𝑢∗, which is related to the physical displacement by 𝑢∗ = [(1 − 𝜈)/(𝑎𝛼𝑇𝑎 ∗ (1 + 𝜈))]𝑢 against the
dimensionless radius 𝜌 = 𝑟/𝑎. We are interested in the dynamic case (solid line) at dimensionless times
𝜏 = 0.05, 0.15, where 𝜏 = 𝜅𝑡/𝑎2.
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Figure 3-3. – Overlay of Sierra SD results on Figure 3-2.

where the propagation speed of elastic pressure waves is given by

𝑐 =

√︄
2(1 − 𝜈)𝜇
𝛽(1 − 2𝜈) . (3.2.7)

In Figure 3-2, the analytic solution of Tsui and Kraus is plotted for 𝛾 = 1/5, 𝑏/𝑎 = 2, and 𝜈 = 1/3.
Note that values of 𝛾 are much smaller than this for real materials, e.g., approximately 10−8 for
steel. We choose 𝑎 = 1, 𝜅 = 1, and 𝑐 = 5 so that 𝛾 = 1/5 as in the paper. We set 𝑐 = 5 by choosing
𝜇 = 25/4, and 𝛽 = 1. The temperature parameters are chosen with 𝛼 = 10−2, and 𝑇𝑎 = 1. These
choices imply (see the definitions in the caption of Figure 3-2) that 𝜌 = 𝑟, 𝜏 = 𝑡, and 𝑢∗ = 50𝑢.

Results using Sierra SD are shown in Figure 3-3. We do not make a direct numerical comparison
for two reasons: the analytical formula in Tsui and Kraus is based on series solutions, and is very
challenging to evaluate. Furthermore, they provide no table of the values computed using the
analytic solution, so the best that we can do is scale the graphs by hand to line up the axes.
Agreement is excellent, except for the kink at the propagating wavefront, which could presumably
be better resolved with a finer mesh or finer initial timesteps.

For input deck see Appendix 9.31
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3.3. Thermal Expansion

In this section we give verification examples for thermal expansion.

3.3.1. Free beam

This example consists of a free floating beam that is subjected to a uniform temperature increase
of 178𝑜. The built-in end is such that expansion can occur without generating any stresses. In the
end, the beam is stress free but undergoes a uniform expansion. The exact solution for the tip
displacement is

Δ𝐿 = 𝛼𝐿Δ𝑇 = 0.0001 × 50 × 178 = 0.89 (3.3.1)

where 𝛼 is the coefficient of thermal expansion, and 𝐿 is the length of the beam. Sierra/SD gives
the exact answer of 0.89. This test is included in the verification test suite in the following
directory

tests/Salinas_rtest/verification/thermal/thermal_beam.xml.

3.3.2. Free beam with linear temperature distribution

This is also a free floating beam example, except that the temperature variation is linear along the
length of the beam, instead of the uniform temperature of the previous example. The exact axial
displacement of the end of the beam is given by (thanks to Jason Hales for the derivation of this
equation)

𝑢(𝑥) = 𝛼(𝑇0 − 𝑇𝑖)𝑥 + 𝛼(𝑇𝐿 − 𝑇0)
𝑥2

2𝐿
(3.3.2)

where 𝑇0 is the temperature of the beam at the fixed end, 𝑇𝐿 is the temperature of the beam at the
free end, and 𝑇𝑖 is the initial (uniform) temperature of the beam. Plugging in the parameters for
this example gives

𝑢(𝐿) = 0.0001 ∗ 1 ∗ 50 + 0.0001 ∗ 1 ∗ 25 = 0.0075 (3.3.3)

This example is also included in the verification test suite in the following directory,

tests/Salinas_rtest/verification/thermal/thermal_beam2.xml.

A note about the boundary conditions for these tests may be useful. These examples simulate free
expansion. The boundary conditions are applied at one end to eliminate rigid body modes which
generate solution difficulty. The example with linear temperature distribution results in a free
expansion solution that is concave at the constraint end. Original boundary conditions constrained
that surface to be planar, and resulted in a solution that was about 1% in error. Relaxing the
boundary conditions to the minimal set results in a much better solution.
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3.4. Thermal/Structural Responses (TSR)

Sierra/SD is not used to compute a thermal solution. However, input temperature or energy
density may be applied to the materials or to determining the thermal stress and strain We support
this interaction as follows.

TSR_preload reads an initial stress and stores it on the body. An internal force response is
computed. No deformation is determined, and the element matrices are not modified. It is
typically followed by a static or transient dynamic response.

Thermal load may be applied to a body. The load may be specified on all nodes, on element
centroids, or on element integration (or Gauss) locations.

Material Properties Temperature dependent material properties are supported. A user provided
function determines the property as a function of temperature.

Energy Density may be used as a thermal input for elements. The energy density is specified on
element centroids or element integration points and converted to temperature using the
specific heat capacity. Energy density may not be specified as a nodal quantity.

More detailed information is available in the corresponding sections of the SierraSD Users’
Guide.

Test Matrix We would like to generate effective tests that verify that these capabilities are
working properly, and especially that they work together. The test matrix shown in Table 3-2
summarizes the tests. Particular emphasis is paid to combined capabilities.

Section TSR_preload statics NLstatics trans load Material
3.4 X
3.4 X X
3.4 X X X
3.4 X X X
3.4 X X X
3.4 X X X X
3.4 X X X X X
3.4 X X X X X

Table 3-2. – Thermal/Structural Test Matrix. All tests apply temperature inputs except 3.4, which is a
repeat of 3.4 applying energy inputs.

Thermal Model Definition The model is a perfect unit cube with a uniform thermal load on a
single block. No other boundary conditions are applied. In the following NLStatics refers to the
nonlinear statics solution method.

TSR The model, defined in Section 3.4, results in a uniform stress throughout the single hex
element. For this solution case, no deformation results. Applying a Young’s modulus of 30 x 106,
and a thermal expansion coefficient, 𝛼 = 10−6 together with the temperature change of Δ𝑇 = 5,
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results in a thermal strain of 5 x 10−6 and a stress of 150. Note that the total structural strain is
zero, as the body cannot deform in this solution.

TSR with Thermal Material Results are identical to Section 3.4, but the material properties are
determined using a Young’s modulus which depends on temperature.

TSR, with Thermal Material followed with Statics Following the solution of Section 3.4 with
linear statics equilibrium results in a solution with zero stress and a net strain of 5 x 10−6.
Deformations match the strain. The statics solution is only well posed when the rigid by motion is
constrained.

TSR, with Thermal Material followed with NLStatics Following the solution of Section 3.4
with nonlinear static equilibrium results in a solution with zero stress and a net strain of 5 x 10−6.
Deformations match the strain. The statics solution is only well posed when the rigid by motion is
constrained.

TSR, with Thermal Material followed with Transient Following the solution of Section 3.4
with damped transient equilibrium results in a solution that oscillates about the solution of Section
3.4, with a net strain of 5 x 10−6. Deformations match the strain.

TSR, with Thermal Material followed with Loaded Statics Section 3.4 determines an
unloaded equilibrium. The same thermal load may be applied with a negative scale factor,
resulting in zero strain – the initial (TSR) stress is exactly balanced by an opposing stress. To
better verify the code, we apply a negative thermal stress that is three times the original stress,
resulting in a solution with zero stress and a net strain of -10 x 10−6. Deformations match the
strain. The statics solution is only well posed when the rigid by motion is constrained.

TSR, Thermal Material followed with Loaded Statics & Dynamics We follow the solution of
Section 3.4 with a transient load scaled with the original force. This TSR pushes the solution out.
The statics solution pushes it back in, to twice the strain of TSR. Dynamics results in a solution
that oscillates about 5 x 10−6.

TSR, Thermal Material, Loaded Statics & Dynamics with Energy Specific energy may be
supplied as the input to the TSR and static and dynamic loading. The specific energy is converted
to temperature using the specific heat. Material properties are determined from the temperature,
not the energy in the body.

3.5. Direct Energy Deposition at Gauss Points

Energy deposited in the body (as by an X-ray event) can result in an instantaneous change in
temperature. For consistency with other applications, the energy is applied as a specific energy,
i.e., the energy per unit mass, 𝐸̃ = 𝑄/(𝜌𝑉). Because such energy typically decays exponentially,
it is important that energy be provided at the Gauss points especially for larger, higher order
elements.
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3.5.1. Two Element Linear Variation Hex20

The example consists of two unit Hex20 elements forming a beam of dimension 2x1x1. The
specific energy varies as the long dimension of the beam, 𝑋 . The geometry is shown in Figure
3-4.
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Figure 3-4. – Simple Energy Deposition Test Geometry.

We have the following:

• The specific energy is properly read into Sierra/SD, as verified with line sample output.

• The specific energy is properly converted to temperature using the specific heat of the
material.

• The total energy input is determined properly.

• Resulting displacements meet the analytic solutions (see Figure 3-5). The numerical results
are obtained by using Ensight to post process the displacements through the center of the
body. The analytic displacement may be obtained by using the one dimensional ODE
generated by the thermal stress.

𝜖𝑡ℎ𝑒𝑟𝑚𝑎𝑙 =
𝑑𝑢

𝑑𝑋
= 𝛼𝑡𝑇 (𝑋)

= 𝛼𝑡𝑋/𝐶𝑣
𝑢(𝑥) = 𝛼𝑡

2𝐶𝑣
𝑋2

The corresponding nightly test may be found in,

tests/Salinas_rtest/verification/thermal/edep_lin.xml.

Resulting displacements are quadratic as from equation 3.3.2, with 𝛼 = 0.001, and 𝑇𝐿 = 1.
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Figure 3-5. – Displacements Resulting from Linear Temperature Profile.

3.5.2. Two Element Quadratic Variation Hex20

This test uses the same geometry described in Section 3.5.1 and Figure 3-4, but with specific
energy variation, 𝐸̃ (𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2. The example ensures the following:

1. Exact representation of the energy and temperature as shown in linedata.

2. The total energy is 𝜌
∫
𝑒𝑙𝑒𝑚

(𝑥2 + 𝑦2 + 𝑧2)𝑑𝑥 𝑑𝑦 𝑑𝑧, which is 3𝜌, where 𝜌 is the density.

3. Ensures numbering of the Gauss points.

4. The displacement is inexact, as the analytic solution is cubic.

3.5.3. Two Element Exponential Decay Variation Hex20

This test uses the same geometry described in Section 3.5.1, but with specific energy variation,
𝐸̃ (𝑥, 𝑦, 𝑧) = 𝑒−𝑥 . The example ensures the following:

1. Approximate representation of the energy and its error can be extracted using line sample
(linesample) data and is represented in Figure 3-6.

2. The total energy is 𝐸𝑡 = 𝜌(1 − 𝑒−2). The solution is approximate, because the energy is
represented by a quadratic in each element, but the error is less than 10−5.

3. The displacement is inexact. The one dimensional thermal strain equation provides the
ODE for the solution. We use 𝑇 (𝑥) = 𝐸̃/𝐶𝑣. Then,

𝜖𝑡ℎ𝑒𝑟𝑚𝑎𝑙 =
𝑑𝑢

𝑑𝑋
=
𝛼𝑡

𝐶𝑣
𝑒−𝛾𝑋 (3.5.1)
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Figure 3-7 from the edep_expx test compares the computed solution to the exact solution,

𝑢 =
𝛼𝑡

𝐶𝑣𝛾

(
1 − 𝑒−𝛾𝑋

)
(3.5.2)
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Figure 3-6. – Comparison of exact and interpolated energies from the Gauss Points.
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Figure 3-7. – Exponential Energy Deposition, computed Displacements. The numerical results are
measured at Gauss points and interpolated within the elements. Displacements are interpolated from
nodal values.

.

3.5.4. Two Element, Two Material Hex20

The same geometry is used, but with two different materials for the Hex20 elements. Temperature
is specified as a linear function of 𝑋 . The computed specific energy, 𝐸̃ = 𝐶𝑣𝑇 , is consistent with
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Figure 3-8. – Sampled specific energy and temperature deposition on two blocks.

the temperature. This provides a simple solution for the quadratic displacement. The specific
energy is shown in Figure 3-8, as extracted from line sample (linesample . The resulting
quadratic displacement (and corresponding analytic solutions) is shown in Figure 3-9. For these
solutions, the heat capacity is 1 in the first element, and 2 in the second.
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Figure 3-9. – Linear Energy Deposition. The displacement response and associated error is shown.

151



This page intentionally left blank.

152



4. ELEMENTS

4.1. Beam Elements
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Figure 4-1. – Comparison of Beam2 Bending.

The Beam2 element is a simple Euler Beam. The beam bending equation for a point load, 𝑃, on
the end of a cantilever beam of length, 𝐿, is,

𝑤(𝑥) = 𝑃𝑥2(3𝐿 − 𝑥)
6𝐸𝐼

A beam of length 𝐿 = 1, 𝐸 = 10𝑒6, and bending moment 𝐼1 = 0.2 modeled with 100 Beam2
elements is is compared with the analytic solution in Figure 4-1. Figure 4-2 shows the
convergence as a function of the number of elements in the beam. The solutions here are
performed with a serial sparse direct linear solver, and with a parallel iterative linear solver with
default parameters. The exact solution is a cubic, and is obtained using a one element beam.
Thus, increasing the beam count is not required to improve accuracy. The example illustrates both
the correctness of the solution for a low element count, and the effect of matrix condition and
solver on the solution.

For input deck see Appendix 9.32.
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Figure 4-2. – Beam2 Bending “Convergence”. The 𝐿2 error norm divided by the 𝐿2 displacement norm
is plotted versus the number of elements. Properly convergent solutions would decrease as the number
of elements increase. While this solution is accurate, it is not converging to the analytic solution as the
number of elements increases.
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4.1.1. Comparision with exact solution and NASTRAN

The following test verifies that Sierra SD uses the I1 and I2 properties defined in the input deck in
the manner outlined by the user’s documentation. The problem was analyzed using a thin long
cantilevered beam with a rectangular cross-section made up of 100 Beam2 elements with the
following geometry: The beam’s cross-sectional properties were chosen to give a very long
slender beam with a good separation between bending axes. A MATLAB script was created to
calculate the modal frequencies for a single span cantilevered beam using the following formula
from Blevins:

𝑓𝑖 =
𝜆2
𝑖

2𝜋𝐿2

(
𝐸𝐼

𝑚

) 1
2

Here 𝑓𝑖 is the natural frequency and 𝜆𝑖 is the natural frequency parameter (Tabular Values).
Thysical properties of the beam are quantified by 𝐸 , 𝐼, 𝑚, 𝐴, and 𝐿 (standard notation).

Figure 4-3. – Geometry of Beam.

The beam was analyzed using both Sierra-SD and NASTRAN. The NASTRAN results were used
as a reference for comparison along with the analytical solution results obtained previously. It is
important to note that both the analytical solution and the NASTRAN solution do not calculate
twisting modes, while the Sierra-SD model did. These modes were not compared.

Table 4-1. – Beam Cross-Sectional Properties.

Width 0.1 Height 0.3
Length 100 Area 0.03

I1 0.09 I2 0.01

The natural frequencies for all 3 modes [10] are shown in Table 4-2

Natural frequencies that show N/A are twisting modes. Figure 4-4 shows the differences in
calculated natural frequencies.

After testing that natural frequencies were in agreement for all three models, the displacements of
the Sierra-SD model were compared to the displacements of the NASTRAN model to confirm
that the orientations of I1 and I2 were correct. The following Table 4-2 shows the comparison
results.

For input deck see Appendix 9.33.
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Table 4-2. – Natural Frequency [Hz] results for Analytical, Sierra-SD and NASTRAN models, Dis-
placement Axis Comparison for NASTRAN and Sierra-SD models.

Mode Analytical NASTRAN Sierra-SD NASTRAN Sierra-SD
1 0.1022 0.1021669 0.102161 Z-Axis Z-Axis
2 0.3065 0.3065007 0.306484 Y-Axis Y-Axis
3 0.6403 0.640269 0.640129 Z-Axis Z-Axis
4 1.7928 1.792772 1.79205 Z-Axis Z-Axis
5 1.9208 1.920807 1.92039 Y-Axis Y-Axis
6 3.5131 3.513118 3.51092 Z-Axis Z-Axis
7 N/A N/A 4.90285 N/A N/A
8 5.3783 5.378316 5.37615 Y-Axis Y-Axis
9 5.8074 5.807436 5.80229 Z-Axis Z-Axis
10 N/A 7.905694 7.90561 Z-Axis Z-Axis

Figure 4-4. – Frequency Comparison.
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4.1.2. Beam Element Provided by the Navy

As part of the Navy/CREATE program,37,40 various elements are being introduced to Sierra/SD.
These elements fall into two categories: specialty connector element and legacy elements pulled
from NASTRAN.

The legacy elements are designed to exactly mimic elements in the NASTRAN capabilities.
Typically, these come from the open literature. Because of the nature of these elements,
verification is naturally a code to code comparison.

Connector elements are all two node elements provided to enhance special Navy needs. For
example, connection of rafts to a hull is best defined using a nonlinear spring dashpot.

The names for all Navy provided elements begins with “N”. For example, the navy beam element
is the “NBeam”.

The NBeam is both a connector and a legacy element. The Beam2 element has most of the same
functionality, but does not include offset moments (I12) or shear factors. The static tests included
are detailed in Table 4-3. Table 4-4 summarizes some results of the tests. In this section of tests,
the NASTRAN results are treated as the truth model. Models were translated using “Nasgen”.

Test Section Description
btest1 rectangular simple test of end loaded cantilever
btest2 rectangular tests rotational invariance
btest3 rectangular tests beam tower
btest4 channel tests 𝐼12
btest5 channel rotational invariance of 𝐼12
btest6 I-beam end loaded offset
btest7 rectangular one element test
btest8 C offset, rotated C beam

Table 4-3. – Static Tests for NBeam.

Test Maximum Error
btest1 0.02%
btest2 0.01%
btest3 0.05%
btest4 %
btest5 %
btest6 %
btest7 %
btest8 %

Table 4-4. – Results of Static Tests for NBeam. The maximum error in deflection is shown.
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The tests are Salinas_rtest/test_tool/navy/nbeam/btest1.test,...,
Salinas_rtest/test_tool/navy/nbeam/btest8.test.

To verify that the moments 𝐼1 and 𝐼2 specified in an input deck are used as documented, a long
thin cantilever beam with a rectangular cross-section was simulated using 100 Nbeam elements.

Figure 4-5. – Geometry of Beam.

Table 4-5. – Beam Cross-Sectional Properties.

Width 0.1 Height 0.3
Length 100 Area 0.03

I1 0.09 I2 0.01

The beam’s cross-sectional properties were chosen to give a very long slender beam with a good
separation between bending axes.

4.1.2.1. Analytical Solution

A MATLAB script was created to calculate the modal frequencies for a single span cantilevered
beam using the following formula [10]

𝑓𝑖 =
𝜆2
𝑖

2𝜋𝐿2

(
𝐸𝐼

𝑚

) 1
2

(4.1.1)

𝑓𝑖 Natural Frequency
𝜆𝑖 Natural Frequency Parameter (Tabular Values)
𝐸 , 𝐼, 𝑚, 𝐴, and 𝐿 are the usual physical properties of the beam

4.1.2.2. Computational Approach

The beam was analyzed using both Sierra-SD and NASTRAN. The NASTRAN results were used
as a reference for comparison along with the analytical solution results obtained previously. It is
important to note that both the analytical solution and the NASTRAN solution do not calculate
twisting modes, while the Sierra-SD model did. These modes were not compared.

The natural frequencies for all 3 modes are shown in Table 4-6
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Table 4-6. – Natural Frequency [Hz] results for Analytical, Sierra-SD and NASTRAN models, Dis-
placement Axis Comparison for NASTRAN and Sierra-SD models.

Mode Analytical NASTRAN Sierra-SD NASTRAN Sierra-SD
1 0.1022 0.1021669 0.102161 Z-Axis Z-Axis
2 0.3065 0.3065007 0.306484 Y-Axis Y-Axis
3 0.6403 0.640269 0.640129 Z-Axis Z-Axis
4 1.7928 1.792772 1.79205 Z-Axis Z-Axis
5 1.9208 1.920807 1.92039 Y-Axis Y-Axis
6 3.5131 3.513118 3.51092 Z-Axis Z-Axis
7 N/A N/A 4.90285 N/A N/A
8 5.3783 5.378316 5.37615 Y-Axis Y-Axis
9 5.8074 5.807436 5.80229 Z-Axis Z-Axis
10 N/A 7.905694 7.90561 Z-Axis Z-Axis

Natural frequencies marked not available are the twisting modes. Figure 4-6 shows the differences
in calculated natural frequencies.

I1 and I2 Verification After testing that natural frequencies were in agreement for all three
models, the displacements of the Sierra-SD model were compared to the displacements of the
NASTRAN model to confirm that the orientations of I1 and I2 were correct. The following Table
4-6 shows the comparison results.

For input deck see Appendix 9.34.
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Figure 4-6. – Frequency Comparison.
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4.1.3. Preloaded Beam

The following test was used to verify that Sierra SD accurately accounts for an axial preload on a
beam. This test was verified using three different references, two different analytical solutions [46,
12] and an Abaqus benchmark problem. The problem was first analyzed with no preload using the
same analytical solution and then modeled to verify that the system is functioning appropriately.

We use an Abaqus verification problem for the modes of a prestressed beam. A cantilever beam,
one hundred elements, is on the x-axis. An axial force is applied in the 𝑥 direction.

The beam was analyzed with and without the static preload. Figure 4-7 shows the geometry of the
model.

Figure 4-7. – Geometry of Beam.

An equivalent test was created and analyzed in Sierra-SD. The test had three solution cases static,
tangent, and eigen analysis. The cantilever beam is partitioned into one hundred beam elements.
The frequencies were compared between Abaqus and Sierra-SD and shown in Table 4-7.

Table 4-7. – Results Abaqus vs. Sierra-SD (beam elements).

Abaqus Sierra-SD
Without Preload

Mode 1 212.4 212.818
Mode 2 1330.8 1333.49
Mode 3 3727.2 3733.11

With Preload
Mode 1 1137.9 1136.8
Mode 2 3624.4 3616.07
Mode 3 6694.1 6667.12

The results are consistent for the benchmark problem. For input deck see Appendix 9.35.
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4.1.4. Prescribed displacement

The following test was used to verify that Sierra SD accurately accounts for an axial preload on a
beam. This test was verified using three different references, two different analytical solutions [46,
12] and an Abaqus benchmark problem. The problem was first analyzed with no preload using the
same analytical solution and then modeled to verify that the system is functioning appropriately.

First the solution is compared to the exact solution for Euler beams. All parameters were
incorporated using SI units. The beam parameters are:

Figure 4-8. – Geometry.

The beam is pinned on both ends (pinned-pinned), with an axial preload in the x direction. This
test was analyzed using a tensile and compressive preload.

An axial preload has limited verification due to lack of closed form solutions, however; in the
paper [12] an analytical solution can be used. Assuming pinned-pinned constraints on the beam
the natural frequencies are:

𝑉𝑛 =

(𝑛𝜋
𝐿

)2
(
𝐸𝐼

𝜌𝐴

) 1
2
[
1 − 𝑃𝐿2

𝐸𝐼𝑛2𝜋2

] 1
2

𝑛 represents the mode number;
𝑃 is the axial load;
𝐸 , 𝐼, 𝜌, 𝐴, and 𝐿 are the usual physical properties of the beam

A similar analytic solution for non dimensional natural frequency of a pinned pinned beam under
axial preload can be found at (Shaker, 1975). Also, a MATLAB file is in the test repository under
beam preload verification that solves the two analytical solutions.

4.1.4.1. Computational Approach

This test case was modeled using Sierra SD.The frequencies of a beam under an axial preload
require a multicase solution set including static, tangent, and eigen. The static case applies the
preload. The tangent case is used following the linear solution step, where the stiffness matrix is
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recomputed based on the current value of displacement. Finally, the eigen case is used to output
frequencies. The beam was partitioned into one hundred elements.

There are several parameters for this test. To model the beam with pinned-pinned constraints and
an axial displacement due to preload the beam was treated with pin roller constraints (where y=0)
first. The preload was applied in the x direction at the roller and the max displacement was found.
This Max displacement was then used in the pin-pin model as a boundary condition of x at the
location of the pin and preload.This extra step needs to be done for a pin-pin case because an axial
preload is being applied at the pin where x=0 as a boundary condition, so the beam has zero
displacement in the x direction. Also, the length of the beam had the following constraints: z = 0,
rotx = 0, and roty = 0. These constraints are used to ensure that the appropriate bending modes are
analyzed.

A summary of the results where compared and shown in Table 4-8.

Table 4-8. – Natural Frequency results for Analytical and Sierra SD solution.
Sierra SD Analytical

# P=N/A P = 1e3 P = 1e7 P = 1e10 P=N/A P = 1e3 P = 1e7 P = 1e10
1 43.8041 43.8041 43.8041 51.3605 43.8048 43.805 43.805 51.948
2 175.207 175.207 175.207 181.575 175.219 175.220 175.220 183.905
3 394.18 394.18 394.18 397.775 394.244 394.244 394.244 403.046
4 700.677 700.677 700.677 700.268 700.878 700.878 700.878 709.723
5 1094.63 1094.63 1094.63 1089.04 1095.122 1095.122 1095.122 1103.987
6 1575.96 1575.96 1575.96 1564.04 1576.976 1576.976 1576.976 1585.852
7 2144.55 2144.55 2144.55 2125.15 2146.439 2146.44 2146.44 2155.322
8 2800.29 2800.29 2800.29 2772.26 2803.512 2803.513 2803.513 2812.399
9 3543.03 3543.03 3543.03 3505.24 3548.196 3548.196 3548.196 3557.085
10 4372.62 4372.62 4372.62 4323.94 4380.489 4380.489 4380.489 4389.381

All modes are within 1.5 percent error between the analytical solution and Sierra SD. For input
deck see Appendix 9.35.1.

163



4.2. Membrane Elements

4.2.1. Membrane Quad

A verification test was created for membrane elements in Sierra-SD. The geometry of this test is
shown in Figure 4-9.

Figure 4-9. – membraneGeometry.

There are four membrane elements in the model with the following boundary conditions. The
three bottom and top nodes are fixed in the x and y direction. Th eigenvalue problem is to
compute fourteen modes. For verification the test in Sierra-SD was compared to the Abaqus finite
element code. The Eigenvalue results are shown in Table 4-9. All modes are compared. There are
nine rigid body modes in the model.

For input deck see Appendix 9.36.
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Table 4-9. – Sierra-SD and Abaqus Eigenvalue Comparison.

Mode Number Sierra-SD Abaqus
1 -6.70788E-09 0.0
2 -6.70788E-09 0.0
3 0.0 0.0
4 0.0 0.0
5 0.0 0.0
6 0.0 3.7945E-08
7 6.70788E-09 3.7945E-08
8 9.48637E-09 8.8049E-05
9 1.16184E-08 1.1743E-04
10 2607.7 2607.7
11 4237.42 4237.4
12 4723.49 4723.5
13 4723.49 4723.5
14 5164.01 5164.0
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4.2.2. QuadM membrane Patch

A patch test that was created for a SierraSD membrane element. The geometry of this test is
shown in Figure 4-10. There are five boundary conditions constraining the model. First, all nodes

Figure 4-10. – Patch Test Geometry.

are fixed in the 𝑧 direction, which is the direction normal to the plane of the model. Second, the
top left corner node is fixed in all directions. Third, the nodes on the left side of the geometry are
constrained in the 𝑥 direction. Fourth, the nodes on the top of the geometry are constrained in the
𝑦 direction. Finally, the nodes on the far right side of the geometry have a prescribed displacement
of 0.1 in the positive 𝑥 direction. The test was analyzed by verifying constant strain throughout the
geometry. The results from this test can be seen in Table 4-10.

Table 4-10. – Strain for Membrane Elements.
Node Numbers Strain

1,4,6,8 Fixed = 0
2,3,5,7,9-13 0.0250

4.2.3. Eigen

The model was also tested using an eigen solution. In this case only the out-of-plane boundary
conditions were applied, resulting in a model that should have three rigid body modes. The
number of rigid body modes was to be verified in accordance with the boundary conditions. The
test case outputs three rigid body modes as expected.

4.2.4. Rotated Patch Test

Further verification was performed using the same patch test by rotating the test out of the XY
plane, shown in Figure 4-11.
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Figure 4-11. – Test Geometry

The model is constrained by MPC’s to impose exactly the same boundary conditions as were
described in the previous section, except that they were defined with respect to the rotated
coordinate system. With these boundary conditions the model has no rigid body modes. The first
10 modes for the rotated test are compared to the in plane patch test. The Eigenvalue results are
shown in Table 4-11. As expected, the modes are the same in both cases and are invariant with
respect to the rotation of the model.

Table 4-11. – Rotated Patch Test
Mode Number No-rotation Rotated

1 627.172 627.172
2 818.997 818.997
3 924.864 924.864
4 1471.59 1471.59
5 1869.91 1869.91
6 2187.29 2187.29
7 2429.53 2429.53
8 2574.91 2574.91
9 2931.04 2931.04
10 3073.42 3073.42

4.2.5. Hex Elements

For verification, the model was also created using the default hex8 elements. The same geometry
was used as the membrane element, but the surface was extruded with a thickness of 1. The same
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boundary conditions were used as well. The results can be seen in Table 4-12. The strain is
constant for every node through out the model, therefore, verifying the patch test is working.

Table 4-12. – Strain for Hex Elements
Node Numbers Strain
1,2,5,6,10,12-14 Fixed = 0

3,4„7-9,11 0.0250
15-26 0.0250

4.2.6. Orthotropic Material Properties

In this test, we consider a 2 × 2 mesh of an orthotropic membrane model where the material
elasticity tensor only provides stiffness in the x direction, with zero stiffness in the remaining
directions. In addition, we constrain the out-of-plane motion to be zero. With these conditions, we
expect 12 rigid body modes, since each of the nodes in the mesh is free to move in the 𝑦 direction
with no resistance. This test involves a coupled Sierra-SM and Sierra-SD analysis, where
Sierra-SM produces an output exodus file that contains the necessary material properties.
Sierra-SD uses this output exodus file and performs a modal analysis. For verification, the first 18
modes are compared to the Abaqus finite element code. The eigenvalue results are shown in Table
4-13. There are 12 rigid body modes in the model, and the remaining modes show an acceptable
comparison of the two codes.

Table 4-13. – Orthotropic Material Patch Test
Mode Number Abaqus Sierra-SD

1 0.0000 -3.63305E-03
2 0.0000 -2.86194E-03
3 2.18886E-03 -2.33876E-03
4 4.74120E-02 -9.21049E-04
5 6.70089E-02 9.91374E-05
6 6.70388E-02 5.23966E-04
7 6.70477E-02 9.29529E-04
8 6.70864E-02 1.14456E-03
9 6.71252E-02 1.45159E-03
10 8.20846E-02 1.71789E-03
11 8.20859E-02 2.19313E-03
12 9.47649E-02 2.70663E-03
13 1.08203E+05 1.08184E+05
14 1.53022E+05 1.52995+05
15 1.53022E+05 1.52995+05
16 1.87413E+05 1.87379+05
17 2.16406E+05 2.16367+05
18 2.65042E+05 2.64994+05
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The direction of the fibers in the material properties were also changed from the 𝑦 direction to the
𝑥 direction. The modes were verified to match exactly and were independent of the fiber direction
as expected. For input deck see Appendix 9.37.
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4.2.7. Membrane Geometrical Stiffness

We wish to evaluate the geometric stiffness for a simple unit square, with pre-stress in the Y
direction. As described in the theory manual, the geometric stiffness is given by,

𝐸𝑔 = 𝑡

∫
𝐴

𝜎𝑙𝑚


(
𝜕𝛿𝒖

𝜕𝑥𝑚

)𝑇
𝜕𝒖

𝜕𝑥𝑙
− 1

2

2∑︁
𝛾=1

(
𝒆𝛾
𝜕𝛿𝒖

𝜕𝑥𝑙
+ 𝒆𝑙

𝜕𝒖

𝜕𝑥𝛾

) (
𝒆𝛾
𝜕𝛿𝒖

𝜕𝑥𝑚
+ 𝒆𝑚

𝜕𝒖

𝜕𝑥𝛾

) 𝑑𝐴 (4.2.1)

Development Let nodes 1, 2, 3 and 4 have coordinates (0,0), (1,0), (0,1), and (1,1). The shape
functions for the nodes are given by

𝑁1 = (1 − 𝑥) (1 − 𝑦)
𝑁2 = 𝑥(1 − 𝑦)
𝑁3 = (1 − 𝑥)𝑦
𝑁4 = 𝑥𝑦.

The shape function derivatives are then

𝑁1,𝑥 = 𝑦 − 1
𝑁1,𝑦 = 𝑥 − 1
𝑁2,𝑥 = 1 − 𝑦
𝑁2,𝑦 = −𝑥
𝑁3,𝑥 = −𝑦
𝑁3,𝑦 = 1 − 𝑥
𝑁4,𝑥 = 𝑦

𝑁4,𝑦 = 𝑥

We have

𝒖 =

3∑︁
𝑖=1

(𝑢1,𝑖𝑁1 + 𝑢2,𝑖𝑁2 + 𝑢3,𝑖𝑁3 + 𝑢4,𝑖𝑁4)𝒆𝑖, (4.2.2)

where 𝒆𝑖 is a unit vector in global direction 𝑖. We then obtain

𝒖,𝑥 =
3∑︁
𝑖=1

(𝑢1,𝑖𝑁1,𝑥 + 𝑢2,𝑖𝑁2,𝑥 + 𝑢3,𝑖𝑁3,𝑥 + 𝑢4,𝑖𝑁4,𝑥)𝒆𝑖

𝒖,𝑦 =
3∑︁
𝑖=1

(𝑢1,𝑖𝑁1,𝑦 + 𝑢2,𝑖𝑁2,𝑦 + 𝑢3,𝑖𝑁3,𝑦 + 𝑢4,𝑖𝑁4,𝑦)𝒆𝑖

When 𝜎 = 𝜎22, and all other components are zero, we can write,

𝐸𝑔 = 𝑡

∫
𝐴

𝜎22𝒖
𝑇
,𝑦𝒖,𝑦+
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−1
2
𝑡

∫
𝐴

𝜎22
[
(𝒆1𝒖,𝑦 + 𝒆2𝒖,𝑥) (𝒆1𝒖,𝑦 + 𝒆2𝒖,𝑥) + (𝒆2𝒖,𝑦 + 𝒆2𝒖,𝑦) (𝒆2𝒖,𝑦 + 𝒆2𝒖,𝑦)

]
𝑑𝐴 (4.2.3)

or,
𝐸𝑔

𝑡𝜎22
=

∫
𝐴

𝒖𝑇,𝑦𝒖,𝑦𝑑𝐴

−1
2

∫
𝐴

(𝒆1𝒖,𝑦)2𝑑𝐴

−
∫
𝐴

(𝒆1𝒖,𝑦) (𝒆2𝒖,𝑥)𝑑𝐴

−1
2

∫
𝐴

(𝒆2𝒖,𝑥)2𝑑𝐴

−2
∫
𝐴

(𝒆2𝒖,𝑦)2𝑑𝐴

4.2.7.1. Upper left entry

We will examine the 1,1 entry of the stiffness matrix first. This can be found by setting 𝒖 𝑗 ,𝑖 = 0
unless 𝑖 = 𝑗 = 1, and 𝒖1,1 = 1. This is often called “probing”. Then,

𝒖,𝑥 = 𝑁1,𝑥𝒆1

𝒖,𝑦 = 𝑁1,𝑦𝒆1

Then,
𝐸𝑔

𝑡𝜎22
=

∫
𝐴

𝑁2
1,𝑦

2
𝑑𝐴

=

∫
𝐴

(𝑥 − 1)2

2
𝑑𝑥 𝑑𝑦

=
(𝑥 − 1)3

6

����1
0

=
1
6

4.2.7.2. Other Entries

Computing the remaining terms in the matrix is tedious, but straightforward. A Maple script can
be used to accomplish this. From that script, we determine the following.

𝐾11 = 𝑡𝜎22/6
𝐾𝑔22 = −𝑡𝜎22/2
𝐾𝑔33 = 𝑡𝜎22/3
𝐾𝑔12 = 𝑡𝜎22/8

The maple script is available.
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4.2.7.3. Rotations

The test in this directory runs only on a unit square in the 𝑥𝑦 plane. However, a related verification
test that is not included in the code verification manual rotates that structure generally, and
compares eigen responses for that rotation with an unrotated square. Having identical eigenvalues
assures us that rotations are an issue. For input deck see Appendix 9.38.

172



4.2.8. QuadS_GY Shear Membrane Shell

The existing Salinas membrane element used for vibration/linear analysis is a quad with three
extensional degrees of freedom: 𝑢, 𝑣, and 𝑤. The new shell finite element draws on the
Reissner-Mindlin plate theory, as described in Chapter 5 of Ref.[31]. This element has six degrees
of freedom per node; three infinitesimal displacements: 𝑢, 𝑣, 𝑤; and three infinitesimal rotations:
𝜃𝑥 , 𝜃𝑦, and 𝜃𝑧. Selective reduced integration is used in this bilinear element. Bending and
membrane strains are integrated with the 2-by-2 Gauss rule. Shear deformation is integrated with
the 1-by-1 Gauss rule. Under integration avoids locking attributed to the shear interpolation.
Uncoupled drilling stiffness is added to curb in-plane rotation 𝜃𝑧. This stiffness is set internally
and prevents the solution from containing meaningless null eigenvalues.

Two verification procedures are applied: a) The existing Salinas element QuadT is used to
generate reference data; b) Analytical solutions are used. Note that whereas the element QuadT
captures only bending, the new QuadS_GY captures bending and shear deformations, in addition
to membrane modes. The shell used for verification has dimensions of 1 m by 1 m, the modulus of
elasticity is 𝐸 = 30 MPa, the Poisson ration is 0.3, and density is 0.288 kg/m3.
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Figure 4-12. – Transverse shear strains 𝛽𝑥 and 𝛽𝑦 allow cross-sections to not remain on a plate
perpendicular to fiber direction. This relaxation of the Kirchhoff hypothesis enables accurate study of
thick plates and shells.

4.2.8.1. Eigenvalues of an Isotropic Flat Shell

In this subsection, the behavior of Quad_T (bend. + memb.) and QuadS_GY (bend. + memb. +
shear) are compared to bending analytical results (Kirchhoff-Love). A general formula for
obtaining the natural frequencies of a flat plate for various boundary conditions is as follows

𝑓𝑖 𝑗 =
𝜆2
𝑖 𝑗

2𝜋𝑎2

[
𝐸ℎ3

12𝛾(1 − 𝜈2)

] 1
2

, (4.2.4)

where 𝜆 is a parameter that depends on the shell dimensions and its boundary conditions, 𝑎 is the
first dimension of the rectangular shell, 𝐸 is the isotropic modulus of elasticity, ℎ is the thickness,
𝛾 is the mass per unit area of the shell, and 𝜈 is the Poisson ration. The 𝜆𝑖 𝑗 values for specific
boundary conditions, relative dimensions, and mode number are given in the literature (see
Ref. [10]).

4.2.8.1.1. Fixed-Fixed-Fixed-Fixed (FFFF) The bending eigenfrequencies of the plate for two
different thickness values are reported in Tables 4-14 and 4-15. The shear-deformable shell
element (QuadS_GY) results naturally diverge from bending theory for increasingly thicker
sections.

4.2.8.1.2. Free-Free-Free-Free(FrFrFrFr) Tables 4-16 and 4-17 show natural frequency
results of the same plate with the four edges free. Rigid body motion has been disregarded. Only
deformation modes are reported in this subsection.
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Table 4-14. – Frequencies for FFFF flat shell of thickness 0.001 m. Frequencies are in Hertz and
discrepancies from theory are given in percentage between parenthesis.

Analytical QuadT QuadS_GY
1st mode 347.620 347.466 347.669

(Ref.) (0.04) (0.01)
2nd mode 709.052 708.562 709.363

(Ref.) (0.07) (0.04)
3rd mode 709.052 708.579 709.406

(Ref.) (0.07) (0.05)
4th mode 1046.048 1044.239 1045.507

(Ref.) (0.17) (0.05)
5th mode 1271.098 1270.185 1272.846

(Ref.) (0.07) (0.17)
6th mode 1276.893 1276.245 1278.894

(Ref.) (0.05) (0.15)

Table 4-15. – Frequencies for FFFF flat shell of thickness 0.01 m. Frequencies are in Hertz and
discrepancies from theory are given in percentage between parenthesis.

Analytical QuadT QuadS_GY
hline 1st mode 3476.203 3474.659 3463.921

(Ref.) (0.04) (0.35)
2nd mode 7090.527 7085.620 7048.431

(Ref.) (0.07) (0.60)
3rd mode 7090.527 7085.790 7048.851

(Ref.) (0.07) (0.59)
4th mode 10460.48 10442.393 10361.58

(Ref.) (0.17) (0.94)
5th mode 12710.98 12701.847 12598.886

(Ref.) (0.07) (0.88)
6th mode 12768.93 12762.453 12661.539

(Ref.) (0.05) (0.84)
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Table 4-16. – Frequencies for FrFrFrFr flat shell of thickness 0.001 m. Frequencies are in Hertz and
discrepancies from theory are given in percentage between parenthesis.

Analytical QuadT QuadS_GY
1st mode 130.297 129.818 129.919

(Ref.) (0.37) (0.29)
2nd mode 191.147 188.996 189.086

(Ref.) (1.12) (1.08)
3rd mode 235.964 233.438 234.240

(Ref.) (1.07) (0.73)
4th mode 338.251 333.017 335.625

(Ref.) (1.54) (0.78)
5th mode 338.251 335.954 335.756

(Ref.) (0.68) (0.74)
6th mode 594.306 582.394 589.133

(Ref.) (2.00) (0.87)

4.2.8.1.3. Simply supported-Free-Free-Free (SFrFrFr) The natural frequencies associated
with the lowest-frequency deformation modes are shown in Tables 4-18 and 4-19.

176



Table 4-17. – Frequencies for FrFrFrFr flat shell of thickness 0.01 m. Frequencies are in Hertz and
discrepancies from theory are given in percentage between parenthesis.

Analytical QuadT QuadS_GY
1st mode 1302.97 1316.80 1263.69

(Ref.) (1.06) (3.01)
2nd mode 1911.48 2167.89 1938.90

(Ref.) (13.41) (1.43)
3rd mode 2359.65 2353.98 2632.25

(Ref.) (0.24) (11.55)
4th mode 3382.51 3359.54 3331.60

(Ref.) (0.68) (1.50)
5th mode 3382.51 4489.73 3331.81

(Ref.) (32.73) (1.50)
6th mode 5943.06 5891.27 5873.92

(Ref.) (0.87) (1.16)

Table 4-18. – Frequencies for SFrFrFr flat shell of thickness 0.001 m. Frequencies are in Hertz and
discrepancies from theory are given in percentage between parenthesis.

Analytical QuadT QuadS_GY
1st mode 64.212 64.152 64.177

(Ref.) (0.09) (0.05)
2nd mode 145.075 143.874 143.905

(Ref.) (0.83) (0.81)
3rd mode 246.203 244.989 244.650

(Ref.) (0.49) (0.63)
4th mode 252.384 250.912 249.830

(Ref.) (0.58) (1.01)
5th mode 470.480 467.576 467.594

(Ref.) (0.62) (0.61)
6th mode 491.150 488.143 487.013

(Ref.) (0.61) (0.84)
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Table 4-19. – Frequencies for SFrFrFr flat shell of thickness 0.01 m. Frequencies are in Hertz and
discrepancies from theory are given in percentage between parenthesis.

Analytical QuadT QuadS_GY
1st mode 642.117 641.523 635.558

(Ref.) (0.09) (1.02)
2nd mode 1450.752 1438.741 1437.167

(Ref.) (0.83) (0.94)
3rd mode 2462.029 2449.891 2426.925

(Ref.) (0.49) (1.42)
4th mode 2523.845 2509.117 2486.897

(Ref.) (0.58) (1.46)
5th mode 4704.803 4675.760 4639.690

(Ref.) (0.62) (1.38)
6th mode 4911.501 4881.430 4841.552

(Ref.) (0.61) (1.42)
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4.2.8.2. Eigenvalues of an Orthotropic Shell

For an orthotropic material model, we use a clamped-clamped shell with the following arbitrary
orthotropic properties: 𝐸𝑥 = 30 MPa, 𝐸𝑦 = 0.5 MPa, 𝜈𝑥𝑦 = 0.3, 𝐺𝑥𝑦 = 0.5 MPa, 𝜌 = 7.46 g/m3,
and thickness is 1 mm. It is assumed that the fiber is aligned with the element frame of reference,
i.e., fiber angle 𝛼 = 0 deg. Both analytical and QuadT results disregard shear dynamics, whereas
shear is present in the computations of the QuadS_GY. The effect of transverse shear tends to be
negligible for small relative thickness values. Analytical results are obtained by applying a similar
expression to 4.2.4, also provided in Ref. [10]. Results are summarized in Table 4-20. A graphical
comparison of the (32) mode for two SD elements is shown in Fig. 4-14.

Table 4-20. – Frequencies for clamped-clamped orthotropic flat shell of thickness 0.001 m. Frequencies
are in Hertz and discrepancies from theory are given in percentage between parenthesis.

Analytical QuadT QuadS_GY
11 mode 209.022 210.144 210.365

(Ref.) (0.54) (0.64)
12 mode 226.154 226.862 227.138

(Ref.) (0.31) (0.43)
13 mode 266.218 266.395 266.738

(Ref.) (0.06) (0.19)
21 mode 572.750 571.523 572.802

(Ref.) (0.21) (0.01)
22 mode 585.382 583.755 585.204

(Ref.) (0.28) (0.03)
23 mode 611.422 609.315 611.004

(Ref.) (0.34) (0.07)
31 mode 1118.82 1115.867 1120.096

(Ref.) (0.26) (0.11)
32 mode 1130.410 1126.535 1131.111

(Ref.) (0.34) (0.06)
33 mode 1152.056 1147.003 1152.097

(Ref.) (0.43) (0.00)

For input deck see Appendix 9.39.
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Figure 4-13. – Orthotropic constitutive law QuadT (memb+ bend).
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Figure 4-14. – QuadS_GY (memb.+ bend. + shear) Comparison of (32) modes resulting from
orthotropic material model (see Table 4-20).
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4.2.9. QuadS_GY Shear Membrane Shell - Geometric Stiffness and Preload

A cantilever beam modeled by shear-deformable shell elements used to test other Sierra-SD shell
elements is used here too. One end of the beam is clamped. An axial pressure is applied to the
other end. The beam is 0.127 m (length) by 0.0044504 m (width) by 0.0044504 m (thickness).
The modulus of elasticity is 187 GPa, 𝜈 = 0.3, and 𝜌 = 8015.19 kg/m3. A linear pressure of
-2245852908.28 N/m is applied to the free end, which yields an axial displacement of
1.5656243 mm. The effect of an axial load stiffens the system thus increasing the beam’s natural
frequencies. The following table summarizes the behavior of the new element:

Table 4-21. – First three natural frequencies of a beam with applied axial pressure.
Abaqus SD shell QuadS_GY Difference (%)

Without Preload
Mode 1 212.4 212.793 215.574 1.49
Mode 2 1330.8 1327.73 1345.831 1.12
Mode 3 3727.2 3689.86 3740.46 0.36

With Preload
Mode 1 1137.9 1141.66 1111.647 2.31
Mode 2 3624.4 3621.86 3536.431 2.42
Mode 3 6694.1 6636.30 6507.385 2.79

Two methods are used to obtain the eigenfrequencies reported in Table 4-21:

• SD shell. In Sierra-SD, the pressure load is applied to the shelled beam and, with the
resulting displacements, the system stiffness is updated. After that, eigenvalue analysis on
the beam is performed considering the updated stiffness.

• QuadS_GY. The eigenfrequencies of the preloaded system is computed in a two-step
process. First, we applied a prescribed displacement in Sierra-SM to achieve a beam stress
state analogous to the SD shell. Then we write those stress to an Exodus output file. This
file is used in Sierra-SD to read the geometry of the system and its stresses, which are then
used to compute the natural frequencies of the preloaded beam.

This difference in methodology is justified by the way tire modal analysis is performed: First a
complex nonlinear system is solved in Sierra-SM. With the resulting stresses, a geometric stress
stiffness matrix is built to account for the preloaded state of the tire. Finally eigenvalue analysis is
performed in Sierra-SD. Note that the process used for the QuadS_GY shell involves some
approximation: Only one integration point is used to carry stresses from Sierra-SM to Sierra-SD,
whereas membrane and bending deformation is spatially integrated on a 2-by-2 grid – this may be
the reason for the slight discrepancies reported in Table 4-21.

4.2.9.1. Comparison with Sierra-SM

This section compares small deformation results between Sierra-SM and Sierra-SD. For the GY
fiber shell, several fiber angles are chosen to verify that element frames of reference and
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Figure 4-15. – Axial displacement in Sierra-SM

orientation match. A clamped shell on one edge, of dimensions 150 mm by 100 mm is used to
compare the displacement results of Sierra-SM and Sierra-SD for small deformation. The shell
thickness is 0.4409 m, its modulus of elasticity is 187 MPa, and its Poisson ration, 0.3. One of the
short edges is fully clamped and a force of 200 N/node is applied on the other short edge. The
same shell is defined in both, the quasistatic nonlinear code Sierra-SM and the linear solver
Sierra-SD. Results in terms of axial and lateral displacements may be observed in Figs. 4-16 and
4-18. The axial displacement on the solicited edge center for Sierra-SM is 5.9924 · 10−5 mm,
whereas for Sierra-SD is 5.9908 · 10−5 mm. Similarly, for lateral displacement, the values are
1.0332 · 10−6 mm for Sierra-SM, and 1.0409 · 10−6 mm for Sierra-SD.

For input deck see Appendix 9.40.
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Figure 4-16. – Comparison of axial displacement.

184



Figure 4-17. – Lateral displacement in Sierra-SM

185



Figure 4-18. – Comparison of lateral displacement.
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4.3. Other Shell Elements

4.3.1. Partial Cylinder Patch

This verification example checks the strain output on shell elements. The model is a partial
cylinder under axial stretch, with a radius 𝑟 = 2.0, height ℎ = 1.0 and thickness 𝑡 = 0.01, shown in
Figure 4-19. The material has a Young’s modulus of 𝐸 = 106 and a Poisson’s ratio of 𝜈 = 0.3. An
axial displacement of 𝑑𝑎𝑥𝑖𝑎𝑙 = 0.01 is applied to the cylinder.

The analytical axial strain and hoop strains are:

𝜖𝑎𝑥𝑖𝑎𝑙 = 0.010 (4.3.1)

𝜖ℎ𝑜𝑜𝑝 = 0.003. (4.3.2)

The analytical axial stress and hoop stress are:

𝜎𝑎𝑥𝑖𝑎𝑙 = 𝜖𝑎𝑥𝑖𝑎𝑙 ∗ 𝐸 = 104 (4.3.3)

𝜎ℎ𝑜𝑜𝑝 = 0.0. (4.3.4)

The analytical strain energy density and total strain energy are:

𝑆𝐸𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 0.5 ∗ 𝜎𝑎𝑥𝑖𝑎𝑙𝜖𝑎𝑥𝑖𝑎𝑙 = 50 (4.3.5)

𝑆𝐸 = 𝑆𝐷𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ∗
2ℎ𝑡𝜋 ∗ 𝑟

4
= 1.570754. (4.3.6)

Post processing scripts are used to transform the shell strain results to the hoop and axial
directions. Special care has been taken to ensure that the mesh is general, and to verify strain
output for arbitrary shape elements. Figure 4-20 shows the axial strain for each element type.
Figure 4-21 shows the strain energy density for each element type. Figure 4-22 shows the axial
stress for each element type. For input deck see Appendix 9.41.

Figure 4-19. – Partial Cylinder under Axial Stretch.
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Hex8 Quad4 Quad8

Tri3 Tri6
Figure 4-20. – Axial Strain for Partial Cylinder.
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Hex8 Quad4 Quad8

Tri3 Tri6
Figure 4-21. – Strain Energy Density for Partial Cylinder.
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Hex8 Quad4 Quad8

Tri3 Tri6
Figure 4-22. – Axial Stress for Partial Cylinder.
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4.3.2. Thin Plate Bending

The model, shown in Figure 4-23, is a flat rectangular plate of dimension 48 by 24 by 0.5. The
normal is in the 𝑍 coordinate direction. A uniform pressure is applied to the plate. The thin plate
approximation of the maximum displacement is available [53], and should be valid here. The
edges are clamped (no rotations for translations).

Table 4-22 compares the solutions from various methods and elements for this example.

Figure 4-23. – Thin Plate Bending. Geometry and Deformation.

Roark NASTRAN %error NQuad %error QuadT %error
0.02451 0.02459 -0.33 0.02376 3.05 0.024497 0.05

Table 4-22. – Thin Plate Bending Center Point Solutions.

For input see Appendix 9.42
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4.3.3. Two Layered Hexshell

This example demonstrates that the automatic verification documentation is viable. Static
analyses of a sequence of layered plates problems are solving using the hexshell element

Analysis Type Statics
Element Type Hexshell
Dimensions [−1/2, 1/2] × [−1/2, 1/2] × [−5/2, 5/2]
Keywords layered

The example is a step in a study of deflection versus layer thickness in a
[−1/2, 1/2] × [−1/2, 1/2] × [−5/2, 5/2] brick. Results have been compared to documented
results [23],[22] in the past. For input deck see Appendix 9.43.
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4.4. Hex Membrane Sandwich

4.4.1. Isotropic Material

A simple plate model was constructed and analyzed using hex and membrane elements, shown in
Figure 4-24.

Figure 4-24. – Test Geometry.

The first test using this plate model had no preload. It consisted of isotropic membrane elements
sandwiched in between hex elements. The model is fixed on one end and constrained in the Y and
Z direction on the other end. The Eigenvalue results are shown in Table 4-23.

Table 4-23. – Isotropic-Nopreload.

Mode Number Abaqus Sierra-SD
1 1472.5 1472.46
2 1994.5 1994.48
3 5231.2 5231.19
4 6787.4 6787.39
5 8958.0 8957.96
6 11674.0 11674.2

For a preloaded model, this test was stretched with large deformations in Sierra-SM and a
representative Exodus file was outputted. This Exodus file was used in Sierra-SD for a subsequent
eigen analysis. For verification, all modes were compared to the Abaqus finite element code. As
in the first case, the plate is fixed on one end and is constrained in the Y and Z direction on the
other end. The Eigenvalue results are shown in Table 4-24.
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Table 4-24. – Isotropic-Preload.

Mode Number Abaqus Sierra-SD
1 1420.8 1410.79
2 1798.3 1808.77
3 5212.8 5208.10
4 6765.5 6765.63
5 8914.0 8911.89
6 11638 11636.50

4.4.2. Orthotropic Material

An orthotropic material test was performed using the same plate model. The material elasticity
tensor only provides stiffness in the 𝑥 direction, with zero stiffness in the remaining directions.
Initial tests had no preload. The modal results are shown in Table 4-25.

Table 4-25. – Orthotropic-Nopreload.

Mode Number Abaqus Sierra-SD
1 4776.10 4772.99
2 5231.20 5231.19
3 8152.20 8149.91
4 8958.00 8957.96
5 10998 10970.90

For the second test, the same model was used, and an uniaxial preload in the x-direction was
applied using Sierra/SM. An output Exodus file was then passed to Sierra-SD for the modal
analysis. For verification, all modes were compared to the Abaqus finite element code. The
Eigenvalue results are shown in Table 4-26.

Table 4-26. – Orthotropic-Preload.

Mode Number Abaqus Sierra-SD
1 4600.30 4451.72
2 5212.80 5208.10
3 7821.60 7919.50
4 8914.00 8911.89
5 9878.40 9227.89

For input deck see Appendix 9.44.
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4.5. Higher Order Hex Acoustic Element Convergence

For the phex elements of order up to 4, the convergence rates demonstrate the expected values in
the limit of small enough element size.

The geometry of the model is shown in Figure 4-25. It consists of an acoustic waveguide of length
𝐿 = 10.0(𝑚), and cross-sectional dimensions of 1.0(𝑚). The walls were assigned as rigid around
the boundaries of the waveguide, including the endcaps. The speed of sound was given as
𝑐 = 332.0𝑚

𝑠
. With these parameters, the exact frequencies of vibration of the air in the waveguide

are given as
𝑓𝑛 =

𝑛𝑐

2𝐿
= 16.6, 33.2, ... (4.5.1)

Figure 4-25. – Waveguide Model for Convergence Study of P-hex elements.

Figure 4-26 shows the convergence plot for the hex element for orders 2 − 4. The theory predicts
that the modal frequencies should converge at a rate of ℎ2𝑝, where ℎ is the element size, and 𝑝 is
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the order. Thus, on a log-log plot, the slopes of the convergence lines should be 4, 6, and 8,
respectively. In Figure 4-26 we show the relative errors in the 10𝑡ℎ modal frequency. Similar
results were obtained for the other modes, and so we only show the 10𝑡ℎ modal frequency for
brevity. In addition to the errors, we show lines that have slopes of 4, 6, and 8, respectively for
comparison with the error curves. As seen, for each order, the correct slope is obtained in the limit
of small ℎ, (or large 1

ℎ
).

Figure 4-26. – Convergence Study of P-hex elements.

For input deck see Appendix 9.45.
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4.6. Higher Order Tet Acoustic Element Convergence

This section demonstrates a convergence study for the ptet element, up to order 4. We verify that
the convergence rates approach the theoretically predicted ones in the limit of small enough
element size.

The geometry of the model is shown in Figure 4-27. It consists of an acoustic waveguide of length
𝐿 = 10.0(𝑚), and cross-sectional dimensions of 1.0(𝑚). The walls were assigned as rigid around
the boundaries of the waveguide, including the end caps. The speed of sound was given as
𝑐 = 332.0𝑚

𝑠
. With these parameters, the exact frequencies of vibration of the air in the waveguide

are,
𝑓𝑛 =

𝑛𝑐

2𝐿
= 16.6, 33.2, ... (4.6.1)

Figure 4-27. – Waveguide Model for Convergence Study of P-tet elements.

Figure 4-28 shows the convergence plot for the tet element for orders 2 − 4. The theory predicts
that the modal frequencies should converge at a rate of ℎ2𝑝, where ℎ is the element size, and 𝑝 is
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the order. Thus, on a log-log plot, the slopes of the convergence lines should be 4, 6, and 8,
respectively. In Figure 4-28 we show the relative errors in the 10𝑡ℎ modal frequency. Similar
results were obtained for the other modes, and so we only show the 10𝑡ℎ modal frequency for
brevity. In addition to the errors, we show lines that have slopes of 4, 6, and 8, respectively for
comparison with the error curves. As seen, for each order, the correct slope is obtained in the limit
of small ℎ, (or large 1

ℎ
).

Figure 4-28. – Convergence Study of P-tet elements.

For input deck see Appendix 9.46.
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4.7. Superelements

4.7.1. Damping

A superelement can have block proportional damping in Sierra SD. 1 A model was created
consisting of two steel blocks acting as a cantilever beam. To incorporate block proportional
damping into a system two parameters may be used, blkalpha and blkbeta. Blkalpha is mass
proportional damping and blkbeta is stiffness proportional damping. For this model stiffness
damping has the largest impact on the system. The damping parameters are set low enough for
energy to enter block two, but high enough to absorb energy. A pressure load is applied on the top
surface of block 1. A transient analysis is run with and without superelements and compared.
Block 2 is reduced to a superelement and contains block proportional damping. The damping
parameters for the CBR solution are set in the block section of the input deck. Figure 4-30

Figure 4-29. – Initial model and model with superelement.

consists of three curves including the undamped full system solution, the damped solution with no
superelements, and the damped solution with superelements. The damped model with
superelements traces the damped model without superelements well. A full convergence study
was not preformed as the two damped models will not match perfectly due to model truncation.
For input deck see Appendix 9.47.

1System proportional damping does not create a damping matrix and cannot be used to generate a reduced order
damping matrix.
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Figure 4-30. – Superelement Damping Results. Damped and undamped response of full system models
compared with damped model of the reduced order model.
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4.7.2. Sensitivity Analysis

The goal of the test is to verify both generation of a Craig-Bampton (CB) reduction and associated
matrix sensitivities as well as the Taylor series expansion of the resulting matrices to generate a
point evaluation of a parameter. In this example, a more complex model is evaluated with two
parameters. While the geometry of the model is more complex the structure still is linear in the
parameters of interest.

4.7.2.1. Blade Model

The model is shown in Figure 4-31. The full model (including superelement and residual
structure) is shown on the left. The next cut away shows only the residual structure in gray. A
portion of that model is provided only for visualization. On the right is the model of the
superelement which consists of quadrilateral and triangular shells. The interface nodes are in red.
Analysis is performed in two stages. First, the CB reduction is performed and sensitivity matrices
𝑑𝐾𝑟/𝑑𝑝 and 𝑑𝑀𝑟/𝑑𝑝 are generated. The reduction is performed in two ways: by constant vector,
and by finite difference approaches. Following sensitivity analysis and model reduction, a system
analysis is performed where those matrices are used in a Taylor series expansion.

For this analysis, we use the material density and Young’s modulus as the sensitivity parameters.
There are no repeated frequencies, which avoids any issue of mode mixing for finite difference
sensitivity.

Figure 4-31. – Blade superelement model.
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4.7.2.2. Exact and Numerical Results

For a constant vector sensitivity analysis, the reduced order matrices are given by,

𝑘̃𝑜 = 𝑇𝑇𝑜 𝐾 (𝑝𝑜)𝑇𝑜 (4.7.1)
𝑘̃1 = 𝑇𝑇𝑜 𝐾 (𝑝𝑜 + Δ𝑝)𝑇𝑜 (4.7.2)
𝑑𝑘̃

𝑑𝑝
≈ 𝑘̃1 − 𝑘̃𝑜

Δ𝑝
(4.7.3)

Here,

𝑇𝑜 is the transformation matrix evaluated at 𝑝𝑜,
𝑝𝑜 is the nominal value of the sensitivity parameter,
Δ𝑝 is the change of the sensitivity parameter,
𝑘̃ is the reduced stiffness matrix, and
𝐾 () is the unreduced stiffness matrix.

Identical relations exist for the mass matrix.

For a finite difference sensitivity analysis, the relations are somewhat different.

𝑘̃𝑜 = 𝑇𝑇𝑜 𝐾 (𝑝𝑜)𝑇𝑜 (4.7.4)
𝑘̂1 = 𝑇𝑇1 𝐾 (𝑝𝑜 + Δ𝑝)𝑇1 (4.7.5)
𝑑𝑘̃

𝑑𝑝
≈ 𝑘̂1 − 𝑘̃𝑜

Δ𝑝
(4.7.6)

Here,

𝑇1 is the transformation matrix evaluated at 𝑝𝑜 + Δ𝑝,

Because 𝑇1 depends on the density and Young’s modulus, the reduced stiffness matrix is affected
by the transformation.

Numerical Results. Figure 4-32 shows a comparison of the system level solutions as a function
of design parameter. We vary the density and Young’s modulus together. Three curves are shown.
The exact solution shows results obtained by rebuilding the superelement using the parameter, and
without sensitivities. The other two curves evaluate 𝑑𝑘/𝑑𝑝 at the nominal value, and estimate the
superelement contribution using a Taylor series expansion. Results are shown for mode 3. A
comparison of the error is shown in Figure 4-33
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Figure 4-32. – Modal Frequency Variation with Density.
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Figure 4-33. – Modal Frequency Error with Density.
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4.7.2.3. Summary

These analyses compare results for application of sensitivity matrices to superelement analysis. In
this example, for which the superelement matrices vary linearly with the parameter, the constant
vector method works extremely well. While not shown here, variations of a single parameter by
itself returns very similar results.

One point of interest is that for large variations of the parameter, the finite difference method of
computing sensitivities resulted in indefinite matrices that caused the eigenvalue algorithm to fail.
For input deck see Appendix 9.48.
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4.7.3. Superposition

A four truss, 1-D problem provides a simple verification of Craig-Bampton Reduction (CBR) and
superposition based reconstruction. As illustrated in Figure 4-34, the model is clamped on the left
end, and constrained to admit only translations in the 𝑋 direction on the remaining four nodes. A
transient load acts in the 𝑋 direction for this problem, so the model is fully one-dimensional 2.
The verification proceeds as follows.

1. Compute the full system (4 element) static load due to a point load on the center node. This
is used as the truth model.

2. Split the model into two pieces, each composed of two elements each. The CBR model is
floating in the 𝑋 direction, where load is applied.

3. Approximate solution uses CBR methods to reduce the last two elements (3 nodes) to two
dofs.

4. The “residual solution” computes the system statics solution based on the left-hand side
(unreduced) model connected to the CB reduced right-hand side system. Results in the
residual are compared with step 1.

5. One output of the system transient solution is endtruss-out.ncf. This file contains the
modal amplitudes and the interface amplitudes for the superelement. These amplitudes,
together with the modal bases computed in step 2 above, provide the information necessary
to compute the physical degrees of freedom in the portion of the structure on the right. The
model is generated using the “superposition” solution method. This model is then compared
with the results from the right-hand portion of the truth model.

Figure 4-35 provides a comparison of the solutions using the full model, and the individual
components.

Reduced ModelResidual Model

Figure 4-34. – Four Truss Geometry.

Theory. A CB model generates a transformation matrix consisting of a combined set of fixed
interface and constraint modes. These modes may be stored in an exodus file. We call this
“se-base.exo”. A netcdf file, “se.ncf” is also created at this time. Subsequently, this reduced
model is inserted into a residual model for superelement analysis, say a transient analysis. That
analysis outputs the standard exodus results, “resid-out.exo” and results on the netcdf file,
“se-out.ncf”. The point is to recover the response on the original interior degrees of freedom of
the superelement.

2The CBR reduction must use lumped masses for consistency with the statics solutions.
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Figure 4-35. – Results of Superposition Problem.

The transient response on the interior degrees of freedom is,

𝑢𝑘 (𝑡𝑛) =
𝑛𝑚𝑜𝑑𝑒𝑠∑︁

𝑖

𝑞𝑖 (𝑡𝑛)𝜙𝑖𝑘 +
𝑛𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡∑︁

𝑗

𝑤 𝑗 (𝑡𝑛)𝜓 𝑗 𝑘 (4.7.7)

where,

𝑢𝑘 (𝑡𝑛) = is the displacement at interior dof 𝑘
𝑡𝑛 = is the time step
𝑞𝑖 = is the amplitude of a generalized dof for mode 𝑖
𝜙𝑖𝑘 = is the fixed interface mode 𝑖 at dof 𝑘
𝑤 𝑗 = is the amplitude of interface dof 𝑗
𝜓 𝑗 𝑘 = is the constraint mode 𝑗 at dof 𝑘

The amplitudes 𝑞𝑖 and 𝑤 𝑗 are found in “se-out.ncf”, while the mode shapes, 𝜙𝑖𝑘 and 𝜓 𝑗 𝑘 are
found in “se-base.exo”. Super_superp simply combines these results and writes a new output
file containing the results.

For input see Appendix 9.49
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4.7.4. Inertia Tensor

The inertia tensor provides a means of applying initial conditions to the interior dofs of a
superelement. General boundary conditions are not supported, but initial conditions that include
linear combinations of rigid body motion can be readily managed. As these are the most common
boundary conditions, there is great utility in computing the inertia tensor as part of the
Craig-Bampton (CB) reduction process.

A CB reduction and the rigid body deformation define two inertia matrices. In terms of the CB
reduction matrix 𝑇 , a six column rigid body vector in the physical space 𝑅, and the mass matrix in
the physical system, 𝑀 , the inertia tensor,

𝐼𝑣 = 𝑇
𝑇𝑅,

and the mass inertia matrix,
𝐼𝑚 = 𝑇𝑇𝑀𝑅.

𝐼𝑣 is used to establish initial velocity, and 𝐼𝑚 is used to apply gravity or other body loads.

The development of the inertia tensor was used for use in LS-Dyna. LS-Dyna also has the
reduction process. Verification involves comparison of the output of the two codes. The LS-Dyna
output is in DMIG format. We compare with a previous MATLAB output from Sierra/SD which
was compared by hand with the LS-Dyna results. Also, Sierra/SD outputs the fixed interface
modes first, while LS-Dyna puts them last. The model is shown in Figure 4-36.

The overall comparison of the values is very good with a relative 𝐿2 norm about 6%. Figure 4-37
compares the values of the matrix. Corresponding to each of the three translations, there are 3
rigid body modes. There are 10 fixed interface modes and 12 constraint modes, for 22 columns in
the inertia tensor. The significant difference in mode 10 is because it is the last mode retained, and
it is very near in frequency to the next highest mode.
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Figure 4-36. – LS-Dyna and Sierra/SD Inertia Tensor Model. The model is colored by the parallel
decomposition.

208



0 5 10 15 20
-1

0

1

X
 d

ir
e

c
ti
o

n

×10 5

0 5 10 15 20
-1

0

1

Y
 d

ir
e

c
ti
o

n

×10 5

0 5 10 15 20

"mode" number

-1

0

1

Z
 d

ir
e

c
ti
o

n

×10 5

LSDyna

SierraSD

Figure 4-37. – LS-Dyna and Sierra/SD Inertia Tensor Terms.
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4.7.5. Mass Inertia Matrix

The Mass Inertia matrix, 𝐼𝑚 = 𝑇𝑇𝑀𝑅, is determined by a comparison with an independent
MATLAB calculation, using the following steps.

1. Use the single processor input, and enable “mfile” output.

2. Run Sierra/SD to reduce the model and generate the mass inertia matrix.

3. Read in the fixed interface modes, 𝜙, and constraint modes, 𝜓, from Sierra output.

4. Form the transformation matrix.
𝑇 =

(
𝜙 𝜓

0 𝐼

)
5. Read the partitioned components of the mass matrix (𝑀𝑣𝑣, 𝑀𝑐𝑐, and 𝑀𝑐𝑣) from Sierra

output. Generate a mass matrix that includes all dofs of interest.

𝑀 =

(
𝑀𝑣𝑣 𝑀𝑣𝑐

𝑀𝑐𝑣 𝑀𝑐𝑐

)
6. Compute and compare the reduced mass matrix computed by the two methods. 𝑀̂ = 𝑇𝑇𝑀𝑇 .

7. Compute the 𝑁x3 rigid body matrix. Only translational components are included.

8. Compare the Sierra computed Inertia Tensor, 𝐼𝑣 = 𝑇𝑇𝑅, with the LS-Dyna stored values.
This is a code-to-code comparison. This is also compared with a Matlab solution.

9. Compute the Mass Inertia matrix, 𝐼𝑣 = 𝑇𝑇𝑀𝑅, and compare results with those output from
Sierra. A comparison of the results is shown in Figure 4-38.

10. Results are compared in serial and in parallel.

These steps found in the Matlab script, massInertiaTensorCompare.m.

Figure 4-38. – Mass Inertia Matrix. Values (left) and Differences (right).
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For input see Appendix 9.50.
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4.7.6. NASTRAN/Sierra/SD Interoperability

There is often a need to exchange data with external collaborators. Most often these collaborators
use commercial products for finite element analysis. One of the varieties of NASTRAN is the
most commonly used exchange format. Sierra/SD has been designed to interface to these formats
through its superelement capability. Export through a NASTRAN superelement may be done
directly in Sierra/SD as part of the CBR method, or it may be accomplished through the “ncfout”
application which translates the model into either DMIG or output4 format. In addition, Sierra/SD
may import certain DMIG formatted models using NASGEN.

Such export/import capabilities provide the basis of interaction with collaborators, and it is
important that the process be simple and accurate. However, while significant effort has been put
into these tools, testing has been rather limited because of challenges in running NASTRAN in the
Sierra test harness. Without regular testing, capabilities can not be trusted for crucial
collaborations. The intent of this verification is to provide a well-defined testing strategy to ensure
persistent capability. These tests may need to be run manually, but the tests should ensure
capability.

This test does not regularly run NASTRAN. Section 4.7.9 contains instructions for running
NASTRAN by hand to fully verify current analysis. The nightly test runs Sierra, and compares
results carefully with previously completed analyses which had been compared with NASTRAN.

Scope of Evaluation. The focus of these tests is evaluation of the CBR exchange capability. In
particular, we focus on the following.

1. Compatibility of the data format for exchange of reduced order stiffness and mass matrices.

2. Bi-directional capability, i.e., output of superelements from Sierra/SD in DMIG format, and
input through NASGEN.

3. A clear, well-defined process for generating and using these reduced order models (or
ROM).

4. Support for damping matrices, and output transfer matrices (OTM).

5. Support for inertia mass matrix export. The inertia mass matrix is not currently supported
for boundary conditions in Sierra/SD. As such, it cannot be tested for import.

To keep the focus, we explicitly limit the following.

• No element comparisons. NASTRAN element formulations clearly differ from Sierra/SD
capabilities. That is expected, and not tested here. Convergence of these elements to proper
solutions is performed elsewhere.

• NASGEN translation of most data. There are extensive tests for translation of the model.
Except for the superelement capabilities, these lie outside the scope of this set of testing.
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4.7.6.1. Model Evaluation

The model must be evaluated for suitability for comparison. In particular, the solutions of the
unreduced models (NASTRAN and Sierra), must be close enough to allow code to code
comparison of reduced models.

The model is illustrated in Figure 4-39. There are three primary areas of consideration.

Base The support at the base provides the fixed boundary condition and the attachment location
for the two tuning tines. It is part of the residual.

Load Tine The leftmost tine (red) is also part of the residual. Force/Pressure boundary
conditions may be applied to this tine.

ROM Tine The rightmost tine (yellow) is the portion of the model to be reduced. The interface to
the residual is the element at the base of the tine. There is a single point on the end of the
tine that serves as a location for OTM evaluation.

All sections of the model use the same material properties (aluminum), and all use Hex20
elements, as these are expected to be very similar between the two applications. We evaluate the
model for lowest eigenvalues and for a modal frequency response function (FRF) to an impulse on
the side of the loading tine. The FRF provides a useful comparison, even when the time history
data would suffer from phase errors introduced by small differences in the element formulations.

Figure 4-39. – Tuning Fork Model.

Table 4-27 provides a comparison of the frequencies for vibration of the structure.

# Description Sierra/SD NASTRAN Diff %
1 base bending 532.07 527.84 0.8%
2 symmetric bending 937.07 926.53 1.1%
3 asymmetric bending 2956.4 2891.84 2.2%
4 symmetric 2nd bending 4733.4 4630.10 2.2%

Table 4-27. – Vibrational Frequency Comparison.
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Figure 4-40. – FRF Solutions with 3% damping. Sierra/SD and NASTRAN.

Figure 4-40 compares the modal FRF solutions for the Sierra and NASTRAN solutions.
The model is considered suitable for evaluation.
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4.7.6.2. Superelement Reduction and Insertion

In Sierra/SD, the following steps are followed to compute the system response by superelement
reduction techniques.

1. The ROM section of the exodus model is pulled out separately. This can be accomplished
using grepos.

2. The CB reduction input is generated. This is similar to the full system model, with additions
of a CB section.

3. Sierra/SD is run on the CBR input. This generates a netcdf output.

4. The residual model is generated. Like step 1, we use grepos and delete the block associated
with the ROM.

5. A “socket” is created for the superelement, using “mksuper”.

6. A residual input is created. This is very similar to the original full system model, but now
contains entries for the new superelement block.

7. Sierra/SD is run on the residual input.

Commands for some of these operations are shown in Figure 4-41. A comparison of the
eigenvalues with the full system eigenvalues is shown in Table 4-28. With no internal modes,
significant errors are introduced. Four modes in the ROM represents the system well.

Mode Full Model 4-Mode ROM 0-Mode ROM
1 532.065 532.066 551.163
2 937.066 937.066 1107.19
3 2956.37 2956.87 3758.39
4 4733.4 4734.76 6022.09

Table 4-28. – SierraSD full model eigenvalues compared with ROM.
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1. The ROM section of the exodus model is pulled out separately.

grepos tuningforkx.exo rom.exo « EOF
delete block 11
delete block 31

EOF

2. The CB reduction input is generated. The solution and cbmodel sections look like the following.

SOLUTION
CBR
nmodes=4

END
cbmodel
nodeset 41
format=netcdf
file=rom.ncf
inertia_matrix=yes

end

3. Sierra/SD is run on the CBR input. This generates a netcdf output.

4. The residual model is generated. This is identical to step 1, but deletes block 21.

5. A “socket” is created for the superelement, using “mksuper”.

mksuper tmp.exo « EOF
add nodeset
41
write residual.exo
quit

EOF

6. A residual input is created. Copy full model input to residual.inp. Comment out block definition
for block 21, and add definition for block 32.

7. Sierra/SD is run on the residual input, and compared with original model.

Figure 4-41. – Sierra/SD solution with Superelement.
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4.7.6.3. NASTRAN Model reduction and Insertion

In MSC or NX NASTRAN, one approach to compute the system response by superelement
reduction techniques is described in the following steps.

1. The ROM section of the NASTRAN mesh file is pulled out separately. This was
accomplished using the Altair HyperMesh preprocessor. The residual structure’s node and
element definition are saved as a separate bulk data file residual_struct.bulk.

2. The CB reduction input is generated in cbr.bdf. This requires using the EXTSEOUT card in
the case control section. The definition of a BSET card containing the interface nodes (a-set
dofs) to be constrained during the dynamic reduction step is also required. A QSET card is
used to define the generalized dofs (q-set) to be used for the reduction. Lastly, a SPOINT
card is necessary to define scalar points for the generalized dofs. Note that the number of
generalized dofs requested should not be excessive – otherwise, the reduced matrices will
have null columns for unused q-set dofs and may result in a performance degradation.

3. NASTRAN solves the eigenvalue problem (SOL 103). The EXTSEOUT card in the case
control section has many options for the type and format of superelement information
generated. In this example, the EXTSEOUT card was specified to request a punch (.pch) file
cbr.pch that contains the reduced stiffness and mass DMIG matrices. Additional
superelement information (e.g., DMI matrices and DTI tables that are associated with the
OTM) which may not be necessary for subsequent use is also generated by default.

4. The resulting punch file cbr.pch is then cleaned up by removing all the information within
it except the stiffness and mass DMIG matrices. The names of the DMIG matrices were
also renamed to something more convenient. This updated punch file can be saved as
cbr_dmig.pch.

5. The residual (residual structure with the superelement attached) input is created. This is
very similar to the original full system model, but contains additional cards that insert the
superelement via DMIG input. The stiffness and mass DMIG matrices are called in using
the K2GG and M2GG cards, and the SPOINT card must be included to define the
generalized dofs.

6. NASTRAN is run on the residual input.

Additional details of NASTRAN’s superelement functionality can be found in Reference [47]
(MSC NASTRAN 2017 Superelements User’s Guide). Eigenvalues of the full model and the
residual model with superelement are shown in Table 4-29. The results are practically identical.

Figure 4-42 compares the input displacement of the Sierra/SD and MSC/NASTRAN ROM on a
Sierra/SD residual. Data on the output (ROM) tine is not available with these methods because
the basis vectors of the ROM are available only internal to NASTRAN.
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MSC NASTRAN 2016 MSC NASTRAN 2016
(full Model) (NASTRAN based DMIG)

Mode Natural Frequency [Hz] Natural Frequency [Hz] Difference [%]
1 528 528 0.00
2 927 927 0.00
3 2,892 2,892 0.00
4 4,630 4,630 0.00
5 6,078 6,078 0.00
6 6,446 6,446 0.00
7 8,118 8,119 0.01
8 12,863 12,864 0.01
9 14,426 14,427 0.01
10 17,672 17,681 0.05

Table 4-29. – MSC NASTRAN Full Model Eigenvalues Compared with ROM.
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Figure 4-42. – Modal Transient Comparison. The input displacement of the Sierra/SD and MSC/NAS-
TRAN ROM on a Sierra/SD residual.
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4.7.6.4. Using Sierra/SD Superelements in NASTRAN

It is also informative to compare the eigenvalues to assess the equivalence of the DMIG matrices
generated by Sierra/SD and NASTRAN. In one case, DMIG matrices are exported by Sierra/SD
and then used within NASTRAN to attach to the residual structure for an eigenvalue problem. In
the second case, DMIG matrices are generated entirely within NASTRAN. These results, shown
in Table 4-30, indicate that within practical frequencies of interest, Sierra/SD produces very
similar reduced matrices to NASTRAN. Results of a modal frequency response analysis for the
full NASTRAN model and the residual model with superelement are shown in Figure 4-43. The
output is located at node 14, which lies at the boundary between the residual mesh and the
superelement. The results are practically identical 3.

MSC NASTRAN 2016 MSC NASTRAN 2016
(Sierra/SD based DMIG) (NASTRAN based DMIG)

Mode Natural Frequency [Hz] Natural Frequency [Hz] Difference [%]
1 528 528 -0.04
2 931 927 -0.52
3 2,916 2,892 0.84
4 4,675 4,630 0.95
5 6,144 6,078 1.07
6 6,499 6,446 0.83
7 8,292 8,119 2.09
8 13,209 12,864 2.62
9 14,972 14,427 3.64
10 17,796 17,681 0.65

Table 4-30. – Eigenvalue Comparison – Sierra/SD -generated DMIG and NASTRAN-generated DMIG.
Residual and Superelement are employed in each analysis.

Sierra/SD computes a superelement using a Craig-Bampton reduction. That reduced order model
may be written in several formats. For use in Sierra/SD, we write this as a netcdf/exodus file. It
may alternatively be written as a DMIG 4 compatible with NASTRAN. More flexibly, we can
convert the netcdf/exodus file to several formats (including DMIG and Output4) using the ncfout
application.

For application of a DMIG to a NASTRAN model, the interface node numbers must be consistent.
Figure 4-44 illustrates the nodes on an interface, together with the first few lines of the DMIG,
which define a portion of the reduced stiffness matrix. Each row and column is indicated by the
GRID/CID pair.

The original BDF file must be modified as follows.

1. Copy original, and remove the five elements in the ROM region.

3Sierra/SD has recently added a higher precision DMIG output. This uses 16 character “long” format NASTRAN
fields, and is selected with the “FMT=dmig*” option.

4Direct Matrix Input at Grid points
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Figure 4-43. – Modal FRF Comparison: Full Model (line) and Residual Model with Superelement
(markers).

DMIG K2GG 6 1 6 1 1.6896+6
6 2 -197648. 14 1 726510.
14 2 36078.7 47 1 899966.
47 2 63681.1 47 3 90702.2
55 1 750185. 55 2 58875.3
55 3 -67421.3 97 1 -2.141+6
97 2 -115178. 97 3 -275194.
111 1 -454831. 111 2 45753.7
113 1 -1.028+6 113 2 156507.
113 3 -587.767 116 1 -442113.
116 2 -48070.2 116 3 -202927.

DMIG K2GG 6 2 6 2 2.0542+6
14 1 -36078.7 14 2 1.0384+6

Figure 4-44. – DMIG example. On the left, the interface nodes and orientation from the model is
shown. The extract from the DMIG on the right illustrates the first row of the stiffness matrix. The
index to each value is the GRID and CID pair for that column.
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2. Add SPOINTS corresponding to the DMIG.

3. Include the new DMIG data.

4. Add commands to include K2GG and M2GG in the case control.

Table 4-31 compares the eigenvalues of the full NASTRAN model to the eigenvalues of the
reduced order model from Sierra/SD. The solution with four fixed interface modes provides good
accuracy. 5

Mode Full Model 4-Mode ROM 0-Mode ROM
1 527.842 528.046 546.461
2 926.535 931.379 1098.845
3 2891.837 2916.451 3681.061
4 4630.102 4674.563 5980.433

Table 4-31. – Eigenvalue Comparison - NASTRAN full model and with Sierra/SD ROMs.

4.7.7. Using NASTRAN Superelements in Sierra/SD

The NASTRAN superelement model is translated using NASGEN. This tool translates the model
and superelement simultaneously, with the superelement written to a netcdf file. NASTRAN uses
a different element formulation, and orders the modes differently from Sierra/SD, so we may not
reasonably directly compare the matrices output in the translation. It is possible to simply run the
translated analysis using Sierra/SD. The compared eigenvalues are shown in Table 4-32. The
results are very reasonable.

Mode Sierra/SD (Hz) NASTRAN (Hz)
1 530.594 527.8421
2 932.069 926.5357
3 2930.28 2891.865
4 4692.38 4630.148

Table 4-32. – Comparison of NASTRAN and Sierra/SD Eigenvalues using NASTRAN Superelement.

4.7.8. Superposition Methods for Output of Internal Data

The Craig-Bampton method necessarily removes internal physical degrees of freedom from the
superelement. Sometimes results on those internal dofs are required. The displacements,
accelerations and velocities on these locations may be readily obtained through post-processing
using the super_superp tool.

5The default data width for a DMIG is 8 characters. There may be a significant loss of accuracy in truncating data to
this size. We have recently added the option to output 16 character DMIG using the DMIG* format.
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Figure 4-45 compares the output of the sample on nodeset 41, at the tip of the unloaded tine, from
the full model with the results obtained using the reduced model. Both models are run in
Sierra/SD for consistency. The left tine is loaded with an impulse. Figure 4-46 illustrates the
deformation of the full model, compared with the residual and superimposed superelement.
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Figure 4-45. – Comparison of Output Displacements. The plot on the left compares displacements of
the full and reduced order models at the input location. The plot on the right compares displacements
on the unloaded tine after the selem_superp tool is used to extract the displacement from the reduced
model.
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Figure 4-46. – Superposition Solution and Full Deformation, 𝑡 = 2𝑚𝑠. The full model (in blue
background) is compared with the residual and the post-processed superelement.

4.7.9. Related NASTRAN Analyses Required for Verification

The NASTRAN inputs for these analyses are included in the test repository, but are not run as part
of the nightly test process. To evaluate these models, the following steps may be followed.

4.7.9.1. Eigenvalue Problem

NASTRAN approximates the eigenvalues of the entire model by running:

workstation> nastran tuningfork.bdf

The resulting output in tuningfork.f06, may be evaluated for the appropriate normal mode
frequencies.

4.7.9.2. Modal FRF

The analysis may be modified to run a modal frequency response. Most modifications are in the
case control section. Analyze with,

workstation> nastran tuningforkfrf.bdf

Output analysis is a relatively easy using NASTRAN aware tools, or the PCH file may be mined to
garner the data.
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4.7.9.3. Insertion of a ROM from Sierra/SD

There are relatively few changes required to the original BDF file required to include a DMIG
from Sierra/SD. See the example in se.bdf, which includes the DMIG for the rightmost tine.

workstation> nastran se.bdf

Output of this analysis is the normal modes solution (as in section 4.7.9.1), but with the ROM of
the right tine. Comparison of the modal frequencies provides validation of the analysis.

4.7.9.4. Insertion of a ROM from NASTRAN

The eigen_se.bdf file provides the input for NASTRAN analysis using the NASTRAN generated
superelement. The superelement (in DMIG format) is read using an ‘include’ command. Analysis
is performed using this command.

workstation> nastran eigen_se.bdf

The eigenvalues are found in the f06 output file and may be compared with the Sierra/SD results
of Section 4.7.7.

For input see Appendix 9.51.
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4.7.10. Sierra/SD Superelement File Formats

In this section, we consider the tuning fork model shown in Figure 4-39 and described in Section
4.7.6. We modify the workflow shown in Figure 4-41 to compare the full model (without CB
reduction) against the superelement results using both format=netcdf and format=dmig*: for
each file format, the superelement is written to disk and read back in to be used in the analysis.
The results (c.f. Table 4-27) are shown in Table 4-33.

# Description Full Model Rel. Diff. (netcdf) Rel. Diff. (DMIG)
1 base bending 532.07 1.69649e-08 1.60495e-08
2 symmetric bending 937.07 4.47213e-09 4.36792e-09
3 asymmetric bending 2956.4 4.08084e-06 4.08064e-06
4 symmetric 2nd bending 4733.4 6.50282e-06 6.50278e-06

Table 4-33. – Eigenvalue Comparison.

For input see Appendix 9.52.
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4.8. Legacy Element Verification Results

The purpose of this section is to report the verification calculations that have been performed on
the Sierra/SD software. Test models and calculations were performed to ensure that Sierra/SD
performs as required. Element patch tests are described, convergence studies for the elements are
performed, and code to code comparisons are made to ensure that the software meets the
requirements for analysis of hypersonic vehicles used in Sandia National Labs’s nuclear weapons
program.

Verification tests can never cover the full aspects of the software. Analysis shows that there are too
many paths through the software to ever adequately cover all such paths (see Beizer6 or Myers38).
However, these tests are essential to provide confidence that with proper input, solutions to the
fundamental equations of mechanics are solved properly.

Note that verification tests address mesh discretization indirectly.

4.8.1. Patch Tests

The element patch tests in this study are derived from MacNeal’s monograph.34 These tests are
designed to ensure that the element formulations are independent of element orientation, and that
the elements are capable of solving exactly the equations on which they are based. As a minimum,
elements should be able to represent a constant strain field exactly since the linear shape functions
of the elements are the minimum required to do this exactly.

All the 2D and 3D elements in the Sierra/SD element library are tested. The 2D elements are:
QuadT, Tria3, TriaShell, and Tria6. The 3D elements are Hex8b, Hex8, Hex20, Wedge6, Tet4, and
Tet10. The 2D elements are tested using a membrane patch test and a bending plate patch test. The
3D elements are tested using the solid patch test. These patch tests are defined in MacNeal.34

All the 2D elements pass the membrane and bending patch tests. All the 3D elements pass the
solid patch test. These patch test problems are located in the Salinas_test repository in the
Salinas_test/patch_tests subdirectory. The results for the patch tests are shown in Table 4-34.
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Table 4-34. – Patch Test Results.
Element Type Patch Test

Membrane Bending Solid
QuadT Passed Passed N/A
Tria3 Passed Passed N/A

TriaShell Passed Passed N/A
Tria6 Passed Passed N/A
Hex8 N/A N/A Passed
Hex8b N/A N/A Passed
Hex20 N/A N/A Passed

Wedge6 N/A N/A Passed
Tet4 N/A N/A Passed
Tet10 N/A N/A Passed

4.8.2. Accuracy Tests

Accuracy tests are designed to stress test elements. These are not convergence tests. The purpose
of the test is to provide information about how badly the element performs in common (but under
meshed) environments. It can be noted in the results below that Tet4 elements are way too stiff in
almost all loadings. This is expected, and the test results are provided to help analysts determine
the applicability of this element for their analysis. Below are test results for the accuracy tests
(Tables 8 through 15 of MacNeal [34]). All tabulated results are the ratio of the numerical solution
to the exact solution, i.e., a value of 1.00 is a perfect result. The test problems are described and
illustrated in the reference, Figures 4 through 10.

The first test from MacNeal is a straight beam with a length of 6.0, an in-plane cross-sectional
dimension of 0.2 and an out of plane cross-sectional dimension of 0.1. There is a single element
at any given point along the length of the beam and total of 6 elements along the length of the
beam. The Young’s Modulus, 𝐸 = 107, the Poisson ratio, 𝜈 = 0.30, and the loading is a unit force
at the free end of the beam. Reported table values refer to displacement at the loaded tip of the
beam. Tables 4-35, 4-36 and 4-37 show results for rectangular, trapezoidal, and parallelogram
shaped elements, respectively.

In the tables Hex8 denotes the Hex8U element.

Table 4-38 below shows results for a curved beam, also with a 6 by 1 element mesh. The inner
radius is 4.12, the outer radius 4.32, the arc 90 degrees, and the thickness 0.1. The Young’s
Modulus is 𝐸 = 1𝑒7, the Poisson ratio is 0.25. The tip load is of unit magnitude.

Table 4-39 shows results for a cantilever beam that twists 90 degrees along the length of the beam.
The beam length is 12.0, the in-plane cross-sectional dimension 0.32 and the out of plane
cross-sectional dimension is 1.1. The Young’s Modulus is 29.0e6 and the Poisson ratio 0.22. The
tip load is of unit magnitude.
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Table 4-35. – Straight Beam – Rectangular Elements.
Element Type Extension In Plane Out of Plane Twist

Hex20 0.994 0.970 0.961 0.904
Hex8b 0.988 0.978 0.973 0.892
Hex8 0.986 9.22 2.50 89.2
Tet10 0.998 0.960 0.959 0.910
Tet4 0.979 0.0219 0.0119 0.00264

Wedge6 0.991 0.0326 0.0882 0.0257
QuadT 0.839 1.05 0.979 0.704
Tria6 0.999 1.00 0.988 0.716
Tria3 1.01 1.06 0.978 0.704

TriaShell 0.966 0.224 .0978 0.720

Table 4-36. – Straight Beam – Trapezoidal Elements.
Element Type Extension In Plane Out of Plane Twist

Hex20 0.977 0.731 0.714 0.863
Hex8 0.988 0.734 0.307 51.4
Hex8b 1.009 0.0475 0.03 0.623
Tet10 0.999 0.277 0.208 0.667
Tet4 0.978 0.0144 0.00691 0.00755

Wedge6 0.992 0.0187 0.0302 0.0546
QuadT 1.00 0.559 0.980 0.0226
Tria6 0.999 1.00 0.988 0.716
Tria3 0.999 0.733 0.980 0.705

TriaShell 0.996 0.208 0.979 0.721

Tables 4-40 through 4-43 show results for a rectangular plate with either simply supported or
clamped boundary conditions and either a point load of 4x104 at the center of the plate or a
uniform pressure of 1x104 over the plate. The plate height is 4.0, and the plate width-to-height
aspect ratio is either 1.0 or 5.0. The plate thickness is 0.01 for solid elements (Hex20, Hex8,
Hex8b, Tet10, Tet4, and Wedge6) and 0.0001 for shell elements (QuadT, Tria6, Tria3, and
TriaShell). Young’s Modulus is 1.7472x107 and Poisson’s ratio is 0.3. The quantity 𝑁 in these
tables denotes the number of node spaces on half the edge of the plate. If the element has mid-side
nodes, e.g., the Hex20, Tet10, or Tria6, then the number of elements along this portion of the edge
of the plate is half the value of N. These tests are unsuitable for the Tet elements (Tet10 and Tet4)
as the aspect ratios of the elements is large due to the small thickness. NASTRAN’s Tet10
performs similar to Sierra/SD’s Tet10 on the remaining problems in this section.

Table 4-44 shows the results for the Scordelis-Lo Roof test of a curved plate. An 80 degree arc has
radius of curvature is 25.0. The length of the plate is 50.0 and the thickness 0.25. The straight
edges of the plate are free and the curved edges are constrained to not to move in the plane in
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Table 4-37. – Straight Beam Tests – Parallelogram Elements.
Element Type Extension In Plane Out of Plane Twist

Hex20 1.01 0.404 0.280 0.758
Hex8 0.983 1.60 0.943 38.68
Hex8b 0.977 0.623 0.528 1.27
Tet10 0.998 0.289 0.213 0.744
Tet4 0.981 0.0122 0.00708 0.00779

Wedge6 0.991 0.0148 0.0558 0.154
QuadT 0.985 0.407 0.981 0.141
Tria6 0.998 0.816 0.988 0.716
Tria3 1.00 0.535 0.978 0.702

TriaShell 0.996 0.190 0.978 0.720

Table 4-38. – Curved Beam Tests.
Element Type In Plane Out of Plane

Hex20 0.874 0.937
Hex8 7.06 22.8
Hex8b 0.879 0.952
Tet10 0.839 0.776
Tet4 0.0174 0.00738

Wedge6 0.0255 0.0557
QuadT 1.09 0.867
Tria6 .167 0.276
Tria3 1.07 0.864

TriaShell 0.185 0.895

which the curved edge is contained. A traction of magnitude 90.0 per unit area is applied in the
z-direction on the face of the plate. Young’s Modulus is 4.32e8 and the Poisson ratio 0.0. The
quantity N still represents the number of node spaces along half of one of the edges of the plate.

Table 4-45 gives the results for the spherical shell tests. This is a semi-spherical shell with a hole
cut out of the top. The angular size of the hole is 36 degrees. The radius is 10.0. The thickness is
0.04. The Young’s Modulus is 6.825e7. The Poisson ratio is 0.3. The loading is made up of four
equally spaced radial point loads of magnitude 2.0 at the equator. Two of these point loads are
radial inward and two are radially outward. The quantity N represents the number of node spaces
along a quarter of one of the edges of the shell.

The next table (Table 4-46) shows the results for the thick walled cylinder tests. This is a donut
shaped, thick plate of thickness 1.0, inner radius 3.0, and outer radius 9.0. The Young’s Modulus
is 1000, and the Poisson ratio is either 0.49, 0.499, or 0.4999. The loading is a unit radial pressure
on the inner radius. The mesh has five elements along the radius at 10 degree intervals and one
element through the thickness, for a total of 180 elements.
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Table 4-39. – Twisted Beam Tests.
Element Type In Plane Out of Plane

Hex20 .996 0.987
Hex8 14.3 11.0
Hex8b 0.744 0.740
Tet10 1.01 1.01
Tet4 0.0949 0.162

Wedge6 0.0846 0.243
QuadT .998 1.01
Tria6 19.7 15.5
Tria3 30.9 24.6

TriaShell 11.4 8.99

Table 4-40. – Rectangular Plate with Simple Supports and Uniform Pressure Load, Aspect Ratio 1.0
Element Type N=2 N=4 N=6 N=8

Hex20 0.0167 0.691 0.831 0.976
Hex8 0.220 0.904 2.02 3.11
Hex8b 0.04 0.412 0.782 0.92
Tet10 0.00116 0.00331 0.00752 0.015
Tet4 4.42e7 8.00e6 4.10e5 1.29e4

Wedge6 0.228 0.0824 0.0568 0.0543
QuadT 0.966 0.922 0.997 0.998
Tria6 1.01 0.974 0.987 0.992
Tria3 0.978 0.992 0.997 0.998

TriaShell 0.958 0.987 0.994 0.997

Table 4-41. – Rectangular Plate with Simple Supports and Uniform Pressure Load, Aspect Ratio 5.0
Element Type N=2 N=4 N=6 N=8

Hex20 0.503 0.649 1.04 1.02
Hex8 0.130 0.515 19.21 2.03
Hex8b 0.024 0.302 1.10 0.917
Tet10 0.000702 0.00181 0.00424 0.00852
Tet4 1.57e7 2.52e6 1.28e5 4.05e5

Wedge6 0.179 0.0977 0.0474 0.0470
QuadT 0.978 0.993 0.994 0.999
Tria6 0.658 1.02 1.01 1.00
Tria3 0.945 0.991 0.997 0.999

TriaShell 0.960 0.995 0.999 0.999
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Table 4-42. – Rectangular Plate with Clamped Supports and Concentrated Load, Aspect Ratio 1.0
Element Type N=2 N=4 N=6 N=8

Hex20 0.00106 0.072 0.553 0.822
Hex8 0.120 0.578 1.33 2.36
Hex8b 0.0195 0.246 0.614 0.824
Tet10 0.00110 0.00329 0.00624 0.0109
Tet4 1.46e6 2.31e5 1.15e4 3.52e4

Wedge6 0.0037 0.0186 0.0373 0.0561
QuadT 1.08 1.03 1.02 1.01
Tria6 1.06 1.17 1.01 1.01
Tria3 0.778 1.03 1.02 1.01

TriaShell 0.860 1.02 1.01 1.01

Table 4-43. – Rectangular Plate with Clamped Supports and Concentrated Load, Aspect Ratio 5.0
Element Type N=2 N=4 N=6 N=8

Hex20 8.51e4 0.0396 0.220 0.374
Hex8 0.0362 0.138 0.551 0.992
Hex8b 0.00585 0.083 0.247 0.415
Tet10 3.39e4 0.00141 0.00282 0.00475
Tet4 2.26e7 3.60e6 1.80e5 5.61e5

Wedge6 0.00320 0.0181 0.0241 0.0297
QuadT 0.613 0.919 1.00 1.01
Tria6 0.606 0.910 0.998 1.01
Tria3 0.603 0.915 1.00 1.01

TriaShell 0.666 0.945 1.01 1.02

Table 4-44. – Scordelis-Lo Roof Tests.
Element Type N=2 N=4 N=6 N=8 N=10

Hex20 0.0583 0.276 0.645 0.870 0.956
Hex8 .563 1.43 2.17 2.73 3.16
Hex8b 0.125 0.574 0.889 0.967 0.981
Tet10 0.0198 0.0526 0.0770 0.101 0.149
Tet4 0.00599 0.0108 0.0196 0.0333 0.0472

Wedge6 0.017 0.0289 0.0642 0.08 0.093
QuadT 1.58 1.13 1.06 1.02 1.00
Tria6 1.45 1.13 1.06 1.02 1.00
Tria3 1.45 1.13 1.06 1.02 1.00

TriaShell 1.35 1.04 1.01 0.995 0.984
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Table 4-45. – Spherical Shell Tests.
Element Type N=2 N=4 N=6 N=8 N=10 N=12

Hex20 – 0.00129 0.00662 0.0209 0.0500 0.0974
Hex8 0.00573 0.0547 0.133 0.238 0.371 0.531
Hex8b .000303 0.0104 0.056 0.162 0.319 0.491
Tet10 – 2.21e4 3.83e4 6.73e4 0.00107 0.00167
Tet4 2.22e5 3.18e5 3.78e5 4.46e5 5.62e5 6.94e5

Wedge6 0.0153 0.00447 0.00645 0.00660 0.00708 0.00781
QuadT 0.0423 0.0834 0.263 0.502 0.697 0.820
Tria6 0.0194 0.0879 0.263 0.502 0.697 0.819
Tria3 0.0445 0.0891 0.266 0.499 0.693 0.816

TriaShell 0.436 0.199 0.226 0.378 0.560 0.708

Table 4-46. – ThickWalled Cylinder Tests.
Element Type 𝜈 = .4900 𝜈 = .4990 𝜈 = .4999

Hex20 1.03 1.04 1.04
Hex8 0.445 0.437 0.406
Hex8b 0.437 0.437 0.437
Tet10 0.444 0.442 0.442
Tet4 0.393 0.356 0.349

Wedge6 0.408 0.399 0.398
QuadT 0.416 0.414 0.413
Tria6 0.438 0.436 0.436
Tria3 0.419 0.417 0.417

TriaShell 0.425 0.423 0.423
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4.8.3. Convergence Tests

Mesh convergence studies establish confidence that the accuracy of the solution increases as the
mesh is refined. They also establish the rate of convergence of the solution. They may be
performed with or without a known analytical solution for the problem. Fortunately, for many
structural dynamics problems, analytic solutions are available.

In structural dynamics, unstructured grids are necessarily used. While standard Richardson
extrapolation41 is not directly applicable to unstructured meshes, related methods can be used to
determine truncation error (see Alvin3 for example).

Convergence testing is used either to explore the properties of newly designed elements or to
assure the adequacy of a candidate mesh. Use of it to verify the correct implementation of an
element is not universally done; instead the patch test and the accuracy tests are considered
sufficient. Convergence testing is performed as part of this verification suite to provide
consistency with verification efforts in other Sandia National Labs codes.

In its simplest form, convergence analysis involves performing an analysis with at least three levels
of mesh fineness and assessing the rate at which the error goes to zero. For the elements under
consideration, convergence is known to be geometric: quadratic for the low order elements and
quartic for the high order elements once the elements are small enough.

The convergence tests for the Hex8 elements was the static deformation of a cantilevered beam.
The meshes employed are shown in Figure 4-47 and the appropriate plot of convergence error is
show in Figure 4-48. It was seen that the convergence slope increased in magnitude as the meshes
were refined and that for both the fully integrated and the selectively integrated element, the
slopes found through this numerical experiment approximate the theoretical value of −2. Fine
meshes are required to achieve this geometric convergence. Requiring convergence at a single
point was a mistake.

Element convergence for Hex20 and Tet10 elements was preformed focusing on the calculated
first eigenvalues. The resulting convergence plot for the Hex20 is shown in Figure 4-49. Here we
see that the convergence rate is -3.8, close to the theoretical value.

Refining a general mesh through sectioning to create new elements all of approximately the same
size increases the aspect ratios compared to the coarser mesh. This prevents standard convergence
tests of Tet elements. A BCC mesh can be uniformly refined, but it was too difficult to implement.
Instead several independent meshes were created. The resulting slope of the log-log error plot
(shown in Figure 4-50 is the theoretical value, −4.
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Figure 4-47. – Meshes for convergence test for Hex8 elements.
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Figure 4-49. – The convergence plot of the Hex20 element for the first eigenvalue shows a slope close
to the theoretical value of -4.
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Figure 4-50. – The convergence plot of the Tet10 element for the first eigenvalue shows a slope close
to the theoretical value of -4
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The convergence rates of the various elements are listed in Table 4-47.

Table 4-47. – Element Convergence Rates.
Element Type Ideal Measured Comments

Rate Rate
Hex8 2 2 Beta=1.0, Alpha=1 −

√
1 − 2𝜈

Tria3 2
TriaShell 2
QuadT 2 derived from Tria3
Quad8T 2 derived from Tria3. First order.
Beam2 2
Tet4 2

Hex20 4 4 using eigen analysis
Tet10 4 4 using eigen analysis
Tria6 2 derived from Tria3. First order.

4.8.4. RBE3 - comparison with NASTRAN

Verification of the RBE3 pseudo-element necessarily requires comparison with NASTRAN,
because no physical model exists. The RBE3 is designed to function like the NASTRAN pseudo
element. A simple model was constructed for evaluation of an RBE3 link. The structure consisted
of a cube placed on the end of a beam. The beam terminates in the center of the cube, and is
connected to the eight corners of the cube with an RBE3 as illustrated in Figure 4-51. The model
is named BoxOnBarRBE3.inp. The test is
Salinas_rtest/test_tool/fast_regression_tests/mpc/BoxOnBarRBE3.test.

Figure 4-51. – Box on a Bar test object.

There are slight differences in the beam models used by NASTRAN and by Sierra/SD. A
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summary of the modes is included in the table. As can be seen in the table, the agreement is good.
All the modes of the structure are preserved by the RBE3.

# NASTRAN Sierra/SD Description
Frequency Frequency

1 2354.8 2354.4 1st bending
2 2354.8 2354.4 1st bending
3 6833 6832.7 Pogo Stick, axial mode
4 9942 9939.4 2nd bending
5 9942 9939.4 2nd bending
6 13697 13335 torsion
7 22367 22365 hex deformations

> 20, 000 > 20, 000 hex deformations

4.8.5. Hexshells

The hexshell verification examples were taken from Professor Carlos Felippa, the developer of the
element, (see reference23). The goal here was to reproduce the results obtained in that report.

4.8.5.1. Example 1

This example corresponds to Section 9.5 in the report,23 and consists of a circular ring subjected
to equal and opposite forces acting along the vertical direction. The exact solution for this
problem is given in both reference53 and reference49 as

𝜋2 − 8
4𝜋

𝑃𝑅3

𝐸𝐼
(4.8.1)

We note that this solution is the total change in diameter for the ring.

By symmetry a quarter ring with appropriate boundary conditions suffices. We note three details
for comparing the results to the exact solution. First, the exact solution as given is for the total
change in diameter for the ring. For a quarter ring, this result is halved. Second, since the ring is
cut at the top surface and we are applying a point load on the symmetry plane, the applied load 𝑃
will produce twice the deflection in a quarter ring as in the full ring. This is explained in more
detail in reference.49 However, since there is a need to both divide by two and multiply by two,
these factors effectively cancel one another out, and thus equation 4.8.1 is the solution for
comparison in the case of a quarter ring.

The results obtain by Sierra/SD are compared with those of Dr. Felippa in Table 4-48.

For this example, Dr. Felippa also reported results for a two-ply case. Since we do not have an
analytical solution to compare with, and since the reported results are normalized by the exact
solution, we have no reference point and thus we did not run the two-ply case. We did, however,
run a two-ply example where the modulus and Poisson’s ratio were the same in both plies. The
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Table 4-48. – Normalized Deflections for the Pinched Composite Ring.
𝑁𝑒

𝑅
ℎ
= 20 Felippa 𝑅

ℎ
= 20 Sierra/SD 𝑅

ℎ
= 100 Felippa 𝑅

ℎ
= 100 Sierra/SD

4 .5746 .5771 .0062 .062
6 .4322 .4376
8 .9582 .9631 .7813 .7971
16 .9896 .9947 .9659 .9886
32 .9955 1.00072 .9753 .9981

results were the same as running a single ply with those same material properties. This provided a
weak verification of the multi-ply implementation.
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4.8.5.2. Example II

This was the pinched cylindrical shell example (section 9.6). Only one eighth of the shell was
considered. The computed results were divided by four to account for the fact that the load was
applied to a quarter-section. The results are shown in Table 4-49.

Table 4-49. – Normalized Deflections for the Pinched Cylindrical Shell.
𝑚𝑒𝑠ℎ Felippa Sierra/SD
4x4 .0762 .1
8x8 .2809 .45
16x16 .5366 .81
32x32 .8029 .87
128x128 .897

4.8.5.3. Example III. Scordelis-Lo Roof

A quarter of the roof is modeled. The applied load is a gravity load. The boundary conditions at
the rigid diaphragms were incorrectly reported in.23 The correct ones are 𝑢𝑥 = 𝑢𝑧 = 0. With these
conditions, the results as shown in Table 4-50 agree well with the expected values.

Table 4-50. – Normalized Deflections for Scordelis-Lo Roof example.
𝑚𝑒𝑠ℎ Carlos Sierra/SD
2x2 1.2928 1.29
4x4 1.0069 1.011
8x8 .9844 .984
16x16 .9772 .979

4.8.5.4. Example IV

This is the twisted beam model. The normalized results, compared with those of Carlos, are given
in Table 4-51.

Table 4-51. – Normalized Deflections pretwisted beam example.
mesh Carlos Sierra/SD

in plane out of plane in plane out of plane
1x6 1.0257 .9778 1.014 .929
2x12 1.0041 .9930 .985 .975
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4.8.6. TriaShells for Composite Modeling

Laminate composites modeling in Sierra/SD is implemented by coupling Allman’s triangle2 with
the DKT triangle.5 Combining these elements together does not capture the coupling that can
occur between bending degrees of freedom and membrane degrees of freedom. An additional
stiffness that couples these degrees of freedom is generated as documented in References19

and.1

In the next sections we list the results of several verification examples for composite TriaShell
elements.

4.8.6.1. Example 1

The first verification example is taken from Reference.19 A rectangular plate with dimensions 6" x
1" x 0.005" is modeled using 2 triangular elements (Figure 4-52). In Figure 4-52, the left side is
clamped (nodes 1 and 3) while node 4 has a unit load in the positive z-direction, and node 2 has a
unit load in the negative z direction. Each element is composed of 3 layers. Each layer has the
following orthotropic material properties: 𝐸1 = 10𝑒6, 𝐸2 = 0.3𝑒6, 𝜈12 = 0.25, and 𝐺12 = 4𝑒6.
The fiber orientation for each layer is 45◦, 0◦, and −45◦, respectively.

This mesh is refined 6 times to create 6 other test cases. The convergence of the displacements
and rotations at nodes 2 and 4 is compared with the STRI3 element in ABAQUS as shown in
figures 4-53 through 4-58 These figures show that the convergence of the Allman/DKT element is
good. Both elements have similar convergence rates as the mesh is refined except the drilling
degree of freedom. Figures 4-59 and 4-60 compare the 𝑥, 𝑦, 𝑧, 𝜃𝑥 , 𝜃𝑦, and 𝜃𝑧 displacements at
nodes 2 and 4 (see figure 4-52. Again, the Allman/DKT element compares well with the STRI3
element as the mesh is refined. The exception is the drilling degree of freedom.

The 4th mesh refinement model is stored as a test in the
“Salinas/test_tool/fast_regression_tests/triashell” subdirectory, and is named
“mesh4_test”.

X

Y

Z

1 2

3 4

Figure 4-52. – Two Element Test.
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Figure 4-53. – Comparison Of X-displacement Between Sierra/SD and ABAQUS.
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Figure 4-54. – Comparison Of Y-displacement Between Sierra/SD And ABAQUS.
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Figure 4-55. – Comparison Of Z-displacement Between Sierra/SD And ABAQUS
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Figure 4-56. – Comparison Of Rotation About X-axis Between Sierra/SD And ABAQUS
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Figure 4-57. – Comparison Of Rotation About Y-axis Between Sierra/SD And ABAQUS
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Figure 4-58. – Comparison Of Rotation About Z-axis Between Sierra/SD And ABAQUS
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Figure 4-59. – Convergence Of Displacements and Rotations At Node 2.
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Figure 4-60. – Convergence Of Displacements And Rotations At Node 4.
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4.8.6.2. Example II

The second verification example for laminate composite modeling is taken from Reference.27 A
rectangular plate is subjected to a uniform pressure load of q = 0.003 psi. The plate, shown in
Figure 4-61 has dimensions 12 in. x 8 in. and is simply supported on each edge. The alternating
angle-ply stacking sequence is [ -30/30 -30/30 -30/30 -30/30]. Each layer has a thickness of 0.01
in. The orthotropic material properties for each layer are: 𝐸1 = 26.25𝑒6𝑝𝑠𝑖, 𝐸2 = 1.49𝑒6𝑝𝑠𝑖,
𝑛𝑢12 = 0.28, and 𝐺12 = 1.04𝑒6 psi.

The transverse displacement at the center of the plate is compared with the analytical solution
developed in reference.27 Sierra/SD calculates a value of -2.377e-4, while the analytical solution
is -2.38e-4. Again, the DKT/Allman triangle produces a good comparison with the analytical
solution.

This test is kept in the Salinas_test repository in the verification/composite subdirectory and is
named plate_test.
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Figure 4-61. – Finite Element Model Of A Flat Plate.
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4.8.6.3. Example III

This verification example for laminate composite modeling is also taken from Reference.27 A
cylindrical panel is subjected to a uniform pressure load of q = 0.003 psi. The cylindrical panel (1

4
of model is shown in Figure 4-62) has a length of 80 in., while the arc length of the other side is
41.89 in. corresponding to an angle of 𝜙 = 24◦ and radius of 100 in. The stacking sequence is
[0/90/90/0]. Each layer has a thickness of 0.08 in. The orthotropic material properties for each
layer are: 𝐸1 = 18𝑒6𝑝𝑠𝑖, 𝐸2 = 1.4𝑒6𝑝𝑠𝑖, 𝑛𝑢12 = 0.34, and 𝐺12 = 0.9𝑒6 psi.

The transverse displacement of the free corner is compared with the analytical solution developed
in reference.27 Sierra/SD calculates a value of 6.958e-4, while the analytical solution is 6.945e-4.
Again, the DKT/Allman triangle produces a good comparison with the analytical solution.

This test is kept in the Salinas_test repository in the verification/composite subdirectory and is
named cyl_panel_test.
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Figure 4-62. – Finite Element Model Of A Cylindrical Panel.

4.8.7. Joint Modeling: Joint2g Element with Iwan Constitutive Model

The Joint2g element permits independent specification of the constitutive relations between each
of the relative displacements. Currently, the most prominent of the constitutive equations
employed for the “whole joint” modeling approach is the 4 parameter Iwan model. The Joint2g
element and the Iwan constitutive model are documented in User’s Manual and Sandia National
Labs reports specifically addressing the 4 parameter model.

There exists a closed form expression for the energy dissipation per cycle resulting from harmonic
excitation imposed on a joint of this nature. That expression45 is,

𝐷 = 𝑟 𝜒+3 4𝐹𝑠𝜙𝑚𝑎𝑥 (𝜒 + 1)
(𝛽 + 𝜒+1

𝜒+2 (𝜒 + 2) (𝜒 + 3)
(4.8.2)

where 𝛽, 𝜒, 𝜙𝑚𝑎𝑥 , and 𝐹𝑠 are model parameters, and 𝑟 satisfies

𝐹𝑜

𝐹𝑠
= 𝑟

(𝛽 + 1) − 𝑟 𝜒+1/(𝜒 + 2)
𝛽 + (𝜒 + 1)/(𝜒 + 2) , (4.8.3)

where 𝐹𝑜 is the amplitude of the harmonic excitation. Comparison of the exact solution and
Sierra/SD predictions is presented in Figure 4-63.
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Figure 4-63. – Sierra/SD Iwan Element: Comparison to Analytic Solution.
The Sierra/SD predictions for unidirectional load on a simple joint agrees with the exact solutions.
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Figure 4-64. – Significance of Number of Spring-Slider Pairs Used.
The number of spring-slider pairs necessary to demonstrate sensitivity to given levels for load in
Sierra/SD is that predicted by theory.

𝐹𝑚𝑖𝑛 ≈ 𝐾𝑇𝜙𝑚𝑎𝑥
𝛼 − 1
𝛼𝑁 − 1

There is one integration parameter in Sierra/SD, the number of spring-slider pairs used to
approximate the continuous distribution of Jenkins elements. The relevant SAND report provides
guidance as to the number of elements necessary to manifest proper dissipative response to loads
of given size. Figure 4-64 shows that desired accuracy is achieved with the number spring slider
pairs predicted by theory.

4.8.7.1. Iwan Macroslip

To evaluate the Iwan model in Sierra/SD when it hits macro-slip, a 1D MATLAB test case
involving macro-slip and simple dynamics was developed. It was compared with the results of the
corresponding 1D Sierra/SD analysis. Here is a sketch of the model.
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Figure 4-65. – MATLAB and Sierra/SD calculation of 𝑀2 acceleration.

source k=9.74e5

𝑚1

Iwan Model
𝑚2

Here the source is a 100g wavelet base excitation, 𝑚1 = 0.05 𝑙𝑏, and 𝑚2 = 4 𝑙𝑏.

Analysis is performed both within Sierra/SD and MATLAB. The acceleration of the four pound
mass for each analysis method is compared in figure 4-65. We see agreement, though the
MATLAB result better resolves macro-slip.

The stretch of the Iwan joint is another good indicator of agreement, and is shown in Figure 4-66.
The stretch is the relative displacement across the Iwan element. Again, the agreement is good,
but not perfect.

In both analyses, the acceleration of the spring mass shows significant high frequency response (or
hash) as shown in Figure 4-67. The high frequency noise is undesirable, but is a feature of the
model constructed of a finite number of slider/spring elements. As the elements begin to slide,
high frequency noise is generated.
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Figure 4-66. – MATLAB and Sierra/SD calculation of joint extension.

257



0 0.002 0.004 0.006 0.008 0.01
-6

-4

-2

0

2

4

6
x 10

5

time (s)

a
c
c
e
le

ra
ti
o
n
 (

g
)

Figure 4-67. – Sierra/SD calculation of 𝑀1 acceleration.
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4.8.8. Membranes

Membrane elements are similar to shells, except that they have no rotational degrees of freedom,
and have no out-of-plane stiffness in the unstressed state. When they are pulled in tension, an
out-of-plane stiffness appears, and takes the form of a geometric stiffening. In the following test
cases, we examine the response of the membrane element to both in-plane and out-of-plane
deformation. We consider these two loading cases separately.

The first example consists of a square membrane of dimension 1𝑥1, which is subjected to a
uniform tension 𝑇 in both in-plane directions. After the application of the tension, the membrane
boundaries are either fixed, or placed on rollers, and an modal analysis is performed about the
stressed state. Since these elements are intended to be used in transfers between Adagio and
Sierra/SD, we perform the static preload in Adagio, and then transfer the stresses and
displacements to Sierra/SD. In this way, we also exercise the transfer capabilities for these
elements.

The exact eigenvalues for stretched square membranes are given in.32 In the case of a membrane
that is clamped along all boundaries, the frequencies are

𝑓𝑛𝑚 =
𝜔𝑛𝑚

2𝜋
=
𝑐

2

√︄(
𝑛

𝐿𝑥

)2
+

(
𝑚

𝐿𝑦

)2
(4.8.4)

where 𝑐 =
√︃

𝑇
𝜌𝑠

is the speed of sound in the membrane, 𝑇 is the tension per unit length in the
membrane, and 𝜌𝑠 is the surface density. Note that in the case of a square membrane 𝐿𝑥 = 𝐿𝑦.
Also, the indices 𝑚 = 1, 2, 3, ... and 𝑛 = 1, 2, 3, .... In the case of a free-free membrane, the
expression for the frequencies is the same, except that both 𝑚 and 𝑛 start at 0. In this way, they
allow for a rigid body mode.

Table 4-52 shows a comparison of the first three exact and computed eigenvalues of the square
clamped membrane, and Table 4-53 shows the same for the free-free membrane. In both cases,
good agreement is seen. For the free-free case, we do not compare rigid body modes in the table,
but we verified that they came out to be numerically zero. Note that for both cases, repeated
modes are observed.

The Tempo application and its tests have been removed.

For in-plane loading, there are 2 verification tests located at

exact (Hz) computed
13.178 13.230
20.83 21.126
20.83 21.126

Table 4-52. – Eigenvalue convergence for a fixed-fixed, prestressed membrane. The values given are
the natural frequencies, in Hz.
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exact (Hz) computed
9.3169 9.3553
13.178 13.230
18.634 18.941
18.634 18.941

Table 4-53. – Eigenvalue convergence for a free-free, prestressed membrane. The values given are the
natural frequencies, in Hz.

Salinas_test/patchtests/quadt/quadt-patch8_test
Salinas_test/patchtests/quadt/quadt-patch9_test

These tests use in-plane tension, and verify the corresponding deformation of the membrane.

4.8.9. Tied Joint

The tied joint provides a means of connecting two surfaces together while allowing compliance in
the shear behavior. The tied joint allows more flexibility in the specification of the normal
behavior than previous methods that required a fully rigid surface pair to which a whole joint
model (such as a Joint2g) is attached.

A first step in developing the tied joint is replicating the old model behavior. This is done with the
two test cases “2x2tied” and “2x2whole”. The first of these couples a block of elements using the
new methodology. The “2x2whole” example uses the old approach. The solutions are shown to be
identical.

Next, we present transient simulations on a single-leg model. This single leg model was taken
from a more complicated three-leg model. The surfaces that join the two pieces are modeled with
a tied joint, and then we compare those results with a truth model where the constraints on the
interface were implemented manually using the “old" approach of an RBE3 element.

The first example compares the two approaches in the case when the tied joint model is modeled
with the following block

TIED JOINT
normal definition = slip
side = free

. . .
END

Figures 4-68, 4-69, 4-70 shows the comparison of the 𝑋 , 𝑌 , and 𝑍 displacements as a function of
time, for the tied joint and truth models. Excellent agreement is observed.

The second example compares the tied joint and truth model approaches when the tied joint model
is modeled with the following block
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Figure 4-68. – X displacement comparison for tied joint versus truth model, tied=slip, side=free

TIED JOINT
normal definition = none
side = rigid
. . .

END

Figures 4-71, 4-72, 4-73 shows the comparison of the 𝑋 , 𝑌 , and 𝑍 displacements as a function of
time for this case, for the tied joint and truth models. Excellent agreement is observed.

These tests are located in the verification test suite in the directory

Salinas_rtest/verification/tiedjoint
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Figure 4-69. – Y displacement comparison for tied joint versus truth model, tied=slip, side=free
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Figure 4-70. – Z displacement comparison for tied joint versus truth model, tied=slip, side=free
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Figure 4-71. – X displacement comparison for tied joint versus truth model, tied=none, side=rigid
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Figure 4-72. – Y displacement comparison for tied joint versus truth model, tied=none, side=rigid
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Figure 4-73. – Z displacement comparison for tied joint versus truth model, tied=none, side=rigid

4.8.10. Rrodset

The Rrodset mimics a material like a fiber textile in that it does not oppose bending in any way,
but it does oppose tension. Fundamentally, it is identical to placing a collection of Rrods along
every edge of a surface. One use is to distribute the shear loading of a tied joint.

To verify that it does not oppose bending, a simple example with 2 connected plates on top of each
other was created. The left side was fixed and the right side had loads applied. The top plate was
pulled while the bottom plate was pushed with equal force, causing a pivot around the center
where the Rrodset can be placed. It was shown that a statics solution produced the same results
with or without an Rrodset in the middle. The test is in the fast regression tests suite and is called
Rrodset. The test is
Salinas_rtest/test_tool/fast_regression_tests/traction/rrodset.test.

264



5. BOUNDARY CONDITIONS

5.1. Parallel Distribution of Load through Rbars

The purpose of the verification is to ensure that loads may be properly distributed through a
“spider” collection of Rbar elements onto a concentrated mass. The model is shown in Figure 5-1.
This is a model of a conmass connected to a hex by spiders using Rbars. Verification that the
model works the same running with one processor or six processors.

Figure 5-1. – Model for Parallel Distribution of Load through Rbars.

For input deck see Appendix 9.53.

265



5.2. Perfectly Matched Layers: Offset Sphere

In this section, we describe the verification of the offset sphere problem for the Ellipsoidal PML
formulation. Further background, verification, results, and implications are available in [11]. An
acoustic source is placed asymmetrically in a spherical domain.

Figure 5-2. – Offset Sphere at 50 Hz.

Figure 5-2 shows the numerical solution for the offset sphere problem. The radius of the outer
sphere is 5 meters, and the radius of the inner sphere is 1 meter. An acoustic velocity of 𝑉0 = 1 is
applied to the normal surface of the inner sphere, to create a monopole excitation. The sphere is
composed of 850,000 TET4 elements, and 145,000 nodes. The material modeled is air, where
𝜌 = 1.293 kg

m3 , 𝑐0 = 332.0𝑚
𝑠
.

A 2D representation of the spherical result cut along the plane y=0 is shown. Note that the
solution is spherically symmetric about the acoustic source. The exact solution is given as

𝑃(𝑟) = 𝑖𝑉0Ω𝜌𝑎
2

𝑟 (1 + 𝑖𝑘𝑎) 𝑒
𝑖𝑘 (𝑟−𝑎) (5.2.1)

where 𝑟 is the distance from the center of the inner sphere to a point in the mesh, and 𝑎 is the
radius of the inner sphere.

The relationship between the thickness of the PML boundary, the discretization of the elements
within the PML boundary, and the selection of loss parameters is investigated on the Offset Sphere
example. The discrete 𝐿2 error norm of the solution at every degree of freedom is compared
between the PML formulations, the absorbing boundary conditions, and infinite elements of
various orders. We also examine the performance of the iterative solver on these problems, and
compare the effects of PML and infinite elements on linear solver performance.

Figure 5-3 shows the results for the offset sphere at a frequency of 50Hz. For this case, the
outgoing waves are not perpendicular to the boundary surface, and the spherical wave absorbing
boundary condition gives very inaccurate results. The infinite element solution has converged
around order 4, and the remaining error compared to the analytic solution corresponds to the
discretization error for the mesh. Both the ellipsoidal and spherical PML formulations converge to
the discretization error of the mesh. The PML layer converged with 12 layers of elements, a loss
parameter of 600, and a thickness of 2 meters. Figure 5-4 shows the magnitude of acoustic
pressure in the PML layer of the offset sphere, showing the rapid decay to zero magnitude towards
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the outer-most boundary of the PML layer. Note that the ellipsoidal PML formulation is the only
supported or accessible formulation in SierraSD.

Figure 5-3. – Parameter Studies for OffsetSphere (50 Hz). Note: Ellipsoidal PML is the only supported
capability, Cartesian and Spherical have been removed.

Figure 5-4. – Acoustic Pressure in PML Layer for offset sphere, showing the rapid decay to zero
magnitude near the outermost boundary of the PML layer.

For input deck see Appendix 9.54.
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5.3. Periodic Boundary Conditions

In material characterization through simulation of representative volume elements, periodic
boundary conditions are needed on the opposite faces, with imposed stretch and/or distortion.
Similarly, in the context of phononic crystals and acoustic/elastic metamaterials, imposing
periodic boundary conditions is a key functionality needed for computation of dispersion curves
and band structure. Sierra-SD facilitates the imposition of such periodic boundary conditions.

In this section, we provide the verification of the capability by simulating an infinite bar with
linear array of spherical voids, with imposed overall tensile strain. We do not attempt to compare
with any analytical/reference solutions, but confirm the consistency of results from applying
periodic boundary conditions in two different ways. Specifically, we consider an infinite bar of
unit (1x1) square cross-section, with spherical voids of radius 0.4, dispersed uniformly with unit
spacing. A global strain of 0.015 is applied along the axis (x direction), and the resulting stresses
are to be analyzed (the Young’s modulus is 1e4). Such an analysis can be carried out by modeling
a periodic cell, which can be any 1x1x1 block along the length of the bar. Correctly implemented
periodic boundary conditions must give the same results independent of the choice of the periodic
cell. Given this, we compare the results from analyses of two separate periodic cells, one with the
spherical void at the center of the periodic cell, and the other with the periodic cell boundaries on
both ends cutting through the centers of two adjacent voids. A differential x-displacement of
0.015 units is applied between two edges of the periodic cells to simulate the global strain of
0.015. Rigid body displacements are eliminated through appropriate statically determinate
boundary conditions on the center section of the cell. Figure 5-5 contains the meshes for the two
periodic cells. Note that each half has identical meshes, indicating that identical discrete systems
are being solved, thus eliminating the role of the discretization error and leading to the expectation
of almost exact match.

Figure 5-5. – Meshes for two different periodic cells.

The stresses are examined at three different locations on the surface of the spherical void, at the
intersection with x,y and z axes respectively. To be precise, the results are obtained at element
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centroids closest to the three locations, which are shown in table 5-1. Only one set of results is
shown since the computed stresses are identical between the two models, up to 10 significant
digits, clearly verifying the implementation of periodic boundary conditions.

Table 5-1. – Stresses near the surface at points cutting various axes.

Stress y axis z axis x axis
𝜎𝑥𝑥 281.0494288 273.0301545 -1.7271636
𝜎𝑦𝑦 -8.0119751 0.5224045 -0.2133664
𝜎𝑧𝑧 -0.2935124 23.5932137 -0.8396841
𝜎𝑥𝑦 14.8824683 14.2929051 -9.3081820
𝜎𝑦𝑧 -0.3275614 0.3518104 2.0719204
𝜎𝑥𝑧 16.8660510 28.2491021 -9.8072644

In addition to the above example, we tested the implementation on homogeneous block with
straight and curved surfaces under uniform stretch, resulting in expected uniform stress state with
correct values. The details are not presented in this document, but can be found in the test
repository. For input see Appendix 9.55
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5.4. Multi-directional Periodic BC: Periodic Volume Elements

Representative volume element (RVE) modeling is a standard approach in computing
macroscopic materials properties from materials with microstructure. In the context of regular
periodic microstructure, RVE reduces to a periodic unit cell of the microstructure, called the
periodic volume element (PVE). The boundary conditions for modeling a PVE of a 3D solid
would be periodic boundary conditions in all three directions, or in all the directions in which the
PVE repeats. This requires multiple begin-periodic blocks, each connecting the faces on the
opposite surfaces. The surfaces in one begin-periodic would intersect with surfaces in other
periodic blocks, thus testing the associated functionality in Salinas.

We consider the example in Section 5.4, and expand to 3D setting. Specifically, we consider a
homogeneous matrix with regularly spaced spherical inclusions in all three directions. Two of the
many ways to define a PVE are evaluated, both cubic in shape. In the first PVE, the void is at the
center of the cube, while in the second, the void is split into eight quarters, each centered at each
of the vertices of the cube. The schematic of the idea, in 2D settings, is illustrated in Figure 5-6.
The actual, discretized PVEs are shown in Figure 5-7, where the meshing is done to consistently
eliminate the differences due to discretization.

Figure 5-6. – 2D schematic of the two simulated periodic volume elements (PVEs).

Both PVEs are subjected to the same global strain, or equivalently symmetric deformation
gradient:

𝜖 = ∇u =


−1.50 1.00 0.50

1.00 −1.00 0.25
0.50 0.25 −0.50

 (5.4.1)

Note that since the entire strain is associated with deformation gradient, implicitly, there is no
(global) rotation of the PVE. Relative displacement vector for each begin-periodic block is
determined by the above tensor applied on the geometric offset vector. Since the geometric offsets
are unit vectors in x, y and z directions for each of the three begin-periodic blocks, the relative
displacements are essentially the three columns of the deformation gradient (see the input file).
Note that the imposition periodic BC in three different directions automatically prevent rigid body
rotations, but the translation is not restrained. We eliminate the rigid body translations by fixing
the center in the second PVE (and correspondingly vertex in the first PVE), in all three
directions.

The deformed shape, along with contours of von Mises stresses are shown in Figure 5-8, which
visually confirm that the results are the same between the two PVEs.
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Figure 5-7. – Meshes for two different periodic volume elements.

For quantitative comparison, the stresses are examined at three different locations: at
-(0.1,0.5,0.5), -(0.5,0.1,0.5), -(0.5,0.5,0.1), divided by the stress at center of the spherical
inclusion. To be precise, the results are obtained at element centroids closest to the three locations,
which are shown in Table 5-2. Only one set of results is shown since the computed stresses are
identical between the two models, clearly verifying the efficacy of the PVE modeling in Salinas.

Table 5-2. – Stresses computed from PVE model.

Location -(0.1,0.5,0.5) -(0.5,0.1,0.5) -(0.5,0.5,0.1)
𝜎𝑥𝑥 114.9294 92.5208 112.5307
𝜎𝑦𝑦 75.9910 77.9703 7.0164
𝜎𝑧𝑧 37.4338 0.2489 41.6507
𝜎𝑥𝑦 -48.9834 -79.2754 -101.6064
𝜎𝑦𝑧 2.5491 20.0710 16.3110
𝜎𝑥𝑧 -7.1000 -75.8791 -43.3911

In addition to the above example, we tested the implementation on homogeneous block under
specified deformation gradient, resulting in expected uniform stress state with correct values
(including Poisson’s effect). The details are not presented in this document, but can be found in
the test repository. For input see Appendix 9.56
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Figure 5-8. – Meshes for two different periodic volume elements.
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5.5. Filter Rigid Modes from Loads

5.5.1. Introduction and Purpose

For some analyses, it is advantageous to remove the rigid body component of the deformation.
This is the case for a reentry body for example, which may have a static preload followed by a
transient response with applied random pressures. Unless the force is exactly self-equilibrated, the
static preload leads to a singular system. The transient response is also troublesome. The true
physics is complicated and includes a fluid-structure interaction with random pressures as well as
flight dynamics which stabilize the structure from rotation. A random pressure load is sometimes
a valid physical model. Unfortunately, that load can cause the body to rotate wildly, which is both
nonphysical and distracting. As a solution, we filter the input forces to the body so that only
self-equilibrated forces are applied. Because of the singularity, and small contributions to various
linear solvers, a rigid body displacement may be generated. This component is filtered out after
solving, leaving a displacement that has no rigid body component.

5.5.2. Description of the Test

In this test, a small beam of Hex8 elements has a load applied transverse to one end. See Figure
5-9. Because there are no boundary conditions, the resulting system is singular for a statics
solution. Figure 5-10 indicates the equilibrated forces applied to the structure, and the resulting
deformation.

Verification requires determining the following:

1. The loads are properly equilibrated.

2. The output displacement vector contains no rigid body components.

Figure 5-9. – Beam Loading.
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Figure 5-10. – Filtered Beam Forces and Displacements.

5.5.3. Evaluation

The verification is done by MATLAB. Forces and Displacements are loaded into the Matlab
engine and simple calculations are performed.

1. The sum of each force component is zero (1.7e-6). This confirms that the translational
portion of the force has been equilibrated.

2. The sum of cross terms is zero (1.25e-5).

𝑛𝑜𝑑𝑒𝑠∑︁
𝑖

®𝐹𝑖 × ®𝑥𝑖 = 0

This confirms that the net moments are zero. Thus, the loads have been properly
equilibrated.

3. We confirm that the output displacement vector contains no rigid body components as
follows.

The net output translational components are summed for each component.

𝑛𝑜𝑑𝑒𝑠∑︁
𝑖

®𝑢𝑖 = 0

These components are less than 1e-10.

We also confirm that the net moment is zero.

𝑛𝑜𝑑𝑒𝑠∑︁
𝑖

®𝑢𝑖 × ®𝑥𝑖 = 0

The net moment is less than 1.1e-5.

Thus, we have confirmed that the loads are self equilibrated, and that the resulting displacements
are orthogonal to rigid body translation and rotation.

For input deck see Appendix 9.57.
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5.6. Modal Force Loading

Modal Forces provide an alternative, body-based loading to a structure which can be useful for
some solutions. These modal forces are the conjugate of modal force output in the
modaltransient solution method.

Verification is performed by use of the modal transient method, and is shown in Figure 5-11. The
model used is shown in Figure 5-12. The model is first run using physical inputs, and produces
two output files: 1) the modal forces, and 2) the output displacements. The second run uses modal
force as the input. Finally, the output displacements of the two modal transient runs are compared.
Results are identical (except for round-off errors).

Modal Transient

Modal Transient

Physical

Displacement

Physical

Displacement

Physical
Loads

Modal
Loads Comparison

Figure 5-11. – Verification Process for Modal Force.

Figure 5-12. – Biplane Model.

For input see Appendix 9.58
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5.7. Lighthill Analogy - Helmholtz Resonator

The Lighthill tensor provides a source term for noise generation in aeroacoustic simulations. The
Lighthill tensor captures noise generated by unsteady convective fluid flow. Sierra/SD produces a
source term from the Lighthill tensor that is applied as a nodeset load in the pressure formulation
of acoustics. Sierra/SD produces the Lighthill loading by reading in the time varying divergence
of the Lighthill tensor using the readnodalset function. The divergence of the Lighthill tensor
is used to create an equivalent elemental force vector. It is provided by the Fuego incompressible
flow code.

Verification of the Lighthill loading is performed for the Helmholtz resonator shown in Figure
5-13 which has an analytic resonant frequency of 120Hz. The discretized mesh, material
properties, initial and boundary conditions used in the Fuego simulation are shown in Figure 5-14.
Fuego then calculates the divergence of the Lighthill tensor and writes this out to exodus as nodal
data at variable time steps.

a

b
d

c
e f

r

Min	element 0.2 cm

Max	element 1.72	cm

a 150	cm
b 50 cm
c 20 cm
d 1	cm
e 30 cm
f 50 cm
r 100	cm

Figure 5-13. – Dimensions of Helmholtz resonator.

Inflow

P

Periodic

Single	element	depth	of	1	cm
Number	of	elements		=	27352		
Number	of	nodes							=	55640
Inflow	=	2700	cm/s
P	=	1.01325e06	dynes/cm^2
Time	=	0.3	sec
Time	step	~3e-5	- 6e-5	sec
CFL	=	0.9
Equations:

Continuity
X/Y/X	Momentum
Turbulent	Kinetic	Energy
Turbulent	Frequency

Figure 5-14. – Boundary and initial conditions for Fuego simulation.

The Fuego output is used as input in Sierra/SD with the same discretization of the Helmholtz
resonator shown in Figure 5-13 with an additional semi-circular domain in order to apply an
acoustic boundary condition. Absorbing boundary conditions are applied to the edge sideset of
the semi-circular region, highlighted in red in Figure 5-14. boundary with absorbing boundary
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Figure 5-15. – Sierra/SD time history of pressure for Lighthill loading.

conditions eliminate the rigid body modes from the solution which can cause a which linear
growth in the pressure field. Fuego’s nodal DivT field is converted to nodeset data using the ejoin
flag -convert_nodal_to_nodesets. Distribution factors for the new nodeset data are increased from
0 to 1. The Sierra/SD simulation reads in the time varying nodeset data from Fuego and
interpolates it to the nearest time step either linearly or using the closest time step. The double
divergence of the Lighthill tensor is then calculated and applied as a source term in the Sierra/SD
transient acoustic simulation. Results for the Sierra/SD acoustic simulation using Lighthill
loading are shown in Figure 5-15 for acoustic pressure versus time. An FFT of the pressure data is
shown in Figure 5-16 with peaks at 61, 121, and 183. These resonances were also observed in the
pressure data sampled in the rigid chamber of the Fuego simulation. The main peak is close to the
analytic resonant frequency of 120Hz.
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Figure 5-16. – FFT of Sierra/SD pressure data shown in Figure 5-15.

For input see Appendix 9.59
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5.8. Lighthill Tensor Verification

The Lighthill tensor provides a source term for noise generation in aeroacoustic simulations. The
Lighthill tensor, T, captures noise generated by unsteady convection in flow in a fluids simulation.
Sierra/SD produces a source term from the Lighthill tensor that is applied as a nodeset load in the
pressure formulation of acoustics. Sierra/SD produces the Lighthill loading by reading in the time
varying divergence of the Lighthill tensor using the readnodalset function. The divergence of
the Lighthill tensor, ∇ · T, is used to create an equivalent elemental force vector.

In this verification example we compare Lighthill loading to Point Volume Acceleration loading
for a 1-D waveguide shown in Figure 5-17a). The Lighthill and pointVolAcc load functions
are applied to the nodeset indicated by the yellow region. For this example the divergence of the
Lighthill Tensor varies only in the x-direction and is given by

(∇ · T)𝑥 =
(
1 + cos

(𝜋𝑥
20

))
sin2

( 𝜋𝑡
40

)
for 𝑡 ≤ 40s (5.8.1)

where 𝑥 is the location along the x-axis and 𝑡 is time. Only a single load pulse is simulated,
𝑡 ≤ 40s. The simulation is run for a total time of 550s, giving the pressure pulse time to propagate
away from the nodeset. The y and z components of ∇ · T are zero. This form for Lighthill loading
makes (∇ · T)𝑥 = 0 at the end of the nodeset, 𝑥 = ±20.

The same pressure response as that given in equation 5.8.1 is produced with a scalar nodal load
equal to ∇ · (∇ · T) properly scaled by the number of nodes and area it is acting over. For the ∇ · T
used in this example,

∇ · (∇ · T) = − 𝜋

20

(
sin

(𝜋𝑥
20

))
sin2

( 𝜋𝑡
40

)
for 𝑡 ≤ 40s (5.8.2)

and the scalar nodal force applied using Point Volume Acceleration is 1
4∇ · (∇ · T) for the uniform

hexahedron mesh shown in Figure 5-17b where each element is 1x1x1.

Figure 5-18 shows the pressure output at t=75s over the length of the waveguide for Lighthill
and pointVolAcc loading given by equations 5.8.1 and 5.8.2, respectively, applied to the uniform
mesh shown in Figure 5-17b. These are compared to the analytical result shown by the black line.
The results are given after the pressure pulse has been applied, showing the propagation of the
pressure wave through the acoustic medium. The percent difference in pressure between the two
loading methods and the analytical result is shown in Figure 5-19 at t=75s. The L1 error of the
pressure over the domain is shown at each simulation time step in Figure 5-20. This plot shows
the L1 error increasing over the duration of the Lighthill or pointVolAcc load (𝑡 < 40𝑠) and
then remaining steady.

The geometry in Figure 5-17a) was also discretized with an unstructured linear tetrahedron mesh
shown in Figure 5-17c) and Lighthill loading was applied to the domain. Results for these
simulations are also shown in Figures 5-18-5-20 and show the same error as the uniform
hexahedron mesh with Lighthill loading.

For input see Appendix 9.60
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a)

b) Uniform hex mesh

c) Unstructured tet mesh

1000x1x1 -20<nodeset<20

x

y

Figure 5-17. – a) Schematic of 1000x1x1 waveguide geometry. Geometry extends from x=±500.
Yellow region contains the nodeset being loaded. b) Regular hex mesh used to compare Lighthill and
Point Volume Acceleration loading. c) Unstructured tet mesh used for Lighthill loading. Yellow nodes
in b) and c) indicate nodes in nodeset being loaded.
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Figure 5-18. – Pressure output for 3 load cases compared to analytical result at t=75s.
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Figure 5-19. – Percent difference in pressure between the three load cases and the analytical pressure
for t=75s.
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Figure 5-20. – L1 error in pressure for each load type versus time.
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5.9. Acoustic Point Source in Frequency Domain

Figure 5-21. – Acoustic Point Source – Coarse Example.

Consider an acoustic point source in a sphere of acoustic elements, shown in Figure 5-21. An
absorbing boundary condition is applied at radius 2, representing an unbounded acoustic domain.
The source is understood as a pulsating sphere with volume 𝑉 and time derivative 𝑄 = 𝑑𝑉/𝑑𝑡.
The value for 𝑄 is specified using the keyword point_volume_vel.

In the frequency domain, with 𝜔 the circular frequency of the wave and 𝑘 = 𝜔/𝑐 the wave
number, the pressure at a distance 𝑟 = |𝑥 | from the source is given by

𝑝 = 𝑖𝜔𝜌𝑄
𝑒−𝑖𝑘𝑟

4𝜋𝑟
; (5.9.1)

see the section “Point Acoustic Sources” in the theory manual for a detailed explanation.

Figure 5-22 shows a two-dimensional slice of the result for a frequency of 91 Hz. At a point on
the outside of the sphere, with radius 𝑟 = 2 from the point source, the exact and computed
solutions are compared. For the SierraSD solutions, a damping term of 𝛽 = 1.0𝑒 − 5 was added to
facilitate solver convergence.

On the boundary of the mesh, with 𝑟 = 2, and a frequency of 91 Hz, the exact answer is Apressure
= -5.623 and ImagAPressure = -28.873. For the mesh shown in Figure 5-21, which is relatively
coarse, SierraSD calculates Apressure = -4.826 and ImagApressure = -28.600. For the refined
mesh shown in Figure 5-22, SierraSD calculates Apressure = -5.513 and ImagAPressure =
-28.580.

The verification test suite verifies both nodal point source and element point source options. For
input see Appendix 9.61
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Figure 5-22. – Acoustic Point Source – Refined Example.
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5.10. Acoustic Point Source in Time Domain

To verify the transient acoustic point source (Point_Volume_Vel) in Sierra/SD, we consider a
spherical domain with a point source at the center. The spherical domain is given absorbing
boundary conditions around its boundary, to make the space look infinite in all directions. With
this arrangement, we have the problem of a point source in an infinite domain.

The analytical solution to this problem is given by Pierce [39], as follows

𝑝(𝑅, 𝑡) = 𝜌

4𝜋𝑅
¤𝑄(𝑡 − 𝑅

𝑐
)𝐻 (𝑡 − 𝑅

𝑐
) (5.10.1)

where 𝑝(𝑅, 𝑡) is the pressure at a distance 𝑅 from the source and at time 𝑡, 𝜌 is the fluid density, 𝑐
is the speed of sound, 𝐻 (𝑡) is the Heaviside function, and 𝑄(𝑡) is the time derivative of volume
change of the source,

𝑄 =
𝑑𝑉

𝑑𝑡
(5.10.2)

In this problem, we chose 𝑄(𝑡) = sin(50𝜋𝑡), and we examined the solution at the exterior
boundary of 𝑅 = 2. Inserting this into Equation 5.10.1 gives

𝑝(𝑅, 𝑡) = 50𝜌
8

cos(50𝜋(𝑡 − 2
343

))𝐻 (𝑡 − 2
343

) (5.10.3)

Figure 5-23 shows a comparison of the Sierra/SD results for this problem compared against
Equation 5.10.3. Excellent agreement is obtained, except for the initial time, where the numerical
solution shows some difficulty resolving the abrupt change in the exact solution, which comes
from the Heaviside function in Equation 5.10.3. We can also verify the "Point_Volume_Accel"
point source with an input of ¤𝑄(𝑡) = 50𝜋 cos(50𝜋𝑡), and get the same solution.

Two variants of the problem are included in the verification test suite. The first variant uses a
node-based point source at a single node at the center of the sphere. The second variant uses an
element-based point source at a single element at the center of the sphere. Both variations
produce nearly identical results on a relatively coarse mesh and converge to the same analytic
solution with refinement. For input see Appendix 9.62
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Figure 5-23. – Transient Verification of a PointSource in an Infinite Medium.
Comparison of computed and exact solution for a point source in an infinite medium.
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5.11. Acoustic Plane Wave Scattering in Frequency Domain

Consider an acoustic plane wave traveling in the +𝑥-direction. In the frequency domain, with
𝜔 = 2𝜋 𝑓 describing the angular frequency and 𝑘 = 𝜔/𝑐0 describing the wavenumber, the pressure
at every point in space is

𝑝 = 𝑝0𝑒
𝑖𝑘𝑥 . (5.11.1)

Now, consider scattering of a plane wave incident on a steel cylinder in air. Due to the cylindrical
symmetry of the problem, it is useful to expand the spatial dependence of the incident plane wave
via an infinite series as

𝑒𝑖𝑘𝑥 = 𝑒𝑖𝑘𝑟 cos 𝜃 =

∞∑︁
𝑛=0

𝑖𝑛𝜖𝑛𝐽𝑛 (𝑘𝑟) cos(𝑛𝜃) . (5.11.2)

where 𝑟 is the distance from the origin, 𝜃 is the azimuthal angle, 𝜖𝑛 is the Neumann factor (equal
to 1 for 𝑛 = 0 and 2 otherwise), and 𝐽𝑛 (𝑘𝑟) are Bessel functions of order 𝑛. The scattered pressure
field can then be written as

𝑝sc = 𝑝0

∞∑︁
𝑛=0

𝑖𝑛𝜖𝑛𝐴𝑛𝐻
(1)
𝑛 (𝑘𝑟) cos(𝑛𝜃) , (5.11.3)

where 𝐴𝑛 are scattered field coefficients and 𝐻 (1)
𝑛 (𝑘𝑟) are Hankel functions of order 𝑛. Hereafter,

the superscript will be dropped for notational convenience. Similar expansions can be written for
the displacement fields (both longitudinal and transverse) in the cylinder itself, but those are
omitted here.

Continuity of radial displacement, continuity of radial stress, and continuity of tangential stress
must be enforced at the surface of the cylinder to find 𝐴𝑛. Since fluids cannot support shear stress,
the tangential stress must therefore be zero at the boundary. These boundary conditions are
straightforward to enforce, but they result in complicated expressions for the scattered field
coefficients. While the general expressions can be viewed in
elastic_cylinder_fluid_medium.m, the scattered field coefficients for a rigid and immovable
cylinder are sufficient in this case because steel is acoustically rigid compared with air. These
coefficients are

𝐴𝑛 = −
𝐽′𝑛 (𝑘𝑅)
𝐻′
𝑛 (𝑘𝑅)

. (5.11.4)

For a plane wave of frequency 𝑓 = 1 kHz incident on a cylinder of radius 𝑅 = 0.1, the scattered
pressure field is shown in Figure 5-24. A PML boundary condition is applied at radius 0.8,
representing an unbounded acoustic domain. The pressure amplitude 𝑝0 is specified to be unity.
At the point (𝑥, 𝑦) = (0.2, 0), the exact solution answer is Apressure = 0.7072 and ImagAPressure
= 0.1875, and For a mesh size of 0.01, SierraSD calculates Apressure = 0.7037 and
ImagAPressure = 0.1896. For input see Appendix 9.63
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Figure 5-24. – Acoustic Plane Wave Scattering from a Cylinder.
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5.12. Transient Reaction Forces

The response of a simple transient system is demonstrated. The transient time integrator, output of
kinematic quantities from transient solution, and the output of reaction force quantities from
transient solution are verified. The Mathematica notebook contains the derivation of expected
quantities.

5.12.1. Finite Element Model

The model consists of four Spring-Dashpot elements connected to a central concentrated mass as
shown in Figure 5-25.

Figure 5-25. – Reaction Force Model.

Dashpots 1 and 2 act only in the X direction. Dashpots 3 and 4 act only in the Y direction. Each
Dashpot has a unique stiffness and damping coefficient given by Table 5-3. The central conmass
has a mass of 2.5.

Block Stiffness Damping
1 1.1 0.7
2 1.2 0.8
3 1.3 0.9
4 1.4 1.0

Table 5-3. – Dashpot Element Properties.

The model can be treated as two independent single degree of freedom systems. One system
involving the sum of the stiffness and damping of Dashpots 1 and 2 acting in the X direction and a
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second system involving the sum of stiffness and damping of Dashpots 3 and 4 acting in the Y
direction. The Z degree of freedom of all nodes is fixed as is the far end of each Dashpots.

5.12.2. Damped Vibration Due to Initial Conditions

The input deck ’initCond.inp’ applies an initial velocity (10, 20, 0) to the conmass and then solves
for the resultant system response. At standard textbook response is used for vibration of a single
degree of freedom damped system given in the equations 5.12.1 to 5.12.4. 𝐾 is the stiffness
given by the sum of the two Dashpot stiffness. 𝑀 is the mass of the concentrated mass. 𝐶 is the
sum of the two Dashpot damping coefficients. Initial conditions of displacement are given by 𝑑0
and velocity by 𝑣0

𝜔 =

√︂
𝐾

𝑀
(5.12.1)

𝜁 =
𝐶

2 ∗ 𝑀 ∗ 𝜔 (5.12.2)

𝜔𝑑𝑎𝑚𝑝𝑒𝑑 = 𝜔

√︃
1 − 𝜁2 (5.12.3)

𝑑 (𝑡) = 𝑒−𝜁𝜔∗𝑡 (𝑑0𝑐𝑜𝑠(𝜔𝑑𝑎𝑚𝑝𝑒𝑑𝑡) + 𝑠𝑖𝑛(𝜔𝑑𝑎𝑚𝑝𝑒𝑑𝑡)
𝑣0 + 𝜁𝜔𝑑0
𝜔𝑑𝑎𝑚𝑝𝑒𝑑

) (5.12.4)

In Sierra/SD the dynamics are integrated through time using the Newmark-Beta time integrator. A
small time step is used so that the results have a high degree of time accuracy. The tests checks
equivalence between the analytic and Sierra/SD results kinematic quantities at specific time steps
in the solution.

The expected reaction forces can be found by considering the fundamental system equation given
in 5.12.5.

𝐾𝑢 + 𝐶 ¤𝑢 + 𝑀 ¥𝑢 = 𝑓 (5.12.5)

5.12.3. Prescribed Acceleration

A second tested case involves constant prescribed acceleration on the central node. The velocity
and displacement of the central node can be found via integration of the acceleration. Based on
the kinematic motion the forces are given 5.12.5. For the prescribed acceleration case the total
damping matrix is formed from the 𝐶 of the Dashpot and mass proportional (0.1) and stiffness
proportional (0.2) damping coefficients.

For input see Appendix 9.64.
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6. OUTPUT

6.1. Relative Displacement PSD

A typical requirement often met using random vibration analysis is to determine the probability of
interference of two nodes. This use case is discussed in subsubsection RMS Output, subsection
Random Vibration, Section Solution Procedures of the Theory Manual, and details about usage
can be found in the User’s Manual, in Outputs under Relative_Disp.

In the following examples, we consider a 1D problem. Specifically, we investigate the relative
displacement output of a joint2G element in response to two conmass nodes.

6.1.1. In Phase Response: Nodal closest distance user output

Figure 6-1. – Diagram of nodes moving in phase.

In this example the motion of both, the face and the node, is precisely in phase (see figure 6-1). In
that case, the difference in motion between the face and the node should report no response, as
seen in figure 6-2. This test verifies that the gap differencing element does not report the rigid
motion of the element.

Figure 6-2. – Closest Distance: Nodes moving in phase.
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6.1.2. Element relative_disp output

In this example, the motion of both nodes is precisely in phase (see figure 6-3). In that case, the
difference of the two nodes should report no response, as seen in figure 6-4. This test verifies that
the gap differencing element does not report the rigid motion of the element.

Figure 6-3. – Diagram of nodes moving in phase.

Figure 6-4. – Relative Distance: Nodes moving in phase.

6.1.3. Opposite Phase Response: Nodal closest distance user output

In this example, the motions of the face and that of the node are precisely out of phase with each
other (see figure 6-5). This is a direct test of the gap differencing element’s measurement of the
difference in motion between two points. In the time domain, this condition would result in the
gap element reporting twice the response at each node. Likewise, in the frequency domain the gap
element should report 4 times the response. This relation is seen in figure 6-6.

Figure 6-5. – Nodes moving exactly out of phase: diagram.
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Figure 6-6. – Nodes moving exactly out of phase: results.

6.1.4. Element relative_disp output

Figure 6-7. – Nodes moving exactly out of phase: diagram.

In this example, the motion of the two nodes are precisely out of phase with each other (see
figure 6-7). This is a direct test of the gap differencing element’s measurement of the difference in
motion between two points. In the time domain, this condition would result in the gap element
reporting twice the response at each node. Likewise, in the frequency domain the gap element
should report 4 times the response. This relation is seen in figure 6-8.

Figure 6-8. – Nodes moving exactly out of phase: results.
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6.1.5. One Node Fixed Response: Nodal closest distance user output

In this example, the face is fixed, and the node is free as shown in figure 6-9. The results
figure 6-10 have the expected behavior: the difference in motion between the node and the face
coincides with the motion of the free node.

Figure 6-9. – Face fixed and node free diagram.

Figure 6-10. – Face fixed and node free results.

6.1.6. Element relative_disp output

Figure 6-11. – Left node fixed and right free diagram.

In this example, one node is fixed, and the other is free as shown in figure 6-11. The results
figure 6-12 have the expected behavior: the difference in motion between two nodes is equal to the
motion of the free node,
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Figure 6-12. – Left node fixed and right free results.
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6.1.7. Tuning fork response

In this test, we verify the gap calculation from Sierra/SD by directly computing the expected gap
PSD from modal displacements. This test also involves several overlapping tied joints, as shown
in figure 6-13.

Figure 6-13. – Tuning fork with multiple overlapping tied joints.

The PSD, 𝐺 (𝜔) ∈ R34×34, is given by

𝐺 = 𝐻 𝑆 𝑓 𝑓 𝐻
∗ (6.1.1)

where 𝑆 𝑓 𝑓 (𝜔) ∈ R34×34 is the forcing PSD, and the transfer function 𝐻 (𝜔) ∈ R34×34 is given by

𝐻 = Φ𝐻Φ𝑇 (6.1.2)

where Φ ∈ R34×12 is the matrix of mode shapes (dofs x mode shapes), and the modal transfer
function 𝐻 (𝜔) ∈ R12×12 is a diagonal matrix given at each mode 𝑛 as

𝐻𝑛𝑛 =
1

𝜔2
𝑛 + 2𝑖 ∗ 𝜔𝛾𝜔𝑛 − 𝜔2

(6.1.3)

For input see Appendix 9.65.
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6.2. Projection of Gauss Point Stresses to Nodes

Sierra/SD has the capability of projecting Gauss point stresses to nodes using a least squares
minimization approach. Details of this projection approach can be found in the 𝐿2 Projection of
Gauss Point Stresses chapter of the Theory Manual. Currently, this capability is restricted to
HEX20, TET10, WEDGE15 and HEX8 elements.

The first set of verification tests deals with meshes of HEX20, TET10 and WEDGE15 finite
elements (see Figure 6-14) subjected to a uniform gravitational field (𝑔𝑥 , 𝑔𝑦, 𝑔𝑧) in the three global
axes. The domain for the rectangular mesh is 𝑥 ∈ [−𝐿𝑥/2, 𝐿𝑥/2], 𝑦 ∈ [−𝐿𝑦/2, 𝐿𝑦/2] and
𝑧 ∈ [−𝐿𝑧/2, 𝐿𝑧/2]. Normal displacements are constrained to zero along three faces of the mesh
associated with minimum coordinate values. That is, 𝑢(−𝐿𝑥/2, 𝑦, 𝑧) = 0, 𝑣(0,−𝐿𝑦/2, 0) = 0 and
𝑤(0, 0, 𝐿𝑧/2) = 0. In order to have a simple closed-form solution, Poisson’s ratio of the isotropic
material is set to zero. Further, the elastic modulus and mass density of the material are denoted
by 𝐸 and 𝜌.

The displacements vary quadratically with the spatial coordinates according to

𝑢(𝑥, 𝑦, 𝑧) =
𝜌𝑔𝑥𝐿

2
𝑥

2𝐸
[−(𝑥/𝐿𝑥)2 + (𝑥/𝐿𝑥) + 3/4],

𝑣(𝑥, 𝑦, 𝑧) =
𝜌𝑔𝑦𝐿

2
𝑦

2𝐸
[−(𝑦/𝐿𝑦)2 + (𝑦/𝐿𝑦) + 3/4],

𝑤(𝑥, 𝑦, 𝑧) =
𝜌𝑔𝑧𝐿

2
𝑧

2𝐸
[−(𝑧/𝐿𝑧)2 + (𝑧/𝐿𝑧) + 3/4],

while the normal stresses varying linearly and are given by

𝜎𝑥𝑥 (𝑥, 𝑦, 𝑧) =
𝜌𝑔𝑥𝐿𝑥

2
(1 − 2𝑥/𝐿𝑥),

𝜎𝑦𝑦 (𝑥, 𝑦, 𝑧) =
𝜌𝑔𝑦𝐿𝑦

2
(1 − 2𝑦/𝐿𝑦),

𝜎𝑧𝑧 (𝑥, 𝑦, 𝑧) =
𝜌𝑔𝑧𝐿𝑧

2
(1 − 2𝑧/𝐿𝑧).

The shear stresses 𝜎𝑥𝑦, 𝜎𝑥𝑧 and 𝜎𝑦𝑧 are all zero.

Because quadratic displacements can be approximated exactly by the shape functions of HEX20,
TET10 and WEDGE15 elements, the finite element solution should match the closed-form
solution for displacements at the nodes and for stresses at the Gauss points. In addition, since the
projection approach uses linear shape functions, the projected stresses should also match at the
nodes, which they indeed do.

The next test is identical to the first, but here only HEX8 elements are considered. The shape
functions for HEX8 elements cannot approximate quadratic displacements exactly, so we don’t
expect Gauss point stresses projected to the nodes to match linearly varying stress fields.
Nevertheless, we do expect nodal stresses to converge to the known stresses with mesh refinement.
Figure 6-15 shows how the maximum absolute value of stress errors is reduced with mesh
refinement. Here, ℎ is the mesh interval length used by the Cubit mesh generation code. We note
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Figure 6-14. – Meshes of HEX20, TET10 and WEDGE15 elements use in first verification test.
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that ℎ = 0.25 in the top mesh of Figure 6-14 and results in 20 elements along its length. Also, the
results in Figure 6-15 suggest a convergence rate proportional to the first power of ℎ.

Figure 6-15. – Convergence of nodal stresses for HEX8 elements. The slope of the triangle near the
bottom of the figure is 1.

The final test involves a unit cube geometry rotated by 30 degrees about an axis in the direction
(1, 2, 3). We again consider meshes of HEX20, TET10 and WEDGE15 elements (see Figure 6-16
for the TET10 mesh). As before, Gauss point stresses are projected to the nodes. These nodal
stresses are then used to calculate principal and Von Mises stresses at the nodes.

Uniform gravity loads are again applied, but they are now aligned with the three axes of the cube.
To help explain, let 𝜃 denote the angle of rotation about a unit vector axis (𝑢𝑥 , 𝑢𝑦, 𝑢𝑧). Also, let 𝒏1,
𝒏2 and 𝒏3 denote unit vectors fixed in the global coordinate system while 𝒃1, 𝒃2 and 𝒃3 are unit
vectors fixed in the cube mesh. Entries of the direction cosine matrix are defined as

𝑐𝑖 𝑗 = 𝒏𝑖 · 𝒃 𝑗
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Figure 6-16. – Rotated mesh of TET10 elements.

and are given by

𝑐11 = cos(𝜃) + 𝑢2
𝑥 (1 − cos(𝜃)),

𝑐22 = cos(𝜃) + 𝑢2
𝑦 (1 − cos(𝜃)),

𝑐33 = cos(𝜃) + 𝑢2
𝑧 (1 − cos(𝜃)),

𝑐12 = 𝑢𝑥𝑢𝑦 (1 − cos(𝜃)) − 𝑢𝑧 sin(𝜃),
𝑐23 = 𝑢𝑦𝑢𝑧 (1 − cos(𝜃)) − 𝑢𝑥 sin(𝜃),
𝑐31 = 𝑢𝑧𝑢𝑥 (1 − cos(𝜃)) − 𝑢𝑦 sin(𝜃),
𝑐13 = 𝑢𝑥𝑢𝑧 (1 − cos(𝜃)) + 𝑢𝑦 sin(𝜃),
𝑐21 = 𝑢𝑦𝑢𝑥 (1 − cos(𝜃)) + 𝑢𝑧 sin(𝜃),
𝑐32 = 𝑢𝑧𝑢𝑦 (1 − cos(𝜃)) + 𝑢𝑥 sin(𝜃).

Given a position vector 𝒓 = 𝑥𝒏1 + 𝑦𝒏2 + 𝑧𝒏3, we have

𝑥𝒃1 + 𝑦̃𝒃2 + 𝑧𝒃3 = 𝑥𝒏1 + 𝑦𝒏2 + 𝑧𝒏3.

Taking dot products of each side of this expression with 𝒃 𝑗 for 𝑗 = 1, 2, 3, we obtain

𝑥 = 𝑐11𝑥 + 𝑐21𝑦 + 𝑐31𝑧,

𝑦̃ = 𝑐12𝑥 + 𝑐22𝑦 + 𝑐32𝑧,

𝑧 = 𝑐13𝑥 + 𝑐23𝑦 + 𝑐33𝑧,

which relate global coordinates to body-fixed coordinates.

The gravity load is given by 𝒈 = 𝒃1 + 10𝒃2 + 100𝒃3 and a unit density is used. This gives the exact
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stresses (in body-fixed coordinates)

𝜎11 = 1/2 − 𝑥,
𝜎22 = 10(1/2 − 𝑦̃),
𝜎33 = 100(1/2 − 𝑧).

All shear stresses, again in body-fixed coordinates, are zero. With these exact expressions in hand,
the minimum, intermediate and maximum principal stresses are compared with those calculated
using Sierra/SD. Similarly, the exact Von Mises stresses are also compared. As expected, these
comparisons are found to be in agreement for cube meshes of HEX20, TET10 and WEDGE15
elements.

For input see Appendix 9.66.
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7. CONTACT, CONSTRAINTS AND MPCS

MultiPoint Constraints (MPCs) are applied in structural dynamics for some reasons. Typical uses
include spreading a load over many input nodes, attaching dissimilar meshes, connecting lumped
structures, applying boundary conditions and approximating rigid structures. The variety of uses
for MPCs makes verification of their application difficult. Only small problems may typically be
solved analytically.

Analytic problems for which some degrees of freedom may be eliminated using constraints will be
compared with solutions from Sierra/SD. The problems for which these comparisons may be
made are still to be determined at this time.

In addition to analytic problems, code comparisons for practical problems will be made. While
code comparisons suffer from a number of problems, they have the advantages of comparing
solutions to the type of problems expected in practice, and they provide some level of verification
for components of the software which could otherwise not be tested.

7.1. Tied-Joint with Joint2G and Spring. Slip and Rigid

Figure 7-1. – Tied-Joint Model Geometry.
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7.1.1. Purpose

The “Tied Joint” structure is a meta structure that provides an efficient and robust means of
modeling a joint structure. The purpose of this document is to verify that both the tied-joint and
conventional methods produce the same solution. Showing the results are the same encourages
the use of tied-joints rather than the more tedious conventional method which involves replicating
nodes and the use of multi-point constraints (MPCs). Generally, the input file for the tied-joint
method is much simpler since all the constraints are accounted for, rather than having to list them
by hand. Also, for the tied-joint input files the necessary constraints become included in the
method itself, resulting in a simpler model for the input geometry file.

7.1.2. Lap Joint Comparison

7.1.2.1. Model Geometry

The lap joint model used for both the conventional and tied-joint tests consists of two partially
overlapping rectangular blocks, as seen in Figure 7-1. The end of one of the blocks is fixed, while
the opposite end of the other block is loaded with a constant applied force. The particular model
seen here and used in the following results was created using Cubit and exported as an exodus
file.

7.1.2.2. Building the Tied-Joint model

7.1.2.3. Non-slip

Tied Joint
Normal Definition = none

surface 1,2
Shear Definition

side = rigid
connect to Block 33

end

Block 33
Spring

Kz = Elastic 1e9
Kx = Elastic 1e9
Ky = Elastic 1e9

end

Figure 7-2. – Tied-Joint Non-Slip Input.
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The exodus file of the original model as described in 7.1.2.1 is the geometry file used for the
tied-joint input. The non-slip tied joint model requires the use of a new block. The relevant
portions of the input file for the Tied-joint model are seen in Figure 7-2. Using the tied-joint
model results in two virtual nodes being created. The exodus output file obtained from using the
tied-joint approach is then used as the input geometry file for the conventional non-slip method,
and the extra nodes are included using MPCs as explained later.

7.1.2.4. Slip

Tied Joint
Normal Definition = slip

surface 1,2
Shear Definition

side = rrod
connect to Block 3

end

Block 3
Spring

Kx = Elastic 1e9
Ky = Elastic 1e9
Kz = Elastic 1e9

end

Figure 7-3. – Tied-Joint Slip Input.

The geometry file used for the tied-joint slip input is also the original exodus file created from
Cubit. However, some changes to the Sierra/SD input file are made to incorporate slipping. In the
Tied-Joint block the normal definition is set to slip and the side is set equal to “rrod” under the
shear definition. Everything else in the file is kept the same, as seen in Figure 7-3. The output of
the tied-joint slip file creates two extra blocks that constrain the overlapping surfaces from
stretching, allowing the surfaces to move together as one. This output is in turn used in the input
file of the conventional slip model, as described later.

7.1.3. Building the Conventional Model

7.1.3.1. Non-slip

The input model used for the conventional approach is the output of the tied-joint model. The
tied-joint model produces an additional block to connect the virtual nodes that are created
internally, and thus an additional block with spring or joint2g properties is explicitly added to the
input file of the conventional method. The difference between the joint2g and the spring
properties, is that the joint2g includes rotational degrees of freedom, everything else within the
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input file remain the same. The input file requires rigidsets and MPCs linking the duplicate nodes
that the tied-joint model creates to the “original” nodes on the corresponding faces. The rigidset
input section with the spring connection is seen in Figure 7-4.

Rigidset
sideset 1

end
Rigidset

sideset 2
end

Block 33
Spring

Kz = Elastic 1e9
Kx = Elastic 1e9
Ky = Elastic 1e9

end

Figure 7-4. – Conventional Non-Slip Input.

7.1.3.2. Slip

The geometry file used for the conventional slip input is the output from the tied-joint slip input.
The extra blocks created from the tied-joint slip output are defined "dead" for this input file when
using a spring. In their place, a new section called Tied Data is added to incorporate slipping.
When a joint2g is used, these extra blocks are defined as "rbe3", replacing the use of MPCs. This
can be seen in Figure 7-5. The Tied Data is specified to be a transverse slip that applies to the
overlapping surfaces. Rrodsets are also added instead of the rigidsets that are seen in the
conventional non-slip input file. Figure 7-6 shows a section of the input file when using a spring
connection for conventional slip.
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Rrodset
sideset 1

end
Rrodset

sideset 2
end

Block 3
Joint2G

Kx = Elastic 1e9
Ky = Elastic 1e9
Kz = Elastic 1e9
Krx = Elastic 1e9
Kry = Elastic 1e9
Krz = Elastic 1e9

end
Block 4

rbe3
method=new

end
Block 5

rbe3
method=new

end

Tied Data
surface 1,2
transverse slip

end

Figure 7-5. – Conventional Slip Input with Joint2G.
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Rrodset
sideset 1

end
Rrodset

sideset 2
end

Block 3
Spring

Kx = Elastic 1e9
Ky = Elastic 1e9
Kz = Elastic 1e9

end

Tied Data
surface 1,2
transverse slip

end

Figure 7-6. – Conventional Slip Input with Spring.
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7.1.4. Comparison of Results

Exodiff was used to compare the tied-joint and the conventional model for both the slip and
non-slip models. While the results from using the tied-joint method and the conventional method
were not exactly the same, they were extremely close. These results show that the tied-joint
method is just as accurate as the conventional approach. This, in addition to the previously
mentioned advantages of offering the user a simpler input and model definition, make the case for
the continued use of Tied-Joints in Sierra/SD.

For input deck see Appendix 9.69.1 and Appendix 9.69.2.
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7.2. Slide RBE2. Selected DOFs

This test exercises the RBE2 element as a slider. The model and results are shown in Figure 7-7.
The base plate is clamped. The perpendicular plate is clamped on the left, and pulled from the
right. We are interested in the behavior of the RBE2 links that connect the two plates.

In this example, the RBE2 (which are translated as RBARS in Nasgen) provide a connection in
only selected dofs. In particular, the 13456 dofs are constrained, while the 2 is left free. This
leaves translation in the 𝑌 axis unconstrained.

Figure 7-7 indicates a uniform displacement in the 𝑌 direction on the loaded side of the
perpendicular plate. This is in agreement with the NASTRAN results. NASTRAN results indicate
a maximum displacement of 0.00213, while the QuadT displacement is 0.0023220022994. The
discrepancy is expected based on the difference in element formulations. The results indicate that
the plate is free to translate, but constrained in the other directions.

Figure 7-8 uses an identical geometry but the load is augmented with a 𝑍 component of load. As
can be seen in the example, addition of an orthogonal loading does not restrict the sliding
behavior.

Figure 7-7. – Model and Results of Selective DOF RBE2 Test.

Figure 7-8. – Model and Results of Orthogonally loaded Test.

For input see Appendix 9.70
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7.3. Rigidset Compared to Rbar

The purpose of this test is to verify Rigidsets. Verification means that the Rigidsets do the same
thing as an equivalent block of Rbars.

A Rigidset is a tool to define a set of nodes as completely Rigid. It is done by creating a sideset
(or a nodeset, but sidesets are preferred) and defining that sideset as a Rigidset in the input deck.
While Rbars can be used to produce the same rigidity, the process with Rigidsets is much easier.
Setting up an equivalent block of Rbars involves creating a block of beams that are not redundant,
which gets trickier with more nodes. This step can take more time than desired. Then the block is
defined with Rbars in the input deck. Rigidsets are much easier to use and produce similar
results.

While the results are the same, the means of obtaining them are different. This can be seen
through the MPCs (Multi-Point Constraint equations). Consider the single hex model in
Figure 7-9. Since this meshed model contains only a single hex, it only has eight nodes. A sideset
has been assigned to one of the hex surfaces, shown in green in Figure 7-9. This sideset is used to
define the Rigidset. Rbars are defined by three of the edges on this surface, constrained as a block
of BEAM elements.

As previously mentioned, the Rigidset is defined by a sideset. A wireframe of the single hex’s
Rigidset can be seen in Figure 7-10. There are 18 MPCs and three node connections that are used
in the constraint equations. The node connections here are between nodes 3 and 4, 2 and 1, 3 and
1, as represented by the dashed red lines in Figure 7-10. There are 6 constraint equations for each
connection. Together, these constraint equations make a perfectly rigid surface.

The MPCs for the block of Rbars also create a perfectly rigid surface, but the equations and node
connections differ from those used in the Rigidset. Figure 7-11 shows the block of Rbars created
from three edges of the surface. Notice that there cannot be a connection between nodes 3 and 4.
A connection between nodes 3 and 4 would require an Rbar there, which would cause redundancy
in the constraint equations. One of the difficulties in creating a block of Rbars is making sure
there are no redundancies. As shown by the dashed red lines, the connected nodes here are 4 and
1, 1 and 2, 2 and 3. Each connection still has 6 constraint equations, making 18 MPCs in all. The
result is the same as Rigidsets, but the means of getting there is different.

Rigidsets and Rbars use different constraint equations, but both can create a rigid set of nodes
with the same eigenvalues. This means that Rigidsets can be verified by comparing the results to
Rbars. For input deck see Appendix 9.67.
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Figure 7-9. – A model of a single hex.

Figure 7-10. – A wireframe view of the sideset used for the Rigidset in Figure 7-9.
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Figure 7-11. – A wireframe view of the block of beams used for the Rbar collection in Figure 7-9.
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7.4. Multiple Tied-Surfaces and Curved Surfaces

The purpose of this test is to verify the behavior of multiple tied surfaces. The model is shown in
Figures 7-12 through 7-19. Included are several figures that show the model broken down into
blocks and the relationships between the surfaces and blocks. Note that Block 3 is actually Block
10 in the input files.

We verify that the eigen analysis retains 6 rigid body modes, and that the structure is appropriately
tied on the planar and curved surfaces. Note that 6 rigid body modes are not calculated due to
poor conditioning of the constraint matrix if con_tolerance 1e-3 is commented out in the GDSW
solver block. Figure 7-20 shows mode 15 of the solution, with a large degree of deformation.

Figure 7-12. – All three blocks from an above angle.

For input deck see Appendix 9.68.
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Figure 7-13. – All three blocks from a below angle.

Figure 7-14. – Block 1 and Surface 1.
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Figure 7-15. – Block 1 and Surface 3.

Figure 7-16. – Block 2 and Surface 2.

314



Figure 7-17. – Block 3 and Surface 103.

Figure 7-18. – Block 3 and Surface 102.
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Figure 7-19. – Block 3 and Surface 101.

Figure 7-20. – Mode 15 with sideset Tying.
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7.5. Contact Verification

In this section we provide a series of verification tests for a conceptually monolithic bar created by
tying together separate element blocks. This verification test documents the solution convergence
rate for a contiguous mesh versus a discontinuous mesh tied along planar or curved boundaries.
Additionally, the test investigates the effect of tied data gap removal and face/node pairings.
Evidence based usage guidelines for tied data are provided based on the results.

7.5.1. Description of the Test

The first of the three load cases, shown in Figure 7-21 (a), is a gravity load on a cantilever beam.
Next a bar fixed at one and with a traction load on the other is shown in the (b). The last is a
free-free eigenvalue problem. To ensure planar notionally 2D results, the Poisson’s ratio of the
material is set to zero and boundary conditions constrain motion to the xy plane. In the Hex8
element mesh of Figure 7-22, the top mesh is a conforming mesh that is used as a comparison
baseline, and refined significantly for a “truth” solution. Straight interfaces between the block
partitions are shown in the middle mesh. The bottom mesh uses curved interfaces between the
block partitions.

a)																																																												b)

Figure 7-21. – Beam under (a) gravity loading and (b) traction loading.

317



Figure 7-22. – Mesh Geometry.

7.5.2. Expected Results

The eigen modes, cantilever beam displacement, and axial pull solution all have approximate
solution based on beam theory. However, as the meshed beam has finite thickness, ultimate
verification is done against a “truth” solution generated by a highly refined contiguous mesh.

For the free-free eigen case, the first three modes should be rigid body modes. These tests
investigate the preservation of rigid body modes with tied data and the convergence of the first
three flexible modes. For the cantilever beam problem, the quantity of interest is tip displacement
and total strain energy, again compared versus a highly refined contiguous truth solution. For the
axial bar pull analysis the quantity of interest is maximum stress, which is expected to be
artificially high when tied interfaces are used. The axial bar pull analysis is effectively a patch test
that should produce an exactly known uniform stress state. Any deviation from this expected
stress state is considered error.

7.5.3. Evaluation of Free-Free Eigen Load Case

The bar is constrained to deform in plane only. Thus, the bar should have three rigid body modes:
two translational, and one rotational. The expected mode shapes for the first three flexible modes
are shown in Figures 7-23(a) 535.5 Hz, (b) 1272.6 Hz, and (c) 1453.9 Hz.
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a)

b)

c)

Figure 7-23. – Flexible mode shapes (a) mode 1 (b) mode 2 and (c) mode 3 (non-uniform axial
elongation).

7.5.3.1. Convergence Rate for Eigenvalues

The mesh convergence for the first three flexible modes are shown in Figures 7-24(a)-(c). Note the
third flexible mode is the axial bar extension mode. This mode approaches the correct solution
with very few elements due to the complete lack of any bending in the mode shape. As a result,
the convergence plot is not particularly informative, but is shown here for completeness.
Generally second order convergence rates are achieved with or without contact. The contiguous
mesh tends to have moderately less absolute error at any given refinement.
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a) b)

c)

Figure 7-24. – Convergence rates for flexible modes. (a) First elastic mode converges to 534.5 Hz (b)
Second elastic mode converges to 1272.6 Hz (c) Third elastic mode converges to 1453.9 Hz.
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7.5.3.2. Invariance to Rigid Body Rotation

Figure 7-25 shows how accurately the rigid body rotation mode is preserved. Ideally, this rigid
body rotation mode will have zero stiffness. In practice there is a very small stiffness due to
round-off errors and finite solver convergence tolerance. However, for the curved contact case
with gap removal off there is a very significant error in the rigid body rotation mode. Using the
faceted curved cuts, there are finite gaps between the nodes and faces on the two sides of the
contact interface. When tied contact constraints are defined across finite gaps, the constraints
artificially constrain rotations. The smaller the gap, the less artificial constraint is produced. As
the mesh is refined the node to face gap shrinks, and the solution converges toward the exact
solution. However, as seen in both the rigid body rotation mode, and the results for the flexible
modes, the error from these constraints with gaps is large.

Figure 7-25. – Error in rigid body rotation divided by first flexible mode.

7.5.3.3. Effect of Node Face Interaction Pairing

Simulation fidelity may be enhanced by carefully ordering the pair of surfaces in a tied data
interaction. The previous results were made with the recommended setting of using the finer
meshed surface as the node surface, and the coarser surface as the face (faces). The face and node
surfaces are selected by the order of surfaces in the tied data section of the input deck. As an
example, the below syntax selects the nodes of surface 101 as the nodes and the faces of surface
100 as the face.

TIED DATA
SURFACE 100, 101

END
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The opposite face node pairing is given by:

TIED DATA
SURFACE 101, 100

END

If face and node surfaces are selected properly, MPC_Status, which is specified by the
constraint_info output option, will appear as shown in Figure 7-26(a). If the wrong surface is
chosen as face, then the results appear as shown in Figure 7-26(b). Notice that many nodes on the
tied surfaces have begun to separate from, or penetrate into, the opposing surface. This is a result
of the relative refinements between the two surfaces. In the incorrect example, the more refined
surfaces were chosen as the face surface, and many interactions were missed. The reason for this
lies in the way that tied data functions; specifically, tied data requires that all nodes on the node
surface lie on the faces of the face surface, but does not impose the same requirement on the nodes
of the face surface. If both surfaces are at approximately the same refinement, it does not matter
which side is the face surface, but when the face surface is at a significantly higher refinement
than the node surface, there will be some faces of the face surface which are not constrained to any
nodes, and are allowed to move without any stiffness contribution from the node surface. Note
that the MPC_Status variable is not a foolproof check of correct interactions. It clearly shows the
issues on the small circular region, but is not a sufficient check on the larger arc.

a)

b)

Figure 7-26. – MPC Status (a) correct and (b) incorrect.

The eigen mode convergence with reversed face/node interactions is shown in Figure 7-27(a)-(c).
With the non-recommended face/node pairing the convergence rate becomes sporadic. The eigen
shape solution will contain obvious errors local to the contact interface. A decent eigen value
solution can sometimes be obtained when these errors cancel. On the whole though, the eigen
value solutions are much worse with the non-recommended face/node pairings.
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a) b)

c)

Figure 7-27. – Flexible mode convergence rates with reversed face/node. (a) First flexible mode
converged to 534.5 Hz. (b) Second flexible mode converged to 1272.6 Hz. (c) Third flexible mode
converged to 1453.9 Hz.
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7.5.4. Evaluation of Cantilever Beam Static Results

The result for contiguous cantilever beam is shown in Figure 7-28.

Figure 7-28. – Cantilever Beam Deformed result (greatly magnified).

Convergence Rate The mesh convergence of tip displacement for the cantilever beam is shown in
Figure 7-29. Convergence is quadratic with or without contact. As in the eigen mode solution,
addition of contact does add some error for a given mesh density. Likewise, the presence of finite
gap constraints introduces additional error into the solution.

Figure 7-29. – Cantilever Beam Convergence For Tip Displacement.

7.5.4.1. Symmetric Contact

It is possible to inadvertently add symmetric contact to a model. In symmetric contact the nodes
of surface one are constrained to the faces of surface two while simultaneously the nodes of

324



surface two are constrained to the faces of surface one. For example, including both the following
tied data sections in an input deck would add symmetric contact to a model:

TIED DATA
SURFACE 101, 100

END
TIED DATA
SURFACE 100, 101

END

Symmetric contact is not expected to work correctly. Symmetrically constrained interfaces are
over constrained. Such interfaces can rotate, stretch, and shear, but they cannot bend. The
convergence of the cantilever bar with symmetric constraints is shown in Figure 7-30. With
symmetric constraints there is no convergence to the correct solution. As seen in Figure 7-31 the
symmetric contact interfaces cannot bend, leading to a completely spurious displacement and
stress result.

Figure 7-30. – Cantilever Beam Convergence with Symmetric Constraints.
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Figure 7-31. – Incorrect Cantilever Beam Result with Symmetric Contact.

7.5.5. Evaluation of Axial Pull Results

Figure 7-32. – Axial Pull Convergence for Maximum Stress.

An axial pull produces an exact uniform XX direction stress of 1000. However, the nature of tied
contact constraints produces artificial stress concentrations at the contact interface. Figure 7-32
shows the convergence of stress. Figure 7-33 shows the distribution of stress on two mesh
resolutions. The magnitude of tied data stress concentrations are not remedied by mesh
refinement. The stress concentrations do become somewhat more localized with mesh
refinement.
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a)

b)
Figure 7-33. – Spurious Local Stress Concentrations with (a) coarse and (b) fine meshes.

7.5.6. Usage Guidelines

Used carefully, tied data can greatly simplify the model creation process by eliminating the need
for contiguous meshes. However, there are some significant areas for concern when setting up tied
data.

• Models using tied data can achieve quadratic convergence for both eigen modes and static
displacement. However, results will generally by at least mildly inferior to a contiguous
mesh at the interface.

• Using gap removal will significantly improve the accuracy of contact at curved interfaces.

• For optimal accuracy, the finer meshed surface should be used as the ’nodes’ of tied data
interactions and the coarser surface the ’faces’.

• Symmetric contact constraints should always be avoided as they lead to major errors and a
non-convergent solution.

• Tied contact introduces irresolvable local stress concentrations at the tied interface. If an
accurate stress is needed near the tied interface, a contiguous mesh should be used.

For input see Appendix 9.71
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7.6. Moving Mesh MPCs: 1D Balloon Pop waveguide

This verification test demonstrates the use of acoustic multipoint constraints (MPC) to tie together
two waveguides at different pressures. The waveguide configuration and boundary and initial
conditions used in this test mimic a balloon popping in 1D. The purpose of this test is to verify the
correction used to equilibrate a multipoint constraint as described in the theory document. This
test will verify that the pressure jump between the two structures is in equilibrium after three steps
and equilibrates to the average pressure of the two domains. This is verified in the test file by
using compare values to ensure both nodes across the interface are equal after three time steps.

a)

b)

Figure 7-34. – a) Schematic of two 4.0 x 0.5 x 0.1m wave guides with block 1 in red at 4Pa and block
2 in yellow at 2Pa. (b) Close-up of the gap where constraints will tie together the pressure across the
interface.

The waveguide configuration shown in Figure 7-34 represents a 1-D equivalent of a balloon
popping with mirror symmetry at the centerline of the balloon. The over pressured block in red
represents the balloon containing air at a high pressure and the surrounding lower pressure
atmosphere is shown in yellow. A free surface boundary condition is used on the end of the red
domain and absorbing conditions are placed on the end of the yellow domain. The initial
conditions for the red block is 4Pa and the yellow block is at 2Pa. At time t=0, the balloon is
popped and the pressure waves will propagate away from the red-yellow interface. When the
pressure waves reach the end of the red domain they will reflect with opposite phase.

Each block of the wave guide in Figure 7-34 is 4.0 x 0.5 x 0.1 meters meshed with 0.1m Hex8
elements. The blocks are separated by a 1cm gap. The purpose of the gap is for visualization only,
it has no effect on how the inhomogeneous MPCs tie together the two domains. By including the
gap, clearly no nodes are being shared between the blocks. The initial pressure of block 1 is set to
4 Pa and block 2 is set to 2 Pa using an initial-conditions block with acoustics =
by_block in the input file. The acoustics initial condition refers to applying an initial condition
on the primary variable. For the pressure form of the acoustic equation used in this test, the
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primary variable is pressure. A block by block application of the initial conditions is set using
by_block, and each block in the input file that an initial condition is applied to must have the
keyword acoustics followed by its value. The LOAD block is used to apply an acoustic_accel
that is zero for all time. This switches the acoustics formulation to use pressure as the primary
variable instead of the velocity potential. A similar two block conformally meshed waveguide
using the same input file is used to verify the results.
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Figure 7-35. – Pressure profiles measured across the length of the waveguide are shown at the
times given in the legend shown in (c). (a) and (b) show far and near field pressure profiles for the
contiguously/conformally meshed waveguide. (c) and (d) show pressure profiles for the mesh containing
a gap and constraints.

Figure 7-35 shows the first time steps after the balloon is popped for the conformal mesh and mesh
containing a gap with constraints. Data for these plots is obtained using linesample with 1000
sample points taken between −1 ≤ 𝑥 ≤ 1. The location of the interface is shifted by half an
element (0.05m) for the conformal mesh because of where the nodal pressure initial conditions are
applied. The pressure profiles for the conformal mesh are shown in Figure 7-35 (a) and (b). For
the conformal mesh, the nodal pressure at x=0 is initially 2Pa and increases to 3Pa over 3 time
steps while the nodal pressure at x=0.1m is initially at 4Pa and drops to 2Pa. The interpolated
pressure in the element at x=-0.05 is held constant at 3Pa for the time steps shown. Nodal

329



t=1e-4s t=2e-4s t=3e-4s t=4e-4s

(Pa)

X=0X=0X=0X=0

a) b) c) d) 

e) f) g) h) 

Figure 7-36. – Nodal pressure output shown on the meshed geometry for the time steps plotted in Figure
7-35. (a)-(d) are for the conformal mesh and (e)-(f) are for the constrained mesh containing a gap. The
dashed line indicates x=0 for both meshes.

pressures for the conformally meshed geometry are shown visually in Figure 7-36 (a)-(d).

The nodal pressures for the gap mesh with MPCs is shown visually in Figure 7-36 (e)-(h). The
different nodal pressure across the gap can be seen for (e)t=1e-4s and (f)2e-4s. The blue pressure
profiles for t=1e-4s and 2e-4s in Figure 7-35 (d) show the size of the pressure jump across the
interface. The MPC correction brings the nodal pressures into equilibrium across the interface in
three steps as shown by the nodes being the same color in Figure 7-36 (g) for t=3e-4s. Pressure
equilibrium is shown by the continuity of the cyan line in Figure 7-35 (c) and (d).

The pressure profiles between the two meshes in Figure 7-35 are nearly identical once equilibrium
is enforced. The delayed enforcement of equilibrium caused by the MPC correction leads to
smaller pressure oscillations at later times. The delay in pressure enforcement also causes a small
delay in the pressure pulse. The delay can be reduced by reducing the time step as shown in
Figure 7-37. The peak of the pressure profiles for the conformally meshed waveguide at t=0.015s
is approximately at x=-2.6m. This is nearly the same value for dt=5e-5 and is 0.1m ahead of
dt=1e-4 and 0.3m ahead of dt=2e-4.

Increasing the time step is also shown to smooth out the profile of the wave. For the largest time
step of dt=1e-3 shown in Figure 7-37, the wave would travel nearly 1m or 10 elements over the
three steps required by the MPC’s to reach equilibrium.

For input see Appendix 9.72
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Figure 7-37. – Effect of time step on the pressure profile for the MPC mesh containing a gap compared
to the contiguous/conformal mesh at the top.
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8. LEGACY TESTS

Table 8-1. – Nightly tests corresponding to this chapter.
Dir/Name of Test Doc. Row Ref Element

Table Table Type
beam_analytic/cantilever_free_beam2_test 8-32 2 3 1a Beam2

./cantilever_free_tria3_test 8-32 3 3 1a Tria3
./cantilever_free_tria3r_test 8-32 4 3 1a Tria3⊥

./simply_simply_beam2_test 8-32 7 3 1e Beam2
./simply_simply_tria3_test 8-32 8 3 1a Tria3

./simply_simply_tria3r_test 8-32 9 3 1a Tria3⊥
./cantilever_guided_beam2_test 8-32 11 3.3b Beam2

beam-curved/roark_table17_1_test 8-33 2 17.1 Beam2
./roark_table17_2_test 8-33 4 17.1 Beam2
./roark_table17_3_test 8-33 6 17.1 Beam2

beam_eigen/free_free_test 8-17 2 8-1.1 Beam2
beam_eigen/free_sliding_test 8-17 4 8-1.2 Beam2

beam_eigen/clamped_free_test 8-17 6 8-1.3 Beam2
beam_eigen/pinned_pinned_test 8-17 8 8-1.5 Beam2

beam-mass/blevins_table6-2_19_test 8-16 2 6-2.19 Beam2
beam-mass/blevins_table6-2_20_test 8-16 4 6-2.20 Beam2
beam-mass/blevins_table6-2_22_test 8-16 6 6-2.22 Beam2
plate_annular/roark_table24_1a_test 8-34 2 24.1a Tria3
plate_annular/roark_table24_1b_test 8-34 4 24.1b Tria3
plate_annular/roark_table24_1e_test 8-34 6 24.1e Tria3

plate_rectangular/roark_table26_1a_test 8-35 3 26.1a QuadT
plate_rectangular/roark_table26_1a_t_test 8-35 2 26.1a Tria3

plate_rectangular/roark_table26_8a_test 8-35 6 26.8a QuadT
plate_rectangular/roark_table26_8a_t_test 8-35 5 26.8a Tria3

spring-mass/blevins_table6-2_2_test 8-15 2 6-2.2 spring
spring-mass/blevins_table6-2_18_test 8-15 4 6-2.18 spring

Tables 8-1

identifies the nightly tests corresponding to the verification tests described here. Tests are
available on Sandia’s Restricted Network in /projects/sierra/tests/Salinas_rtest/ in
the subdirectories test_tool or verification.
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Table 8-2. – Test Matrix (cont).
Dir/Name of Test Doc. Row Ref Element

Table Table Type
thinShellsOfRevolution/.

./roark_table28_1a_hex8_test 8-36 3 28.1a Hex8

./roark_table28_1a_tria3_test 8-36 2 28.1a Tria3
./roark_table28_1b_hex8_test 8-36 6 28.1b Hex8
./roark_table28_1b_tria3_test 8-36 5 28.1b Tria3
shaft/fixed_free_beam2_test 8-18 2 8-19.2 Beam2

shaft/fixed_free_hex8_test 8-18 3 8-19.2 Hex8
plate_eigen_circ/free_test 8-20 2 11-1.1 QuadT

plate_eigen_circ/simple_test 8-20 4 11-1.2 QuadT
plate_eigen_circ/clamped_test 8-20 6 11-1.3 QuadT

plate_eigen_circ/clamped_mass_test 8-20 8 11-1.12 QuadT
plate_eigen_rect/all_edges_free_test 8-21 2 11-4.1 Tria3

plate_eigen_rect/all_edges_fixed_test 8-21 4 11.4.21 Tria3
plate_eigen_rect/all_edges_simple_test 8-21 6 11-4.16 Tria3

plate_eigen_rect/sFixed_lFree_sSS_lFree_test 8-21 8 11-4.6 Tria3

8.1. Linear Acoustics

In the following examples computational results are compared to analytic solutions.

8.1.1 Eigen Analysis of Wave Tube

8.1.2 Eigen Analysis with Multiple Fluids

8.1.3 Eigen Analysis of Elliptic Tank

8.1.5 Direct Frequency Response

8.1.5 Transient Acoustics with Pressure Release

8.1.6 Nonconforming Acoustic-Acoustic Discretizations

8.1.7 Direct FRF of Tied Structural/Acoustics

8.1.8 Radiation from a uniformly-driven spherical shell

8.1.9 Radiation from a spherical acoustic surface

8.1.10 Scattering from a Flat Plate

8.1.11 Transient Scattering from a Flat Plate

8.1.12 Scattering a Plane Step Wave by a Spherical Shell

8.1.13 Infinite Elements on Ellipsoidal Surfaces

8.1.14 Comparison of spherical and ellipsoidal infinite elements
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8.1.15 Absorbing Boundary Conditions for Infinite Elastic Spaces.

8.1.16 Impedance Boundary Conditions

5.10 Point Acoustic Source

8.1.17 Moving Point Source

8.1.18 Infinite Elements for Transients

8.1.19 Comparison with Absorbing Boundary Conditions

8.1.20 Acoustic-Structure Directfrf with Viscoelastic Material

8.1.1. Eigen Analysis of Wave Tube

The first example consists of a convergence study for the natural frequencies of an acoustical tube
that is driven at the left end and has a rigid cap the right end, as shown in Figure 8-1. The
eigenvalue problem for this configuration was solved by uniformly refining a linear hexahedron
mesh.

Table 8-3 shows the numerical results, and demonstrates that the first three natural frequencies
approach the exact values. Table 8-4 demonstrates quadratic convergence for the natural
frequencies, as expected for linear elements.

(v0)sin(wt)

L=10

rigid termination

Figure 8-1. – Acoustical waveguide with rigid end cap.
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exact (Hz) 80 elements 640 elements 5120 elements 40960 elements
16.6 16.61707 16.60426 16.601065 16.600265
33.2 33.33669 33.23414 33.20853 33.20213
49.8 50.26197 49.9153 49.828799 49.8072

Table 8-3. – Eigenvalue convergence for a piston-driven tube with rigid cap at end. The values given
are the natural frequencies, in Hz.

80 elements 640 elements 5120 elements 40960 elements
.0103 .0257 6.415e-3 1.596e-3
.4117 .10283 .0257 6.416e-3
.9277 .2315 .05783 .01446

Table 8-4. – Relative error in computation of natural frequencies for a piston-driven tube with rigid
cap at end. The reduction by a factor of 4 each time the element size is halved demonstrates quadratic
convergence in natural frequencies.

8.1.2. Eigen Analysis with Multiple Fluids

A subtlety when working with fluids of spatially varying properties is that the linear wave
equation, which is typically written in the form

1
𝑐2 ¥𝑝 − Δ𝑝 = 0 (8.1.1)

is no longer valid. Assumptions were made in the derivation of this equation that restricted its
applicability to a homogeneous fluid. When density and speed of sound change with position in
the fluid, the linear wave equation takes the form39

∇ ·
(

1
𝜌
∇𝑝

)
− ¥𝑝
𝐵

= 0 (8.1.2)

where 𝜌 is the fluid density, 𝐵 is the fluid bulk modulus, and 𝑝 is the acoustic pressure. If we
assume that the speed of sound is 𝑐 =

√︃
𝐵
𝜌
, then this equation can also be written as

𝜌∇ ·
(

1
𝜌
∇𝑝

)
− ¥𝑝
𝑐2 = 0 (8.1.3)

Next, we consider how the heterogeneous wave equation is implemented in Sierra/SD. We note
that Sierra/SD uses the form in equation 8.1.3. Since we want to allow the density to vary with
position, we have to first divide by density before multiplying by a test function and integrating by
parts. This is because the factor of 𝜌 in front of the first term in equation 8.1.3 varies with position,
and thus we will not be able to move the ∇ symbol over to the test function. Thus, we have

∇ ·
(

1
𝜌
∇𝑝

)
− ¥𝑝
𝜌𝑐2 = 0
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Figure 8-2. – Two fluid acoustic waveguide.

We solve for the time derivative of pressure in Sierra/SD. Thus, we substitute 𝑝 = ¤𝜙 into equation
8.1.2, and then integrate in time to obtain

∇ ·
(

1
𝜌
∇𝜙

)
−

¥𝜙
𝜌𝑐2 = 0

The gradient ∇ can be moved to the test function in equation 8.1.2. Thus, this is the formulation
that is used in Sierra/SD to construct the finite element implementation.

In deriving the analytic solution, we note that the analytical solutions to equations 8.1.2, 8.1.3,
8.1.2, and 8.1.2 will all be the same (assuming we converted the final analytic solution from
equation 8.1.2 into pressure), since these equations differ by a scale factor. Thus, we use equation
8.1.2 to derive the analytical solution. If we consider the eigenvalue problem, equation 8.1.2
becomes

∇ ·
(

1
𝜌
∇𝑝

)
+ 𝜆 𝑝

𝐵
= 0

This equation will serve as the basis for deriving the analytical solution.

We consider three cases. All three cases involve the geometry shown in Figure 8-2.

An exact solution for the eigenvalues of the geometry in Figure 8-2 can be derived by considering
each fluid separately and applying appropriate compatibility conditions on the fluid-fluid
interface. The equations are as follows

𝑑2𝑝1

𝑑𝑥2 + 𝜆 𝜌1
𝐵1
𝑝1 = 0; 𝑥 < 𝐿/2

𝑑2𝑝2

𝑑𝑥2 + 𝜆 𝜌2
𝐵2
𝑝2 = 0; 𝑥 > 𝐿/2

Here 𝐵1 and 𝐵2 are the bulk moduli of the two fluids. The compatibility conditions at the
interface 𝐿/2 are

𝑝1 = 𝑝2,
1
𝜌1

𝑑𝑝1
𝑑𝑥

=
1
𝜌2

𝑑𝑝2
𝑑𝑥

. (8.1.4)

At the endpoints, there are two options. Either we could have rigid caps ( 𝑑𝑝
𝑑𝑥

= 0), or we could
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exact (Hz) computed, h=1 computed, h=0.5
17.7322 17.7505 17.7333
34.1990 34.3411 34.2079
53.1689 53.6642 53.1998

Table 8-5. – Eigenvalue convergence for a two-fluid system with rigid cap at end. The values given are
the natural frequencies, in Hz.

have pressure release boundary conditions (𝑝 = 0). The solution will have the form

𝑝1(𝑥) = 𝐶1 cos

(
(𝑥 − 𝐿

2
)
√︂
𝜆𝜌1
𝐵1

)
+ 𝐶2 sin

(
(𝑥 − 𝐿

2
)
√︂
𝜆𝜌1
𝐵1

)
0 ≤ 𝑥 ≤ 𝐿

2
(8.1.5)

𝑝2(𝑥) = 𝐶3 cos

(
(𝑥 − 𝐿

2
)
√︂
𝜆𝜌1
𝐵1

)
+ 𝐶4 sin

(
(𝑥 − 𝐿

2
)
√︂
𝜆𝜌1
𝐵1

)
𝐿

2
≤ 𝑥 ≤ 𝐿 (8.1.6)

(8.1.7)

Inserting these into equations 8.1.2, applying the compatibility conditions 8.1.4, and using the
appropriate boundary conditions at the endpoints, we get two transcendental equations that give
the exact eigenvalues. For the pressure release (Dirichlet) end cap case, we obtain

cos

(
𝐿

2

√︂
𝜆𝜌1
𝐵1

)
sin

(
𝐿

2

√︂
𝜆𝜌2
𝐵2

)
= −

√︄
𝜌1𝐵1
𝜌2𝐵2

cos

(
𝐿

2

√︂
𝜆𝜌2
𝐵2

)
sin

(
𝐿

2

√︂
𝜆𝜌1
𝐵1

)
(8.1.8)

(8.1.9)

For the rigid (Neumann) case, we obtain

sin

(
𝐿

2

√︂
𝜆𝜌1
𝐵1

)
cos

(
𝐿

2

√︂
𝜆𝜌2
𝐵2

)
= −

√︄
𝜌1𝐵1
𝜌2𝐵2

sin

(
𝐿

2

√︂
𝜆𝜌2
𝐵2

)
cos

(
𝐿

2

√︂
𝜆𝜌1
𝐵1

)
(8.1.10)

(8.1.11)

Equations 8.1.8 and 8.1.10 can be solved to obtain the exact eigenvalues of the system shown in
Figure 8-2.

First, we consider the case 𝜌1 = 1.293, 𝜌2 = 2.5860, 𝑐1 = 332.0, 𝑐2 = 366.0. Table 8-5 shows the
comparison when rigid walls are placed at either end of the tube, and Table 8-6 shows the
comparison with pressure release conditions at both ends. Convergence is seen in all cases.

The next case is an impedance matching condition, in which 𝜌1𝑐1 = 𝜌2𝑐2. In this case, we take
𝜌1 = 2𝜌2, and 𝑐1 = 0.5𝑐2. Thus, the parameters are different but the impedances are the same.
The computed and theoretical results are shown in Table 8-7. Again, good convergence behavior
is observed.

Finally, we consider a case with air and water. The same two-fluid case from the previous example
was used, with rigid boundary conditions. The comparison between theoretical and computed
eigenvalues is shown in Table 8-8.
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exact (Hz) computed, h=1 computed, h=0.5
17.0965 17.1143 17.0976
35.4575 35.6039 35.4666
51.3135 51.7932 51.3435

Table 8-6. – Two-fluid eigenvalue convergence with pressure release BC.

exact (Hz) computed, h=1 computed, h=0.5
11.0667 11.0797 11.0675
22.1333 22.2632 22.1414
33.2000 33.6067 33.2256

Table 8-7. – Eigenvalue convergence for a two-fluid system with rigid cap at end. The values given are
the natural frequencies, in Hz.

exact (Hz) computed, h=1 computed, h=0.5
33.1974 33.3341 33.206
66.3825 67.4755 66.4506

Table 8-8. – Eigenvalue convergence for an air/water system with rigid cap at ends. The values given
are the natural frequencies, in Hz.
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8.1.3. Eigen Analysis of Elliptic Tank

Contributed by Jerry Rouse.
The acoustic modal analysis capability of Sierra/SD was further verified using a
three-dimensional elliptic cylindrical tank. The dimensions of the tank are shown in Figure 8-3.
The verification involved two boundary condition configurations. For the first configuration all
boundaries of the enclosure were rigid, which requires the normal component of acoustic velocity
be zero at all points along the boundary. For the second configuration, the end caps of the tank
were rigid, and the sidewall of the tank was a pressure release surface. A pressure release
boundary requires that the acoustic pressure be zero at the boundary.

Figure 8-3. – Dimensions of the elliptic cylindrical tank model. All dimensions in inches.

To determine theoretically the resonance frequencies for the elliptic cylindrical tank, the linear
wave equation was solved in elliptic cylindrical coordinates. The coordinate system is illustrated in
Figure 8-4. This coordinate system is not commonly encountered, and therefore the solution of the
wave equation is described. The linear wave equation in terms of acoustic pressure is given by

∇2𝑝 + 1
𝑐2
𝜕2𝑝

𝜕𝑡2
= 0. (8.1.12)

In elliptic cylindrical coordinates the Laplacian has the form

∇2 =
1

ℎ2(sinh2(𝑢) + sin2(𝑣))

(
𝜕2𝑝

𝜕𝑢2 + 𝜕
2𝑝

𝜕𝑣2

)
+ 𝜕

2𝑝

𝜕𝑧2 (8.1.13)

where 𝑥 = ℎ cosh(𝑢) cos(𝑣), 𝑦 = ℎ sinh(𝑢) sin(𝑣), and ℎ =
√
𝑎2 − 𝑏2 with 𝑎 equal to half the major

axis, and 𝑏 equal to half the minor axis. For the tank dimensions shown in Figure 8-3 𝑎 = 97
2 ,

𝑏 = 24, ℎ = 7
√

145
2 , and 𝑢0 = sinh−1

(
48

7
√

145

)
. Assuming the acoustic pressure 𝑝 to be harmonic in

time 𝑝 = 𝑃(𝑢, 𝑣, 𝑧)𝑒𝑖𝜔𝑡 , which upon substitution into Eq. (8.1.12) produces the Helmholtz
equation:

∇2𝑃 + 𝑘2𝑃 = 0, (8.1.14)

where 𝑘 = 𝜔/𝑐 with 𝜔 the angular frequency, and 𝑐 the phase speed. Using separation of
variables 𝑃(𝑢, 𝑣, 𝑧) = 𝑈 (𝑢)𝑉 (𝑣)𝑍 (𝑧). Substituting this expression into the Helmholtz equation
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Figure 8-4. – The elliptic cylindrical coordinate system.

and dividing the result by𝑈𝑉𝑍 gives

1
ℎ2(sinh2(𝑢) + sin2(𝑣))

(
1
𝑈

𝑑2𝑈

𝑑𝑢2 + 1
𝑉

𝑑2𝑉

𝑑𝑣2

)
+ 1
𝑍

𝑑2𝑍

𝑑𝑧2 + 𝑘2 = 0. (8.1.15)

Equating the term containing𝑈 and 𝑉 to the separation constant −𝑚2 and the term containing 𝑍
to −𝑘2

𝑧 gives the system dispersion relation

𝑘2 = 𝑘2
𝑧 + 𝑚2. (8.1.16)

The differential equation for 𝑍 ,
𝑑2𝑍

𝑑𝑧2 + 𝑘2
𝑧𝑍 = 0, (8.1.17)

has solution
𝑍 (𝑧) = 𝐴𝑛 cos(𝑘𝑧𝑧) + 𝐵𝑛 sin(𝑘𝑧𝑧). (8.1.18)

Simplifying the differential equation for𝑈 and 𝑉 gives:[
1
𝑈

𝑑2𝑈

𝑑𝑢2 + 𝑚2ℎ2 sinh2(𝑢)
]
+

[
1
𝑉

𝑑2𝑉

𝑑𝑣2 + 𝑚2ℎ2 sin2(𝑣)
]
= 0. (8.1.19)

The first term is independent of 𝑣 and the second term is independent of 𝑢, therefore each term
must equal a constant. Letting 𝑐 represent this constant:

1
𝑈

𝑑2𝑈

𝑑𝑢2 + 𝑚2ℎ2 sinh2(𝑢) = 𝑐 → 𝑑2𝑈

𝑑𝑢2 −
[
𝑐 − 𝑚2ℎ2 sinh2(𝑢)

]
𝑈 = 0 (8.1.20)

1
𝑉

𝑑2𝑉

𝑑𝑣2 + 𝑚2ℎ2 sin2(𝑣) = −𝑐 → 𝑑2𝑉

𝑑𝑣2 +
[
𝑐 + 𝑚2ℎ2 sin2(𝑣)

]
𝑉 = 0 (8.1.21)
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The trigonometric relations

sinh2(𝑢) = 1
2
(cosh(2𝑢) − 1) (8.1.22)

sin2(𝑣) = 1
2
(1 − cos(2𝑣)) (8.1.23)

are used to Eq. (8.1.20) and Eq. (8.1.21). Substitution of these relations into the differential
equations for𝑈 and 𝑉 gives:

𝑑2𝑈

𝑑𝑢2 −
[(
𝑐 + 𝑚

2ℎ2

2

)
− 𝑚2ℎ2

2
cosh(2𝑢)

]
𝑈 = 0 (8.1.24)

𝑑2𝑉

𝑑𝑣2 +
[(
𝑐 + 𝑚

2ℎ2

2

)
− 𝑚2ℎ2

2
cos(2𝑣)

]
𝑉 = 0. (8.1.25)

Letting 𝑎 ≡ 𝑐 + 𝑚2ℎ2

2 and 𝑞 ≡ 𝑚2ℎ2

4 gives:

𝑑2𝑈

𝑑𝑢2 − [𝑎 − 2𝑞 cosh(2𝑢)]𝑈 = 0 (8.1.26)

𝑑2𝑉

𝑑𝑣2 + [𝑎 − 2𝑞 cos(2𝑣)] 𝑉 = 0 (8.1.27)

These are the canonical forms of the differential equations Mathieu obtained solving for the
vibration of an elliptical membrane. The solution to the differential equation for 𝑉 is given by

𝑉 = 𝐶𝑟𝑐𝑒𝑟 (𝑎, 𝑞, 𝑣) + 𝐷𝑟 𝑠𝑒𝑟 (𝑎, 𝑞, 𝑣), (8.1.28)

where the Mathieu function of the first kind 𝑐𝑒 has been termed the ’cosine-elliptic’ and the
Mathieu function of the first kind 𝑠𝑒 has been termed the ’sine-elliptic’ by E. T. Whittaker. The
solution to the differential equation for𝑈 is

𝑈 = 𝐸𝑟𝐶𝑒𝑟 (𝑎, 𝑞, 𝑢) + 𝐹𝑟𝑆𝑒𝑟 (𝑎, 𝑞, 𝑢), (8.1.29)

where 𝐶𝑒 and 𝑆𝑒 are termed the modified Mathieu functions of the first kind. The following
relates the Mathieu functions to the modified Mathieu functions:

𝐶𝑒𝑟 (𝑎, 𝑞, 𝑧) = 𝑐𝑒𝑟 (𝑎, 𝑞, 𝑖𝑧) (8.1.30)
𝑆𝑒𝑟 (𝑎, 𝑞, 𝑧) = −𝑖𝑠𝑒𝑟 (𝑎, 𝑞, 𝑖𝑧), (8.1.31)

where 𝑖 =
√
−1.

For the majority of the physical problems encountered, the solution in 𝑣 is periodic by either 𝜋 or
2𝜋. This periodicity requires that a relationship exist between 𝑞 and 𝑎 for each 𝑐𝑒𝑟 and 𝑠𝑒𝑟 , such
that for each non-zero value of 𝑞 a characteristic value of 𝑎 exists allowing for a periodic solution
in 𝑣. Common among authors today is to denote the characteristic values for 𝑐𝑒𝑟 by 𝑎𝑟 , and the
characteristic values for 𝑠𝑒𝑟 by 𝑏𝑟 . Methods for determining 𝑎𝑟 and 𝑏𝑟 based on 𝑞 are presented in
McLachlan, and Gradshteyn and Ryzhik, with formulas for 𝑟 up to 8 given in Abramowitz and
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Stegun. For the two cases described here, 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎 was used to determine the characteristic
values.

For both boundary condition configurations considered, the ends of the elliptical tank were rigid,
i.e., acoustic velocity is zero at 𝑧 = 0 and 𝑧 = 𝐿. The solution obtained above gives the acoustic
pressure in the tank. To apply the zero velocity boundary condition, the momentum equation was
used to relate acoustic pressure to acoustic velocity. The momentum equation is

𝜌0
𝜕 ®𝑢
𝜕𝑡

= −®∇𝑝, (8.1.32)

where ®𝑢 = ®𝑒𝑢𝑢𝑢 + ®𝑒𝑣𝑢𝑣 + ®𝑒𝑧𝑢𝑧. The gradient operator in elliptic cylindrical coordinates takes the
form

®∇ =
1

ℎ

√︃
sinh2(𝑢) + sin2(𝑣)

(
®𝑒𝑢
𝜕

𝜕𝑢
+ ®𝑒𝑣

𝜕

𝜕𝑣

)
+ ®𝑒𝑧

𝜕

𝜕𝑧
. (8.1.33)

Substitution of the 𝑧 component of pressure in Eq. (8.1.18) into Eq. (8.1.32), and applying the
𝑢𝑧 = 0 boundary condition gives

𝑍 (𝑧) =
∞∑︁
𝑛=0

𝐴𝑛 cos(𝑘𝑧𝑧), (8.1.34)

where 𝑘𝑧 = 𝑛𝜋
𝐿

.

The boundary condition configuration having rigid boundaries on all sides of the elliptic
cylindrical tank requires the ®𝑒𝑢 acoustic velocity component be 0 at 𝑢 = 𝑢0. Substitution of Eq.
(8.1.29) into Eq. (8.1.32) and applying this boundary condition gives

∞∑︁
𝑟=1

[
𝐸𝑟
𝜕𝐶𝑒𝑟 (𝑎, 𝑞, 𝑢)

𝜕𝑢

����
𝑢=𝑢0

𝑐𝑒𝑟 (𝑎, 𝑞, 𝑣) + 𝐹𝑟
𝜕𝑆𝑒𝑟 (𝑎, 𝑞, 𝑢)

𝜕𝑢

����
𝑢=𝑢0

𝑠𝑒𝑟 (𝑎, 𝑞, 𝑣)
]
= 0, (8.1.35)

where 𝜕𝐶𝑒0 (𝑎,𝑞,𝑣)
𝜕𝑢

= 0. To satisfy this equation requires each term of the series equal zero, giving

𝜕𝐶𝑒𝑟 (𝑎𝑟 , 𝑞𝑟 , 𝑢)
𝜕𝑢

����
𝑢=𝑢0

= 0 (8.1.36)

𝜕𝑆𝑒𝑟 (𝑏𝑟 , 𝑞𝑟 , 𝑢)
𝜕𝑢

����
𝑢=𝑢0

= 0, (8.1.37)

where the resonance frequencies are determined from the values of 𝑞 which satisfy Eqs. (8.1.36)
and (8.1.37). The complete set of resonance frequencies for the elliptic cylindrical tanker having
all boundaries rigid is determined from the dispersion relation using the values of 𝑘𝑧 in Eq.
(8.1.34) and 𝑚 =

4√𝑞𝑟
ℎ

obtained from Eqs. (8.1.36) and (8.1.37)

𝑓 =
𝑐

2𝜋

√︂(𝑛𝜋
𝐿

)2
+ 4𝑞𝑟
ℎ2 , (8.1.38)

where 𝑐 = 58724 in/s. Table 8-9 compares the first 24 resonance frequencies between the exact
determination and the Sierra/SD prediction for the case of rigid boundary conditions.
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Exact (Hz) Sierra/SD Percent Error
248.832 248.832 0
361.1 361.1 0

438.532 438.533 2.28e-4
497.664 497.665 2.00e-4
614.868 614.87 3.25e-4
659.152 659.156 6.07e-4
687.876 687.879 4.36e-4
704.556 704.56 5.68e-4
731.499 731.503 5.47e-4
746.497 746.501 5.36e-4
825.925 825.932 8.48e-4
829.247 829.253 7.24e-4
849.025 849.035 1.18e-3
900.831 900.843 1.33e-3
934.566 934.58 1.50e-3
950.48 950.495 1.58e-3
982.512 982.529 1.73e-3
995.329 995.346 1.71e-3
995.861 995.878 1.71e-3
1015.1 1015.12 2.00e-3
1029.16 1029.18 1.94e-3
1058.81 1058.83 1.89e-3
1072.88 1072.91 2.80e-3
1130.71 1130.74 2.65e-3

Table 8-9. – Comparison between the exact analytical resonance frequencies and Sierra/SD predictions
for the elliptic cylindrical tank with rigid boundary boundaries.
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The boundary condition configuration having pressure release boundaries 𝑝 = 0 on the sidewall of
the elliptic cylindrical tank (and rigid end caps) requires the acoustic pressure be zero at
𝑝(𝑢0, 𝑣, 𝑧). Applying this condition to Eq. (8.1.29) gives

∞∑︁
𝑟=0

[𝐸𝑟𝐶𝑒𝑟 (𝑎, 𝑞, 𝑢0)𝑐𝑒𝑟 (𝑎, 𝑞, 𝑣) + 𝐹𝑟𝑆𝑒𝑟 (𝑎, 𝑞, 𝑢0)𝑠𝑒𝑟 (𝑎, 𝑞, 𝑣)] = 0. (8.1.39)

As before, to satisfy this condition each term of the series must equal zero, giving

𝐶𝑒𝑟 (𝑎𝑟 , 𝑞𝑟 , 𝑢0) = 0 (8.1.40)
𝑆𝑒𝑟 (𝑏𝑟 , 𝑞𝑟 , 𝑢0) = 0, (8.1.41)

where the resonance frequencies are obtained from the values of 𝑞 which satisfy Eqs. (8.1.40) and
(8.1.41). The complete set of resonance frequencies for the elliptic cylindrical tanker having rigid
end caps and pressure release sidewalls is determined from Eq. (8.1.38) with 𝑐 = 58724 in/s.
Table 8-10 compares the first 24 resonance frequencies between the exact determination and the
Sierra/SD prediction for this boundary condition configuration. Note that since 𝐶𝑒0 ≠ 0 the
modes cut-on at a higher frequency compared to the rigid boundaries configuration.
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Figure 8-5. – Direct frequency response of an acoustical waveguide with rigid end cap.
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Exact (Hz) Sierra/SD Percent Error
733.807 733.811 5.45e-4
774.849 774.853 5.16e-4
886.647 886.657 1.13e-3
970.884 970.898 1.44e-3
1002.26 1002.28 2.00e-3
1046.77 1046.8 2.86e-3
1224.69 1224.75 4.90e-3
1225.4 1225.45 4.08e-3
1236.59 1236.65 4.85e-3
1250.41 1250.47 4.80e-3
1322.61 1322.68 5.29e-3
1332.8 1332.89 6.75e-3
1355.83 1355.92 6.64e-3
1390.43 1390.53 7.19e-3
1422.68 1422.81 9.14e-3
1434.88 1434.99 7.67e-3
1444.44 1444.57 9.00e-3
1491.07 1491.19 8.05e-3
1511.69 1511.82 8.60e-3
1527.61 1527.8 1.24e-2
1550.06 1550.23 1.10e-2
1569.9 1570.08 1.15e-2
1571.93 1572.09 1.02e-2
1578.15 1578.34 1.20e-2

Table 8-10. – Comparison between the exact analytical resonance frequencies and Sierra/SD predictions
for the elliptic cylindrical tank having rigid end caps and pressure release boundary conditions on the
sidewall.
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8.1.4. Direct Frequency Response

Next direct frequency response is determined for the previous configuration. The boundary
condition is either the rigidly capped configuration of the previous example (a Neumann boundary
condition), or a pressure release condition (a Dirichlet condition). For the two types of boundary
conditions on the right end,39 gives the exact resonance frequencies. When the tube is rigidly
capped, they are

𝑓𝑛 =
𝑛𝑐

2𝐿
𝑛 = 0, 1, 2, 3, ... (8.1.42)

and when the tube is open (pressure release) they are

𝑓𝑛 =
(𝑛 + 1

2 )𝑐
2𝐿

𝑛 = 0, 1, 2, ... (8.1.43)

where 𝑓𝑛 is in Hz, 𝑐 is the speed of sound, and 𝐿 is the length of the tube. In this example,
𝑐 = 332.0𝑚/𝑠, and 𝐿 = 10.0𝑚, which results in the frequencies

𝑓𝑛 = 0.0, 16.6, 33.2, 49.8, ... (8.1.44)

and
𝑓𝑛 = 8.3, 24.9, 41.5, ... (8.1.45)

Figures 8-5 and 8-6 show the direct frequency response computations, and it is seen that the peaks
in these plots correspond to the natural frequencies given above, for both types of boundary
conditions.

The pressure at the piston, as a function of frequency, is given in32 as

𝑝 = − 𝑗 𝜌𝑐𝑉0 cot(𝑘𝐿).

In Figure 8-7, we plot the computed and exact pressure at the piston, as a function of frequency.
The two curves are virtually identical, except at the point of resonance. At resonance, however, the
computed solutions are known to be inaccurate, and thus some difference there is expected.
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Figure 8-6. – Direct frequency response of an acoustical waveguide with pressure release end.
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Figure 8-7. – Direct frequency response of an acoustical waveguide with rigid end cap. A comparison
of computed and exact acoustic pressure at the piston.
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Figure 8-8. – Transient simulation of an acoustical waveguide with pressure release end condition.
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8.1.5. Transient Acoustics with Pressure Release

This example was similar to the previous case, except that the far end of the tube was assigned a
pressure release boundary condition. Also, in this case the velocity of the piston was assigned as

𝑣(0, 𝑡) = 𝑣𝑝 (𝑡) = sin(𝜔𝑡) (8.1.46)

where 𝜔 = 60𝜋. The exact solution is given in39 as

𝑝(0, 𝑡) = 𝜌𝑐
[
𝑣𝑝 (𝑡) + 2

∞∑︁
𝑛=1

(−1)𝑛𝑣𝑝 (𝑡 −
2𝑛𝐿
𝑐

)
]
. (8.1.47)

The terms in the summation become nonzero if their arguments are positive. This behavior was
implemented in MATLAB using Heaviside functions, and the results were compared with
Sierra/SD. Figure 8-8 shows the results. Excellent agreement between exact and computed
solutions is observed.

8.1.6. Nonconforming Acoustic-Acoustic Discretizations

In this example, we test our simple method for coupling two acoustic domains that have
mismatched meshes on the interface between them. In this case we chose an acoustic eigenvalue
analysis, since the resulting eigen frequencies can be conveniently used in a convergence analysis.
A three-dimensional example consisting of two adjacent acoustic domains with different
discretization densities was investigated, as shown in Fig. (8-9). The nearly cubic volume having
dimensions 𝐿𝑥 = 5 m., 𝐿𝑦 = 10

√
2/3 m., and 𝐿𝑧 = 15/(2

√
2) m. was used to avoid repeated

eigenvalues. The model was divided in half by an xy-plane located at 𝐿𝑧/2, as shown in Fig.
(8-9), and the two halves were connected together using the inconsistent tied contact approach
described in the previous section. This configuration was chosen to investigate the convergence of
inconsistent tied contact for mode shapes having pressure variations in the plane of the interface.
The fluid in both regions had sound speed 𝑐 = 343 m/s and fluid density 𝜌 = 1.20 kg/m3. The
boundary condition is a rigid wall (Neumann). The equations in subsubsection Coupled Equations
and Their Discretizations, subsection Coupled Structural Acoustics, section Acoustics and
Structural Acoustics44 were solved with zero forcing on the right-hand side, thus corresponding to
the acoustic eigenvalue problem with mismatched meshes on subdomains.

Four element size ratios at the interface were investigated: 2:3, 2:4, 3:4, and 4:5. Problems with
convergence can arise in inconsistent tied contact when the face-surface is more finely discretized
than the node-surface, see for example.17,18 In all cases, the face-surface was chosen as the side
with the coarser discretization. The convergence study consisted of uniformly refining the meshes
several times, while keeping these discretization ratios (and hence element size ratios) at the
nonconforming interface fixed. Only linear hexahedra were considered. The eigenvalues of the
first thirty modes in the model were compared to the theoretical eigenvalues given by

𝑓 =
𝑐

2

√︄
𝑁2
𝑥

𝐿2
𝑥

+
𝑁2
𝑦

𝐿2
𝑦

+ 𝑁
2
𝑧

𝐿2
𝑧

, (8.1.48)
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Figure 8-9. – Three-dimensional model.
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where 𝑁𝑥 , 𝑁𝑦, and 𝑁𝑧 are non-negative integers. For comparison of the convergence rates, the
eigenvalues of a conforming model were also obtained. In Figs. (8-10)-(8-12) the convergence
plot for the four discretization ratios are shown along with the conforming case. The horizontal
axis is the common logarithm of the largest dimension of the face-surface side elements. The
eigenvalue error is given by 100(𝜆ℎ − 𝜆)/𝜆. Figures (8-10), (8-11), and (8-12) illustrate
convergence for an axial, tangential and oblique mode, respectively. For the conforming case,
theory predicts that the eigenvalues will converge at a rate of 2.0 for linear elements. For
comparison purposes, an additional line with a slope of 2.0 is added to the three previous figures,
using the triangle symbol. For all the cases presented, the convergence rates for the
nonconforming meshes are close to those of the conforming meshes. The exceptional the 2:3 case,
in which the nonconforming meshes convergence rate is greater than 2, is believed to be an
abnormality. The theoretical convergence rate of 2.0 is based on conforming theory, and thus does
not apply in the nonconforming case.
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Figure 8-10. – Convergence plot for an axial mode (𝑁𝑥 = 1, 𝑁𝑦 = 𝑁𝑧 = 0).
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Figure 8-11. – Convergence plot for a tangential mode (𝑁𝑥 = 1, 𝑁𝑦 = 0, 𝑁𝑧 = 1).
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Figure 8-12. – Convergence plot for an oblique mode (𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 = 1).
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8.1.7. Direct Frequency Response of Structural Acoustics with Tied Surfaces

This section written by Jerry Rouse.
In this case, the acoustic pressure and structural particle displacement of a one dimensional
structural acoustic model is compared with theory. The model consists of a waveguide of square
cross-section, 0.25 meters on a side, having an overall length of 20 meters. The length is equally
divided between fluid and structure, each of length 10 meters. To the free end of the fluid is
applied a harmonic particle velocity (forcing), and the free end of the structure is fixed.
Inconsistent tied contact is used at the solid-fluid interface, where the fluid is treated as the
independent surface. A Sierra/SD direct frequency response solution is used. The Sierra/SD
prediction was verified at the tied interface between the fluid and solid regions.

System response was modelled using the wave equation for longitudinal wave propagation in the
solid and acoustic wave propagation in the fluid. The two solutions were coupled at the solid-fluid
interface through the continuity of elastic stress and pressure, and the continuity of structural
particle displacement and acoustic particle displacement. The longitudinal wave equation for the
solid is given by,

𝜕2𝑢

𝜕𝑥2 − 1
𝑐2
𝑠

𝜕2𝑢

𝜕𝑡2
= 0, (8.1.49)

where 𝑢 is the particle displacement, the phase velocity 𝑐𝑠 =
√︃

𝐸
𝜌𝑠

, 𝐸 is Young’s modulus, and 𝜌𝑠
is the material density. For the solid the coordinate system was aligned such that the 𝑥𝑠-axis was
the center of the waveguide, with 𝑥𝑠 = 0 at the fixed end of the solid and 𝑥𝑠 = −𝐿𝑠 at the
solid-fluid interface. The fixed end boundary condition for the solid is expressed 𝑢(𝑥𝑠 = 0, 𝑡) = 0.
Application of this boundary condition to the general solution of Eq. (8.1.49), expressed in terms
of left and right traveling waves, gives

𝑢 = 𝐴 sin(𝑘𝑠𝑥𝑠)𝑒𝑖𝜔𝑡 , (8.1.50)

where the wave number 𝑘𝑠 = 𝜔/𝑐𝑠, 𝑖 =
√
−1 and 𝐴 is a frequency dependent coefficient which

shall be determined from the continuity conditions at the solid-fluid interface.

The acoustic wave equation is given by

𝜕2𝑝

𝜕𝑥2 − 1
𝑐2
𝜕2𝑝

𝜕𝑡2
= 0, (8.1.51)

where 𝑝 is the acoustic pressure, the phase velocity 𝑐 =
√︃
𝛾𝑃0
𝜌0

, where 𝑃0 and 𝜌0 are the
undisturbed atmospheric pressure and density, respectively, and 𝛾 is the ratio of specific heats,
here equal to 1.4. The coordinate system for the fluid was aligned such that the 𝑥𝑎-axis was the
center of the waveguide, with 𝑥 𝑓 = 0 at the forcing end of the fluid and 𝑥 𝑓 = 𝐿 𝑓 at the solid-fluid
interface. The forcing boundary condition at the free end of the fluid in terms of the applied
particle velocity 𝑉0 is expressed

𝑉0 =
𝑖

𝜔𝜌0

𝜕𝑝

𝜕𝑥

����
𝑥 𝑓 =0

. (8.1.52)
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Application of this boundary condition to the general solution of Eq. (8.1.51) gives

𝑝 =

[
𝑉0 𝜔 𝜌0
𝑘 𝑓

𝑒−𝑖𝑘 𝑓 𝑥 𝑓 + 𝐵 cos(𝑘 𝑓 𝑥 𝑓 )
]
𝑒𝑖𝜔𝑡 , (8.1.53)

where the wave number 𝑘 𝑓 = 𝜔/𝑐 and 𝐵 is a frequency dependent coefficient which shall be
determined from the continuity conditions at the solid-fluid interface.

The coupling conditions at the solid-fluid interface ensure no net pressure and no net velocity
across the interface. The continuity condition on pressure is given by

𝐸
𝜕𝑢

𝜕𝑥

����
𝑥𝑠=−𝐿𝑠

= −𝑝
����
𝑥 𝑓 =𝐿 𝑓

, (8.1.54)

where tensile stress in the solid is considered positive, and the continuity condition on velocity is
given by

𝜕𝑢

𝜕𝑡

����
𝑥𝑠=−𝐿𝑠

=
𝑖

𝜔𝜌0

𝜕𝑝

𝜕𝑥

����
𝑥 𝑓 =𝐿 𝑓

. (8.1.55)

Substitution of Eqs. (8.1.50) and (8.1.53) into Eqs. (8.1.54) and (8.1.55), and solving for the
frequency dependent coefficients 𝐴 and 𝐵 finds

𝐴 =
𝑖𝑉0𝜔𝜌0

𝜔2𝜌0 sin(𝑘𝑠𝐿𝑠) cos(𝑘 𝑓 𝐿 𝑓 ) + 𝐸𝑘𝑠𝑘 𝑓 cos(𝑘𝑠𝐿𝑠) sin(𝑘 𝑓 𝐿 𝑓 )
, (8.1.56)

and

𝐵 =
−𝑉0𝑐𝜌0 sin(𝑘 𝑓 𝐿 𝑓 )𝑒−𝑖𝑘 𝑓 𝐿 𝑓

[
𝜔2𝜌0 + 𝑖𝐸𝑘𝑠𝑘 𝑓 cot(𝑘𝑠𝐿𝑠)

]
𝜔2𝜌0 cot(𝑘 𝑓 𝐿 𝑓 ) + 𝐸𝑘𝑠𝑘 𝑓 cot(𝑘𝑠𝐿𝑠)

. (8.1.57)

Given these coefficients, the structural particle displacement is

𝑢 =
𝑖𝑉0𝜔𝜌0 sin(𝑘𝑠𝑥𝑠)𝑒𝑖𝜔𝑡

𝜔2𝜌0 sin(𝑘𝑠𝐿𝑠) cos(𝑘 𝑓 𝐿 𝑓 ) + 𝐸𝑘𝑠𝑘 𝑓 cos(𝑘𝑠𝐿𝑠) sin(𝑘 𝑓 𝐿 𝑓 )
, (8.1.58)

and the acoustic pressure given by

𝑝 =
𝑖𝑉0𝑐𝜌0 sin(𝑘 𝑓 𝐿 𝑓 )𝑒𝑖𝜔𝑡

[
𝜔2𝜌0 sin(𝑘 𝑓 (𝐿 𝑓 − 𝑥 𝑓 )) − 𝐸𝑘𝑠𝑘 𝑓 cot(𝑘𝑠𝐿𝑠) cos(𝑘 𝑓 (𝐿 𝑓 − 𝑥 𝑓 ))

]
𝜔2𝜌0 cot(𝑘 𝑓 𝐿 𝑓 ) + 𝐸𝑘𝑠𝑘 𝑓 cot(𝑘𝑠𝐿𝑠)

.

(8.1.59)

The Sierra/SD verification was performed with the following properties for the system. The fluid
was modeled as air: 𝑐 = 343 m/s and 𝜌0 = 1.2 kg/m3. The solid was modeled as steel: 𝐸 = 200
GPa., 𝜌𝑠 = 7850 kg/m3, and Poisson’s ratio 𝜈 = 0. The value of Poisson’s ratio was intentional. In
Figure 8-13 the Sierra/SD prediction of structural particle displacement at the solid-fluid
interface is compared to the theoretical result given by Eq. (8.1.58) evaluated at 𝑥𝑠 = −𝐿𝑠. The
Sierra/SD prediction was obtained over the frequency range 1 to 60 Hz. using a frequency step of
1 Hz. In Figure 8-14 the Sierra/SD prediction of acoustic pressure at the solid-fluid interface is
compared to the theoretical result given by Eq. (8.1.59) evaluated at 𝑥 𝑓 = 𝐿 𝑓 . In both figures the
Sierra/SD prediction shows excellent agreement with the theoretical result.
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Figure 8-13. – Comparison of the Sierra/SD prediction of structural particle displacement at the
solid-fluid interface with the theoretical result.
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Figure 8-14. – Comparison of the Sierra/SD prediction of acoustic pressure at the solid-fluid interface
with the theoretical result.

8.1.8. Radiation from a uniformly-driven spherical shell

In this example, we considered a spherical shell that was surrounded by an infinite acoustic fluid.
The shell was composed of tria3 elements, and the acoustic fluid was modeled with tet4 elements.
On the wet interface, the shell/acoustic meshes were conforming. The radius of the spherical shell
was 1.0(m), and the radius of the truncated acoustic domain was 5.0(m). An absorbing boundary
condition was applied to the exterior surface of the truncated acoustic domain, to simulate the
infinite fluid.

A uniform, periodic pressure was applied to the inside surface of the spherical shell, and the
resulting shell displacements and acoustic pressures were measured in the frequency domain. The
analytic solution to this problem was derived in.20 First we define some physical quantities. The
impedance of the shell structure is given as

𝑍𝑠 =
𝑖

𝜔
(𝜔2𝑚𝑠 − 𝑘𝑠) (8.1.60)

where 𝑚𝑠 = 4𝜋𝑎2ℎ, 𝑘𝑠 = 8𝜋𝐸ℎ
1−𝜈 , ℎ is the thickness of the shell, 𝑎 is the radius of the shell, 𝐸 is

Young’s modulus, and 𝜈 is Poisson’s ratio. The impedance of the infinite fluid (as seen by the
spherical surface that defines the shell) is

𝑍 𝑓 =
𝑖𝜔𝜌4𝜋𝑎3

1 + 𝑖𝑘𝑎 (8.1.61)
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where 𝑘 = 𝜔
𝑐

is the wavenumber, 𝜌 is the fluid density.

With the above quantities defined, the exact expression for the complex-valued radial
displacement is

𝑑 =
4𝜋𝑎2𝑝0

𝑖𝜔(𝑍𝑠 + 𝑍 𝑓
) (8.1.62)

Figure 8-15 shows the comparison of the numerical results and analytic solution, for the real and
imaginary components of radial displacement of the shell. The results show good agreement.
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Figure 8-15. – Direct frequency response of a spherical shell immersed in an infinite fluid. The real
and imaginary parts of the analytical solution are compared against Sierra/SD. The results show good
agreement.
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8.1.9. Radiation from a uniformly driven spherical acoustic surface

This example is similar to the previous example, except that the shell is removed, and we instead
apply a uniform, periodic particle velocity to the inside surface of the spherical acoustic space. As
in the previous example, an absorbing boundary condition is applied to the exterior surface of the
truncated acoustic space, to simulate the infinite fluid. Once again, the radius of the inner
spherical void is 1.0(m).

In this case, the analytic solution for the acoustic pressure on the driven surface is given by39

𝑃 =
𝑖𝑣0𝜔𝜌𝑎

2

𝑟 (1 + 𝑖𝑘𝑎) 𝑒
𝑖𝑘 (𝑟−𝑎) (8.1.63)

where 𝑣0 is the amplitude of the imposed particle velocity on the driven surface.

Figure 8-16 shows the comparison of the numerical results and analytic solution, for the real and
imaginary components of the acoustic pressure. The results show good agreement.
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Figure 8-16. – Direct frequency response of a spherical shell immersed in an infinite fluid. The real
and imaginary parts of the analytical solution are compared against Sierra/SD. The results show good
agreement.
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8.1.10. Scattering from a Flat Plate

This example involves scattering from a flat plate. The geometry consists of a uniform, acoustic
tube of length 10(m), which is terminates by a flat plate. The acoustic tube is discretized with 3D
acoustic elements, and the flat plate is discretized with quad shell elements. Plane waves are
initiated inside of the acoustic tube, which then scatter off of the flat plate.

There is no analytical solution to this problem. However, we can still verify that the resonances of
both the acoustic tube and the plate are excited at the correct excitation frequencies. This checks
that the structural acoustic coupling between the plate and acoustic fluid is working correctly.

In the first example, we consider the fluid to be air, and the plate to be composed of steel, with a
thickness of 0.1(m). In that case, the plate is a rigid surface to the fluid, and hence the resonance
frequencies of the tube should match exactly that of a tube with rigid end caps. Figure 8-17 shows
the acoustic pressure in the tube as a function of frequency. It is seen that the first resonance is
predicted correctly, which according to theory should be 16.6Hz.

In the second example, we consider a light fluid that has a high speed of sound (𝜌 = 1.0,
𝑐 = 1500.0). We also consider a thin plate, with thickness of 0.001(m). This lowers the natural
frequencies of the plate well below those of the previous example. In this case, the fluid imparts
no added mass effect onto the plate, since its density is low. Also, due to the high speed of sound,
the natural frequencies of the tube are much higher than those of the plate. Consequently, the
resonances of the plate should be the first observed resonances of the overall system. The first two
exact resonances of the plate are at 3.5Hz, and 4.7Hz. Figure 8-18 shows the displacement of a
corner point on the plate as a function frequency. The numerical results correctly predict the first
two resonances of the plate.
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Figure 8-17. – Acoustic scattering from a plate. In the case when the plate is rigid compared with the
fluid, the first resonance of the fluid tube, 16.6Hz, is reproduced well.
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Figure 8-18. – Acoustic scattering from a plate. In the case when the fluid is given a low density and
high speed of sound, the first resonance of the plate appears before the acoustic tube resonances. In that
case, the first two resonances of the plate, 3.5Hz and 4.7Hz, are reproduced well.
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8.1.11. Transient Scattering from a Flat Plate

In this example, we evaluate transient scattering from a flat plate. The test consists of an acoustic
domain that is a perfect cube of dimensions 1 × 1 × 1, which is attached with tied surfaces to a flat
plate of dimension 1 × 1. The acoustic domain is given properties of air, and the flat plate is made
of steel. Given the material property mismatch between the structural and acoustic domains, the
coupling between these domains is negligible. This allows us to test the effect that the scattering
waves have on the acoustic and structural components separately, without having to consider
coupling.

The structural acoustic system is subjected a harmonic plane wave with frequency of 10Hz. The
wet surface is located at the origin, and thus the incident pressure at the wet surface is given by

𝑝(𝑡) = cos(𝜔𝑡) (8.1.64)

The corresponding velocity input on the acoustic domain is given by

𝑣(𝑡) = 1
𝜌𝑐

cos(𝜔𝑡) (8.1.65)

An absorbing boundary condition is placed at the far-end of the acoustic domain, and thus the
acoustic response should resemble that of an infinite tube. In that case, the acoustic pressure
response should be equal to the input velocity times 𝜌𝑐. Figure 8-19 shows a comparison of the
analytical and computed acoustic pressure on the wet surface. Excellent agreement is observed.

In the case of the structural response, we can use a simple force balance to determine the
acceleration response of the plate, since we are ignoring coupling between the structural and
acoustic components. In this case, the total pressure on the plate is equal to the sum of the
incident and scattered pressures. The area of the plate is 1.0, and thus the force is equal to the
pressure. Thus, we can compute the acceleration of the plate as follows

𝑎 =
𝐹

𝑚
=

2 cos(𝜔𝑡)
770

(8.1.66)

Figure 8-20 shows the comparison of the analytical and computed acceleration of the plate.

This test case can be found at

Salinas_rtest/verification/acoustic/hexplane.test
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Figure 8-19. – Comparison of Sierra/SD result with analytical solution of the scattered acoustic
pressure for a simple 1D problem.
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Figure 8-20. – Comparison of Sierra/SD result with analytical solution of the acceleration for a simple
1D scattering problem.
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8.1.12. Transient Scattering of a Plane Step Wave from a Spherical Shell

Acoustic analysis often includes the concepts of a “scattering” solution. By this, we mean an
analysis where it is easy to specify the incident wave at all points in space, and we solve for the
reflected wave. Such scattering solutions are useful in a variety of contexts. For example, a
submarine in the ocean may be struck by an incident “ping” from a neighboring ship. Such a ping
is nearly a plane wave, and calculation of the outbound wave is the item of interest. Because the
incident wave is known, we do not need to model the vast region of space between the incident
source and the scattering object. This reduces the cost of the computation.

The theory manual details the formulation. Here we address verification of a simple sphere in an
infinite medium using a problem from a LS-Dyna Verification Manual that is no longer available.
The model includes a steel sphere of radius 10 inches and thickness 0.1 inches immersed in sea
water. The parameters of the problem are given in Table 8-11.

parameter value
shell radius 10.0 in

shell thickness 0.1 in
shell modulus 0.29𝑒 + 08 𝑙𝑏

𝑖𝑛2

shell density 0.732𝑒 − 03 𝑙𝑏−𝑠𝑒𝑐2

𝑖𝑛4

water density 0.96𝑒 − 04 𝑙𝑏−𝑠𝑒𝑐
𝑖𝑛4

water speed of sound 60000 𝑖𝑛
𝑠𝑒𝑐

step wave amplitude 100 𝑙𝑏

𝑖𝑛2

hit point 𝑧 = −10𝑖𝑛

Table 8-11. – Parameters from Verification Model of Spherical Shell Subjected to Plane Step Wave

The solution is shown in Figure 8-21. There are discrepancies. The FEM solution excites higher
order modes not seen in the analytic solution. There may be reflections from the boundaries of the
fluid mesh. The nightly test (located in Salinas rtest/verification/acoustic/scattering/sphere plane
step), is “quarter-sphere”.

We note that the quarter-sphere model described utilized the standard absorbing boundary
condition for the exterior surface of the acoustic mesh. Identical results are obtained using infinite
elements. The location of the test is

Salinas_rtest/verification/acoustic/scattering/quarter_sphereIE.inp
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Figure 8-21. – Sphere Impacted by Step Wave. The incoming step wave arrives from the −𝑍 direction.
Dashed lines are the analytic solution.
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8.1.13. Infinite Elements on an Ellipsoidal Surface - Transient Scattering

It is often advantageous to mesh the area about a structure with an ellipsoidal (or prolate spheroid)
mesh, and use infinite elements on the ellipsoidal boundary to model the effects of an infinite
fluid. This is the case if a submarine is modeled. A spherical mesh about this long cylindrical
structure is larger than an ellipsoidal mesh. To verify the behavior of the infinite elements on this
boundary, we use the spherical structure of section 8.1.12 and compare with the known closed
form solutions.30 This problem came to our attention through an LS-Dyna Verification Manual
that is no longer available.

The standard formulation of infinite elements is built on radial basis functions. In the case of a
sphere, these basis functions can be defined using a common source location at the origin of the
sphere. When the infinite element surface is an ellipsoid, a common source location yields basis
functions that are not orthogonal to the infinite element surface, resulting in poor performance and
spurious reflections. To alleviate this, the basis functions for an ellipsoidal can be defined using a
variable source location, such that each element (each node on the surface) has its own source
point for expansions of the basis functions. This ensures that the basis is orthogonal to the
ellipsoidal surface.

To evaluate the reflection of the infinite elements, several meshes were composed. Details of the
meshes are shown in Table 8-12. All meshes are quarter symmetry models. A representative mesh
is shown in Figure 8-22. Results from the analyses are shown in Figures 8-23 through 8-25.

Name Eccentricity Acoustic Elements
sphere-m1 1:1 672
sphere-m2 1:1 5088
sphere-m3 1:1 40128
sphere-m4 1:1 323856
ellipse-m1 3:1 672
ellipse-m2 3:1 5088
ellipse-m3 3:1 40128
ellipse-m4 3:1 323856

Table 8-12. – Mesh Parameters of Infinite Elements on Ellipsoidal Surfaces.
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Figure 8-22. – Representative Mesh of Quarter Symmetry Sphere in Ellipse.
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Figure 8-23. – Filtered Front Node Response and mesh convergence for both a spherical and ellipsoidal
acoustic region.
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Figure 8-24. – Filtered Side Node Response and mesh convergence for both a spherical and ellipsoidal
acoustic region.
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Figure 8-25. – Filtered Back Node Response and mesh convergence for both a spherical and ellipsoidal
acoustic region.
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8.1.13.1. High Frequencies

There are two reasons why it is necessary to eliminate high frequencies from the comparison.
First, the analytic solution is a series summation (see equation 1730). It contains the lowest
frequency modes in the solution, and filters the higher frequency solution. Second, high
frequencies are introduced through of the mesh discretization. We observe that while the
frequency of these spurious solutions increases with mesh density, the amplitude typically
decreases. It is impractical to refine the mesh sufficiently to eliminate all such mesh dependent
responses.

The higher frequencies could be eliminated in a variety of ways. The input loading can be filtered
to “smooth” the step function and eliminate high frequency excitation. The integrator could
introduce artificial numerical damping which removes high frequency energy during the
computation. Or, the signal could be post-processed by filtering. We use post-process filtering in
this case because it is straightforward to implement and does not introduce unknown phase shifts.
We use the MATLAB “filtfilt” function on a Butterworth low pass filter of order 6. The cutoff
frequency is 10 kHz.

The radial response of an unfiltered and filtered responses is shown in Figure 8-26. Even with
increasing mesh density, high frequency oscillations continue to dominate the response.
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Figure 8-26. – Sphere in Ellipsoid. Unfiltered response at 90𝑜 location.
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8.1.13.2. Dependence on Loading Decay

The analytic solution loadings include an exponential decay following a step wave response. 1

The previous analysis was analysis performed with no decay. Figures 8-27 and 8-28 show the
response for various decay factors as observed on the leading and trailing edges of the sphere. The
analytical solutions for this case were taken from Sprague and Geers.48

The purposes of these plots is to determine the dependence of the solution on the decay parameter
“beta”. This dependence is in general well represented, but the phase error is significant. Figure
8-29 compares numeric solution with the analytic solution of Geers and the results published in
the USA verification manual for the case of 𝛽 = 0. The numeric results are much closer to the
USA prediction. There are some issues here that have not been identified. The two analytical
solutions should be identical, but differ. We can guess that a different number of terms were
retained in the series expansion. The USA solution is available for 𝛽 = 0 only.

1The pressure can be written as,
𝑃 = 𝐻 (𝑡 − 𝜏) exp (−𝛽[𝑡 − 𝜏])

where 𝐻 () is the Heavyside step function, 𝑡 is the measurement time, 𝜏 represents the travel time from the source
to measurement location and 𝛽 is the decay constant.
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Figure 8-27. – Comparison of Sierra/SD result with analytical solution of the scattered acoustic
pressure on the leading surface of a sphere. Mesh=m4.
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Figure 8-28. – Comparison of Sierra/SD result with analytical solution of the scattered acoustic
pressure on the back surface of a sphere. Mesh=m4.
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Figure 8-29. – Comparison of Sierra/SD numerical result with two differing analytic solutions.
Mesh=m4. Prediction on the back surface

8.1.14. A comparison of spherical and ellipsoidal infinite elements on a model
problem

In this section we examine the results of a simple test problem designed to compare the results of
infinite elements on spherical and ellipsoidal meshes. For the purposes of these comparisons, we
will use the results on the spherical meshes as the truth model, and the goal will be to show that
for sufficiently fine acoustic meshes and sufficiently high infinite element order, the results on the
spherical and ellipsoidal meshes are the same.

Figures 8-30 and 8-31 show the geometry of the test case. In the case of the ellipse, two different
aspect ratios were studied, 10 : 1 and 3 : 1. Figure 8-31 shows the aspect ratio of 10 : 1. An
acoustic mesh is defined on a spherical (Figure 8-30) and ellipsoidal (Figure 8-31) geometry. In
both cases a cylindrical hole is cut out from the mesh, and an applied acoustic velocity is applied
to the outermost surface of the cutout. The applied velocity is the same on the entire surface, and
consists of the hat function shown in Figure 8-32.

Figure 8-33 shows the results of acoustic pressure along a 45𝑜 angle relative to the major axis, for
a spherical mesh and an ellipsoidal mesh of aspect ratio 3 : 1. For the ellipsoidal meshes, results
are shown using two different source location algorithms of the plane-line intersect method, and
the constant offset method. The results from a previous Sierra/SD release that involved a fixed
source location is also shown. Both the plane-line intersect and constant offset ellipse algorithms
replicate the results produced on the sphere, but the fixed source location algorithm from the
previous Sierra/SD release shows significant differences. This is expected, since that algorithm
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Figure 8-30. – Spherical acoustic mesh for cylindrical cutout problem.

Figure 8-31. – Ellipsoidal mesh with aspect ratio 10:1 for cylindrical cutout problem.

required a zero mass matrix even when the mass matrix was non-zero, as in this case. Figure 8-34
shows the same results, but for an ellipsoidal mesh of aspect ratio 10 : 1. Similarly, the plane-line
intersect and constant offset source location algorithms for the ellipsoidal meshes yield identical
results to the sphere.

Figure 8-35 shows the results of acoustic pressure along the major axis, for a spherical mesh and
an ellipsoidal mesh of aspect ratio 3 : 1. For the ellipsoidal meshes, results are shown using the
two different source location algorithms of the plane-line intersect method, and the constant offset
method. The results involving a fixed source location that was implemented in a previous
Sierra/SD release are also shown. Both the plane-line intersect and constant offset ellipse
algorithms replicate the results produced on the sphere, but the fixed source location algorithm
shows significant differences. This is expected, since that algorithm required a zero mass matrix
even when the mass matrix was non-zero, as in this case. Figure 8-36 shows the same results, but
for an ellipsoidal mesh of aspect ratio 10 : 1. In this case, the initial behavior of the results on
ellipsoidal meshes are identical to that of the sphere, but later times show some small
discrepancies. Further increases in infinite element order did not resolve these discrepancies.
Additional acoustic mesh refinements are necessary for the results to converge.
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Figure 8-32. – Amplitude function used to scale input acoustic velocity for cylindrical cutout problem.
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Figure 8-33. – A comparison of results along a 45𝑜 angle from cylindrical cutout problem on spherical
and ellipsoidal meshes of aspect ratios 3:1
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Figure 8-34. – A comparison of results along a 45𝑜 angle from cylindrical cutout problem on spherical
and ellipsoidal meshes of aspect ratios 10:1
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Figure 8-35. – A comparison of results along the major axis from cylindrical cutout problem on
spherical and ellipsoidal meshes of aspect ratios 3:1
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Figure 8-36. – A comparison of results along the major axis from cylindrical cutout problem on
spherical and ellipsoidal meshes of aspect ratios 10:1
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8.1.15. Absorbing Boundary Conditions for Infinite Elastic Spaces.

In this example we consider a perfect cube, of dimensions 1 × 1 × 1, which is subjected to a
pressure wave and a shear wave along one of its faces. The opposing face is designated to be an
absorbing boundary condition. In both cases, we apply the loads in the frequency domain, since
we have analytical solutions for the corresponding particle displacements. We note that for the
shear wave loading, we needed to constrain the motion of the space to be zero in the orthogonal
directions in order to match the analytical solution. This is expected, since this solution assumes
no rigid body rotation of the space. We note that these tests can be found at

Salinas_test/verification/acoustic/infinite_elastic_space_frf_test
Salinas_test/verification/acoustic/infinite_elastic_space_frf2_test

In the case of a pressure wave, the amplitude of the particle displacement at the forcing boundary
is given by

𝑢 =
𝑃

𝜔𝜌𝑐
(8.1.67)

where 𝑃 is the pressure wave amplitude, 𝜔 is the circular frequency, 𝜌 is the material density, and
𝑐 is the dilatational wave speed in the material. The solution is for the infinite space. It will test
the accuracy of the absorbing boundary condition for pressure waves. Figure 8-37 shows the
comparison of this exact solution with the displacements obtained by Sierra/SD. The results are
indistinguishable.

In the case of a shear wave, the amplitude of the particle displacement at the forcing boundary is
given by

𝑢 =
𝑇

𝜔𝜌𝑐𝑠
(8.1.68)

where 𝑇 is the traction wave amplitude, 𝜔 is the circular frequency, 𝜌 is the material density, and
𝑐𝑠 is the shear wave speed in the material. The solution is for the infinite space. It hence will test
the accuracy of the absorbing boundary condition for shear waves. Figure 8-38 shows the
comparison of this exact solution with the displacements obtained by Sierra/SD. The results are
indistinguishable.

We also test the verification of the far-field evaluation. In the frequency domain, the exact solution
for an outwardly propagating spherical wave is given by

𝑃 =
𝐴

𝑟
𝑒−𝑖𝑘𝑟 .

If we prescribe the value 𝑃 = 𝑃𝑎 at some value of 𝑎, as in the time-domain example described
above, then we have

𝑃𝑎 =
𝐴

𝑎
𝑒−𝑖𝑘𝑎 .

This implies that 𝐴 = 𝑃𝑎𝑎𝑒
𝑖𝑘𝑎, and thus

𝑃 = 𝑃𝑎
𝑎

𝑟
𝑒−𝑖𝑘 (𝑟−𝑎) (8.1.69)
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Figure 8-37. – This plot shows the comparison of Sierra/SD prediction with the analytical solution of
particle displacement at the forcing boundary, for a perfect cube subjected to a pressure load at one end
and an absorbing boundary condition at the opposite end.
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Figure 8-38. – This plot shows the comparison of Sierra/SD prediction with the analytical solution of
particle displacement at the forcing boundary, for a perfect cube subjected to a shear load at one end
and an absorbing boundary condition at the opposite end.
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Equation 8.1.69 was used to compute the far-field solution to the frequency-domain version of
the
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8.1.16. Impedance Boundary Conditions

A simple impedance boundary condition has been implemented in Sierra/SD. This boundary
condition relates the acoustic pressure and particle velocity on the surface. In the implementation,
it results in a damping matrix with a multiplicative coefficient that depends on the impedance. For
more details, we refer to the theory notes.

We consider an air-filled acoustic waveguide of length 𝐿. At the left end, we apply a prescribed
particle velocity 𝑉 , and at the right end, we apply an impedance boundary condition with an
impedance of 𝑍 . The exact solution to this problem is given by Kinsler32 as

𝑝 = 𝑉𝜌𝑐 ∗
𝑍
𝜌𝑐

+ 𝑗 𝑡𝑎𝑛(𝑘𝐿)
1 + 𝑗 𝑍

𝜌𝑐
𝑡𝑎𝑛(𝑘𝐿)

(8.1.70)

where 𝑝 is the acoustic pressure at the left end, 𝜌 is the density, 𝑐 is the speed of sound, 𝑘 = 𝜔
𝑐

is
the wave number, and 𝑗 is the imaginary number.

We consider an example with the following properties: 𝐿 = 5, 𝑐 = 332.0, 𝜌 = 1.293, and
𝑍 = 0.5𝜌𝑐. Given these parameters, we ran a directfrf analysis in Sierra/SD and compared in
Figure 8-39 the Sierra/SD results against the analytic solution in equation 8.1.70. An excellent
agreement is observed.

The corresponding regression test uses the input deck

Salina_rtest/verification/acoustic/waveguide_impedance.inp
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Figure 8-39. – This plot shows the comparison of Sierra/SD prediction with the analytical solution of
acoustic pressure, for a piston-driven acoustic wave tube with an impedance boundary condition at the
opposite end.
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8.1.17. Moving Point Source

In this section, we study a similar example as the previous one, except that the point source has a
translation superimposed on the sinusoidal volume change. For simplicity, we assume that the
point source is moving in a straight line with velocity 𝑉 . The exact solution for this problem is
given as36

𝑝(𝑅, 𝑡) = 𝜌

4𝜋

¤𝑄(𝑡 − 𝑅
𝑐
)

𝑅(1 − 𝑀 cos 𝜃)2𝐻 (𝑡 − 𝑅

𝑐
) +

𝜌𝑄(𝑡 − 𝑅
𝑐
)

4𝜋
(cos 𝜃 − 𝑀)𝑉

𝑅2(1 − 𝑀 cos 𝜃)2𝐻 (𝑡 − 𝑅

𝑐
) (8.1.71)

where 𝑄 is the same as the preceding example, 𝑀 = 𝑉
𝑐

is the Mach number of the point source, 𝑅
is a vector going from the field point of interest to the source location, and 𝜃 is the angle between
the direction of motion of the source and the vector 𝑅.

We note that in the case when the velocity 𝑉 = 0 of the source is zero, we have that 𝑀 = 0. In that
case, the second term in equation 8.1.71 is zero and equation 8.1.71 reduces to equation 5.10.1.
Also, we note that equation 8.1.71 is derived by assuming that the point source is moving
subsonically, i.e., that the Mach number 𝑀 < 1. In the case 𝑀 > 1, a similar equation can be
derived (see,36 but we will not consider it here.

Figure 8-40 shows the geometry for the test problem in this case. It consists of a single hex
element that moves in the 𝑥 direction, along the center line of an acoustic half-space. The second
time derivative of the volume of this hex element is mapped to the acoustic space, creating an
image of a moving source. The hex element moves with a constant velocity. Its volume is given by
the equation

𝑄(𝑡) = 8
3
√

3
(𝑟0 + Δ sin(𝜔𝑡))3 (8.1.72)

where 𝑟0 = 0.01 ∗
√︁
(3), Δ = 0.01, and 𝜔 = 100 × 2𝜋. Two subsequent time derivatives of this

function give the necessary expressions for ¤𝑄 and ¥𝑄 for the time derivatives of volume that are
mapped to the acoustic space. Given these, equation 8.1.71 can be used to compute the exact
solution.

Figure 8-41 shows the comparison of computed and analytical solutions for the case when the hex
is given a velocity of 20𝑚

𝑠
, and the measurement point is at the bottom of the acoustic hemisphere.

Generally the agreement is good, with both solutions showing increasing amplitude as the hex
approaches the measurement point (at 𝑡 = 0.025), and decreasing amplitude as the hex passes and
travels away from the measurement point (0.025 < 𝑡 < 0.05). Better agreement could likely be
obtained by refining both the acoustic and hex meshes, but that is not pursued here. We note that
this example can be found in the performance test suite (it was too large to be placed in the
verification suite) at

Salinas_rtest/performance/moving_source.inp
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Figure 8-40. – Geometry for verification example of moving point acoustic source in an infinite
medium.
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Figure 8-41. – Comparison of computed and analytic solutions for verification example of moving
point acoustic source in an infinite medium.
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8.1.18. Infinite Elements for Transients

The infinite element implementation was verified on a single element transient example. This
element was a hex element that was aligned with a spherical surface of radius 𝑎 = 100𝑚. A
surface acceleration excitation of sin(2𝜋𝑡) was applied to the free face of the hex element, and a
third order infinite element was defined on the opposite face. Since this element was aligned with
a spherical coordinate system, its exact solution should be the same as that of the sound pressure
radiated from a pulsating sphere of the same radius. This exact solution is given in39 as

𝜙(𝑡) = 𝑎
∫ 𝑡

−∞
𝑒−(𝑐/𝑎) (𝑡−𝜏)𝑣𝑆 (𝜏)𝑑𝜏 (8.1.73)

where 𝑎 is the radius of the sphere, 𝑐 is the speed of sound, and 𝑣𝑆 (𝑡) is the applied surface
velocity on the inner surface of the sphere. Once 𝜙(𝑡) is found, the acoustic pressure can be
recovered as follows

𝑝(𝑟, 𝑡) = 𝜌𝑐 ¤𝜙
𝑟

(8.1.74)

If we define an input surface acceleration as

𝑎𝑆 (𝑡) = sin(2𝜋𝑡) (8.1.75)

Then we have an implied input velocity of

𝑣𝑆 (𝑡) =
−1
2𝜋

cos(2𝜋𝑡) + 1
2𝜋

(8.1.76)

Substituting this into equation 8.1.73, we obtain

𝜙 =
−𝑎
2𝜋

∫ 𝑡

−∞
𝑒−(𝑐/𝑎) (𝑡−𝜏)

[
−1
2𝜋

cos(2𝜋𝑡) + 1
2𝜋

]
𝑑𝜏 (8.1.77)

Simplifying, and using the identity∫
𝑒𝑐1𝑥 cos(𝑐2𝑥) =

𝑒𝑐1𝑥

𝑐2
1 + 𝑐

2
2
(𝑐1 cos(𝑐1𝑥) + 𝑐2 sin(𝑐2𝑥)) (8.1.78)

we obtain

𝜙(𝑡) = −𝑎
2𝜋

1
( 𝑐
𝑎
)2 + (2𝜋)2

[ 𝑐
𝑎

cos(2𝜋𝑡) + (2𝜋)2 sin(2𝜋𝑡)
]
+ 2𝜋𝑎2

𝑐
(
𝑐
𝑎

)2 + 𝑐(2𝜋)2
𝑒

−𝑐𝑡
𝑅 (8.1.79)

Inserting this expression into equation 8.1.74, we obtain the exact solution on the surface of the
sphere (R=a)

𝑝(𝑟, 𝑡) = 𝜌𝑐(
𝑐
𝑎
)2 + (2𝜋)2) [

2𝜋𝑒
−𝑐𝑡
𝑎 + 𝑐

𝑎
sin(2𝜋𝑡) − 2𝜋 cos(2𝜋𝑡)

]
(8.1.80)

We note that there is both a transient and a steady-state component to the solution in equation
8.1.80. The transient term dies out after sufficient time, and then the steady terms persist.
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Figure 8-42. – A comparison of an exact solution for spherical wave radiation and the Sierra/SD
computation using transient infinite elements.
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Figure 8-43. – A schematic of the geometry of a piston mounted on an infinite baffle for verification of
transient infinite elements.

Figure 8-42 shows the comparison of the exact solution of equation 8.1.80 and the computed
solution using Sierra/SD. Excellent agreement is seen between the curves.

A second verification example was considered that consisted of a piston mounted on an infinite
baffle. Figure 8-43 shows a schematic of the geometry. A 3D hemispherical domain of radius
0.5(𝑚) was constructed and meshed with tetrahedrons. A normal acceleration boundary condition
was applied to a circular portion of the flat face, of radius 0.25(𝑚). The flat plane of the
hemisphere was set at 𝑦 = 0, as shown in Figure 8-43. The remaining part of the flat surface was
treated as acoustically rigid (zero particle acceleration). Infinite elements were then applied to the
curved surface, thus making the geometry appear to be a semi-infinite space with a piston
mounted on the (rigid) baffle.

The analytical solution to this problem is given as39

𝑝(𝑥, 𝑡) = 𝜌

2𝜋

∫
𝑆

𝑎𝑛 (𝑥𝑠, 𝑦𝑥 , 𝑡 − 𝑅/𝑐)
𝑅

𝑑𝑆 (8.1.81)

where 𝑝(𝑥, 𝑡) is the acoustic pressure at an arbitrary point 𝑥 in space and time 𝑡, 𝜌 is the fluid
density, 𝑎𝑛 (𝑥𝑠, 𝑦𝑥 , 𝑡 − 𝑅/𝑐) is the normal acceleration on the piston surface, 𝑥𝑠 and 𝑦𝑠 are points on
the piston used in the surface integration, 𝑅 =

√︃[
(𝑥 − 𝑥𝑠)2 + (𝑦 − 𝑦𝑠)2 + (𝑧 − 𝑧𝑠)2

]
is the distance

from a point on the piston surface to the point 𝑥 where the solution is desired, and 𝑐 is the speed of
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Figure 8-44. – A comparison of computed vs. analytic solution for a piston mounted on an infinite
baffle. Field point is at 𝑥 = 0, 𝑦 = −0.5, 𝑧 = 0.

sound. Thus, we see that for an arbitrary point in space 𝑥, and an arbitrary time history of
accelerations 𝑎𝑛, the integral in equation 8.1.81 must be carried out numerically.

We consider 2 points in space for the comparison with analytical solution. The first point (point
A) is located along the axis of the piston at 𝑥 = 0, 𝑦 = −0.5, and 𝑧 = 0. The second point (point B)
is located off-axis as 𝑥 = 0.5, 𝑦 = 0 and 𝑧 = 0. Figures 8-44 and 8-45 show comparisons of the
analytical and computed solutions for the case when 𝑎𝑛 (𝑡) = sin(200𝜋𝑡), which corresponds to the
case when the piston is rigid and moving harmonically at a frequency of 100Hz.
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Figure 8-45. – A comparison of computed vs. analytic solution for a piston mounted on an infinite
baffle. Field point is at 𝑥 = 0.5, 𝑦 = 0.0, 𝑧 = 0.
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8.1.19. Variable Order Infinite Element Implementation

Before making comparisons of the infinite element and Kirchhoff integral approaches, we first
examine the dependence of the infinite element approach on the order of the radial expansion used
in the approximation. If the implementation is correct, the computed solution should converge to
the analytical solution for sufficiently high order of radial expansion in the infinite element
approximation.

Figure 8-46 shows the geometry of the mesh used for the baffled piston. It consists of a
hemispherical geometry with a circular surface defining the area over which the piston makes
contact with the air. An applied acceleration time history is given to the piston, which acts as a
Neumann boundary condition. The flat face of the hemisphere is a subset of the infinite baffled
plane. The infinite elements are placed on the curved part of the hemispherical surface. The
piston is given a uniform, time-dependent acceleration in the direction of its surface normal. We
denote this acceleration as 𝑎𝑃 (𝑡), and the exact form of the time dependence will take two
different forms, as described below.

The exact solution to this problem can be computed from the Kirchhoff integral

𝑝(𝒙, 𝑡) = 𝜌

2𝜋

∫
𝑆

𝑎𝑃 (𝒙𝑺, 𝑡 − 𝑅
𝑐
)

𝑅
𝑑𝑆 (8.1.82)

where 𝑝(𝒙, 𝑡) is the acoustic pressure at point 𝒙 and time 𝑡, 𝜌 is the density of the fluid, 𝑆 is the
surface area over which the piston interacts with the fluid, 𝑎𝑃 (𝒙𝑺, 𝑡 − 𝑅

𝑐
) is the normal acceleration

of the piston at the point 𝒙𝑺, and at the delayed time 𝑡 − 𝑅
𝑐
, 𝑅 = |𝒙 − 𝒙𝑺 | is the distance from the

surface point 𝒙𝑺 to the far field point 𝒙, and 𝑐 is the speed of sound. The evaluation of equation
8.1.82 was carried out numerically, and this provided the exact solution for comparison with the
computations.

In the following examples, we consider standard conditions for the air surrounding the piston,
𝜌 = 1.293, 𝑐 = 332.0. The piston has a radius of 0.25(m). The mesh consists of 1, 800, 000 linear
tetrahedral acoustic elements with an approximate element diameter of 0.0026 m. For a wave at
2000 Hz, the wavelength is about 0.166 m, and thus this consists of about 50 elements per
wavelength. The time step for the transient analysis was taken at 5.0x10−6 s, which is much finer
than needed to resolve a frequency of 2000 Hz. Thus, we expect both spatial and temporal
resolution to be sufficient to capture the wave response, and thus allow the infinite element and
Kirchhoff solutions for far-field pressures to be easily compared.

Figure 8-47 shows a comparison of the exact vs. computed transient response at the particular
point 𝑥 = −0.25, 𝑦 = 0, 𝑧 = 0 for increasing order of the infinite element approximation. In this
case, the piston was given an acceleration of the form 𝑎𝑃 (𝑡) = sin(2𝜋 𝑓 𝑡)𝐻 (𝑡), 𝑓 = 2000(Hz). As
expected, the infinite element solution converges to the exact solution as the order is increased.
For the examples that follow, a similar approach was taken in that the order was increased until
subsequent increases in the order of the infinite elements made no difference in the obtained
results.
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Figure 8-46. – The geometry and mesh of the baffled piston problem.
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Figure 8-47. – A convergence study for infinite element order, demonstrated on the baffled piston
problem
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8.1.20. Coupled Acoustic-Structure Directfrf with Viscoelastic Material

This example compares the solution from ABAQUS with that of Sierra/SD for a coupled
acoustic-structure interaction directfrf problem with a viscoelastic material. The problem consists
of a thick plate fixed on the edges and loaded on one face. The opposite side of the solid is
coupled a prism with a prescribed acoustic pressure equal to zero on the opposite face. A sketch
of the problem domains is shown in Figure 8-48. The pressure contours for both the Sierra/SD
and ABAQUS outputs are shown in Figures 8-50 and 8-49, respectively, while a comparison of
peak values are shown in Table 8-13.

Peak Pressure (Pa) Peak Uy (m)
ABAQUS -10811.5 1.031e-6
Sierra/SD -10818.16 -1.030e-6

Table 8-13. – . Peak pressure and displacement for coupled acoustic-structure interaction problem with
viscoelastic material.
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Figure 8-48. – The bottom part is the solid, the top part is the fluid

Figure 8-49. – Vertical displacement distribution from ABAQUS.
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Figure 8-50. – Vertical displacement distribution from Sierra/SD.
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8.2. Nonlinear Acoustics

In Sierra SD nonlinear acoustics is modeled using the Kuznetsov Equation. For verification
purposes, we consider the same sequence of simulations given in29,28 involving a piston-radiation
problem. This example is shown in Figure 8-51. It consists of a long air-filled tube that has a
sinusoidal boundary condition at the left end. This boundary condition can either be in the form
of a pressure (Dirichlet) condition or a velocity (Neumann) condition, which are given as

𝑝(0, 𝑡) = 𝑝0 sin(𝜔𝑡) (8.2.1)

𝑣(0, 𝑡) = 𝑣0 sin(𝜔𝑡) (8.2.2)
To simulate the infinite condition at the right end of the tube, an absorbing boundary condition is
used. The exact solution to this problem is given by the Fubini solution (see Section 11.2 of39) in
the pre-shock regime and by the Fay solution in the post-shock regime.

(v0)sin(wt)

Tube of infinite length

Figure 8-51. – A wave tube example for verification.

In the case of a plane wave, the distance to shock formation is given as

𝜎 =
𝑐(

1 + 𝐵/𝐴
2

)
𝑣0𝑘

(8.2.3)

where 𝑣0 is the amplitude of the velocity of the source, and 𝑘 is the wave number. As expected, for
larger amplitude sources, and for more nonlinear fluids (larger 𝐵/𝐴), the shock forms closer to the
source. Interestingly, we see that the shocks also form closer to the source for high frequency
waves, since 𝑘 is in the denominator. In the numerical experiment, we chose 𝑣0 = 20𝑚

𝑠
, and

𝑘 = 100
332 = .3, which resulted in a shock formation distance of 𝜎 = 332

1.2∗20∗.3 = 46.1𝑚.

The Fubini solution33,26 is given by

𝑝(𝑥, 𝑡) = 𝑝0

∞∑︁
𝑛=1

2
𝑛𝑥
𝐽𝑛 (𝑛𝑥) sin(𝑛𝜔𝜏) (8.2.4)

where 𝐽𝑛 (𝑥) is the Bessel function of order 𝑛, 𝑥 = 𝑥
𝜎

, and 𝜏 = 𝑡 − 𝑥
𝑐0

. The Fay solution is

𝑝(𝑥, 𝑡) = 𝑝0
2
Γ

∞∑︁
𝑛=1

sin(𝑛𝜔𝜏)
sinh [𝑛(1 + 𝜎)Γ)] (8.2.5)

where Γ is the ratio of the absorption length to the shock formation distance (see26). The Fubini
solution assumes a lossless media, and is valid for 𝑥 < 𝜎. For the post-shock regime, 𝑥 > 3.5𝜎,
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the Fay solution must be used since it accounts for absorption. Transition solutions have been
derived7 that provide exact solutions for 𝜎 < 𝑥 < 3.5𝜎, but we do not consider those here.

For all the results presented next, the fluid is air at ambient conditions, with 𝑐 = 332.0𝑚
𝑠
,

𝜌 = 1.293𝐾𝑔
𝑚3 . Accounting for viscosity and thermal conductivity loss mechanisms, the absorption

parameter can be calculated from the following equation39

𝑏

𝑐2 =
1
𝜌𝑐2

[
4
3
𝜂 + (𝛾 − 1) 𝑘

𝐶𝑝

]
(8.2.6)

=
1

1.293𝑥3322

[
4
3

1.846𝑒−5 + (0.4)2.624𝑒−2

1000

]
(8.2.7)

= 7.017𝑒−6𝑥
[
2.461𝑒−5 + 1.0496𝑒−5] = 2.46𝑒−10 (8.2.8)

(8.2.9)

For air, 𝑏

𝑐2 is too small to affect the results. Note that this estimate neglects additional loss
mechanisms such as molecular relaxation, and wall losses.

Figures 8-52, 8-53, and 8-54 show the solution at 𝑥 = 0, 𝑥 = 𝜎, and 𝑥 = 4𝜎, respectively. In all
cases, the computed solution is compared with the exact solution, and convergence is obtained. In
these results, three- dimensional linear finite elements were used, with element diameters of
0.125(m). The time steps were 1.0 × 10−3, 2.5 × 10−4, and 1.25 × 10−4 for Figures 8-52, 8-53, and
8-54, respectively.

To demonstrate the significant difference between linear and nonlinear solutions, in Figure 8-55
we show the results for the previous problem using linear and Kuznetsov wave equations. In this
case, we plot acoustic pressure with distance along the tube, rather than with time. It is seen that
linear theory is not sufficient for capturing the correct response.

Next, we examine the nonlinear convergence properties of the algorithm. Since we are using
Newton’s method to solve the nonlinear system of equations, we examine the number of iterations
required for convergence. The criteria for convergence is based on a relative tolerance of 10−6,
e.g.

|𝑅𝑒𝑠 𝑓 |
|𝐹𝑒𝑥𝑡 |

≤ 10−6 (8.2.10)

Also, we mention that the starting point for the Newton iterations is the value of velocity potential
from the previous time step. Figure 8-56 shows the number of Newton iterations required to
satisfy the inequality 8.2.10, for various levels of input velocities of the piston. As expected, for
larger input velocities, more iterations are required for convergence. The highest level that was
considered, 120𝑚

𝑠
, is beyond the limitations of the Kuznetsov equation, but we show it anyway to

illustrate the divergence of the Newton scheme. For reasonable levels of piston velocities, 20𝑚
𝑠
,

the Newton iterations converge rapidly, leveling off at about 4 iterations per time step.
Interestingly, for source amplitudes that are within the range of validity of the Kuznetsov equation,
the formation of shocks does not influence the number of iterations required for convergence.

A test case for the Fubini solution with the shock wave is currently in the verification test suite

Salinas_rtest/verification/acoustics/shocktube_english.test for english units
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Figure 8-52. – Acoustic radiated pressure at 𝑥 = 0
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Figure 8-53. – Acoustic radiated pressure at 𝑥 = 𝜎.
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Figure 8-54. – Acoustic radiated pressure at 𝑥 = 4𝜎.
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Figure 8-55. – A comparison of radiated pressure using linear and nonlinear acoustic formulations
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8.2.1. Eigen Analysis

Eigen analysis is performed as part of the verification of the element quantities. Practically
speaking, it is difficult to verify the analysis independent of the element. For example, the hex20
and tet10 element convergence studies utilize eigen analysis for the convergence study. See
Figures 4-49 and 4-50 for example.

8.2.2. Quadratic Eigen Analysis

There are several different solution approaches within the package that computes the solution to
the quadratic eigenvalue problem. Each requires its own verification.

8.2.2.1. QEP – Proportionally Damped

The proportionally damped system is straightforward because the eigenvectors of the real system
diagonalize the complex (or damped) solution. Consider

(𝐾 − 𝜔2𝑀)𝜙 = 0 (8.2.11)

For this system 𝜙𝑇𝐾𝜙 = Λ is diagonal, and 𝜙𝑇𝑀𝜙 = 𝐼. The proportional damping matrix is given
by 𝐶 = 𝛼𝑀 + 𝛽𝐾 . Also 𝜙𝑇𝐶𝜙 = 𝛼𝐼 + 𝛽Λ.

The solution to the 𝑗 𝑡ℎ mode of the damped system is given by,

Λ 𝑗 𝑗 + 𝜔(𝛼 + 𝛽Λ 𝑗 𝑗 ) + 𝜔2 = 0 (8.2.12)

All quantities are known from the real eigenvalue analysis, and we can solve in terms of 𝜔.

𝜔 𝑗 =
−(𝛼 + 𝛽Λ 𝑗 𝑗 ) ±

√︃
(𝛼 + 𝛽Λ 𝑗 𝑗 )2 − 4Λ 𝑗 𝑗

2
(8.2.13)

Table 8-14 lists the eigenvalues and errors for a proportionally damped system with 𝛼 = 0 and
𝛽 = 0.001. This is a small Hex8 model for which the eigenvalues are known from real eigen
analysis.

These solutions are within the expected round off. Notice that as the natural frequency increases,
the fractional damping is increasing to almost 25%.

414



Table 8-14. – Eigenvalues of Proportionally Damped Model.
# Λ

√
Λ/2𝜋 𝜔/2𝜋 error

1 5375.07 11.6684 (-0.427735,11.6606) 1.6e-6
2 108926 52.5275 (-8.66809,51.8074) 2.7e-6
3 219052 74.4893 (-17.4316,72.4209) 4.1e-7

8.2.2.2. QEP – Viscoelastically Damped

There are no verification tests yet for this solution.

8.2.2.3. QEP – Discrete Dampers

There are no verification tests yet for this solution.

8.2.3. SA_eigen

Verification of the SA_eigen solution is complicated by the model reduction inherent in the
process. Kinsler32 has a closed form expression for a coupled one dimensional structural acoustic
system. The finite element solution will approach this solution as,

a the finite element mesh converges, and

b the modal truncation is eliminated.

Without both of these considerations, there will be no convergence of the solution. Unfortunately,
while we can show a 1/ℎ type convergence for the FE mesh, no such convergence can be expected
for modal truncation. For some forms of basis functions the convergence will be rapid. In other
cases, convergence may not be acceptable until the entire space has been spanned.

Because of model size issues, such convergence is demonstrated independently. Thus, we first
show convergence of the mesh to the analytic solution. Then, with a coarse mesh, we demonstrate
convergence as the number of modes in the basis is increased. Figure 8-57 shows the mesh
convergence study. We note that for 1/𝐻 > 100 the solution no longer appears to be converging.
The polyeig() routine in MATLAB does a full factorization. Computing accurate modes with
polyeig involves techniques that are beyond the scope of this document.

Figure 8-58 shows the convergence of the reduced model to the first coupled modal frequency
when using 2 structural and 10 acoustic modes. Note that this mode converges from below to a
value 1% higher than the mode of the solution without truncation.

Figure 8-59 shows the convergence of the modal frequency as the number of basis modes is
increased. There is no damping for this system. Introducing radiation damping to the right side of
the acoustic system impacts the modal convergence rate. As shown in Figure 8-60, radiation
damping (or non-reflecting boundary conditions), delays convergence and degrades accuracy.
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Figure 8-57. – Mesh convergence to 1D Structural Acoustics Example. The example, taken from
Kinsler32 uses 𝑎 = 1/25 and 𝑏 = 8/3, where 𝑎 and 𝑏 are defined in the reference. The eigen solution
is found using MATLAB’s polyeig() function. The analytical solution from equation 9.42a of
Kinsler[32] is 125.2783.

To examine the dependence of this error on the coupling, we sweep through various structural
mass quantities while holding all other parameters fixed. Sweeping the mass results in a change of
structural resonant frequency. In addition, the type of coupling experienced by the acoustic cavity
changes from approximately unbounded to fixed boundary conditions. Results shown in Figure
8-61, show variation as the parameter 𝑎 of Kinsler is varied. The error is highest, and the coupling
is greatest, when the structural and acoustic domains have similar resonant frequencies.

To examine the effects of impedance matching while maintaining the resonance frequencies, the
structural mass and stiffness are varied together such that the resonance frequency is maintained at
160 Hz, below the acoustic resonance (166 Hz). Figure 8-62 provides the results. The error is
largest when the impedance approximates an open acoustic termination.
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Figure 8-58. – Mesh convergence to 1D Structural Acoustics Example using a modal basis. The
example is that of Figure 8-57. The quadratic eigen solution is computed using 2 structural and 10
acoustic modes in Sierra/SD.
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Figure 8-59. – Modal convergence to 1D Structural Acoustics Example using a modal basis. The
example is that of Figure 8-57, with 1/ℎ = 80. The quadratic eigen solution is computed using 2
structural modes, while the number of acoustic modes varied. Computation is in MATLAB, with
selective comparison to Sierra/SD. Convergence is not rapid as a solution requires components of all
axial modes. After about 80 modes, no further improvement is obtained.
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Figure 8-60. – Mesh convergence to Damped 1D Structural Acoustics Example using a modal basis.
The model is unchanged from Figure 8-59 except that there is a non-reflecting boundary condition
applied on the end opposite to the structure. MATLAB comparisons with polyeig truth model, with
direct verification to Sierra/SD solution.
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Figure 8-61. – Modal convergence of 1D Structural Acoustics Example using a modal basis. The
example is that of Figure 8-57, with ℎ = 1/80. The quadratic eigen solution is computed using 2
structural modes and 10 acoustic modes in Sierra/SD, while the mass parameter, 𝑎 is varied.
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Figure 8-62. – Modal convergence of 1D Structural Acoustics Example using a modal basis as the
impedance is swept. The example is that of Figure 8-57, with ℎ = 1/80. The quadratic eigen solution is
computed while both the mass parameter, 𝑎 and the stiffness parameter, 𝑏, are varied. We maintain a
structural resonance of 160 Hz.

8.2.4. Buckling of a Cantilever Beam

The buckling of a cantilever beam modeled using solid elements is verified. The geometry for this
example consists of a cantilever beam with one end clamped, and with the other subjected to a
compressive load 𝑃. Euler-Bernoulli beam theory predicts the critical buckling load to be

𝑃𝑐𝑟 =
2.4674𝐸𝐼

𝐿2 (8.2.14)

A simple mesh of this example was created, consisting of a 2 × 2 × 10 hex elements. The critical
buckling load is predicted to be

𝑃𝑐𝑟 =
2.4676 × 30 × 106 × 1

12
102 = 61675 (8.2.15)

The computed buckling load was 61370.1.

8.2.5. Verification With Respect to Semi-Analytical Eigen Analysis

Analytic and semi-analytic eigenvalue decompositions are known for most simple geometries.
Summaries are available.10 Note however, that these solutions are for idealized models. Euler’s
beam model is appropriate to thin beams where shear terms are negligible.
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Figure 8-63. – Blevins Table 9-2.1 and 9-2.2 Geometries.

An eigenvector provides information about the global solution. A correct solution requires both a
correct stiffness and mass matrix. Further, accuracy of the solution is easily determined by
examination of the eigenvalues alone. On the other hand, the load vector is irrelevant, which
simplifies the test matrix.

The “truth” model for these analyses are the eigenvalues obtained from analytic and semi-analytic
solutions tabulated in Blevins. Note that the accuracy of the textbook solutions is limited to about
0.5% in most cases. Spring and Mass analysis matrix is detailed in Table 8-15. For beam
elements, eigenvalues Tabulated in 8-16 through 8-18. Shell elements use Tables 8-19 through
8-21. Note that beams and shells have simplifying assumptions which may cause the solid based
solutions to differ from the textbook solutions. For example, the “beams” built of solid elements
will contain shear effects that are not present in a standard beam element. The geometry for these
tests is illustrated in Figure 8-63.

The computational results represent the converged solution. In most cases a Richardson
extrapolation has been performed to arrive at the minimum error due to discretization. Tables
8-15 through 8-21 use material properties for steel: 𝐸 = 3𝑒7 psi, 𝜈 = 0.30 and 𝜌 = 0.288 lbs/in3

(7.4592x10−4 slugs/in3).

Table 8-15. – Spring Mass Vibration.
Blevins Description Sol’n Mode Number
Table Type 1 2 3
6-2 2 two equal masses, Exact .0983632 .2575181 N/A

two equal springs FE .0983632 .2575181 N/A
6-2 18 Three equal masses, Exact .159155 .3183100 .3183100

six equal springs FE .159155 .3183100 .3183100

Note: The Lanczos solver (in ARPACK) cannot find all the modes of the system. Some modes
were found by exporting the matrices and solving in MATLAB
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Table 8-16. – Beam Mass Vibration.
Massless beam has square cross-section with 𝐼1 = 1, L=20, 100 elements.

Table Description Sol’n Mode 1
6-2 19 End mass on cantilever beam Exact 16.88

FE 16.88
6-2 20 Center mass, pinned-pinned beam Exact 67.52

FE 67.52
6-2 22 Center mass, clamped-clamped beam Exact 135.05

FE 135.05

Table 8-17. – Beam Vibration - Using Beam2.
The sample beam has a square cross-section with area=1, length=20. 100 elements. No torsion
spring is yet available.

Blevins Description Sol’n Mode Number
Table Type 1 2 3 4
8-1 1 Free-free bending Exact 515.36 1420.6 2785.0 4603.7

FE 515.15 1419.6 2781.9 4596.9
8-1 2 Free-sliding bending Exact 128.84 696.24 1719.3 3197.0

FE 128.83 696.05 1718.5 3194.7
8-1 3 Clamped-free Exact 80.99 507.56 1421.2 2784.9

FE 80.98 507.44 1420.6 2783.2
8-1 5 Pinned-pinned Exact 227.34 909.37 2046.1 3637.5

FE 227.34 909.29 2045.7 3636.4

Table 8-18. – Uniform Shaft Torsional.
Note. The discrepancy in this table stems from a mismatch of geometry (which we intend to clear
up soon). The analytic results are for circular cross-sections. We have a square cross-section in the
FE results. It is clear that the frequencies should be ratios of 1,3,5,7, etc. This holds for the FE
results.

Blevins Description Sol’n Mode Number
Table Type 1 2 3 4
8-19 2 Fixed-Free analytic 1427.93 4283.78 7139.64 9995.5

FE-Beam2 1554.68 4663.66 7771.49 10877.4
FE-Hex8 1545.97 4642.1 7750.76 10880
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Table 8-19. – Circular Arcs.

Blevins Description Sol’n Mode Number
Table Type 1 2 3 4
9-2 1 Extension Mode analytic 52632 N/A N/A N/A

Clamped-Clamped FE Beam2 52693 N/A N/A N/A
9-2 2 In-Plane flexural mode analytic 2579.35 13137.2 30989.4 56026.3

Pinned-Pinned FE Beam2 2587.73 13189.5 30671.7 54445.7
9-2 5 Out-of-Plane Flexural analytic 1763.56 N/A N/A N/A

Clamped-Clamped FE Beam2 1741.11 N/A N/A N/A

Table 8-20. – Circular Plates - Bending.
Circular disk made of QuadT elements.

Blevins Description Sol’n Mode Number
Table Type 1 2 3 4
11-1.1 Free edge Exact 126.84 219.35 295.32 495.50

FE 129.31 217.25 300.16 493.72
11-1.2 Simply supported edge Exact 120.18 336.61 619.37 718.61

FE 119.20 335.69 618.69 718.64
11-1.3 Clamped edge Exact 246.78 513.36 842.25 960.32

FE 246.62 513.00 841.97 961.03
11-1.12 Clamped edge with point Est. 25.98 N/A N/A N/A

mass at center (M large) FE 25.83 N/A N/A N/A

Table 8-21. – Rectangular Plates - Bending.
Using Tria3 elements, aspect ratio 𝑎/𝑏 = 1.5 in all cases.

Blevins Description Sol’n Mode Number
Table Type 1 2 3 4
11-4.1 Free-free-free-free Exact 864.14 927.25 2002.59 2158.85

FE 862.61 919.15 1989.43 2142.13
11-4.21 Clamped-clamped-

clamped-clamped.
Exact 2608.74 4029.22 6387.69 6428.04

FE 2608.29 4027.90 6387.04 6425.11
11-4.16 Simply supported Exact 1377.13 2648.23 4237.00 4765.01

(all 4 edges) FE 1376.97 2648.01 4237.05 4766.57
11-4.6 Clamped-free- Exact 652.94 1103.68 2127.08 2747.82

simply supported-free FE 648.82 1100.31 2113.90 2733.90
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8.2.6. Code to Code Comparisons

Extreme care must be used when using code to code comparisons. They are no replacement for
more rigorous verification techniques (see Trucano51). However, they may be useful when the
following conditions are met.

• The “truth” model code has been adequately verified.

• The two codes can be determined to solve exactly the same differential equations.

• Comparisons are to the quantities to which the truth model code must ultimately converge.

• The value gained by the comparison provides important insight not readily obtained by
solution of analytic problems.

Any method that provides additional examination of the application is valuable.

Some benchmark problems exist in the literature (see for example MacNeal34). Some benchmark
problems will be solved using Sierra/SD and using MSC/NASTRAN, an industry standard for
elastodynamics. Comparisons of the mesh-refined solutions will be made. Other codes may be
used for other phenomena.

The list of such code to code comparisons will necessarily grow over time. An example includes a
mock-AF&F which was analyzed for eigen response. This is a 500,000 degree of freedom model
designed for optimization studies. It is a real design with the level of detail anticipated in practical
models of this structure. It contains mostly Tet10 elements with shells constructed of Tria6. Much
of the model was constructed using automatic mesh generation methods. Comparisons of the first
4 modes of this model are shown in Table 8-22.

Table 8-22. – AF&F code to code comparison.

# Description NASTRAN Sierra/SD Difference
1 Aft plate drum mode 434.3 Hz 437.0 Hz .6%
2 First bending, X 627.4 Hz 629.1 Hz .3%
3 First bending, Y 657.2 Hz 659.2 Hz .3%
4 torsion 793.6 Hz 793.2 Hz .05%

8.2.7. Direct Frequency Response

The Sierra/SD driver is verified using two mass spring systems problems. The first is a mass
spring system with stiffness proportional damping, and the second is a mass spring system with
mass proportional damping.
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A diagram of the problem is available.15 The exact solution to this problem15 is

𝐷𝑠 =
𝑈

𝑈0
=

1√︃(
(1 − 𝑟2) + (2𝜁𝑟)2) (8.2.16)

Here𝑈 is the displacement of the mass,𝑈0 is the magnitude of the forcing function, 𝑟 = 𝜔
𝜔0

is the
ratio of the circular frequency to the fundamental resonant frequency, and 𝜁 = 𝑐

2
√
𝑘𝑚

is the level of
damping. Damping is normalized with respect to the stiffness and mass of the spring mass
system.

For proportional damping, we have 𝑐 = 𝛼𝑚 + 𝛽𝑘 . The exact solutions corresponding to equation
8.2.16 were computed and compared with simulations in Sierra/SD for two cases. In case 1,
𝛼 = 0.0 and 𝛽 = 1.0. In case 2, 𝛼 = 1.0 and 𝛽 = 0.0. Also, for convenience we set
𝑘 = 𝑚 = 𝑈0 = 1 for this problem. In this way, the exact solutions for both mass and stiffness
proportional damping were exactly the same.

Figure 8-64 shows the comparison of the computed and exact solutions for the case of stiffness
proportional damping. The mass proportional damping case was exactly the same, and thus is not
shown. We see that proportional damping decreases the peak of the resonant frequency, and shifts
the frequency to the left. Excellent agreement is seen between Sierra/SD and the exact
solutions.
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Figure 8-64. – Comparison of exact and computed responses from direct frequency response of a
damped spring mass system.
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8.2.8. Modal Frequency Response

Modal frequency response is verified against the corresponding direct frequency response analysis
by assessing the convergence of the modal expansion. Test one concerns a free-free beam
composed of 2 by 2 by 20 brick elements with a uniform pressure load is applied on both ends.
The comparison of the results at a point in the center of the beam, versus the results from direct
frequency response is given in Table 8-23.

Test two involves the same geometry as the previous test, and instead has one end fixed and the
other subjected to a traction load of 111. Also, in this test, the modal acceleration method is used
instead of modal frequency response. The results, compared with a direct solution, are given in
Table 8-24. The modal frequency response results converge to the direct frequency response
results as the number of modes in the modal expansion increases. We note that both of these tests
are located in the Sierra/SD test suite under

Salinas_test/verification/frf

Table 8-23. – Convergence of Modal Frequency Response Method.
quantity direct frf modal

14 modes 30 modes 50 modes 100 modes
accx 12.7659 14.28 13.5 13.9 12.79
accy -12.7659 -14.28 -13.5 -13.9 -12.79
accz 117.309 139.0 111.0 118.0 117.353

Table 8-24. – Convergence of Modal Acceleration Method.
quantity direct frf modal accel, 14 modes modal accel, 30 modes

accx -2350.82 -2349.75 -2350.81
accy -2415.098 -2414.12 -2415.097
accz -718.587 -718.321 -711.578

8.3. Mass Properties Verification Tests

Correction An old convention reversing the sign of the off-diagonal terms in the inertia tensor is
used here.

Notation. A vector 𝑟 is a column vector. Transpose is defined here for vectors over the real
numbers, not the complex numbers. The transpose of 𝑟, denoted 𝑟𝑇 is a row vector.

The inertia matrix is denoted by 𝐼. We need a new symbol for the identity matrix. Let’s call it 𝐸 .
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A particle with position 𝑟 and mass 𝑚 is rotating about an axis passing through the origin has an
inertia. Suppose that the axis is parallel to the unit vector n. The projection of a point 𝑟 along the
axis is 𝑛𝑛𝑇𝑟. In terms of 𝑝 = 𝑟 − 𝑛𝑛𝑇𝑟, The inertia is 𝑚𝑝𝑇 𝑝 = 𝑚𝑛𝑇 (𝐸𝑟𝑇𝑟 − 𝑟𝑟𝑇 )𝑛. The new
convention is to honor the minus sign in front of 𝑟𝑟𝑇 . The inertia of a system of particles 𝑟𝑖 each
of mass 𝑚𝑖 is

𝐼 =
∑︁
𝑖

𝑚𝑖 (𝐸𝑟𝑇𝑖 𝑟𝑖 − 𝑟𝑖𝑟𝑇𝑖 )

As the 3 vector 𝑎 has a 3 by 3 spin matrix [𝑎], for any vector 𝑟, the cross product 𝑎 × 𝑟 = [𝑎]𝑟. In
terms of the spin matrix,

𝐼 =
∑︁
𝑖

𝑚𝑖 [𝑟𝑖]2.

The remainder of this note has not been updated to use the new sign convention.

The following problems were used to verify the mass properties calculations in Sierra/SD. These
problems cover most element types, however superelements are not addressed here. The tests and
results described here were generated with release 2.9.

8.3.1. 0D Verification Test

The following test was used to verify mass properties for conmass elements. The test consists of
an assembly of three conmass elements as shown in Figure 8-65. In the finite element model, the
masses were connected with RBar elements which do not add mass to the system.

The total mass of the assembly is 𝑚𝑡𝑜𝑡𝑎𝑙 = 3𝑚. The center-of-gravity is
𝑥𝑐𝑔 = (𝑚𝑏 + 0 − 𝑚𝑏)/𝑚𝑡𝑜𝑡𝑎𝑙 = 0 (8.3.1)
𝑦𝑐𝑔 = (0 + 𝑚𝑏 + 0)/𝑚𝑡𝑜𝑡𝑎𝑙 = 𝑏/3 (8.3.2)
𝑧𝑐𝑔 = (0 + 𝑚𝑏 + 2𝑚𝑏)/𝑚𝑡𝑜𝑡𝑎𝑙 = 1 (8.3.3)

The components of the inertia tensor are
𝐼𝑥𝑥 = 𝐼𝑥𝑥 + 𝑚𝑟2

𝑥 (8.3.4)
= 𝐼𝑥𝑥 + 𝑚

[
(2𝑏)2 + (𝑏2 + 𝑏2) + 0

]
= 𝐼𝑥𝑥 + 6𝑚𝑏2 (8.3.5)

𝐼𝑦𝑦 = 𝐼𝑦𝑦 + 𝑚𝑟2
𝑦 (8.3.6)

= 𝐼𝑦𝑦 + 𝑚
[(
𝑏2 + (2𝑏)2

)
+ 𝑏2 + 𝑏2

]
= 𝐼𝑦𝑦 + 7𝑚𝑏2 (8.3.7)

𝐼𝑧𝑧 = 𝐼𝑧𝑧 + 𝑚𝑟2
𝑧 (8.3.8)

= 𝐼𝑧𝑧 + 𝑚
[
𝑏2 + 𝑏2 + 𝑏2] = 𝐼𝑧𝑧 + 3𝑚𝑏2 (8.3.9)

𝐼𝑥𝑦 = 𝐼𝑥𝑦 + 𝑚𝑑𝑥𝑑𝑦 (8.3.10)
= 𝐼𝑥𝑦 + 𝑚 [0 + 0 + 0] = 𝐼𝑥𝑦 (8.3.11)

𝐼𝑥𝑧 = 𝐼𝑥𝑧 + 𝑚𝑑𝑥𝑑𝑧 (8.3.12)
= 𝐼𝑥𝑧 + 𝑚

[
0 + 0 − 2𝑏2] = 𝐼𝑥𝑧 − 2𝑏2 (8.3.13)

𝐼𝑦𝑧 = 𝐼𝑦𝑧 + 𝑚𝑑𝑦𝑑𝑧 (8.3.14)
= 𝐼𝑦𝑧 + 𝑚

[
0 + 𝑏2 + 0

]
= 𝐼𝑦𝑧 + 𝑏2 (8.3.15)
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Figure 8-65. – Verification problem for conmass elements.

A comparison between these answers and the Sierra/SD predictions is shown in Table 8-25.
Parameters used for this problem were 𝑚 = 1, 𝑏 = 1, and 𝐼𝑥𝑥 = 𝐼𝑦𝑦 = 𝐼𝑧𝑧 = 𝐼𝑥𝑦 = 𝐼𝑥𝑧 = 𝐼𝑦𝑧 = 0.
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Table 8-25. – Comparison of Sierra/SD with exact solutions for the 0D verification problem.

Property Exact Sierra/SD
𝑚𝑡𝑜𝑡𝑎𝑙 3.0 3.0
𝑥𝑐𝑔 0.0 0.0
𝑦𝑐𝑔 0.3333 0.3333
𝑧𝑐𝑔 1.0 1.0
𝐼𝑥𝑥 6.0 6.0
𝐼𝑦𝑦 7.0 7.0
𝐼𝑧𝑧 3.0 3.0
𝐼𝑥𝑦 0.0 0.0
𝐼𝑥𝑧 -2.0 -2.0
𝐼𝑦𝑧 1.0 1.0

8.3.2. 1D Verification Test

The following test was used to verify mass properties for the 1D elements which include the
Beam2, TiBeam, Nbeam, and truss. This test case consists of a beam offset in all three dimensions
from the coordinate frame as shown in Figure 8-66.

The total mass of the beam is

𝑚𝑡𝑜𝑡𝑎𝑙 = 𝜌𝑉 = 𝜌𝜋𝑟2𝑙 = 0.60𝑘𝑔 (8.3.16)

where 𝑉 is the volume of the beam, 𝑟 is the radius of the beam taken to be 5𝑚𝑚, 𝑙 is the length of
the beam, and 𝜌 is the beam material density taken as 2.8294 × 10−5𝑘𝑔/𝑚𝑚3 to give a total mass
of 0.6𝑘𝑔. The center-of-gravity is

𝑥𝑐𝑔 = 180𝑚𝑚 −
(
180𝑚𝑚 + 90𝑚𝑚

2

)
= 45𝑚𝑚 (8.3.17)

𝑦𝑐𝑔 = 150𝑚𝑚 (8.3.18)
𝑧𝑐𝑔 = 90𝑚𝑚 (8.3.19)
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Table 8-26. – Comparison of Sierra/SD with exact solutions for the 1D verification problem.

Property Exact Beam2 Nbeam TiBeam Truss
𝑚𝑡𝑜𝑡𝑎𝑙 0.60 0.60 0.06 0.60 0.60
𝑥𝑐𝑔 45 45 45 44.875 45
𝑦𝑐𝑔 150 150 150 150 150
𝑧𝑐𝑔 90 90 90 90 90
𝐼𝑥𝑥 18367.5 18367.0 18367.0 18368.0 18360.0
𝐼𝑦𝑦 9723.75 9732.2 9733.7 9723.8 9720.0
𝐼𝑧𝑧 18363.75 18372.0 18374.0 18358 18360.0
𝐼𝑥𝑦 4050.0 4050.0 4050.0 4050.0 4050.0
𝐼𝑥𝑧 2430.0 2430.0 2430.0 2423.3 2430.0
𝐼𝑦𝑧 8100.0 8100.0 8100.0 8100.0 8100.0

The components of the inertia tensor are

𝐼𝑥𝑥 = 𝐼𝑥𝑥 + 𝑚𝑟2
𝑥 (8.3.20)

=
1
2
𝑚𝑟2 + 𝑚(𝑑2

𝑦 + 𝑑2
𝑧 ) = 18367.5𝑘𝑔 · 𝑚𝑚2 (8.3.21)

𝐼𝑦𝑦 = 𝐼𝑦𝑦 + 𝑚𝑟2
𝑦 (8.3.22)

=

[
1
4
𝑚𝑟2 + 1

12
𝑚𝑙2

]
+ 𝑚(𝑑2

𝑥 + 𝑑2
𝑧 ) = 9723.75𝑘𝑔 · 𝑚𝑚2 (8.3.23)

𝐼𝑧𝑧 = 𝐼𝑧𝑧 + 𝑚𝑟2
𝑧 (8.3.24)

=

[
1
4
𝑚𝑟2 + 1

12
𝑚𝑙2

]
+ 𝑚(𝑑2

𝑥 + 𝑑2
𝑦) = 18363.75𝑘𝑔 · 𝑚𝑚2 (8.3.25)

𝐼𝑥𝑦 = 𝐼𝑥𝑦 + 𝑚𝑑𝑥𝑑𝑦 (8.3.26)
= 0 + 𝑚𝑑𝑥𝑑𝑦 = 4050.0𝑘𝑔 · 𝑚𝑚2 (8.3.27)

𝐼𝑥𝑧 = 𝐼𝑥𝑧 + 𝑚𝑑𝑥𝑑𝑧 (8.3.28)
= 0 + 𝑚𝑑𝑥𝑑𝑧 = 2430.0𝑘𝑔 · 𝑚𝑚2 (8.3.29)

𝐼𝑦𝑧 = 𝐼𝑦𝑧 + 𝑚𝑑𝑦𝑑𝑧 (8.3.30)
= 0 + 𝑚𝑑𝑦𝑑𝑧 = 8100.0𝑘𝑔 · 𝑚𝑚2 (8.3.31)

A comparison between these answers and the Sierra/SD predictions for the 1D elements is shown
in Table 8-26. The finite element model used to generate these results contained 27 elements.
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Figure 8-66. – Verification problem for 1D elements.
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8.3.3. 2D Verification Test

The following test was used to verify mass properties for the 2D elements which include all the
triangular and quadrilateral elements. This test case consists of an L-shaped plate as shown in
Figure 8-67.

The total mass of the plate is

𝑚𝑡𝑜𝑡𝑎𝑙 = 𝑚1 + 𝑚2 = 𝜌

(
𝑎𝑏𝑡 + 1

2
𝑏𝑐𝑡

)
(8.3.32)

where 𝑚1 and 𝑚2 are the masses of the rectangular section and triangular section respectively.
Both sections have the same material density, 𝜌, and the same thickness, 𝑡. The center-of-gravity
is

𝑥𝑐𝑔 = − 1
𝑚𝑡𝑜𝑡𝑎𝑙

[
𝑚1𝑎 + 𝑚2

(
𝑎 + 𝑡

2

)]
(8.3.33)

𝑦𝑐𝑔 =
1

𝑚𝑡𝑜𝑡𝑎𝑙

[
𝑚1

(
𝑏

2

)
+ 𝑚2

(
2
3
𝑏

)]
(8.3.34)

𝑧𝑐𝑔 =
1

𝑚𝑡𝑜𝑡𝑎𝑙

[
0 + 𝑚2

( 𝑐
3

)]
(8.3.35)
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The components of the inertia tensor are

𝐼𝑥𝑥 =

(
𝐼𝑥𝑥 + 𝑚1𝑟

2
𝑥

)
+

(
𝐼𝑥𝑥 + 𝑚2𝑟

2
𝑥

)
(8.3.36)

=

(
𝜌1𝑡1𝐼𝑥 + 𝑚1𝑑

2
𝑦

)
+

[ (
𝐼𝑦𝑦 + 𝐼𝑧𝑧

)
+ 𝑚2

(
𝑑2
𝑥 + 𝑑2

𝑦

)]
(8.3.37)

=

(
𝑚1𝑏

2

12
+ 𝑚1𝑏

2

4

)
+

(
𝑚2𝑐

2

6
+ 𝑚2𝑏

2

2

)
(8.3.38)

=
𝑚1𝑏

2

3
+ 𝑚2𝑐

2

6
+ 𝑚2𝑏

2

2
(8.3.39)

𝐼𝑦𝑦 =

(
𝐼𝑦𝑦 + 𝑚1𝑟

2
𝑦

)
+

(
𝐼𝑦𝑦 + 𝑚2𝑟

2
𝑦

)
(8.3.40)

=

(
𝜌1𝑡1𝐼𝑥 + 𝑚1𝑑

2
𝑥

)
+

[
𝜌2𝑡2𝐼𝑥 + 𝑚2

(
𝑑2
𝑥 + 𝑑2

𝑧

)]
(8.3.41)

=

(
𝑚1𝑎

2

12
+ 𝑚1𝑎

2

4

)
+

(
𝑚2𝑐

2

18
+ 𝑚2𝑐

2

9
+ 𝑚2𝑎

2
)

(8.3.42)

=
𝑚1𝑎

2

3
+ 𝑚2𝑐

2

6
+ 𝑚2𝑎

2 (8.3.43)

𝐼𝑧𝑧 =

(
𝐼𝑧𝑧 + 𝑚1𝑟

2
𝑧

)
+

(
𝐼𝑧𝑧 + 𝑚2𝑟

2
𝑧

)
(8.3.44)

=

(
𝜌1𝑡1𝐼𝑧 + 𝑚1𝑑

2
𝑥

)
+

[ (
𝐼𝑥𝑥 + 𝐼𝑦𝑦

)
+ 𝑚2

(
𝑑2
𝑥 + 𝑑2

𝑦

)]
(8.3.45)

=

(
𝑚1𝑎

2

3
+ 𝑚1𝑏

2

3

)
+

(
𝑚2𝑏

2

18
+ 8𝑚2𝑏

2

18
+ 𝑚2𝑎

2
)

(8.3.46)

=
𝑚1𝑎

2

3
+ 𝑚1𝑏

2

3
+ 𝑚2𝑏

2

2
+ 𝑚2𝑎

2 (8.3.47)

𝐼𝑥𝑦 =
(
𝐼𝑥𝑦 + 𝑚1𝑑𝑥𝑑𝑦

)
+

(
𝐼𝑥𝑦 + 𝑚2𝑑𝑥𝑑𝑦

)
(8.3.48)

=

[
0 + 𝑚1

(
−𝑎

2

) (
𝑏

2

)]
+

[
0 + 𝑚2 (−𝑎)

(
2𝑏
3

)]
(8.3.49)

= −𝑚1𝑎𝑏

4
− 2𝑚2𝑎𝑏

3
(8.3.50)

𝐼𝑥𝑧 =
(
𝐼𝑥𝑧 + 𝑚1𝑑𝑥𝑑𝑧

)
+

(
𝐼𝑥𝑧 + 𝑚2𝑑𝑥𝑑𝑧

)
(8.3.51)

= (0 + 0) +
[
0 + 𝑚2 (−𝑎)

( 𝑐
3

)]
(8.3.52)

= −𝑚2𝑎𝑐

3
(8.3.53)

𝐼𝑦𝑧 =
(
𝐼𝑦𝑧 + 𝑚1𝑑𝑦𝑑𝑧

)
+ 𝜌2𝑡2

∫ 𝑏

0

∫ 𝑐
𝑏
𝑦

0
𝑦𝑧𝑑𝑧𝑑𝑦 (8.3.54)

= (0 + 0) + 𝜌2𝑡2𝑐
2

2𝑏2

∫ 𝑏

0
𝑦3𝑑𝑦 (8.3.55)

=
𝑚2𝑏𝑐

4
(8.3.56)

A comparison between these answers and the Sierra/SD predictions is listed in Table 8-27. The
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Figure 8-67. – Verification problem for shell elements.

Table 8-27. – Verification of 2D Mass Properties.

Property Exact Tri Triashell QuadTM
𝑚𝑡𝑜𝑡𝑎𝑙 27.5 27.5 27.5 27.5
𝑥𝑐𝑔 -25.4682 -25.455 -25.455 -25.455
𝑦𝑐𝑔 27.2727 27.273 27.273 27.273
𝑧𝑐𝑔 2.7273 2.7273 2.7273 2.7273
𝐼𝑥𝑥 27167 27178 27167 27167
𝐼𝑦𝑦 23792 23801 23792 23792
𝐼𝑧𝑧 48708 48726 48708 48708
𝐼𝑥𝑦 -20000 -20000 -20000 -20000
𝐼𝑥𝑧 -3000 -3000 -3000 -3000
𝐼𝑦𝑧 2813 2812.4 2812.5 2812.5

finite element model of the plate contained 1679 elements. Parameters used for this problem were
𝑎 = 40𝑖𝑛, 𝑏 = 50𝑖𝑛, 𝑐 = 30𝑖𝑛, 𝑡 = 0.1𝑖𝑛, and 𝜌 = 0.1𝑙𝑏/𝑖𝑛3.

8.3.4. 3D Verification Tests

The following tests were used to verify mass properties for the 3D elements which include the
hexahedron, tetrahedron, and wedge elements. Solutions for these problems were mostly taken
from the dynamics text by Meriam and Kraige.35
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Figure 8-68. – Verification problem for solid elements.

8.3.4.1. Offset Block

The first 3D test consists of an offset cube as shown in Figure 8-68. The total mass of the block is
given by

𝑚𝑡𝑜𝑡𝑎𝑙 = 𝜌𝑙
3 = 3.375. (8.3.57)

where 𝜌 is the density of the block and 𝑙 is the length of each side of the block. The
center-of-gravity is

𝑥𝑐𝑔 = 𝑦𝑐𝑔 = 𝑧𝑐𝑔 = 0.8 + 1
2
(1.5) = 1.55. (8.3.58)

The components of the inertia tensor are

𝐼𝑥𝑥 = 𝐼𝑥𝑥 + 𝑚𝑟2
𝑥 (8.3.59)

=
1
12
𝑚

(
2𝑙2

)
+ 𝑚

(
𝑑2
𝑦 + 𝑑2

𝑧

)
= 17.4825 (8.3.60)

= 𝐼𝑦𝑦 = 𝐼𝑧𝑧 (8.3.61)
𝐼𝑥𝑦 = 𝐼𝑥𝑦 + 𝑚𝑑𝑥𝑑𝑦 = 8.1084375 (8.3.62)

= 𝐼𝑥𝑧 = 𝐼𝑦𝑧 (8.3.63)

A comparison between these answers and the Sierra/SD predictions is listed in Table 8-28. The
tet model contained 26,430 elements, and the hex model contained 343 elements. Parameters used
for this problem were 𝜌 = 1.0 and 𝑙 = 1.5
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Table 8-28. – Comparison of Sierra/SD with exact solutions for the 3D block.

Property Exact Tet4 Hex8
𝑚𝑡𝑜𝑡𝑎𝑙 3.375 3.375 3.375
𝑥𝑐𝑔 1.55 1.55 1.55
𝑦𝑐𝑔 1.55 1.55 1.55
𝑧𝑐𝑔 1.55 1.55 1.55
𝐼𝑥𝑥 17.4825 17.48 17.482
𝐼𝑦𝑦 17.4825 17.48 17.482
𝐼𝑧𝑧 17.4825 17.48 17.482
𝐼𝑥𝑦 8.1084 8.1084 8.1084
𝐼𝑥𝑧 8.1084 8.1084 8.1084
𝐼𝑦𝑧 8.1084 8.1084 8.1084

8.3.4.2. Half-torus

This test consists of a half-torus as shown in Figure 8-69. The total mass is

𝑚𝑡𝑜𝑡𝑎𝑙 = 𝜌𝑉 = 𝜌𝜋𝑟2 (𝜋𝑅) = 0.61685. (8.3.64)

where 𝑉 is the volume of the body, and 𝑟 and 𝑅 are the radii as shown in the problem figure. The
density, 𝜌, was taken as 1.0 in this non-dimensional problem. The center-of-gravity is

𝑥𝑐𝑔 = 𝑦𝑐𝑔 = 0 (8.3.65)

𝑧𝑐𝑔 =
𝑟2 + 4𝑅2

2𝜋𝑅
= −0.64657. (8.3.66)

The components of the inertia tensor are

𝐼𝑥𝑥 = 𝐼𝑧𝑧 =
1
2
𝑚𝑅2 + 5

8
𝑚𝑟2 = 0.3474875 (8.3.67)

𝐼𝑦𝑦 = 𝑚𝑅
2 + 3

4
𝑚𝑟2 = 0.645765 (8.3.68)

𝐼𝑥𝑦 = 𝐼𝑥𝑧 = 𝐼𝑦𝑧 = 0. (8.3.69)

A comparison between these answers and the Sierra/SD predictions is listed in Table 8-29. The
tet model contained 175,592 elements. The hex model contained 62,300 elements.
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Figure 8-69. – Verification problem for solid elements.

Table 8-29. – Comparison of Sierra/SD with exact solutions for the 3D half-torus.

Property Exact Tet4 Hex8
𝑚𝑡𝑜𝑡𝑎𝑙 0.61685 0.6153 0.61634
𝑥𝑐𝑔 0.0 0.0 0.0
𝑦𝑐𝑔 0.0 0.0 0.0
𝑧𝑐𝑔 -0.6466 -0.6465 -0.6465
𝐼𝑥𝑥 0.3475 0.3315 0.3321
𝐼𝑦𝑦 0.6458 0.6440 0.6451
𝐼𝑧𝑧 0.3475 0.3315 0.3321
𝐼𝑥𝑦 0.0 0.0 0.0
𝐼𝑥𝑧 0.0 0.0 0.0
𝐼𝑦𝑧 0.0 0.0 0.0
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8.3.4.3. Hemispherical Shell

This test consists of a hemispherical shell as shown in Figure 8-70. The total mass is

𝑚𝑡𝑜𝑡𝑎𝑙 = 𝜌𝑉 =
1
2

[
4
3
𝜋

(
𝑟2
𝑜 − 𝑟2

𝑖

)]
= 0.318348. (8.3.70)

where 𝑉 is the volume of the body, and 𝑟𝑜 and 𝑟𝑖 are the outer and inner radii as shown in the
problem figure. The density, 𝜌, was taken as 1.0 in this non-dimensional problem. The
center-of-gravity is

𝑥𝑐𝑔 =
𝑟

2
= 0.25 (8.3.71)

𝑦𝑐𝑔 = 𝑧𝑐𝑔 = 0. (8.3.72)

The components of the inertia tensor are

𝐼𝑥𝑥 = 𝐼𝑦𝑦 = 𝐼𝑧𝑧 =
2
3
𝑚𝑟2 = 0.053058 (8.3.73)

𝐼𝑥𝑦 = 𝐼𝑥𝑧 = 𝐼𝑦𝑧 = 0. (8.3.74)

A comparison between these answers and the Sierra/SD predictions is listed in Table 8-30. The
finite element model used to generate these results contained 108,000 hex elements.
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Figure 8-70. – Verification problem for solid elements.

Table 8-30. – Comparison of Sierra/SD with exact solutions for the 3D hemispherical shell.

Property Exact Hex8
𝑚𝑡𝑜𝑡𝑎𝑙 0.3183 0.3182
𝑥𝑐𝑔 0.25 0.2566
𝑦𝑐𝑔 0.0 0.0
𝑧𝑐𝑔 0.0 0.0
𝐼𝑥𝑥 0.05306 0.05653
𝐼𝑦𝑦 0.05306 0.05653
𝐼𝑧𝑧 0.05306 0.05653
𝐼𝑥𝑦 0.0 0.0
𝐼𝑥𝑧 0.0 0.0
𝐼𝑦𝑧 0.0 0.0
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8.3.4.4. Tetrahedron

This test consists of a tetrahedron with side lengths of 𝑎, 𝑏, and 𝑐 as shown in Figure 8-71. The
total mass is

𝑚𝑡𝑜𝑡𝑎𝑙 = 𝜌𝑉 = 𝜌
1
6
𝑎𝑏𝑐 (8.3.75)

where 𝑉 is the volume of the tetrahedron. The density, 𝜌, was taken as 1.0 for this
non-dimensional problem. The center-of-gravity is

𝑥𝑐𝑔 =
𝑎

4
(8.3.76)

𝑦𝑐𝑔 =
𝑏

4
(8.3.77)

𝑧𝑐𝑔 =
𝑐

4
(8.3.78)

The components of the inertia tensor are

𝐼𝑥𝑥 =
1

10

(
𝑏2 + 𝑐2

)
(8.3.79)

𝐼𝑦𝑦 =
1

10

(
𝑎2 + 𝑐2

)
(8.3.80)

𝐼𝑧𝑧 =
1

10

(
𝑎2 + 𝑏2

)
(8.3.81)

𝐼𝑥𝑦 =

∫
𝑚

𝑥𝑦𝑑𝑚 = 𝜌

∫
𝑉

𝑥𝑦𝑑𝑉 (8.3.82)

=

∫ 𝑎

0

∫ 1− 𝑥
𝑎

0

∫ 1− 𝑥
𝑎
− 𝑧

𝑐

0
𝑥𝑦𝑑𝑦𝑑𝑧𝑑𝑥 =

1
20
𝑚𝑎𝑏 (8.3.83)

𝐼𝑥𝑧 =

∫
𝑚

𝑥𝑧𝑑𝑚 = 𝜌

∫
𝑉

𝑥𝑧𝑑𝑉 (8.3.84)

=

∫ 𝑎

0

∫ 1− 𝑥
𝑎

0

∫ 1− 𝑥
𝑎
− 𝑦

𝑏

0
𝑥𝑧𝑑𝑧𝑑𝑦𝑑𝑥 =

1
20
𝑚𝑎𝑐 (8.3.85)

𝐼𝑦𝑧 =

∫
𝑚

𝑦𝑧𝑑𝑚 = 𝜌

∫
𝑉

𝑦𝑧𝑑𝑉 (8.3.86)

=

∫ 𝑏

0

∫ 1− 𝑦

𝑏

0

∫ 1− 𝑥
𝑎
− 𝑦

𝑏

0
𝑦𝑧𝑑𝑧𝑑𝑥𝑑𝑦 =

1
20
𝑚𝑏𝑐 (8.3.87)

A comparison between these answers and the Sierra/SD predictions is listed in Table 8-31. The
finite element model used for this problem used tet elements. Two different mesh densities were
used and results for both are presented. The models contained 3933 elements and 26,650 elements
respectively.
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Figure 8-71. – Verification problem for solid elements.
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Table 8-31. – Comparison of Sierra/SD with exact solutions for the 3D tetrahedron.

Property Exact Tet4 Coarse Tet4 Fine
𝑚𝑡𝑜𝑡𝑎𝑙 0.27 0.27 0.27
𝑥𝑐𝑔 0.3 0.3 0.3
𝑦𝑐𝑔 0.225 0.225 0.225
𝑧𝑐𝑔 0.375 0.375 0.375
𝐼𝑥𝑥 0.08262 0.08249 0.08262
𝐼𝑦𝑦 0.09963 0.09950 0.09963
𝐼𝑧𝑧 0.06075 0.06062 0.06075
𝐼𝑥𝑦 0.01458 0.01458 0.01458
𝐼𝑥𝑧 0.0243 0.02430 0.02430
𝐼𝑦𝑧 0.01823 0.01823 0.01823

8.4. Verification With Respect to Semi-Analytical Static Tests

Analytic and semi-analytic solutions for static deformation problems have been determined for
many geometries and reported in Roark.53 Note that these solutions are for idealized models.
Thus, the beam models are appropriate to Euler Beams, but are exact for beams made of solid
elements only in the limits where shear terms can be neglected.

Tables 8-32 and 8-33 will be used for Beam Elements: For Shell elements Tables 8-34 through
8-36 are used. The reference table is from Roark.53

Table 8-32. – Straight Beam Element Analytic Solutions.
Roark Description Case Max Max
Table Disp Rot.
3 1a cantilever free. Applied point force Roark -13.33 20.0

Beam2 -13.33 20.0
Tria3 -12.13 18.2

Tria3⊥ -13.33 20.0
Hex8 -13.44 N/A

3 1e simply supported simply supported. Roark .6356 2.311
Applied point force Beam2 .6356 2.312

Tria3 .5783 2.104
Tria3⊥ .5785 2.104

3 3b cantilever guided. Roark 4.032 -8.064
Applied point moment Beam2 4.032 -8.064

The “Tria6⊥” model is rotated so a pure membrane deformation occurs. A finer mesh is required.
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Table 8-33. – Curved Beam Element Analytic Solutions.
Roark Description Case Dv
Table
17 1 opposed radial loading on circular ring Roark -5.9513

Beam2 -5.950
17 2 opposed in-line loading on circular ring Roark .8263

(measured at 𝜃 = 30𝑜) Beam2 .8259
17 3 opposed moments on circular ring Roark 7.9743

(measured at 𝜃 = 30𝑜) Beam2 7.967

For solids, we employ Table 4-40. In addition, examples from the beams and shells may be
computed using solid elements and a suitable discretization.

Table 8-34. – Annular Plate with Uniform Annular Line Load.
The test of having the outer edge simply supported and the inner edge free cannot be done at this

time because the loading would require a non-cartesian coordinate system.
Roark Description Case Max
Table Disp
24 1a Outer edge simply supported. Inner edge free Roark 0.01701

Tria3 0.01696
24 1b Outer edge simply supported. Inner edge guided Roark .0068853

Tria3 .006885
24 1e Outer edge fixed. Inner edge free Roark .0034952

Tria3 .0034946
24 5a Outer edge simply supported. Inner free
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Table 8-35. – Square Plate.
Roark Description Case Max Center
Table Disp Stress
26 1a Simply supported. Roark 5.3280 1.0346e7

Uniform load over plate Tria3 5.3225 1.03327e7
QuadT 5.3225 1.03327e7

26 8a Fixed edges. Roark 1.6560 4.9896e6
Uniform load over entire plate Tria3 1.6590 4.9407e6

QuadT 1.6590 4.9406e6

Table 8-36. – Thin Walled Pressure Vessels.
The second half of this table cannot be computed at this time because the pressure load would

require using a non-cartesian coordinate system.
Roark Description Case Max Max Comment
Table Disp Stress
28 1a uniform axial load on cylin-

der
Roark -4.074e-6 407.4 Δ𝑍 =2.037E-5

Tria3 -4.626e-6 408.4 Δ𝑍 =2.039E-5
Hex8 -3.67e-6 408.0 Δ𝑍 =2.057E-5

28 1b uniform radial pressure on
cylinder

Roark 3.333e-7 10.0 R=1, h=1.5,
t=.1

Tria3 3.333e-7 10.035
Hex8 3.445e-7 10.231

28 3a uniform pressure on sphere Roark
Tria3

28 5 uniform pressure on toroid Roark
Tria3

30 1a uniform radial force on
edge of partial sphere

Roark

Tria3
30 1b uniform edge moment on

partial sphere
Roark

Tria3

Table 8-37. – Solid Spheres.
Roark Description Exact FE Exact FE
Table Disp Disp Stress Stress
33 1A Sphere on a flat plate
33 1B Sphere on a sphere
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8.5. Membranes and Transfer from Sierra/SM

Figure 8-72. – Tire Analysis Model.

In this case, analyses of a preloaded (inflated) tire from Sierra are compared to ABAQUS𝑇𝑀 . The
tire model (Figure 8-72) consists of a rim, and multiple layers of rubber and membranes. The tire
is preloaded using Sierra/SM. The Sierra/SD analysis in this test case involves reading the results
from that SM analysis, transferring material parameters, and computation of the eigenvalues of
the system.

Eigenvalue results are shown in Table 8-38. As seen in the table, there is excellent agreement
between ABAQUS and Sierra/SD for this problem.

445



# ABAQUS Sierra % difference
1 39.912 40.3718 1.1
2 53.586 51.3133 4.3
3 55.650 53.5655 3.8
5 75.071 73.3562 2.3
7 97.202 96.6323 0.6
9 98.984 98.6028 0.4
11 119.35 119.045 0.3
13 142.54 142.219 0.2
15 142.56 142.287 0.2
17 167.07 166.891 0.1
19 171.37 171.045 0.2
21 193.59 193.372 0.1
23 193.75 193.540 0.1
25 214.47 214.001 0.2
27 221.77 221.814 0.0
29 235.20 234.640 0.2

Table 8-38. – Comparison of Eigen Frequencies of the Mooney-Rivlin Inflated Tire. For double modes
one frequency is listed.
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9. INPUT DECKS FOR VERIFICATION TESTS

The files required to run most verification problems are available from the test repositories. On
Sandia systems these can be accessed at

#The majority of verification tests
/projects/sierra/tests/Salinas_rtest/verification_manual

#Tests involving thermal/fluid coupling with Aria or Fuego
/projects/sierra/tests/arpeggio_rtest/salinas_verification

#Tests involving Sierra SD/SM transfer
/projects/sierra/tests/sd_sm_coupled_rtest/verification_manual

9.1. Craig Bampton Reduction

Refer to Section 2.1

SOLUTION
solver=gdsw
eigen nmodes=all
shift = -1e6

END

FILE
geometry_file ’system_plus_se.exo’
omit block 2

END

BOUNDARY
sideset 1

fixed
END

LOADS
END

ECHO
END

OUTPUTS
disp

END

MATERIAL ’steel’
E 30e6
nu 0.3
density 0.288

END
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BLOCK 1,2
material ’steel’

END

BLOCK 3
superelement
sensitivity_param 1 0.28800
// this will use taylor series expansion to get the matrices
file = ’onehex_super.ncf’
map locations

END
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9.2. Beam CBR

Refer to Section 2.2 for details of the test.

SOLUTION
cbr

nmodes=90
title ’single beam model. 100 elements. xy only’
END

FILE
geometry_file ’beam100b.exo’
END

cbmodel
file=beamcbr.ncf
format=netcdf
nodeset 1

end

BOUNDARY
nodeset 3
y = 0
z = 0
rotx = 0
roty = 0
rotz = 0

END

LOADS
END

OUTPUTS
deform

END

ECHO
END

BLOCK 1
material ’Aluminum’
Beam2
Area 0.1
orientation 0 .1 0
I1 .2
I2 .3
J .5
END

Material ’Aluminum’
E 10.0E6
nu 0.33
density 253.82e-6
END
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9.3. Waterline of a ship

Refer to Section 2.5

SOLUTION
solver=gdsw

title=’ uhwm_20150113’
waterline
max_iterations 100
vizoption = ensight
tolerance_force 1e-10
delta 1e-8
point_a 2479.9 0. 100
point_b 3479.9 0. 100
point_c 2479.9 1000. 100
load 1

END

FILE
geometry_file ’uhwm_20150113.exo’

end

PARAMETERS
eigen_norm=visualization

end

BOUNDARY
end

LOAD 1
sideset 50000001
pressure = 1
function = 1

body
gravity = 0 0 -980.0

end
LOADS
end
FUNCTION 1
name ’pressure versus depth’
type LINEAR
data 0.0 0.0
data 1000.0 980e3

end
OUTPUTS

force // applied forces
npressure

end
HISTORY

nodeset ’500000011,’
disp
velocity
acceleration
nskip 1

end
{include(uhwmBlocks)}#
{include(uhwmMaterials)}#

450



9.4. Transient Convergence

Refer to Section 2.6

SOLUTION
solver=gdsw

transient
nsteps 4500
time_step 1.0e-3

END

FILE
geometry_file ’beam.exo’

END

OUTPUTS
END

BOUNDARY
nodeset 1
fixed

END

BLOCK 1
Beam2
material=1
Area=0.03
I1=0.09
I2=0.01
J=0.1
orientation = 1 1 0

END

MATERIAL 1
Isotropic
E = 1e+07
NU = 0.3
density = 1

END

LOADS
nodeset 2
force 0 1 0
function 1

END

ECHO
END

HISTORY
nodeset ’2’
disp

END

FUNCTION 1
type LINEAR
name "test_func1"
data 0 0
data 1 1
data 2 0

END
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9.5. Modal Transient Temporal Convergence

Refer to Section 2.7

SOLUTION
solver=gdsw

case dummyEigen
eigen
shift=-1
nmodes 3

case out
modaltransient
nsteps 4500
time_step 1.0e-3
nmodes 3

END

FILE
geometry_file ’beam.exo’

end

OUTPUTS
disp

end

BOUNDARY
nodeset 1
fixed

end

BLOCK 1
Beam2
material=1
Area=0.03
I1=0.09
I2=0.01
J=0.1
orientation = 1 1 0

end

MATERIAL 1
Isotropic
E = 1e+07
NU = 0.3
density = 1

end

LOADS
nodeset 2
force 0 1 0
function 1

end

HISTORY
nodeset ’2’
disp

end

FUNCTION 1
type LINEAR
name "test_func1"
data 0 0
data 1 1
data 2 0

end
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9.6. Modal Transient

Refer to Section 2.11

SOLUTION
solver=gdsw

Case rigid
geometric_rigid_body_modes

Case flexible
restart=none
eigen nmodes=10
shift=-1.e8
Case filter1
modalfilterCase
modalfilter norot
Case one
modaltransient
time_step=0.001
nsteps=400
load=1
Case four
modaltransient
time_step=0.001
nsteps=2000
load=4

END
Modalfilter norot
add all
remove 4,5,6,9

End

Modalfilter norbm
add 7:10

End
History

block 101
disp
acceleration

End
Parameters
wtmass=0.00259
num_rigid_mode 6
End
File
geometry_file ’temp1/modaltransver.exo’

End
Load=1
nodeset 12
force = 0 0 1
scale 1.0e5
function 8

End
Outputs
disp

End
{include(blocks_and_materials.inp)}#
{include(functions.inp)}
Load=4
nodeset 12
force = 0 0 1
scale 1.0e5
function 2

End
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9.7. Transient Restart Examples

9.7.1. Linear Transient in Step 1

Refer to Section 2.8 for output of the tests.

SOLUTION
solver=gdsw

case eig
eigen
nmodes 40
shift = -1e6
restart=auto

case out
transient
time_step 1.0e-4
nsteps 30
nskip=1
restart=WRITE
load=1

END
FILE
geometry_file ninjabot.exo

end
BOUNDARY
end
LOAD 1
sideset 28 pressure 100 function 1
sideset 30 pressure 100 function 1

end
Function 1
type Linear
name "test_func1"
data 0 0
data 1 1

end
Echo
mass
end

History
nskip 1
sideset 28
disp

end
Outputs
disp
velocity

end

Tied Joint
Normal Definition = slip
surface 13 14
search tolerance = 1e-6
connect to block 50

end
Tied Joint
Normal Definition = slip
surface 16 17
search tolerance = 1e-6
connect to Block 51

end
RigidSet set1
sideset 30
sideset 31
sideset 32
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end
Tied Data
surface 20, 21
search tolerance =1e-3

end
Tied Data
surface 22, 23
search tolerance =1e-3

end
Tied Data
surface 24, 26
search tolerance =1e-3

end
Tied Data
surface 25, 27
search tolerance =1e-3

end
Tied Data
surface 28, 29
search tolerance =1e-3

end
Tied Data
surface 40, 41
search tolerance =1e-3

end
Tied Data
surface 42, 43
search tolerance =1e-3

end
Tied Data
surface 42, 44
search tolerance =1e-3

end
MATERIAL "steel"
E 30e6
nu 0.3
density 0.288

end
MATERIAL ’dead’
isotropic
E = 10
nu = 0.29
density = 0

end

MATERIAL ’aluminum’
isotropic
E = 10e6
nu = 0.45
density = 0.27

end

Block 1 2 3 4 5 6 7 8 9 10
material ’aluminum’

end

Block 11 12 15
material "steel"

end

Block 16
RBAR

end

Block 17
RBAR

end
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Block 18
conmass
MASS = 100

end

Block 19
conmass
MASS = 100

end

Block 20
superelement
file = ’super_sword.ncf’
map locations

end

Block 21
superelement
file = ’super_shield.ncf’
map locations

end

Block 50
Joint2g
kx = iwan 1
ky = iwan 1
krz = elastic 1.0e9

end

Block 51
Joint2g
kx = iwan 1
ky = iwan 1
krz = elastic 1.0e9

end

Property 1
chi -.82
phi_max = 1.75e-4
R = 5.5050e+6
S = 2.1097e+6

end

9.7.2. Restarted Modal Transient in Step 2

SOLUTION
solver=gdsw

case eig
eigen
nmodes 40
shift = -1e6
restart=auto

case out
modaltransient
time_step 1.0e-4
nsteps 40
nskip=1
restart=READ
load=1

END
FILE
geometry_file ninjabot.exo

end
BOUNDARY
end
LOAD 1
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sideset 28 pressure 100 function 1
sideset 30 pressure 100 function 1

end
Function 1
type Linear
name "test_func1"
data 0 0
data 1 1

end
Echo
mass
end

History
nskip 1
sideset 28
disp

end
Outputs
disp
velocity

end

Tied Joint
Normal Definition = slip
surface 13 14
search tolerance = 1e-6
connect to block 50

end
Tied Joint
Normal Definition = slip
surface 16 17
search tolerance = 1e-6
connect to Block 51

end
RigidSet set1
sideset 30
sideset 31
sideset 32

end
Tied Data
surface 20, 21
search tolerance =1e-3

end
Tied Data
surface 22, 23
search tolerance =1e-3

end
Tied Data
surface 24, 26
search tolerance =1e-3

end
Tied Data
surface 25, 27
search tolerance =1e-3

end
Tied Data
surface 28, 29
search tolerance =1e-3

end
Tied Data
surface 40, 41
search tolerance =1e-3

end
Tied Data
surface 42, 43
search tolerance =1e-3

end
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Tied Data
surface 42, 44
search tolerance =1e-3

end
MATERIAL "steel"
E 30e6
nu 0.3
density 0.288

end
MATERIAL ’dead’
isotropic
E = 10
nu = 0.29
density = 0

end

MATERIAL ’aluminum’
isotropic
E = 10e6
nu = 0.45
density = 0.27

end

Block 1 2 3 4 5 6 7 8 9 10
material ’aluminum’

end

Block 11 12 15
material "steel"

end

Block 16
RBAR

end

Block 17
RBAR

end

Block 18
conmass
MASS = 100

end

Block 19
conmass
MASS = 100

end

Block 20
superelement
file = ’super_sword.ncf’
map locations

end

Block 21
superelement
file = ’super_shield.ncf’
map locations

end

Block 50
Joint2g
kx = iwan 1
ky = iwan 1
krz = elastic 1.0e9

end
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Block 51
Joint2g
kx = iwan 1
ky = iwan 1
krz = elastic 1.0e9

end

Property 1
chi -.82
phi_max = 1.75e-4
R = 5.5050e+6
S = 2.1097e+6

end
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9.8. Fluid Structure Interaction Added Mass

Refer to Section 2.12

SOLUTION
solver=gdsw

case ’qevp’
qevp
method=sa_eigen
nmodes = 400
nmodes_acoustic=100
nmodes_structure=100
shift = -1.e+5
sort method= magnitude
reorthogonalize=yes
check_diag=yes

END

FILE
// geometry_file addedmass_shell_0.01_sphere.exo
geometry_file temp1/addedmass_shell_0_01_sphere.par

END

BOUNDARY
sideset 1
fixed

nodeset 1
fixed
nodeset 10
y=0 x=0 rotx=0 roty=0 rotz=0

END

OUTPUTS
disp

END

ECHO
disp
mass = block
END

BLOCK 1
material "steel"
quadT
thickness = 0.1

membrane_factor 0.0005
END

BLOCK 3
material "water"

END

BLOCK 4
material "water"
END

BLOCK 5
material "water"
END

BLOCK 2
// name "spring"
// Coordinate 1

spring
kx=10000

ky=10000
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kz=10000
END

//TIED DATA
// surface 3,2
// search tolerance = 1e-1
//END

MATERIAL "steel"
E 19.5e9
nu .3
density 7700.0
END

MATERIAL "water"
density 1000

acoustic
c0 1500

END

GDSW
solver_tol 1e-11
overlap = 3
prt_memory yes
prt_timing yes

END
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9.9. Fluid Structure Cavitation

Refer to Section 2.13

SOLUTION
solver=gdsw
transient
time_step = 1.313e-5
nsteps 1200
rho = 0.8
scattering

END

FILE
geometry_file ’Plate_fluid_shell.exo’

END

damping
beta = 1.5e-5

end

Frequency
freq_min = 1.0
freq_step = 2.0
freq_max = 80.0
apressure
block 1

End

OUTPUTS
apressure
velocity
END

HISTORY
block all
apressure
velocity
nskip 10

END

ECHO
END

BOUNDARY
sideset 10
infinite_element
use block 111

sideset 5
x=0 z=0 rotx=0 rotz=0

sideset 4
x=0 z=0 rotx=0 rotz=0

sideset 2
x=0 z=0 rotx=0 rotz=0

sideset 3
x=0 z=0 rotx=0 rotz=0

END

TIED DATA
Surface 1, 6
search tolerance =1e-3

END

FUNCTION 3

462



type planar_step_wave
direction 0 1 0
material "water"
origin 0 149 0
beta = 1.0042e3

END

LOADS
sideset 1
acoustic_vel = 103
function = 3

sideset 6
pressure = 103
function = 3

END

BLOCK 1
quadT
material "Steel"
thickness = 1.0

END

BLOCK 2
material "water"

END

Block 111
infinite_element
radial_poly legendre
order 3
ellipsoid_dimensions 20000 20000 20000
source_origin = 0 19850 0

END

MATERIAL "Steel"
E 30e6
nu 0.3

density 5.32986e-4
// density 0.288
END

MATERIAL "water"
density 9.3455e-5
c0 57120
acoustic

END

GDSW
solver_tol = 1e-8

END
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9.10. Buckling of Constant Pressure Ring Input

Refer to Section 2.14 for details of the test.

SOLUTION
solver=gdsw

buckling
bucklingSolver = {ARPACK_MODE}
nmodes 1
shift=-100

END

FILE
geometry_file ’temp1/ring20.par’

END

BOUNDARY
nodeset 1
y=0

nodeset 2
x=0

nodeset 3
z=0

END

LOADS
sideset 1
pressure = 1.0

END

OUTPUTS
deform

END

ECHO
END

BLOCK 1
material 1

END

Material 1
E 10e6
nu 0.0
density 0.098 // not used in statics

END
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9.11. Buckling of Cantilever Beam Input

Refer to Section 2.15 for details of the test.

SOLUTION
solver=gdsw
buckling
nmodes 4
shift=-1.e5

END

FILE
geometry_file ’bar.exo’

// geometry_file ’bar.exo’
END

OUTPUTS
deform

END

ECHO
END

BOUNDARY
sideset 1
fixed

END

BLOCK 1
material "steel"

END

MATERIAL "steel"
density 1.293

E 3.0e7
nu 0.0

END

LOADS
sideset 2
pressure=1.0

END
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9.12. Eigenvalue Restart with Virtual Nodes and Elements

Refer to Section 2.16

SOLUTION
case grbm
geometric_rigid_body_modes
case eig
eigen
shift = -1e5
restart=write

END
FILE
geometry_file ninja_SE_IE_TJ.exo
omit block 51,52,53,54,60,61,62,100

END

LOADS
sideset 101
pressure 1.0
function 1

END

PARAMETERS
num_rigid_mode 6
eig_tol = 1.0e-16

END

FUNCTION 1
type LINEAR
name "test_func1"
data 0 0
data 1 1

END

OUTPUTS
disp

END

RIGIDSET set1
sideset 30
sideset 31
sideset 32

END

PROPERTY 1
chi -.82
phi_max = 1.75e-4
R = 5.5050e+6
S = 2.1097e+6

END

GDSW
solver_tol 1.0e-12

END

{include(blocks_and_materials.inp)}
{include(tied_data_and_joints.inp)}
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9.13. Rotating rigid bodies: Statics

Refer to Section 2.17.1

SOLUTION
solver=gdsw
statics

END
loads

body
angular_velocity 0 0 1.1

end
file

geometry_file ’dumbbell.exo’
end
boundary

nodeset 1 fixed
end
outputs
force

end
echo

mass
end
block 2

conmass
mass=2

end
block 1

beam2
material=light
area=1e-2
i1=1e-2
i2=1e-2
j=2e-2
orientation 0 0 1

end
material light

isotropic
density = 0
nu = .3
E = 1e7

end
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9.14. Rotating rigid bodies: Transient

Refer to Section 2.17.3

solution
title ’pt hex starting at rest in rotating frame’
transient
time_step = 0.001
nsteps = 1000

end

loads
body
angular_velocity 0 0 1.1
function 1

end

file
geometry_file ’phex_at_rest.exo’

end

function 1
type=linear
data 0 1
data 1 1

end

boundary
end

outputs
disp
force

end

echo
mass

end

block 1
material heavy
rotational_type lagrangian

end

material heavy
isotropic
E = 30.0e6
nu = 0.3
density = 10

end
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9.15. Angular Velocity, Beam, Statics

Refer to Section 2.17.7

SOLUTION
solver=gdsw
statics

END

FILE
geometry_file ’beam_beam.exo’
END

LOADS
body
angular_velocity 0 0 5
function = 1

END

FUNCTION 1
type LINEAR
name "test_func1"
data 0.0 1.0
data 1.0 1.0
data 2.0e4 1.0

END

//PARAMETERS
// wtmass=0.00259
//END

OUTPUTS
disp
force
END

ECHO
mass
mass=block
END

BOUNDARY
nodeset 1

fixed
END

BLOCK 1
beam2
material="steel"
area=1e-2
i1=1e-2
i2=1e-2
j=2e-2
orientation 0 0 1

END

MATERIAL "steel"
E 19.5e10
nu 0
density 7700.0

END

9.16. Angular Acceleration, Statics, BEAM2

Refer to Section 2.17.8
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$ Algebraic Preprocessor (Aprepro) version 6.25 (2023/10/12)
SOLUTION
statics
END

parameters
end

FILE
geometry_file beam40x.g
END

BOUNDARY
nodeset baseNode
fixed
END

LOADS
body
angular_acceleration = 0 0 100000
coordinate rotz
nodeset loadNode
force = 10000 0 0

END

OUTPUTS
mfile
disp
END

HISTORY
disp
node dispy at node 2 as atEndpointy
node dispy at node 22 as atMidpointy
node dispx at node 2 as atEndpointx
node dispx at node 22 as atMidpointx

END

ECHO
END

BLOCK myTestBeam
material stainless_steel
Beam2
Area 1
orientation 1 1 1
I1 .08333333
I2 .08333333
J 0.16666666
END

Material stainless_steel
E 30.0E6
nu 0.33
density 0.00074
END

begin rectangular coordinate system rotz
origin = 0 10 0
z point = 0 10 5
xz point = 1 10 0
end

begin rectangular coordinate system rotx
origin = 0 0 10
z point = 5 0 10
xz point = 0 1 10
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end

begin rectangular coordinate system roty
origin = 10 0 0
z point = 10 5 0
xz point = 10 0 1
end

GDSW
prt_overlap yes
prt_coarse yes
END

9.17. Angular Acceleration, Statics, HEX20

Refer to Section 2.17.8

$ Algebraic Preprocessor (Aprepro) version 6.25 (2023/10/12)
SOLUTION
statics
END

parameters
end

FILE
geometry_file hex20Beam40x.g
END

BOUNDARY
sideset baseSurf
fixed
END

LOADS

body
angular_acceleration = 0 0 100000
coordinate rotz
sideset loadSurf
pressure = -10000
END

OUTPUTS
END

HISTORY
disp
node dispy at node 291 as atEndpointy
node dispy at node 311 as atMidpointy
node dispx at node 291 as atEndpointx
node dispx at node 311 as atMidpointx

END

ECHO
END

BLOCK myTestBeam
material stainless_steel
END

Material stainless_steel
E 30.0E6
nu 0.33
density 0.00074
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END

begin rectangular coordinate system rotz
origin = 0 10 0
z point = 0 10 5
xz point = 1 10 0
end

begin rectangular coordinate system rotx
origin = 0 0 10
z point = 5 0 10
xz point = 0 1 10
end

begin rectangular coordinate system roty
origin = 10 0 0
z point = 10 5 0
xz point = 10 0 1
end

GDSW
prt_overlap yes
prt_coarse yes
END

9.18. Angular Acceleration, Statics, TRIA3

Refer to Section 2.17.8

$ Algebraic Preprocessor (Aprepro) version 6.25 (2023/10/12)
SOLUTION
statics
END

parameters
end

FILE
geometry_file tri3Beam40x.g
END

BOUNDARY
nodeset baseNodes
fixed
END

LOADS
body
angular_acceleration = 0 0 10000
coordinate rotz
nodeset cornerLoadNodes
force = 250 0 0
nodeset centerLoadNode
force = 500 0 0
END

OUTPUTS
END

HISTORY
disp
node dispy at node 84 as atEndpointy
node dispy at node 104 as atMidpointy
node dispx at node 84 as atEndpointx
node dispx at node 104 as atMidpointx
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END

ECHO
END

BLOCK myTestBeam
thickness 0.1
material stainless_steel
END

Material stainless_steel
E 30.0E6
nu 0.00 //shells are sensitive to nu. Need nu close to 0 to equate to beam theory.
density 0.00074
END

begin rectangular coordinate system rotz
origin = 0 10 0
z point = 0 10 5
xz point = 1 10 0
end

begin rectangular coordinate system rotx
origin = 0 0 10
z point = 5 0 10
xz point = 0 1 10
end

begin rectangular coordinate system roty
origin = 10 0 0
z point = 10 5 0
xz point = 10 0 1
end

GDSW
prt_overlap yes
prt_coarse yes
END

9.19. Rotating Shell Statics

Refer to Section 2.17.9

SOLUTION
solver=gdsw

case one
statics
load = 1

case two
tangent

case out
qevp
method=anasazi
nmodes=10
subspace_size 100

END
FILE
geometry_file ’beam_shell.exo’
end

parameters
eig_tol=1.0e-12

end

LOAD 1
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body
angular_velocity 0 0 50.0
function = 1

end
FUNCTION 1

type LINEAR
name "test_func1"
data 0.0 1.0
data 1.0 1.0
data 2.0e4 1.0

end
OUTPUTS
disp
force
end
ECHO
mass
mass=block
end
BOUNDARY
nodeset 1

fixed
end
BLOCK 1 // hex8u

material "steel"
quadt
thickness 1.0
rotational_type lagrangian

end
MATERIAL "steel"

E 19.5e10
nu 0
density 7700.0

end
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9.20. Rotating Ring Statics

Refer to Section 2.17.10

SOLUTION
solver=gdsw
statics

END
loads

body
angular_velocity 0 0 1.1
coordinate 10

end
Begin rectangular coordinate system 10

origin = 3 1 4
z point = 3 1 5
xz point = 4 1 4

end

file
geometry_file ’ring.exo’

end
boundary

nodeset 1 fixed
end
outputs
force

end
echo

mass
end
block 1

quadt
material "Al6061-2"

end
block 2

beam2
material=light
area=1e-2
i1=1e-2
i2=1e-2
j=2e-2
orientation 0 0 1

end
material "Al6061-2"

isotropic
density = 4
nu = .3
E = 1e7

end
material light

isotropic
density = 0
nu = .3
E = 1e7

end
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9.21. Rotating Ring Acceleration

Refer to Section 2.17.11

SOLUTION
solver=gdsw
statics

END
loads

body
angular_acceleration 0 0 1.1
coordinate myCoord

end
Begin rectangular coordinate system myCoord

origin = 3 1 4
z point = 3 1 5
xz point = 4 1 4

end

file
geometry_file ’ring.exo’

end
boundary

nodeset 1 fixed
end
outputs
force

end
echo

mass
end
block 1

quadt
material "Al6061-2"

end
block 2

beam2
material=light
area=1e-2
i1=1e-2
i2=1e-2
j=2e-2
orientation 0 0 1

end
material "Al6061-2"

isotropic
density = 4
nu = .3
E = 1e7

end
material light

isotropic
density = 0
nu = .3
E = 1e7

end
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9.22. Rotating Superelement Statics

Refer to Section 2.17.12

// solution should be identical to the single hex solution, but
// this model uses a superelement.
SOLUTION

solver=gdsw
statics

END

loads
body
angular_velocity 3 0 0

end

file
geometry_file ’rotating_hex_se.exo’

end

boundary
nodeset 1 fixed
nodeset 2 fixed

end

outputs
force

end

echo
mass
force

end

block 1
superelement
format=netcdf
file=rotating_hex_gold.ncf
map locations

end
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9.23. Rotating Superelement Beam Statics

Refer to Section 2.17.15

SOLUTION
solver=gdsw

case out
statics

load=1
END

HISTORY
nodeset 2
disp

end
FILE
geometry_file ’beam_se.exo’
omit block 1

end
LOAD 1

body
angular_velocity 0 0 5.0

function = 1
end
FUNCTION 1

type LINEAR
name "test_func1"
data 0.0 1.0
data 1.0 1.0
data 2.0e4 1.0

end
outputs
disp
force
end
echo
mass
mass=block

input
end

MATERIAL ’dead’
isotropic

E = 10
nu = 0.29
density = 0

END

block 1
material dead

end
block 2

superelement
file=cbr_hex.netcdf
map = location

end
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9.24. Fatigue Output of Single DOF in Random Vibration

Refer to Section 2.18

9.24.1. Modal Random Vibration

Solution
title ’test of a single dof example for fatigue’
case eig

eigen nmodes=all
case frf

modalfrf
load=1

case ran
modalranvib
noSVD

end

FILE
geometry_file ’onehexran.exo’

end

Ranloads
matrix 97
load=1
sideset 2
pressure 7

end

Matrix-function 97
dimension 1x1
symmetry=symmetric
data 1,1
real function 99

end

Function 99
type linear
data 0 9
data 5000 9

end

Frequency
freq_min 10
freq_max 100
freq_step 10
sideset 2
disp
acceleration

end
BOUNDARY
sideset 1
fixed
sideset 2
y=0 z=0

end
OUTPUTS
maa
disp
vrms

end
Echo
input
disp
force
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rhs
mass
end
LOAD 1
sideset 2

pressure 3
function 1

end
Function 1
type linear
data 0 3.0
data 1e5 3.0

end
Block 1

material 3
end
Material 3

E = 1e7
nu = .3
density 0.000259

end

9.24.2. Fatigue Solution

SOLUTION
title ’test of a single dof example for fatigue’
case eig

eigen nmodes=all
case frf

modalfrf
load=1

case ran
modalranvib
noSVD

case out
fatigue
method=wirsching
duration=0.001

end

FILE
geometry_file ’onehexran.exo’

end

Ranloads
matrix 97
load=1
sideset 2
pressure 7

end

Matrix-function 97
dimension 1x1
symmetry=symmetric
data 1,1
real function 99

end

Function 99
type linear
data 0 9
data 5000 9

end

Frequency
freq_min 10
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freq_max 100
freq_step 10
sideset 2
disp
acceleration

end

BOUNDARY
sideset 1
fixed
sideset 2
y=0 z=0

end

OUTPUTS
disp
vrms

end

ECHO
input
disp
force
rhs

mass
fatigue
end

LOAD 1
sideset 2

pressure 3
function 1

end

Function 1
type linear
data 0 3.0
data 1e5 3.0

end

BLOCK 1
material 3

end

MATERIAL 3
E = 1e7
nu = .3
density 0.000259
Fatigue_A1 12.1689
Fatigue_A2 -3
Stress_Ratio -1.0
Fatigue_Stress_Scale 1.0 // 0.001
std_err 0.01
t_dist 123.4

end
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9.25. Fatigue Output of Dogbone

Refer to Section 2.18.6

SOLUTION
case eig
eigen nmodes=150 // a 5 Hz wave is effectively static loading for this thing. We need a TON of modes for this to work.
shift=-1e9

restart = auto
case rand
modalranvib
lfcutoff = 10 // DON"T USE -1 FOR STRESS.
nosvd

case fatigue
fatigue
method=wirsching

end

FILE
geometry_file ’dogbone_eng.exo’

end

PARAMETERS
wtmass=0.002589

end

BOUNDARY
nodeset 1
rotx=0
roty=0
rotz=0
end

RANLOADS
matrix=11
load=1
nodeset 1
force=1 0 0
scale = 1.0
nodeset 2
force=1 0 0
scale = -1.0

end

Matrix-Function 11
symmetry = symmetric
dimension = 1x1
data 1,1
real FUNCTION 1

end

FUNCTION 1
Name="psd"
type loglog
data 4.0 1e-13
data 4.49 1e-13
data 4.5 4931280.0 // 2219.96 // for sine wave of 3.141165e3, want rms of sqrt(4933460)=2221.139.
data 5.5 4931280.0 // 2219.96
data 5.51 1e-13
data 6.0 1e-13

end

// PSD magnitude based on integral function from wolfram alpha. Execute the following line:
// 4931280.000000*1.000000+integral 10^-13307.372658 * x^20382.441146 dx from x=4.490000 to x=4.500000 + integral 10^18487.818124 * x^-24962.258939 dx from x=5.500000 to x=5.510000
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Frequency
nodeset 1
freq_min=4.0
freq_max=6.0
freq_step=0.01

end

LOADS
end

OUTPUTS
vrms

end

ECHO
mass

end

BLOCK 77
rbar

end

BLOCK 99
material AISI4140

end

BLOCK 100
material AISI4140

end

block 1
conmass
mass = 0.0 // used to be dead
end

MATERIAL AISI4140
E=29.0e6 // psi
nu=0.32
density=0.283 // lb/in^3
// these values are not appropriate for this material

Fatigue_A1 31.6
Fatigue_A2 -14.0845

fatigue_stress_scale 1.0e-3
end
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9.26. Fatigue Output of Pinned Shell

Refer to Section 2.18.7

SOLUTION
title ’test of a simple pinned plate for fatigue’
case statics

statics
load=11

case eig
eigen
nmodes=1

case ran
modalranvib
noSVD

case nb
fatigue
method=wirsching

END

FILE
geometry_file ’pinned_plate_fatigue.exo’

END

Ranloads
matrix 97
load=1
sideset 1
pressure 1

END

matrix-function 97
dimension 1x1
symmetry=symmetric
data 1,1
real function 99

end

function 99
type linear
data 1 1e-20
data 4 1e-20
data 4.01 1
data 4.99 1
data 5.00 1e-20
data 500 1e-20

end

frequency
freq_min 4
freq_max 5
freq_step 0.001
block 1 displacement

end

damping
end

BOUNDARY
nodeset 1
x=0 y=0 z=0
nodeset 2
x=0 y=0 z=0

END
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OUTPUTS
disp
vrms
stress

END

ECHO
input
mass
END

LOAD 11
sideset 1

pressure 1
END

LOAD 14
sideset 1

pressure 1
function=14

END

function 14
// white noise
type linear
data 0 1.0
data 1e5 1.0

end

BLOCK 1
material 3

END

MATERIAL 3
E = 1e7
nu = .3
density 0.000259
Fatigue_A1 12.1689
Fatigue_A2 -3
Stress_Ratio -1.0
Fatigue_Stress_Scale=1e-4

END
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9.27. Nodal Loading vs Sideset Loading for Modal Random Vibration

Refer to Section 2.18.10

// Flat Plate Problem Solution in Roark

solution
case ’eig’
eigen

nmodes=50
case ’randomvib’
modalranvib
end

RANLOADS
matrix = 1
load = 1
nodeset 10
force = 0 0 1
scale = 9.3234e-4
END

MATRIX-FUNCTION 1
name ’pressure spectral density’
symmetry = hermitian
dimension = 1x1
data 1,1
real function 1
END

FUNCTION 1
name = ’psd’
type = ’loglog’
data 10.0 690.0
data 20.0 690.0
data 30.0 6900.0

data 100.0 6900.0
data 500.0 690.0
data 1000.0 690.0
END

parameters
end

damping
gamma 0.02
end

FREQUENCY
method=log
freq_min 1.0
freq_max 1000
NF 1000
nodeset 5
disp
accel
END

file
geometry_file ’flat_input.exo’

end

boundary
nodeset 1

z = 0.0
nodeset 2
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z = 0.0
nodeset 3
fixed
nodeset 4
fixed
end

history
nodeset ’5’
disp
end

outputs
disp

end

echo
end

block 1
HEXSHELL
sideset 1
material "Example-2"

end

material "Example-2"
isotropic
density = 8.56e3
nu = 0.34
E = 9.02e10

end
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9.28. Sierra/SM to Sierra/SD Coupling

Refer to Section 2.20

9.28.1. Files for Preloaded Static Beam

Sierra/SM input file

begin sierra chatter_contact

begin function ramp1
type is piecewise linear
begin values
0.0 0.0
0.5 1.0
1.0 1.0

end
end

begin function ramp2
type is piecewise linear
begin values
0.0 0.0
0.5 0.0
1.0 1.0

end
end

define direction x with vector 1.0 0.0 0.0
define direction y with vector 0.0 1.0 0.0
define direction z with vector 0.0 0.0 1.0

begin material aluminum
density = 2.59e-2
begin parameters for model neo_hookean
youngs modulus = 7.8e+7
poissons ratio = 0.0

end
end

begin material stiff
density = 2.59e-2
begin parameters for model neo_hookean
youngs modulus = 7.8e+11
poissons ratio = 0.0

end
end

begin finite element model mesh1
Database Name = bar.g
Database Type = exodusII

begin parameters for block block_1
material = aluminum
model = neo_hookean

end
begin parameters for block block_2
material = stiff
model = neo_hookean

end
end finite element model mesh1

begin adagio procedure Apst_Procedure

begin time control
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begin time stepping block p1
start time = 0.0
begin parameters for adagio region adagio
time increment = 0.05

end
end
termination time = 1.0

end time control

begin adagio region adagio
use finite element model mesh1

begin user output
nodeset = nodelist_2
compute global extension as average of nodal displacement

end

begin user output
surface = surface_1000
compute global deflection as average of nodal displacement

end

### output description ###
begin Results Output output_adagio
Database Name = bar_preload_{extensionPressure}_{deflectionPressure}.e
Database Type = exodusII
At Step 0, Increment = 1
nodal Variables = displacement as displ
nodal variables = coordinates
nodal variables = reaction
element variables = stress
element variables = log_strain
component separator character = none

end results output output_adagio

begin history output
database name = bar_preload_{extensionPressure}_{deflectionPressure}.h

at time 1.0 interval = 1.0
global extension
global deflection

end

### definition of BCs ###
begin fixed displacement
node set = nodelist_1
component = xy

end
begin fixed displacement
node set = nodelist_2
components = Y

end
begin fixed displacement
block = block_1 block_2
components = z

end

begin traction
surface = surface_2
direction = x
function = ramp2
scale factor = {extensionPressure}

end

begin traction
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surface = surface_1000
direction = y
function = ramp1
scale factor = {deflectionPressure}

end

begin solver
begin cg
target relative residual = 1.0e-6
begin full tangent preconditioner
end

end
end

end
end

end

Sierra/SD input file for

solution
{ifdef(preload)}
case preload
receive_sierra_data
load = 0
{ifdef(no_geom_stiff)}
no_geom_stiff
{endif}
{ifdef(equilibrium)}
include_internal_force = off
{endif}

{endif}
case static
statics
solver = gdsw
load = 10

end

GDSW
END

file
geometry_file ’{geomFile}’

end

history
database name = ’{historyFile}’
sideset = surface_1000
displacement

end

outputs
disp
stress

end

boundary
nodeset 1 x=0 y=0
nodeset 2 y=0
block 1 2 z=0

end

BLOCK 1
material aluminum

END
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BLOCK 2
material stiff

END

MATERIAL aluminum
E 7.8e7
nu = 0.0
density 2.59e-2

END

MATERIAL stiff
E 7.8e11
nu = 0.0
density 2.59e-2

END

LOAD 0
END

function ramp
type = linear
data 0 1
data 1 1

end

load 10
{ifdef(extensionPressure)}
sideset surface_2 traction 1 0 0 scale {extensionPressure}

{endif}
{ifdef(deflectionPressure)}
sideset surface_1000 traction 0 1 0 scale {deflectionPressure}

{endif}
end

ECHO
input

END

9.28.2. Files for Preloaded Eigen Comparison to Abaqus

Sierra/SM input file

Begin sierra cylinder only
title Membrane

define direction y with vector 0.0 1.0 0.0
define direction x with vector 1.0 0.0 0.0
define direction z with vector 0.0 0.0 1.0
define point origin with coordinates 0.0 0.0 0.0

Begin definition for function zero
type is constant
Begin values
0.0

end values
end
Begin definition for function one
type is constant
Begin values
1.0
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end values
end
Begin definition for function function_100
type is piecewise linear
Begin values
0.0 0.0
0.8 1.0
1.0 1.0

end values
end definition for function function_100

Begin property specification for material mat_100
density = 0.1E-08 # 10+3 kgm/mm3
Begin parameters for model elastic
youngs modulus = 6
poissons ratio =0.3

end parameters for model elastic
end property specification for material mat_100

Begin solid section solid_100
strain incrementation = strongly_objective
hourglass formulation = total

end solid section solid_100

Begin finite element model plate
Database name = bar.exo
Database type = exodusII
component separator character = ""
Begin parameters for block block_100
material mat_100
solid mechanics use model elastic
section = solid_100

end parameters for block block_100
end

Begin adagio procedure procedure_1
Begin time control
Begin time stepping block p0
start time = 0.0
Begin parameters for adagio region region_1
number of time steps = 100

end parameters for adagio region region_1
end time stepping block p0
termination time = 1.0

end time control

Begin adagio region region_1
jas mode solver
jas mode output
jas mode reactions
failure debug output
logfile detail = -1

use finite element model plate

Begin fixed displacement
node set = nodelist_1
components = x,y,z

end fixed displacement
Begin fixed displacement
node set = nodelist_2
components = y,z

end fixed displacement
Begin prescribed displacement
node set = nodelist_2
component = x
function = function_100
scale factor = 1.0
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end prescribed displacement

Begin results output output_1
database name = c_adagio_preload.e
database type = exodusII
component separator character = ""
at step 0 increment = 1
nodal variables = displacement as displ

end results output output_1
Begin results output output_2

database name = salinas_preload.e
database type = exodusII
component separator character = ""
additional times = 1.0
nodal variables = displacement as displ
nodal variables = node_filter as filter
element variables = stress as stress
element variables = density as fiberdensity
element Variables = element_thickness as fiberthickness
element variables = ends_per_length as epl
element variables = cord_modulus as fibmod
element variables = memb_stress as memstr
element variables = cord_ax as ax
element variables = cord_ay as ay

end results output output_2
Begin solver
Begin loadstep predictor
type = scale_factor
scale factor = 1.0 0.0

end loadstep predictor
Begin control contact
level = 1
target relative residual = 0.01
acceptable relative residual = 0.1
target relative contact residual = 0.001
acceptable relative contact residual = 0.01
maximum iterations = 500
minimum iterations = 10
lagrange initialize = none
lagrange adaptive penalty = off

end control contact
Begin cg
target relative residual = 0.005
acceptable relative residual = 0.05
minimum residual improvement = 0.5
maximum iterations = 500
minimum iterations = 10
reset limits 70 30 10.0 0.5
iteration print = 1
line search actual
preconditioner = block

end cg
end solver

end adagio region region_1
end adagio procedure procedure_1

end sierra cylinder only

Sierra/SD input file

SOLUTION
solver=gdsw

case one
receive_sierra_data
lumped

case two
eigen
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nmodes all
shift = -1000

END

FILE
geometry_file ’salinas_preload.e’
end

BOUNDARY
nodeset 1 x=0 y=0 z=0
nodeset 2 y=0 z=0

end

OUTPUTS
deform
end

ECHO
mass=block

end

BLOCK 100
material "steel"
hex8u
sd_factor 1.0

end
//E=6C10 @ 0.001 strain
//bulk modulus = E/[3(1-2*nu0]=16.66E=100
MATERIAL "steel"
E 6.0
nu 0.3
density 0.1E-08
end

9.28.3. Files for SD to SM Element Comparison

Sierra/SM input file

BEGIN SIERRA spot_weld

BEGIN DEFINITION FOR FUNCTION linearFunc
type = piecewise linear
begin values
-1.0 -1.0e+0
1.0 1.0e+0

end
end

BEGIN DEFINITION FOR FUNCTION loadRamp
type = analytic
evaluate expression = "cos_ramp(t, 0.0, 0.8)"

END

BEGIN PROPERTY SPECIFICATION FOR MATERIAL a
density = 7800
BEGIN PARAMETERS FOR MODEL elastic
youngs modulus = 2E11
poissons ratio = 0.33

END
END
BEGIN PROPERTY SPECIFICATION FOR MATERIAL b
density = 7800
BEGIN PARAMETERS FOR MODEL elastic
youngs modulus = 3E11
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poissons ratio = 0.33
END

END

BEGIN PROPERTY SPECIFICATION FOR MATERIAL c
density = 7800
BEGIN PARAMETERS FOR MODEL elastic
youngs modulus = 4E11
poissons ratio = 0.33

END
END
BEGIN PROPERTY SPECIFICATION FOR MATERIAL d
density = 7800
BEGIN PARAMETERS FOR MODEL elastic
youngs modulus = 5E11
poissons ratio = 0.33

END
END

BEGIN SOLID SECTION s1
{if(form != "composite")}

formulation = {form}
{endif}

END

BEGIN FINITE ELEMENT MODEL plate
database name = {mesh}
database type = exodusII

BEGIN PARAMETERS FOR BLOCK block_1
material = a
model = elastic
section = s1

END
BEGIN PARAMETERS FOR BLOCK block_2
material = b
model = elastic
section = s1

END
BEGIN PARAMETERS FOR BLOCK block_3
material = c
model = elastic
section = s1

END
BEGIN PARAMETERS FOR BLOCK block_4
material = d
model = elastic
section = s1

END
END

define direction tracDir with vector 1 2 3

BEGIN PRESTO PROCEDURE procedure

BEGIN TIME CONTROL
BEGIN TIME STEPPING BLOCK p1

START TIME = 0.0
BEGIN PARAMETERS FOR adagio REGION region

number of time steps = 1
END

END
termination time = 1.0

END TIME CONTROL

BEGIN PRESTO REGION region

USE FINITE ELEMENT MODEL plate
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BEGIN FIXED DISPLACEMENT
surface = surface_100
component = x y z

END
begin traction
surface = surface_1000
function = loadRamp
direction = sierra_direction_x
scale factor = 1.0e+5

end
begin traction
surface = surface_1000
function = loadRamp
direction = sierra_direction_y
scale factor = 2.0e+5

end
begin traction
surface = surface_1000
function = loadRamp
direction = sierra_direction_z
scale factor = 3.0e+5

end

BEGIN RESULTS OUTPUT output
database name = {out}

database type = exodusII
start time = 1.0
at time 1.0, increment = 1e-2

nodal variables = displacement(x) as dispx
nodal variables = displacement(y) as dispy
nodal variables = displacement(z) as dispz
#nodal variables = reaction_force
nodal variables = force_external

END

BEGIN SOLVER
begin cg
target relative residual = 1.0e-8
begin full tangent preconditioner
end

end
END

END
END

END

Sierra/SD input file

SOLUTION
statics

END

BEGIN FUNCTION linearFunc
type = piecewise linear
begin values
-1.0 -1.0e+0
1.0 1.0e+0

end
end

GDSW
solver_tol 1.0e-8

END
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MATERIAL a
density = 7800
e = 2E11
nu = 0.33

END
MATERIAL b
density = 7800
e = 3E11
nu = 0.33

END
MATERIAL c
density = 7800
e = 4E11
nu = 0.33

END
MATERIAL d
density = 7800
e = 5E11
nu = 0.33

END

FILE
geometry_file = {mesh}

END

BLOCK block_1
material = a
{form}

END
BLOCK block_2
material = b
{form}

END
BLOCK block_3
material = c
{form}

END
BLOCK block_4
material = d
{form}

END

BOUNDARY
sideset 100 y=0 z=0 x=0

END

LOADS
sideset 1000 traction 1 2 3 scale 1.0e+5

END

OUTPUTS
database name = {out}
disp

# reaction_force
# force
END
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Sierra/SM input file

begin sierra bender
begin function prescribed_force
type is piecewise linear
ordinate is force
abscissa is time
begin values
0.0 0.0
1.0 0.5
2.0 1.0
3.0 1.0

end
end

begin function force_strain
type is piecewise linear
ordinate is force
abscissa is engineering_strain
begin values
-1.0 -1.0e7
1.0 1.0e7

end values
end

define direction x with vector 1.0 0.0 0.0
define direction y with vector 0.0 1.0 0.0
define direction z with vector 0.0 0.0 1.0

begin spring section HydrogenScattering
force strain function = force_strain
default stiffness =1.0e7
mass per unit length = 0.0

end

begin finite element model one_beam
Database Name = unit_length_beam.g
Database Type = exodusII
begin parameters for block UnitLengthBeam
section = HydrogenScattering

end
end finite element model one_beam

begin adagio procedure adagio
begin time control
begin time stepping block p1
start time = 0.0
begin parameters for adagio region SouthWest
time increment = 1

end
end
termination time = 3

end
begin adagio region SouthWest
use finite element model one_beam
begin Results Output output
Database Name = spring.exo
Database Type = exodus
additional times = 3.0
nodal variables = displacement(x) as dispx
nodal variables = displacement(y) as dispy
nodal variables = displacement(z) as dispz
nodal Variables = rotational_displacement(x) as rotx
nodal Variables = rotational_displacement(y) as roty
nodal Variables = rotational_displacement(z) as rotz
element variables = spring_engineering_strain as spring_engineering_strain
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end
begin prescribed force
node set = right
direction = x
function = sierra_constant_function_one
scale factor = {force}
active periods = p1

end

begin fixed displacement
node set = left
component = X Y Z

end fixed displacement

begin fixed displacement
node set = right
components = Y Z

end
begin fixed rotation
node set = left, right
components = X Y Z

end
begin solver
begin cg
target relative residual = 1.0e-5
maximum iterations = 65
minimum iterations = 0
preconditioner = probe

end
end

end
end

end sierra bender

Sierra/SD input file

Solution
case d
statics
load 1

end

File
geometry_file unit_length_beam.g
end

Boundary
nodeset left
fixed

nodeset right
y 0
z 0
rotx 0
roty 0
rotz 0

end

Load 1
nodeset right
force 1 0. 0.
scale {force}
function 1

end

Function 1
type linear
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data 0.0 1.0
data 1.0e8 1.0

end

Outputs
deform
database name s.exo

end

Echo
input on

end

Begin rectangular coordinate system Euclidean
Origin = 0 0 0
Z Point = 0 0 1
XZ Point = 1 0 0

end

Block UnitLengthBeam
spring
coordinate Euclidean
Kx 10.0e6
Ky 10.0e6
Kz 10.0e6

end
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Sierra/SM input file

begin sierra truss
begin function prescribed_force
type is piecewise linear
ordinate is force
abscissa is time
begin values
0.0 0.0
1.0 0.5
2.0 1.0
3.0 1.0

end
end

define direction x with vector 1.0 0.0 0.0
define direction y with vector 0.0 1.0 0.0
define direction z with vector 0.0 0.0 1.0

begin material aluminium
density = 2.5880e-4
begin parameters for model elastic
youngs modulus = 10.0e6
poissons ratio = 0.3

end
end

begin material linear_elastic
density = 7.3240e-4
begin parameters for model elastic
youngs modulus = 30.0e6
poissons ratio = 0.3

end
end

begin truss section HydrogenScattering
area = 0.25

end

begin finite element model mesh1
Database Name = truss.g
Database Type = exodusII

begin parameters for block block_1
material = linear_elastic
model = elastic
section = HydrogenScattering

end

begin parameters for block block_2
material = aluminium
model = elastic
section = HydrogenScattering

end
end

begin adagio procedure adagio
begin time control
begin time stepping block p1
start time = 0.0
begin parameters for adagio region SouthWest
time increment = 1

end
end
termination time = 3

end
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begin adagio region SouthWest
use finite element model mesh1
begin Results Output output
Database Name = truss.exo
Database Type = exodus
additional times = 3.0
nodal variables = displacement(x) as dispx
nodal variables = displacement(y) as dispy
nodal variables = displacement(z) as dispz
nodal Variables = rotational_displacement(x) as rotx
nodal Variables = rotational_displacement(y) as roty
nodal Variables = rotational_displacement(z) as rotz

end

begin fixed displacement
node set = nodelist_100
components = x y z

end
begin fixed displacement # x axis, x deformation
node set = nodelist_500
components = y z

end
begin prescribed force
node set = nodelist_200
direction = x
function = prescribed_force
scale factor = 1.0e+3

end
begin fixed displacement # y axis, y deformation
node set = nodelist_600
components = x y

end
begin prescribed force
node set = nodelist_400
direction = y
function = prescribed_force
scale factor = 1.0e+3

end
begin fixed displacement # z axis, z deformation
node set = nodelist_700
components = x z

end
begin prescribed force
node set = nodelist_300
direction = z
function = prescribed_force
scale factor = 1.0e+3

end
begin solver
begin cg
target relative residual = 1.0e-10
maximum iterations = 65
minimum iterations = 0
preconditioner = probe

end
end

end
end

end sierra truss

Sierra/SD input file

SOLUTION
case d
statics
load 1
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// lumped
end

FILE
geometry_file truss.g
end

BOUNDARY
nodeset nodelist_100
x 0
y 0
z 0
nodeset nodelist_500
y 0
z 0
nodeset nodelist_600
x 0
y 0
nodeset nodelist_700
x 0
z 0

end

load 1
nodeset nodelist_200
force 1 0. 0.
scale 1000
nodeset nodelist_400
force 0. 1 0.
scale 1000
nodeset nodelist_300
force 0. 0. 1
scale 1000

end

OUTPUTS
deform
database name s.exo

end

ECHO
input off
end

BLOCK 1
material linear_elastic
truss
Area 0.25
end

BLOCK 2
material aluminium

truss
Area 0.25
end

material linear_elastic
density 7.3240e-4
E 30.0e6
nu 0.3

end

material aluminium
density 2.5880e-4
E 10.e6
nu 0.3

end
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Sierra/SM input file

begin sierra axial_force
begin function prescribed_force
type is piecewise linear
ordinate is force
abscissa is time
begin values
0.0 0.0
1.0 0.5
2.0 1.0
3.0 1.0

end
end

define direction x with vector 1.0 0.0 0.0
define direction y with vector 0.0 1.0 0.0
define direction z with vector 0.0 0.0 1.0

begin material aluminium
density = 2.5880e-4
begin parameters for model elastic
youngs modulus = 10.0e6
poissons ratio = 0.3

end
end

begin beam section beam_1
section = bar
D1 = 1.0
D2 = 1.0
t axis = 0.0 1.0 0.0

end

begin beam section beam_2
section = box
D1 = 1.005
D2 = 1.005
D3 = 4.5243753901374861e-01
t axis = 0.0 1.0 0.0

end

begin beam section beam_3
section = rod
D1 = 1.1283791670955126
D2 = 1.1283791670955126
t axis = 0.0 1.0 0.0

end

begin beam section beam_4
section = tube
D1 = 1.1340210629309899
D2 = 1.1340210629309899
D3 = 5.1052109343507690e-01
t axis = 0.0 1.0 0.0

end

begin finite element model mesh1

Database Name = beam.g
Database Type = exodusII

begin parameters for block block_1
material = aluminium
model = elastic
section = beam_1

end
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begin parameters for block block_2
material = aluminium
model = elastic
section = beam_2

end

begin parameters for block block_3
material = aluminium
model = elastic
section = beam_3

end

begin parameters for block block_4
material = aluminium
model = elastic
section = beam_4

end
end

begin adagio procedure adagio
begin time control
begin time stepping block p1
start time = 0.0
begin parameters for adagio region SouthWest
time increment = 1

end
end
termination time = 3

end

begin adagio region SouthWest
use finite element model mesh1
begin Results Output output
Database Name = axial_force.exo
Database Type = exodus
additional times = 3.0
nodal variables = displacement(x) as dispx
nodal variables = displacement(y) as dispy
nodal variables = displacement(z) as dispz
nodal Variables = rotational_displacement(x) as rotx
nodal Variables = rotational_displacement(y) as roty
nodal Variables = rotational_displacement(z) as rotz

end

begin prescribed force
node set = nodelist_1
direction = X
function = prescribed_force
scale factor = 1.0e+3

end

begin fixed displacement
node set = nodelist_1
components = Y Z

end

begin fixed displacement
node set = nodelist_2 nodelist_3 nodelist_4 nodelist_5
components = X Y Z

end

begin fixed rotation
include all blocks
components = X Y Z

end

begin solver
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begin cg
target relative residual = 1.0e-5
maximum iterations = 65
minimum iterations = 0
preconditioner = probe

end
end

end
end

end sierra axial_force

Sierra/SD input file

SOLUTION
case d
statics
load 1

// lumped
end

FILE
geometry_file beam.g
end

BOUNDARY
nodeset 2 3 4 5
fixed

end

load 1
nodeset 1
force 1 0. 0.
scale 1000

end

OUTPUTS
deform
database name s.exo

end

ECHO
input off
end

block 1
material aluminium
beam2
area 1.0
I1 = 8.3333333333333329e-02
I2 = 8.3333333333333329e-02
J = 1.6666666666666666e-01

end

block 2
material aluminium
beam2
area 1.0
I1 = 8.1520710209194588e-02
I2 = 8.1520710209194588e-02
J = 1.6304142041838918e-01

end
block 3
material aluminium
beam2
area 1.0
I1 = 1.2732395447351625
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I2 = 1.2732395447351625
J = 2.5464790894703251

end
block 4
material aluminium
beam2
area 1.0
I1 = 1.2455447034389040
I2 = 1.2455447034389040
J = 2.4910894068778080

end

material aluminium
density 2.5880e-4
E 10.e6
nu 0.3

end
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Sierra/SM input file

begin sierra bender
begin function prescribed_force
type is piecewise linear
ordinate is force
abscissa is time
begin values
0.0 0.0
1.0 0.5
2.0 1.0
3.0 1.0

end
end

define direction x with vector 1.0 0.0 0.0
define direction y with vector 0.0 1.0 0.0
define direction z with vector 0.0 0.0 1.0

begin material aluminium
density = 2.5880e-4
begin parameters for model elastic
youngs modulus = 10.0e6
poissons ratio = 0.3

end
end

begin beam section HydrogenScattering
section = bar
D1 = 1.0
D2 = 1.0
t axis = 0.0 1.0 0.0

end

begin finite element model along_x_axis
Database Name = {mesh}.g
Database Type = exodusII
begin parameters for block rodlength20
material = aluminium
model = elastic
section = HydrogenScattering

end
end

begin adagio procedure adagio
begin time control
begin time stepping block p1
start time = 0.0
begin parameters for adagio region SouthWest
time increment = 1

end
end
termination time = 3

end
begin adagio region SouthWest
use finite element model along_x_axis
begin Results Output output
Database Name = bendy.exo
Database Type = exodus
additional times = 3.0
nodal variables = displacement(x) as dispx
nodal variables = displacement(y) as dispy
nodal variables = displacement(z) as dispz
nodal Variables = rotational_displacement(x) as rotx
nodal Variables = rotational_displacement(y) as roty
nodal Variables = rotational_displacement(z) as rotz

end

508



begin prescribed force
node set = right
direction = y
function = sierra_constant_function_one
scale factor = {force}

end

begin fixed displacement
include all blocks
components = X Z

end

begin fixed displacement
node set = left
components = X Y Z

end
begin fixed rotation
node set = left
components = X Y Z

end
begin fixed rotation
block = rodlength20
components = X Y

end

begin solver
begin cg
target relative residual = 1.0e-2
maximum iterations = 120
minimum iterations = 0
preconditioner = probe

end
end

end
end

end sierra bender

Sierra/SD input file

SOLUTION
case d
statics
load 1

// lumped
end

GDSW
solver_tol = 1.e-6

end

FILE
geometry_file {mesh}.g
end

BOUNDARY
nodeset left
fixed

end

load 1
nodeset right
force 0. 1 0.
scale {force}

end
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OUTPUTS
deform
database name s.exo

end

ECHO
input off
end

block 1
material aluminium

beam2
area 1.0
I1 = 8.3333333333333329e-02
I2 = 8.3333333333333329e-02
J = 1.6666666666666666e-01

end

material aluminium
density 2.5880e-4
E 10.e6
nu 0.3

end
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Sierra/SM input file

begin sierra torque

define direction x with vector 1.0 0.0 0.0
define direction y with vector 0.0 1.0 0.0
define direction z with vector 0.0 0.0 1.0

begin material aluminium
density = 2.5880e-4
begin parameters for model elastic
youngs modulus = 1.0e7
poissons ratio = 0.3

end
end

begin beam section HydrogenScattering
section = bar
D1 = 1.0
D2 = 1.0
t axis = 0.0 1.0 0.0

end

begin finite element model one_beam
Database Name = twist.g
Database Type = exodusII
begin parameters for block bxexaxm
material = aluminium
model = elastic
section = HydrogenScattering

end
end

begin adagio procedure adagio
begin time control
begin time stepping block p1
start time = 0.0
begin parameters for adagio region SouthWest
time increment = 1

end
end
termination time = 3

end
begin adagio region SouthWest
use finite element model one_beam
begin Results Output output
Database Name = twistx.exo
Database Type = exodus
additional times = 3.0
nodal variables = displacement(x) as dispx
nodal variables = displacement(y) as dispy
nodal variables = displacement(z) as dispz
nodal Variables = rotational_displacement(x) as rotx
nodal Variables = rotational_displacement(y) as roty
nodal Variables = rotational_displacement(z) as rotz

end

begin prescribed moment
node set = right
direction = x
function = sierra_constant_function_one
scale factor = {moment}
active periods = p1

end
begin fixed displacement
node set = left, right
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include all blocks
components = X Y Z

end
begin fixed rotation
node set = left
components = X Y Z

end
begin fixed rotation
node set = right
components = Y Z

end
begin solver
begin cg
target relative residual = 1.0e-5
maximum iterations = 65
minimum iterations = 0
preconditioner = probe

end
end

end
end

end sierra torque

Sierra/SD input file

Solution
case d
statics
load 1

end

File
geometry_file twist.g
end

Boundary
nodeset left
fixed

nodeset right
x 0
y 0
z 0
roty 0
rotz 0

end

Load 1
nodeset right
moment 1 0. 0.
scale {moment}
function 1

end

Function 1
type linear
data 0.0 1.0
data 1.0e8 1.0

end

Outputs
deform
database name s.exo

end

Echo
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input off
end

Block bxexaxm
material aluminium

beam2
area 1.0
I1 = 8.3333333333333329e-02
I2 = 8.3333333333333329e-02
J = 1.6666666666666666e-01
orientation 0 1 0
offset 0 0 0

end

Material aluminium
density 2.5880e-4
E 10.e6
nu 0.3

end
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9.29. Sensitivity to Parameters

Refer to Section 2.21

//salinas input created using nasgen from nastran file ’springrbar.bdf’
SOLUTION

solver=gdsw
case sens
title ’two hexes, connected by tied joint’
eigen nmodes=1

END

FILE
// geometry_file ’twoHex.exo’
geometry_file ’twoHex.exo’

END

sensitivity
values = all

end

gdsw
solver_tol=1e-12
prt_debug=2
orthog_option 0

end

PARAMETERS
// wtmass=0.00259
// eigen_norm=visualization
END

BOUNDARY
sideset 2 // nastran SID=2

fixed
sideset 4 // nastran SID=2

fixed
sideset 1

y=0 x=0
END

LOADS
END

OUTPUTS
disp

END

ECHO
END

BLOCK 1
material 1

END

BLOCK 2
material 2

END

material 1
E=10e6
nu=0.0
density = 0.000256

end
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material 2
E=20e6
nu=0.0
density = 0.000256

end

tied joint
normal definition = none
surface 1,3
search tolerance = 0.02
connect to block 13
side = average

end

block 13
joint2g
Kx = elastic 1e8
Ky = elastic 1e8
Kz = elastic 1e7 +/- 10 %
Krx = elastic 1e8
Kry = elastic 1e8
Krz = elastic 1e8

End
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9.30. Shock Tube SI

Refer to Section 2.22

SOLUTION
solver=gdsw
nltransient
tolerance 1.0e-8
time_step 4e-05
nsteps 400

END

FILE
geometry_file ’temp1/shocktube_SI.par’

END

LOADS
sideset 4
acoustic_vel = -5
function = 1

END

BOUNDARY
sideset 6
absorbing

END

HISTORY
node_list_file ’nodeshock’
apressure

END

FUNCTION 1
type analytic
name "sine 1000"
evaluate expression = "omega = 2 * pi * 1000; sin(omega*t)"

END

OUTPUTS
END

ECHO
NLresiduals
END

BLOCK 1
material "air"
END

MATERIAL "air"
density 1.1934

acoustic
nonlinear
c0 343.2048
B_over_A 0.4

END

GDSW
solver_tol 1.0e-8
prt_summary 0

END
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9.31. Thermally Induced Elastic Waves: Hollow Sphere

Refer to Section 3.2 for details of the test.

9.31.1. Sierra SD Input Deck

// Based on "Thermal Stress-Wave Propagation in Hollow Elastic Spheres" - Tsui and Kraus (1965)
// Note that this choice of gamma implies an unphysically small G and/or an unphysically large kappa

// shear modulus: G = mu = {mu=G=shear_mod=25/4}
// Poisson ratio: nu = {nu=poisson_ratio=1/3}
// density = Beta = {Beta=density=1}
// pressure wave speed: c = sqrt( 2*(1-nu)*G/(density*(1-2*nu)) ) = {c = sqrt( 2*(1-nu)*G/(density*(1-2*nu)) )}
// inner sphere radius: a = {a=1}
// outer sphere radius: b = {b=1}
// thermal diffusivity: kappa = {kappa=1}
// dimensionless inertia parameter: gamma = kappa/(c*a) = {gamma = kappa/(c*a)} <-- should be 1/5 to match figure 1
// coefficient of thermal expansion: alpha = {alpha=coeff_thermal_expansion=1e-2}
// Ta = {Ta=1} <-- from aria input deck

SOLUTION
solver=gdsw

case t2
transient
nsteps 200
time_step 1e-3
nUpdateTemperature 1

END

FILE
geometry_file ’hollow_sphere.e’

END

FUNCTION xStar
type analytic
expression variable dx = nodal DispX
evaluate expression "dx*{(1-nu)/(a*alpha*Ta*(1+nu))}"

END

USER OUTPUT
compute nodal xStar as function xStar

END

FUNCTION rho
type analytic
expression variable c = coord
evaluate expression = "c[1]/{a}"

END

USER OUTPUT
compute nodal rho as function rho

END

#FUNCTION tau
# type analytic
# expression variable time = time
# evaluate expression = "{kappa}*time/({a}*{a})"
#END
#
#USER OUTPUT
# compute nodal tau as function tau
#END

OUTPUTS
force
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disp
elmat
temperature
thermal_strain

nodal variables xStar
nodal variables rho
#nodal variables tau
END

ECHO
END

BOUNDARY
sideset 1
x=0

sideset 2
y=0

sideset 3
z=0

END

PARAMETERS
thermal_exo_var = "TND"

END

DAMPING
alpha 1.0e-3
beta 1.0e-3

END

LOADS
body
thermal
function 8245

END

function 8245
type linear
data 0 1
data 1 1

end

BLOCK 1
material "foo"

END

MATERIAL "foo"
G = {shear_mod}
density = {density}
nu = {poisson_ratio}
alphat = {coeff_thermal_expansion}
tref 0.0

END

9.31.2. Aria Input Deck

begin sierra Calore

title heat conduction through concentric sphere, test of dash contact

Begin Aria Material mat1
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# kappa = k/(cp*rho)
density = constant rho = 1
specific heat = constant cp = 1
thermal conductivity = constant k = 1
heat conduction = basic

End

BEGIN FINITE ELEMENT MODEL test
Database Name = hollow_sphere.exo
use material mat1 for block_1

END FINITE ELEMENT MODEL test

BEGIN TPETRA EQUATION SOLVER solve_temperature
BEGIN BICGSTAB SOLVER
BEGIN JACOBI PRECONDITIONER
END
CONVERGENCE TOLERANCE = 1.0e-8
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE

END
END

begin procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Simulation Start Time = 0.0
simulation Termination Time = 0.2
begin transient timeblock
advance myRegion1

end
End

Begin Parameters For Transient TimeBlock
Start Time = 0.0
Begin Parameters For Aria Region myRegion1
Time Step Variation = Adaptive
Time Integration Method = First_Order
Initial time step size = 1e-3
Maximum Time Step Size Ratio = 1.5
minimum resolved time step size = 1.e-4
minimum time step size = 1.e-4
maximum time step size = 1e-2
Predictor Order = 1
Predictor-corrector tolerance = 1e-3
Predictor-Corrector Begin After Step = 4

End
End

End

begin Aria region myRegion1

Begin Results Output Label diffusion output1
database Name = hollow_sphere.e
At Step 0, Increment = 1
Title Aria Dash Tied Contact Test
Nodal Variables = solution->temperature as TND

End

###########################
### boundary conditions ###
###########################

Begin Temperature Boundary Condition t1
temperature = 1.0
add surface surface_1000
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End
Begin Temperature Boundary Condition t2
temperature = 0.0
add surface surface_2000

End

IC for Temperature on all_blocks = constant value = 0

use finite element model test
$ model coordinates are model_coordinates
use linear solver solve_temperature

nonlinear solution strategy = newton

maximum nonlinear iterations = 10
nonlinear residual tolerance = 1.0e-8
nonlinear relaxation factor = 1.0
use dof averaged nonlinear residual
accept solution after maximum nonlinear iterations = true

EQ Energy for Temperature On all_blocks Using Q1 With Lumped_Mass Diff

end

end procedure myProcedure

end sierra Calore
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9.32. Euler Beam Bending

Refer to Section 4.1

SOLUTION
solver=gdsw

statics
title ’single beam model. 100 elements. xy only’
lumped
END

FILE
geometry_file 100.exo
END

BOUNDARY
nodeset 1
fixed
nodeset 3
x = 0
z = 0
rotx = 0
roty = 0

END

LOADS
nodeset 2
force = 0. .25 0.
END

OUTPUTS
deform

END

ECHO
END

BLOCK 1
material ’Aluminum’
Beam2
Area 0.1
orientation 0 .1 0
I1 .2
I2 .3
J .5
END

Material ’Aluminum’
E 10.0E6
nu 0.33
density 253.82e-6
END
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9.33. Euler Beam Properties

Refer to Section 4.1.1

//salinas input for 100 element beam
SOLUTION

solver=gdsw
title=’multi-element beam modal’
eigen
nmodes=10
shift=-1

END

FILE
geometry_file ’beam2.exo’

END

PARAMETERS
END

BOUNDARY
nodeset 1
fixed

END

LOADS
END

OUTPUTS
disp

END

HISTORY
disp
block ’1’

END

ECHO
mass

END

BLOCK 1
Beam2
material=1
Area=0.03
I1=0.09
I2=0.01
J=0.1
orientation = 1 1 0

END

MATERIAL 1
Isotropic
E = 1e+07
NU = 0.3
density = 1

END

522



9.34. A Navy Beam

Refer to Section 4.1.2

//salinas input for 100 element beam
SOLUTION

solver=gdsw
title=’multi-element beam modal’
eigen
nmodes=10
shift=-1

END

FILE
geometry_file ’nbeam.exo’

END

PARAMETERS
END

BOUNDARY
nodeset 1
fixed

END

LOADS
END

OUTPUTS
disp

END

HISTORY
disp
block ’1’

END

ECHO
mass

END

BLOCK 1
Nbeam
material=1
Area=0.03
I1=0.09
I2=0.01
J=0.1
orientation = 1 1 0

END

MATERIAL 1
Isotropic
E = 1e+07
NU = 0.3
density = 1

END
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9.35. Preloaded Beam

Refer to Section 4.1.3

SOLUTION
case statics
statics
load = 1

case update
tangent

case modal
eigen
nmodes = 10

end
FILE

geometry_file ’kgperm3.exo’
end
LOAD 1

nodeset 2
force 44482 0 0

end
OUTPUTS

disp
force

end
ECHO

mass
mass=block

end
BOUNDARY
nodeset 1

fixed

end
BLOCK 1

beam2
material="steel"
area=0.0000202683
i1 = 3.2690739721e-11
i2 = 3.2690739721e-11
j = 6.5381479442e-11

end
MATERIAL "steel"

E 187e9
nu .3
density 8015.19

end
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9.35.1. Prescribed Displacement

Refer to Subsection 4.1.4

SOLUTION
solver=gdsw

case statics
statics
load = 1

case update
tangent

case modal
eigen
nmodes = 30

END
FILE

geometry_file ’Beam.exo’
end
LOAD 1

nodeset 2
force 1e10 0 0

end
OUTPUTS

disp
force

end
ECHO

mass
mass=block

end
BOUNDARY
nodeset 1
x=0 y=0

nodeset 3
x=1.3368983957E-01 y=0

nodeset 4
z=0 rotx=0 roty=0

end
BLOCK 1

beam2
material="steel"
area=4
i1=1.33333
i2=1.33333
j=2.6666
orientation 0 0 1

end
MATERIAL "steel"

E 187e9
nu .3
density 8015.19

end
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9.36. Membrane Quad

Refer to Section 4.2.1

SOLUTION
solver=gdsw

case two
eigen
lumped
nmodes 14
shift = -1.e8

END
File
geometry_file ’temp1/Membrane_quad.par’

end
Boundary
nodeset 1 x=0 y=0
nodeset 2 x=0 y=0

end

Loads
end
Outputs
deform

end
Block 100
QuadTM
material "steel"
thickness 0.1

end
Material "steel"
E 10.0
nu 0.49
density 1.0e-9

end
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9.37. QuadM membrane Patch

Refer to Section 4.2.2

SOLUTION
solver=gdsw
statics

END
FILE
geometry_file ’model.exo’
end
BOUNDARY
nodeset 2 fixed
nodeset 3 x=0
nodeset 1 x=0.1
nodeset 4 z=0
nodeset 5 y=0

end
LOADS
end
OUTPUTS
deform
stress
end
BLOCK 1
QuadM

material "steel"
thickness 1.0
end
BLOCK 2
QuadM
material "steel"
thickness 1.0

end
BLOCK 3
QuadM
material "steel"
thickness 1.0

end
BLOCK 4
QuadM
material "steel"
thickness 1.0

end
BLOCK 5
QuadM
material "steel"
thickness 1.0

end
BLOCK 6
QuadM
material "steel"
thickness 1.0

end
BLOCK 7
QuadM

material "steel"
thickness 1.0

end
MATERIAL "steel"
E 30e6
nu 0.3
density 0.288
end
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9.38. Membrane Geometrical Stiffness

Refer to Section 4.2.7

SOLUTION
solver=gdsw
case transfer
receive_sierra_data

case eig
eigen nmodes=all
lumped

END

file
geometry_file membrane_geometric.exo

// geometry_file plate101.exo
end

$$
boundary
nodeset 1
y=0

nodeset 4
x=0

nodeset 2
y=0

nodeset 5
z=0

end

boundary
end

loads
end

block 100
QuadM

// thickness=0.1
// thickness = 0.095435875007294
thickness = from_transfer
material=1

end

material 1
e=10.
nu=0.49

// density=1e-9
density = 1.047823996923137e-9

end

outputs
disp
mfile

end
parameters

mfile_format 3column
end
echo
mass

end
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9.39. QuadS_GY Shear Membrane Shell

Refer to Section 4.2.8

SOLUTION
solver=gdsw
eigen
nmodes = 20
shift = -1.e5
lumped

END

GDSW
solver_tol = 1e-10

end

Parameters
wtmass 0.00259

end

FILE
geometry_file ’mesh_quadt.g’

end

BOUNDARY
nodeset 1 rotx=0 roty=0 rotz=0 x=0 y=0 z=0
nodeset 2 rotx=0 roty=0 rotz=0 x=0 y=0 z=0
nodeset 3 rotx=0 roty=0 rotz=0 x=0 y=0 z=0
nodeset 4 rotx=0 roty=0 rotz=0 x=0 y=0 z=0

end

OUTPUTS
globals

end

ECHO
end

BLOCK 1
QuadS_GY
material "steel"
thickness 0.001
fiber orientation = 0

end

MATERIAL "steel"
orthotropic_layer
E1 = 30e6
E2 = 0.5e6
nu12 = 0.3
G12 = 0.5e6
density 0.288

end
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9.40. QuadS_GY Shear Membrane Shell - Geometric Stiffness and Preload

Refer to Section 4.2.9

SOLUTION
solver=gdsw

case one
receive_sierra_data
lumped

case out
eigen
nmodes = 10

END

FILE
// geometry_file ’shell_beam.exo’

geometry_file ’shell_adagio_salinas.e’
END

LOAD 1
sideset 1
pressure -2245852908.28
// pressure 0

END

OUTPUTS

disp
force

END

ECHO
mass=block

END

BOUNDARY
nodeset 1

fixed
nodeset 3
z=0

// y=0
END

BLOCK 1
material "steel"
QuadS_GY
thickness = 0.004450425122033

END

MATERIAL "steel"
E 187e9
nu 0.3
density 8015.19

END

530



9.41. Partial Cylinder Patch

Refer to Section 4.3.1

$ Algebraic Preprocessor (Aprepro) version 6.25 (2023/10/12)
SOLUTION

statics
END

FILE
geometry_file ’cyl_q4.g’

END

BOUNDARY
nodeset 100
x=0

nodeset 200
y=0

nodeset 300
z=0

nodeset 301
z=0.01

nodeset 1000
rotx=0
roty=0
rotz=0

END

LOADS
END

OUTPUTS
eorient
strain
stress
disp
energy
genergies

END

ECHO
genergies

END

BLOCK 1000
MATERIAL "STEEL"

$ loop
THICKNESS 0.01

$
$
END

MATERIAL "STEEL"
E 1.0E+6
NU 0.3
DENSITY 1.0E-6

END
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9.42. Thin Plate Bending

Refer to Section 4.3.2 for details of the test.

//salinas input created using nasgen from nastran file ’bending.nas’
SOLUTION

solver=gdsw
title=’ NEi Nastran Static Analysis Set’
statics

END

GDSW
solver_tol=1.0e-10

END

FILE
geometry_file ’bending.exo’

END

PARAMETERS
// wtmass=0.00259
eigen_norm=visualization

END

BOUNDARY
nodeset 11 // nastran SID=1

fixed
END

LOADS
sideset 1

pressure 1.0
END

OUTPUTS
disp
stress
genergies

END

ECHO
input
mass

END

BLOCK 13
material=1
thickness=0.5
{ QUAD }

END

MATERIAL 1
Isotropic
E = 3e+07
NU = 0.3
density = 0.0007324

END
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9.43. Two Layered Hexshell

Refer to Section 4.3.3

SOLUTION
solver=gdsw

title ’Two-ply_rectangular_plate_pressure_A’
statics

END
FILE
geometry_file ’Two-ply_rectangular_plate.g’

end
PARAMETERS
wtmass = 0.00259

end
BOUNDARY
nodeset 1
y = 0.0

node_list_file=node1.txt
x = 0.0
z = 0.0

node_list_file=node2.txt
x = 0.0

end
LOADS
sideset 1
pressure 2.0

end
OUTPUTS
disp
eorient
force

end
ECHO
mass block
disp

end
BLOCK 1
HexShell
tcoord 0 2
layer 1
material 1
thickness .5
layer 2
material 2
thickness .5

end
MATERIAL 1
density 0.1
E 1.0e5
nu 0.25

end
MATERIAL 2
density 0.05
E 1.0e3
nu 0.2

end
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9.44. Hex Membrane Sandwich

Refer to Section 4.4

SOLUTION
solver=gdsw
statics

END
File
geometry_file ’Model_hex.exo’
end
Boundary
nodeset 2 fixed
nodeset 3 x=0
nodeset 1 x=0.1
nodeset 4 z=0
nodeset 5 y=0

end
Loads
end
Outputs
deform
stress
end

Block 1
Hex8u

material "steel"
end
Block 2
Hex8u
material "steel"

end
Block 3
Hex8u
material "steel"

end
Block 4
Hex8u
material "steel"

end
Block 5
Hex8u
material "steel"

end
Block 6
Hex8u
material "steel"

end
Block 7
Hex8u

material "steel"
end
MATERIAL "steel"
E 30e6
nu 0.3
density 0.288
end
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9.45. Higher Order Hex Acoustic Element Convergence

Refer to Section 4.5

SOLUTION
solver=gdsw
eigen
nmodes 10
shift = -1.e4

END

FILE
geometry_file ’temp1/wg_hex2.par’
// geometry_file ’1/wg_hex5.par’
END

BOUNDARY
END

LOADS
END

OUTPUTS
globals

END

ECHO
END

BLOCK 1
pelement
order=3
material "steel"
END

MATERIAL "steel"
acoustic
c0 332.0
density 1.3
END

PARAMETERS
usepelements

END

GDSW
solver_tol 1.0e-12
orthog 0
sc_option no

END
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9.46. Higher Order Tet Acoustic Element Convergence

Refer to Section 4.6

SOLUTION
solver=gdsw
eigen
nmodes 10
shift = -1.e3

END

FILE
geometry_file ’temp1/wg_tet2.par’
END

BOUNDARY
END

LOADS
END

OUTPUTS
globals

END

ECHO
END

BLOCK 1
pelement
order=3
material "steel"
END

MATERIAL "steel"
acoustic
c0 332.0
density 1.3
END

PARAMETERS
usepelements

END

GDSW
solver_tol 1.0e-12
orthog 0
sc_option no

END
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9.47. Superelement Damping

Refer to Section 4.7.1

SOLUTION
solver=gdsw

transient
time_step 2.0e-5
nsteps 250

END

FILE
geometry_file ’full_system.exo’

END

BOUNDARY
sideset 3

fixed
END

LOADS
sideset 4
pressure = 10.0
function = 1

END

FUNCTION 1
type linear
data 0 0
data 1e-4 1
data 3e-4 -1
data 4e-4 0
data 10 0

END

HISTORY
nodeset 3
disp
stress

END

OUTPUTS
deform
elemeigchecks

END

// the following element block is hex.
// exodus tells us it is an 8-node hex.
// The default integration mode is "UNDER"
// The only required argument is the material card
BLOCK 1
material "steel"

hex8u
END

MATERIAL "steel"
E 30e6
nu .3
density 0.288

END

BLOCK 3 // Formerly block 2
superelement
file=SE_DampTwoBlock.ncf
map locations

END
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9.48. Sensitivity Analysis with a Superelement

Refer to Section 4.7.2

SOLUTION
solver=gdsw

title ’sensitivity of system with CBR model’
eigen nmodes=20

END
FILE
geometry_file blade1_residual_se.exo
omit block 13

end
PARAMETERS
eigen_norm=visualization

end
BOUNDARY

nodeset 11
fixed

end

OUTPUTS
disp

end
ECHO

mass
input

end
BLOCK 13
// 1 element of type SHELL. 4 nodes/element
// property card ’PSHELL 1 ’
material=3001
thickness=0.111

end
BLOCK 17
// 2 elements of type SPHERE-MASS. 1 node/element
// no property card
ConMassA
// ’CONM2 4800719’
mass=11268.5
Ixx=0
Iyy=0
Izz=0
Ixy=0
Ixz=0
Iyz=0
offset=0 0 0

end
BLOCK 480000
// 6 elements of type BEAM. 2 nodes/element
// property card ’PBAR 48000 ’
material=48001
Area=0.05693
I1=0.00374
I2=0.00374
J=0.00749

end
BLOCK 480020
// 14 elements of type TRIANGLE. 3 nodes/element
// property card ’PSHELL 48002 ’
material=48000
thickness=0.0254

end
BLOCK 480023
// 209 elements of type SHELL. 4 nodes/element
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// property card ’PSHELL 48002 ’
material=48000
thickness=0.0254

end
BLOCK 480024

superelement
file=’blade1_se.ncf’
diagnostic=0
sensitivity_param 1 = 2.04e11 // E
sensitivity_param 2 = 8017.2
map locations

end
MATERIAL 3001
// from ’MAT1 3001 ’
Isotropic
E=2e+11
NU=0.3
density=7861.06

end
MATERIAL 48000
// from ’MAT1 48000 ’
Isotropic
E=2e+11
NU=0.29
density=7860

end
MATERIAL 48001
// from ’MAT1 48001 ’
Isotropic
E=2e+11
NU=0.29
density=7860

end
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9.49. Superelement Superposition

Refer to Section 4.7.3 for details of the test.

9.49.1. Full Model

//salinas input created using nasgen from nastran file ’trusses-4.bdf’
SOLUTION
title=’ MSC.Nastran job created on 02-Apr-12 at 16:56:43’
case full
transient
time_step=1e-5
nsteps=1000
load=1

END

FILE
geometry_file ’truss_full.exo’

END

BOUNDARY
nodeset 11 // nastran SID=1

x=0
nodeset 32 // nastran SID=3

y=0
nodeset 33 // nastran SID=3

z=0
END

LOAD 1
node_list_file ’endtruss_node_list’
force 1 0 0
function=1

END

function 1
type=linear
data 0 0
data 1e-3 1
data 4e-3 -1
data 5e-3 0

end

OUTPUTS
disp

END

ECHO
mass

END

BLOCK 12
material=1
Area=0.01
Truss

END

MATERIAL 1
// from ’MAT1 1 ’
Isotropic
E=1e+07
NU=0
density=0.1
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END

9.49.2. CB Reduction

//salinas input created using nasgen from nastran file ’trusses-4.bdf’
SOLUTION
title=’ MSC.Nastran job created on 02-Apr-12 at 16:56:43’
case basis
cbr nmodes=1
lumped

END

FILE
geometry_file ’endtruss.exo’

END

CBMODEL
nodeset 11
format=netcdf
file=endtruss.ncf
inertia_matrix=yes

END

BOUNDARY
nodeset 32 // nastran SID=3

y=0
nodeset 33 // nastran SID=3

z=0
END

LOADS
END

OUTPUTS
disp
genergies

END

ECHO
mass

END

BLOCK 12
// 4 elements of type TRUSS. 2 nodes/element
// property card ’PROD 1 ’
material=1
Area=0.01
Truss

END

MATERIAL 1
// from ’MAT1 1 ’
Isotropic
E=1e+07
NU=0
density=0.1

END

9.49.3. System Analysis with Superelement

//salinas input created using nasgen from nastran file ’trusses-4.bdf’
SOLUTION
title=’2 residual trusses, and a superelement’
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transient
time_step=1e-5
nsteps=1000

END

FILE
geometry_file ’truss_se.exo’

END

BOUNDARY
nodeset 11 // nastran SID=1

x=0
nodeset 32 // nastran SID=3

y=0
nodeset 33 // nastran SID=3

z=0
END

LOADS
node_list_file ’endtruss_node_list’
force 1 0 0
function=1

END

function 1
type=linear
data 0 0
data 1e-3 1
data 4e-3 -1
data 5e-3 0

end

OUTPUTS
disp

END

ECHO
mass

END

BLOCK 12
// 2 elements of type TRUSS. 2 nodes/element
// property card ’PROD 1 ’
material=1
Area=0.01
Truss

END

block 13
superelement
map = locations
file = endtruss.ncf

END

MATERIAL 1
// from ’MAT1 1 ’
Isotropic
E=1e+07
NU=0
density=0.1

END
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9.50. Superelement Inertia Tensor Input

Refer to Section 4.7.4 for details of the test.

{include(beam_model.inp)}#

outputs
genergies
eorient
disp

end

cbmodel
nodeset 1
format=dmig
file=cbr.dmig
inertia_matrix=yes

end

9.50.1. Beam Model

//################################################################################
//#
//# This salinas input file was generated by lsdyna2sierra
//#
//################################################################################

SOLUTION
solver=gdsw

title ’beam_med’
cbr
nmodes = 10
correction=vectors
rbmdof=123456
END

file
geometry_file ’temp1/beam_med.exo’
end

echo
mass
end

block 1
material ’boxsolid’
end

material ’boxsolid’
isotropic
e = 207
nu = 0.300000
density = 0.0000071
end
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9.51. Nastran/Sierra/SD Interoperability with Superelements

Refer to Section 4.7.6 for details of the test.

9.51.1. Sierra/SD Full Model

//salinas input created using nasgen from nastran file ’tuningforkz.bdf’
SOLUTION
title=’ MSC.Nastran job created on 28-Nov-17 at 08:50:40’
case eig
eigen

nmodes=10
shift=-1e6

case frf
modalfrf
load=1

case trn
modaltransient
time_step=2e-5
nsteps=200
load=30

END

FILE
geometry_file ’tuningforkz.exo’

END

PARAMETERS
// wtmass=0.00259
eigen_norm=visualization

END

BOUNDARY
nodeset 11 // nastran SID=1

x=0 y=0 z=0
nodeset 53 // nastran SID=4

z=0
END

LOAD 1
sideset 1
pressure 1
function 1

END

function 1
type linear
data 0 1
data 1e4 1

end

LOAD 30
sideset 1
pressure 1
function 30

END

function 30
type linear
data 0 0
data 0.5e-3 1
data 1e-3 0

end
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damping
gamma=0.03

end

frequency
freq_min 1
freq_step 1
freq_max 1000
nodeset 43
displacement

end

OUTPUTS
disp

END

ECHO
mass

END

BLOCK 11
// 5 elements of type HEX. 20 nodes/element
// property card ’PSOLID 1 ’
material=1

END

BLOCK 21
// 5 elements of type HEX. 20 nodes/element
// property card ’PSOLID 2 ’
material=1

END

BLOCK 31
// 4 elements of type HEX. 20 nodes/element
// property card ’PSOLID 3 ’
material=1

END

MATERIAL 1
// from ’MAT1 1 ’
Isotropic
E = 1e+07
NU = 0.3
density = 0.000259

END

9.51.2. Nastran Full Model

$ NASTRAN input file created by the Patran 2010.2.3 64-Bit input file
$ translator on November 28, 2017 at 08:52:49.
$ Direct Text Input for Nastran System Cell Section
$ Direct Text Input for File Management Section
$ Direct Text Input for Executive Control
$ Linear Static Analysis, Database
SOL 101
CEND
$ Direct Text Input for Global Case Control Data
TITLE = MSC.Nastran job created on 28-Nov-17 at 08:50:40
ECHO = NONE
SUBCASE 1
SUBTITLE=no-bc-on-interface
SPC = 2
LOAD = 2
DISPLACEMENT(SORT1,REAL)=ALL
SPCFORCES(SORT1,REAL)=ALL
STRESS(SORT1,REAL,VONMISES,BILIN)=ALL
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$ Direct Text Input for this Subcase
BEGIN BULK
$ Direct Text Input for Bulk Data
PARAM POST 0
PARAM PRTMAXIM YES
$ Elements and Element Properties for region : load-tine
PSOLID 1 1 0
$ Pset: "load-tine" will be imported as: "psolid.1"
CHEXA 10 1 36 12 8 30 72 52

48 71 157 103 158 159 160 104
96 161 162 108 163 164

CHEXA 11 1 37 36 30 31 74 72
71 73 165 159 166 167 168 160
161 169 170 164 171 172

CHEXA 12 1 38 37 31 32 76 74
73 75 173 167 174 175 176 168
169 177 178 172 179 180

CHEXA 13 1 39 38 32 33 78 76
75 77 181 175 182 183 184 176
177 185 186 180 187 188

CHEXA 14 1 40 39 33 34 80 78
77 79 189 183 190 191 192 184
185 193 194 188 195 196

$ Elements and Element Properties for region : rom-tine
PSOLID 2 1 0
$ Pset: "rom-tine" will be imported as: "psolid.2"
CHEXA 5 2 24 6 14 18 60 47

55 59 117 111 118 119 120 97
113 121 122 116 123 124

CHEXA 6 2 25 24 18 19 62 60
59 61 125 119 126 127 128 120
121 129 130 124 131 132

CHEXA 7 2 26 25 19 20 64 62
61 63 133 127 134 135 136 128
129 137 138 132 139 140

CHEXA 8 2 27 26 20 21 66 64
63 65 141 135 142 143 144 136
137 145 146 140 147 148

CHEXA 9 2 28 27 21 22 68 66
65 67 149 143 150 151 152 144
145 153 154 148 155 156

$ Elements and Element Properties for region : fork
PSOLID 3 1 0
$ Pset: "fork" will be imported as: "psolid.3"
CHEXA 1 3 4 3 1 2 44 41

42 43 81 82 83 84 85 86
87 88 89 90 91 92

CHEXA 2 3 8 4 2 6 48 44
43 47 93 84 94 95 96 85
88 97 98 92 99 100

CHEXA 3 3 12 11 4 8 52 49
44 48 101 102 93 103 104 105
85 96 106 107 98 108

CHEXA 4 3 6 2 13 14 47 43
54 55 94 109 110 111 97 88
112 113 99 114 115 116

$ Referenced Material Records
$ Material Record : aluminum
$ Description of Material : Date: 27-Nov-17 Time: 08:57:23
MAT1 1 1.+7 .3 2.59-4
$ Nodes of the Entire Model
GRID 1 0. 0. 0.
GRID 2 1. 0. 0.
GRID 3 0. 1. 0.
GRID 4 1. 1. 0.
GRID 6 2. 0. 0.
GRID 8 2. 1. 0.
GRID 11 1. 2. 0.
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GRID 12 2. 2. 0.
GRID 13 1. -1. 0.
GRID 14 2. -1. 0.
GRID 18 3. -1. 0.
GRID 19 4. -1. 0.
GRID 20 5. -1. 0.
GRID 21 6. -1. 0.
GRID 22 7. -1. 0.
GRID 24 3. 0. 0.
GRID 25 4. 0. 0.
GRID 26 5. 0. 0.
GRID 27 6. 0. 0.
GRID 28 7. 0. 0.
GRID 30 3. 1. 0.
GRID 31 4. 1. 0.
GRID 32 5. 1. 0.
GRID 33 6. 1. 0.
GRID 34 7. 1. 0.
GRID 36 3. 2. 0.
GRID 37 4. 2. 0.
GRID 38 5. 2. 0.
GRID 39 6. 2. 0.
GRID 40 7. 2. 0.
GRID 41 0. 1. .5
GRID 42 0. 0. .5
GRID 43 1. 0. .5
GRID 44 1. 1. .5
GRID 47 2. 0. .5
GRID 48 2. 1. .5
GRID 49 1. 2. .5
GRID 52 2. 2. .5
GRID 54 1. -1. .5
GRID 55 2. -1. .5
GRID 59 3. -1. .5
GRID 60 3. 0. .5
GRID 61 4. -1. .5
GRID 62 4. 0. .5
GRID 63 5. -1. .5
GRID 64 5. 0. .5
GRID 65 6. -1. .5
GRID 66 6. 0. .5
GRID 67 7. -1. .5
GRID 68 7. 0. .5
GRID 71 3. 1. .5
GRID 72 3. 2. .5
GRID 73 4. 1. .5
GRID 74 4. 2. .5
GRID 75 5. 1. .5
GRID 76 5. 2. .5
GRID 77 6. 1. .5
GRID 78 6. 2. .5
GRID 79 7. 1. .5
GRID 80 7. 2. .5
GRID* 81 .5 1.
* -1.46144-8
GRID* 82 -5.9644-10 .5
* -6.88986-9
GRID* 83 .5 -2.08654-9
* -4.99122-9
GRID* 84 1. .5
* -5.11059-9
GRID 85 1. 1. .25
GRID* 86 4.25148-10 1.
* .25
GRID* 87 2.65251-9 7.2653-9
* .25
GRID* 88 1. 3.57292-9
* .25
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GRID 89 .5 1. .5
GRID* 90 4.44603-9 .5
* .5
GRID* 91 .5 6.6322-9
* .5
GRID 92 1. .5 .5
GRID* 93 1.5 1.
* -1.46144-8
GRID* 94 1.5 -2.08654-9
* -4.99122-9
GRID* 95 2. .5
* -5.11059-9
GRID 96 2. 1. .25
GRID* 97 2. 3.57292-9
* .25
GRID 98 1.5 1. .5
GRID* 99 1.5 6.6322-9
* .5
GRID 100 2. .5 .5
GRID* 101 1.5 2.
* -1.46144-8
GRID* 102 1. 1.5
* -6.88986-9
GRID* 103 2. 1.5
* -5.11059-9
GRID 104 2. 2. .25
GRID 105 1. 2. .25
GRID 106 1.5 2. .5
GRID 107 1. 1.5 .5
GRID 108 2. 1.5 .5
GRID* 109 1. -.5
* -6.88986-9
GRID* 110 1.5 -1.
* -4.99122-9
GRID* 111 2. -.5
* -5.11059-9
GRID 112 1. -1. .25
GRID 113 2. -1. .25
GRID 114 1. -.5 .5
GRID 115 1.5 -1. .5
GRID 116 2. -.5 .5
GRID* 117 2.5 1.5939-8
* -1.46144-8
GRID* 118 2.5 -1.
* -4.99122-9
GRID* 119 3. -.5
* -5.11059-9
GRID* 120 3. 1.94968-8
* .25
GRID 121 3. -1. .25
GRID* 122 2.5 1.6149-9
* .5
GRID 123 2.5 -1. .5
GRID 124 3. -.5 .5
GRID* 125 3.5 1.5939-8
* -1.46144-8
GRID* 126 3.5 -1.
* -4.99122-9
GRID* 127 4. -.5
* -5.11059-9
GRID* 128 4. 1.94968-8
* .25
GRID 129 4. -1. .25
GRID* 130 3.5 1.6149-9
* .5
GRID 131 3.5 -1. .5
GRID 132 4. -.5 .5
GRID* 133 4.5 1.5939-8
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* -1.46144-8
GRID* 134 4.5 -1.
* -4.99122-9
GRID* 135 5. -.5
* -5.11059-9
GRID* 136 5. 1.94968-8
* .25
GRID 137 5. -1. .25
GRID* 138 4.5 1.6149-9
* .5
GRID 139 4.5 -1. .5
GRID 140 5. -.5 .5
GRID* 141 5.5 1.5939-8
* -1.46144-8
GRID* 142 5.5 -1.
* -4.99122-9
GRID* 143 6. -.5
* -5.11059-9
GRID* 144 6. 1.94968-8
* .25
GRID 145 6. -1. .25
GRID* 146 5.5 1.6149-9
* .5
GRID 147 5.5 -1. .5
GRID 148 6. -.5 .5
GRID* 149 6.5 1.5939-8
* -1.46144-8
GRID* 150 6.5 -1.
* -4.99122-9
GRID* 151 7. -.5
* -5.11059-9
GRID* 152 7. 1.94968-8
* .25
GRID 153 7. -1. .25
GRID* 154 6.5 1.6149-9
* .5
GRID 155 6.5 -1. .5
GRID 156 7. -.5 .5
GRID* 157 2.5 2.
* -1.46144-8
GRID* 158 2.5 1.
* -4.99122-9
GRID* 159 3. 1.5
* -5.11059-9
GRID 160 3. 2. .25
GRID 161 3. 1. .25
GRID 162 2.5 2. .5
GRID 163 2.5 1. .5
GRID 164 3. 1.5 .5
GRID* 165 3.5 2.
* -1.46144-8
GRID* 166 3.5 1.
* -4.99122-9
GRID* 167 4. 1.5
* -5.11059-9
GRID 168 4. 2. .25
GRID 169 4. 1. .25
GRID 170 3.5 2. .5
GRID 171 3.5 1. .5
GRID 172 4. 1.5 .5
GRID* 173 4.5 2.
* -1.46144-8
GRID* 174 4.5 1.
* -4.99122-9
GRID* 175 5. 1.5
* -5.11059-9
GRID 176 5. 2. .25
GRID 177 5. 1. .25
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GRID 178 4.5 2. .5
GRID 179 4.5 1. .5
GRID 180 5. 1.5 .5
GRID* 181 5.5 2.
* -1.46144-8
GRID* 182 5.5 1.
* -4.99122-9
GRID* 183 6. 1.5
* -5.11059-9
GRID 184 6. 2. .25
GRID 185 6. 1. .25
GRID 186 5.5 2. .5
GRID 187 5.5 1. .5
GRID 188 6. 1.5 .5
GRID* 189 6.5 2.
* -1.46144-8
GRID* 190 6.5 1.
* -4.99122-9
GRID* 191 7. 1.5
* -5.11059-9
GRID 192 7. 2. .25
GRID 193 7. 1. .25
GRID 194 6.5 2. .5
GRID 195 6.5 1. .5
GRID 196 7. 1.5 .5
$ Loads for Load Case : no-bc-on-interface
SPCADD 2 1 3 4 5
LOAD 2 1. 1. 1
$ Displacement Constraints of Load Set : base
SPC1 1 123 1 3 41 42 82 86

87 90
$ Displacement Constraints of Load Set : interface
SPC1 3 1 6 14 47 55 97 111

113 116
$ Displacement Constraints of Load Set : otm
SPC1 4 3 67
$ Displacement Constraints of Load Set : z0
SPC1 5 3 1 2 3 4 6 8

11 12 13 14 18 19 20 21
22 24 25 26 27 28 30 31
32 33 34 36 37 38 39 40
81 82 83 84 93 94 95 101
102 103 109 110 111 117 118 119
125 126 127 133 134 135 141 142
143 149 150 151 157 158 159 165
166 167 173 174 175 181 182 183
189 190 191

$ Pressure Loads of Load Set : pressure
PLOAD4 1 14 1. 40 78
$ Referenced Coordinate Frames
ENDDATA
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9.52. Sierra/SD Superelement File Formats

Refer to Section 4.7.10 for details of the test.

9.52.1. Sierra/SD Full Model

//salinas input created using nasgen from nastran file ’tuningfork.bdf’
SOLUTION
title=’ MSC.Nastran job created on 27-Nov-17 at 09:29:23’
eigen

nmodes=10
shift=-1e6 // needed only for floating

END

FILE
geometry_file ’tuningfork.exo’

END

PARAMETERS
// wtmass=0.00259
eigen_norm=visualization

END

BOUNDARY
nodeset 11 // nastran SID=1

x=0
nodeset 12 // nastran SID=1

y=0
nodeset 13 // nastran SID=1

z=0
nodeset 33 // nastran SID=3

z=0
END

history
nodeset 100
disp

end

OUTPUTS
disp

END

ECHO
mass

END

BLOCK 11
// 5 elements of type HEX. 20 nodes/element
// property card ’PSOLID 1 ’
material=1

END

BLOCK 21
// 5 elements of type HEX. 20 nodes/element
// property card ’PSOLID 2 ’
material=1

END

BLOCK 31
// 4 elements of type HEX. 20 nodes/element
// property card ’PSOLID 3 ’
material=1

551



END

MATERIAL 1
// from ’MAT1 1 ’
Isotropic
E = 1e+07
NU = 0.3
density = 0.000259

END

9.52.2. Netcdf Output

SOLUTION
title=’ROM tine of tuning fork’
cbr
nmodes=10

END

cbmodel
nodeset 41
format=netcdf
file=rom4.ncf

end

FILE
geometry_file ’rom4.exo’

END

PARAMETERS
eigen_norm=visualization

END

BOUNDARY
nodeset 33 // nastran SID=3

z=0
END

LOADS
END

OUTPUTS
disp

END

ECHO
mass

END

BLOCK 21
// 5 elements of type HEX. 20 nodes/element
// property card ’PSOLID 2 ’
material=1
blkbeta=1e-6

END

MATERIAL 1
// from ’MAT1 1 ’
Isotropic
E = 1e+07
NU = 0.3
density = 0.000259

END
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9.52.3. DMIG Output

SOLUTION
title=’ROM tine of tuning fork’
cbr
nmodes=10

END

cbmodel
nodeset 41
format=dmig*
file=rom4.dmig
inertia_matrix=no

end

FILE
geometry_file ’rom4.exo’

END

PARAMETERS
eigen_norm=visualization

END

BOUNDARY
nodeset 33 // nastran SID=3

z=0
END

LOADS
END

OUTPUTS
disp

END

ECHO
mass

END

BLOCK 21
// 5 elements of type HEX. 20 nodes/element
// property card ’PSOLID 2 ’
material=1
blkbeta=1e-6

END

MATERIAL 1
// from ’MAT1 1 ’
Isotropic
E = 1e+07
NU = 0.3
density = 0.000259

END

9.52.4. Netcdf Input

SOLUTION
title=’Residual calculations using a CBR/ROM of right tine’
case eigNCF
eigen

nmodes=10
shift=-1e6

END
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FILE
geometry_file ’residual.exo’

END

gdsw
solver_tol=1e-12

end

PARAMETERS
eigen_norm=visualization

END

BOUNDARY
nodeset 11 // nastran SID=1

x=0 y=0 z=0
nodeset 33 // nastran SID=3

z=0
END

LOAD 30
sideset 1
pressure 1
function 30

END

function 30
type linear
data 0 0
data 0.5e-3 1
data 1e-3 0

end

damping
gamma=0.03

end

frequency
freq_min 1
freq_step 1
freq_max 1000
nodeset 33
displacement

end

history
nodeset 100
disp

end

OUTPUTS
disp

END

ECHO
mass

END

BLOCK 11
// 5 elements of type HEX. 20 nodes/element
// property card ’PSOLID 1 ’
material=1

END

$$ BLOCK 21
// 5 elements of type HEX. 20 nodes/element
// property card ’PSOLID 2 ’
material=1
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END

BLOCK 31
// 4 elements of type HEX. 20 nodes/element
// property card ’PSOLID 3 ’
material=1

END

BLOCK 32
superelement
map=locations
file=rom4.ncf

END

MATERIAL 1
// from ’MAT1 1 ’
Isotropic
E = 1e+07
NU = 0.3
density = 0.000259

END

9.52.5. DMIG Input

SOLUTION
title=’Residual calculations using a CBR/ROM of right tine’
case eigDMIG
eigen

nmodes=10
shift=-1e6

END

FILE
geometry_file ’residual.exo’

END

gdsw
solver_tol=1e-12

end

PARAMETERS
eigen_norm=visualization

END

BOUNDARY
nodeset 11 // nastran SID=1

x=0 y=0 z=0
nodeset 33 // nastran SID=3

z=0
END

LOAD 30
sideset 1
pressure 1
function 30

END

function 30
type linear
data 0 0
data 0.5e-3 1
data 1e-3 0

end

damping
gamma=0.03
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end

frequency
freq_min 1
freq_step 1
freq_max 1000
nodeset 33
displacement

end

OUTPUTS
disp

END

history
nodeset 100
disp

end

ECHO
mass

END

BLOCK 11
// 5 elements of type HEX. 20 nodes/element
// property card ’PSOLID 1 ’
material=1

END

$$ BLOCK 21
// 5 elements of type HEX. 20 nodes/element
// property card ’PSOLID 2 ’
material=1

END

BLOCK 31
// 4 elements of type HEX. 20 nodes/element
// property card ’PSOLID 3 ’
material=1

END

BLOCK 32
superelement
format = dmig
file=rom4.dmig

END

MATERIAL 1
// from ’MAT1 1 ’
Isotropic
E = 1e+07
NU = 0.3
density = 0.000259

END
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9.53. Parallel Distribution of Load through Rbars

Refer to Section 5.1

solution
case eig
eigen nmodes=4
shift -1e8
enforce_modeshape_residual = false

case out
modalranvib
keepmodes=3 // force modal truncation
lfcutoff=-10
title ’hex and spiders’

end
ranloads
matrix=1
load=1
nodeset 1

force=0 1 0
scale=1000

end
frequency
freq_step=100
freq_min=300
freq_max=1e4
BLOCK=all
accel

end
matrix-function 1
Name=input_psd
symmetry=symmetric
dimension=1x1
data 1,1
real function 1

end
function 1
Name=’psd’
type=loglog
data 1.0 1e-8
data 299 1e-8
data 300 0.01
data 2000 1
data 8000 1.
data 10000 0.01
data 10001 1e-8

end
damping
gamma=0.01

end
parameters
wtmass=0.00259
end
file

geometry_file ’hex_spider.exo’
end
boundary
nodeset 1
roty=0 rotz=0 rotx=0 x=0 z=0

end
loads
end
outputs

disp
vrms
end
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echo
mass=block
mass

end

gdsw
solver_tol 1e-9

end

block 1
material 1

end
block 2
ConMass
Mass=0.7075
Ixx =0
Ixy =0
Iyy =0
Ixz =0
Iyz =0
Izz =0
Offset= 0 0 0 // patran/exo type ’BEAM’/BEAM. Number nodes 2

end
block 10

RBAR // RBE type element
end
material 1
density=0.283
E=29e2
nu=0.3

end
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9.54. Perfectly Matched Layers: Offset Sphere

Refer to Section 5.2 for details of the test.

SOLUTION
directfrf

end
FILE
geometry_file ’OffsetSphere3.exo’

end
FREQUENCY
freq_min = 100.0
freq_step = 1
freq_max = 101.0
disp
block 1

end
LOADS

sideset 1
acoustic_vel = 1.0
function = 2

end
BOUNDARY
sideset 2
pml_element
use block 57

end
FUNCTION 2

type LINEAR
data 0 1
data 1e6 1

end
OUTPUTS
apressure

end
BLOCK 1

material "air"
end
BLOCK 57
pml_element
stack_depth 5
ellipsoid_dimensions 5 5 5
pml_thickness 1
loss_function = polynomial
loss_params = 0 960 960 0

end
MATERIAL "air"
density 1.293
acoustic
c0 332.0

end
GDSW
precondUpdateFreq 3
prt_debug 1
useBarrierTimers yes

end
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9.55. Periodic Boundary Conditions

Refer to Section 5.3 for details of the test.

SOLUTION
solver=gdsw
statics

END

FILE
geometry_file ’SingleVoidCenterPbc.exo’

END

BOUNDARY
nodeset 1
x=0 y=0 z=0

nodeset 2
x=0 z=0

nodeset 2
x=0

END

BEGIN-PERIODIC
side a = 1
side b = 2
name = X_directional_PBC
search tolerance = 1e-2
geometric offset = -1.0 0.0 0.0
Ux = -1.5

END

LOADS
END

HISTORY
element stress nearest location 0.0 0.4 0.0 as ExpectedMaxStress1
element stress nearest location 0.0 0.0 0.4 as ExpectedMaxStress2
element stress nearest location -0.4 0.0 0.0 as ExpectedMinStress

END

OUTPUTS
displacement
stress

END

ECHO
MPC

END

BLOCK 1
material "simple_solid"

END

MATERIAL "simple_solid"
E 100.0
nu 0.3
density 1.0

END
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9.56. Multidirectional Periodic BC: Periodic Volume Elements

Refer to Section 5.4 for details of the test.

SOLUTION
solver=gdsw
statics

END

FILE
geometry_file ’SingleVoidCenterPve.exo’

END

BOUNDARY
nodeset 1
x=0 y=0 z=0

END

BEGIN-PERIODIC
side a = 1
side b = 2
name = X_directional_PBC
search tolerance = 1e-4

// geometric offset = 1.0 0.0 0.0
Ux = 1.5
Uy = 1.0
Uz = 0.5

END

BEGIN-PERIODIC
side a = 3
side b = 4
name = Y_directional_PBC
search tolerance = 1e-4

// geometric offset = 0.0 1.0 0.0
Ux = 1.0
Uy = -1.0
Uz = 0.25

END

BEGIN-PERIODIC
side a = 5
side b = 6
name = Z_directional_PBC
search tolerance = 1e-4

// geometric offset = 0.0 0.0 1.0
Ux = 0.5
Uy = 0.25
Uz = -0.5

END

LOADS
END

HISTORY
element stress nearest location -0.1 -0.5 -0.5 as Stress1
element stress nearest location -0.5 -0.1 -0.5 as Stress2
element stress nearest location -0.5 -0.5 -0.1 as Stress3

END

OUTPUTS
displacement
stress

END

ECHO
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MPC
END

BLOCK 1
material "simple_solid"

END

MATERIAL "simple_solid"
E 100.0
nu 0.3
density 1.0

END
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9.57. Filter Rigid Modes from Loads

Refer to Section 5.5

SOLUTION
solver=gdsw

statics
END

FILE
geometry_file ’temp1/beam_hex8.par’
// geometry_file ’beam_hex8.exo’
END

BOUNDARY
END

PARAMETERS
FilterRbmLoad=allStructural
rbmtolerance=1e-6
num_rigid_mode 6

END

GDSW
prt_summary = 3

END

LOADS
sideset 1

traction = 0 1000.0 0
END

OUTPUTS
disp
force
rhs

END

ECHO
input off
END

BLOCK 1
material "steel"

hex8u
END

MATERIAL "steel"
E 30.0e6
nu 0.0
density 0.288
END
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9.58. Modal Force on a Biplane Model

Refer to Section 5.6 for details of the test.

SOLUTION
solver=gdsw
case eig2
eigen
shift=-1e5
nmodes=30

case two
modaltransient
nsteps 260
time_step 1e-3
load=10

END

FILE
geometry_file ’biplane.exo’ // ’biplane.exo’

END

LOAD 10
body
modalforce
function 60

END

FUNCTION 60
type table
tablename 35

END

TABLE 35
dimension 2
size 260 30
delta 1e-3 1
origin 1e-3 0
datafile=ModalForces.txt

END

TIED DATA
surface 1,6 //tail stalk to main body

END
TIED DATA
surface 2,7 //top fin to top of tailstalk

END

{include(blocks_and_materials.inp)}
{include(common.inp)}
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9.59. Lighthill Analogy - Helmholtz Resonator

Refer to Section 5.7 for details of the test.

SOLUTION
solver=gdsw

transient
time_step 0.5e-3
nsteps 500

END
File
geometry_file temp1/lighthill_helmholtz_resonator_ns.par

end
Loads
nodeset 1
lighthill = 1.0
function = 1

end
Damping
alpha 50
end
Function 1
type exodusread
nodeset 1
name "divT"
exo_var vector divT
interp = linear

end
Boundary
sideset 13 absorbing radius = 100
end
History
node_list_file nodelist1873
aforce
apressure

end

Outputs
end

Block 1
material 1
end

Block 2
material 1
end

MATERIAL 1
acoustic
density 1.2256e-3
c0 34300 // cm/s
end

Tied Data
surface 1, 10
End

Tied Data
surface 2, 11
End

Tied Data
surface 3, 12
End

565



9.60. Lighthill Tensor Verification Input

Refer to Section 5.8 for details of the test.

SOLUTION
solver=gdsw
solver=gdsw

transient
time_step 0.5
lumped_consistent
nsteps 600

END

LINESAMPLE
samples per line 1000
endpoint -500. 0. 0. 500. 0. 0.
format exodus

END

FILE
geometry_file temp1/lighthill_waveguide_1000x1x1_pulse.par

END

LOADS
nodeset 1
lighthill = 1
function = 1

END

FUNCTION 1
type exodusread
nodeset 1
name "divT"
exo_var vector divT
interp = linear

END

BOUNDARY
sideset 1
absorbing

END

OUTPUTS
database name = temp1/james.exo
apressure
aforce

END

BLOCK 1
material 1

END

MATERIAL 1
acoustic
density 1
c0 1

END
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9.61. Acoustic Point Source in Frequency Domain

Refer to Section 5.9 for details of the test.

Solution
directfrf

End

File
geometry_file ’point_source.exo’

End

Frequency
freq_min = 1.0
freq_step = 10.0
freq_max = 150.0
sideset 1
pressure

End

Loads
nodeset 1
point_volume_vel = 1.0
function = 2

End

Damping
beta 1.0e-5

End

Boundary
sideset 1
absorbing
radius 2.0

End

Function 2
type LINEAR
name "test_func1"
data 0.0 1.0
data 5.0e9 1.0

End

Outputs
apressure
End

Block 1
material "air"

End

Material "air"
density 1.293
acoustic
c0 343.0

End

GDSW
solver_tol 1.0e-8
max_previous_sols 10
cull_method eigen
orthog 40
num_GS_steps 2

End

567



9.62. Acoustic Point Source in Time Domain

Refer to Section 5.10 for details of the test.

SOLUTION
transient
time_step 1.0e-4
nsteps 1000
rho 0.7

END

FILE
geometry_file ’point_source.exo’

END

LOADS
nodeset 1
point_volume_vel = 1.0
// point_volume_accel = 1.0
function = 1

END

DAMPING
beta 1.0e-5

END

BOUNDARY
sideset 1
absorbing
radius 2.0

END

FUNCTION 1
type analytic
evaluate expression = "omega = pi * 50; sin(omega*time)"

END

OUTPUTS
apressure
END

ECHO
END

BLOCK 1
material "air"
END

MATERIAL "air"
density 1.293
acoustic
c0 343.0

END

GDSW
solver_tol 1.0e-10

END
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9.63. Acoustic Plane Wave Scattering in Frequency Domain

Refer to Section 5.11 for details of the test.

# rho0 = {rho0 = 1.21}
# c0 = {c0 = 343.0}
# vscale = {vscale = 1/(rho0*c0)}

SOLUTION
directfrf
scattering
solver=gdsw

END

FILE
geometry_file mie/cylinderScatterer.exo

END

Frequency
freq_min = 1000.0
freq_step =100.0
freq_max = 1000.0
block 1,2
apressure
disp

End

LOADS
sideset 2

acoustic_vel = 1.0
scale = {vscale}
function = 1

sideset 2
iacoustic_vel = 1.0
scale = {vscale}
function = 2

sideset 3
pressure = 1
scale = {vscale}
function = 1

sideset 3
ipressure = 1
scale = {vscale}
function = 2

END

BOUNDARY
nodeset 1

z = 0
sideset 1

pml_element
use block 326
hex

END

BLOCK 326
pml_element
stack_depth 20
source_origin 0 0 0
ellipsoid_dimensions 0.8 0.8 1000
pml_thickness 0.00025
loss_function = polynomial
loss_params = 0 6000 6000 6000

END

Function 1
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type plane_wave_freq
Material "air"
Direction 1.0 0.0 0.0
Origin 0 0 0

END
Function 2

type iplane_wave_freq
Material "air"
Direction 1.0 0.0 0.0
Origin 0 0 0

END

TIED DATA
Surface 2,3

END

OUTPUTS
deform
apressure

END

ECHO
END

BLOCK 1
material "air"

END

BLOCK 2
material "steel"

END

MATERIAL "air"
acoustic
density {rho0}
c0 {c0}

END

MATERIAL "steel"
E 19.5e10
nu 0.3
density 7700.0

END

GDSW
solver_tol 1.0e-11
overlap 1
SC_optionH yes
max_iter 100

END
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9.64. Transient Reaction Forces

Refer to Section 5.12 for details of the test.

9.64.1. Vibration from Initial Conditions

OUTPUTS
database name = initCond.e
disp
velocity
accel
force
reaction_force

END

BOUNDARY
nodeset 2 3 4 5

fixed
END

LOAD 1
END

INITIAL-CONDITIONS
velocity = by_block

END

9.64.2. Prescribed Acceleration

OUTPUTS
database name = accel.e
disp
velocity
accel
force
reaction_force

END

BOUNDARY
nodeset 2 3 4 5

fixed
nodeset 1

accelx 1
function xaccel
disp0 = 0
vel0 = 0

nodeset 1
accely 1
function yaccel
disp0 = 0
vel0 = 0

END

FUNCTION xaccel
type = linear
data 0 4
data 1 4

END

FUNCTION yaccel
type = linear
data 0 8
data 1 8
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END

DAMPING
alpha = 0.1
beta = 0.2

END

LOAD 1
nodeset 1
force 0 0 1.5

END

572



9.65. Relative Displacement PSD

Refer to Section 6.1 for details of the test.

9.65.1. In Phase Response

9.65.1.1. Nodal closest distance user output

Solution
solver=gdsw
case eig
eigen nmodes=all

case random
modalranvib
lfcutoff -1

end
Parameters
wtmass 0.00259

end
File
geometry_file nodeAndQuad.exo

end
Boundary
nodeset 1,2 y = 0 z = 0 rotx = 0 roty = 0 rotz = 0

end

//Rigidset
// sideset 1
//end

user output
nodeset 2
compute nodal bar as closest distance to block 1

end

Outputs
disp
vrms
bar

end
Ranloads
matrix matFun
load=1
nodeset 2
force 1 0 0
scale 1e6

load=2
nodeset 1
force 1 0 0
scale 1e6

end

Matrix-function matFun
symmetry hermitian
dimension 2x2
data 1,1
real function squareBand scale 1

data 1,2
real function squareBand scale 1

data 2,2
real function squareBand scale 1

end
Function squareBand
type linear
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data 1 1e-6
data 9.9999 1e-6
data 10 1e-1
data 25 1e-1
data 25.0001 1e-6
data 30 1e-6

end
Damping
gamma = 0.05

end
Frequency
freq_min 10
freq_max 25
freq_step 0.1
nodeset 1 2 disp
bar

end
Block 2
conmass
mass 1e2

end
Block 3
conmass
mass 1e2

end
Block 12
joint2g
kx elastic 1e5
ky elastic 1e5
kz elastic 1e5

end
Block 22
joint2g
kx elastic 1e10
ky elastic 1e10
kz elastic 1e10

end
Block 1
material aluminum
thickness = 0.1

end

Material aluminum
E = 1e7
nu = 0.35
density = 0.1

end

9.65.1.2. Element relative_disp output

Solution
solver=gdsw
case eig
eigen nmodes=all

case random
modalranvib
lfcutoff -1

end
Parameters
wtmass 0.00259

end
File
geometry_file oneD.exo

end
Boundary
nodeset 1,2 y = 0 z = 0 rotx = 0 roty = 0 rotz = 0
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end
Outputs
disp
relative_disp
vrms

end
Ranloads
matrix matFun
load=1
nodeset 2
force 1 0 0
scale 1e6

load=2
nodeset 1
force 1 0 0
scale 1e6

end

Matrix-function matFun
symmetry hermitian
dimension 2x2
data 1,1
real function squareBand scale 1

data 1,2
real function squareBand scale 1

data 2,2
real function squareBand scale 1

end
Function squareBand
type linear
data 1 1e-6
data 9.9999 1e-6
data 10 1e-1
data 25 1e-1
data 25.0001 1e-6
data 30 1e-6

end
Damping
gamma = 0.05

end
Frequency
freq_min 10
freq_max 25
freq_step 0.1
nodeset 1 2 disp
block 12 relative_disp

end
Block 1 2
conmass
mass 1e2

end
Block 12
joint2g
kx elastic 1e5
ky elastic 1e5
kz elastic 1e5

end

9.65.2. Opposite Phase Response

9.65.2.1. Nodal closest distance user output

Solution
solver=gdsw
case eig
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eigen nmodes=all
case random
modalranvib
lfcutoff -1

end
Parameters
wtmass 0.00259

end
File
geometry_file nodeAndQuad45.exo

end
Boundary
nodeset 1,2 z = 0 rotx = 0 roty = 0 rotz = 0

end

user output
nodeset 2
compute nodal bar as closest distance to block 1

end

Outputs
disp
vrms
bar

end
Ranloads
matrix matFun
load=1
nodeset 2
force {sqrt(2)/2} {sqrt(2)/2} 0
scale 1e6

load=2
nodeset 1
force {sqrt(2)/2} {sqrt(2)/2} 0
scale 1e6

end

Matrix-function matFun
symmetry hermitian
dimension 2x2
data 1,1
real function squareBand scale 1

data 1,2
real function squareBand scale -1

data 2,2
real function squareBand scale 1

end
Function squareBand
type linear
data 1 1e-6
data 9.9999 1e-6
data 10 1e-1
data 25 1e-1
data 25.0001 1e-6
data 30 1e-6

end
Damping
gamma = 0.05

end
Frequency
freq_min 10
freq_max 25
freq_step 0.1
nodeset 1 2 disp
bar

end
Block 2
conmass
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mass 1e2
end
Block 3
conmass
mass 1e2

end
Block 12
joint2g
kx elastic 1e5
ky elastic 1e5
kz elastic 1e5

end
Block 22
joint2g
kx elastic 1e05
ky elastic 1e05
kz elastic 1e05

end
Block 1
material aluminum
thickness = 0.1

end

Material aluminum
E = 1e7
nu = 0.35
density = 0.1

end

9.65.2.2. Nodal closest distance user output

Solution
solver=gdsw
case eig
eigen nmodes=all

case random
modalranvib
lfcutoff -1

end
Parameters
wtmass 0.00259

end
File
geometry_file oneD.exo

end
Boundary
nodeset 1,2 y = 0 z = 0 rotx = 0 roty = 0 rotz = 0

end
Outputs
disp
relative_disp
vrms

end
Ranloads
matrix matFun
load=1
nodeset 2
force 1 0 0
scale 1e6

load=2
nodeset 1
force 1 0 0
scale 1e6

end

Matrix-function matFun
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symmetry hermitian
dimension 2x2
data 1,1
real function squareBand scale 1

data 1,2
real function squareBand scale -1

data 2,2
real function squareBand scale 1

end
Function squareBand
type linear
data 1 1e-6
data 9.9999 1e-6
data 10 1e-1
data 25 1e-1
data 25.0001 1e-6
data 30 1e-6

end
Damping
gamma = 0.05

end
Frequency
freq_min 10
freq_max 25
freq_step 0.1
nodeset 1 2 disp
block 12 relative_disp

end
Block 1 2
conmass
mass 1e2

end
Block 12
joint2g
kx elastic 1e5
ky elastic 1e5
kz elastic 1e5

end

9.65.3. One Node Fixed Response

9.65.3.1. Nodal closest distance user output

Solution
solver=gdsw
case eig
eigen nmodes=all

case random
modalranvib
lfcutoff -1

end
Parameters
wtmass 0.00259

end
File
geometry_file nodeAndQuad.exo

end
Boundary
nodeset 1 fixed
nodeset 2 y = 0 z = 0 rotx = 0 roty = 0 rotz = 0

end

user output
nodeset 2
compute nodal bar as closest distance to block 1
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end

Outputs
disp
vrms
bar

end
Ranloads
matrix matFun
load=1
nodeset 2
force 1 0 0
scale 1e6

end
Matrix-function matFun
symmetry hermitian
dimension 1x1
data 1,1
real function squareBand scale 1

end
Function squareBand
type linear
data 1 1e-6
data 9.9999 1e-6
data 10 1e-1
data 25 1e-1
data 25.0001 1e-6
data 30 1e-6

end
Damping
gamma = 0.05

end
frequency
freq_min 10
freq_max 25
freq_step 0.1
nodeset 2 disp
bar

end
Block 2
conmass
mass 1e2

end
Block 3
conmass
mass 1e2

end
Block 12
joint2g
kx elastic 1e5
ky elastic 1e5
kz elastic 1e5

end
Block 22
joint2g
kx elastic 1e05
ky elastic 1e05
kz elastic 1e05

end
Block 1
material aluminum
thickness = 0.1

end

Material aluminum
E = 1e7
nu = 0.35
density = 0.1
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end

9.65.3.2. Element relative_disp output

Solution
solver=gdsw
case eig
eigen nmodes=all

case random
modalranvib
lfcutoff -1

end
Parameters
wtmass 0.00259

end
File
geometry_file oneD.exo

end
Boundary
nodeset 1 fixed
nodeset 2 y = 0 z = 0 rotx = 0 roty = 0 rotz = 0

end
Outputs
disp
relative_disp
vrms

end
Ranloads
matrix matFun
load=1
nodeset 2
force 1 0 0
scale 1e6

end
Matrix-function matFun
symmetry hermitian
dimension 1x1
data 1,1
real function squareBand scale 1

end
Function squareBand
type linear
data 1 1e-6
data 9.9999 1e-6
data 10 1e-1
data 25 1e-1
data 25.0001 1e-6
data 30 1e-6

end
Damping
gamma = 0.05

end
frequency
freq_min 10
freq_max 25
freq_step 0.1
nodeset 2 disp
block 12 relative_disp

end
Block 1 2
conmass
mass 1e2

end
Block 12
joint2g
kx elastic 1e5
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ky elastic 1e5
kz elastic 1e5

end

9.65.4. Tuning Fork Response

Solution
solver gdsw
case eig
eigen
nmodes 12
shift -100

case mRand
modalranvib
truncationMethod none
lfcutoff -10

end
GDSW
max_numterm_c1 1000

end
Parameters
wtmass 0.00259

end
File
geometry_file tuningFork.exo

end
Damping
gamma 0.08

end
Boundary
block 1
z=0

nodeset 1
x=0 y=0

end
Matrix-function 1x1
symmetry hermitian
dimension=1x1
data 1,1
real function 2 scale 1

end
Function 2
type linear
data 1.000000e-16 1.000000e-16
data 1.99999999 1.000000e-16
data 2.0 1.000000e-01
data 100.0 1.000000e-01
data 100.00000001 1.000000e-16
data 125.0 1.000000e-16

end
Ranloads
matrix 1x1
load = 1
nodeset 2
force 0 1 0
scale 1

end
Outputs
disp
relative_disp

end
Frequency
freq_min 1
freq_max 150
freq_step 0.1
block ’100 10 11 12 13 14 15 16 17 18 19’
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nodeset all
relative_disp
disp

end
Block 1
material 1

end
Material 1
e 1e7
nu 0.3
density 0.1

end
Block 100
Joint2g
kx elastic 0
ky elastic 0
kz elastic 0
nsm 1e-4

end
Tied Joint
normal definition none
surface 100, 200
connect to block 100
side average
end

//{ind=0}
{loop(10)}

Block {10+ind}
joint2g
kx elastic 0
ky elastic 0
kz elastic 0
nsm 1e-4

end
tied joint
normal definition none
surface {10+ind}, {20+ind}
connect to block {10+ind}
side average // do not stiffen the surface
end

//{ind++}
{endloop}
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9.66. Projection of Gauss Point Stresses to Nodes

Refer to Section 6.2 for details of the tests.

9.66.1. Exact Projection of Linearly Varying Stresses

SOLUTION
statics

END

FILE
geometry_file {mesh_file}

END

BOUNDARY
nodeset 1
x = 0

nodeset 2
y = 0

nodeset 3
z = 0

END

LOADS
body
gravity = 1 2 3

END

USER OUTPUT
compute nodal stress_xx_error as function stress_xx_error_func
compute nodal stress_yy_error as function stress_yy_error_func
compute nodal stress_zz_error as function stress_zz_error_func
compute nodal stress_xy_error as function stress_xy_error_func
compute nodal stress_xz_error as function stress_xz_error_func
compute nodal stress_yz_error as function stress_yz_error_func
compute nodal disp_x_error as function disp_x_error_func
compute nodal disp_y_error as function disp_y_error_func
compute nodal disp_z_error as function disp_z_error_func
compute global max_stress_xx_error as maxabs of nodal stress_xx_error
compute global max_stress_yy_error as maxabs of nodal stress_yy_error
compute global max_stress_zz_error as maxabs of nodal stress_zz_error
compute global max_stress_xy_error as maxabs of nodal stress_xy_error
compute global max_stress_xz_error as maxabs of nodal stress_xz_error
compute global max_stress_yz_error as maxabs of nodal stress_yz_error
compute global max_disp_x_error as maxabs of nodal disp_x_error
compute global max_disp_y_error as maxabs of nodal disp_y_error
compute global max_disp_z_error as maxabs of nodal disp_z_error

END

FUNCTION stress_xx_error_func
type = analytic
expression variable coord = coord
expression variable stress_xx = nodal nodalStressX
evaluate expression = "stress_xx - (-0.288*coord[1] + 0.72)"

END

FUNCTION stress_yy_error_func
type = analytic
expression variable coord = coord
expression variable stress_yy = nodal nodalStressY
evaluate expression = "stress_yy - (-0.576*coord[2] + 0.3168)"

END

FUNCTION stress_zz_error_func
type = analytic
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expression variable coord = coord
expression variable stress_zz = nodal nodalStressZ
evaluate expression = "stress_zz - (-0.864*coord[3] + 0.3888)"

END

FUNCTION stress_xy_error_func
type = analytic
expression variable stress_xy = nodal nodalStressXY
evaluate expression = "stress_xy"

END

FUNCTION stress_xz_error_func
type = analytic
expression variable stress_xz = nodal nodalStressXZ
evaluate expression = "stress_xz"

END

FUNCTION stress_yz_error_func
type = analytic
expression variable stress_yz = nodal nodalStressYZ
evaluate expression = "stress_yz"

END

FUNCTION disp_x_error_func
type = analytic
expression variable coord = coord
expression variable dispx = nodal DispX
evaluate expression = "dispx - (-0.144*coord[1]*coord[1] + 0.72*coord[1] + 2.7)/30.0e6"

END

FUNCTION disp_y_error_func
type = analytic
expression variable coord = coord
expression variable dispy = nodal DispY
evaluate expression = "dispy - (-0.288*coord[2]*coord[2] + 0.3168*coord[2] + 0.26136)/30.0e6"

END

FUNCTION disp_z_error_func
type = analytic
expression variable coord = coord
expression variable dispz = nodal DispZ
evaluate expression = "dispz - (-0.432*coord[3]*coord[3] + 0.3888*coord[3] + 0.26244)/30.0e6"

END

OUTPUTS
disp
stress = nodes
stress_xx_error
stress_yy_error
stress_zz_error
stress_xy_error
stress_xz_error
stress_yz_error
disp_x_error
disp_y_error
disp_z_error
max_stress_xx_error
max_stress_yy_error
max_stress_zz_error
max_stress_xy_error
max_stress_xz_error
max_stress_yz_error
max_disp_x_error
max_disp_y_error
max_disp_z_error

END

ECHO
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END

BLOCK 1
material 1

// cutet10
END

MATERIAL 1
E 30e6
nu 0.0
density 0.288

END

9.66.2. Exact Projection of Principal and Von Mises Stresses

SOLUTION
statics

END

FILE
geometry_file {mesh_file}

END

// coordinate system for 30 degree rotation about axis in direction [1 2 3]
// ux = 1/sqrt(14), uy = 2/sqrt(14), uz = 3/sqrt(14), th = pi/6
// R_{11} = cos(th) + ux^2*(1 - cos(th))
// R_{22} = cos(th) + uy^2*(1 - cos(th))
// R_{33} = cos(th) + uz^2*(1 - cos(th))
// R_{12} = ux*uy*(1 - cos(th)) - uz*sin(th)
// R_{23} = uy*uz*(1 - cos(th)) - ux*sin(th)
// R_{31} = uz*ux*(1 - cos(th)) - uy*sin(th)
// R_{13} = ux*uz*(1 - cos(th)) + uy*sin(th)
// R_{21} = uy*ux*(1 - cos(th)) + uz*sin(th)
// R_{32} = uz*uy*(1 - cos(th)) + ux*sin(th)
// unit vector along new z-axis is (R_{13}, R_{23}, R_{33})
// unit vector along new x-axis is (R_{11}, R_{21}, R_{31})
BEGIN RECTANGULAR COORDINATE SYSTEM cs1
ORIGIN = 0.0 0.0 0.0
Z POINT = 0.295970083958616 -0.076212936863829 0.952151929923014
XZ POINT = 0.875595017799836 0.420031090899431 -0.238552399866233

END

BOUNDARY
nodeset 1
x = 0
coordinate cs1

nodeset 2
y = 0
coordinate cs1

nodeset 3
z = 0
coordinate cs1

END

LOADS
body
gravity = 1 10 100
coordinate cs1

END

USER OUTPUT
compute nodal xt as function xt_func
compute nodal yt as function yt_func
compute nodal zt as function zt_func
compute nodal sigxx as function sigxx_func
compute nodal sigyy as function sigyy_func
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compute nodal sigzz as function sigzz_func
compute nodal sigvm_error as function sigvm_error_func
compute nodal prin_stress_min_error as function prin_stress_min_error_func
compute nodal prin_stress_mid_error as function prin_stress_mid_error_func
compute nodal prin_stress_max_error as function prin_stress_max_error_func
compute global max_sigvm_error as maxabs of nodal sigvm_error
compute global max_prin_stress_min_error as maxabs of nodal prin_stress_min_error
compute global max_prin_stress_mid_error as maxabs of nodal prin_stress_mid_error
compute global max_prin_stress_max_error as maxabs of nodal prin_stress_max_error

END

FUNCTION xt_func
type = analytic
expression variable coord = coord
evaluate expression = "0.875595017799836*coord[1] + 0.420031090899431*coord[2] + -0.238552399866233*coord[3]"

END

FUNCTION yt_func
type = analytic
expression variable coord = coord
evaluate expression = "-0.381752634837842*coord[1] + 0.904303859846028*coord[2] + 0.191048305048596*coord[3]"

END

FUNCTION zt_func
type = analytic
expression variable coord = coord
evaluate expression = "0.295970083958616*coord[1] + -0.076212936863829*coord[2] + 0.952151929923014*coord[3]"

END

FUNCTION sigxx_func
type = analytic
expression variable xt = nodal xt
evaluate expression = "-1.0*(xt - 0.5)"

END

FUNCTION sigyy_func
type = analytic
expression variable yt = nodal yt
evaluate expression = "-10.0*(yt - 0.5)"

END

FUNCTION sigzz_func
type = analytic
expression variable zt = nodal zt
evaluate expression = "-100.0*(zt - 0.5)"

END

FUNCTION sigvm_error_func
type = analytic
expression variable sigxx = nodal sigxx
expression variable sigyy = nodal sigyy
expression variable sigzz = nodal sigzz
expression variable sigvm = nodal nodalVonMises
evaluate expression = "sqrt(0.5*(pow(sigxx-sigyy,2)+pow(sigyy-sigzz,2)+pow(sigzz-sigxx,2)))-sigvm"

END

FUNCTION prin_stress_max_error_func
type = analytic
expression variable sigxx = nodal sigxx
expression variable sigyy = nodal sigyy
expression variable sigzz = nodal sigzz
expression variable prin_max = nodal nodal_max_principal_stress
evaluate expression = "max_all = max(max(sigxx, sigyy), sigzz); max_all - prin_max"

END

FUNCTION prin_stress_min_error_func
type = analytic
expression variable sigxx = nodal sigxx
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expression variable sigyy = nodal sigyy
expression variable sigzz = nodal sigzz
expression variable prin_min = nodal nodal_min_principal_stress
evaluate expression = "min_all = min(min(sigxx, sigyy), sigzz); min_all - prin_min"

END

FUNCTION prin_stress_mid_error_func
type = analytic
expression variable sigxx = nodal sigxx
expression variable sigyy = nodal sigyy
expression variable sigzz = nodal sigzz
expression variable prin_mid = nodal nodal_intermediate_principal_stress
evaluate expression = "max_all = max(max(sigxx, sigyy), sigzz); min_all = min(min(sigxx, sigyy), sigzz); ((sigxx != min_all) && (sigxx != max_all)) ? (sigxx-prin_mid) : (((sigyy != min_all) && (sigyy != max_all)) ? (sigyy-prin_mid) : (sigzz-prin_mid))"

END

OUTPUTS
disp
stress = nodes
xt
yt
zt
sigxx
sigyy
sigzz
sigvm_error
prin_stress_max_error
prin_stress_min_error
prin_stress_mid_error
max_sigvm_error
max_prin_stress_min_error
max_prin_stress_mid_error
max_prin_stress_max_error

END

ECHO
END

BLOCK 1
material 1

// cutet10
END

MATERIAL 1
E 30e6
nu 0.0
density 1.0

END

GDSW
solver_tol = 1e-10

END
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9.67. RigidSet Compared to Rbar

Refer to Section 7.3

SOLUTION
solver=gdsw

eigen
nmodes 50

shift -1e6
END

PARAMETERS
wtmass=0.00259
END

FILE
geometry_file ’rigidset.exo’
omit block 2,3

END

OUTPUTS
displacement

END

ECHO
mass block

END

RIGIDSET set1
sideset 1

END

RIGIDSET set2
sideset 2

END

GDSW
max_numterm_C1 500
overlap 2
krylov_method 1

// orthog_option 3
END

BLOCK 1
material 1
hex8b

END

BLOCK 2:3
beam2

END

MATERIAL 1
density 0.3
E = 3.0e7
nu = 0.3

END
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9.68. Multiple Tied-Surfaces and Curved Surfaces

Refer to Section 7.4

SOLUTION
solver=gdsw

title ’tied surface example with holes’
eigen
nmodes 15
shift = -1e8

END
Parameters
RemoveRedundancy=yes
wtmass=0.00259

end

File
geometry_file ’tied_surface.exo’

end
Outputs
displacement
vonmises
Constraint_Info

end

Block 1
material 1

end

Block 2
material 1

end

Block 10
material 1

end

Material 1
E=1.0e7
nu=0.33
density=0.098

end

TIED DATA
surface 2,1
transverse tied
search tolerance 1.e-3
edge tolerance 1.e-5

end
TIED DATA
surface 102,2
gap removal = on
search tolerance 1.e-3
edge tolerance 1.e-6

end
TIED DATA
surface 3,101
search tolerance 1.e-1
edge tolerance 1.e-6

end
GDSW
con_tolerance 1e-2
max_numterm_C1=6

end
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9.69. Tied-Joint with Joint2G and Spring

Inputs for comparison of manually generated constraints with TiedJoint.

9.69.1. Manual Constraints

SOLUTION
solver=gdsw

eigen
nmodes=20
shift=-1e7
END

FILE
geometry_file lap_simple.exo
omit block 3

END

OUTPUTS
disp
END

ECHO
mpc
END

BLOCK 1,2
material "mat"
END

BLOCK 3
material "mat" // dead
area = 3.1416E+00
I1 = 7.8540E-01
I2 = 7.8540E-01
J = 1.5708E+00

END

Block 33
spring
kx=20776000

ky=20776000
kz=26080000

END

HISTORY
sideset 1,2
displacement
END

Rigidset 1
sideset 1

end
Rigidset 2

sideset 2
end

MPC
254 x 1
207 x -1
END

MPC
254 y 1
207 y -1
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END

MPC
254 z 1
207 z -1
END

MPC
253 x 1
58 x -1
END

MPC
253 y 1
58 y -1
END

MPC
253 z 1
58 z -1
END

MATERIAL "mat"
E 200e9
nu 0.3

density 7800
END

BOUNDARY
sideset 3
fixed

END

LOADS
sideset 4

pressure = -1e3
function = 1

END

FUNCTION 1
type LINEAR
name "const_one"
data 0.0 1.0
data 2.0e4 1.0

END

9.69.2. Tied Joint Constraints

Refer to Section 7.1 for details of the test.

SOLUTION
solver=gdsw

eigen
nmodes=20
shift=-1e7
restart=write
END

FILE
geometry_file lap_tied_spring_slip.exo
omit block 3

END

OUTPUTS
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disp
END

ECHO
mpc
input
END

Tied Joint
Normal Definition = slip

surface 1,2
side = rrod
connect to Block 33

end

BLOCK 1:3
material "mat"
END

BLOCK 33
spring

kx=20776000
ky=20776000
kz=26080000

END

HISTORY
sideset 1,2
displacement
END

MATERIAL "mat"
E 200e9
nu 0.3

density 7800
END

BOUNDARY
sideset 3
fixed

END

LOADS
sideset 4

pressure = -1e3
function = 1

END

FUNCTION 1
type LINEAR
name "const_one"
data 0.0 1.0
data 2.0e4 1.0

END

592



9.70. Slide RBE2. Selected DOFs

Refer to Section 7.2 for details of the test.

//created with Nasgen from Nastran file ’sliderbe.nas’
SOLUTION
title=’ NEi Nastran Static Analysis Set’
statics

END

FILE
geometry_file ’sliderbe.exo’

END

PARAMETERS
eigen_norm=visualization

END

BOUNDARY
nodeset 11 x=0
nodeset 12 y=0
nodeset 13 z=0
nodeset 14 Rotx=0
nodeset 15 Roty=0
nodeset 16 Rotz=0

END

LOADS
nodeset 112
force = 0 1 0

END

OUTPUTS
disp

END

ECHO
mass

END

BLOCK 13
material=1
thickness=0.5

END

BLOCK 23
material=1
thickness=0.375

END

BLOCK 24
// 25 links
RBAR

END

MATERIAL 1
Isotropic
E = 3e+07
NU = 0.3
density = 0.0007324

END
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9.71. Contact Verification

Refer to Section 7.5 for details of the test.

Solution
case static_gap
statics

end

File
geometry_file bar_curve_r1000.g

end

Boundary
nodeset 1
z=0

sideset 1
x=0 y=0

End

Block 1
material "steelish"

end
Block 2
material "steelish"

end
Block 3
material "steelish"

end

Material "steelish"
isotropic
density = 0.0343
nu = 0.0
E = 29.e6

end
Loads
body
gravity = 0 -1 0
function = 1

end
Function 1
name "impulse"
type LINEAR
data 0 1
data 1 1

end
Outputs
disp
stress
energy

end
Tied Data
Surface 101, 100
search tolerance 0.125
gap removal = off

end
Tied Data
Surface 200, 201
search tolerance 0.125
gap removal = off

end
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9.72. Moving Mesh MPCs

Refer to Section 7.6 for details of the test.

SOLUTION
solver=gdsw

case trans
transient
time_step {time_step} //1.0e-4
nsteps {nsteps} //150
nskip {nskip} //10
nUpdateConstraints = 1
predictorcorrector = 0

END

FILE
geometry_file = {geometry_file} //brick_gap.g

END

LINESAMPLE
samples per line 1000
endpoint -4 0. 0. 4 0. 0.
format mfile

END

LOADS
sideset 1
acoustic_accel = 0.0
function 1

END

INITIAL-CONDITIONS
acoustics = by_block

END

FUNCTION 1
type linear
data 0 0
data 1 0

END

BOUNDARY
sideset 2
absorbing

END

OUTPUTS
apressure

END

ECHO
input off

END

BLOCK 1
acoustics 4
material "air"

END

BLOCK 2
acoustics 2
material "air"

END
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MATERIAL "air"
density 1.293

acoustic
c0 332.0

END

begin contact definition
gap removal = off
skin all blocks = on
begin interaction defaults
general contact = on

end
end

GDSW
solver_tol = 1e-8

END
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