SAND2024-01791

SANDIA REPORT

Sandia
Printed February 14, 2024 National
Laboratories

Sierra/SD — Theory Manual — 5.18

Sierra Structural Dynamics Development Team

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology &
Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the
United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports @osti.gov

Online ordering: http://www.osti.gov/scitech
Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road

Alexandria, VA 22312

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders @ntis.gov

Online order: https://classic.ntis.gov/help/order-methods

NYSH

National Nyclear Security Adminisfration

ABSTRACT

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis,
required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural
systems. This manual describes the theory behind many of the constructs in Sierra/SD. For a more detailed
description of how to use Sierra/SD, we refer the reader to User’s Manual.

Many of the constructs in Sierra/SD are pulled directly from published material. Where possible, these
materials are referenced herein. However, certain functions in Sierra/SD are specific to our
implementation. We try to be far more complete in those areas.

The theory manual was developed from several sources including general notes, a programmer_notes
manual, the user’s notes and of course the material in the open literature.

This page left blank

CONTENTS

1.

Introduction 15
1.1. Matrix Dimensions: Terminologyttt e 17
1.2. Rotational Degrees of Freedom 19
1.3, MaSS PrOPeIties . . . oottt ettt et et e e e et e e e 21
1.4, CoOrdinate SYSIEIMIS ottt ettt et et e e e et e e et e e e e e e 23
Structural Solution Procedures 25
2.1. Linear transient analysSisottt ittt e 25
2.1.1. Predictor Corrector Adjustmentouuntnttne ettt 27
2.1.2. Prescribed AcCelerations.ottt e 27
2.1.3. Nonlinear transient analysisouiriirnein et iiniieeennnn.. 28
2.2. Damping of Flexible Modes Only i i 31
2.3, Random VIDrationttt e 33
23,1, Algorithm . ..o 33
2.3.2. Power Spectral Densityouiuie i 34
2.3.3. Tensor Transformations of PSD 34
234, RMS OULPUL . oo ettt et e e e e e e e e e e 35
2.3.5. RMS StreSS . ettt ettt e e 36
2.3.6. Matrix properties for RIMS Stressovti it 36
2.4. Modal Frequency Response Methods i 37
2.4.1. NoRigid Body Modesttt i 37
2.4.2. Rigid Body Modes.ttt e e 38
243, EBXample 40
2.5. Fast Modal SOIULIONSttt e e 40
2.5.1. Modal Solution SUummaryouuutet et 41
2.5.2. Parallel Fast Modal 42
2.5.3. Determination of Modal Force i 43
2.6. Eigenvalue Problems.t 44
2.7. Modal Analysis of Linearly Damped Structures 45
2.7.1. Output File Formato e 46
2772, Some Back Ground 46
2.7.3. TrustRegionsand Real Modes. o i, 47
2.7.4. ViscoFreq - Approximate Viscoelastic Response............................... 47
2.8. Linear Buckling 49
2.8.1. Eigen Problem Methods for Buckling 50
2.8.2. Buckling with Constraints.uutitiin i 51
2.8.3. Geometric StINESSt t 53
2.9. Component Mode Synthesisuiiiuniniiii i 54
2.9.1. Reduction of superelement MatriCesuuueirneinneenneennennnenn.. 54
2.9.2. Craig-Bampton sensitivity analysis o i 59
2.10. Eigenvalue Sensitivity AnalysiS.uout ittt 60

2.11. A posteriori error estimation for eigen analysisco i 61
211,10 Preliminari@s eonn ettt e e 61
2.11.2. An explicit €I1or €StMALOTttt t ettt e et e ettt 62
2.11.3. Error estimates for elastiCityttt e 63
2.11.4. Explicit Estimator - Multiple Materials............ ..o, 65
2.11.5. Explicit Estimator Summary oottt 70
2.11.6. Approach II - quantity of interest estimatorc.c.ovuuvernnernnennnenn.. 71

2.12. Nonlinear Distributed Damping. e 73
2.12.1. Subsystem Damping with Linear Dampercoviiiiiinnaa... 75

2.13. Shock ReSponse SPEeCIaottt e e e e e e e e 75

2.14. Superposition for SUPErelement TECOVETY v vttt ittt ettt ie e ie e 75

2.15. Coupled Electro-Mechanical Physics i i 76

2.16. High Cycle Fatigue and Damageoiinii it 76
2.16.1. Competing Damage Models i i 77

. Acoustics Solution Methods 79

3.1. Derivation of Acoustic Wave Equationo, 79

3.2. Coupled Structural ACOUSHICS vttt e e i 81
3.2.1. Discussion of Matching vs Non-Matching Meshes on Wet Surface................ 82
3.2.2. The Coupled Equations and Their Discretizations, 83

330 ACOUSHC SCALEIING . . .« oottt ettt et e et e e e e e e 91
3.3.1. Frequency Domain SCatteringuvuuneete et iee e iieeiiee s 93

3.4, Nonlinear ACOUSHICS . ..ottt e ettt e e e e et e e e e e e e e e e 94
3.4.1. Weak Formulationsoouuti e 97
3.4.2. Spatial and Temporal Discretization i, 98
3.4.3. Structural Couplingottt e 101

TR TR 7 N 3 ¥ 103
3.5.1. Quadratic Modal SUperpositionoiuuniitin i 105
3.5.2. Diagonalization and Modal Superpositionc.cuiiiineinnernn.n. 106
3.5.3. Theory for modal superposition with sa_eigen................ ... oo, 108
3.5.4. Discussion of Eigenvectors and Superpositioncoovineineenn.... 109
3.5.5. Noteson Implementationt 109
3.5.6. Complex Eigenvector Orthogonalizationc.ouiiiiinneenn.... 112

3.6. Modal Augmentation with Residual Vectors 113

3.7. Wet Modes or Added Massouuniiii e 114
3.7.1. CaseI - matching meshes at wetinterface 114
3.7.2. Case II - mismatched meshes at wetinterface 117

. Material 119

4.1. Anisotropic MaterialSttt e e 119
4110 StresS VECLOTS . . o v vt ettt et e e e e e e e e e e e e e e e e 119
4.1.2. Strain Energy and Orientationtiuieineineinneneaennnns 120

4.2. Viscoelastic Materialst e 122
4.2.1. Equations of MOtONttt ettt ettt ie e 123
4.2.2. Constitutive €qQUALIONSo\ttt ettt et e et e e e e e e 123
4.2.3. Linear Representation of VeloCityot 125
4.2.4. Midpoint Representation of Velocityt 126

5. Elements 127

5.1. Corrections to Element MatriCesttt i i 127
5.2, Mass TUMPING . ..o oottt e e e e e e e e e 127
5.3, Selective INteZIationttt ettt e e e e e e e e 128
5.3.1. DeIIVALION . . . vttt ettt e et e e e e e e e e 128

5.4. Integration of Isoparametric SOlidso i 130
5.4.1. Mean Quadrature with Selective Deviatoric Control 132
5.4.2. Bubble FUNCHONSottt e et e et et e 132

5.5. Quadratic isoparametric SOIdS.ottt 136
5.5.1. Shape functions and integration POINEScuuternetnneenneennennnenn.. 136

5.6. Wedge Shape FUNCLIONS ot e e e e 138
5.7 Tetl0 . oo 138
5.8. Hex20 shape functions and gradientsuuinitinntinnene e 138
5.8.1. Shape Function Ordering ittt 139
5.8.2. ANISOITOPY . vttt ettt e e e e e e e e e e 140

5.9. Hexshell usage and lIMitations.ttt ettt ittt e e ie e 140
S5.10. MEMDTIANE . ..ottt ettt e e e e e e e e e e e 141
S5.A1.6noded Triangleo e 143
5.12.3noded Triangleo 145
5030 Shell OffSet ..o e 145
S 14, BeamM .o e e e 146
S5 INDEAM .« oottt 147
5.16. Navy quadrilateral 149
ST TTIUSS & e ettt e e e e e e e e e 151
S 8. SPIIN g . o .ot e 151
5.19. SUPErelementst e 152
520, G -ttt 152
521 RIgId EIements 153
5211 RIOd ..o 153
5212, RBar .o 154
5213, RBE3 155
5.22. MSC documentation of the NASTRAN RBE3 element 157
5.22.1. Generation of unit weighting functions it 158
5.22.2. Selection of dependent dofs (Optional) oo, 160
5.22.3. Features for dimension independenceccoiiiiiiiniinninnaan.. 161

5.23. Interpolation within an Element i 164
6. Boundary conditions and initial conditions 165
6.1. Acoustic and Structural ACOUSHC.ottt e e et e et et e 165
6.1.1. Absorbing Boundaries.coiiiiii 165
6.1.2. Infinite Elements for ACOUSHCSttt it et 166
6.1.3. Computation of solution at far-field points o, 172
6.1.4. POINE SOUTCES ..ottt e ettt e e e e e et e ettt e e 173
6.1.5. Perfectly Matched Layerst 175

6.2. Waterline Determination.ttt ettt et et 183
6.2.1. Reference Framest 183
6.2.2. Pressure at aNOdeot e 184
6.2.3. Waterline Plane Specificationttt 185

6.3.
6.4.

6.5.

6.6.
6.7.
6.8.

6.9.

7.1.
7.2.

7.3.

7.4.
7.5.
7.6.
7.7.
7.8.
7.9.
7.10.

8.1.

Index

6.2.4. Net Force and Moment Calculation i,
Fluid Coupling through Lighthill’s Tensor i i
Analysis of Rotating StruCturesttt e e
6.4.1. Formulation and DiSCretizationuiiuieitneineineinnenenn..
Random Pressure Loadingc.ooiinei it it
6.5.1. Specialization for Hypersonic Vehicles............. o ...
Removing Net Torques from Applied Loads
Traction Loadsot
Consistent Loads Calculationsottt
6.8.1. Elements with consistentloads. i i
6.8.2. Pressure Loadingt
6.8.3. Shape Functions for Calculating Consistent Loads
6.8.4. Shell Elements - consistent loadsoo i
Solution of Singular Linear Systemsttt e e

Contact

Multipoint CONSLIAINtSottt et ettt e et e e
Constraint Transformations in General Coordinate Systemsc.ovo....
7.2.1. Decoupling Constraint Equations it iiiiiineenn..
7.2.2. Transformation of Stiffness Matrix i,
7.2.3. Application to single point CONSLraintsouuierneinneenneennennnenn..
7.2.4. Multi Point CONSIIAINES . ..ot vttt ettt ettt e e e e e
7.2.5. Transformation of Power Spectral Densitieso i,
Orthogonality of MPC to Rigid Body Vectorsot
7.3.1. Beam Example.o
7.3.2. Offset EXxample
7.3.3. Correct MPC EQUAtionsuiittitt ittt iee e,
7.3.4. Orthogonalization of Incorrect MPCs i i,
7.3.5. Adding the same dof of new nodesttt
7.3.6. Lofted node-face constraints.ttt
7.3.7. Rotationally Invariant Spot Weld Constraints.ccoviieennennnen...
Constraints and infinite eigenvalues
Sparsepak Contact Enforcementttt
GDSW Contact Enforcement i e
Tied FriCHON e
Mortar Methodsot
Correction For Dynamic Constraint Equilibrium. o ...
SPOt WEldS . . ot e
7.10.1. An element block of possibly degenerate quad9 elements
7.10.2. Stiffness Per Unit Areattt e

Output

L, Projection of Gauss Point Stressesveu ittt e

Bibliography
DIsStriDULION . . . oot e

207
207
207
208
209
209
210
210
211
212
212
213
215
216
217
218
219
221
221
222
222
225
228
229
229

231
231

233

235

LIST OF FIGURES

Figure 1-1.
Figure 1-2.

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.

Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.

Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.

Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 6-6.
Figure 6-7.

Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 7-4.
Figure 7-5.
Figure 7-6.
Figure 7-7.
Figure 7-8.

Example for Set Definition. it e 18
Original and rotated coordinate frames.oiiiinti i 23
Comparison of Modal Displacement, Acceleration and Direct FRF................. ... 40
The parallel data (matrices and vectors ®@ and X) are partitioned by processor. 41
Standard Modal Transient Algorithm i i, 41
Fast Modal Transient Algorithm. it 42
Fast Modal Frequency Response Algorithm.......... 43
Eigenvalue and Eigenvector corrections of CBmodels 58
Interacting Acoustic DOMAINSttt ittt e et 86
A node-face interaction on the structural acoustic interface. 86
Nonconformal Structural Acoustic Tying.ttt 90
Nonconformal Structural Acoustic Tying for Doubled Wetted Shell. 90
Complex EigenVector orthogonalization. ittt .. 112
Nbeam Element Stiffness MatriX.t e 147
NDEAmM MASS MALIIX. .« ¢« o e ettt et et e e et e et e e e e e et 148
Rigid Element GEOMEIIY.ttt ettt ettt ettt 154
Equilibration of 10ads. it e 157
Domains and interface for the exterior acoustic problem 167
Infinite Element Radial Mappingo 170
Methods of Locating Source Pointttt 170
Domains Q; and €. and interface I' for the exterior acoustic problem. 175
Sketch showing ship, origin O of waterline frame, coordinate z, and angle 65............ 184
A schematic of a structure that is rotating about fixed coordinate axes. 188
Coordinate Frame Projection for Tractionsttt .. 201
Node Constrained Directly to Beam. i, 212
Example Node on Face Constraint on Cylinder. oo ... 212
Node Constrained Offset to Beam. o i i 213
Constraint Projection e 214
Additional Nodes in the MPC. Unimplemented., 216
Equilibration from ug = 100 up = 500.ot e 227
Equilibration from u4 = 200 ug = 700 14 = =200 sip = 1600 iis = —1000 iig = 400. 227
Quad9 Element TOPology. . . . oottt et 229

This page intentionally left blank.

10

LIST OF TABLES

Table 1-1.

Table 2-1.

Table 3-1.
Table 3-2.

Table 5-1.
Table 5-2.
Table 5-3.
Table 5-4.
Table 5-5.
Table 5-6.
Table 5-7.

Table 6-1.
Table 6-2.

Sierra/SD sOIUtON SPACES. « ... v vttt ettt 17
Sources of Damping in the Solution. i i e 31
Acoustic Formulations. 83
Potential Basis Functions for Subdomain Reduction...................... 104
Shape functions and coeflicients. i e 136
Hex20 Gauss Point LOCationscuut it e i 137
Wedge element integration rules. 138
Comparison of deflections at Node 2. ottt 145
Comparison of deflections at Node 3. i 145
Nbeam Parameters.ttt 148
Pascal Shape functions for 3D elements of order 2. i .. 164
Notation for stiffness and damping matrices (left) and forces (right). 188
Notation for Kinematics.oiiiiiim i e 189

11

This page intentionally left blank.

12

Acknowledgments

The Sierra/SD software package is the collective effort of many individuals and teams. A core Sandia
National Laboratories based Sierra/SD development team is responsible for maintenance of
documentation, testing, and support of code capabilities. This team includes Dagny Beale, Gregory
Bunting, David Day, Clark Dohrmann, Payton Lindsay, Justin Pepe, and Julia Plews.

The Sierra/SD team also works closely with the Sierra Inverse and Plato teams to jointly enhance and
maintain several capabilities. This includes contributions from Ryan Alberdi, Wilkins Aquino, Brett Clark,
Sean Hardesty, Clay Sanders, Chandler Smith, Adam Sokolow, Benjamin Treweek, Timothy Walsh, and
Ray Wildman.

The Sierra/SD team works closely with other Sierra teams on core libraries and shared tools. This includes
the DevOps, Sierra Toolkit, Solid Mechanics, Fluid Thermal Teams. Additionally, analysts regularly
provide code capabilities as well as help review and verify code capabilities, testing, and documentation.
Other individuals not already mentioned directly contributing to the Sierra/SD documentation, testing, and
code base during the last year include Simon Bignold, Leah Brinkman, Samuel Browne, Michael Buche,
Mark Chen, Nathan Crane, Jared Crean, David Glaze, Mark Hamilton, Sidharth Joshi, Andrew Kimler,
Dong Lee, Mario LoPrinzi, Kevin Manktelow, Matthew Mosby, Devin OConnor, Tolu Okusanya, Heather
Pacella, Krishen Parmar, Kendall Pierson, Tim Shelton, Greg Sjaardema, Matt Staten, Johnathan Vo, Tyler
Voskuilen, Alan Williams, and Riley Wilson.

Historically dozens of other Sandia staff, students, and external collaborators have also contributed to the
Sierra/SD product and its documentation.

Many other individuals groups have contributed either directly or indirectly to the success of the Sierra/SD
product. These include but are not limited to;

* Garth Reese implemented the original Sierra/SD code base. He served as principal investigator and
product owner for Sierra/SD for over twenty years. His efforts and contributions led to much of the
current success of Sierra/SD.

* The ASC program at the DOE which funded the initial Sierra/SD (Salinas) development as well as
the ASC program which still provides the bulk of ongoing development support.

* Line managers at Sandia Labs who supported this effort. Special recognition is extended to David
Martinez who helped establish the effort.

* Charbel Farhat and the University of Colorado at Boulder. They have provided incredible support in
the area of finite elements, and especially in development of linear solvers.

* Carlos Felippa of U. Colorado at Boulder. His consultation has been invaluable, and includes the
summer of 2001 where he visited at Sandia and developed the Hexshell element for us.

* Danny Sorensen, Rich Lehoucq and other developers of ARPACK, which is used for eigenvalue
problems.

* Esmond Ng who wrote sparspak for us. This sparse solver package is responsible for much of the
performance in Sierra/SD linear solvers.

* The metis team at the University of Minnesota. Metis is an important part of the graph partitioning
schemes used by several of our linear solvers. These are copyright 1997 from the University of
Minnesota.

13

* Padma Raghaven for development of a parallel direct solver that is a part of the linear solvers.

* The developers of the SuperLU Dist parallel sparse direct linear solver. It is used through GDSW for
a variety of problems.

+ Leszek Demkowicz at the University of Texas at Austin who provided the HP3D® library and has
worked with the Sierra/SD team on several initiatives. The HP3D library is used to calculate shape
functions for higher order elements.

This work was supported by the Laboratory Directed Research and Development (LDRD) program.

14

1. INTRODUCTION

Solution Spaces. Sierra uses nodal discretizations exclusively. All the degrees of freedom, or DOFs, are
defined at the nodes. The active DOFs depend on the physics and the boundary conditions. Certain tasks,
such as transmitting data between Sierra/SD and MATLAB, depend on users converting data between
different sets of active DOFs. The documentation of how to perform these tasks assume that the user
understands the dimensions of different sets of DOFs.

NASTRAN developed terminology 1.1 for the different sets of dofs, and Sierra/SD uses simplified version.
To give you an idea, consider a modal analysis of a structure run in serial. Shell elements are mixed with
solid elements. No boundary conditions are applied. There are 9938 nodes and 9 MPCs.

To output the required maps and other m-files, in the input deck add to the outputs both mfile and
ASetMap. To output the eigenvectors to the Exodus file, also add disp to outputs.

For this model, we have the following dimensions.
1. #nodes=9938
2. full set= #nodes * 9 dofs/node = §9442
3. structural set= #nodes * 6 dofs/node = 59628
4. G-set = # active dofs before boundary conditions = 42708
5. A-set = analysis set = # equations to be solved = 42699

There are 3 dofs/node for solid elements. Shells and beams have 6. Acoustic, thermal, and electrical DOFs
are also included in the G-set. In aggregate, the total number of active dofs is 42708 before boundary
conditions and MPCs are applied. There are no boundary conditions in the model, but there are 9 MPC
equations, each of which eliminates 1 dof, so the Aset is reduced to 42699.

_Disp.m files are written in a reduced structural set which may or may not contain the full solution
vector, depending on the specifics of the model. These m-files use a legacy format which is not well
understood by our current development team. Our most robust and user-friendly output is available in
exodus format.

The matrices Mssr and Kssr contain the mass and stiffness matrices in the A-set. They are symmetric
matrices and only one half of the off diagonal is stored. To get the complete matrix within MATLAB,

K = Kssr + tril(Kssr,-1)’;

The full eigenvectors (in the structural set) are available in the output exodus file. To get them use the
SEACAS command exo2mat.

> exo2mat example-out.exo

Within MATLAB, the data can be converted to a properly shaped matrix.

15

>>> load example-out

>>> phi = zeros(nnodes*6,nsteps);
>>> temp = (0:nnodes-1)%6;

>>> phi(temp+1, :)=nvar01;

>>> phi(temp+2, :)=nvar02;

>>> phi(temp+3, :)=nvar03;

>>> phi(temp+4, :)=nvar04;

>>> phi(temp+5, :)=nvar05;

>>> phi(temp+6, :)=nvar06;

We now have phi as a matrix with each column corresponding to an eigenvector. However, phi is
dimensioned at 59628 x 10 for this example. Note that 59628 is the number of nodes times 6. We can’t
multiply phi by K for example - the dimensions don’t match. To do this we need a map.

We have one map in our directory. ASetMap_a.mis the map from the structural set to the A set. Thus, we
can reduce phi to the A-set by combining it with ASetMap_a. Generally the G-set map is not output, but

is used internally.

>>> p2=zeros(max(max(ASetMap_a)),nsteps);
>>> for j=1:nnodes*8

>>> i=ASetMap_a(j);

>> if (1i>0)

>>> p2(i,:)=phi(j,:);

>>> end

>>> end

This is slow. A faster, but less straightforward method is shown here.

>>> mappl=ASetMap_a+1l;

>>> temp=zeros(max (max(mappl)) ,nsteps);
>>> temp(mappl, :)=phi;

>>> p2=temp(2:max(max(mappl)),:);

We can do all the neat things like p2’ *K*p2.

To get back to the structural set, we again use this map. For example, if we have a vector of dimension
42699,

>>> x=1:42699°;

>>> XX = zeros(59628,1);
>>> for i=1:59628

>>> if (ASetMap_a(i)>0)

>>> XX(i)=x(ASetMap_a(i));
>>> end
>>> end

An optimization is to do instead

16

>>> temp=[0 x’];
>>> X2=temp (mappl) ;

1.1. Matrix Dimensions: Terminology

The previous section is complicated enough to stand out from other documentation. This section defines
some terminology used in the previous section. The various spaces are listed in Table 1-1. A discussion of
each follows.

Space Description
Full-set biggest possible set. 9 * number of nodes
Structural-set | 6 * number of nodes

This is the space that is typically written to exodus.
This is the space to which we assemble matrices. It represents

those dofs that have been “touched” by elements.
S-set degrees of freedom eliminated by SPC

Common-set | Assembly minus S-set
M-set degrees of freedom eliminated by MPC
Analysis-set | dimension of matrices sent to solvers.

Assembly-set

Table 1-1. — Sierra/SD solution spaces.

Full-set This space is referenced by many of our solvers. We then provide a map from this space to the
Analysis-set using ASetMap. Every node has 9 degrees of freedom (3 translations, 3 rotations,
acoustic, voltage, and thermal). Virtual nodes may have been added to handle generalized dofs.

Structural-set This is identical to the full-set except that it contains only structural degrees of freedom
(translations and rotations). It and contains all the structural dofs of the model including virtual
nodes.

Assembly-set The assembly set is the space to which matrices are assembled. It includes dofs that may
later be eliminated by SPCs or MPCs. It includes all dofs that are touched.

Assembly-set = Analysis-set U S-set U M-set

Currently, the only map to the assembly set is found in the node array. However, there is no user
interface to the node array.

S-set This is the list of degrees of freedom that are eliminated by single point constraints (SPC).

Common-set The “Common” set includes the Assembly set, with the S-set removed. This set is common
to all solvers, in contrast to the analysis set which may have different dimensions for serial and
parallel solvers.

M-set This is the list of degrees of freedom that are eliminated using multipoint constraints (or MPCs).
When using constraint elimination in serial, the dimension of the problem is reduced by the number
of MPC constraints. In contrast, in solvers that use Lagrange multipliers, the stiffness matrix is
unchanged by introduction of the constraints. Note however, that the solution vector will include
extra Lagrange multipliers.

17

Analysis-set The analysis set is the matrix dimension that will be sent to the solver. Note that it may
depend on the solver. With constraint elimination, the M-set may not be empty, while solvers that use
Lagrange multipliers will always have an empty M-set.

Solution-set As noted above, in parallel solutions with Lagrange multipliers, we pass a left-hand side
matrix of dimension equal to the Analysis set. However, the solution vector returned is of length
Analysis-set plus the number of Lagrange multipliers. This is the solution-set length.

G-set Unfortunately, while the sets above are well-defined, the G-set is not. At various times it has been
used to refer to the Full, Structural or assembly set. This confusion spreads throughout the
documentation and the comments in the notes.

Revised Set definition Example. Consider the problem in Figure 1-1. The model consists of 4 real nodes,
one MPC, one superelement (with one generalized dof), and single point constraints sufficient to clamp the
left-hand side, and keep the rest of the model in one dimension.

¢ MPC SE (1 generalized dof)
< » ~

()
; i ©

Figure 1-1. — Example for Set Definition.

Full-set There are 4 real nodes, plus 1 virtual node (generated for the generalized dof). Thus,

size(Full) = (4+1)9 =45

Assembly-set The two elements are beams, with 6 dofs per node. The superelement touches the
generalized dof on the virtual node.

size(Assembly) = (4)6+1 =25

S-set Degrees of freedom are eliminated by clamping 6 dofs on node 1, and by eliminating 5 dofs each on
the 3 remaining nodes.
size(S) =6+ 15=21

Common-set After elimination of the S-set, the common set is,
size(Common) =25-21=4

All solvers use this space initially. The following cases are different for each solver.

M-set The size of the M-set is one, but what that means to the analysis depends on the solver. For serial
solvers with constraint elimination, the matrix size is reduced by one. For Lagrange multiplier
solvers, we keep our matrices at the same size, but augment the solution space by one Lagrange
multiplier.

18

Analysis-set For serial, constraint elimination solvers, the analysis set is 3. For Lagrange multiplier
problems, the left-hand side matrix stays at the Common-set dimension, but constraint equations are
passed in separately, and Lagrange multipliers are part of the solution vector.

Solution-set For serial solvers, the Solution-set is always equal to the analysis-set (which is 3 in this
example). For Lagrange multiplier solvers, the solution-set in this example is 5.

1.2 Rotational Degrees of Freedom

Beams, shells and some other specialty elements use rotational degrees of freedom (DOF) in addition to the
three translational DOF. Rotational DOF permit direct application of moments and allow efficient
computations of structural element response such as bending. Rotational DOF are also important for
management of rigid bodies. In our applications two methods are used to manage rotational DOF. Full
rotation tensors are used for large deformation nonlinear response, while infinitesimal rotations angles are
typically used for small strain, linear response such as eigen analysis.

Euler Angles. The rotation of a rigid body is often described using a rotation tensor with for example
Euler angles. Note that there are several of definitions of these angles, and that the order of application does
matter.

Euler angles are a means of representing the spatial orientation of any frame of the space as a
composition of rotations from a reference frame. In the following the fixed system is denoted
in lowercase (x, y, z) and the rotated system is denoted in upper case letters (X,Y, Z).

The definition is Static. The intersection of the xy and the XY coordinate planes is called the
line of nodes (V).

a is the angle between the x-axis and the line of nodes.
B is the angle between the z-axis and the Z-axis.
v is the angle between the line of nodes and the X-axis.

This previous definition is called z x z convention and is one of several common conventions;
others are x y z and z y x. Unfortunately the order in which the angles are given and even the
axes about which they are applied has never been “agreed” upon. When using Euler angles the
order and the axes about which the rotations are applied should be supplied.

Euler angles are one of several ways of specifying the relative orientation of two such
coordinate systems. Moreover, different authors may use different sets of angles to describe
these orientations, or different names for the same angles. Therefore, a discussion employing
Euler angles should always be preceded by their definition. (Wikipedia)

In each definition Euler angles use a series of 3 rotations about 3 different axis to represent the orientation
of a body in space. For example, in the case of the z x z convention, these angle define the following
rotation matrix.

cose —sine 0|1 O 0 cosy —siny O
R={(sine cosa 0[O0 cosB -—sing||siny cosy O
0 0 1110 singB cospf 0 0 1

19

Because matrix multiplication is not commutative, the solution depends on the order of rotation. Rotation
of a vector by this angle is a tensor product with this matrix. i.e. v/ = Rv.

Infinitesimal Rotational Angles. Here the matrix representation of the cross product is denoted Spin(u).
For all X, there holds i X X = Spin(i)X.

Most linear, small deformation FE applications apply the small angle approximation. We expand all
trigonometric functions as polynomials of their arguments and retain only first order terms in the angles.
Thus, sin(8) ~ 6, and cross terms are eliminated. With these approximations, the order of rotation becomes
unimportant, and the component contributions to the rotation matrix are commutable. For a rotation about
x,y, z of @, B,y we have:

@
R:I+SPIN(B)
Y

The coordinates are independent of each other. There are obvious limitations, as the approach does not
conserve length for larger rotations. This is often apparent in animation of mode shapes; the modes are
computed under a small angle approximation, but are often displayed with a finite deformation.

Quaternions. Euler angles and full rotation tensors define the rotations of a body. Computational
efficiency is optimized using mathematically equivalent quaternion algebra. Sierra/SD uses the full
rotation tensor, and Sierra/SM uses quaternions.

Linear vs. Nonlinear Solutions. Linear solutions use the infinitesimal rotation angle formulations. All
nonlinear solutions maintain a large rotation capability and use the full rotation tensor. Nonlinear solutions
using linear elements (or linearized tangent stiffness matrix terms) require conversion between these
forms.

Mixed Variable Solutions. Many linear element have been constructed which are for use in some parts of
nonlinear applications. For example, a large ship may be include a linearized model of an engine as part of
the model. As long as the engine is undergoing small deformations, it is reasonable to employ such a
linearized model, even if another part of the ship is subject to large strain and large rotation. In general,
Sierra/SD allows the user to specify that certain material blocks in a model are linear, even in a nonlinear
analysis. This also necessitates translation between these alternate (and non-equivalent) forms.

Incremental Angular Update. Update of the rotation tensor following an incremental solution of a small
deformation is accomplished as follows. Let us call the initial rotation tensor, R;;,;;. We compute a small
rotation increment expressed in terms of its small rotation angles, (a, 8, ¥)”. From the rotation increment,
we compute a rotation increment quaternion as follows.

0=4/(a®+B%+9?) q>2 = ca

q1 = cos(6/2) g3 =cp
c =sin(6/2)/6 g4 =cy
q=q/lql

The quaternion is then converted to a rotation tensor,
2qi+a3) -1 2(9293 - qaq1) 2(q2q4 + 43q1)

Ry =| 2(q2g3+q4q1) 2(q1+q3) -1 2(q3q94— q291)
2(q294+—q3q1) 2(q394 +92q1) 2(¢>+q3) -1

20

The updated rotation tensor is,
Rupdate = RvRinis

Thus, the rotation increment is treated as a full angle update.

Consequence for Linear Elements in nonlinear solutions. The consequence of this update is that there
may be significant differences between a nonlinear solution and a linear solution, even when both are
applied to a linear element. The approximations applied for infinitesimal rotations are significant, and are
not reciprocal, i.e. information is lost in that approximation. Nonlinear solutions should permit large
rotations with most elements. Linear solutions are valid only in the range of small deformations.

1.3. Mass Properties

Mass properties are computed using the method of Baruch and Zemel.!” The total mass, location of the

center-of-gravity, and the moment of inertia tensor are all calculated for most element types using the mass
matrix and a set of rigid-body vectors. However, acoustic elements and superelements use a different
procedure. Both methods are discussed below.

Calculations for General Elements The mass properties are computed using rigid-body vectors. At a
node, with coordinates (x, y, z), the translational and the rotational rigid-body vectors are,

[1] 0] 0] [0] [z] [—]

0 1 0 -z 0 X

0 0 1 y —X 0
R, = O,Ry: O,RZ: ol R, = 1 ’Rry: 0 ’er: ol

0 0 0 0 1 0

10] 0] 0] 1 O | | O | | 1

These vectors are assembled on an element level. As an example, for a three-node triangle element,
Rex = [0,-21,¥1,1,0,0, 0,-22,¥2,1,0,0, 0,-z3,y3,1,0,0]".
The total mass for an element depends on the element mass matrix, [M,],
M =RIM.R, = R{M.Ry = RIM.R..
The total mass for the model is computed by summing over all the elements

Nel
Miotal = Z Rf[Me]Rx- (1.3.1)
i=1

Note that the X, y, and z-direction equations produce the same result. Sierra/SD uses the x-direction
equation.

In a similar manner, the location of the center-of-gravity can be found by

1 Nel ,

Xeg = 37— ; RT [M,]R,, (13.2)
1 Nel .

Yeg = 3 Z R, [M.]R, (1.3.3)

Nel

! Z RT, [M.]R,. (1.3.4)
i=1

Mtotal

ch

Nel Nel Nel
Iix = Z RrTx [M]R,x Ixy = Z RrTx [Me]Rry Iz = Z sz [Me]er
i=1 i=1 i=1

Nel Nel
Iyy = Z RrTy [Mc]Ryy Iy, = Z RrTy [Me]R,,
i=1 i=1

Nel
I, = Z sz [Me]er
i=1

The mass properties procedure applies to Conmass, Beam?2, Truss, TiBeam, Nbeam, Quad4, Quad8,
QuadM, Tet4, Tet10, TriaShell, Tria3, Tria6, Hex8, Hex20, Wedge6, and Wedge15 elements.

Acoustic and superelements Although acoustic element blocks are made up of element types listed above,
acoustic elements only have 1 degree-of-freedom per node. Thus, the rigid-body vectors presented above
cannot be used without modification. Similarly, superelement can have any number of degrees-of-freedom
depending on how the element was formed. Because of this, a different method is used to compute mass
properties for superelements and acoustic elements.

The mass properties for these elements can be computed with somewhat less accuracy than the method
presented above by lumping the mass matrix of each element, then summing the contribution from each
node. This is the method implemented in Sierra/SD.

The total mass is
Nnode

Miotar = Z M;

i=1

where M; is the mass at node i. The center-of-gravity is

1 Nnode

Yeg = 3 — Z Mix;, (1.3.5)
1 Nnode

Yeg = Mo ; My, (1.3.6)
1 Nnode

Zey = 37 — > Mz (1.3.7)

i=1

where x;, y;, and z;, are the global coordinates of node i. The components of the inertia tensor are,

Nnode Nnode Nnode

Iy = Z Mi(y% +Z,2)e Ixy == Z Mix;iyi, Ix; =— Z M;x;z;,
i=1 i=1 i=1
Nnode Nnode
Iyy = Z 1‘41'(3652 +Z%)Iyz == Z M;y;z;
i=1 i=1
Nnode

I, = Z Mi(xf+y%,
i=1

Figure 1-2. — Original and rotated coordinate frames.

1.4. Coordinate Systems

Coordinate systems are provided for some applications including:

1. specification of boundary constraints (SPCs)

2. specification of multi-point constraints (MPCs)

3. specification of material property rotations for anisotropic materials.

4. specification of spring directions (see subsection 5.18).

5. specification of output coordinate systems (in history files only).
Coordinate systems are not supported for other applications including

1. specification of nodal locations,

2. specification of new coordinate systems in any but the basic system.

Coordinate systems for cartesian, cylindrical and spherical coordinates may be defined. In the case of
non-cartesian systems, the XZ plane is used for defining the origin of the 6 direction only.

Each new coordinate system X’ carries with it a rotation matrix, R, that rotates to the basic coordinate

system X to the new coordinate system
X' = RX.

R is a function of the current spatial location except in the cartesian system, in which case R is constant,
orthonormal, and
cos(f) —sin(6) O
X=RTX, R = |sin(8) cos(6) 0 (1.4.1)
0 0 1

For example consider the cartesian system as shown in Figure 1-2. The new system (marked by primes) is
rotated by 6 from the old system with the new X’ axis in the first quadrant of the old system.

23

This page intentionally left blank.

24

2. STRUCTURAL SOLUTION PROCEDURES

Among the mechanics codes developed at Sandia National LabsSierra/SD has the unique ability to
combine a variety of different solution procedures. These range from modal superposition based solutions
to nonlinear transient. As described in the User’s Manual, these solutions can be combined (or chained) in
solution cases. This section describes the theory behind individual procedures. Details about particular
finite elements are provides in Section 5.

2.1, Linear transient analysis

For linear and nonlinear transient dynamics, the time integrator in Sierra/SD is either the Newmark-Beta
method or the generalized alpha method. The Generalized Alpha method supersedes the
Hilbert-Hughes-Taylor method.

Linear structural analysis finite element discretization of the momentum equation, with external load F¢*’,
leads to the differential equation

Ma(t) +Cv(t) + Kd(t) = F¢*' (1), v=d, a=d,

where damping matrix C = C + @M + BK is the is the sum of the standard damping matrix C (say from a
dashpot) and proportional damping terms. In the generalized alpha method the state at the n + 1st time step
is determined from

M [(1 - apn)ans +aman] + ¢ [(1 - a’f)vn+1 +a’an] +

2.1.1
K [(1 = ap)dun +apda] = (1= ap)Fo (1)) + @ Fe (1) —

The parameters @ and @, are constrained to achieve second-order accuracy and maintain unconditional
stability,
am < af < %
Yn =3~ @mtay
Bn = 41_1"' %(a’f - Um)

By specifying the input parameter 0 < p < 1, the user selects parameters satisfying these constraints

ay p/(1+p)

am = (2p-1/(1+p)

Bn A-ap+ay) - (1-an+ay)/4
Yn = 12—-ap+ay

In the maximally damped, p = 0, note that @y = 0 and «@,,, = —1. The undamped case is p = 1, at which
afF =am = %, which yields 3, = %, and vy, = % as in the undamped Newmark-beta method. For later use,
we also define

Fiflva, = (1= ap) P (tay) + ap FO (1) (2.1.2)
There are two options for evaluating F¢Y, . More will be given on this in Section 2.1.2.
n (If

25

While the displacements and velocities resulting from the generalized alpha method are second-order
accurate, accelerations are only first order accurate. ! Fortunately, second-order accuracy can be obtained
for accelerations through an observation that,

a/faﬁl"m (1-ay) af:]st = apma, + (1 — ap) ans, (2.1.3)

where a”?*" is the second-order accurate post processed acceleration. The above equation is implemented
by storing the additional vector a};”*" so that the updated a”?;" can be computed and output by the code.

Sierra/SD uses the undamped Newmark-beta method if no damping parameter is specified (in the input

file),
1

af =apy =0, ﬁZZ,Y Mapsy + Cvpt + Kdyyy = FE (tgh1).

= E’
In terms of the Newmark parameters 3, and 7y, the time integration scheme is

Af?
dys1 = dp+Atv, + T [(1- 2ﬁn)an + 2ﬁ"a"+1] 2.1.4)

Vsl = Vi + At [(1 - Vn)an + Ynln+1]

To derive the displacement-based implementation, first solve these equations for the acceleration and
velocity in terms of displacement,

1-28,
an+1 = W [dns1 — dp — vipAt] - Zﬁf an

Vsl = Vap+At[(1 = yp)a, + Ynans] (2.1.5)

= v, +At [(1 —Yn)an + ﬁ [dns1 — dy — v At] — vy 122'8"61”

Substitute equation (2.1.5) into equation (2.1.1) and collect terms to obtain for the undamped
Newmark-beta method

M 2 +K] dyi= Foy

1
BnAt? + BnAt n+l
—C |vp + At(1 = yp)a, —

nA1(1-28,
Fo [dy + Atvy] = 28 g |4

1-28n
+M ﬁ_nlAt2 [d, + v, At] + 2ﬁf an]

or for the generalized alpha method,

[M U=tu) 4 C(1 - ap) 2 +K(1 - af)] oyt =
Ferl —Kaygd,

n+l+ay (2 1 6)
-C [a/fvn + (1 —ay) [vn + At(1 = yn)a, + ﬁy—'& [—d, — Atv,] - %an” o
+M [—a/man 5 — [dy +vaAt] + (1 - a/m)] zﬁ"]

There are three matrix-vector products on the right-hand side of this equation, one for each of the system
matrices M, K, and C.

Isee AlphaStudy.doc in Sierra/SD documentation, for details on convergence and post processing discussed here.

26

2.1.1. Predictor Corrector Adjustment

The linear system in 2.1.6 can be solved using high-performance linear iterative solvers such as GDSW. In
this context, it would be beneficial to take the initial iterate closer to the expected solution to increase the
efficiency of the solver. Thus, the system, which is of the form Ad,,;; = r,+1, can be solved using the
following steps:

dewy = dy+Av, +22a,,
I = rp—Adey,
- 2.1.7
Ad = T, ()

duy1 = (_l+dext-

In the above d.; is the initial estimate of d,,+, obtained using Taylor series extrapolation (essentially
assuming that the acceleration remains unchanged in the current time step). We noticed that the above
predictor-corrector implementation 2.1.7 is crucial to ensure that accurate results are obtained for realistic
relative solver tolerances (direct implementation of 2.1.6 could result in high-frequency oscillations that
can pollute the solution even after applying filters). Naturally, the approach 2.1.7 also results in accelerated
convergence of the GDSW solver resulting in computational savings.

Unfortunately, the predictor-corrector implementation in 2.1.7 resulted in an undesirable side effect, namely
growth in error in the constraint equations. The relative error for displacement constraints appear to grow
as n', where n is the number of time steps, but the reason is not clear at this time. However, a simple
modification of the predictor expression by eliminating the velocity and acceleration terms appear to make
the growth milder, proportional to v/n, and is thus employed in the code:

dext = dn
r = | 7 Adext,
Ad - & (2.1.8)
duv1 = d+dey.
2.1.2. Prescribed Accelerations

Prescribed accelerations can be applied in Sierra/SD to nodesets or sidesets, as described in User’s
Manual. Here we give a brief description of the theory behind the implementation.

To simplify matters, we consider the case when the acceleration of a single DOF is prescribed as a,, f (1),
where a, is the amplitude, and f(¢) is the function describing the time dependence. The extension to
multiply prescribed DOFs is a matter of an external loop.

Given f(t), we compute two numerical integrals as follows.

a(t) = aof(t)
V(D) = vo+ /0 alt) = vo + /0 a0 (1)1 = vy + an ([(1)
d(t) = d0+/0 v(t)dt:d0+v0t+/0 /O ao f(t)dt = do+vot + a,([[f(2))

(2.1.9)

where we have defined [f(¢) and f[f(¢) to denote the first and second integrals of the function f(7), and d
and v denote the initial displacement and velocity. [f(¢) and [ff(¢) are computed numerically in
Sierra/SD.

27

Given these functions, we can statically condense the prescribed degrees of freedom, and bring the
resulting terms to the right-hand side. First, we define m; to be the column of the mass matrix associated
with the prescribed dof, and c¢; and k; are similarly defined for the damping and stiffness matrices. We first
write the Gset version of equation 2.1.1. We put subscripts of g on the system matrices and right-hand side
to denote that the prescribed boundary conditions have not yet been eliminated (hence are Gset).

Mg [(1 = am)ans + aman] + ég [(1 —f)Vps1 + ozfvn] +
Kg [(1 —ayf)dns +a/fdn] = (1- af)an(th) +afF§Xt(tn)
(2.1.10)
Next, condense out the prescribed DOFs and move their contributions to the right-hand side, noting that

fixed DOFs do not contribute. As this reduces the system matrices to Aset form, the subscripts are dropped.
To reduce everything to the Aset, the right-hand side terms are also condensed.

M [(1 = @p)ans1 + @man] +C [(1 —f)Vps1 + a/fvn] (2.1.11)

+K [(1 - ap)dp +apdy] = (2.1.12)

(1= ap)F (tye1) + aF (1) (2.1.13)

(I =ap)ao [f(tner)mi + [f (tne)ci + [[f (tnr1) ki) (2.1.14)
—ayrao [f(tn)mi + [f (ta)ci + [[f (ta) ki]. (2.1.15)

(2.1.16)

L.e., prescribed accelerations add to the right-hand side both the column of M corresponding to the
prescribed dof scaled by the time function f(¢) and also the corresponding columns from C and K scaled
by / f(¢) and f / f respectively. For statics problems, this procedure reduces to only a contribution from
K, and this is also included in Sierra/SD.

2.1.3. Nonlinear transient analysis

Nonlinear transient simulations use an algorithm that builds the standard nonlinear transient procedure'® on
the generalized alpha integration instead of the Newmark-beta integration. The equation of motion is
M [(1 - ap)anst +@pman] +C [(1 - a’f)Vn+1 + a’fvn] +

; . (2.1.17)
(1 - a'f)F:l:l_tl + afF,’l”’ = (1 - a'f)FeXt(d,H.l) + CXfFexr(dn)

where Frll:”l and Fi" are the internal forces at the current and previous time steps, respectively. Note that
the external loads may depend on displacement, as in the case of follower loads.

Before proceeding, note that there are variants of a nonlinear generalized alpha method. due to the
nonlinearity of F¢** and F"". Equation 2.1.17 interpolates the current and previous displacements,

Filisa, = (1= ap)F™ (dyet) + ap F™ (dn)
F,fffmf = (1—ap)F (dys1) + afF (dy).
(2.1.18)
instead of the interpolated displacement,
FriLTHaf = Fim((l — af)dn+1 + a/fdn)
F;:f+af = FeXt((l - a'f)dn+l +afdn),
(2.1.19)

28

Comparisons have shown little difference in the results on simple test problems.

Typically, the external load F*' is a piece-wise linear function of time, in which case the two variants are
equivalent, with a couple notable exceptions. First, the two variants yield different loads if two consecutive
time steps are in two different linear segments. Second, if polynomial or loglog interpolation functions used
instead of linear interpolation, the two variants yield different loads. For problems with very large time
steps or involving nonlinear interpolation, different results are to be expected.

Using the tangent stiffness method, we replace F"
n+1

Fint = Fint 4 K, Ad (2.1.20)

n+l

where K, is the tangent stiffness matrix, defined as K, = F'™ /du, and Ad = dp.1 — d,,. Also, we use
equations 2.1.5, which are the same as in the linear case.

First, we substitute equations 2.1.5 and 2.1.20 into equation 2.1.17. This results in the following equations,
which are almost identical to the ones from the linear case

(1)
[ﬂnAz +C(1_ (l_af) n+l =
Frf-flt+af - afFriLm - (1 - a’f) [Frl;m - thn]
N At(1 -2
-C [a/fv,, +(L—ay) |va+At(1 = yp)a, + ﬁ_:nAt [-d, — Atv,] - Yn2 ~ Pn) (2,3n Bn)anH
l-an B 2:8;1
+M |—ama, + BAL [dy +vaAt] + (1 - am) %, an]

Finally, we want the unknown to be Ad = d,1+1 — d , where d is the current iterate of displacement. To
accomplish this, we subtract the appropriate terms from both sides, which yields, after collecting terms

lM(l _am)

BiAL + C(l -

(1 —af) Ad =

F,ffl’mf - (1 —ap)F"™ —ayF" = C[(1—ayp)d+apv,]
—M [(1 — @) ad + amay] (2.1.21)
where again hats denote current iterates of acceleration, velocity, etc. Note that we have re-defined

Ad = duy — d, which is different than the previous definition that was given. Also, we note that
Fint = Fint + K,(d - dy,).

With the Newmark-beta time integrator (y,, = %, B = %, af = apy =0, equation 2.1.21 reduces to
4 2 L
MF+CA_+Kt Ad = F,fflt F'" —Cp-Ma (2.1.22)

which is the same equation given by Belytschko et al."®

We note that equation 2.1.21 can be written as
AAd =res (2.1.23)

where A is the dynamic matrix, Ad is the change in displacement from the previous Newton iteration to the
current Newton iteration, and res is the residual, i.e. the amount by which the equations of motion (equation
2.1.17) are not satisfied by the current iterate. The residual can be written from the previous equations as

res = F¢* — ['"l _ CHp — Ma (2.1.24)

n+l

29

2.1.3.1. Nonlinear Transient Analysis with Constraints

In the previous section, the assumption was made that there were no multi-point constraint equations.
These extra equations introduce Lagrange multipliers that need to be included in the nonlinear equations. In
this section, we will describe how to include constraint equations into the nonlinear solution method based
on Newton’s method.

Equation 2.1.23 is correct if there are no constraint equations in the problem. When constraint equations
are involved, we will show that this generalizes to the following

T
A G Ad] _ l res } (2.1.25)

G O Ad 0

where the residual is defined with an additional term due to the constraints

res=F —F™ - Cy-Ma-G'A (2.1.26)
where G is the matrix representation of the constraint equations, A is the current Newton iterate of the
Lagrange multipliers, and G A represents a force due to constraints. Note that when the problem has no
constraint equations, equations 2.1.25 and 2.1.26 reduce to equations 2.1.23 and 2.1.24.

We can arrive at equations 2.1.25 through some simple arguments similar to the unconstrained case. The
second equation
GAd = Gdyy1 —Gd =0 (2.1.27)

is a simple argument that the linear solver always returns solutions that satisfy Gd = 0, and thus the
difference Gd,+1 — Gd must also be zero.

The first equation can be deduced by including an additional constraint force term into the residual
equation. We will work with the Newmark method, i.e. v, = %, Bn = %, af = apy = 0 to keep the discussion
simple. The case with the generalized alpha method is a simple extension of what follows. We write the
total internal force, including constraint force terms, as

Fror(d,A) = F"(d) + Ma +CH+G" A (2.1.28)

The incremented total force is given by

~ & OF; O0F,
Flot(dn+1, /ln+1) = Ftot(d’ /l) + tf\)t Ad + z:;t A4
d ol
= Fy0(d, 1) + AAd + GT AL
The force balance says that
Fyll = Fror(dns1, A1) (2.1.29)
Simplifying, we obtain
AAd +GTAL = F& — F™ — Ch - Ma - G'A (2.1.30)

which corresponds to the first equation in the system of equations given by equation 2.1.25.

30

Damping Source Discussion

linear dashpots Contributes directly to the C matrix described in equation
2.1.1. The matrix is constant.

proportional damping | Also, known as Rayleigh damping,
aM, + BK,

The damping is proportional to velocity. Note that the effective
damping matrix is constant. Damping is not proportional to
the tangent matrix, K;.

linear viscoelasticity | Determined by material parameters.

nonlinear energy loss | Many nonlinear elements contribute to this form of damping.
It does not generate a damping matrix term, and often moves
energy from lower frequencies to higher frequencies. An
example is the Iwan element.

nonlinear material Similar to nonlinear elements.

numerical damping No damping matrix is generated. Most of the energy loss is
at frequencies above the Nyquist frequency. Controlled by
parameter RHO.

Table 2-1. — Sources of Damping in the Solution.

2.1.3.2 Damping in Nonlinear Solutions

Some sources of damping in the solution of linear and nonlinear solutions have been identified. It is useful
to list them for comparison, as in Table 2-1. Note in particular, that proportional damping, common in
linear systems, requires a different definition in nonlinear systems, and will also require explicit formation
of a damping matrix.

2.2, Damping of Flexible Modes Only

Here we outline the method used in Sierra/SD to ensure that various damping models do not affect the
rigid body response of a structure. 2. A more detailed explanation of the theory which involves less
restrictive assumptions and describes connections with the present approach can be found in the document
dampFlexMode.tex, which appears in the Sierra/SD documents repository. The sensitivity of this approach
to errors in the K is discussed in filterrbm_error.tex.

Consider the standard equilibrium equations given by
Mi+Cx+Kx=f, 2.2.1)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, x is the response vector, and
f is the applied force vector. Let the columns of the matrix @, span the rigid body modes of the structure.

2The technique is also known as filtering the rigid body modes, hence the name £ilterRBM

31

That is,
Ko, =0. (2.2.2)

Typically, there are six rigid body modes (3 translational and 3 rotational), and it is assumed this is the case.
Consider next a proportional damping model in which

C=aK +BM, (2.2.3)

where @ and § are non-negative constants. Since the mass matrix M is nonsingular, we will have C®, # 0
for mass proportional damping when 8 > 0. Thus, the damping model will dissipate the energy of the rigid
body modes. Some analysts would like to include mass proportional damping, but only have it damp the
flexible modes.

We may express the response vector x as
x=®,q, +Dsqy, 2.2.4)

where g, and g ¢ are vectors of generalized coordinates associated with the rigid body and flexible modes,
respectively. Further,

@JCM@, =0. (2.2.5)

Substituting (2.2.4) into (2.2.1), using (2.2.2), and setting
Co,. =0 (2.2.6)

gives us
M(®,Gr +@rGy) + COrgr+ KOypqy = f. (2.2.7)

First assume that C and K are symmetric. We then find from (2.2.2) and (2.2.6) that
of'c=0, ®'Kk=0, (2.2.8)
Pre-multiplying (2.2.7) by ®! and substitution of (2.2.5) and (2.2.8) gives us
ST M®, G, = D! f. (2.2.9)
If the rigid body modes are M-orthonormal, i.e. (IDfM ®, = I, we then obtain
G = ®Lf. (2.2.10)
Substituting (2.2.10) into (2.2.7) and using the notation xy = ®¢q s gives us
Mis+Cip+Kxp=(I-MD®)f. (2.2.11)
From (2.2.4) we see that the total response is given by
x=®,q, +xy, (2.2.12)

where the dynamics associated with g, and x ¢ are governed by (2.2.10) and (2.2.11).

Notice that the dynamics for the flexible part of the response, i.e. (2.2.11), is the original equilibrium
equations in (2.2.1) with a modified force vector. This modified for vector can be calculated efficiently as

(I-M®,O)f = f - M(® (D] f)). (2.2.13)

32

The rigid body response governed by (2.2.10) can be numerically integrated using the same scheme as for
the flexible response.

If f is a known force vector that does not depend on the response, then we do not need to concern ourselves
with stability issues since all we’ve done is modified the force vector in a stable manner. If, however, the
force vector depends on the response, then stability issues could arise. It should be mentioned though that
these potential issues could arise even in our existing capabilities for coupling Sierra/SD to other
simulation codes that do not use the present damping approach.

Usability Question Certain expedient spatial discretizations of floating structures lead to a stiffness matrix
K with the nonphysical property K® # 0. Given M, C and K, f determines %. If, moreover, the rigid body
modes @ are undamped, we get a solution y. Is y “better" than ¥? A cumbersome discretization determines
K such that

®'K =0, K®, =0. (2.2.14)

In practice K = K — VV7 the matrices differ by a symmetric low rank perturbation, and VV7 is sparse.

Our fundamental tool is
P=1-®,®"'M.

In general neither PTEK nor KP satisfies equation (2). If there exists H such that K® = M®H, then (not
obvious) PTK = KP. Using filterrbm is like transforming K to PTKP = K + PTVVTP. This has the
advantage of projecting out the rigid body modes from V.

2.3. Random Vibration

Details of random vibration analysis are presented in several papers’. These few paragraphs document what
was implemented.

2.3.1. Algorithm

Initially a model decomposition is determined, K® = M®Q? normalized so that ®T M® = I. For j = V-1,
the modal frequency response is,

gi(f) = ——— fee

w? — w? + 2jwwiyi 2r

i

Note that if other damping (such as mass and stiffness proportional damping) is used, then the effective y; is
used here. For the ath load and the ith mode shape, define

Zh = puFy = (¢, F*).
k

Z = ®T'F contains the spatial contributions from the mode shapes and is also frequency independent. The
number of rows in Z is the number of modes, and the number of columns in Z is the number of loads.

§%b(f) is the (a, b) entry of the Hermitian cross-correlation matrix between loads. Letting Z; denote row i
of Z,

Lij = q;(ZiS(f)Z_,T)Qj(Sf,

3 115

see for example, reference.

33

or
I = diag(q*)ZS(f)Z" diag(q)s f

For each mode shape,¢, each element, there is a displacement with a corresponding element stress, . The
(i, j) pair of modes contributes wiT Ay ;T';; to the von Mises stress. The velocity and acceleration
contributes similar terms to the 2" and 4’ moments of von Mises stress, respectively.

2.3.2. Power Spectral Density

The displacement power spectral output may also be written as follows,
Gun() = D > a1 (D (NbiminZiS" (HZ), 2.3.1)
i,j a,a’
Note that there is no ¢ f coeflicient here.

If the output displacement degrees of freedom are restricted to a single node, the subscripts m and n are
applicable to the 3 degrees of freedom at a single location. Because the response directions may not be
independent, the matrix may not be diagonal.

By summing over the loads we may reduce the power spectral expression to a sum on modal
contributions.

Gun(f) = D $im®inGis(f) (2:3.2)
iL,Jj

where

Gii () =a;(Ha;(f)), ZLZh, s (f) (2.3.3)

Note that, except for the Z¢, (which only needs to be computed once), all the terms in equation 2.3.3 are
known on each subdomain.

At each frequency, f, there is a 3 by 3 complex Hermitian output displacement spectral density matrix G
and an output acceleration spectral density matrix, Gw*.

2.3.3. Tensor Transformations of PSD

The output PSD is a Hermitian tensor, AT = A*. The output PSD is defined as the correlation of the

acceleration, i.e.
Apsp(w) = a(w)a(w)’, (2.3.4)

where a(w) is the complex acceleration vector. On a single node, A is a 3 x 3 complex tensor. The tensor
rotation can be derived from the rotation of the vectors. Let @ = Ra be the acceleration expressed in a new
coordinate frame and computed from the acceleration in the basic frame multiplied by an orthogonal
transformation matrix R. Because R~! = RT, we have a = R a. See section 1.4 for a discussion of
coordinate systems and vector transformations.

Apsp = ad' (2.3.5)
= RTa(RTa)’ (2.3.6)
= RTaa'R (2.3.7)
= RTApspR (2.3.8)

34

Therefore, Apsp = R ApspRT.

2.34. RMS Output

The RMS output for degree of freedom m is given by,

Xews = / G F)df

\/ [X 6momGutras
i,j

[Gim T (2.3.9)
i,j

where I';; = [Gij(f)df.

2.3.4.1. Truncation.

Note that equation 2.3.9 involves a summation over modes weighted by I';;. This summation is an order N 2
operation which can retard performance if there are many modes. Often many of the terms in I" are small.
Rows and columns of the sum may be eliminated with no impact on the overall solution of X, oA

2.3.4.2. Parallelization.

The parallel result can be arrived at by computing Z, on each subdomain, and then summing the
contributions of each subdomain. Note that Z!, contains the spatial contribution of the input force. At
boundaries that interface force must be properly normalized like an applied force is normalized for statics or
transient dynamics by dividing by the cardinality of the node. Once Z has been summed, I';; may be
computed redundantly on each subdomain. The only communication required is the sum on Z (a matrix
dimensioned at the number of loads by the number of modes).

The acceleration power spectral density is G, (w)w®*. Subsection 7.2.5 provides details about
transforming power spectra to an output coordinate system.

2.3.4.3. Displacement Interference (Relative_Disp)

A common requirement is understanding the probability of interference of two nodes. The difference
displacement spectrum of a degree of freedom on two different points is a similar expression.

Xgr(f) = (Xx(f) = Xo(H)) Xk (f) = XL(f)* (2.3.10)
= Xk ()Xg(f) +XL(HXL() = X (H)XL(f) = XL () Xk (f) (2.3.11)
= Gk (f)+Grr(f) - Gkr(f) — Grk(f) (2.3.12)

4A similar truncation can be performed if the quantity of interest is acceleration rather than displacement. In that case, truncation
may be performed on I} jw%wi.

35

Likewise, the RMS value may be computed.

7 // X%, df (2.3.13)

\/ (dikdjk + dirdjL — dixdir — diLdjk) i) (2.3.14)

L,

(XKL)rmS

~

As with the displacement spectrum, when the different coordinate directions are not independent, off
diagonal contributions can be important. This development must be extended to all the dependent degrees
of freedom.

This information can be computed between two points using the output keyword Relative_Disp and a
Joint2G element.

2.3.5. RMS Stress

A description of the algorithm for computation of the von Mises RMS stress is included in the reference at
the beginning of this chapter. Two methods are available, but both use the integrated modal contribution I';
as the basis for their computation. The more complete method relies on a singular value decomposition.
Portions of that method are touched on below

2.3.6. Matrix properties for RMS stress

Since S(f) is Hermitian, it follows that I';, is also necessarily Hermitian. It will not in general be real. The
complex valued singular value decomposition (SVD) is computed using the LAPACK zgesvd routine. The
results from the SVD of an Hermitian matrix are real eigenvalues (stored in X), and complex vectors, stored
in Q. The LAPACK routines for Hermitian eigenvalue problems (zhetrd,zsteqr) would be more
efficient.

At the element level another SVD is computed. In this case we are computing the singular values of the
matrix C.
C=XQ'BOX

where,
B=YTA¥Y

B is symmetric. It can be shown that Q' BQ is Hermitian. If we examine a single element of C we can see
that it contains the sum over all the terms in an Hermitian matrix. That sum is necessarily real, since it can
be computed by adding the lower half with its transpose and then summing the diagonal. Let,

Ajj = Z Qi BinnQnj = Z aij
m,n

m,n

But,
A;i = Z om, j % BunQy; = Z OnjBrun Qi = Z a:jj
m,n m,n

m,n

We therefore only need use the real svd routines to compute the results at each output location.

36

The svd calculations provide the information needed to truncate or reduce the model. As the size of the
model grows, the number of modes required for an analysis tends also to grow. However, the computational
time for computing the svd is proportional to matrix dimension cubed. On the other hand, the svd(I") is
only computed once. However, the computation of each decomposition of C occurs at each output location
and can significantly affect performance. In the model problem where the dimension of C was allowed to
remain the same as the number of modes, increasing the number of modes from 20 to 100 changed the time
for the analysis by factor of more than 100 (close to the predicted 5°). Unfortunately the desired models
may have many hundreds of modes.

The svd(I") provides important information about the number of independent processes. Note that C
includes the svd values from this calculation. We truncate by computing all the nmodes x nmodes terms
in B, but only retaining Cdim columns of Q, where Cdim is chosen so the values of X are not too small.
Thus, X [Cdim]/X[0] > 10~'4. This restricts the dimension of C to a small number, while retaining all
components that contribute significantly to its value. As a result, the entire calculation appears to scale
approximately linearly with the number of modes.

24. Modal Frequency Response Methods

The Sierra/SD implementation of the modal acceleration method is described in this section. Separate
cases are considered when the structure does and does not have rigid body modes.

24.1. No Rigid Body Modes

We first consider the frequency domain version of the equations of motion.

(—w?*M + jwC +K)i = f (2.4.1)
Consider the modal approximation .
i~) b (24.2)
i=1
th h

where N is the number of retained modes, ¢; is the i mode shape, and g; is the i modal dof. For modal

damping, one obtains the uncoupled equations

(—w?m; + jwe; + ki)gi = ¢T f (2.4.3)
fori=1,..., N where
mi = ¢IM¢; (2.4.4)
ci = ¢IC¢; (2.4.5)
ki = ¢TKe, (2.4.6)
(2.4.7)

are the modal mass, modal damping, and modal stiffness of the ith

leads to

mode. Solving equation 2.4.3 for g;

qi = (8])/ (~w*m; + jwc; + k;) (2.4.8)

37

Replacing (—w?M + jwC)i in equation 2.4.1 with the modal approximation

N
(—wM + jwC) Z biqi (2.4.9)
i=1
leads to
N
Kt = f+ (™M = jwC)) i (2.4.10)

i=1

Recall that the mode shapes satisfy the eigenvalue problem
K¢; = w;M; 2.4.11)

where w; is the circular frequency of the ith

mode. Provided w; # 0, one obtains
K 'M¢; = ¢i/w} (2.4.12)

In addition, see Eq. (18.14) of Craig, the damping matrix C can be expressed as
N 24wy
c=>, (—) (M) (Me)" (2.4.13)
pra

where ; is the damping ratio of the ith

and solving for # leads to

mode. Substituting equations 2.4.12 and 2.4.13 into equation 2.4.10

b4

i=K"'f+) (0] -20ijwlw)diq; (2.4.14)

1

Il
—

The acceleration frequency response, d, can be obtained by multiplying equation 2.4.14 by —w?.

24.2 Rigid Body Modes

The procedure outlined here describes how the modal acceleration method can be used in the case when the
structure has rigid body modes. The main difference between the approach presented here and Craig’s
method®® (pp. 368-371) is in the way that the flexible response is computed using the singular stiffness
matrix. Craig removes the rigid body modes from the stiffness matrix using constraints. In our approach,
we first orthogonalize the right-hand side with respect to the rigid body modes, and then use an iterative
solver to solve the singular system directly. Although the two methods are equivalent the latter is much
more convenient from the implementation point of view. Note, however, that the implementation is likely to
fail on a single processor since the direct solvers in Sierra/SD are unable to manage a singular stiffness
matrix.

The equations of interest are the frequency domain equations of motion
—w*Mu + jwCu + Ku = f (2.4.15)

Since the stiffness matrix may be singular, we first split the solution into a rigid body part and a flexible
part.

38

ur(w) +up(w) (2.4.16)
= Orqr(w)+Prqge(w) (2.4.17)

u(w)

where the subscript R refers to rigid body mode contributions, and E refers to contributions from flexible
modes. We define N as the total number of degrees of freedom, Ng as the number of rigid body modes and
NE the number of flexible modes, where N = Ng + Ng. Then, ®@g is an N X Nr matrix of rigid body
eigenvectors, @ is an N X Ng matrix of flexible eigenvectors, gg is a vector of dimension Ng, and g is a
vector of dimension Ng. We assume mass normalized eigenvectors.

We substitute equation 2.4.17 into equation 2.4.15, and pre-multiply both sides by <I>£ and CDE. This yields
two sets of equations, after using orthogonality and the fact that K®g = 0.

~w’qR + jwCrqr = Py f (2.4.18)
~w’qE + joCeqr + Keqr = @5 f (2.4.19)
where Cg, Cg are diagonal matrices containing the modal damping contributions, and K is a diagonal
matrix containing the eigenvalues. In particular, the ith diagonal entry of Cg is 2w;{E;, and the ith

diagonal entry of Cg is 2w;{r,. For most applications, Cg is null. Solving these equations we obtain the
component-wise values of the coefficients

= ®£if (2.4.20)
Tk = —w? + jwCk, o
oL f
9E; = ——— 5 (2.4.21)
—w” + jwCE; + Wy,
Equation 2.4.19 can be solved for g, and substituting this into equation 2.4.17, we obtain
u=®Opqr +PeKy'®Lf + @Ky g — jwPEKy' Crqr (2.4.22)

The first term in equation 2.4.22 is known. The third and fourth terms of equation 2.4.22 can be computed
by modal truncation, and in fact these are the same as the second and third terms of equation 2.4.14. The
second term in equation 2.4.22 is the static correction, and is not readily computable in the present form
since all flexible modes would have to be known to compute it.

To compute the second term in equation 2.4.22, we note that the matrix ag = CDEKE—I CDE is the inverse of
the elastic stiffness matrix, that is, the stiffness matrix without the rigid body components. Craig gives a
procedure of constraining the rigid body modes in the stiffness matrix to compute the product ag f. This
procedure would require re-sizing the global stiffness matrix midway through the modalfrf solution
procedure, and this is tedious from the code development standpoint.

A more convenient approach is to use GDSW to solve the system Ku = fg, where fg is obtained by
orthogonalizing the right-hand side f with respect to the rigid body modes, via Gram Schmidt. If K is
singular and f is orthogonal to the rigid body modes, then GDSW can be applied to Ku = f

Though in theory u is already orthogonal to the rigid body modes after the GDSW solve, numerical
round-off may result in a small loss of orthogonality (especially if the solver tolerance is large). The
resulting solution we denote by ug. Then,

up = OpK'OLf (2.4.23)

39

and thus all terms in equation 2.4.22 are known. Thus the modal frequency response can be computed
using equation 2.4.22.

We note that the orthogonalizations referred to above involve only the standard dot products. That is, to
make f orthogonal to one rigid body mode ¢;, the Gram Schmidt factor is

o1 f
— (2.4.24)
¢ ol o
and then
fE=f—-a¢ (2.4.25)

These dot products do not involve the mass matrix. They are the standard dot products.

2.4.3. Example

Finally, we present an example of the performance of this method as compared to the standard modal
displacement method. The example is a beam composed of 320 hex8 elements. The beam is free-free, so
that all rigid body modes are present. The frequency response is computed up to 9000 Hz, and 15 modes
are used in the modal expansions. The 15th mode had a frequency of 11362 Hz. In Figure 2-1, the two
methods are compared with the direct frequency response approach. It is seen that the modal acceleration
method gives a significantly improved performance over the modal displacement method.

Comparison of frf methods with rigid body modes

T
— directfrf

— modal disp
— - modal accel

Amplitude

I I I I I I I I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Frequency

Figure 2-1. — A comparison of the modal displacement, modal acceleration, and direct frequency response
approaches. The modal acceleration method gives a better approximation to the direct approach than the modal
displacement method.

2.5. Fast Modal Solutions

Because modal based solutions such as modal transient do not require a linear solve, they can hasten the
solution of linear problems. However, in the standard approach, these solutions may not show the

40

performance that could be achieved. This is because the standard approach manipulates a lot of data when
the model size is large, see Figure 2-3. We here address a method for much higher performance provided
that output is required on a modest data set and that the force is simple.

1. Compute all eigenvectors, (K — AM)®d = 0.

2. Compute the applied load (in modal coordinates) at each

time,
= Z @ki FIth . 7
o)
k A L
E)
3. Compute the modal system response from equation 2.5.4. “
4. Expand from modal to full physical space. } procn
Nmodes
n+l Z 4q n+1q)kl Figure 2-2. — The par-
i<Nmodes allel data (matrices and
vectors @ and X) are par-
5. Collapse the physical space to the output degrees of free- titioned by processor.

dom.
X = subset(X)

Figure 2-3. — Standard Modal Transient Algorithm. Note that while the output is required on only a small part
of the model, a calculation of data on all degrees of freedom is performed first, and results are then collapsed to
the reduced model.

2.5.1. Modal Solution Summary

Using the trapezoidal rule, Newmark-Beta integrator equation 2.1.6 may be condensed to,

4 2 2 4 4
A_tzM+A_C+K dpe1 = FX +C |y Atd +M A2d 5 vntan (2.5.1)
Also,

= + 2 (d d,) (2.5.2)

Vel = Vn Af n+l n .
b —dy) — 2 2.5.3)

= —qg _ — - J.

Ap+l nt a2 n+l n Atvn

With the usual modal transformation, dy = Y; @iq, 4; = @] K®;, and ®" M® = I, we may write the
equivalent modal equations.

iy = o+ g + (2.5.4)

SThis implies that @y = af =0, B = 1/4, and y, = 1/2.

41

where

a = Aitz v A
= Dour
k
s . (4, 4 .2
o= Cht"'(EQn‘*‘FQn) +i (Qn"'ECIn)
and,
Vi is the modal damping

These are uncoupled equations. The solution for each modal coordinate is independent of any other.

2.5.2. Parallel Fast Modal

Typically the objective is to measure the response in a small region, such as data output to a history file.
Large amounts of data are processed, only to reduce the data at each time step to a reduced system. The
parallel computer processing is being expended to process large vectors that are not needed, and for which
no useful output is provided. If the reduced set may easily fit on a single processor, and if the modal force
may be adequately determined, then a streamlined algorithm may be used.

The fast algorithm is illustrated in Figure 2-4 for transient dynamics, and in Figure 2-5 for modal frequency
response. The same set of equations are now solved, but since the entire physical model exists on all
processors, we can compute the sum of terms in parallel.

1. Begin with eigenvalues, A, and reduced eigenvectors, ¢. We also need the generalized components of
modal force, {7 (w) = X @kiﬁl‘:(w).

2. Compute the time response of the modal system response in parallel. Each processor gets only a subset
of modes, and solves equation 2.5.4 independently.

3. Compute the response on the physical space using the sum of modes as a sum across processors.
NOTE: this is restricted to the reduced physical space.

Nproc NmOdeSproc

X = Z Z dkiqi
P i

Figure 2-4. — Fast Modal Transient Algorithm.

42

1. Begin with eigenvalues, A, and reduced eigenvectors, ¢. We also need the generalized components of
modal force, {7 (w) = 2i <I>kl-17",§(w).

2. Compute the frequency response of the modal system response in parallel. Each processor gets only
a subset of modes, and solves the following equation independently.

/()

2 .
w? — W = 2jyiww;

gi(w) =

where w = V4; and j = V-1.

3. Compute the response on the physical space using the sum of modes as a sum across processors.
NOTE: this is restricted to the reduced physical space.

Nproc Nmodesproc

Xg = Z Z driqi

P i

Alternatively, each processor may be assigned the computation of a frequency range, and compute all
the modal contributions to that range. A processor sum would gather all the results for output.

Figure 2-5. — Fast Modal Frequency Response Algorithm.

2.5.3. Determination of Modal Force

The fast algorithm outlined in the previous section depends on determination of the modal force vector,
fi(¢). But, the physical loads may be applied to degrees of freedom other than those in the limited output
set, so that the eigenvector, ® of the full system would be required.

However, in most cases,’ the force in the physical coordinates is computed as a sum of spatial and temporal

terms.7
Nsets

Fo¥ (x,1) = Z £S5 ()85 (1)

N

Typically, each spatial function F* is determined by a nodeset, sideset or body load input, while the
temporal term, 6°(¢), is a multiplier defined in a FUNCTION section. We may thus write,

Fl) =) ®uF (1) (2.5.5)
k
Nsets
= Y 0 Y F@et)
k K
Nsets
- Z 255 (1) (2.5.6)

SIf user defined functions of space are included, this situation is violated, and the fast algorithm cannot be used.
7What is described here for the time domain also applies in the frequency domain. They are products of spatial and frequency
components.

43

where,
&= ouky 2.5.7)
k

Thus, a necessary part of the preparation for a fast modal solution includes calculation of the generalized
components of force, L.

2.6. Eigenvalue Problems

The eigen solution method computes a user-specified number of the lowest-frequency modes of
(K —w’*M)¢ = 0. (2.6.1)

The eigenvalue (or mode) w? and eigenvector (or mode shape) ¢ correspond to the solution u(t) = ¢e’®’
with frequency w/(27). The frequency and the mode shape are reported to the user. The mode shapes are
mass orthogonal, i.e., d)iTM ¢, = 0;;. The default diagnostic output, including the residual norms

(K — w>M)¢||, are labeled by eigenvalue w?.

Some approaches can be used to solve this system, and their relative merits are understood (see®). For large
systems, direct (or dense) methods such as the QR algorithm or Jacobi transformations are tremendously
more expensive than the methods used in Sierra/SD. In Sierra/SD, we rely on the shifted and inverted
Lanczos algorithm as implemented in ARPACK®? . A detailed scalability study is available in SAND
2019-1217.%7

Different solution methods are available for many of the different eigenvalue problems. Note that Rayleigh
damping, C = aM + BK, does not change the mode shapes and changes the mode frequencies as in a
single-degree-of-freedom problem.

The shift (0-) and invert transform leads to a problem whose largest modes are the modes of interest. The
result of subtracting oM ¢ from both sides of equation (2.6.1) is

(K —oM)p = Mp(w? - o). (2.6.2)

The eigenvalue problem exposed to ARPACK emerges by multiplying both sides of (2.6.2) by
(K-oM) N (w?-0)™ !
(K-oM)"'M¢ = (0* - 0)"'¢. (2.6.3)

For example, users are expected to understand that the shift corresponding to the frequency f is 472 f2.

The linear solvers available with the eigen solution case all require positive-definite systems. For this
reason, the shift must be negative. Generally speaking, increasing the magnitude of the shift makes solving
the linear systems easier and solving the eigenvalue problem harder. In theory, using the Helmholtz linear
solver, the capability could be implemented to determine the modes nearest to an arbitrary positive
user-specified shift. The demand for this capability has never justified the risk and expense of
implementation.

Structural dynamics eigenvalue problems have some unique features all revolving around the challenging
nature of the corresponding linear systems. Results are typically insensitive to the linear solver relative
residual norm threshold (the default is 10~®). One exception is the case of computing many (thousands) of
modes, in which case it is necessary to start out with a smaller tolerance (say 10~!?) to avoid convergence
problems at the higher frequencies. P

44

2.7. Modal Analysis of Linearly Damped Structures

Modal solvers are provided for all common types of linearly damped structures. The eigenvalue and
eigenvectors are complex valued. The algorithms are designed for internally damped structures such as
linear viscoelastic materials. In general users specify the solution method for the eigenvalue problem.

One of the packages is called Ceigen. The parameters of Ceigen to be aware of are eig_tol, nmodes,
and viscofreq. The first two parameters, eig_tol and nmodes will be familiar to Sierra/SD users that
solve eigenvalue problem for undamped structures. eig_tol is the convergence tolerance for the
eigenvalues, and nmodes is the number of requested eigenvalues. viscofreq approximates the first
flexible mode of the structure. The default value for eig_tol is 1.e — 8.

The eigenvalue problem for linearly damped structures is an instance of a quadratic eigenvalue problem.
[K+AD +*M| ¢ =0 (2.7.1)
where,

= the stiffness matrix
the damping matrix

= the mass matrix

L XU X
I

= the complex frequency.

The matrices are independent of frequency. The first adjustment to make is that the eigenvalues A = iw +y
correspond to the eigenvalue w? of the undamped, D = 0, problem. There are other solvers. The Anasazi
solver is similar to CEigen. From the point of view of a user, the two methods are very similar.

Solvers similar to the algorithms used in Abaqus are also supported. The Projection and Superposition
solvers resemble the Abaqus solvers. Also the S A solver is available for structural acoustic problems.

CEligen Input File Specification. The Sierra/SD input file specification is similar to the specification for
transient simulations. To change a working Sierra/SD input file for a transient problem into a Sierra/SD
input file for Ceigen, change the Solution and Parameters blocks. The example below illustrates how the
Solution and Parameter blocks are modified for modal analyses.

SOLUTION

case ceigen
ceigen nmodes 20
viscofreq=1.e+4
END

PARAMETERS
eig_tol 1.E-5
witmass=0.00259
END

The parameter wtmass is an example of a parameter that was needed for the transient simulation, and is still
needed for modal analyses.

45

2.7.1. Output File Format

The output is similar to the output for the undamped eigenvalue problem. The results file contains any
requested data. Supplemental information is written to the screen that is useful for algorithm
development.

The Results file foo.rslt tabulates the values A1/(2x) for (4;) that solve equation (2.7.2). Pure real
eigenvalues are not written to the Results file.® If A, has been found with i in the range,

1 <i<24,27 <i < 34, then the missing eigenvalues (4;)25<;<26 are real eigenvalues that are omitted. The
number of eigenvalues written in the Results file is nmodes at most.

As is the case with the undamped eigenvalue problem, Sierra/SD will print a table to the screen. The table
is titled “Ritz values (Real, Imag) and direct residuals", and has four columns of real numbers. The number
of eigenvalues that are computed may be larger or smaller than the number requested. Some real
eigenvalues may appear among the converged eigenvalues. The table will contain any converged real
eigenvalues (zero in column two). Columns three and four are two different residual norms for each
eigenvalue. Eigenvalues with large residual norms are not converged. The residual norm in the third
column is less sensitive to the linear system relative residual norm bound than the residual norm in the
fourth column is After each implicit restart, all the approximate eigenvalues are printed to the screen.

2.7.2. Some Back Ground

The eigenvalue problem for an undamped structure
Ko = MoQ?, o'Mo =1,

Q = @;w;, has been discussed elsewhere in this document. Sierra/SD returns the frequencies w/(2x).
Ceigen solves a similar problem. Ceigen solves the quadratic eigenvalue problem

M2 +DA+KJu=0, wlu=1. (2.7.2)

In the undamped case, D =0, 1 = iw.

A second order linear differential equation is the same as a first order system. Similarly a quadratic
eigenvalue problem is the same as a matrix eigenvalue problem of twice the size.

Linear problems such as matrix eigenvalue problems are solvable in that it is possible to find all solutions.
For matrix eigenvalue problems the key idea is deflation. One big subspace is used to compute all the
eigenvalues. Small eigenvalues tend to be computed early and are deflated from the problem. The reward
for deflation is that the gravest remaining eigenvalues are much more likely to be computed next. For
general nonlinear eigenvalue problems on the other hand, no robust algorithms are known to the author.

Viscoelasticity. The eigenvalue problem for viscoelastic problems*! in the most simple case (one term
Prony series) has the form
[Ms? +D(s)s + K]u = 0. (2.7.3)

K =BE., D(s)s =B(E; — Ex) f(5),
f(s)=s/(s+a)=1-(s/a+1)"".

8Real modes correspond to an over-damped mode with no oscillatory component. These are not physical as discussed below.

46

Prony series damping in the time domain creates a frequency domain problem with real eigenvalues that are
not physical.*! Some care is needed to avoid the real eigenvalues in computations.

Here is a sketch of justification that the Prony series problem has real eigenvalues. The eigenvalue problem
has a closed form solution in terms of the eigenvalues of the undamped problem. The one term Prony series
damping increases the degree of the characteristic equation from two to three, and the third root must be
real.

Viscofreq. The eigenvalue problem in equation (2.7.3) is not a quadratic eigenvalue problem (M, D, K).
The obvious approximation is to evaluate D(s) at some fixed s, near to the wanted eigenvalues. The user
parameter viscofreq= w is a real number such that s, = iw. In a later release s, = r + iw for some
internally computed value r.

Using a value of viscofreq that is much too small may degrade performance. As viscofreq increases,
the eigenvalues do change, and Sierra/SD converges more quickly. The cluster of real eigenvalues moves
left, away from zero, and it becomes possible to compute more of the complex eigenvalues. Over-estimates
of viscofreq are safer than underestimates.

Suppose that s, = r +iw. A different quadratic eigenvalue problem is used.*! Both D and K are modified.
The approximation is more accurate for problems in which r is much more accurate than w. Also,
(M, D, K) are all real matrices. The eigenvalues and eigenvectors come in complex conjugate pairs.

Important to be aware that no constant damping matrix inherits the property of D(s) that

lim D(s) = 0.

§—00
Physically, this means that the eigenvalues in equation (2.7.2) that are far from viscofreq are
over-damped. If for a given mode shape, s, is closer to the real eigenvalue of equation (2.7.3) than either
complex conjugate pair, then Ceigen may return the real eigenvalue. For example equation (2.7.3) has
many real eigenvalues clustered left of —a.

2.7.3. Trust Regions and Real Modes

The eigenvalue problem is solved using ARPACK. The convergence criteria in the ARPACK package use a
trust region. CEigen will compute the right-most eigenvalues of the eigenvalue problem in equation (2.7.2).
If the k-th mode does not satisfy the convergence tolerance, and k <nmodes, then ARPACK is not
converged, no matter how many other eigenvalues are converged.

The authors have gone to great lengths to filter out real eigenvalues. Nonetheless in problems with a cluster
of real eigenvalues among the right-most eigenvalues, it is difficult to compute eigenvalues high into the
frequency range. If such a problem arises, increase eig_tol (multiply by ten), increase nmodes (add ten),
and most importantly increase viscofreq (double).

2.74. ViscoFreq - Approximating the Response of Viscoelastics

The viscoelastic mass matrix can be considered to be independent of frequency. However, the damping and
stiffness matrices can be functions of frequency, depending on the formulation. There are two possible
formulations. The first one results in a complex, frequency dependent damping matrix, and a real-valued,
frequency independent stiffness matrix. The second results in a frequency- dependent, real-valued damping

47

matrix and a frequency-dependent, real valued stiffness matrix. We chose the second formulation to avoid
having to deal with a complex-valued damping matrix. The two formulations are the same up to the order
of the linearization error.

Consider the simplest possible viscoelastic material, characterized by a single term of the Prony series. The
equation of motion for a 1D system with this material is given below. The full 3D case is similar, except
that it has separate terms for the bulk and shear components.

[Koo +sD(s) — s2M] u=f(s) 2.7.4)

Here, s is the Laplace transform frequency, f(s) is the frequency dependent force, and the damping matrix

is now a function of frequency.
1

s+1/t

D(s) = (EG — Ex) (2.7.5)

with E, the Young’s modulus for high frequencies, E the modulus for low (or glassy) frequencies, 7 is
the Prony series relaxation time, and Ko, = E B is the stiffness at high frequencies.

Equation 2.7.4 has two linearizations, since for the quadratic eigenvalue problem, we may only solve
equations of the form in equation 2.7.1, i.e. quadratic in A or s.

2.7.41. User Specified frequency of linearization

We define viscofreq, w and s, = r + iw, which is the complex number about which the linearization takes
place. In the current methodology, r is zero.

First, we split D(s,,) into its real and imaginary components by multiplying by E;:B—:Z’):
D(s) (Eg — E) ! (2.7.6)
S = — Lo .
¢ s+1/t
T
= (Ec-Ex)—/ B 2.7.7
(Ec)in+(rT+1) ()
T((rt+1) —iwt)
Ec - Ex)B 2.7.8
(rt+1)% + w272 (Eq) ()
Then we also temporarily replace the s in front of sD(s) with s,,. This gives,
sD(s) = (iw+r)D(iw+r) (2.7.9)
0+ 1) + 22 + 1212
ot + 0T +r7T b g B (2.7.10)

(r+1)% + w272

Finally, we replace iw + r with s to go to the quadratic eigenvalue problem. This results in a contribution to
the stiffness matrix, and a real damping matrix.

Ex+(Eg—Ex)——————|B+s|———— | (Eg —E)B+sM (25—0 2.7.11

Thus, we see that the damping matrix is real, but the stiffness matrix gets an additional (positive) real
contribution.

48

Practically of course, the systems are far more complex. Typically, there is more than one material, and that
material has some Prony terms. Equation 2.7.11 is modified, but the overall effect is the same, i.e. the
stiffness matrix is increased by a viscoelastic term, and the damping term is also modified. Effectively we
have the following.

R(r+iw) = Z Rotom(r + iw) (2.7.12)

elem

where K., is the modified stiffness matrix.

Ketem(r +iw) = Kejem +1mag(Djom (r +iw))

Likewise,

Dejem(r +iw) =real(D(r +iw)) (2.7.13)

The linearized eigenvalue problem determines A,

[K(r +iw) +idD(r +iw) - *M] ¢ = 0. (2.7.14)

2.7.4.2. A Simple Error Estimate

The accuracy of the eigenvalues of equation 2.7.11 as eigenvalues of equation 2.7.4 may be estimated.

First, we define the distance from a given computed eigenvalue, s, to the point of linearization, s, as 9.
0=25;—Su (2.7.15)
Note that ¢ is a complex-valued quantity.

Next, we define the residual as the vector resulting from inserting s. and the corresponding computed
eigenvalue, ¢., into equation 2.7.4.

(S%M +5:D(se) + K) ¢ =res (2.7.16)

The residual, as defined in equation 2.7.16, is a computable quantity. If the residual is large, then the error
in the computed eigenvalue and eigenvector is large. However, the more interesting question from the
analyst’s perspective is how large may ¢ be for one to expect accurate eigenvalues.

2.8. Linear Buckling

Buckling is the catastrophic failure of a structure under a specific load. Linear buckling is an approximation
to that solution which is accurate in many load environments. Texts on the subject include Cook.?’

In linear buckling analysis, a sample load is applied to the structure. The material and geometric stiffness
matrices are computed, and an eigenvalue problem is used to determine under what load the total stiffness
becomes singular. More specifically,

K; = Kiat + ngom,

and
(Kmat - /lngom) vo= 0 (281)

Determination of the eigenvalue A provides the scale factor that multiplies the sample load to determine the
buckling load. The eigenvector ¥ is an arbitrarily-normalized shape of the buckling deformation.

49

2.8.1. Eigen Problem Methods for Buckling

Note that (2.8.1) has the same form as equation (2.6.1) for the vibrational eigenvalue problem, with M
being replaced by Kgeom. For this reason, the numerical methods used to solve these problems are closely
related, and it is recommended that the reader begin by reviewing Section 2.6.

The buckling problem is solved using a shift/invert strategy similar to that used in dynamics. The operator
solved for buckling is,
-1
(Kmat - U_ngom) Kinat; (2.8.2)

c.f. (2.6.3). The main issue for the user is how to select an appropriate shift o.

Some challenges arise in computing the solution because, unlike M, the matrix Kgeom typically is not
positive definite:

1. Because Kgeom is not positive definite, we orthogonalize and normalize the vectors with respect to
Kmat-

2. When K, is singular, the solution method can fail or give unexpected results. Most buckling
problems clamp one end of the structure, so that is rarely a problem.

3. There are solutions possible when Ky, is singular, such as a piano wire that is singular until
tensioned. We don’t address these problems with our software, but encourage the analyst to explore
that space.

4. Selection of an appropriate value for the shift becomes important. Some principles may be applied.
a) The matrix A = Kpat — 0 Kgeom 18 key.
b) Formulation of (2.8.2) requires that o # 0.
¢) o should scale Kgeom s0 it is large enough to modify K.
d) The eigenvalue solver will find solutions o .

e) Convergence is rapid if o is chosen such that A is nearly singular. However, if A is singular, our
linear solvers will fail.

f) The sign of o is important. Typically, loads that put the structure in compression should apply a
positive value for o

5. For buckling, a negative or a positive shift oo may be appropriate depending upon the sign of the load.
It is easy to get this wrong and converge to a mode other than the first buckling mode, or not to
converge at all.

50

2.8.2. Buckling with Constraints

In this section, we derive the buckling equation (2.8.2) with constraints. Consider a structure with mass
matrix M and stiffness matrix K. Our first problem of interest is to solve an eigenvalue problem in which
the displacements u are subject to the constraints Cu = 0. Here, the rows of the constraint matrix C are
assumed to be linearly independent.

As a starting point, let’s first develop the unforced equations of motion using Lagrange’s equations. The
Lagrangian L can be defined as
L=T-U-2A"Cu,

where the kinetic energy T and potential energy U are given by
T =u"Mu)2, U=u"Ku/2,
and A is a vector of Lagrange multipliers. Lagrange’s equations of motion are

d (oL} oL _,
ar\oi) " ou "
oL

——— =0,
04

which can be expressed concisely as

ollalle SIl)

Assuming a solution of the form u = fie’®’ and 1 = Ae'“! leads to the eigenvalue problem

K CT\ (a , (M 0\ (i
- fy
~—— ——
EE EM
Thus, we can write the system as

‘= i

—\1

Kx = w’Mx,

Following the discussion in Section 2.6, this problem can be transformed as follows:
Kx — ocMx = w*Mx — o Mx,

implying that _ o
(K—-oM)"Mx = (0®-0) 'x. (2.8.4)

Solution of this transformed eigenvalue problem (2.8.4) can be done with the shift-invert mode in
ARPACK. The linear system to be solved involves the matrix

_ T
K —oM (K oM C), (2.8.5)

K—-—oM = C 0

51

which has the same constraint requirements as for a statics solve. The solver still needs to handle the
constraints in the same manner despite the subtraction of oM. Note that the matrix M appearing after the
matrix inverse in (2.8.4) does not include the constraint matrix C.

The buckling problem:
17 R
min Sh (K — uKg)it

0 s.t,
Cnu=0

has Lagrangian
1
L(4,v) = 3 T (K - uKg)a+ v Ci,

with partial derivatives

oL
0= T =(K - uKg)i+CTv
oL
0=— =Ci,
ay "
implying the eigenvalue problem
K CT\(a K, 0\ (a
e %) ()= 3)C) @so
——— ——
=K =K,

directly analogous to (2.8.3), with xT = (a7 vT).

The transformations used to solve the ARPACK buckling mode problem are somewhat different. Begin
with multiplication of both sides by o # 0:

oKx = O',Ui{;x,
and subtract ufx from both sides, leading to
oKx — uKx = o-,uE;x — uKx,

implying that _ _ s
(u—0)Kx = u(K —oKg)x

which can be rearranged to the form

u

(K - O'E;)_ll?x =
u—-o

x. (2.8.7)

The matrix required for the linear solves in this transformed problem has the same form as in (2.8.5), i.e.,

K—-o0K, = c 0

_ T
K - oK, (K oKe C), (2.8.8)

which implies that the constraint handling required by the linear solver itself is the same in both cases.

52

A critical giﬁerfnce between (2.8.4) and (2.8.7) is the form of the matrix that appears after the matrix
inverse: M vs K. Explicitly, these are:

K CT

c 0

-

1
Il

|

The matrix K is a semi-inner-product only for vectors x al VT) such that Cu = 0. Thus, we must
ensure that the vectors generated by the Arnoldi iteration always satisfy the constraint equations. In the

code, it was necessary to implement an extra reorthogonalization step to accomplish this.

2.8.3. Geometric Stiffness

The geometric stiffness matrix, Kgeom, is computed in two ways.

Stress: The SiErRRrA transfer process uses stress as the variable to compute the tangent stiffness matrix.
Stress is ideal in this case because the S1ERRA transfer also modifies the base coordinates of the nodes
to match the deformed location. The stress is the only remaining variable in this formulation. It is
important because we don’t need the stress history (which could involve plasticity or other
nonlinearities) to compute that tangent matrix.

Displacement: When Sierra/SD does its own nonlinear update, the tangent matrices are computed from
the existing displacement variables. Element stress is not used at all.

These two methods of computation are equivalent in the small strain, small displacement world that is
appropriate for a linear buckling calculation. The stress method is utilized for isoparametric solids.
However, this method is not available for shells and beams. With these elements the geometric stiffness
matrix uses a displacement based method.

2.8.3.1. Isosolid Elements.
The family of isogeometric continuum elements apply the following algorithms.
Kgeom = (o :T)JdV (2.8.9)
elem

where,

YT de dx dx dx

Here sym(y) is the symmetric part of the matrix, the : represents a tensor product, dN /dx is the spatial
derivative of the element shape function, and J is the Jacobian.

_ dN;’dN; m(de) sym(dNi)

2.8.3.2. Corotational Shells.

The geometric stiffness contributions for corotational shells uses a formulation by Bjgrn Haugen (73).
Details are needed.

53

2.9. Component Mode Synthesis

Component mode synthesis (CMS) in Sierra/SD follows the Craig-Bampton method. In this method the
model is reduced using fixed interface modes and constraint modes. The method is outlined in some detail
in Craig (reference® Chapter 19). It is summarized below. Note that in Sierra/SD we do not permit any
flexibility in the interface boundary options. Only fixed interface modes are supported.

CMS is typically applied to eigenvalue analysis, but it may be used in other analyses. Here we describe only
the eigen analysis application. Within Sierra/SD only a subset of the standard CMS method is available.
Sierra/SD may reduce an entire model to a set of interface degrees of freedom with the corresponding
system matrices and transformed matrices. Sierra/SD may also read in a reduced system for solution
within its framework.

CMS by these methods is always a linear model, with support for linear elasticity only. The reduction is
based on an eigen reduction and linear superposition.

2.9.1. Reduction of superelement matrices

The entire model of a structure may be reduced to the interface degrees of freedom and generalized degrees
of freedom associated with internal modes of vibration. Consider the general eigenvalue problem, with the
system matrices partitioned into interface degrees of freedom, C, and the complement, the vibration modes,
V.

[KVV KVC :| _ /l |: MVV MVC :|
Kcv ch MCV MCC
Within Sierra/SD we consider only the cases where K, is nonsingular (i.e. positive definite). For the

Craig-Bampton method clamping the interface degrees of freedom must remove all the zero energy modes
of the structure.

“}:o 2.9.1)

Uc

The Craig-Bampton method reduces the physical degrees of freedom, u, to generalized coordinates, p,
using a set of pre-selected component modes, V.

u=%¥p (2.9.2)

The component modes, ¥ = [®, /], are the eigen-modes @, the fixed interface problem,
vaq) = Mvvq)Avv

and the constraint modes . In the fixed interface eigenvalue problem homogeneous Dirichlet boundary
conditions are imposed on the interface, i.e. @, = 0. We retain only a (user specified) subset of the modes
in the fixed interface problem. Additionally, the constraint modes, i/, are the static condensation of the
problem. Each column of i is the solution of the static problem where one interface degree of freedom has
unit displacement, and all other interface degrees of freedom are fixed. As shown in the reference Craig
*),

¥ =-K;) Ky (2.9.3)

Note that our requirement that K, is positive definite implies that these solutions are well-defined.

54

Reduced System

In terms of the transformation matrix

D Y
=51
the reduced system is y = TTMT and « = TT KT, which can be written,
U= [ﬂkk ,ukc] ’ P [Kkk ch] ’
Hck HMcce Kck Kee
in terms of
ik Tik
T _ T
Hkc MHex = ¢ (Mvvlr// + Mvc)
¢" My + (Mcy)"
pee = W (Myth + Mye) + Moy + Mec
WMoy + (Meyy)" + Moyt + Mee
and,
Kkk Ak
Kke Kck = 0
Kee Kee — Kchv_levc
Kee + Koy

(2.9.4)

(2.9.5)

(2.9.6)

(2.9.7)

Note that the coupling between the modal and interface portion of the system matrix occurs only in the

mass matrix.

Parallelization Issues

The discussion above applies for direct solvers for which a system matrix is generated. Parallelization
issues are straightforward, and cover 3 main areas 1) computation of fixed interface modes, 2) computation
of constraint modes, and 3) matrix vector products.

1. Fixed Interface Modes. Since the process of computation of the eigenvalues is independent of the
particular solver, there are no parallelization issues with respect to the eigenvalue problem. It is easily
shown that parallel solvers result in the same eigen pairs as serial solvers. There is no reason to expect
that any finite precision issues would be more important here than in other modal based solutions.

2. Constraint Modes. The constraint modes are different, in that we do not currently have a capability
to compute enforced displacement in parallel. Recall that the constraint mode is the displacement on
space “V” that is computed when a unit displacement is applied to a single degree of freedom on the
interface. The serial equations are as follows.

K., Ky Uy | _ 0
Kev Kee Uc | R

55

(2.9.8)

Equation 2.9.3 uses the first of these only to solve for u, = . For a domain decomposition problem,
the system matrices are written differently. We examine a two subdomain problem for clarity.

Kivy Kive 0 0 C{v Uty 0

Kicv Kice 0 0 CITL Ule 0
0 0 Kyv Kae €}, uy | =10 (2.9.9)

0 0 Krev Koee C2TL Uze 0

Clv Clc C2v CZC 0 H R

We extract only the first and third rows to arrive at,
Uty
Kivy 0 C17; } [fl]

u = 2.9.10
0 K2vv Cgv Iiv f2 ()

Here f; = K;,cu;c. This system is the standard system of equations that is solved by the domain
decomposition solver. The RHS is the sum of the individual subdomain terms.

. Matrix Vector Products. There are two primary issues involved in the matrix vector products
computed in parallel. First, there is the issue of duplication of some nodal quantities on the
subdomain interfaces. Second, there is the issue of multipoint constraint handling.

The products required in computing the reduced matrices of equations 2.9.5 through 2.9.7 are of the
form, a” Bc, where a and c are vectors and B is a matrix. These are equivalent to element by element
summations like those used in computing the total energy. Thus, the quantities must be summed on
the interface. There is no need to divide by the number of shared interface degrees of freedom.

Equation 2.9.1 partitioned according to Lagrange multipliers, y, is

K, K, C\Y; M,, M, O Uy
K., K. CZ -A| M., M. O u. =0 (2.9.11)
Cc, C. 0 0 0 X

where y are the Lagrange multipliers. But, we want these multipliers to be reduced out of the system
(i.e. they should be in the “V” space), so it is useful to reorder the rows and columns of this equation.

kvv kvc } [Mvv Mvc } [iy }
~ -A ~ =0 2.9.12
([Koy Kee My, M | Uc ()
where,)
- K C ~ K
va:[é;v d’} KVC:_C‘f
~ M,, O _ u
Sl KR I

The matrix products are readily computed.

M, i, = M,,u,

M., = M:u,

Ko, = Kcv”v"'CZX

Thus, the mass products are simple — they do not require any special Lagrange multiplier treatment,
but the stiffness product may require some such contribution. Note that if C,. is zero (as occurs if there
is no constraint tied to the superelement interface) then the stiffness terms are likewise unchanged.

56

4. Reduced transient problems and the inertia tensor. CMS methods are often applied to the
differential equation Ku + Mii = f. Ideally the problem has a solution of the form u(z) = T'q(t),
using the transformation matrix defined in equation (2.9.4). These solutions are be computed from
the reduced problem g + ug = TT f. For a discretization of a floating structure, with rigid body
modes R such that KR = 0, the solution satisfies the consistency condition R” Mii = RT f.

One way to impose the consistency condition uses the inertia matrix I,, = T7 R. Suppose that there
exists an S such that R = 7'S + E has a solution, and the error E is negligible. Then the reduced
consistency condition is S” 1§ = RT f. We use the solution S minimizing the norm of the error, E,
and characterized by TTE = 0. If T has full rank, then S = (T7T)~'1,,. It is worthwhile to check
that T is full rank and that « and y do not have common null spaces.

5. Accuracy Issues. The accuracy of the null space is determined by the sum of two large quantities
(see equation 2.9.7). With iterative solvers, this may not be determined accurately enough to ensure
stability of subsequent time history integration. Even unconditionally stable integration schemes like
the trapezoidal Newmark-beta methods can become unstable if the stiffness matrix is indefinite.

In our experience inaccurate solves decrease the accuracy of the rigid body energy modes with little
impact on the remaining flexible modes. A post processing step corrects the rigid body modes. Two
methods are used. The simpler method removes negative modes from the reduced matrix without
affecting the eigenvector basis of the matrix. However, if the eigenvectors can be accurately
determined using geometric means, then a better approach uses these known eigenvectors to correct
both the eigenvalues and eigenvectors of the reduced matrix.

To correct eigenvalues alone, we developed the following algorithm, based on the idea of matrix
completion [40].

a) We extract the interface portion of the reduced system matrix, «... Note that the portion of the
matrix associated with generalized degrees of freedom (i.e. the fixed interface modes) should be
positive definite.

b) We perform an eigen analysis of this matrix.
Kee = VAVT
where Vi is the eigenvector, and A; is the eigenvalue of mode i.

¢) We determine a corrected matrix,

negative modes
~ T
Kee = Kee — Z VjAjVj

To correct both eigenvalues and eigenvectors of the corrupted null space, the algorithm is more
involved. Details of the algorithm are presented in Figure 2-6. Most of the operations in the
algorithm operate on matrices of order 12 or smaller, so the computational cost is minimal. The
method does require practically exact zero energy modes.

57

10.

11.

12.

. Determine rigid body modes, R, of the interface. This is done geometrically.

These are normalized so that RTR = I. Typically there are 6 such vectors.

Let, A = RTk..R.

. Compute a error vector, U = k.. R — RA. Note that RTU=0

Perform a QR factorization of the error vector. U = SB. Matrix S has orthonor-
mal columns.

Define Q = [R S]

Compute the norm of the matrix composed of A and B.

|l A
=11 B
Compute the eigenvalues of A.
(A=2ADa =0
Compute G = u*I — A2,
W =¢.NGo;,
D =-BW 'AW-1BT
define,
A BT
(5%)

note that ||H|| = u.

Compute the correction,
- HoT
Kce = Kee — Q Q

Figure 2-6. — Eigenvalue and Eigenvector corrections of Craig-Bampton reduced models

58

2.9.2. Craig-Bampton sensitivity analysis

Sierra/SD may compute the sensitivity of the reduced mass and stiffness matrices to design variables. In
term of the transformation matrix (see equation (2.9.4))

k=TTKT (2.9.13)

Sensitivity of the matrix to variations in a parameter may be obtained by differentiating this equation.
There are several approaches to that operation.

Constant Vector The transformation matrix 7, is treated as a constant. Thus, the original model and its
derivative are transformed into the modal space of the original structure. If there are sufficient modes
to span the space, this operation is exact. We designate T, as the transformation matrix for that
original modal space, and use forward differences to write the derivative.

dc T] (K(p+Ap)-K(p) T,
dp Ap

(2.9.14)

In the limit as Ap approaches zero, this should approach the exact solution provided that 7;, spans the
space.

However, practically we truncate the modal space spanned by 7;,. In many real world cases, that
truncation is unable to accurately represent the derivatives.

Finite Difference In this approach, we recompute the entire model, including the transformation matrix, at
both the nominal and perturbed state. Thus, K} = K(p + Ap) and T} = T(p + Ap). Using forward
differences,

dx T[K(p+Ap)T -TIK(p)T,
dp = Ap
The finite difference method accurately represents the state at both the nominal and perturbed states.
In the limit as Ap approaches zero, the method converges to the true solution.

(2.9.15)

However, problems will be encountered if there are closely spaced (or repeated) modes.>>3> Consider
the reduced matrices, which have both physical and generalized degrees of freedom. If a closely
spaced mode changes sort order in the matrix, the derivative is meaningless. With repeated modes,
the issue is even more difficult as the eigenvectors of repeated modes may be linearly combined.
Also, any eigenvector has an arbitrary sign. To help diagnose these problems, we output the mass
cross orthogonality matrix.

Ajj = ¢ Mg, (2.9.16)

Product Rule The finite difference method is treated like an exact method. However, in the case of CB
reduction, the changes in eigenvectors make the method complicated. Another approach would be to
differentiate equation 2.9.13 using the product rule.

dc« dTT dK dr
K k1T 41T (2.9.17)
dp dp dp dp
Several means®®196-135 gre available to determine the derivatives of the fixed interface modes, ¢, and
constraint modes, i, which are the components of the transformation matrix. This approach blends

the best features of both previous methods, but is more complex to develop.

This method is currently unimplemented.

59

2.10. Eigenvalue Sensitivity Analysis

Within Sierra/SD semi-analytic sensitivities may be computed for eigenvalues and eigenvectors. A
rudimentary capability for sensitivity to linear transient response is also available, but has not found much
practical value because the cost of the analysis is not significantly better than the cost of computing the
response using finite differences. For details of the transient analysis formulation, see Alvin’s paper,.*

For eigenvalue sensitivity, we begin with linear eigenvalue equation.
(K=AM)¢ =0 (2.10.1)

The equation is differentiated with respect to a sensitivity parameter, p, and we consider the solution for a
single eigen pair.

(dK — dA;M — 2;dM) ¢; + (K — ;M) do;
o7 (dK — dA;M — AdM) ¢;

0 (2.10.2)
0 (2.10.3)

where we use the fact that ¢! (K — ;M) is zero. We note that ¢” M ¢ is the identity to solve for the
sensitivity.
dl; = ¢T dK¢; — A;p! AM ¢, (2.10.4)

The method is “semi-analytic” in that the matrices dK and dM are found by finite differences but then are
applied to the analytic expression above. Because there are no linear solves required, the solution is
straightforward and accurate.

The algorithm used for the solution of eigenvalue sensitivity is as follows.
1. Perform nominal eigenvalue solution.
2. Loop through parameters P, and modify as needed.

3. On an element by element basis compute,

(K +dK)¢
(M +dM)¢

u

4. compute the sensitivity, dd = ¢k — A¢T .

This element by element method conserves memory and is efficient. It has been implemented successfully
for all parallel solvers. It has not been implemented for the sparsepak solver when MPCs are included in the
model. The transformations required for multipoint constraints complicate the element by element
calculation.

There are many algorithms'?> for computing eigenvector sensitivity. Nelson’s method!% expresses
eigenvector sensitivity implicitly,

fi=—(dK = ;dM — dA;M), (K - 4;M)d¢; = f;,

requiring one linear solve per eigenvector sensitivity. It suffers from singularity issues with redundant
modes and from accuracy limitations when only part of the modes are extracted. For computational
efficiency, the linear solve uses a preconditioned conjugate gradient algorithm,

(K - /liM)Wi = fl - (K - /liM)q)Ci (2105)

60

Because this operator is indefinite, we redefine the problem as,
wi = Px;, (PT(K - A4,M)¥)x; =¢T (fi — (K - LM)Pc;). (2.10.6)

The operator (¥7 (K — A;M)¥P) is positive definite as long as mode i and all modes below mode i are
contained in ®.

Forward sensitivity of linear transient dynamics solutions was not found to be useful. For details on
sensitivity on the reduction of superelements see Section 2.9.2.

211, A posteriori error estimation for eigen analysis

The purpose of this section is to summarize two different approaches for a posteriori error estimation of
eigen analysis. The first is an explicit error estimator,3°,’* and the second is a quantity of interest
approach.'%® The explicit approaches are described in chapter 2 of,! and the quantity of interest approaches
are described in chapter 8 of the same book. However, since we are interested in the eigenvalue problem,
the methodologies are somewhat different than the approaches described in,! though there are many
similarities. Both the explicit and the quantity of interest approaches have the same goal - to use the
computed solution to compute upper and lower bounds on the discretization error for the eigenvalues and
eigenvectors. A drawback to the explicit approach is that unknown constants are present in the bounds,
making final determination of the error more difficult. Because of this, an explicit estimator is more
frequently used as an element indicators to drive adaptivity algorithms, rather than as an error estimator.
The quantity of interest approach avoids the unknown constants, but is more work in terms of

implementation.

2.11.1. Preliminaries

We seek a posteriori bounds on the error of the finite element solution of the eigenvalue problem for
elasticity
—pAu= A+ V(Y -u)+uViu=V-o(u) (2.11.1)

or
AL(u) = —AAs(u) 2.11.2)

where A (u) and A;(u) are the partial differential operators implied by equation 2.11.1, 2 and u are the
unknown eigenvector and eigenvalue, and A and p are the Lamé elasticity constants. We note that the
right-hand side of equation 2.11.1 can be written either in terms of displacement, as in the first
representation, or in terms of stress, as in the second representation of the right-hand side of the equation.
The weak formulation of equation 2.11.1 is constructed by multiplying by a test function, and integrating by
parts, with homogeneous boundary conditions. This leads to the weak formulation: Find (1,u) € V X R
such that

B(u,v) =AM (u,v) VvevV (2.11.3)
where
B(u,v) = / o(u)e(v)dx (2.11.4)
Q
and
M(u,v) = /puvdx (2.11.5)
Q

61

After defining a finite element discretization, this reduces to: Find (uy, 45,) such that
Ku = AMu (2.11.6)

where (up, Ap) are the finite element approximations of the eigenvector and eigenvalue, and K, M, are the
assembled stiffness and mass matrices.

2.11.2. An explicit error estimator

In Larsen® and Rannacher,’ two independently derived error estimates are presented for the Laplace
equation. While the two estimates differ, both incorporate an unknown constant, C, an element diameter
term, h., and an element residual function, p. In what follows we extend these estimates to the elasticity
problem. The following two error estimates are given in% and’* respectively. In what follows we use
Larsen’s results (equation 2.11.7) exclusively. °

1
N, 2
1A= Ap] < cACeyp (Z h;‘ﬁ(uh,/lh)2) 2.11.7)
e=1
Ne
|1 < CZZhﬁﬁ(uh,Ah)z (2.11.8)

e=1

where ., is the element diameter, and

_ 2

p(up, Ap)* = / (IA1up + ApAsup| + Ry)™ dQe (2.11.9)
The first term on the right-hand side is the interior element residual, which is the differential stiffness
operator Ay, defined in equation 2.11.2, applied to the computed element displacement combined with the
computed eigenvalue times the differential mass operator A,, also defined in equation 2.11.2, applied to the
computed element displacement. This term is computed by representing the eigenvector as a summation

N

up(x) = Z a;N; (x) (2.11.10)

i=1

where a; is the i’" entry in the eigenvector, and N; (x) is the i’" shape function, and then applying the
gradient and divergence operators from equation 2.11.1 to the summation in equation 2.11.10.

We note that the quantity Ajup + ApAsuy, is expressed in the strong form, and thus is not the same as
Kuy — A, Muy, though both expressions are on the element level. The difference can be seen by observing
the first term A uy,

A]MhZV'O'(uh) (2.11.11)

That is, Ajuy, is the divergence of the stress (which is computed from the finite element displacement uy,).
This is not the same as Kuy,, since Kuy, is in the weak form, and has been evaluated by integrating over the
element against a test function. For example, if we consider linear elements, we have

Aiup =V - o(up) =0, since the stress is constant over the element. On the other hand, Kuy, is not zero.

9Equation 2.11.7 applies to elements with linear shape functions. The more general expression may be found in equation 2.11.57
or the reference.

62

The second term is the boundary or flux residual.

1/2
R f1ux = (hevol(e)) ™'/ [/ dere} (2.11.12)
Ie

It has two different integrands depending on whether the face in question lies on a part of the boundary
where traction or pressure boundary conditions are applied, or whether it is an interior face. When it lies on
a boundary loaded face,

R =g - ojjn; (2.11.13)
where g is the applied traction or pressure load. Note that g = O for eigen problems. When the face is an
interior face,

b
R = [oyjn;| = ofinj - ofn; (2.11.14)
where o and o” are the stress tensors in the two adjacent elements, element ’a’ and element *b’. Note that
because the integrand is squared, computing the flux residual in parallel requires parallel communication.

We note the intuitive nature of the upper bound in equation 2.11.7. As the element size /. tends to zero, the
right-hand sides of the estimate goes to zero, due to the multiplication by the element sizes /.. Keep in
mind also that the p term includes an integral over a volume and that }; i\/:'fl ||const|| is a constant.

There are two important issues in applying the results in Larsen’s reference to general elasticity problems.
The first of these is the extension to elasticity. The second is the extension to multiple materials. These are
covered in the following sections.

2.11.3. Error estimates for elasticity

This section was provided by Ulrich Hetmaniuk to help us with problems in scaling the Laplace equation to
the elasticity problem. It addresses issues of both mass and stiffness scaling. A similar development was

provided by Clark Dohrmann. The development herein builds upon Larsen’s development,®® and uses
quantities defined there.
We consider the eigenvalue problem
—uAu— (A+pu)V(V-u)==-V-o(u) = OGpu inQ (2.11.15)
u =0 on 9Q (2.11.16)
where the Lamé constants A and u satisfy
Az (]H)Vﬁ —. “:ﬁ 2.11.17)
We define also a weak formulation: find (u,0) € VX R
a(u,v) = 0b(u,v), VvevV (2.11.18)
b(u,m) = 1 (2.11.19)
where
a(u,v) = / o(u) - e(v)dx (2.11.20)
and ’
b(u,v) = /qu-vdx (2.11.21)

We follow the approach in the paper by M. Larson to derive an a posteriori error estimator. We use most of
his notation.

63

Residual

The definition (3.7) for the residual becomes, on a triangle 7,

1 1 o) |\
R(up,0p) = —|V-0'(uh)+9hpuh|+\/— (n- e) (2.11.22)
T \p hvol(t) Joraa\" | 2P
Note that we have
R(up, 0) = R(up, 0p, 0, E,) (2.11.23)
and that R satisfies the following scaling properties
u, 6 1
R(_,_,QP,E,V) = _R(uh’eh,p’E9V) (21124)
Va a a
R(up,abp,p,aE,v) = aR(uy,0,p,E,v) (2.11.25)
Stability estimates
The equation (3.10) becomes
1 1+s/2 1 1+s/2
[|D?*SV|| < Co54|b (—V : o-) (v), (—V : o-) (v) (2.11.26)
P p
Note that £
U
A+pu= , —=1-2 2.11.27
K= 0+ =2y A+ p v ()
Then, we get
p(1+5)/2
Ces = CW (2.11.28)
Note that we have
Ces =Ces(p,E,v) (2.11.29)
and that C, s satisfies the following scaling properties
Ces(ap.E,v) = a""™2C, ((p,E,v) (2.11.30)
Ce,s(p, a,E’ V) = ch,s(p’ E9 V) (21131)
A posteriori estimates
We make also the assumption (2.6) : there are 0 < 6 < 1 and hg > 0O such that
<d , <06 2.11.32
maX |19 g l|Qeunl| ()

for all meshes such that max h(x) < hg. Using p = 1, k =2, 8o =0, and B; = 1, the final estimate on the

eigenvalues becomes
0, -0 c
- <
0 1-6

Ce.0VPIIW*R(uyp, 65)]| (2.11.33)

64

The estimates on the error in the discrete eigenvector are now

c 0
Vb(eo, < ——C.o(1 h*R(uy, 0 2.11.34
(eo, €0) g Ceoll +max |91‘_9|)\/.5|| (up, Op)| ()
1/2
Va(eg,ep) < M(Cc+CeoIIl'c1X—i/hmax)||hR(llh,9h)|| (2.11.35)
1-6 620 |0; — 0]

where C. is related to the coercivity constant

[IDv|| < Ceva(v,v) (2.11.36)

In Ciarlet’s book (“The finite element method for elliptic problems”), the coercivity constant is given

a(v,v) > 2u||Dv|]] = C.= (2.11.37)

<
V21
2.11.4. Explicit Estimator - Multiple Materials

To date, we have not seen any publication which extends the explicit error estimator to multiple materials.
We don’t believe that there are significant issues, and present the approach used in Sierra/SD here. There
are two main constraints from the explicit error estimator formulations that must be maintained.

1. The eigenvectors, u;, must be unit normalized, i.e.||uy|| = 1. This is important for mass scaling so
that a change of units does not change the fractional error in the solution. It is an essential part of
both Larsen’s development and Ulrich’s extension to elasticity. See equation 2.11.19.

2. The extensions must maintain finite element consistency so that as & goes to zero there is no
inconsistency.

The second of these can be evaluated by examination of the residuals (as in equation 2.11.9). Both the
internal and the flux terms of the residuals are unchanged by most scaling operations provided that
materials remain constant within an element. Note that the evaluation of the flux jump (equation 2.11.12) is
insensitive to multiple materials since the normal component of stress discontinuity should go to zero even
for disparate materials.

Eigenvector normalization could be addressed in several ways. The eigenvectors computed in Sierra/SD
are mass normalized, i.e. u” Mu = I. We renormalize for error estimation in the following manner.

1. A dimensionless mass matrix, M is computed using unit density material.
2. We compute a scale factor

me =u' Mu (2.11.38)
3. The eigenvectors are renormalized as u «— u/+/m,.

In addition to eigenvector renormalization, we move the evaluation of the scaling constant, C,, s, from
equation 2.11.28 inside the summation of equation 2.11.7. This maintains the proper scaling with respect
the element stiffness terms.

A recent paper by Bernardi and Verfurth® has shown that an explicit estimator can be used in the presence
of multiple materials. For static Laplace equation, he derived multiplicative constants for the interior and
flux contributions that make the multiplicative constant in front of the estimator independent of jumps in

65

material properties. In what follows we extend this approach to the eigenvalue problem, and to elasticity
problems. We will follow the same approach as in that paper, i.e. first constructing the lower bound, and
then the upper bound. The proper choices for the coefficients will result from the upper and lower bound
estimates.

First, we note a commonly used form for an explicit estimator.

1
[()] :
lun —ulle < ¢ (hnRi(uh,eh)uiz(K)+vh|| T ok

K
(2.11.39)

where R;(un, 0y) = |V - o(up) + 0ppuy|, [0y, (uy)] is the jump in stress across the element boundary 0K,
and || - || o is the energy norm. This estimator can be shown to give both an upper and a lower bound on the
error. As written, this estimator does not account for discontinuities in material properties, since the
constant ¢ in front of the estimator would depend on the jumps in material properties.

We note that the estimator, written in this form, is essentially the same as the one proposed by Larson. For
example, by writing the boundary term as an integral of a constant function, scaled by the volume of the
element, then we can write equation 2.11.39 in the form

ln = ulla <

K

1

Vi [opu)] ,)
HLZ(K)

hR; ,0
|1AR; (up, h)+Vol(K) >

(2.11.40)

which is the same expression given by Larson in the case of linear elements. We note that this estimator is
in terms of the energy norm, whereas Larson gives his results in terms of the L? norm. This results in the
difference of one power of 4 in equation 2.11.40.

The approach in Bernardi is to replace the estimator in equation 2.11.39 by

Z [0 (an)]
”llh - u”a/ <c (ﬂKani(uha Hh)”izu() +/Je‘|| Vl2 HiZ(BK)
K

(2.11.41)

where ux and u. are chosen in such a way that the resulting estimator is both an upper and lower bound on
the error, and the constant ¢ is independent of the jumps in material properties.

Before beginning, we redefine the original PDE as follows
-V.o
Jol

fu (2.11.42)
the corresponding bilinear forms as
1
a(u,v) = / —o(u) - e(v)dx
Qp
b(u,v) = / u - vdx
Q
and the corresponding interior residual as

V-o-(uh)+0

R;i(up, 6p) = | AU (2.11.43)

66

By dividing through by p, we include the density in the energy norm. This will be important later on when
the coefficients in equation 2.11.41 are selected.

As in Bernardi, we need the following identities, which follow from equation 2.11.3

a(u—up,v) = 6b(u,v)—a(uy,V) (2.11.44)

0b(u,v) —a(ap,v) = Z /K (9u+ })V . O'(Uh)) vdx —
K

Z / [%o-n(uh)] -vdt (2.11.45)

where the summation), is over all edges (in 2D) or over all faces (in 3D). We also use equations 2.11 in
Bernardi’s paper.

The lower bound will be considered first. We set wg = Wk R; (up, 6,), where Wk comes from equation 2.11
in Bernardi’s paper. We will also make use of the following inequality for the bilinear form

IA

llullelV]la (2.11.46)
ak |[al[1 [V (2.11.47)

a(u, V)K

IA

where ag = g—l’;, and Ck is the maximum eigenvalue of the material property matrix, and pk is the density
of the element.

For the interior part of the residual, we have

1
i
K LP

-V O'(llh) + Bhuh] - wgdXx

IA

”Ri(uh, Qh)HiZ(K)

1
= —7?/—G(uh)-e(WK)dHﬁ/9huh~WK
K P K

= yfa(u—uh,wK)K—ny/u-deX+yf0h/uh-dex
K K

1
< 9 [Hu —unllo(k)Y2hg @ + 10nun — b2 k)

X IR (uns 00l 12 (k) (2.11.48)

where we note that, since Wk is a bubble function, the boundary terms vanish in the integration by parts on
the second line of the above equation.

This implies that

IR (s Ol oy < V3

1
lu = unllox)y2hx' @ + 165un - 119||L2<1<)]

or, multiplying through by ug,

1
llu = unllo (k) txY2hg @2 + pillOnun — w6l L2 k)

kR (un, O laxy < ¥7

We assume that the computed eigenpair 6, and uy, are closer to the exact solution 6 and u than any other
exact eigenpair. This assumption is also made by Larson, in equation 2.6. With this assumption, the term

67

|6 un — ub|| ;2 (k) is a higher order term compared with [[u — up || (x), and thus will decay to zero at a
faster rate. This was also shown in the paper by Duran.>> Thus, we select g based on the term
1

lw —un|l 2 k) only. If we select ux = h Ka/;f then the right-hand side is independent of the jumps in
material properties.

For the boundary term, we first choose w, = ¥, [/l)(rn(uh)], where again ¥, comes from equation 2.11 in
Bernardi. Then, using equation 2.11.48 we have

|| [1an<uh>
0

1
”22(3) <)’%‘/[—O'n(“h)] 'WedT
elp
1
= 7%2/ (V-—O'(uh)+0huh)-we—y;‘,Za(u—uh,we)
X /K P <

+ y%Z/(Hu—Qhuh)'we
K K

1 _1 1
¢y} (Z ysh [R:Cun Ol 20 +) vahe* gl = unllq
K K

IA

22

1 1
+ yshe Z lué —llh9h||L2(K)) I [;%(uh)
K

IA

2
Y3
K

_1 1 1
D hagllu—uplla+ Y hill6nun - 0ull 2,
K

2 (2.11.49)

x| [1an<uh>
0

where in the above equation,)¢ denotes a summation over elements, but only those elements that border
the edge e. Also, in the previous estimate we collected constants involving y and combine with the constant
¢, where possible.

This implies that

1
, L
l2(e) < €¥3He

I
pe |l [—O'n(llh)
P

_1 1 1
Z hela}|lu—upllo+ Z hel|0nun — 6ul| 2 g
K K

We see that if we choose u, = h, max (ak1, a/Kz)_l , where subscripts 1 and 2 denotes the two neighboring
elements that contain the edge or face e, then the right-hand side (neglecting the higher order term) is
independent of the jumps in material properties.

Now we construct the upper bound. We start with a few identities that will be needed along the way.
1
—V.o(uy) +0u] - (w—wp) =—a(up, w—wp) +
Q\p

Z [%Un(uh)

e

- (W—wp) + / fu(w — wp)
Q
(2.11.50)

68

This implies that

L raCom) | - (W — W)

a(up, Ww—wy) = Z

e

1
+/ Ou-(w—wp) — / (—V -o(uy) + qu) - (W — Wp) (2.11.51)
Q Q\pP
We will use the previous result in the upper bound on the energy norm of the error. Let w = u — uy. Then
||u—uh||%l =a(u—up,w) =a(u—uy, W— W) (2.11.52)

where the last equality follows from Galerkin orthogonality. Breaking the previous expression into
element-wise quantities, and using equation 2.11.51, we obtain

||u—uh||f, = Za(u—uh,w—wh) (2.11.53)
K

Za(uw Wh) — Zl o (un)
- Z/Qu (w— Wh)+Z/(—a'(uh)+9u) (W —wp)
Z/K (V . %O'(llh) +9u) -W — Wp, — Z [%a’n(uh)] - (W — Wp)
K

e

(W —wp)

1 _
< ZuKnV o) + 6l o i W = Walloz ey
+ Zﬂe”[o (Un) ”Lz(e),uellw Wh“Lz(e)
1
2
< ZuKuv —a(uh>+eu||L2(K)+Zue||[an<uh>] IIW)]

1
2

X Zu,?nw—whniz(m+Zy;lnw—wh||§2(e)]
L K e

Equation 2.16 in Bernardi’s paper shows that

1
2

< c||W|le (2.11.54)

D IW = Wall2a e+ D e W = Wl
K e

With this result, we have

1

2
lu—uplle <c ||L2(6)} (2.11.55)

ZuKMV —a(uh) *Opul gy + e [o ()

which is the desired upper bound. We note that we would also obtain higher order terms in the above
expression by adding and subtracting terms of the kind fK Onupdx, but the same argument could be made as
before.

69

2.11.5. Explicit Estimator Summary

Summarizing, the implementation of the explicit error estimator involves the following steps. These steps
have to be carried out for each eigenvalue separately.

1. Renormalize the eigenvectors as in section 2.11.4, equation 2.11.38.

2. Loop through all elements in the mesh. Compute the surface flux residuals for each face. Share that
residual vector at each surface Gauss point with neighboring elements to determine the stress jump
2.11.14. Integrate over all faces (by summing at surface Gauss points) to determine R 77, (€q
2.11.12).

3. Loop through all elements in the mesh. At each interior Gauss point of each element,

a) Compute the interior residual,

ay = |Ay(up) + ApA2(up)|

b) Compute the integrand,
(a1 +R flux)2

Note that R 7,5 is a constant over the element.

¢) Sum at Gauss points to obtain the element contribution,

NGauss

ﬁ2=/ (@1 + Rpu)?dQe ~ > wilar(xi) + Ryuux)?
Qc

i

4. Compute the global contribution to the error. For elements with linear shape functions, this may be
written,

1

2

2.11.56
1 ()

N,
A—-A =
-l (Z(ce,ohimz)
e=1

Where (as shown in Section 2.11.3, equation 2.11.28),

Jo,
Clo=——
<07 (A+p)?

and p, A and u are the material density and the Lamé constants respectively. The more general
expression for elements of order p is,

1
4= A S () 2|
Tomn =€ Z(Ce,p—lhe | - (2.11.57)
e=1

We note that although the constant, ¢, in equation 2.11.56 is unknown, it is estimated to be of order 1.
The constant depends on the details of the mesh, and in particular on the minimum angle in the
elements.

70

2.11.6. Approach Il - quantity of interest estimator

In,'%® an error estimator is derived for the elasticity equation, using the eigenvalues as the quantity of
interest. The estimate is of the form

Mow = —Tapp (2.11.58)

Pl 2
Mupp = “Miow (2.11.59)
where nfow is a lower bound on A — 4, and nﬁp p 1s an upper bound on A — ;. Note that both quantities are
necessarily negative,'” since the computed eigenvalues are always larger than the exact ones.

The quantities 7, , and 17, are computed using the element residual method. This method involves
solving a small linear system on each element to obtain an error representation for that element, and then
the element contributions are accumulated to obtain the total errors. The element linear system is

—-B(®k,v) = R(v,0) +/ 8y.kvds Yv e Wg (2.11.60)
0K

or
Kpa=f (2.11.61)

where a is the vector of coefficients that represent the function @k . In other words,

bk = Zfi‘;hap Chubble . N;, where N; is the i’" bubble shape function. The left-hand side K}, is the element
stiffness matrix, but evaluated using bubble functions rather than the standard element shape functions.
This is necessary since the standard element stiffness matrix is singular and thus equation 2.11.61 would
otherwise not be solvable. The right-hand side consists of two terms, an interior residual term for the
interior of the element, and a stress jump term on the element boundary. This is similar to the interior and
boundary residual terms that were encountered in the explicit error estimator, though the exact formulas for

these terms are somewhat different. The first term is
R(v,0) = B(up,v) — 1M (up,v) (2.11.62)

Equation 2.11.62 can be most efficiently evaluated using the following method.!'!" We evaluate the first
term first.

B(up,v) = /K B} .0 (X)dx (2.11.63)

where Bgu pble 18 the standard "B’ matrix, or the matrix of derivatives of the element shape functions,
except that it is using the bubble shape functions rather than the standard shape functions. Note that the
result of equation 2.11.63 is a vector of length 3xNshapepuppie, Where Nshapepyppie is the number of

bubble shape functions. We note that the routine ForceFromStress in IsoSolid.C already performs the

computation needed for equation 2.11.63, with the only change being the use of the matrix Bgu ph1e Tather
than the standard BT, and thus this code could be re-used.
The second term can be evaluated in a similar way.
M(up,v) = / up (x)v(x)dx (2.11.64)
K

10for consistent mass only.

71

Note that uj,(x) is a known function. This term is also a vector of length 3xNshapep,ppi.- The three
entries corresponding to the i*”* bubble shape function are as follows

/K i (0) 5 (x) i, /K an (x) i (x)dx, /K usn (x) i (x)dx.

where u1,, uzp, and usz, are the x, y, and z components of uy, and ¢; is the i" bubble shape function.

The boundary term consists of the following. g, k is the traction on the element boundary, or

/ gy.xvds = / [oijn;| vds (2.11.65)
0K oK

where [o;n;| denotes the averaged stress on the element faces. For two adjacent elements, element *a’ and
element ’b’, it is the average of their stress traction vectors.

1
[O’[jnj] =3 (O'l.“jnj + O'ibjnj) (2.11.66)

Again, the test (shape) function in this case, ’v’ is the bubble function rather than the standard element
shape function. We note that the boundary integral term in equation 2.11.60 and equation 2.11.65 is over all
faces of the element in question. Thus, if the implementation of this term proceeds one face at a time, then
there will be a nodal summation step to get the complete right-hand side vector corresponding to the
boundary integral term. We could also write this term as

Nfaces
/ gyxvds= / gy.xvds (2.11.67)
0K i=1 aI<i

where dK; is the i*" face of element *K’. Note that the test functions, v become the element shape functions

when restricted to an element. Thus, for a given element bubble shape function ¢p,pp1e, and a given face,

we can write the previous equation as

/ 8y.K Pbubbleds (2.11.68)
a .

Note that g, g is a 3-vector, and so for a given bubble shape function, and a given face, /¢9K,« 8y.KPbubbleds
is also a 3-vector. We then take this 3-vector and project it into the element right-hand side. After looping
through all faces and all bubble shape functions, we end up with a vector that is of length

3% Nshapebubble.

Once the linear systems 2.11.61 are solved on each element, the upper bound, 7,,, from equation 2.11.59

can be computed as follows
Nupp = |, B(®k, ®x) (2.11.69)
K

This equation can also be written as follows. If we represent the function @k as a summation of coefficients
multiplied by the bubble shape functions,

NShapebubble
O = Z a;N; (2.11.70)
i=1

then

Mupp = \/Z B(®k, Pk) = \/Z a’Kpa (2.11.71)
K K

72

Finally, using equation 2.11.59, we have an upper bound on the error in the eigenvalue.

A lower bound on the error in the eigenvalue can also be computed. This is described in detail in,'® and we
summarize here.

First, we define a function y € V, which we will define shortly. Once the function y is defined, the lower
bound can be computed as follows

_ 1Ry (x. 0l 2.11.72)

Niow =
VB(x: x)
The quantities in both the numerator and denominator can be computed by looping through all elements
and computing the corresponding element-wise quantities (using equation 2.11.62), and then summing
globally.

Summarizing, to implement the quantity of interest approach for eigenvalue error estimation, we have the
following steps. These must be carried out for each eigenvalue.

1. Loop over all elements. Construct the bubble stiffness matrix, K in equation 2.11.61, in the same
way that standard element stiffness matrix is constructed, but using the bubble shape functions.

2. Loop over all elements. Construct the right-hand side of equation 2.11.61. This consists of the
interior part, equation 2.11.62, and the boundary part, equation 2.11.65.

3. Loop over all elements and solve the linear systems 2.11.61, to obtain the error functions ®g.
4. Compute the upper bound on the error in the eigenvalue using equation 2.11.71.

5. Compute the lower bound on the error in the eigenvalue using equation 2.11.72.

2.12. Nonlinear Distributed Damping using Modal Masing Formulation

This provides a method for implementing nonlinear distributed damping into a subsystem with a nonlinear
transient solution. This is a method developed to model the nonlinear damping response of a subsystem. It
implements the damping in a nonlinear manner with the use of an internal force term. The damping is
modeled by an Iwan model and distributed to the subsystem by a modal expansion. This method augments
the internal force vector through a modal Masing formulation.

Subsystem Distributed Damping Formulation with Iwan Model. Given a system that contains a
subsystem exhibiting nonlinear damping behavior, the equation of motion for the subsystem, denoted by B,
can be written in typical finite element form as:

Mgug + Cgug + Kgug = Fp + FY, (2.12.1)

where Mg, Cp, Kg are the mass, damping, and stiffness matrices of the subsystem B derived from a
low-load response, up is the discretized nodal displacements, a superposed dot denotes time differentiation,
Fg represents the external forces, and F% is a distribution of internal nonlinear damping forces to be
discussed later.

73

A modal expansion is used to distribute the damping to the subsystem; therefore, the problem is formulated
in modal coordinates. Let ®@p be the matrix whose columns are the eigenvectors of the (Mg, Kg) system
and define modal coordinates in subsystem body B

up = PpQs, (2.12.2)

where ¢ p is a vector of modal coordinates. It is assumed that the eigenvectors are mass normalized.
Pre-multiplying Eq. (2.12.1), by ®%, yields

[®Mp®s]qp + [@5CrPr]qp + [PyKp®p]qp = PyFp + DRFy, (2.12.3)

To derive a nonlinear distributed damping system, the force term (I)gFf3 is modeled by a four parameter
Iwan model: 1811

©yFy =Fyp = - /0 diag(p(¢))[q(t) — B(t, ¢)]dg, (2.12.4)

where p is the population density of Jenkins elements of strength ¢ (not to be confused with the
eigenvectors), and B(t, ¢) is the current modal displacements of the sliders in the Iwan model.!'” This force
term is solved in a discretized form with the integration from zero to ¢,,4x: 119

N
=— Z Fm(t) — Fs(t) + Koq(t), (2.12.5)

where the integral in Eq. (2.12.4) is numerically integrated with intervals, A¢,,, such that,

N
D A = P (2.12.6)
m=1

with ¢,, being the midpoint of each interval A¢,, in the numerical integration. The, term, F,,,(¢) is derived
119
as:

2+X sgn[q(1) = (D)) if || q(2) = B(@) lI= ¢m
R—7 7~ [q(1) - B(1)] if [l g(t) = B(1) [I< ém

with ¢, ,, and ¢; ,,, being the right and left side of each sub-interval, A¢,,, and R and y are a parameters of
the Iwan model. The term, Fy(¢), is found:'"”

Slq(t) - B(1)] if [q(2) = B(1)] < ¢m
SOmaxsgn[q(t) — B(t)] otherwise 2.12.8)

(2.12.7)

Fs(t) ={

where S is an Iwan parameter. The final term, Kog(?) in Eq. (2.12.5), is an elastic restoring force in the
Iwan model that is included in the F,(¢) term, but also in the overall subsystem stiffness matrix, Kg.
Therefore, it needs to be subtracted, so as not to include the elastic force twice. The term K| is the stiffness
of the Iwan model under small applied loads (where slip is infinitesimal). This is calculated from the Iwan
parameters as

¢)(+1 ¢)(+1
Ko== e :"‘lx (1+p) (2.12.9)

Transferring to physical degrees of freedom provides the following for the equation of motion:

Mgug + Cpup + Kpug = Fg + @5 F) (2.12.10)

74

To avoid the possibility of an ill-conditioned and difficult pseudo-inversions, recognize that Mp®p = d)];T,
yielding:
MBUB + CBuB + KBUB = FB + MB(I)BF'(]I)B (2.12.1 1)

Given the above EOM, a typical nonlinear analysis can be performed, recognizing that the force term
Mg (I)BFE]DB is a function of the displacement. However, care must be exercised in the implementation, as
the modal displacement will need to be passed to the Iwan function for updating internal forces.

2.12.1. Subsystem Distributed Damping with a Linear Damper

It is possible to derive the same basic formulation as above, but for a linear damping. This provides a check
into the formulation as the results should be the same as a model with a modal damping parameter.

The only required change from the above derivation is in the nonlinear internal force term, F;'DB. This term
will need to be appropriate for a viscous damper; thus, a function of the modal velocity. A formulation can
be found as the following:

Flp =F o = “26wig;, (2.12.12)

where subscript i represents the mode, ¢; is the damping ratio for mode i, w; is the frequency for mode i,
and « is the modal velocity. Here I am trying to see how many subscripts I can possibly add.

Reduced Model. To reduce computational demand, a reduced set of eigenvectors ((I)I;) can be calculated
for the subsystem and used in place of the total subsystem eigenvector, ®p.

Full System Model. Implementation of the full system with nodal degrees of freedom, u, is accomplished
with a typical projection matrix, P, from the full system to the subsystem.

up = Pu (2.12.13)

The EOM simplifies to
Mu + Cu + Ku = F + P"Mg®3F! (2.12.14)

2.13. Shock Response Spectra

Theory for computation of a shock response spectrum may be found in the papers by Smallwood.'?*1?* The
theory is not repeated here. Many analysts use the MATLAB scripts developed by Smallwood to perform
this analysis. MATLAB provides a nice, interactive environment for this analysis once the time integration
has been performed in Sierra/SD. Sierra/SD performs identical calculations.

2.14, Superposition for superelement recovery

A Craig-Bampton reduction generates a transformation matrix consisting of a combined set of fixed
interface and constraint modes. These modes may be stored in an Exodus file. We call this
“se-base.ex0”. A netcdf file containing the reduced order model, “se.ncf” is also created at this time.
Subsequently, this reduced model is inserted into a residual model for superelement analysis, say a transient
analysis. That analysis outputs the standard Exodus results, “mesh-out . exo” and results on the netcdf file,
“se-out.ncf”. The point is to recover the response on the original interior degrees of freedom of the
superelement.

75

The transient response on the interior degrees of freedom is,

nmodes nconstraint
wetn) = Y g+ . wilt)¥x 2.14.1)
i J
where,
ur(t,) = isthe displacement at interior dof k

t, = 1isthe time step
q; = 1isthe amplitude of a generalized dof for mode i

¢ix = 1isthe fixed interface mode i at dof k

wj = is the amplitude of interface dof j

is the constraint mode j at dof k

Wk

The amplitudes g; and w; are found in “se-out.ncf”, while the mode shapes, ¢;x and ¢ ;; are found in
“se-base.exo0”. The “superposition” solution combines these results and writes a new output file
containing the results.

2.15, Coupled Electro-Mechanical Physics

The finite element method was used to derive the coupled equations of motion underlying the coupled
electro-mechanical physics package. The theoretical details are documented in the referenced Sand
report.28

2.16. High Cycle Fatigue and Damage

The theory for fatigue analysis is developed from “Random Vibrations, theory and practice”.!** From
equation WPO:10.58, the wideband damage is a correction to the narrowband damage.

D =ADnp

For Narrow Band damage, A is 1, but other damage models (such as that proposed by Wirsching and Light),
use A as a modifier to adapt Narrow Band damage to Wide Band processes. Narrow Band damage is
defined as:

+
Dng = %(\/EUSFSS)'"F (% + 1) (2.16.1)

Note that this equation assumes that the value of A used in the material’s S-N curve is based on peak stress.
If it is calculated based on stress range, narrowband damage is instead express as:

Dyp =

vit e (M
A (2\/§O'SF35) F(5+1)

Both practices are common in material data. We use the definition in equation (2.16.1) in this work. The

Fatigue Stress Scale (Fss) is a parameter to convert stress units from the simulation’s unit system to the unit
system of the material. Here,

76

m negative of slope of S-N curve, default=3.
vs rate of crossings
T is the exposure time (or duration)
A strength coefficient of material
oy RMS stress
Fss Fatigue Stress Scale

The rate of zero crossings may be computed as, v, = y/M>/M, from equation WPO:6.24. Here M is a
stress moment, which is readily computed in Sierra/SD. Within the modal random vibration module, RMS
stress moments are computed. These are related to the stress moments.
2 2)\? 3\

Mo = (Vews/(20)*, Mo = (Vemsa/(2m)) My = (Vawss/(20)°)

Therefore,
vy = VrRms2/ (21 - VRums)

The RMS stress is the primary output of the modal random vibration analysis.

Material and random loads must be provided as user input, and the other quantities are readily determined
from the analysis. D yp is well-defined. There are various methods of computing the correction factor 4. A
few are outlined below.

Sensitivity to Stress The narrow band damage parameter (eq. 2.16.1), is nonlinear in the stress.
Effectively, D,,;, < 0. Thus, doubling the stress when m = 3 results in an 8 fold increase in damage rate.
However, m may be as high as 14 for many real materials. Doubling the stress increases the damage rate by
214 = 16384.

2.16.1. Competing Damage Models

Wirsching and Light: applies equation WPO:10.60. This is described in [!3?]. Compute:

a(m) =0.926 —0.033m a=

g SENA

b(m) =1.587m —2.323 €= 1-
vy = My M, A= a(m)+[1-am)](1-e)btm.

Ortiz, Chen and Perng: applies equation WPO:10.62.

MoM;,
k=2/m, B=+—22% 1=pa.
MoMy2 F

Lutes and Larsen: applies equation WPO:10.68.

(2.16.2)

77

Steinberg: The Steinberg approach for calculating fatigue can be useful as a simple check of fatigue
failure. The Steinberg approach uses the assumption that the RMS of the stress is representative of a
1o event, and that the peak stress of any given cycle is a random value. As such, it calculates a
cumulative damage as the summation:

i=virerf(—=|, N;= D=) — 2.16.3
ni= v rer (\5) (lm)m > (2.16.3)

The Steinberg approach is ideally suited to loads that operate at one frequency, or a narrowband of
frequencies. There is also the problem of choosing an acceptable number of terms to calculate.
Eventually, the magnitude of the stress becomes great enough to cause low-cycle failure, and the
equations for high-cycle fatigue breakdown. To avoid this, and to make the calculation inexpensive, it
is common to limit ourselves to only the first 3 terms of the series.

Dirlik: This method is described in Mrsnik ('9%). Define,

Ml M2 az—xm—G%
Moy N My l—ag—G1+G1
7= s G = 1—6!2_G1+G1
VM, 1-R,
M
@ = —— G; = 1-G,-G2
MoMy
2(xm — a’%) 1.25(ap — G3 — GaRy)
Gi=—"—5~ 0=
1+a'2 Gy

Then,

_ k k
D=C"'y,M |G1Q*T(1 + k) + (V2)*T (1 + 5) (G2|Ra4|* + G3)

Typically, these correction methods provide similar results. The Ortiz and Lutes methods require the
moment My, which could vary by material block, and is expensive to compute. The Wirsching method is
somewhat simpler, and will be followed as a first development.

78

3. ACOUSTICS SOLUTION METHODS

In this section, we discuss the partial differential equations behind the acoustic formulations used in Sierra
Structural Dynamics. We also discuss discretization procedures, mesh matching conditions on the wet
surface, exterior boundary conditions, and various loading scenarios including scattering. As the first step,
we show how to derive the acoustic wave equation from the fluid dynamics equations. This will then lead
into a discussion of the coupled equations of motion.

3.1. Derivation of Acoustic Wave Equation

Under certain assumptions, fluid motion can be approximated as small-amplitude linear wave propagation.
We give a short background on the assumptions that go into the derivation of the acoustic wave equation. In
the most general case the fluid motion is governed by the compressible Navier Stokes equations. In the case
of small-amplitude wave propagation, viscosity is typically neglected, and a polytropic relationship is
assumed between pressure and density in the fluid. In this case, the fluid motion is described by the
nonlinear Euler equations

dp
—+V. = 3.1.1
o (pv) =¢q (3.1.1)
ov
pE +pv-Vv+Vp=f 3.1.2)

where equations (3.1.1) and (3.1.2) represent mass and momentum conservation, respectively, and p, p and
v represent the fluid pressure, density, and velocity. The right-hand side terms consist of mass injection g
(density per unit time) and body force f (force per unit volume). Note that these are both nonlinear
equations, and thus allow for both fluid convection and wave propagation. In addition, we note that a
nonlinear pressure-density relation exists for a given fluid

p=p(p). (3.1.3)

Equations (3.1.1), (3.1.2), and (3.1.3) are nonlinear, but they can be linearized under the assumptions of
small fluid motion. First, we decompose the field variables into ambient (background) values plus small
perturbations:

p =po+op

0 =po+0p (3.1.4)

v =0+ ov.

We say that the perturbations dp, dp, and dv are all O(9). Since the background velocity is equal to zero, v
itself is also O (6).

79

Next, we insert equations (3.1.4) into equations (3.1.1), (3.1.2), and (3.1.3), and in keeping with the
linearization process we neglect terms that involve products of perturbations. This yields the following:

ap
=L.v.
9=+ (pv)

- % (po +0p) + V- ((po +6p)5v)

0 96
- % +(9_tp + oV - 6V +8pV - v + 6V - 8p (.1.5)
=0 20(62)
d6p
~— V-6
ot * 00 v
0
f=pa—:+pv-Vv+Vp
aov
= (po + 6”)7 +(po+06p)ov - Vév + V(py +p)
)
:po(?_tv +6pa—tv+(p0+6p)6v-V6v+ Vpo +Vép (3.1.6)
———
=0(8?) =009 -
aov
~ po—— + Vo
Po o1 + Vop

]
p(p) =po+ a—p(po)5p+ cees
I

(3.1.7)

where we have linearized the pressure-density relation (3.1.7) by taking only the first term in a Taylor series
expansion. This implies that to first order,

0
op = ﬁ(po)ép-

(3.1.8)
It is useful to make the definition 3
2= a—p(po). (3.1.9)
Je,
That c is in fact the speed of acoustic wave propagation follows below.
Combining equations (3.1.5), (3.1.6), and (3.1.8), we arrive at the linear Euler equations
1 96
—26—p + pOV -0V = q
¢ t@év (3.1.10)
—+Vop =
PO p=1rf
Taking the time derivative of the first of equations (3.1.10), and the divergence of the second of
equations (3.1.10), we arrive at the linear wave equation
0q 0 (106p 0ov
— -V f=—|=— V.-6v|-V-. —+ Vo
ot f az(czaz ro V) (p06t+ p)
1 0%6p oov
=— +p0=—V-6v—poV:-—-Ad
2 o P0G Y OV T RO Ty maoP G.1.11)
=0
1 8%6p
= ————Adp.
c? 012 P

80

It is often useful to employ a formulation of the acoustic wave equation based on a velocity potential
rather than the acoustic pressure 6 p. This approach can simplify the formulation of problems in structural
acoustics, and can also yield symmetric rather than unsymmetric linear systems. There are a variety of
definitions that can be employed. As the name velocity potential implies, among the most well-known
choices is:

ov =Vy. (3.1.12)

Let us consider the implications of this choice vis-a-vis equation (3.1.10). Plugging equation (3.1.12) into
equation (3.1.10) and reordering derivatives, we obtain

ov

= Poa—;/’ +Vép

oy (3.1.13)
=V —+90
(o + 0|
Therefore, we have
s5p = —pn ¥ (3.1.14)
P =—po o 1.

With the definition in equation (3.1.14), time integration of the velocity potential ¢ is necessary to recover
the physical pressure. The fluid density pp must also be available to perform this conversion, which may
create some bookkeeping headaches. An alternative choice for the velocity potential is to make the
definition

oy
op = —. 3.1.15
P= ()
In this case, it follows from equation (3.1.10) that
Vi = —pgdv, (3.1.16)

i.e., we have removed pg from the relation between pressure and the velocity potential but made it appear in
relating the velocity potential to Vi.

In either case, a derivation similar to that employed above for the pressure-based wave equation can be used

to show that the velocity potential also satisfies a wave equation''?
1 0%
za—tf—Aw:O. (3.1.17)

We use this fact later on for coupled system of equations.

In the following sections, we find it convenient to drop the ds and write v,p to indicate the perturbations
ov,0p.

3.2. Coupled Structural Acoustics

In this subsection, we present the coupling of the acoustic wave equation derived in the previous section
with the structural dynamic equations of an elastic structure. Excellent review articles’>>’ have been
written on the subject. In this section we focus on the details relevant to the Sierra/SD implementation.

81

3.2.1. Discussion of Matching vs Non-Matching Meshes on Wet Surface

Having the same mesh density in the acoustic fluid and solid may be inefficient, since the two domains
typically require significantly different mesh densities to achieve a given level of discretization accuracy. It
is also impractical in many applications since the mesh generation process may be performed separately for
the two domains. Generating conforming meshes on the wet interface may be difficult, if not impossible,
even given the most sophisticated mesh generation software. Illustrative examples include the hull of a ship,
or the skin of an aircraft. In these cases, the structural and fluid meshes are typically created independently,
and have different mesh density requirements. Joining them into a single, monolithic mesh is often
impractical.

Although methods for joining dissimilar meshes are well-known in structural mechanics,5>%1113 few

papers exist in the area of dissimilar structural acoustic meshes. Mandel®” considered parallel domain
decomposition techniques for structural acoustics in the frequency domain, on mismatched fluid/solid
meshes. Nonconforming discretizations on the wet interface were handled by duplicating acoustic and
structural degrees of freedom on either side of the wet interface, and imposing coupling equations that
enforce continuity of pressure and displacement. The duplicated degrees of freedom were then included in
a dual-primal, parallel domain decomposition strategy. Only two-dimensional, frequency-domain problems
were considered. Flemisch et al.® studied both fluid-fluid and structure-fluid coupling on mismatched
meshes. For fluid-fluid coupling, a mortar approach was taken, whereas for structural acoustic coupling, the
coupling matrices were assembled in normal fashion and used across the wet interface to coupled the
fluid-solid responses. Only time-domain, serial solutions were considered.

Several recent references considered a displacement-based acoustic formulation, which was then coupled to
an elasticity formulation on mismatched fluid/solid meshes. Alonzo? used an adaptive method with error
estimation to refine the fluid/solid meshes accordingly. The error estimator demanded different mesh
densities on the fluid and solid interface, as expected. Bermudez?! also considered a displacement-based
acoustic formulation, but used an integral constraint on the wet interface, along with a static condensation
procedure to eliminate the acoustic degrees of freedom. In both of the preceding references,
Raviart-Thomas elements were needed to avoid spurious modes in the fluid. These modes would have been
automatically eliminated with the use of a potential formulation in the fluid.

In the following sections, a new technique is presented for structural acoustic analysis in the case of
nonconforming fluid/solid interface meshes. We first construct a simple method for coupling mismatched
fluid/fluid meshes, based on a set of linear constraint equations. Using static condensation, we show how
these constraint equations can be eliminated from the final system of equations. We then demonstrate that
the same approach can be taken to couple mismatched fluid/solid meshes, provided that the coupling
matrices that are typically used for conforming fluid/solid meshes are calculated at a set of nodes with both
structural and acoustic degrees of freedom, and that extra (“ghost”) degrees of freedom are introduced to
couple the structural or acoustic terms to the other side of the interface. With this arrangement, the
structural acoustic coupling resembles a conforming method with like degrees of freedom linked across the
interface via MPC equations. Then the conforming structure to acoustic coupling operators ensure a weak
continuity of particle velocity and stress between the structural degrees of freedom and collocated acoustic
degrees of freedom on the shared side of the interface. Note either the structural degrees of freedom can be
ghosted to the acoustic side of the interface or the acoustic degrees of freedom can be ghosted to the
structural side of the interface. Either arrangement may be more appropriate depending on the mesh
density of the two regions.

82

In the case that the fluid/solid meshes are conforming, our approach reduces to standard methods for
conformal structural acoustic coupling.

3.2.2. The Coupled Equations and Their Discretizations

In this section, we review the governing equations of acoustics and structural acoustics, along with their
corresponding weak formulations, and then we present our approach for the nonconforming discretization.
We begin with the case when all meshes are conforming, and then we extend this to the nonconforming
case.

3.2.2.1. The Sierra/SD Velocity Potential Formulation

There are several common formulations for acoustics and structural acoustics. Some details are outlined
briefly here. Table 3-1 summarizes the formulations used in Sierra/SD.

Problem Space Formulation

Acoustics Source Loading Velocity Potential: (3.1.15)

Acoustics Enforced Acceleration Pressure

Structural Acoustics. Loading must be through | Negative Velocity Potential: (3.1.15) but multi-
source loading only. plied by -1 to maintain symmetry.

Acoustics or structural acoustics with infinite el- | Velocity Potential: (3.1.15). The infinite ele-
ements ments are not symmetric.

Table 3-1. — Acoustic Formulations.

3.2.2.2. Conforming Structural Acoustics

We begin by constructing a weak formulation of the linear acoustic wave equation for conforming meshes.
Subsequently, we consider conforming structural acoustics. In this section, we will use the relation (3.1.15)
between pressure and the velocity potential ¢, but write p ¢ instead of pg as the density of the fluid to use p;
for the solid density. Surface normal vectors are denoted by 7.

Recall that the linear acoustic wave equation (3.1.17) is given by

1 0%y

iy Ay =0. (3.2.1)
Note that this implies that we do not include volume (body) forces on the fluid. A weak formulation of
equation (3.2.1) can be constructed by multiplying with a test function and integrating by parts. We denote
the fluid domain by Q¢ and its boundary by 0Q = 92, |J €4, where the subscripts n and d refer to the
portions of the boundary where Neumann and Dirichlet boundary conditions are applied. We also assume
that the fluid is initially at rest, i.e. ¥ (x, 0) = 9, (x,0) = 0, which is sufficient for most applications.

Denoting by V¢ (€y) the function space for the fluid, the weak formulation can be written as follows. Find
the velocity potential ¥ : [0,T] — V(L) such that

2
L[pae+ / Vy - Vodx = / ¢y - inds = ~ / prev - ds (3.22)
ot Q oQ 0Q,

CZQ

83

V¢ € V(£2r), where the fluid velocity v is prescribed on the Neumann portion of the fluid boundary, €2,,.

Inserting a finite element discretization ¢(x) = l’i | $iN;(x) into equation (3.2.2) results in the system of
equations

My + Ky = fa, (3.2.3)
where N is the vector of shape functions, M = fg L NNTdx is the mass matrix, K = f VN -VNTdx is
f Qy
the stiffness matrix, and f, = — /69 pyv - AN T dx is the external forcing vector from Neumann boundary
conditions.

For structural acoustics, the second order equations of motion for the solid and the wave equation for the
fluid are
d%u 1 9%y
— -V.o=f, —— Ay =0. 324
Here u = (uy,uy, u;) corresponds to the displacement of the structure, o is the structural stress tensor, pj is
the density in the solid, and f denotes the body forces on the solid. Subsequently, the subscripts s and f
will refer to solid and fluid, respectively.

The fluid/solid or wet interface is designated by 0Qy,.;. The normal to dQ,,., points from solid into the
fluid. In linear acoustics the boundary conditions on JQ,,; are

o .
——n

Vi -ii =— proiu - A, “hA=— .
v-n Prou - o-n Er

(3.2.5)
These boundary conditions correspond to continuity of velocity and stress at the wet interface
respectively.

The weak formulation of the coupled problem is constructed by multiplying the two partial differential
equations in equation (3.2.4) by test functions and integrating by parts. Denoting by V,(€2,) and V¢ (Q)
the function spaces for the solid and fluid, respectively, we have the following weak formulation.

Find the mapping (v,¢) : [0,T] — V(L) X V¢ (Qf) such that

0%t

/ ps—wdx +/ o Vwdx —/ (o - A)wds :/ fwdx +/ (o - A)wds,
o, Ot Q, et Q, 9,

1 %y A
5 [Shoacs [vuvoans [vuirsds
C Q Qf (I)ngt

o0t?
- [u-ivgas
o0Q,

f

(3.2.6)

Vw € Vi(Qy) and Vo € V(Qf), where 0Q,, is the portion of the solid and fluid boundaries that has applied
loads, and f is used to denote body forces on the solid. Also, V® = % (V + VT) is the symmetric part of the
gradient operator. If Dirichlet boundary conditions were applied to part of the structure, or if the fluid had a
portion of its boundary subjected to Dirichlet conditions, then the Sobolev spaces V(£2,) and V()
would be modified accordingly to correspond to spaces that have those same boundary conditions. Recall
that the normal is defined to be positive going from solid into the fluid.

84

Next, we insert the boundary conditions from equation (3.2.5), and we define o - 7 = g on the solid portion
of 0Q,, and Vi - i = —p ¢0;u - fi on the fluid portion of 9€2,,. This leads to the following weak formulation.
Find the mapping (v,¥) [0,T] — Vi(Qy) x V¢(Qf) such that

0%t S oy .
Psoywdx + o:Viwdx + —nwds = fwdx + gwds,
o, Ot Q, Qe O1 Q, o9,

L[&y A
2 Fqﬁdx + V- Veodx —py (Oru -) pds =
Qp 01 Qy et

—pf/ (Osu -) Pds (3.2.7)
0Q,

Vw € Vy(Qq) and Vi € V¢(Qr).

Assuming a linear constitutive model for the solid, and inserting the spatial discretizations
u= (uy,uy,uu;) = (X ux,Ni, 2 uy,Ni, Y uz;N;) and ¢ = 3 ¢;N; into equation (3.2.7) yields the following
semi-discrete system of linear ordinary differential equations in time

1 S e v b [H R
|+ |+ = . 3.2.8
[0 Mg (¥ —prT Crl ¥ 0 Kg||vw fr ()
where Mj, Cy, and K denote the mass, damping, and stiffness matrices for the solid, and My, Cr, and K
denote the same for the fluid. The coupling matrices are denoted by L and L. Coupling between fluid and

structure, and any damping in the fluid or solid separately, is accounted for by the damping matrices. The
quantities f; and fr denote the external forces on the solid and fluid, respectively.

3.2.2.3. Nonconforming Structural Acoustics

In the case of nonconforming fluid/solid discretizations, equations (3.2.6) and (3.2.7) contain some extra
technicalities. In this section we first describe a simple procedure for coupling two acoustic domains which
share a common boundary, but with nonconforming discretizations. This method serves as a stepping stone
to the case of nonconforming structural acoustics.

To enforce continuity of appropriate field variables between the two different surfaces, the degrees of
freedom and element surfaces involved in the coupling need to be known a priori. Given the surface meshes
of the fluid and solid, this information is non-trivial to obtain, especially in parallel, since adjacent element
surfaces may reside on different processors.

The ACME and Dash package?® have been developed as tools to determine surface contact conditions
between general surfaces in three dimensions. These surfaces can take the form of boundaries of finite
element discretizations, as in our case, or they can be analytic surfaces. In either case, search algorithms are
employed to determine node-face interactions between the opposing surfaces, based on search tolerances.
A given node is determined to be in contact with a given face of the adjacent surface if the distance from the
node to the adjacent element face is within the defined search tolerance. The contact package can compute
contact conditions between most of the standard three-dimensional finite elements, including hexahedrons,
tetrahedrons, and prisms. Once these interactions are defined, one can devise enforcement algorithms to
enforce continuity of the appropriate field variables. Once surface constraints are known, we derive our
own enforcement algorithms, as explained below.

We consider the situation shown in Figure (3-1). Here there are 2 interacting acoustic domains, and two
contact surfaces. We adopt a node-face approach, where one of the two interacting surfaces contains tied

85

faces and the other tied nodes. We denote surface 1 as the face-surface, and surface 2 as node-surface. For
a transient acoustic simulation involving the two meshes shown in Figure 3-1, we would have to solve the

system of equations given in equation (3.2.3), which would involve degrees of freedom from both acoustic
domains, subject to the constraint that the velocity potential is continuous across the nonconforming

interface. The extra equations corresponding to this constraint can be derived from a simple consideration
of the contact geometry.

Acoustic Domain 1 /k Acoustic Domain 2

Surface 1 Surface 2

Figure 3-1. — Two interacting acoustic domains, with nonconforming meshes at the common interface. In this
case surface 1 is defined to be the face-surface, and surface 2 is the node-surface.

In Figure 3-2, node x from surface 1 is impinging on element face y of surface 2.

Element "Y"

—__aSurface 1
®

Figure 3-2. — A node-face interaction on the structural acoustic interface.

If contact determines that the distance from node x to element face y is within the user-defined search

tolerance, a constraint relation will be needed to enforce continuity of velocity potential. The constraint
relation for this interaction can be written in the form

4
b
lﬂa = Z Ciwi .
i=1

where /¢ is the velocity potential at node x on surface 1, and »,b;’ are the velocity potentials at the four
nodes of element face y on surface 2. The coeflicients c; are determined from the position of node x relative

(3.2.9)

86

to the positions of the nodes on element face y on surface 2. More precisely, ¢; = N;(&,n) are the values of
the surface shape functions corresponding to the nodes on the surface of element y in Figure 3-2, and ¢ and
n are the dimensionless surface coordinates of the location of node x on the surface of element y. Thus, the
velocity potential at node x is constrained to be equal to the value that would be predicted by a finite
element interpolation on the surface of element y.

For example, in the special case that face y is square and node x lies at the center of the face y, the
coeflicients c¢; would all be equal to ‘—1‘, indicating that the constraint is an average. This can be seen by
considering the surface shape functions corresponding to a plane bilinear element on a square ¢ = —1, 1,
n=-1,1.

N = %[(1 —OA =), 1+ =), (1+5(L+n), 1 -&(1+p]". (3.2.10)

If node x were at the center of element y, then & = i = 0, and all coefficients would be 4—11. If x were
off-center, these coeflicients would change accordingly. If the surface of element y were a triangle instead
of a square, (indicating a tetrahedron instead of a hexahedron), the procedure would be the same, except the
shape functions in equation 3.2.10 would be different.

We use this approach, sometimes called standard node collocation or inconsistent tied contact,’® for the
nodes/elements on the interacting surfaces. This results in a set of linear constraints that enforces continuity
of velocity potential at discrete points between the two acoustic meshes.

It is well known that inconsistent tied contact results in constraints which do not meet convergence criteria
for finite elements. In particular, meshes which rely on these methods do not always pass the static patch
test for structures.*>°1:113.134 Other methods such as mortar methods, provide more accurate, but more
complex approaches. Fundamentally, these methods are similar to those presented here, as the concepts of
tying the acoustic degrees of freedom through a system of constraint equations apply.

These constraint equations can be expressed as>’

CP=0, (3.2.11)
where C is a matrix that contains the constraint coefficients from the node-face interactions, and vector ®
contains all degrees of freedom for the problem. The vector @ can be partitioned as

_| @
O = [o] (3.2.12)

where ®,, contains all node-surface acoustic degrees of freedom and @ ¢ the face-surface degrees of
freedom. With this partition, equation (3.2.11) can be written as

Cn®f +C;®,, = 0. (3.2.13)

We note that the matrix C; is diagonal either for the constraint enforcement approach used here or for a dual
mortar method.'?*!!3 If the constraint equations are linearly independent (assuming there are no redundant
constraints), then the matrix Cy is also nonsingular. The node-surface degrees of freedom can be condensed
from the stiffness matrix by using ®, = C,,,;® ¢, where we define C,,s = —C 1C,,. Additional details are
provided later.

Next, we examine the dimensions of the constraint matrices defined above, and their relation with the
number of acoustic and structural nodes on the wet interface. We define ng as the number of nodes on the
structural side of the wet surface, and n the total number of degrees of freedom for the problem. The
dimensions of Cj is then seen to be ng by ng, while the dimensions of Cy, is ny by n — ng. For example,

87

consider the mesh shown in Figure (3-1). If we assume that the domain on the right is a structural domain
(instead of acoustic), we would have ng = 7. In addition, only 5 columns of C,, would have nonzero
entries.

The condensation expression®’ holds,
K= Kmm + KinsCns + ery;sKSm + C;Zr;sKssCms’ (3.2.14)

as do the similar expressions for mass and damping. While static condensation does generate non-diagonal
matrices, it does not significantly effect the sparsity of K or M, since these are local constraint equations
that involve only a few degrees of freedom. After condensing out the node-surface acoustic degrees of
freedom in equation (3.2.3), we obtain a modified system of equations

My + Ky = fo, (3.2.15)

where the tilde superscripts indicate that the node-surface constraints have been condensed out. Note that
the vector ¢ only contains the interior degrees of freedom (corresponding to nodes that are not on the
interacting surfaces), and the face-surface degrees of freedom on the contact surface, since the node-surface
degrees of freedom have been eliminated. Equations (3.2.15) can also be solved in the frequency domain,
as follows

[s°M + K|y = fa, (3.2.16)

where s is the frequency parameter that comes from the Laplace transform.

In the case of structural acoustics, the algorithm for the nonconforming fluid/fluid meshes can be used as a
stepping stone to the nonconforming solid/fluid meshes. In this approach ghost structural or acoustic
degrees of freedom are added to one side of the wet interface. Due to the ghost degrees of freedom
collocated structural and acoustic degrees of freedom are present one side of the wet interface (e.g. three
displacement and one velocity potential degree of freedom). Two surface integrals in equation (3.2.7), i.e.
fagwet Onyiiwds and p ¢ fﬁﬂwet Oru - figds, are evaluated to couple the structural acoustic coupling terms at
these collocated degrees of freedom. Across the interface the like degrees of freedom (the “true” degrees of
freedom and their ghost counterparts) are tied together using the same set of linear constraint equations that
were developed for the nonconforming structure/structure case.

In addition to equations (3.2.8), we have a set of linear constraint equations that couple shared degrees of
freedom across the wet interface. As in the structure/structure case, these constraint equations represent the
relations between the face-surface and node-surface degrees of freedom, and they take the same form given
by equation (3.2.11). Upon condensing these constraints out of the system of equations, (3.2.8), we obtain a
modified system of equations

lﬂg AEI)J‘HZ}+[_P€LT CiHH*[Ig zngH{j;] (32.17)

where again the tilde superscripts represent the matrices with constraints condensed out. Note that, in this
case, the structural matrices (and coupling matrices) must be modified during the constraint removal
process. This is because of the coupling matrices L and L” involve uncondensed degrees of freedom. To
solve this system of equations, we use the generalized alpha time integration method,** which is a
generalization of the Newmark-beta method.

In addition to the transient analysis formulation outlined above, an advantage of our coupling procedure is
that it can be applied equally well to nonconforming structural acoustic problems for both eigenvalue

88

analysis, and frequency domain analysis. The coupling terms lead to a quadratic eigenvalue problem.

u
=0 3.2.18
Jlol-0 o

M 0
0 -My/py

+ 22

([K, 0] 2 [Cs L
0 —Ky/py LT -Cy/py
In the case of zero damping, this is a gyroscopic system with imaginary eigenvalues, and complex

eigenvectors.

The frequency domain equation can be obtained by a Fourier transform of the time domain equation. This
results in following complex-valued system of equations.

+iw

|5
_ [s } (3.2.19)

([Ks 0 Cs L]—wZ[M“ 0 D[u
0 -Ky/py L™ —Cslpy 0 -Mys/py v
In the next section on numerical results, we present results from all cases, including time domain,
frequency domain, and eigenvalue analysis simulations.

Our method can be summarized by the diagram in Figure (3-3). In the shown example the structural nodes
on the wet interface are augmented with the acoustic degree of freedom. Consequently, these nodes each
have four degrees of freedom. In this example the acoustic degrees of freedom are constrained across the
interface via an acoustic-to-acoustic MPC. The structure to acoustic coupling is enforced on the structure
side of the interface which has conforming structural and acoustic degrees of freedom.

One case that requires special care for structural acoustic coupling is double wetted shells (a structural shell
sandwiched between two acoustic domains.) For this case the structural velocities at the shell and the two
acoustic domains should be identical. However, the acoustic pressure potentials at the two acoustic domains
are not identical. To correctly run this case, the structural degrees of freedom should be tied with MPCs
across the three domains and the structure-to-acoustic coupling terms be evaluated on the acoustic domains.
This enables two separate and potentially disjoint acoustic degrees of freedom to be present at the interface.
The proper setup for this case is shown in Figure (3-4).

The dual mortar method'3*!!3 generates a similar set of constraint equations.

&9

Acoustic subdomain Solid subdomain

O0000_ @ & & O
Q OQOQ . o ST
00000
O0000--9 0
O00O0O @ & © ©

Constraint equations join acoustic degrees of
freedom on both sides of wet interface

O 1 degree of freedom per node

@ 4 degreesof freedom per node

() 3degreesof freedom per node

~

Figure 3-3. — Illustration of our method for structural acoustic meshes with nonconforming interfaces. Ghost
acoustic degrees of freedom are added to the structural side of the wet interface, and then connected to the adjacent
acoustic surface with constraint equations. The resulting nodes in the mesh can then have either one acoustic
degree of freedom (shown by a circle), three displacement degrees of freedom (shown by a dashed circle), or one
acoustic degree of freedom and three displacement degrees of freedom (shown by a black-filled circle).

Acoustic Structural Acoustic
Subdomain Shell Subdomain

Figure 3-4. — Nonconformal Structural Acoustic Tying for Doubled Wetted Shell.

90

3.3. Acoustic Scattering

Acoustic scattering refers to the interaction of plane acoustic waves with solid bodies which are immersed
in an infinite acoustic fluid. The plane waves are assumed to originate from infinity, and after impinging on
the solid body, they continue to propagate to infinity. In scattering simulations, the velocity potential is
decomposed into a sum of the incident potential, and scattered potential

Yo = yin 4 yse (3.3.1)

where /79! is the total potential, s*" is the incident potential, and y*¢ is the scattered potential. The
incident potential is a known quantity, and the scattered potential is unknown. Thus, in the final
formulation, the incident potential becomes part of the right-hand side forcing function, and the scattered
potential remains on the left-hand side as an unknown.

We recall that the linear wave equation in terms of the total velocity potential is given by
1.
—zw"” - Ayt =0 (3.3.2)
c
Decomposing this into incident and scattered fields, we have

+

1 .. : 1.
;'ﬁm _ Awm Ewsc _ Alﬁsc} -0 (3.3.3)

Since the incident wave is assumed to satisfy the wave equation, the first part of the expression can be
dropped, and we are left with

1. y
= A= 0 (3.3.4)
C

This implies that we can solve for the scattered potential directly. The effect of the incident field is then
accounted for in the boundary conditions on the wet surface.

For scattering in the context of the coupled structural acoustic problem, it is most convenient to solve for the
scattered acoustic potential in the fluid and the total displacement field in the structure. With that
assumption, we have the following partial differential equations

psutt =V .o =F,
1.
=P - Ay =0=0.
C
(3.3.5)

Here u'®" corresponds to the total displacement of the structure, o is the structural stress tensor, p; is the

density in the solid, and F denotes body forces on the solid. Subsequently, subscripts s and f refer to solid
and fluid, respectively.

In the case of linear acoustics, the boundary conditions on the fluid/solid interface (wet interface, which is
designated by 0Q,,.;), are

o tot
‘gn = —pyiiy’ (3.3.6)
o =—g" == [+ A (3.3.7)

91

where p is the density of the fluid, and 7 is the surface normal vector. These boundary conditions
correspond to continuity of velocity and stress at the wet interface. For equation (3.3.6), we note that we
rearrange the terms for convenience

tot in sc
' aum oy

on dn on
— _pfu;()l
(3.3.8)
Rearranging, we have
awsc _ ot 5(//”
5 = TPrin o (3.3.9)

Equations (3.3.9) and (3.3.7) are in the form that we can insert them directly into the variational
formulation (3.2.6), with the recognition that the unknowns are the total structural displacement and
scattered velocity potential. Carrying this through, and assuming a linear constitutive model for both the
solid and fluid, the time domain equations of motion can be represented by the following semi-discrete

system of linear ordinary differential equations

MS 0 I;itOt Cs L L’ttot KS O Mtot fS
RO | S o b R o e I
where M, C, and K denote the mass, damping, and stiffness matrices for the solid, M,, C,, K, denote
the same for the acoustic fluid, p, is the density of the acoustic fluid, and u and ¢ denote the structural
displacement and fluid velocity potential. The coupling matrices are denoted by L and L. Coupling
between fluid and structure, and any damping in the fluid or solid separately, is accounted for by the
damping matrices. The quantities f; and f, denote the external forces on the solid and fluid, respectively.

The acoustic load f, for the scattering problem can be written in the form

o in
fa= —/ ;’n ¢ds (3.3.11)
Q,
where again ¢ is a test function. Since % is a known quantity, we can integrate equation (3.3.11) to

obtain the loading on the fluid side of the wet interface.

The expression for loading on the structure due to scattering loads is given by
fs = / g Mwds (3.3.12)
Q,

where w is a test function for the structural discretization. Since /" is a known quantity, the force on the
solid body can be computed from equation (3.3.12). Note that equations (3.3.11) and (3.3.12) require the
spatial and temporal derivatives of the incident field, *". Thus, even if /" is known, methods for
computing its spatial and temporal derivatives are also required.

Inserting the expressions for f,, and f; from equations (3.3.11) and (3.3.12) into equations (3.3.10), we can
solve for the responses of the acoustic fluid and solid body to incident acoustic waves. The only requirement
on " is that it satisfies the acoustic wave equation. Note that the solution to equations (3.3.10) will give
the scattered acoustic potential. To compute the total acoustic potential, we would need to add the incident
and scattered potentials together, as in equation (3.3.1). Also, we note that the loads from equations (3.3.11)
and (3.3.12) are generated by a single incident wave. For multiple incident waves (as in the case of a diffuse
field), the right-hand side of equations (3.2.17) involve a simple superposition of the incident waves.

92

3.3.1. Frequency Domain scattering

The incident potential satisfies the wave equation, and for a plane wave takes the form
Y = Ae!lkx-wr] (3.3.13)

where w = 2x f is the circular frequency of the wave, f is the frequency in Hz, k is the vector wave number,
and x is the vector coordinates of a point in space. The vector wave number has three components,
k = (kx, ky, k), which define the direction of propagation of the wave. For example, for a wave
propagating strictly in the x direction, we would have k = (ky,0,0), where k, = would be the standard
wave number from one-dimensional wave propagation. The parameter A is a scalar constant that defines the
magnitude of the wave. Although A can be made to vary with frequency, we will only consider the case
where A is a scalar constant. This implies that all incoming plane waves have the same amplitude (but
different frequencies). In the frequency domain, the time portion of the expression in equation (3.3.13)
drops out, and we are left with

Yt = AekX (3.3.14)

We consider a three-dimensional elastic body, which is immersed in an infinite acoustic fluid, and subjected
to impinging plane waves from infinity in the frequency domain. The equations of motion of the coupled
system are given by

+iw

_wz[Ms 9][utot és~ ;][utot]+ Ks 9][utot]: ~~
0 M, wsc _prT Cf wsc 0 K, wsc ;_jfa

We recall that the portion of the acoustic load f,, that comes from Neumann boundary conditions can be
computed from equation (3.3.11). Given equation (3.3.14), we define n = (ny, ny, n;) to be the surface
normal of the solid body. We also let k = % (diry, diry, dir;), where (diry, diry, dir;) define the direction
cosines of the direction of propagation of the incident plane wave. Then, we have

8!,[/“1

on
Inserting this expression into equation (3.3.11), and integrating, we obtain the loading on the acoustic fluid
due to scattering.

] . (3.3.15)

= Vyi" - n = i [nydiry +nydir, + ndir.] Ae™* (3.3.16)
C

For the loading on the structure, we recall the expression for loading on the structure due to Neumann
boundary conditions in equation (3.3.12). In the frequency domain case,

op = np'™ = inwy™ = inwAe') Inserting this expression into equation (3.3.12), and integrating, we
obtain the loading on the solid body due to scattering.

Finally, we examine the complex-valued loads presented in equations (3.3.11) and (3.3.12). We make two
observations regarding these loads.

1. These loads have real and imaginary parts, and thus even for a single plane wave, they cannot be
combined into a single vector, even though they have the same multiplication factor A. Currently,
Sierra/SD combines load vectors that have the same time function into a single array. For the case of
complex loads in the frequency domain, this translates into combining the real and imaginary parts
into a single array if they have the same “time" function, which in this case corresponds to the
multiplication factor A. A temporary work-around is to use distinct time functions for the real and
imaginary parts in the input deck. (even if the time functions themselves are identical). Otherwise, if
the same time function is used, the real and imaginary parts would be combined into a single vector
in Sierra/SD.

93

2. We have considered the case where the coefficient A is a scalar constant, but we could also consider
the case where A = A(w) is a function of frequency. This would correspond to multiple plane waves
of different amplitudes impinging on the structure. Since the spatial parts of these loads varies with
frequency, they could not be computed by adding the spatial parts together before multiplying by the
coefficient A(w). Thus, we would have an inconsistency with the current approach in Sierra/SD of
adding the spatial parts together before multiplying by the time function (which in this case would be
A(w)).

3.4. Nonlinear Acoustics

Linear acoustic theory is based on the assumptions of small amplitude waves and a linear constitutive
theory of the fluid medium. Although these assumptions hold for many vibro-acoustic interactions, they are
invalid in sound fields with high sound pressure levels,'? i.e. sound fields that have finite amplitude waves.
Finite amplitude waves can be generated in interior fields when resonance occurs,” in the far-field of
atmospheric and underwater explosions,*” in tire noise generation,’® and in many aeroacoustic sources
(such as sonic booms).”! Nonlinear effects increase with the frequency of the waves, and thus the study of
nonlinear acoustics has also become important in high-frequency applications such as ultrasound.””-!
Unlike the linear acoustic wave equation, the nonlinear counterparts can handle waves with finite

amplitude, and allow more accurate modeling of nonlinear constitutive models in the fluid.

The classical Kuznetsov equation®’ treats three-dimensional nonlinear acoustic waves to second order in
nonlinearity. Recently, Soderholm'?> generalized Kuznetsov’s equation using the exact equation of state,
rather than a series expansion. The nonlinear terms in these wave equations imply that the sound speed
depends on the stress state in the fluid. This leads, eventually, to the formation of weak shocks (small
discontinuities in acoustic pressure). For a mono-frequency source, energy will be gradually transferred
from lower harmonics to higher harmonics, leading to a steepening of an initially smooth wave. Weak
shocks radiated from a structure lead to unpleasant cracking noise, and when impinging on a structure they
cause a different response than smooth acoustic waves. Thus, it is important to characterize their effects in
both noise radiation and structural coupling problems.

The governing equations of acoustics can be formulated in terms of particle displacement, or scalar-based
quantities such as acoustic pressure or velocity potential. In particle displacement approach, the mesh
moves with the waves, whereas in the latter approaches the mesh is fixed. The primary advantage of the
displacement approach is its easy coupling with a Lagrangian solid mechanics code, since the unknowns
are the same as for the solids. The displacement approach has been studied in,'%*-*313! though these
references dealt only with the linear case. Since ideal fluids have zero shear modulus, this approach suffers
from an infinite dimensional null space consisting of rotational modes in the fluid. Numerically, this leads
to spurious modes that pollute the computed solution. These modes can be eliminated through the use of
penalty formulations, but this can result in poor conditioning. Displacement formulations for acoustics are
also prone to mesh tangling in the case of large displacements in either the solid or the fluid, making them
inappropriate for many applications.

In the Eulerian approach, the unknown is typically acoustic pressure or velocity potential. In problems
without structural coupling, the mesh remains stationary. In addition, the null space consists only of the
constant pressure mode, which makes these formulations more stable for numerical computations. On the
other hand, for coupled solid/fluid problems, the Eulerian formulation requires a coupling mechanism
between fluid and solid to handle the different degrees of freedom used to discretize the fluid/solid domains.
In the case of small structural displacements, this coupling mechanism reduces to coupling operators that

94

couple acoustic pressure and structural displacements between fluid and solid. In the case of large structural
displacements or rotations, methods such as the Arbitrary Lagrangian-Eulerian (ALE) approach, which
have been developed for aeroelastic coupling,”®>? could also be applied to the structural acoustics problem.
An alternative approach in the case of large structural motion is an Eulerian method for the fluid allowing
the solid/fluid boundary to cuts through fluid elements. Regardless of the approach taken for the structural
coupling, we have chosen the Eulerian approach for acoustic discretization, since it avoids the null space
issues eluded to earlier.

Unlike the rich history of finite element formulations in nonlinear solid mechanics, the finite element
formulation of nonlinear acoustic equations for fluids has received considerably less attention. Cai et a
recently used finite elements and parallel computations to solve Kuznetsov’s equation to model ultrasonic
waves. In a sequence of works, Hoffelner et al’” also used a finite element method to solve Kuznetsov’s
equation. Later,’® they used their method to simulate acoustic streaming and radiation force, two important
acoustic phenomena that cannot be captured from linear theory. Kagawa®? took a similar approach in
solving Kuznetsov’s equation, except that additional approximations were made to the equation before
discretization. Vanhille et al'3° used finite differences and finite volume methods to solve a nonlinear
acoustic wave equation in the Lagrangian framework.

131

In this section, we present a finite element implementation of the Kuznetsov wave equation. We derive the
full tangent operator for the spatial discretization, and give an implementation of a time discretization
scheme using the generalized alpha method. We then derive a formulation for coupling the Kuznetsov
equation to the equations of motion of an elastic solid.

To illustrate ideas, we begin with the linear acoustic wave equation

1 9%¢
——-Ap=0 3.4.1
22 ¢ (3.4.1)
where ¢ is the velocity potential (¢ = Vu, where u is the particle velocity), and c is the speed of sound. The
derivation of this equation neglects both convective and constitutive nonlinearities.

The nonlinear isentropic equation of state for air can be written as follows

P Jo, Y
[Y 3.4.2
Py (PO) 642

where P and Py are the total and reference pressures, p and pg are the current and reference densities. 7y is
the ratio of specific heats, and is equal to 1.4 for air. Equation 3.4.2 can then be combined with the
conservation of momentum and conservation of mass for the fluid to derive nonlinear wave equations. In

Soderholm’s approach, equation 3.4.2 is used directly. In Kuznetsov’s approach, it is first expanded in a
Taylor series about the isentrope s = s’

P 1 (0%P
p=P-Py= (6_) (,0—,00)+§ (—2) (p—po) +... (3.4.3)
P 50,00 ap 50,00
which can be written compactly as
2
- Blo-
p=A(u)+—(u) o (3.4.4)
Po 2\ po

95

o°pP

where A = pg (g—/’j)s = poco, and B = p; (a 5) . Since (ap) = C(z) is the square of the linear
0-P0 50,00 50,00

speed of sound, we see from the expansion that the ratio of the first two terms is

B Zp
y (a) (3.4.5)
A \op?),

The parameter B/A accounts for the nonlinear constitutive law of the fluid up to second order. A table of
values of B/A for various fluids can be found in texts on nonlinear acoustics.”!

For linear acoustics, only the first term in the expansion 3.4.4 is retained. In that case, we have
P —Po
p=A (—po) = cg(p = po) (3.4.6)

which implies that the stiffness of the fluid is the square of the linear speed of sound.

Kuznetsov’s equation uses the above Taylor series expansion of the equation of state, but truncates all terms
past the second. It also accounts for convective nonlinearities to second order. The equation is derived by
combining the Taylor series expansion of the equation of state with the conservation of mass and

momentum. The result is the following..37-33:98,105
1 0% 1 9 0
c_za_tf —Ap— —— (b(o) + / (¢) + (Vo)) 3.4.7)

where ¢ is defined as p = p f%—‘f, and p is the acoustic pressure. The first two terms in equation 3.4.7 are the
same as in equation 3.4.1, but the fourth and fifth terms are nonlinear. The third term is a linear absorption
term. It is grouped with the nonlinear terms to indicate deviation from the linear wave equation. The
parameter b is for absorption in the fluid due to viscosity and thermal conductivity.

Equation 3.4.7 was originally developed in terms of the velocity potential. Here, instead of solving for the
velocity potential, we prefer to solve for i such that p = . This implies that ¢ = %lﬁ- Inserting this relation
into equation 3.4.7 yields

1 6%y 14 B/A (Vy)?)
Sy M-S (b(W)+ (a;) r—] =0 (3.4.8)

This is done only for convenience, since the acoustic pressure can easily be computed during post
processing as p = . For simplicity, we will still refer to ¢ as the velocity potential in the remainder of this

paper.

Soderholm!? derived a higher order nonlinear acoustic equation that accounts for nonlinearities to higher
order. In this approach, the exact equation of state, equation 3.4.2, is used directly, rather than the second
order expansion of Kuznetsov’s equation. This equation is only valid for air, whereas Kuznetsov’s equation
can be used for any fluid that has a tabulated value of % After combining the equation of state with the
conservation of mass and momentum, the following equation results

1 02 10
;a_tf_ ¢——2E(A¢) _28_(V¢)2
1
FSL 9V (V) 4 (6+ 1 (V)) -
Co

96

We note that Soderholm’s equation is a generalization of the exact relation given by equation 3.26 in,”!
which was derived for the case of a lossless fluid. The only difference is the term & % (A¢), which
€o

accounts for absorption.

The range of validity of nonlinear wave equations is typically given in terms of acoustic mach number.

M=2 (3.4.9)
co

where u is the particle velocity, and ¢ is the linear speed of sound. Rough guidelines are given in.”® For the
Kuznetsov equation, a limit of M < 0.1 is given. For a third order wave equation, a limit of M < 0.7 is
given. These are useful guidelines for the acoustic analyst, who needs to decide which equation applies to
their needs.

In summary, three-dimensional nonlinear acoustic waves in thermo-viscous fluids can be modeled using
equations derived by Kuznetsov and, more recently, by Soderholm. These equations include the linear wave
equation as a special case. Kuznetsov’s equation generalizes the linear wave equation to include
nonlinearities to second order and linear dissipation. Soderholm’s equation is an additional generalization
that allows for higher degrees of nonlinearity. The dissipative term in Soderholm’s equation is the same as
in Kuznetsov’s equation.

3.4.1. Weak Formulations

In this paper we will only work with Kuznetsov’s equation, since we are interested in a formulation that is
valid for any fluid. A weak formulation of equation 3.4.8 can be constructed by multiplying with a test
function and integrating by parts. We denote the fluid domain by Q¢ and its boundary by

0Q = 0Q, | 0Q4, where the subscripts n and d refer to the portions of the boundary where Neumann and
Dirichlet boundary conditions are applied. We also assume that the fluid is initially at rest, i.e.

W (x,0) =y (x,0) = ¥ (x,0) = 0, which is sufficient for most applications.

Denoting by V¢(£y) the function space for the fluid, and I" = dQ, the weak formulation can be written as
follows. Find the mapping ¢ : [0,T] — V¢(Q) such that

- / g + / V- Vodx s / bV - Vods
o JQ Q ce Jo
S / Y pdx -z / Vi - Vippdx = (3.4.10)
Apct Jo pc? Jo
0 b
L%d’ds: —/rpf(lftn+§iin)¢ds

V¢ € Vy(Qr), where i, and ii,, are the prescribed particle velocity and acceleration on the Neumann
portion of the fluid boundary. Here we use ¢ to denote the test function, and not the velocity potential as
denoted earlier. We note that for air, C% is of the order 1e~!0 under normal conditions, and thus it is
sufficient to drop the acceleration term and approximate the right-hand side as — faszn prindds. We will
make this approximation in the remainder of this paper.

We note that an interesting feature of the weak formulation of equation 3.4.8 is that the integration by parts
only occurs on the linear elliptic terms. The nonlinear terms are not integrated by parts.

97

3.4.2. Spatial and Temporal Discretization

A finite element formulation of equation 3.4.10 is constructed by representing the unknown by a finite
summation ¢ (x) = X7, ¥;N;(x) = TN, and substituting in equation 3.4.10. This leads to the following
set of nonlinear ordinary differential equations in time

tnt('»[’(x t) l/’(-x t) l//(x t)) - ext(x t) (3411)
where
Fint = iz / ypdx + / Vi - Vdx (3.4.12)
c Q Q
v [00 Vodv - —8/a) [Bigas -
c? Ja pct Q
iz / Vi - Vo ddx (3.4.13)
P Ja
and
Foxt = —/ P flindds (3.4.14)
o,

F"™ g the internal force, which depends on ¢ and its first two time derivatives, and F¢* is the external
force. We note that ¢ and y» depend on y through the time discretization scheme, and thus we could write
equation 3.4.11 as

mt((ﬁ(x t)) - ext(x t) (3415)

To linearize equation 3.4.11, we could use a finite difference approach, in which the tangent matrix is
derived by differencing the internal force function with respect to an incremental displacement.
Alternatively, we could derive a full Newton tangent matrix by taking partial derivatives with respect to the
independent variables. We have taken the latter approach, since it reveals explicitly the fact that the tangent
matrix is nonsymmetric.

We define i/, J/, (; as the current iterates, and ¥, i/, s as the unknowns. The tangent equations can be
derived by expanding the left-hand side of equation 3.4.11 in a Taylor series. If we truncate all terms
beyond the constant and linear contributions, we obtain

Fint (W, 0) = Fing (5, 0,00 +

[it (5§, 5) + Lot A v, w)a“’ OFin 55 v, w)—] AY = Fine(§.4.) + ANy
(3.4.16)
where Ay = — , and i is the current iterate. The full tangent matrix A is defined as
A= [aF’"’ 5,0, §) + L (v/ v, w) Fins (v/ g, w)] (3.4.17)

Since Ay is unknown, we approximate it as Ay = i — i, where ¢ is the previous iterate. Thus, as
convergence occurs, the current and previous iterates become identical.

We have chosen the generalized alpha time integration scheme>* to discretize equation 3.4.11 in time. The
generalized alpha method is based on the generalized Newmark method. The flexibility of this method is

98

useful in this case, since it can be made to be either implicit or explicit (e.g. central difference), depending
on the problem at hand. In displacement form, the generalized Newmark method first needs an update
equation. Given Ay, and a previous iterate i, we compute an updated current iterate as

J =0+ Aj (3.4.18)
Then, we use ¢ to compute updated first and second time derivatives as follows
R L -1
V= Zan [0 = Yn = frutrt] - — 2= 5 Un
o= a9 +w§]
. . 28 ..
= Yn+ A {(1 =)+ ,BAl‘z [lﬂ Yn = %At] V—ﬁlﬂn

(3.4.19)

where v, j are the integration parameters for the Newmark method, and v,,, i, are the first and second time
derivatives from the previous time step. Note that, as Ay — 0,/ — .41, indicating that the current iterate
has converged to the value at the next time step, step n + 1.

We can simplify by noting that, from equation 3.4.19,

W_ v
oy BAt
a1

oy~ PAR

(3.4.20)

We also make the following definitions, which define the tangent stiffness, damping, and mass matrices

aFint AN
aw (lﬁsl//,lﬁ)—Kz
OFit - = =
(9:,0 (lﬁ,lﬂ,lﬁ)—ct
OFim o = =
('h// ((rll’w"vb)_Ml

(3.4.21)

where K;, C;, and M, denote the tangent stiffness, damping, and mass matrices. The tangent matrices are
the derivatives of the internal force, but evaluated at the current Newton iteration. Substituting equations
3.4.20 and 3.4.21 into equation 3.4.16 yields

Fint (W, 0, 4) = Fine (0, w W) + | K + ,BTCt BAL —— M| Ay (3.4.22)
Finally, substituting equation 3.4.22 into equation 3.4.11 yields
Ko+ 2Cot—— M, | A = oy — Fong (5, 9,5) = (3.4.23)
l ﬂAt ﬂA 2 t ext int .

99

Note that the right-hand side of equation 3.4.23 is the residual, or the difference between the external force
and the internal force at the current Newton iteration. As convergence occurs, the residual goes to zero.

We derive explicit expressions for K;, Cy, and M;. We have

_ OFim o =
Kt - aw (%lﬁ"ﬁ)
= / VNT-VNdx—i2 / (Vg - VNT)Ndx (3.4.24)
Q pCc™ Ja
_ aFint ~ 7 =
G = —(M W4,)
1 bVNT-VNdx—i / (Vi - VNT)Ndx (3.4.25)
2 Ja pct Ja
- %B/A / UNT Ndx (3.4.26)
pc Q
(3.4.27)
. BF,'", ~ 7 =
Mt - alﬁ (lﬂ,lﬁa'ﬁ)
-1 / NTNdx—LB/A / U NT Ndx (3.4.28)
c? Ja pc? Q

where N is the vector of element shape functions.

For the full Newton method, these tangent matrices need to be reformed at each iteration of the Newton
loop. The tangent damping and tangent stiffness matrices are nonsymmetric, since some terms involve
products of shape functions with gradients of shape functions. However, we note that the initial tangent
matrices are all symmetric, since at time ¢ = 0, we have ¢ = 0, ¢y = 0 and ¢ = 0 by assumption. In that
case, we have

K, = / VN . VNdx (3.4.29)
Q
1
Co = A bVNT - VNdx (3.4.30)
1
My = /Q NTNdx (3.4.31)

In this work we chose the Newton method for the nonlinear solution, and thus we could use any of the
variants of this method, some requiring more and less frequent updating of the tangent matrices. In the case
of the full Newton method, the nonsymmetric tangent matrices would need to be reformed at each iteration.
In the initial Newton method, only the initial symmetric tangent needs to be formed. The numerical
experiments conducted thus far indicate that excellent convergence behavior is observed even with the
initial Newton method.

100

3.4.3. Structural Coupling

The second order equations of motion for the solid and the Kuznetsov equation for the fluid are

psuyy —V-o=f

W\, () _,
ot Jo, B

2
1o, _Lﬁ(b(m,,){ﬁ(

c? 012 c2 ot pc?
(3.4.32)

Here u corresponds to the displacement of the structure, o is the structural stress tensor, and subscripts s
and f refer to solid and fluid, respectively. The equations of motion for the solid in equation 3.4.32 are
written in the most general form, which could include both material and geometric nonlinearities. However,
since we are only considering small structural displacements, these will be specialized to the linear
elasticity equations.

In the case of linear acoustics, the boundary conditions on the fluid/solid interface (wet interface, which is
designated by 0Q,,.;), are

Woo pp
o = —Yh

(3.4.33)

where 7 is the surface normal vector. These correspond to continuity of velocity and stress on the wet
interface. In the case of nonlinear acoustics, the second condition is replaced by”®

ou = =i 0 - 5 (V) + by
(3.4.34)

The linear approximation of condition 3.4.34 is

On = —Yhi (3.4.35)
In,””3! numerical results were presented on the solution of Kuznetsov’s equation, and the approximation
3.4.35 was used to convert from velocity potential to pressure as a post-processing step. In our case we also
use this approximation as a post-processing step, and additionally, we use equation 3.4.35, rather than
equation 3.4.34 to approximate the structural acoustic coupling. This is an additional approximation, but it
is consistent with the previous studies.”’*! Using relation 3.4.34 would lead to nonlinear boundary integral
terms, and result in a nonsymmetric formulation.

The weak formulation of the coupled problem is constructed by multiplying the two partial differential
equations in equation 3.4.32 by test functions and integrating by parts. Denoting by V;(£2,) and V¢ (£y) the
function spaces for the solid and fluid, respectively, we have the following weak formulation.

101

Find the mapping (u,¢) : [0,T] — Vi(€,) X V¢(€) such that

/ psiiwdx+/ O':V“wdx—/ O'anS:/ fwdx+/ oawds
QS QS 6QWET QS BQTL

1 .. 0
- U ddx +/ Vy - Vodx +/ —wqbds
2 Jo, oy e O

o2 [vivoa- 218 [Giga -
 Joy pct Ja,

2 . 0
— Vi - Vypdx = / —w(bds
pct Jao, 80, On

(3.4.36)

Vw € Vy(Qq) and Vo € V(Qf), where 9Q,, is the portion of the solid and fluid boundaries that has applied
loads, and f is used to denote body forces on the solid. Also, V* = % (V+ VT) is the symmetric part of the
gradient operator. If Dirichlet boundary conditions were applied to part of the structure, or if the fluid had a
portion of its boundary subjected to Dirichlet conditions, then the Sobolev spaces V(Qg) and V(Qy)

would be modified accordingly to correspond to spaces that have those same boundary conditions. We also

note that in the integration on the wet interface, the normal is defined to be positive going from solid into
the fluid.

Next, we insert the boundary conditions from equation 3.4.33, and we define o, = g on the solid portion of
09, and ‘/’ —p ru, on the fluid portion of J€2,,. This leads to the following weak formulation. Find the
mapping (u gb) [0,T] — Vi(Qg) X V¢(r) such that

/ psiiwdx+/ O'IVSde+'/ 1/}ﬁwds:/ fwdx+/ gwds
Q Q OQer Q 8Qy,

iz 1]}¢dx+/ Vi - Vpdx — pf/ unods
& Joy Qf

+% Vi - Vodx — %/ Y pdx —
C Qr
— [V¥ Vygdx = —py / U, ¢ds (3.4.37)
pc Qf oy,

Vw € Vy(Qq) and Vi € V¢(Qy). Equations 3.4.37 are a nonlinear system of equations, since the fluid wave
equation is nonlinear.

Inserting the spatial discretizations u =), u; N; and ¢ =), ¢; N; into equation 3.4.37 yields the following
semi-discrete system of nonlinear ordinary differential equations in time

M, O Aii Cy L Au K, 0 Au | | Resg
R 1o S BT | DV K Il | vl ot
where M, Cy, and K denote the mass, damping, and stiffness matrices for the solid, and M, Cr, and K ¢
denote the same for the fluid. The coupling matrices are denoted by L and LT, Coupling between fluid and

structure, and any damping in the fluid or solid separately, is accounted for by the damping matrices. The
quantities Resg and Res ¢ denote the residuals in the solid and fluid, respectively (recall equation 3.4.23).

Resy = F' — Mii — Cyii — Ly — Kqu
Resp = F* — F{' (4,4,)
(3.4.39)

102

Equation 3.2.8 is solved using Newton’s method, in conjunction with the time discretization scheme that
was introduced earlier. The nonlinear terms in the fluid wave equation are accounted for in the right-hand
side in the initial Newton method, but for a full Newton update, the matrices My, Cr, and Ky would all
need to be updated using equations 3.4.24, 3.4.27, and 3.4.28.

For the initial Newton method, equation 3.4.38 can be symmetrized in a number of ways. For example, the
second equation can be multiplied by ;,—]1. This makes the system symmetric, but the matrices are
indefinite.

To solve the coupled system of equations (3.2.8), we could either treat the 2 X 2 block system as a
monolithic system of equations and integrate it directly, or we could use a staggered, loose coupling
scheme. For the numerical examples presented next, we integrate the system directly.

Finally, we note that most numerical methods for absorbing boundary conditions in acoustics have been
developed for the linear case. The development of absorbing boundary conditions for nonlinear acoustics is
an important area of research, but we do not pursue that subject here. In this paper we use first-order
absorbing boundary conditions of the form

oy 10y

et 3.4.40

on c Ot ()
This condition leads to an additional contribution to the matrix Cs from equation 3.4.38. Equation 3.4.40
is, or course, an additional approximation that neglects nonlinear terms. We mention that Cai*! made a
similar approximation when simulating nonlinear acoustic fields.

3.5. SA_eigen

The quadratic eigenvalue problem which we address in this solution method is given by the equation
below.
(K+/1C+/12M) 6=0 (3.5.1)

where, K is the stiffness matrix,
C is a damping and coupling matrix, and
M s a mass matrix.

More specifically, for a structural acoustic system.

Ks 0 Cs L 2 Ms 0 ¢s _
([0 K,] +4 [—p LT C,] +4 0 M, 6o |~ 0 (3.5.2)
Here the subscripts refer to structural or acoustic domains, p, is the density of the fluid and L is a coupling

matrix. Note that for this formulation, ¢, represents the acoustic velocity potential, which relates to the
time derivative of the acoustic pressure, ¢, = Vii,.

If C contains only coupling terms, then it is skew. Readers will recognize this as the eigenvalue problem for
a spinning structure with real eigenvalues [54]. However, if there is additional damping in the system, as
from pC damping on the acoustic domain, then C is of mixed symmetry, and the eigenvalues and
eigenvectors are complex. The stiffness matrix is symmetric positive semi-definite, while the mass matrix
is symmetric positive definite.

103

Table 3-2. — Potential Basis Functions for Subdomain Reduction.

Name Basis Function

Free-Free modes | The unconstrained eigenvectors of each subdomain are
computed and used as the columns of 7. When the number
of columns in T equals the number of rows, this basis is
complete.

Craig-Bampton | The eigenvectors of each subdomain are computed with the
interface fixed. These eigenvectors are supplemented with
constraint modes computed by fixing all the interface de-
grees of freedom except one. That dof receives a unit static
deformation. This method has been shown to converge near
optimally for structure/structure interactions.

While various methods are available for solving the generalized, linear eigenvalue problem,' solution of the
quadratic eigenvalue problem is more challenging. The approach followed here is to transform the problem
into a reduced space, solve the corresponding dense matrix system completely, and prolongate to the
original space. The challenge, of course, is to properly choose that space.

In general, if the eigenvector, ¢, can be written in terms of generalized coordinates, ¢, then this approach
may be taken. For a given transformation matrix, 7', which determines ¢ given g, we have the following.

¢ = Tq (3.5.3)
Tt (K +AC + /IZM) Tqg = 0 (3.5.4)
(/2 +/15+/12n~1) g = 0 (3.5.5)

Note that the only restriction on 7 is that we may adequately write ¢ = T'q. In other words, 7 must span the
space of the eigenvectors. In particular, T need not be unitary or even orthogonal. However, for the
transformation to be useful for a model reduction, there must be many fewer columns than rows in 7. Note
that 77 is the transpose, complex conjugate of 7', and that the left and right eigenvectors of equation 3.5.2
are complex conjugates of each other.

The structural/acoustics problem may be viewed as a two subdomain problem.?> There are a variety of basis
functions that have been examined for connecting such subdomains. Two common sets are listed in Table
3-2.

We here investigate only the free-free method. Though this method has proved to converge slowly for
structure/structure problems, the coupling between the structural and acoustic domains is often weak. This
may be adequate. For the problems of interest, a full Craig-Bampton type solution is almost certainly
overkill, and will result in a dense matrix too large for standard solution methods. We may find it
advantageous to augment the free-free modes by adding basis functions near the surface. Some thoughts
that have been considered include the following.

* A uniform pressure mode could be added to both the acoustic and structural responses.

I The generalized linear eigenvalue problem is (K — AM)¢ = 0.
2There is no requirement that each subdomain be topologically connected in any special way.

104

* We could consider the static acoustic modes that are generated by the deformations of the structural
eigen analysis. We anticipate that the structural deformations will have a larger control over acoustic
modes, so we may not need to be as concerned about the impact of the acoustic pressures on the
structure, but we may want to include these too. Could a subset of modes be identified that would aid
in model completeness and convergence?

* Spline or boundary expansions are possible.

3.5.1. Quadratic Modal Superposition

Consider the system
Mii+ Cu+ Ku = f(¢) (3.5.6)

where M, C, and K are the mass, damping, and stiffness matrices. Standard methods may be used to solve
the eigenvalue equation derived from 3.5.6 only in the case where the eigenvectors of K and M also
diagonalize C (as in proportional damping for example). In practice this never happens. For a general
damping matrix, no procedures are available to directly solve the eigenvalue problem. For an excellent
survey article on quadratic eigenvalue systems, see the article by Tisseur.!?’

However, the second order system may be transformed to a larger, first order system which does have a
known solution. We linearize the system as follows. Define,

u
w= [" } (3.5.7)

If we consider the eigenvalue problem corresponding to equation 3.5.6, we would set the right-hand side
f (%) to zero. Then, there are many options for the linearization, but the one chosen for QEVP is

[Ag 2%:[_1‘2 _Aé W (35.8)

We assume a solution of the form w = ¢e?’, and arrive at the eigenvalue problem,

A¢ = AB¢ (3.5.9)
where v o

A:[v] (3.5.10)
and 0 u

B:l_M —c] (3.5.11)

Equation 3.5.9 yields the “right” eigenvectors. As is seen later, we also need the “left” eigenvectors, which
correspond to the eigenvalue problem,
v'A=2"B (3.5.12)

We denote the left eigenvectors as ; to distinguish them from the right eigenvectors ¢;.

105

3.5.2. Diagonalization and Modal Superposition

Symmetric system matrices are always diagonalizable, using the matrix formed by their eigenvectors.
However, when nonsymmetric matrices, such as those of equation 3.5.8, may be impossible to diagonalize.
This has significant implications for modal superposition techniques, since if A and B cannot be
diagonalized by pre and post multiplying by matrices of eigenvectors, then the reduced (modal) equations
of motion will be coupled. The primary advantages of modal superposition would be lost.

As discussed in the literature,'?”-!17:8% one case where the matrices A and B are diagonalizable is if the

eigenvalues are distinct. If there are repeated eigenvalues, then the matrix is still diagonalizable, as long as
the eigenvectors corresponding to repeated eigenvalues are linearly independent. This can be summarized
by the theory of geometric and algebraic multiplicities of eigenvalues,

* The algebraic multiplicity of an eigenvalue is defined as the number of times that this eigenvalue is
repeated in the list of eigenvalues of the matrix.

* The geometric multiplicity of an eigenvalue is the dimension of the space spanned by its eigenvectors.
Thus, for an eigenvalue with an algebraic multiplicity of 2, the geometric multiplicity would be 2 if
the corresponding eigenvectors are linearly independent, and 1 if they are linearly dependent.

* An n X n matrix is diagonalizable if and only if the geometric multiplicity is equal to the algebraic
multiplicity for every eigenvalue A.

In short, for the matrix to be diagonalizable, the eigenvectors corresponding to repeated eigenvalues must
be linearly independent. If the eigenvalues are all distinct, then the matrix is always diagonalizable.

It is also interesting to discuss the circumstances under which the eigenvalues and eigenvectors of A and B
come in complex conjugate pairs. When this is the case, significant savings in storage and computational
time can be achieved. The general rule is simple to prove.”’ If the entries in a matrix are all real-valued,
then any complex eigenvalues or eigenvectors that arise must come in complex conjugate pairs. To prove
this, we note that for a matrix with all real- valued entries, the determinant must be a real number. On the
other hand, the determinant is also equal to the product of the eigenvalues. Thus, if some eigenvalues are
complex, the only way that the product

det(A) = 414,...4, (3.5.13)

can be a real number is if all complex eigenvalues have a conjugate pair. For example, if 4,, and A, are
complex conjugates, then we have

T e 2 P12
Andnst = (A, + j43,) % (4, = jA5) = [4,]7 + [4,] (3.5.14)

The last expression after the equal sign is a real number. We can also conclude that if a matrix has any
complex entries, then the eigenvalues and eigenvectors are not necessarily complex conjugates.

To diagonalize A and B, we define a matrix corresponding to the right-eigenvectors that are computed from
equation 3.5.9.

W = [¢1¢2...¢2n] (3.5.15)

We can also define a matrix corresponding to the left-eigenvectors from equation 3.5.12.

U= [y1¢2..¢2,] (3.5.16)

106

Representing the solution as w = Z%fl Zi$i, and the loading as,

(1) = [f(()t)] (3.5.17)

we have!??

~a;zi (1) + Bizi(t) = v g (1) (3.5.18)

where «; = :,bjAgb,- and §; = ij¢,-. When modes are mass normalized, 8; = 1 and a; = 1;. We note that
the { symbol represents a conjugate transpose, not a transpose. This is a complex-valued uncoupled scalar
equation for each degree of freedom in the system, which can be integrated in time. We have no general
solution of the original second order system. Superposition must be performed on the linearized system.
This is a first order system of differential equations. Different time integration methods are needed.

Time Domain Superposition

Equation 3.5.18 can be integrated numerically, using first-order time integrators. However, another
approach is to use the analytical solution.

t
zi(t) = / wig(r)e = ar (3.5.19)
0

Finally, given the solution for each z;(¢), we compute w = z?gl zi¢i, and extract the solution u(¢) from the
upper half of w(¢). We note that in the time domain, the final solution w(#) must be real-valued, even
though both ¢; and z; are, in general complex. It is easy to show that this is the case. First, as noted earlier,
we recall that the eigenvectors ¢; come in complex conjugate pairs. Equation 3.5.18 implies that z; also
comes in conjugate pairs. We note that

2n n
w= Z; ugi =). i +di] (3.5.20)

i=1

Noting that z;¢; + Z;$; is a real number, we see that the total summation is also a real number.

Frequency Domain Superposition

For the frequency domain solution, we assume a time-harmonic loading and response.

g(t) = goe' V' (3.5.21)
zi(1) = z;e' ! (3.5.22)
(3.5.23)

where w, is the frequency of the external excitation, and g is a spatial vector of loadings at that frequency.
Substituting these relations into equation 3.5.18, we obtain the equations for complex modal frequency
response

[—ai +iwpil z: = ¥ go (3.5.24)
This can also be written as,
vl go
= ———— (3.5.25)
—-a; + la)ﬂi

107

We note that the denominator will go to zero if @; = iwf;, as is expected, in the case of resonance. A
standard approach? of stabilizing the solution near resonances is to add a small amount of modal damping.
In state space, this corresponds to a adding a real-valued term in the denominator of equation 3.5.25. Thus,
when a; = iwp; this additional term would prevent a singular response. This additional real term takes the
form

lﬁ;go
Zi = m (3.5.26)

where vy; is the modal damping, and is a real number.

As before, the solution of the displacement degrees of freedom is a superposition of modal solutions.

2n
ww) = O 2w (3.5.27)
i=1
2n . T
> _ 9iigo (3.5.28)
Hyi—ai tiwp;
3.5.3. Theory for modal superposition with sa_eigen

In the case of the sa_eigen solution case, the eigenvalue problem is solved in a reduced space. Recalling
equation 3.5.6, and the transformation u = T'i, we can transform equation 3.5.6 into a reduced space as

A A

i+ ¢ + kit = f (3.5.29)

where i = TTMT, ¢ =TTCT, k = TTKT, and f = T” f. We note that the superscript”is used from here on
to denote the reduced space. If we then define
-

As was done for the full system for the QEVP method, we project this into the first order system?.

1SS

] (3.5.30)

>

~

AG - B§ = g(1), (3.5.31)

ol o sl

A~

Assuming a solution of the form § = ¢e?, we arrive at the eigenvalue problem
A= ABé (3.5.32)

where we emphasize that ¢ is in the state-space form of the reduced problem. This eigenvalue problem is
solved with the DGGEV algorithm from LAPACK.

Once the eigenvalue problem 3.5.32 is solved, methods of the previous section can be applied for solution
of the scalar modal equations of the linearized system and projection back to the reduced space and finally
to physical space.

3also known as a state space solution

108

We transform equation 3.5.31 into the frequency domain.
Ag — iwerBG = §(w) (3.5.33)

where w, is the frequency of the external excitation. We assume that the solution can be represented as
g = Z?fl Z;¢;. Substituting this into equation 3.5.33, and pre-multiplying by the left eigenvectors i/;, we
obtain

Giti - ifiwets = Ui'Q (3534)
where @; = a,bAiTAgﬁi and ﬁi = wAiTBgﬁi. This scalar equation, 3.5.34 can be solved for Z;. The solution in
reduced space, ¢ can be obtained from § = Z?fl Z;¢i. Given 4, it can be extracted from the upper half of §,
as per equation 3.5.30. Finally, once # is known, the original solution u# can be computed from the relation
u="Ti.

3.5.4. Discussion of Eigenvectors and Superposition

There are several important points to consider for the eigenvectors of this problem.

* The left and the right eigenvectors of the linearized system diagonalize the characteristic matrices A
and B. However, the eigenvectors do not diagonalize the matrices of the original second order
equation, 3.5.6. This means that the modal equations are coupled in the second order system, and
most simplifications for superposition are available only on the linearized, first order system.

* The left eigenvectors can be computed from the solution of the transposed equation. Thus, for
symmetric systems, left and right eigenvectors are identical.

* Eigenvectors of the linearized, nonsymmetric systems are often not normalized as expected. In many
cases the eigenvectors are not even completely orthogonal, even when they may be linearly
independent.

3.5.5. Notes on Implementation
Some questions are answered next on the implementation of the superposition algorithm with regard to the
specific linearizations used in the Anasazi and sa_eigen solvers.

1. Can the state-space left and/or right eigenvectors be decomposed into a vector in one half and then
that same vector multiplied by the eigenvalue in the other half?

2. Does the nonzero part of the state-space force vector occupy the top or bottom half of the vector, and
does it have a minus sign in front of it?

3. Under what circumstances are there relations between the left and right eigenvectors, such as
T
¢left = ¢right or ¢left = (¢right) ?

The answers to any of these questions depends on the specific linearization of interest. Here we examine
only 2 linearizations, which have been considered earlier, and which will be repeated here for

convenience.
M 0 0 M
[0 K}W—/l[_M —C}W (3.5.35)

109

[_(;(_IC]W=1H Aﬂw (3.5.36)

For the first question, we consider the right and left eigenvectors separately. For the right eigenvectors, a
simple substitution reveals that the right eigenvector for equation 3.5.35 can be decomposed as

w = [Au } (3.5.37)

u

whereas the second linearization (equation 3.5.36) has right eigenvectors that decompose in the opposite
way.

u
w = l u } (3.5.38)

For the left eigenvectors, we write the equations corresponding to the left eigenvectors as

M 0 [0 M
[thWZ][o x| =Aviwpl| —c] (3.5.39)
0 I | [1 0
[thwg] K -C :/I[W,ng] 0 M]w (3.5.40)

Multiplying out the terms in equation 3.5.39, we find that
wiM =wi M (3.5.41)

which, for nonsingular M, yields
wy = Awy (3.5.42)

Thus, for the linearization in equation 3.5.35, the left eigenvectors can be decomposed in a similar manner
as the right eigenvectors when the mass matrix is nonsingular.

Multiplying out the terms in equation 3.5.40, we find that
wp K = aw] (3.5.43)

Or, for symmetric K,
Kwyp = Aw, (3544)

Thus, for the linearization described by equation 3.5.36, the left eigenvectors cannot be decomposed as the
right eigenvectors were.

When forces are present in the system, we can rewrite equations 3.5.35 and 3.5.36 as

[A(f g]w—[_ﬁg _Aé w:[? (3.5.45)
[_(;(_IC]W—[é 1\(4) w:[_}?] (3.5.46)

Thus, for both linearizations 3.5.35 and 3.5.36 the state-space force vector has a zero top half, and for
linearization 3.5.35 the non-zero bottom half is multiplied by a negative sign. This answers the second
question above.

To answer the third question, we first consider the results given in Table 1.1 of.'?° In this table, relationships
between the left and right eigenvectors are given for various symmetry relations of M, C, and K. In
particular, property P7 from this table states that if M, K are Hermitian, C = —C" is skew-Hermitian, and
M is positive definite, then if x is a right eigenvector of A, then x is also a left eigenvector of —1'. Since we
only consider real-valued matrices, we expect the eigenvalues of the systems of interest to be imaginary,
and thus —A" = A. Thus, property P7 states that the left and right eigenvectors of A are the same. The
results in this table define the left and right eigenvectors as follows

PMu+ACu+Ku=0 (3.5.47)

wiPM +wiAC+w'K =0 (3.5.48)

for right and left eigenvectors u and w, respectively. By taking the conjugate transpose of equation 3.5.47,
and noting that C = —C" and -1, we obtain

W PM+u"AC+u'K =0 (3.5.49)

from which the result P7 from Table 1.1 in'?° is obtained.

We note that the results from Table 1.1!>° are with respect to the quadratic eigenvalue problem, not the
linearized versions. Since equations 3.5.47 and 3.5.48 could be linearized in some ways, we would expect
the conclusions to change when we go to the linearized problem. For example, we again consider the case
when M, K are Hermitian, C = —C" is skew-Hermitian, and M is positive definite. With these conditions
on M, K, and C, we consider the linearizations given by equations 3.5.35 and 3.5.36, which can be written
concisely as

Au = ABu (3.5.50)

In the case of equation 3.5.35, we have that A is symmetric, whereas B is skew-symmetric. In the case of
equation 3.5.36, we have that A is nonsymmetric, and B is symmetric. If we take the conjugate transpose of
equation 3.5.50, we have the corresponding equation for the left eigenvectors

AT =uTATBT (3.5.51)
For linearization 3.5.35, we have A" = A, B' = =B, and A" = —A. This gives
u'A=u"2B (3.5.52)

which implies that the left and right eigenvectors of linearization 3.5.35 coincide.

In the case of equation 3.5.36, we have that A is nonsymmetric and B is symmetric. Thus, when we take the
conjugate of equation 3.5.50, we have
u'AT=u" A" B (3.5.53)

which, from symmetry conditions, reduces to
utAT=-2u'B (3.5.54)

Thus, since A is nonsymmetric, no relation can be deduced between the left and right eigenvectors.

111

Similar conclusions can be drawn about a different version of equation 3.5.35. If we multiply the lower
equation by —1, we obtain
0 M

M 0
[w=4

0 K

(3.5.55)

or Aw = ABw. Since C = —C", the matrix B is nonsymmetric. Then, taking conjugate transposes of both
sides of equation 3.5.55, we see that we cannot draw conclusions about relations between the left and right
eigenvectors. This is the same problem seen in equation 3.5.54.

3.5.6. Complex Eigenvector Orthogonalization

Let’s assume that there is a complete set of eigenvectors (no Jordan blocks). An eigenvalue of multiplicity
m has an m dimensional eigenspace. Some solvers, such as DGGEV do not generate an orthonormal bases
for these subspaces. If such orthogonalization is required, the procedure in Figure 3-5 may be followed to
orthogonalize two eigenvectors with a common eigenvalue.

Given two modes with a common eigenvalue, A, and with left and right
eigenvectors, ; and ¢ ;, we orthogonalize with respect to a matrix B.

WiBs1 = P (3.5.56)
UiBé = P (3.5.57)
WiBo1 = Poi (3.5.58)
We modify ¢, and ¢; to ensure that 81, = 8>; = 0. Let 1@ be the corrected
eigenvector.
Yo =Yn — ey
We require that &;Bm = 0. Then,
0 = !By (3.5.59)
= (Y2-ey1)'Bgy (3.5.60)
= P —€Bu (3.5.61)
Thus,
Yo=yo - @',01 (3.5.62)
B
For the right eigenvector,
br=pr— L2, (3.5.63)
B

Figure 3-5. — Complex EigenVector orthogonalization.

112

3.6.

Modal Augmentation with Residual Vectors

The residual_vectors solution method Modal truncation augmentation (MTA)*® provides a method to
represent the modes not retained in the eigendecomposition. It is particularly useful in component mode
synthesis approaches where multiple models are joined together. In NASTRAN, MTA vectors are referred
to as ‘residual vectors’. The theory of MTA% is established. We use the following terminology:

N
nev

SRgNEREQeNEE

Number of degrees of freedom

Number of retained eigenvalues/eigenvectors from the eigen solution
Number of applied forces and/or moments

Mass matrix of size NxN

Stiffness matrix of size NxN

Matrix with eigenvectors as columns, size NX(nev)
Diagonal matrix of eigenvalues, size (nev)X(nev)

Applied spatial load vector, size Nx(nf)

Modally represented spatial load vector, size Nx(nf)
Force truncation vector, size Nx(nf)

Static displacements due to applied loads, size Nx(nf)
Diagonal matrix of reduced eigenvalues, size (nf)x(nf)
Matrix of reduced eigenvectors, size (nf)x(nf)

Matrix of modal truncation (residual) vectors, size NX(nf)

The algorithm for computing MTA vectors is:

1. Solve the generalized eigenvalue problem

6.
7.
8.

K® = M®Q?

for nev eigenvalues and eigenvectors. This is done by first specifying eigen in a multicase solution

procedure.

. Compute the force truncation vector

R, =Ry— R, =Ry - MOD'R,,.

. Compute the static displacements X due to the force truncation vector R; by solving KX = R,.

If rigid body modes are present, orthogonalize X to them. The optional input nrbms allows the user
to specify the number of rigid body modes present.

. Form the reduced matrices nf X nf,

K=X"KX, M=X"MX.

Solve the reduced generalized eigenvalue problem KQ = M Qo>

Form the modal truncation (residual) vectors: P = X Q

Construct the pseudo modal set: ® = [®|P].

In Sierra-SD, the multi-case solution strategy is:

113

1. Solve the eigenvalue problem
2. For each column of Ry, solve a statics problem

3. Solve a residual_vectors problem to form the pseudo modal set

3.7. Wet Modes or Added Mass

Analysts want to compute the structural normal modes for a structure partially submerged in a fluid. In
appropriate approximations, this may be analyzed as a real eigen problem of the structure with added mass
on the wetted surface.

Fluid loading of the real eigenvalue problem is performed by separating the solution domain into structural
and acoustic regions. A real eigen analysis is performed on the acoustic domain which generates a mass
loading correction for a subsequent real eigen analysis of the structure.

3.7.1. Case | - matching meshes at wet interface

After finite element discretization, a submerged coupled structural acoustic system obeys the following
discrete formulation.

2 M 0 [u I Cs L [u +
—W — W —
0 p_;Mf [0} LT #Cf 0]
K 0 u fs }
_ = 3.7.1
[0 Ky [¢] [falpy G-7D

where M, C, and K denote the mass, damping, and stiffness matrices for the solid,* M ,Cr,and K¢
denote the same for the fluid, f; and f,; denote loadings on the structure and fluid, and u and ¢ are the
structural displacement and acoustic velocity potential, respectively. The coupling matrices are denoted by
Land LT. C '+ may represent a non-reflecting boundary condition on the exterior of the fluid. Coupling
between fluid and structure is accounted for by the matrices L and L. Due to the presence of the damping
terms, this eigenvalue problem is quadratic. In the special case Cy = C¢ = 0, the system is called
gyroscopic since the eigenvalues are real valued, even though a damping matrix is present.

The goal of the added mass approach is to simplify equation (3.7.1) by considering only the incompressible
limit. This can be achieved by taking the limit ¢ y — oo, where c ¢ is the speed of sound in the fluid. The
latter condition implies an incompressible fluid, which has infinite sound speed. It is important to note that
these limits are only applied to the acoustic equation in the system (3.7.1), and not the structural equation.
Since we are only interested in eigen analysis, we set f; = f, = 0 for the remainder of this note.

If we consider the limiting condition ¢ ; — oo applied to the second equation in the system (3.7.1), we see

2
that the term Z’—fM ¢ will vanish, since the acoustic mass matrix M has a factor of (#) built into it.

“4In a ship floating in water, the structural stiffness matrix, K will typically contain 6 zero energy modes. Addition of buoyancy
terms converts three of these to bounce, roll and pitch modes, but three singularities typically remain.

114

Similarly, as ¢y — oo the fluid damping, due to either an exterior boundary condition or infinite elements,
vanishes. For absorbing boundaries, this can be seen by considering the corresponding damping matrix

1

Crij= - N;N;dQ, (3.7.2)

fJoQ.
where the integral is evaluated over the exterior boundary 9Q,, and N;, N; are the standard finite element
shape functions evaluated over Q.. Thus, the term C has a factor of } built in, which implies that it can
also be neglected. Physically, this implies that an incompressible fluid provides no radiation damping. For

infinite elements, the damping matrix is different than absorbing boundaries, but it is still pre-multiplied by
4
cr’

1
Crj=— / DN,V - VN; = N,N;VD - Vi — DN;VN; - VudV (3.7.3)

Cf JQ.
where N;, ¢, and D are components of infinite element shape functions, and here the integral extends over
the entire exterior domain €. instead of being on the boundary. Again, due to the pre-multiplication of ch’

we can neglect the infinite element damping matrix for incompressible fluids.

Additionally, we neglect structural damping and set C; = 0. Simplifying the second equation in the
system (3.7.1) in these ways yields,
¢ =iwprK;'LTu (3.7.4)

This also implies that
iwg = —wzprJ?ILTu (3.7.5)

If we define A = w?, and substitute the previous results into the first equation in the system (3.7.1), we
obtain

—A Mg+ pr LK L | u+ Ku =0 (3.7.6)
The added mass matrix is
Mg=p fLszlLT (3.7.7)

To make the acoustic stiffness matrix K invertible, most practitioners assign Dirichlet boundary conditions
p = 0 on the exterior surface.” Also, standard practice is to mesh the fluid to the extent of one or two
structural diameters away from the structure. As one takes more and more fluid, the eigenvalues should
converge to fixed values (although not precisely the same values as would be obtained from a full complex
eigen solution).

As an alternative to the Dirichlet boundary condition, one can use the spherical absorbing condition, not the
plane wave condition from equation 3.7.2. The spherical condition is more accurate, and since it
contributes an extra term to the stiffness matrix, it eliminates the need for the Dirichlet boundary condition.
This term takes the form

1
Ksphericalij = E‘/ NideQe (3.7.8)
0Q,

where R is the radius of curvature of the absorbing domain, and N; is a shape function on the exterior
(absorbing) boundary of the surface. This term would then get appended to the acoustic stiffness matrix
K ¢, rendering it nonsingular, without the need for the Dirichlet boundary condition.

Equation (3.7.6) is an eigenvalue problem in terms of structural unknowns only. For both absorbing
boundaries and infinite elements, the matrix M, is real-valued, and independent of frequency. In the case

SThroughout further discussions, we assume that K # is symmetric, positive definite.

115

of either absorbing boundaries or simple Dirichlet boundary conditions, it is also symmetric, and thus is in
the form of a standard eigenvalue problem that will yield real-valued modes. The eigen solver typically
requires an symmetric positive definite capacitance matrix, M. The linear solver must still address issues
with singular K.

For infinite elements, however, K ¢ is nonsymmetric, and thus the matrix M, is also nonsymmetric. In
general, this will lead to complex modes, which are undesirable for added mass calculations. Thus, a
symmetrization of K may be needed if infinite elements are to be used with added mass. This may be
important, as the Dirichlet boundary condition approach may require a large acoustic mesh to obtain
converged wet modes, whereas infinite elements typically allow for a much smaller (ellipsoidal) mesh.

Modal Solution of Acoustic Domain. The above procedure requires a solution of the acoustic domain at
each step of the system eigen problem. This may be simplified by use of a modal expansion of the acoustic
domain. We begin with the coupled system of equations, simplified by the limits of infinite acoustic
velocity. The eigen equation may be summarized.
4]
¢

o[M0 0o L],
“1 0 o LT 0

We consider a modal solution of the acoustic domain which diagonalizes the acoustic stiffness matrix.
Specifically, we define ¢ = g such that YK ¥ = Ay, a diagonal matrix. Substituting into the lower
equation of (3.7.9), we have,

K 0

-1
0 sk,

Il
(=

+iw (3.7.9)

K
iwLTu="Lygq (3.7.10)
pr
We pre-multiply by 47, and solve for g.
g =iwprA;'y L u (3.7.11)

Substitution of g in the top equation of (3.7.9) results in a simplified expression for the mass loaded
structural eigen problem.

(—w2 (M, + M,] + KS) w=0 (3.7.12)

where,
My =psLyAG'y" LT (3.7.13)

The eigenvalue problem above is real. The mass matrix contribution is real and symmetric. However, as in
the physical solution above, the mass matrix is full on the wet surface boundary, and is not typically
assembled. The modal solution does not require a linear solve at each iteration of the eigen solver, but by
not assembling the mass matrix we cannot utilize the shift-invert strategies available in ARPACK.

Decomposition Issues

The linear solver depends on effective decompositions for accurate, robust, high performance solutions. In
these methods, care must be taken for effective load balance. Rebalancing may be useful. It may be
possible to require the linear solver to rebalance. Alternatively, we may want a decomposition that is
independent in the fluid and structural domains.

116

Modal Truncation

The methods in this section are useful only if a reasonable modal truncation can be developed for the
acoustic domain. The only requirement on the basis is that the eigenvectors diagonalize K r. Thus, we could
solve the standard eigenvalue problem, (K — Al)y = 0, the generalized eigen problem with the fluid mass
matrix, (Ky — AM)y = 0, or use any other capacitance matrix. It is not clear which of these solutions
would provide the best model for modal truncation. We also do not have any experience on the number of
modes needed for effective truncation.

3.7.2. Case Il - mismatched meshes at wet interface

When the meshes are mismatched at the wet interface, extra acoustic degrees of freedom are created on the
structural side of the wet interface, and these degrees of freedom have zero stiffness. Also, the coupling
matrix L is only active on the virtual acoustic degrees of freedom on the structural side of the wet interface.
However, because of the manner in which linear constraint equations are handled in GDSW, the issue of
virtual vs physical acoustic dofs does not impact the necessary algorithm development for the added mass
mat-vec product.

Element Matrix Approximations. In the limits of infinite acoustic velocity, the contributions to the mass
and damping matrices for the fluid go to zero. We consider here the stiffness matrix for an element in
volumetric domain and for an infinite element. The infinite element formulation is described in equation
(6.1.17) of the infinite element section (6.1.2). As shown in this section, the infinite element is not a
function of either w or ¢,, and thus is unchanged in the infinite velocity approximation. Likewise, the
volumetric stiffness is defined in equation (3.2.3) of Section 3. It is also independent of frequency or
acoustic velocity. Standard element formulations apply for both stiffness matrix contributions in the limits
of infinite acoustic velocity.

117

This page intentionally left blank.

118

4, MATERIAL

4.1, Anisotropic Materials

A theoretical development for anisotropic elasticity is presented emphasizing the numbering convention.

Linear Anisotropic Elasticity. Linear elasticity asserts that the stress is a linear function of the strain:
4
Tij = Cjpi€ki

Where le"j «; are the Cartesian components of the fourth order constitutive tensor and the Einstein
convention of summation on repeated indices is used.

4.1.1. Stress Vectors

By definition, the strain is symmetric. Further, we make the usual constitutive assumption that the stress is
symmetric. This permits the representation of the 3x3 stress matrix and the 3x3 strain matrix each by a
column vector having six rows.

o1l
022
0733
023
013
o12

and,

€11

€22

€33

2673
2613
2€12

This is the Voigt notation. Note that this mapping from o to s and from € to e is not universal. This is the
numbering used in Malvern and is popular in the materials science world, but it differs from the numbering
used in NASTRAN and from the numbering in Abaqus. Although s and e are called the “stress vector” and
the “strain vector”, they do not map from one coordinate system to another as true vectors do. How that
mapping is done is discussed in a later section.

We use the above to map the fourth-order tensor le‘j 4 Into a 6x6 matrix of material parameters. This is
done with the aid of the matrices that formally map o to s and from € to e.

én = Enijéij (411)

119

and

€ij = enFm-j (412)
where
[1 0 0] [0 0 0] [0 0 0]
Ei=]10 0 0 E-=10 1 0 E;=10 0 O
| 0 0 O | | 0 0 O | | 0 0 1 |
[0 0 0] [0 0 1] [0 1 0]
E,=]10 0 1 Es=10 0 O Es=10 0 O (4.1.3)
| 0 1 0] | 1 0 0 | | 0 1 0|
and
1 0 0] 0 0 O [0 0 O
Fr=10 0 0 FK=101 0 F=10 0 O
0 0 0] 0 0 O |0 0 1
0O 0 0 | 0 0 1/2 [0 1/2 0
F,=10 0 1/2 Fs5 = 0O 0 O Fe=|10 0 O 4.1.4)
0 1/2 0 1/2 0 0 |0 1/2 0

We note that the stress mappings are also achieved with the above third order quantities:
Sp = I'nijOij 4.1.5)

and
gij = SnEm'j (416)

From Equations 4.1.1 and 4.1.2 or Equations 4.1.5 and 4.1.6 we see that,

EnijFnij = Omn 4.1.7)

Substituting Equations 4.1.2 and 4.1.6 into Equation 4.1 and simplifying with Equation 4.1.7, we find
Sm = Cmnen (4.1.8)

where
Con = FmijC?jlenkl (419)

This shows how to find the 6x6 matrix C;; in terms of the fourth order tensor components C lf‘j - The
material description may also be provided in terms of the components of C;;.

4.1.2. Strain Energy and Orientation

Consider the situation where the matrix of material parameters is provided in a Cartesian coordinate system
different from the global coordinate system in which strains are calculated. Because stress and strain are
tensors, they transfer from one coordinate system to another by:

0ij = RaiGap R (4.1.10)

120

and
€j = Ruyi€apRpj

4.1.11)

where 0; and €;; are the stress and strain components calculated in some other (global) Cartesian system
and R,; are the components of the rotation matrix that rotates the basis vectors in that global system to that
with respect to which the material properties are defined. A basis vector b, in the local, material frame is

expressed in terms of the basis vectors of the global system by:

ba = Raibi

where by, by, and b3 are the basis vectors of the global frame.

From Equations 4.1.5, 4.1.6, and 4.1.9, we find following
Sm = (FmijEnabRaiRp;j)Sn.

From Equations 4.1.1, 4.1.2, and 4.1.11, we find the more useful relationship
em = (EmijFnapRaiRpj)én.

The above two transformations are simplified:

and

where the 6x6 transformation matrix, 7, is defined

Tk = Eni; FrapRaiRp; = tr (E,{ RFkRT)

Noting that
s=Cé,

and substituting Equations 4.1.15 and 4.1.16 into Equation 4.1.18, we further find
s=TTCTe.

Comparing the above with Equation 4.1.8, we finally find that
c=1"Cr

which was the main point of this exercise.

4.1.12)

(4.1.13)

(4.1.14)

(4.1.15)

(4.1.16)

4.1.17)

(4.1.18)

(4.1.19)

(4.1.20)

Note also that the components of arrays E,, and F;, are mostly zero, with the rest either 1 or 1/2. Asin [16]

Equation 3.34, the simplified (with Maple) product matrix is

T T2

-]
R:, R:, Ri, Ri3Ri12 Ri3Ri1 Ri3Ri
I = R§1 R%z R§3 , Tio=|Rx3Ry Rx3Ry Ry;Ry
R;, R3, R R33R3: R33R31 R3zRi

121

>

(4.1.21)

151 =2R21R31 RnR3p RozRiaz| |12 = Rp3R3p + RooR33
2R11R3 Ri2R3 Ri3R33, R13R3 + R12R33
2R11 Ry R12R» Ri3R23 Ri3R» + R12Ry3

The Maple code to perform the above calculations follows.

with(linalg);

E[1] := matrix(3,3,[[1,0,0],[0,0,0],[0,0,011);
E[2] := matrix(3,3,[[0,0,0],[0,1,0],[0,0,01]1);
E[3] := matrix(3,3,[[0,0,0],[0,0,0],[0,0,1]11);
E[4] := matrix(3,3,[[0,0,0],[0,0,1],[0,1,0]1]1);
E[5] := matrix(3,3,[[0,0,1],[0,0,0],[1,0,011);
E[(6] := matrix(3,3,[[0,1,0],[1,0,0],[0,0,0]1]1);
F[1] := E[1];

F[2] := E[2];

F[3] := E[3];

F[4] := (1/2)*E[4];

F[5] := (1/2)*E[5];

F[6] := (1/2)*E[6];

R := matrix(3,3);

for k from 1 to 6 do

FRR[k] := matrix(3,3);
FRR[k] := evalm (R &* F[k] &*transpose(R));
od;

T := matrix(6,6);

for k from 1 to 6 do

for n from 1 to 6 do

T[n,k] := 0;

for i from 1 to 3 do

for j from 1 to 3 do

T[n,k] := T[n,k] +evalm(FRR[k][i,j1)*E[n][i,]j];
od; od;

od; od;

readlib(0);
C(M;

read("/home/djsegal/Maple/tools/maple2mif.mpl™);
M := maple2mif();

R23R31 + Ry R33
Ri3R31 + R11R33
Ri3R21 + R11R3

fprintf("/home/djsegal /MPP/notes/temp.mif",’%s’ ,M(eval(T))) ;

4.2, Viscoelastic Materials

Ry R31 + Ry R32

Ri2R31 + R11R32 .

RipRy; + R11R22
(4.1.22)

Here we describe the integration of viscoelastic structures using the generalized alpha method. For the
proper choice of the parameters of the generalized alpha method, the results below reduce to those

122

corresponding to the Newmark-beta method.

4.2.1. Equations of motion

The equations of motion of elastodynamics in three dimensions are given by

Uy — V-0 =fx,tr) Q 4.2.1)
u(x,t)=0 xelp 4.2.2)
o(x,t)=g(x,t) xeln 4.2.3)
4.2.4)

where u = (u,uy,u;) is the vector of displacements, o is the stress tensor, and f(x, t) is the body force.
The boundary of Q is divided into Dirichlet I'p and Neumann I'y subregions.

The Dirichlet conditions lead to the space of admissible functions

V=[veH(Q),v(x)=0,x€Tp] (4.2.5)

The equation of motion, along with boundary conditions, is cast into the weak form in the standard way

/u,t SV + / o - Vgvdx = / f(x,1) -vdx+/ glx,t)-vds VYveV (4.2.6)
Q Q Q I'n

where an integration by parts has been carried out on the middle term, and V = %(V +V7T) denotes the
symmetric part of the gradient operator.

4.2.2. Constitutive equations

The representation of the time-dependent moduli for a viscoelastic material is commonly written in the
form of a Prony series

G(t) = Gint + (Go — Ginf) {6 (1) 4.2.7)
lo(t)=) e (4.2.8)

4

where G is the glassy modulus, Gy is the rubbery modulus, and c;, s; are coefficients used to fit the Prony
series representation to the experimentally measured relaxation curve. A similar expression holds for K (¢),
with different values for the constants, and possibly a different number of terms in the series. Assuming an
isotropic viscoelastic constitutive law, we only need to consider two rate-dependent material properties. In
this presentation, we will work in terms of the bulk K and shear G moduli, since experimental data is
typically given in terms of these two parameters.

The constitutive model for an elastic material can be written in terms of the shear and bulk moduli

oc=De=(KDkg +GDg)e 4.2.9)

123

where K, G are the scalar bulk and shear moduli, and as is shown in equation 9.4.7 in,37

Dk =

S OO = ==
SO O = ==
eNeoNoNoNeNe
S OO OO

eNeNeNoNeNo

[4/3 -2/3 -2/3 0
—2/3 4/3 -=2/3 0
bo_| 23 23 430
ST o 0 0 0
0 0 0 0

O 0 0 00 0]

This constitutive law can be generalized to a linear viscoelastic material as follows

Oe(x,T)

ot

0e(x,T)
ot

=N el oleNel
=N el ool

t
o(x,t) =(Gyg—Ginr)Dg / lo(x,t—1) dt+ GiptDge(x,t) + (4.2.10)
0

t
(Ko — Kinf)DK/ {k(x,t—=1) dt + KingDge(x, 1)
0

The above expression is then used to represent the stress in the weak form of the equations of motion,
4.2.6.

Given a finite dimensional subspace V;, C V, we represent the approximate solution in the standard way
n
un(x,1) =) ¢i(omi (1) (42.11)
i=1

where V), = span(¢;), and n(¢) represents the unknown time dependence. We also denote ®(x) = [¢;(x)]
as the matrix having ¢; as the i’ column. Inserting this into the equations of motion, and rearranging, we
obtain

Mij(t) + (Go — Ginf) K ‘/0 Lo (t—T)n(t)dt +

(Ko — Kinf) K /Ot Lk (t = D)n(T)dT + Kon(t) = f(1) (4.2.12)
where
M= / 0(x)®T (x)P(x)dx (4.2.13)
is the mass matrix, ’
Ky = (Go — Ging) /Q BTDgBdx + (Ko — Kin) /Q BT D Bdx (4.2.14)
K> = Gint /Q BT DG Bdx + King /Q BT Dy Bdx (4.2.15)

are the stiffness matrices, and

f(t):‘/gf(x,t)-v(x)dx+/r g(x, 1) -v(x)ds (4.2.16)

124

is the right-hand side. The corresponding element matrices are defined by breaking the integrals into
element wise contributions.

Equation 4.2.12 represents a system of Volterra integro-differential equations. Without the inertial term,
4.2.12 represents a system of Volterra integral equations of the first kind. The standard form for implicit
time integration schemes is

Mii(t) + Cri(t) + Kn(t) = f(1). (4.2.17)

Here C is a constant damping matrix. Is the system of equations 4.2.12 reducible to standard form? f ft) is
a modified right-hand side that will include a portion of the viscoelastic convolution term. We demand that
C be independent of time, since this will eliminate the need for refactoring the left-hand side at each time
step. The damping (integral) term in equation 4.2.12 is time-dependent. However, we will show that it is
possible to split this integral term into a time-dependent and a time-independent part. The time-independent
parts remain on the left-hand side and become the damping matrix, whereas the time-dependent parts can
be carried to the right-hand side, since they are known quantities. Once the equations 4.2.12 are reduced to
the system 4.2.17, the standard time integrators for structural dynamics can be employed.

For simplicity, we consider the case of only a single Prony series term. The results for more terms can be
obtained by adding together the results for a single term. The integral in equation 4.2.12 can be split into
two parts (considering only a single Prony series term)

t zi -7 4 -7
[eFiamar = [T eFimars [eFamar (42.18)
0 0 ti
I g
= es/ e&ﬁ(r)dr+/ e s n(r)dr (4.2.19)
0 ti

where the first term is a loading history term that is known at time #;. Consequently, it can be treated as an
additional load and brought to the right-hand side. The remaining term can be split into two terms, one
containing coefficients of 77, and the other containing coefficients of 7j;. The former is unknown and thus
becomes C1j, whereas the latter is known and thus also contributes to the right-hand side.

To evaluate the term

/ e (t)dr (4.2.20)

we first need a representation for the velocity 7(7) in the interval T € [#;,1]. We present two choices, both
of which are second order accurate.

4.2.3. Linear Representation of Velocity

The first is consistent with the Newmark-beta method, which presumes a constant acceleration within the
time step. With this assumption, the velocity must vary linearly within the time step. Thus,

i +n(1:) (r-1)

> (4.2.21)

n(t) =n(t) +

where 7j is the (unknown) acceleration at current time 7, and n(#;) is the previous acceleration. Although
equation 4.2.21 is the correct representation for velocity, it is inconvenient in that it would lead to (after
inserting into equation 4.2.20) a contribution to the mass matrix. This is undesirable, since it would

125

interfere with the use of a lumped mass matrix. Thus, we re-write the velocity distribution in an equivalent
form .
1 —n(t)

L (1-1)
We note that equations 4.2.21 and 4.2.22 are equivalent representations of the velocity. By inserting
equation 4.2.22 into equation 4.2.20 we obtain

! t—7 S2 At
Sa(ndr=ls+ = (5= 1)
-/z,- e s n(r)dr s A e

The first term involves a coefficient times the unknown 7, which is the unknown velocity at the current time,
and thus it must remain on the left-hand side as a damping term contribution. The damping matrix implied
by this term is

n(t) =n(t) + (4.2.22)

1+ |- = + —SZ (1 - W) j (4.2.23)
e s s ; 2.
n N p e i

A" - 52G —ar -
C = ek sk + (e ~ 1)BTDKB + G (s6 + -2 (76 ~ 1)BTDGB (4.2.24)

The second term is known, and thus it can be added to the load vector.

4.2.4. Midpoint Representation of Velocity

A second implicit scheme can be derived by using the midpoint rule on the velocity in the viscoelastic term.
The only difference from the linear approach described above is in equation 4.2.23.

7+ ‘ti
n(r) = T2 g() (4.2.25)
This leads to
e s a\ S A\
‘/liesn(T)dT—E(l—es)n+§(l—es)m (4.2.26)

In the same way as for the linear velocity approach, we use the term involving 7 to construct a damping
matrix, and the remaining known terms are carried to the right-hand side.

The midpoint scheme is inconsistent in that a different discretization scheme is used for the viscoelastic
term than was used for the overall time integration. The linear representation of velocity is a consistent
scheme. However, both approaches are second order accurate.

126

5. ELEMENTS

Structural dynamics is a rich and extensive field. Finite element tools such as Sierra/SD have been used for
decades to describe and analyze a variety of structures. The same tools are applied to large civil structures
(such as bridges and towers), to machines, and to micron sized structures. This has necessarily led to a
wealth of different element libraries. Details of these element libraries are presented in this section. For
information on the solution procedures that tie these elements together, please refer to Section 2.

5.1. Corrections to Element Matrices

Several elements generate element matrices that may need corrections. For example, the stiffness matrix
generated from Craig-Bampton reductions may not be positive definite, and may not have the proper null
space. Infinite acoustic elements have a similar problem with the mass matrix. These errors are typically
small, but may lead to unstable systems. Correcting the errors is an important step.

The errors are removed using an eigen decomposition. We compute the eigenvalues and eigenvectors of the
element matrix of concern.
(A-A¢ =0

where A is the matrix of concern, A are the eigenvalues and ¢ are the eigenvectors. Computation of the
eigen problem on a small element matrix is not expensive. We normalize the eigenvectors such that
T ¢ = 1. Tt follows that 7 = ¢~'. We correct the element matrix by computing,

/1,‘<0
A= A=) dijlidin (5.1.1)

1

The element matrix A replaces matrix A in subsequent calculations. The correction of the null space
vectors (and the element matrix) is optionally performed for Craig-Bampton models. See Figure 2-6.

5.2. Mass lumping

A consistent mass matrix is used by default. A lumped mass matrix is used to apply gravity loads, and is
available for most solution cases. Several mass lumping techniques are outlined in the literature.”> Summing
mass across rows is an established method. It works for most volumetric elements. It is used in SD.

For elements both with translational and rotational DOFs, the row sums are segregated. With a 2 node
beam with 6 dofs per node, the sum for rows {1, 2, 3} includes columns {1, 2,3} and {7, 8, 9}. Rotational
lumping uses the same row sum method for rotational inertias. The sum for rows {4, 5, 6} includes columns
{4,5,6} and {10, 11, 12}. Rotational lumping uses the

127

5.3. Selective integration

In theory, selective integration applies to any 3D isoparametric elements. The implementation applies
selective integration to elements with linear shape functions (such as hex8 or wedge6). The first step is to
explain how to evaluate certain operators on the shape functions. Later the operators will be integrated into
K.

5.3.1. Derivation

The strategy for avoiding over stiffness with respect to bending begins with splitting the strain into
deviatoric and dilatational parts. An isotropic, linearly elastic material has strain energy density

1
p= E(ZGG +Atr(e)l) o € (5.3.1D)
with some re-arrangement, this can be shown to be:
s, 1 2
p=Géeé+ E,B(tr(e)) (5.3.2)

- 1
where € = € — 317 (€)l.

The contribution to strain energy density from the deviatoric strain is separated from the contribution from
the dilatational strain. The contributions are integrated separately. First, the strains are expressed in terms
of nodal degrees of freedom.

The deformation field depends linearly on the nodal DOFs. The displacement gradient does too. It should
be possible to expand each quantity as follows.

Let P; be the node associated with the jthe degree of freedom and let s; be the direction associated with
that degree of freedom. The displacement field is:

i(x) = NP (n)ull g, (5.3.3)

where summation takes place over the degree of freedom j.

Similarly, the displacement gradient is:

- 0 -)
Vii(x) = (E)NPJ (X)uy) ;8 (5.3.4)

We define the shape deformation tensor W/ corresponding to the j the nodal degree of freedom:

0

Wi (x) = (—5)Vii(x) (5.3.5)
J
Us;
which, with Equation 5.3.4 yields:
‘ 0 op. o o
W/ (x) = (-—)N"/ ()€, €k (5.3.6)
Bxk 4

128

The symmetric part of this tensor and the strain tensor are,

S/ (x) = %(Wf @)+ W ()T, e =S (ul.

From the above, we construct the dilatational and deviatoric portions of the strain in terms of the nodal

displacement components:
tr(e(x)) = b’ (x)uy’

where . _

b’ (x) = 1r (8’ (x))
Similarly,

é(x) = B/ (x)u,’
where

BJ(x) =87 (x) - %bj(x)l

To evaluate K use the constitutive equation 5.3.2 and

52
— 5 x)dV(x
Gufn’faufrf -/v‘olumep(Jav(x)

Combine this with the expressions for strain in terms of the nodal DOFs,

Km,n =

Koun = G / (B ()T @ B (1)dV (x)
volume

+8 b"™(x)b" (x)dV (x)

volume

5.3.1.1. Implementation

(5.3.7)

(5.3.8)

(5.3.9

(5.3.10)

(5.3.11)

(5.3.12)

From the above it is seen that once the shape deformation tensor W/ is found, the rest of the calculation

follows naturally. Next the tensor components are derived. The components of W/ are

Wr]nn = én-W-e,

0 | ~p.
= 5m,sj'(6_xn)NPj(x)

The partial derivative (%)1\7 Pj(x) is calculated from

0 vEi = i Pj -1
GV @) = (GNP @1,
where
0
Jm,)/:a_gyxm(é:)
and

N(&) = N(x(¢))

(5.3.13)
(5.3.14)

(5.3.15)

(5.3.16)

(5.3.17)

Selective element integration, discussed in Section 5.4, is applied to all isoparametric solid elements.

129

5.4. Integration of Isoparametric Solids

A selective integration method for isoparametric solids is described that satisfies the standard conditions,
including the patch test, and at the same time accommodates anisotropic materials.

The matrix of elastic constants connects the stress, s, and strain, v, vectors,

[o11] [€11]
o2 €2

s = 733 =Cv, v= €33 .
023 263
o3 2613
012] [2€12]

Virtual work will be used to derive the stiffness matrix.

SW = / sLovdv = / vICovdV (5.4.1)
\% \%

If we select the above volume to be that of an element and use the strain-displacement matrices associated
with each nodal degree of freedom,

v(x) = Z Bj(x)u; (5.4.2)
J
where u; is the j th nodal degree of freedom, the virtual work becomes

W = u;Suy / B;(x)"CB(x)dV (5.4.3)
\'%

Since the element stiffness matrix is defined by
oW = I/tj(SKij (544)

we conclude that
K;j = / B;(x)T CBy(x)dV (5.4.5)
v

Next the strain-displacement vectors are decomposed into deviatoric and dilatational components.

Bj(x) = B? (x) + BY (x) (5.4.6)
where,
1
1
1
BY (x) = d;(x) 0 (5.4.7)
0
L O .

130

and 3d(x) is the sum of the first three rows of B (x). B? (x) is defined by equation 5.4.6. Substitution of
equation 5.4.6 into equation 5.4.5 yields:

Kij = /VB?(X)TCBE(X)dV+/VB}’(x)TCBZ(x)dV+---
+/ B (1) CBY (x)dV + / BY (x)CB{ (x)dV (5.4.8)
v v

In the case of isotropic materials, the deviatoric and dilatational portions of the strain are orthogonal with
respect to the matrix of material constants. The last two integrals in equation (5.4.8) vanish. Finally
parasitic shear is mitigated by using special cubature rules for each contribution to the stiffness matrix in
equation (5.4.8).

Uniform Strain-Displacement Matrices. The purpose of this section is to explain the treatment for
anisotropic materials. The first new tool is the element averaged strain displacement matrices.

Br=i / By (x)dV (5.4.9)
Vv

For hexahedrons, these are the strain-displacement matrices,®>%* and lead to “uniform strain” elements.

Elements formed by the above strain/displacement matrices are “soft", having properties similar to
elements formed by single point integration. Hex elements of this sort display spurious zero-energy modes.
In what follows, we consider linear combinations of this strain-displacement matrix formulation with the
consistent formulation of equation (5.4.2).

The uniform strain matrices are also separable into dilatational and deviatoric parts.

By =B} + B (5.4.10)

Mixed Integration. This selective integration method builds on one presented by Hughes.”® We can
achieve the effect of softening elements by forming the strain displacement matrices from combinations of
the consistent strain-displacement and the uniform strain displacement matrices.

Bi(x) =aB) + (1 - a)B](x) +BBY + (1 - B)BY (x) (5.4.11)
(14) Note that for all values of @ and g, the above correctly captures uniform strains. It is in how the

non-uniform strains contribute to the stiffness matrix that the particular values of @ and 8 make a difference.
By setting values of @ and § according to the following table, we recover the standard integration forms:

Integration
Flanagan and Belytschko
Full Integration
Selective Integration

—_ O =R
o O~

We note that setting @ = 1 and using an intermediate value of 8, we can achieve performance comparable to
that of the Flanagan and Belytschko element but without admitting hour-glass modes.

131

5.4.1. Mean Quadrature with Selective Deviatoric Control

In this section we discuss the implementation of the mean quadrature element in Sierra/SD. This work is a
result of a collaboration with Sam Key.%*

We first examine the element stiffness matrix resulting from a fully integrated element
K= / BTCBdv (5.4.12)
1%

where K is the stiffness matrix, V is the volume of the element, B is the standard strain-displacement
matrix, and C is the matrix of material constants. When implemented in the standard way, this element
behaves poorly for nearly-incompressible materials, and is too stiff even on materials with moderate Poisson
ratios.

A standard approach for softening the element formulation in the presence of nearly incompressible
materials is to replace the matrix B with its mean quadrature counterpart, B,

E:/de (5.4.13)
\%

This alleviates problems associated with nearly incompressible materials, but the resulting stiffness matrix
exhibits hourglass modes. These modes can be removed either through hourglass control methods, or by
adding in some of the missing deviatoric components. We use the latter method. B and B split into
volumetric and deviatoric components, i.e.

E = EV + BD (5414)
B =By +Bp
With these decompositions, we define
B =By +Bp+sd(Bp — Bp) (5.4.15)

where sd is a parameter between 0 and 1. When sd = 0, the element corresponds to a mean quadrature
element. When sd = 1, the element corresponds to mean quadrature on the volumetric part, but with full
integration on the deviatoric component.

With this new definition of B, we can define the stiffness matrix for this element as

K = f BTCBdv (5.4.16)
\%

5.4.2. Bubble Functions

Low order finite elements tend to behave poorly when subjected to bending loads. The bubble hex elements
have been shown to give much better bending performance, without increasing the number of degrees of
freedom in the element.'?%7%% In this section we give a brief review of the theory behind this element.

The representation of displacement at the element level in the standard hex8 element is

8
u= > uNi(¢) =u'N (5.4.17)
i=1

132

where u is the element displacement, N; is the i’" shape function, N is the vector of shape functions, and &
is the vector of reference element coordinates. The bubble element augments the standard finite element
basis functions with additional bubble functions. The representation of displacement at the element level
for the bubble element takes the form

8 3
u= Zl: wNi (&) + le aP;(¢) = u"N +aTP (5.4.18)

where P;(£) are the bubble functions, P is the vector of bubble functions, a; are the unknown coefficients
for the bubble functions, and a is the vector of unknown coefficients for the bubble functions. The
corresponding expression for element strain is given as

€ =Bu+Ga (5.4.19)

where B and G are the appropriate!'2%® derivatives of the shape functions. Note that B is a 6x24 matrix,
whereas G is a 6x9 matrix.

The corresponding element stiffness and load terms can be assembled into a block 2times2 system

u f
] = [0 } (5.4.20)

K ET
a

E H

where K = fe BTCBAV is the 24x24 element stiffness matrix corresponding to standard element shape
functions, H = fe GTCGdV is the 9x9 stiffness matrix corresponding to bubble shape functions,

E = fe GTCBdV is the 9x24 matrix corresponding to products of bubble and standard shape functions, and
f is the element load vector. The bubble unknowns a are local to each element, and may be eliminated,
yielding the modified element stiffness matrix

K=K-ETH'E (5.4.21)

The order of K remains 24 x 24.

With one of two supported corrections, the bubble hex element passes the patch test, assuring convergence.
First, G is evaluated at the element centroid'?® instead of the Gauss points. Second the average value of G
is determined’® and subtracted from G.

In Sierra/SD, we have taken the second approach. A new G matrix is defined, G, that is constructed by
subtracting the average value of G from G.

A 1
G=G-— /GdV (5.4.22)
Ve e

We replace G with G in the above equations. We note that, in the implementation of this element in
Sierra/SD, it was found that after implementing the correction described above, the element passed the
patch test. Without the correction, the element failed all the patch tests.

With the bubble element, stress is a function of the thickness. Stress is determined from the strain. The
solution procedure determines is element displacement vector u. Equation 5.4.19 for the strain depends on
the bubble DOFs a. Due to equation 5.4.20,

a=H 'Eu (5.4.23)

133

5.4.2.1. Nonlinear analysis of Bubble functions

The bubble element can be used in nonlinear analysis. The procedure’® is reviewed next. Although the
assumed strain approach was used instead of the assumed displacement method, both lead to the same
procedure.

We will give the necessary modifications for a nonlinear static analysis. The governing equation is

Fi"' (u, @) = FX (5.4.24)
It separates into two equations
Fint = / B'odQ = F* (5.4.25)
Q
" = / GlodQ=0 (5.4.26)
Q

The stress is given by o = Ce, where € is given by equation 5.4.19.

The quantities u and «a denote the unknowns, and @ and & represent the current iterates of displacement and
bubble unknowns. The two term Taylor’s series for internal force is

5Fmt 6F11nt

Fi"(u,@) ~ Fi"(§,8) + ——Au+ ——Aa (5.4.27)
ou oa
) . 5Fint aFint
Fi"(u, @) ~ F3' (0, &) + 3121 Au + 8; Aa (5.4.28)
We define
oFM
Ky = (5.4.29)
ou
OFM
Er = (5.4.30)
oo
OFM
Hy = (5.4.31)
oa

where the subscript 7 denotes tangent matrices that are computed at the current configuration. Using these
definitions and substituting equations 5.4.28 into equations 5.4.26, we obtain

T
A AHEP
where
Resy = F*' — F" (4§, &) (5.4.33)
Resq = —F3" (8, &) (5.4.34)

In equation 5.4.26 and others, o and B depend on displacement « and bubble unknowns @. Using the chain
rule, the tangent matrices are

0 [, BTodQ BT
Ky = Jo - / 0B o+ / 8797 40 (5.4.35)
ou o Ou o Ou
9 [.BTodQ T
Ep = Jo = / 0B o+ / 8797 4o (5.4.36)
oa o Oa o Oa
d[.GTodQ T
HT=/Q—=/ 96 a-dQ+/GTa—UdQ (5.4.37)
oa q Oa o Oa

134

In each expression, on the right-hand side the first and second terms are geometric and material stiffnesses

respectively.

The deformation gradient is used to evaluate 653 and 63 . New notation is needed. X is the initial
configuration, X is the current configuration, and u = x X is the displacement. Note that

0 0 DN DP
F=2 e & T2 p o7

0X 00X DX DX

OF DN

du DX

0°F

ou?

This implies that ‘;271; = 0. Therefore,

1
=_—(FTF-1
e=3()
p=2¢_pof
"~ du ou

9B _ 82F OF OF _OF OF
ou 6u2 Ou du du ou

Similarly, we can construct these equations for the bubble functions

1
=_(FTF-1
e =5)
e oFr
G=—=F—
Jda Jda

G 62F OF OF _ OF OF
ba 92 " bada oada
where similar identities have been used

0 0 DN DP
F=2 e 2 T2 o7
0X 0X DX DX
oF DP
da DX
O°F
da?
For the cross terms, we have
1
e= E(FTF)
Oe oF
B=—=F—
ou ou

0B 9’F L OFOF _OF OF
da Ouda Ou da du da
where, again we justify that the second term vanishes as follows

) d DN DP
JA Iy S S A il

X X DX DX

OF DN

du DX

0°F

ouda

135

(5.4.38)

(5.4.39)

(5.4.40)

5.441)

(5.4.42)

(5.4.43)

(5.4.44)

(5.4.45)

(5.4.46)

(5.4.47)

(5.4.48)

(5.4.49)

(5.4.50)

(5.4.51)

(5.4.52)

(5.4.53)

(5.4.54)

(5.4.55)

In a similar manner as was done for the linear element, the bubble degrees of freedom can be condensed
from equations 5.4.34. This results in the equation

(K1 — ELH7'E7)Au = Res, — ELH;'Res,, (5.4.56)

Thus, the full tangent operator for the bubble element is given by

Ky — ELH;'Er (5.4.57)
the internal force is given by . _
Fi"(a,&) — ELH7 FI' (4, &) (5.4.58)
and the residual is given by two terms
Resy — E%H}lResa (5.4.59)

These equations describe the nonlinear analysis of the bubble element.

5.5. Quadratic isoparametric solids

Quadratic elements (elements with bilinear or higher order shape functions) such as the hex20 and tet10 are
naturally soft and do not need to be softened by positive values of G and S (see sections 5.3 and 5.4 for
definitions of G and). Therefore, the values G = 0 and 8 = 0 are recommended.

5.5.1. Shape functions and integration points

The shape functions and Gauss points for hex20 elements use a standard ordering. The nodal ordering (and
shape functions) follows the ordering in the Exodus manual. Gauss points are input and output using the
ordering developed by Thompson.'?® Internally, the Gauss points are located at element coordinates (and
order) shown in Table 5-2.

Shape Function | Ap Al Ar Aj Ay As
Ni=(1-=-&e/2 | 1/2 | -1/2 | -1/2 | -1/2 | 1/2 1/2
No=(1-=&)r/2 1/2 -1/2
N3=(1-&)s/2 1/2 -1/2
Ny=(1+&Ee/2 | 1/2 | -1/2 | -1/2 | 1/2 | -1/2 | -1/2
Ns=(1+&r/2 1/2 1/2
Ne=(1+&)s/2 1/2 1/2

Table 5-1. — Shape functions and coefficients.

136

number labelsuffix | X Y Z
1 111 0O 0 0
2 112 0O 0 A
3 110 0O 0 -A
4 121 0O A 0
5 122 0O A A
6 120 0 A -A
7 101 0 -A 0
8 102 0 -A A
9 100 0 -A -A
10 211 A 0 0
11 212 A 0 A
12 210 A 0 -A
13 221 A A O
14 222 A A A
15 220 A A -A
16 201 A -A 0
17 202 A -A A
18 200 A -A -A
19 011 A0 0

20 012 A0 A
21 010 A0 -A
22 021 AA 0

23 022 AA A
24 020 AA A
25 001 A A0

26 002 A A A
27 000 A A A

Table 5-2. — Hex20 Gauss Point Locations. The constant A=0.77459666924148. The unit element is 2x2x2,
with a volume of 8 cubic units.

137

5.6. Wedge Shape Functions

The shape functions are given explicitly as in.”® These are provided as bi-linear polynomials in 7, s, , and
&, where r and s are independent coordinates of the triangular cross-subsections, t = 1 —r — s, and ¢ is the
coordinate in the third direction. For our purposes, it is necessary to expand the shape functions as
polynomials in r, s, and ¢:

Ni = Af + Afr + ASs + Abe + Akre + Akse (5.6.1)
No. Points | r s &
1 1/3 1/3 0

2 1/3 1/3 -1/V3
1/3 1/3 1/\3
6 1/6 1/6 -1/V3
2/3 1/6 -1/V3
1/6 2/3 -1/V3
1/6 1/6 1/V3
2/3 1/6 1/V3
1/6 2/3 1/\3

Table 5-3. — Wedge element integration rules.

5.7. Tet10

The degree 2 integration rule (see for example Appendix 3.1 of®) based on values at the four vertices is
used for the stiffness matrix. The mass matrix depends on integrals of polynomials two degrees higher than
the stiffness matrix. Higher order integration is required to determine a consistent (exact) mass matrix than
is required for the stiffness matrix. The 16-point integration comes from.®" (Using 4-point integration to try
to estimate the mass matrix of a natural element resulted in a 30 by 30 mass matrix with several zero
eigenvalues.) A 16-point integration with degree of exactness 6 from®" is used for the mass matrices.
Lower order cubature rules are often sufficient, and in these cases they are used for efficiency.

5.8. Hex20 shape functions and gradients

The shape functions a determined from the monomials
i &SinTi
pi(e) =&le)e].

for the non-negative integers {r;, s;, #; } 1 <i<20 such that

ri2 + s? + tl-z <7
The derivation of a cardinal basis starts with the rst matrix.

Sy ={(I,J,K) : I* +J* + K* < 8}.

138

The shape functions {N;(r, s,)}1<i<20 are linear combinations of the p; satisfying N;(r;,s;,t;) = ; j,
N = Ap. (5.8.1)

The element has 20 nodes. A is a 20 x 20 matrix. Wouldn’t A be 60 x 60 ?

We find the 400 term A—matrix values. Let &; denote the natural coordinate value at the ith node. We have
Ap(&1) =é; = (1,0,0, ...,0)7, and, in general, Ap(&;) = &;.

(81, &2, ..., &0] = [Al[P(E1), P(£2), ..., P(820)]

or,
1 =AP

or,
A=pP!
The SD source code labels A as hc20.
The gradients are also linear combination of the p;, g—g, (j = 1,2,3), determined by differentiating
equation 5.8.1,
ON p
ON _,9p
dej Oej

The dj/de; may be written as a linear combination of the py via the following three equations.

apl i—1 si 1
96 - rie]” &) €] (5.8.2)
Ipi i oSi—l b
76, = sig)e) & (5.8.3)
apl ri i ti—1
6_{53 = li(‘-)] 8; &3 (5.8.4)

while noting that equations 5.8.2, 5.8.3 and 5.8.4 are zero if r;, s;, or #; is zero, respectively. The matrices
B; with j = 1,2, 3 are sought such that,

ON
— =B;p.
(98]' J
Evaluating N /0g; and p at all 20 nodes, we have,
aﬁ - aﬁ - aﬁ - -/ > g g -/ >
a—(«?l), +—(&2), ..., 7—(820) | = B [P(€1), p(£2), ..., P(&20)] (5.8.5)
SJ' 58j 881'

Matrix equation 5.8.5 can be inverted to solve for B; with j = 1,2,3. In Hex20.C, ABl is B , AB2 is B,,
and AB3 is Bj.

5.8.1. Shape Function Ordering
The above method results in elements which satisfy the requirements that the evaluation of shape function i

on node i is one. However, the implementation does not ensure compatibility with standard node ordering
from Exodus. We’ve provided a re-ordering function to ensure this.

139

5.8.2. Anisotropy

Anisotropic materials require special care in the rotation of the matrix of material parameters when those
parameters are given in some coordinate system other that in which the element matrices are calculated.
The formulae for rotating those matrices are derived in 4.1.

5.9. Hexshell usage and limitations

A Hexshell®® element has the behavior of a standard shell element and the mesh topology of a brick. Thin
regions meshed with the solid brick topology may be modelled with Hexshells without concern for the large
element aspect ratios.

Hexshells require an thickness direction. It is important to be able to identify that direction. SD implements
four such methods

natural The natural ordering of the nodes in the element can determine the thickness direction. This is the
method used by Carlos to develop the element. I believe that the connectivity for the element will
indeed have to be modified to properly interface to his software.

sideset The placement of a sideset on one (or both) thickness faces of the elements uniquely identifies the
thickness direction.

topology The topology may be used to identify the thickness direction if the Hexshell is in a sheet.
Another hypothesis is that the sheet does not intersect itself. The thickness direction connects the
sheet’s free surfaces. Further, once the thickness direction is established for one element, the
thickness direction propagates to the adjacent elements.

projection The thickness direction could be determined by the closest projection to a coordinate direction.

We will try to support all the above methods. The fopology method puts the least burden on the analyst. It
is the least explicit however, and the most work to implement (especially in parallel). The next simplest (for
the analyst) is the projection method. Sideset methods are burdensome for both the analyst and the
developers. The natural method is the easiest to implement, but can be next to impossible for the analyst to
use.

Input will be structured as follows. Keywords are associated with each method. At most one of the four
keywords above may be entered. The default is topology. The mass properties of a layered Hexshell are

Block 9 Block 9
Hexshell Hexshell
orientation sideset="1,2" material=9 orientation topology material=9
end end

computed approximately as follows.
1. The volume fraction, f;, and density, p;, of each layer is determined.

2. The contribution of the mass of the element is added to the nodes as if an element of density
p = 2; pi f; filled the entire element.

140

The net effect of this is that the mass is computed as if an average density were applied. This could
introduce minor errors if the element is thick and is much denser on one side than another.

Materials for all Hexshell specifications can be defined as a function of temperature, with the temperatures
defined through the Exodus file as element variables.

5.10. Membrane

In this section we provide the theory behind the tangent stiffness matrix for the quad membrane element in
Sierra/SD. This element has stiffness in the in-plane directions, but has no stiffness out-of-plane. Also, it
has no rotational degrees of freedom. The following formulation coincides with the Abaqus’ membrane.

To begin, we define two orthogonal surface directions in the plane of the membrane / and m, and a normal
vector n. Given these unit vectors, a local coordinate system (/, m, n) is implied. We consider the weak
formulation of the internal force term for the membrane in the deformed configuration'”

Wint = / oD : odQ (5.10.1)
Q

where W;,,; is the virtual work, €2 is the domain of the membrane, o is the stress tensor, and
L =% = D + W is the deformation gradient. The rate-of-deformation D and spin tensors W are defined

~ Ox
as _ 7
1|({0u ou
1| {ou ou\"|

The updated Lagrangian formulation is used. Thus, the integral in equation 5.10.1 is over the current
(deformed) configuration of the membrane.

W is a skew-symmetric tensor, and the tensor product of a skew-symmetric tensor with a symmetric tensor
vanishes. Equation 5.10.1 reduces to

OWins = / oL : 0dQ (5.10.4)
Q

Equation 5.10.4 is written in terms of the global coordinate system. In the formation of the tangent stiffness
matrix, we wish to use the fact that all stress components normal to the plane of the membrane are zero.
Hence, when considering equation 5.10.1 in terms of the (I, m, n) coordinate system of the membrane, we
can eliminate the out-of-plane terms and write as

OWins = / 0L : O1mdQ (5.10.5)
Q

where [, m = 1,2 are the indices for the in-plane coordinate system of the membrane, L;,, = gxi

is the 2 X 2, in-plane stress tensor.

, and oy,

Next, we need to relate the derivatives in the plane of the element to those in the global coordinate system.
This is because the numerical integration of the tangent stiffness matrix takes place in the plane of the
element (and hence involves derivatives with respect to in-plane coordinates), whereas the derivatives in

141

equation 5.10.5 are in terms of global coordinates. We can express the in-plane displacement in terms of
the out-of-plane displacement as

up=u-1l (5.10.6)
Up =U-m (5.10.7)
Up=U"N (5.10.8)

The relationship between the derivatives can be computed

ou 3 ou 0x Ou

Ou _Ouodx Ou 5.10.9
ox, oxox ox! (5.10.9)

where e; is the unit vector in the [direction. Similar expressions hold for the other components. Taking the
dot product of both sides of the previous equation with the unit vector in the m direction, e,,, we arrive at

Ol ou

tm _ o T 5.10.10
ox; ox ! ()

Next, we consider the expression given for the tangent operator in’

/5D:C:dD+a:(5LT-dL—250-dD)dQ (5.10.11)
Q

Due to the vanishing out-of-plane stress, and invariance through the thickness, the thickness factors out, and
this can be written as an area integral

t/cSD:C:dD+0':(6LT-dL—26D-dD)dA (5.10.12)
A

The first term is recognized as the material stiffness, and the second is the geometric stiffness term. In
particular, the material stiffness term is precisely the same as the standard form of the material stiffness in
three dimensions, expect that it is restricted to two dimensions. The geometric stiffness term is more
involved, and we elaborate some more on that.

First, we consider the deformation gradient in the plane of the element

9
Ly = e~ (5.10.13)
0xXpm
We have
5Ly =) 20" (5.10.14)
Oxpm
dou\’
SLT = (M) e/ (5.10.15)
€] em = 61y implies that
u T ou ou r ou
L'L=|—| eTe,,— =[—] — 5.10.16
(8xm) e ox; (axm) ox; ()

since elTem = Oim.

142

The rate of deformation D is the symmetric part of L. Thus, we can write
1 0 0
Dy = ~ (e,—” + em—") (5.10.17)

With these relations, we can expand the expression for the geometric stiffness, as

T 2
1
t/CTlm (66u) au__ (odu au)(66u+em6u) m (5.10.18)
A

— e,— +e e —
Ox,| Ox; 2 Y Ox; 0xy Y 0xm 0xy
y=1

The material stiffness term can be integrated with a selective deviatoric approach, in much the same was as
for a volumetric element. First, we note that after finite element discretization, the material stiffness term in
equation 5.10.12 can be written as

Komar = / BTCBav (5.10.19)
A%

where K is the stiffness matrix, V is the volume of the element, B is the two-dimensional
strain-displacement matrix

We define the mean quadrature counterpart to B,
B= / BdV (5.10.20)
1%

B and B split into volumetric and deviatoric components, i.e.

B=By+Bp (5.10.21)
B =By +Bp
With these decompositions, we define
ézév+§D+Sd(BD—BD) (51022)

where sd is a parameter between 0 and 1. When sd = 0, the element corresponds to a mean quadrature
element. When sd = 1, the element corresponds to mean quadrature on the volumetric part, but with full
integration on the deviatoric component.

With this new definition of B, we can define the stiffness matrix for this element as
K= / BTCBav (5.10.23)
\%

This is the approach taken for integrating the material stiffness term in equation 5.10.12

5.11. 6 noded Triangle

This section reviews the derivation of the triangular shell element (TriaShell) element. The membrane
DOFs (u, v, 8;) are decoupled from the bending DOFs (w, 6, 6). Allman’s triangle2 models the
membrane response. The discrete Kirchhoff triangle'® (DKT) models the bending response.

143

Allman’s Triangular Element Allman’s formulation after the substitutions cos(y;;) = % and
ij
. —Xji -
sin(y;;) = =%, is
(71]) i °

U=+ uply + usis + 3y21 (w2 — W)Y Yo+ 5111
1 1 (5.11.1)
3V32(w3 — w)aths + 5y13(w1 — W33y

V= Vg + vl + vals + 3x01 (w2 —)Y Y

5.11.2
—1x30(w3 — W)Yo3 — x13(W1 — W)Y ()

The stiffness and mass matrices ([K] a7, [M]ar) are found using general finite element procedures. The
element has a mechanism that introduces spurious low energy modes. The mechanism arises if the
deformations are all zero and the rotations are all the same. A “fix”’3” has been implemented.

Discrete Kirchhoff Element The DKT'® element has 9 DOFs. It is obtained by transforming a 12 DOF
element with mid-side nodes to a triangle with the nodes at the vertices only. This is obtained as follows.
Using Kirchhoff theory, the transverse shear is set to zero at the nodes. And the rotation about the normal to
the edge is imposed to be linear. Using these constraints, a nine DOF bending element is derived (DKT)
using the shape functions for the six-node triangle. Unfortunately, the variation of w over the element
cannot be explicitly written. Therefore, the w variation over the element needs to be calculated before the
mass matrix can be obtained.

As stated, the equation for w is not explicitly stated over the element in the derivation by Batoz ef al.. Using
a nine DOF element, a complete cubic cannot be written, since 10 quantities would be needed to get a
unique polynomial. The strategy taken here is that the stiffness matrix produced using for the DKT element
provides reasonable results, and the derivation of the mass matrix is not as critical. So, the equation for
w!36 as
w= iy + o + ezt
+aay o + asyoys + aedsy+ (5.11.3)
+ay g + aga s + oty

Our AT and DKT element stiffness and mass matrix derivations used Maple. The consistent mass matrix
derivation follows the standard finite element procedure. And mass lumping of translational DOFs are
found as usual. Mass lumping for the rotational DOFs, however, are set to % of the translation terms.

The complication in the derivation of the combined AT and DKT shell element is the derivation of DKT
element mass matrix. We used an incomplete family of polynomials. We think that this did not affect the
result.

Verification and Validation. Results for our AT element agree with the published results.” The square
plate in pure bending and a cantilevered beam with a parabolic tip load are used as verification examples.
The mass matrix verification is limited to noting that mass is conserved in the u, v directions.

The DKT element is validated against experimental data for a triangular fin.'® The first 10 eigenvalues for
the triangular fin (cantilever) match very well. In addition, the DKT element is verified by using a
cantilevered beam and matching deflection results at the tip. If v = 0, then results should match very closely
with Euler-Beam theory results, and they did.

Finally, the AT/DKT element is verified by comparing with published results from Ref..’® Tables 5-4 and
5-5 show that our elements match exactly with ABAQUS to the number of digits shown. The first column is
the result produced by Ertas et al., the second column is the result produced by ABAQUS, and the third
column is the result produced by Sierra/SD using this DKT/AT element.

144

DOF AT/DKT ABAQUS AT/DKT!
X 0.000 0.000 0.000
y 0.000 0.000 0.000
z | -1.405x 1072 | -1.398 x 1072 | -1.398 x 1072
0, | 3.337x1072 | 3.337x107% | 3.337 x 1072
6y, | 3.106 x 1072 | 3.089 x 1072 | 3.089 x 1072
6, 0.000 0.000 0.000

Table 5-4. — Comparison of deflections at Node 2.

DOF AT/DKT ABAQUS AT/DKT!
x 0.000 0.000 0.000
y 0.000 0.000 0.000
z 1.949 x 1072 | 1.955x 1072 | 1.955x 1072

3.363x 1072 | 3.363x 1072 | 3.363 x 1072
2,686 x 1072 | -2.702 x 1072 | -2.702 x 1072
0.000 0.000 0.000

D D D
)

N

Table 5-5. — Comparison of deflections at Node 3.

5.12, 3 noded Triangle

The triangular shell used most in Sierra/SD is the Tria3 element developed by Carlos Felippa of the
University of Colorado in Boulder. This element is similar to the TriaShell element presented in Section
5.11. Full details of the theory behind the element is out of the scope of this document, but details may be
found in references>%? and.®! Unfortunately, these references omit any mention of how this element handles
the bending part.

5.13. Shell Offset

Consider a shell offset, with an offset vector, v. Notice that vV could be defined at each nodal location in
what follows, but for this development, we assume a single offset v which applies to all nodes. That is,
consider the offset of a single node. Define a coordinate system at the node, with variables u#. On the offset
beam the coordinate system is ii.

u is related to @#. The constraint of a constant offset may be stated that the displacement difference of the
two systems must be orthogonal to v, i.e. (u — i) = V X K, where ¥ is the rotation at the nodes.

i u
(B)z [L](B) (5.13.1)

For multiple nodes each diagonal block of L depends on the offset of the corresponding node. We can use
this transformation matrix to eliminate the degrees of freedom associated with ii. The energy of the shell
can be written,

Thus, we can write,

~\T ~
u 2 u
Egtrain :0.5{ . } [K]{ . } (5.13.2)

145

But with this substitution,

T
o u T & u
Estrain —0.5{ p } [L KL]{ . } (5.13.3)
If we let K = LTKL, then -
u u
Estrain —05{ K } [K]{ P } (5134)

Thus, # has been eliminated, and the equations may be put in terms of the output variables.

5.14. Beam2

The 2-noded beam?’ element uses under-integrated cubic shape functions. Isotropic material models are
supported. Torsional effects are accounted for in the axis of the beam. The area and bending moments are
constants independent of position in the beam.

Attributes are read from the Exodus file for each element.
1. The cross sub-sectional area of the beam (Attribute 1)
2. The first bending moment, ;. (Attribute 2).
3. The second bending moment, /,. (Attribute 3).
4. The torsional moment, J. (Attribute 4).
5. The orientation of the beam (Attributes 5, 6 and 7)

The orientation should not be aligned with the beam axis. In the event of an improperly specified
orientation, a warning will be written, and a new orientation selected. The orientation is an x,y,z
triplet specifying a direction. It does not need to be perpendicular to the beam axis, nor is it required
to be normalized. The orientation vector, and the beam axis define the plane for the first bending
direction.

Torsion

As outlined in Blevins,?* the stiffness properties of beam torsion are governed by J; (Attribute 4), while the
mass properties are derived from the polar moment of inertia, Jo7qr = I1 + I>. This representation is
accurate for beams with closed cross sections, but will have significant error for more open sections.
Warping in open sections is not accounted for in this standard beam formulation.

146

AE/L 0 0 0 0 0 -AE/L
Rl B 0 —-LB/2 LR/2 0

R; 0 -LRy/2 LBJ2 0

GJ/L 0 0 0

ky -BL%/3 0

K 0

AE/L

0

_Rl

LB/2
LR, /2

0

0 0
_IB 0
-Ry 0

0 -GJ/L
—LR,/2 0
—LBJ2 0
0 0
B 0
Riy 0

GJ/L

-LB/2
—LRy/2

ky

-BL%/6

LB/)2
LR,/2
0

ky

LR, /2

LB/J2

-BL%/6

k3

—-LR;/2

-LB/2

—-BL2/3

ki

Figure 5-1. — Nbeam Element Stiffness Matrix.

5.15. Nbeam

Beam/bar elements are a major component in many structural Finite Element Models (FEM). It is
important to employ a beam/bar element which includes transverse shear and torsion in addition to axial
and bending stiffness. Additionally, the mass formulation needs to include rotary inertia. The Nbeam
element is an implementation of the NASTRAN CBAR element. The stiffness matrix is identical to the
CBAR. The mass matrix is a new formulation to this implementation providing a diagonal mass matrix w/
rotary inertia included.

The Nbeam element stiffness matrix is based on Timoshenko beam theory.!'? The formulation differs in the
inertia coupling formulation. The derivation of this specific form is provided in [*®]. The exact form of the
stiffness matrix implemented in Sierra/SD is shown in Figure 5-1.

The following derived®* quantities are used depending on the value of .

Ifl1,=0 Ifl, #0
12EI
B = 0 | ﬁ = L3 2
_ 12EI 12E1 _ 12EI
Ry =5 [1+s1AG£2] Ry =5
12EL 12EL |™ 12E1
Ry =75 [1+52Aczz] Ry =75
The rest of the quantities are valid for any value of /5.
P L?R, L EDL
VI)
P LR, .\ El,
T T4 L
L’R, EIL
ky = -—
4 L
L*R, EI
ke = -—
4 L
s1 = Ay/A shear factor
52 = A /A shear factor

147

m 0 0 0 0 0 0O 0 O 0 0 0
m 0 0 0 0 0O O 0 0 0 0
m’ 0 0 0 0O O 0 0 0 0
m'J/A 0 0 0 0 O 0 0 0
m'hL/A, 0 0 0 O 0 0 0
m'Ii/A, 0 0 0 0 0 0
m 0 0 0 0 0
m 0 0 0 0
m’ 0 0 0
m'J/A 0 0
m'I/A, 0
m'l 1 / Ay
Figure 5-2. — Nbeam mass matrix.
Table 5-6. — Nbeam Parameters.
Description Keyword Exodus Attributes
Cross-Sectional Area Area 1
First Bending Moment I1 2
Second Bending Moment 12 3
Cross Inertia 112 N/A
Torsional Moment J 4
Beam Orientation orientation 5-7
Y-axis Shear Area Factor Shear_factor_1 N/A
Z-axis Shear Area Factor Shear_factor_2 N/A
Offset Vector At 1st Node offset 8-10
Offset Vector At 2nd Node - 11-13

The Nbeam mass matrix is given in Figure 5-2. The mass quantity m’ is defined as m’ = pAL/2.

If the local coordinate system is not the global coordinate system, then the transformation to global
coordinates introduces off diagonal terms to the mass matrix in the rows corresponding to rotary inertia. In
Sierra/SD the mass matrix is lumped by setting off diagonals to zero and not adding them to a diagonal.
Total rotary mass contributions are reduced. An alternative is to set off diagonals to zero and add them to a
diagonal; this increases total rotary mass contributions.

Element properties are specified in the text input file. The required parameters are listed in Table 5-6.

The parallel axis theorem is used to account for offsets. The offset vector is defined as a vector from the
bending neutral axis of the beam to the nodal location. All other quantities are derived from the material
data and the element length.

Torsion

As outlined in Blevins,** the stiffness properties of beam torsion are governed by Ji, while the mass
properties are derived from the polar moment of inertia, J, 014 = I1 + I2. This representation is accurate for
beams with closed cross sections, but will have significant error for more open sections. Warping in open
sections is not accounted for in this standard beam formulation.

148

5.16. Navy quadrilateral

Many structural components on naval vessels, including the hull, bulkheads and decks are made from plate,
be it steel, aluminum or a composite material. As such, plate and shell elements are essential to any finite
element analysis of ships or submarines. It is important to employ an element that is shear deformable and
can also accommodate orthotropic layers. The nquad is a four-noded isoparametric element that is designed
to be similar to the NASTRAN CQUAD4 element.

This section is based on material in chapter 4 of [!'4] Note that this material does not appear in later
editions.

The development of the stiffness matrix draws from the plane elasticity and bending formulations found in
[114]. The membrane and bending components are decoupled. The membrane stiffness terms are derived
from the integrals in equation 4.156 in ['14]:

61#(9!//' 81,0-59//~

Kl = L L 16.1

ij ‘/Qe (C11 or Ox + Cs3 6)1 ay dxdy (5.16.1)

Oy 0, Oy 0

K2 = KZ.I:/ Sad] Y7 dea 162

ij ij o Cia ox y +Cx33 dy 0Ox dxdy (5.16.2)
i Y i 0

2 _ i Y i

Kij = /e (C33 or Ox + Coo c')y 8y dxdy (5.16.3)

where the C;; are the elastic material constants for plane stress

E E E
Ci=Cn=1= Cn=15 Cu=55y

and the i; are the bilinear element shape functions (see equation 4.31 in [114]) over the element Q€. For a
rectangle of width a and height b,

vi = (1-¢/a)(1-n/b)
v = S(-nb)

a
v = (1-¢a)]

_&n
Vs = b
The membrane stiffness matrix is of the form:
Kll Klz
[K21 K22 :|

assuming the displacement vector is of the form {uy, vy, uz,va,...}.

The bending terms are organized here into a block 3 by 3 matrix,

|:K11 K12 K13 :| w f;
N f

22 23 33 X
K< K%sym K s, £

149

The bending stiffness terms, based on the shear deformation theory of plates, are based on the integrals in
equation 4.226 in ['14]:

O O O OV ;

Kl =
Y Ox Ox > dy dy

12
K}

I I

+ D44¢i¢j) dx dy

k= [
K2 = / (D“W"awj+D i Y
QE
(a2 5, 2201)

0x 0x 3 ay a_y
KD = /
Y 0e ox dy 33 dy 0x

Oy O Oy O
K33 1777 L o Decrith
ijo- /Qe D33 0x 0x + D2 dy 0Jy + Dssyi; | dxdy

where the D;; are the isotropic elastic material constants (defined for example in equation 4.221 of [114]:

Do~ Do ER?
11 = Dp= 12(1 =)
Dy, = vDy

Gh?
Dy = —
33 12

D4y = Dss=Ghk

where £ is the thickness of the plate and k is the shear correction factor. The bending stiffness matrix is of
the form:
[Kll] [K12] [KIS]
[KZZ] [K23]
sym [K*]

assuming the displacement matrix is of the form {w1, €1, 6y1, w2, 6x2, 62, ...} To minimize the effect of
locking, reduced integration on the shear terms (i.e., those involving D44 and Dss) is used.

The stabilization method from Belytschko®” is used for the Nquad element. Using single point integration
K S[IXI] for the shear stiffness matrix leads to hourglass modes for some problems. Using full integration
K‘Em] can cause shear locking in some problems. Belytschko recommends a shear stiffness matrix given as
K;=(1-¢)K s[lx” + ek s[2x2]’ a linear combination of the reduced integration and full integration shear
stiffness matrices. The fraction, € = r2/A is a function of thickness and area. Here r = 0.03, 7 is the
element thickness and A the area of the shell. This automatic selection of € is more successful for thinner
plates; € should never exceed 1.

The layered shell formulation, also based on first-order shear deformation theory, draws from (o7,
particularly equations 3.4-5 and 3.4-6 found therein.

The stiffness matrices developed for the isotropic and laminate cases do not account for in-plane rotational
stiffness. A fictitious stiffness for the 6, d.o.f. is provided by equation 12.3-4 in [*7]. The resulting element
stiffness matrix is 24 x 24, accounting for 6 d.o.f at each of the four nodes.

150

A consistent mass matrix is formed based on equation 4.235 in:'!*

Mij:L)ph¢i¢jdXdy

where p is the material density. The diagonal mass matrix is derived by row summation.

Element level strains are expressed by equation 4.147 in:!!*

{e}e = [Bl. {A},

where the five terms in {&}, are ey, €y, Txy and the two transverse shear strains yy, and y,.. The 5 x 24
matrix [B]. is formed by the element shape functions and their derivatives and the 24 x 1 vector {A}, are
the nodal displacements. The membrane and bending strain-displacement relationships are found,
respectively, in equations 11.1-3 and 11.1-4 in [*’]:

Membrane:
Ex = U,x Ey =Vyy Yxy = (uvy +V,x)
Bending:
Ex = _Zgy,x Yxy = _Z(Qy,y + Qx,x)
gy =—20xy Yyz = W,y — Oy

Yzx = Wox — gy

Note that the bending equations are altered from 11.1-4 in [*”]. In that reference, a rotation about the x-axis
is expressed as 6, and a rotation about the y-axis is 6, x. These definitions have been reversed in the above
equations.

The user provides element properties in the Sierra/SD input deck. The required parameters are:
1. Element thickness.
2. Material ID, which contains the required material properties (E, v, p).

3. For the layered shell case, each layer must have specified its own material ID (such as an
orthotropic_layer), thickness and fiber orientation.

5.17. Truss

The truss element implementation®’ pages 214-216 uses linear shape functions. Torsional stiffness
vanishes, unlike the NASTRAN truss element. Area is independent of position in the truss. The following
parameter is read from the Exodus file.

1. The cross sub-sectional area of the truss (Attribute 1)

5.18. Spring
Spring elements have mass 0. Stiffnesses K, Ky, and K are set in the input deck.

* The force generated in a Spring element should be collinear with the nodes. Typically, a spring
element connection between coincident nodes generates 0 torque.

151

» Springs attach 3 DOFs. If some spring constants vanish, then the associated DOF has O stiffness.
However, the degree of freedom will remain in the A-set 1 matrices. Adjacent elements provide
stiffness entries connecting the spring to the model. If the other DOFs are not attached to adjacent
elements, then the stiffness is singular.

The element stiffness matrix K =

(5.18.1)

- K -K
KU:diag(Kx,Ky,Kz),[11 Jl}

K11 Ky

For R; in SO(3) as described in section 1.4, the frame #; is transformed from the unrotated frame u; by

T = diag(R1, Ry),
[ul }:[T][ﬁl]
Uy i |-

The spring nodes rotate together, Ry = R,. For K;; = RTK; iR,

K1 K2
K =
(K2 K)

5.19. Superelements

A superelement has reduced mass and stiffness matrices generated by a model reduction process such as
component mode synthesis 2.9. Superelement generation typically saves the element in a file. Subsequent
analysis a system (or residual structure) typically read the element from its file.

Superelements may contain sensitivity matrices 2.9.2. A point estimate of the superelement mass or
stiffness matrix may be computed as a Taylor series expansion and used as part of a standard analysis. The
approximate reduced matrix is given by the expansion.

dk,
K, (p) = K, (po) + d_(p - Do) (5.19.1)
p

where p is the sensitivity variable, p,, is the nominal value of that variable and K, (p) represents the
reduced order matrix evaluated at an arbitrary point in parameter space.

5.20. Gap

The gap element is a nonlinear spring which has a stiffness matrix that is dependent on displacement. In the
element coordinate frame, the stiffness matrix has the same form as the matrix in equation 5.18.1 with the
replacements:

Spring Gap

Open Closed
K, KU KL
K, KT xKU/KL KT
K, KT xKU/KL KT

152

Note that typically KL > KU.

The two nodes of the gap element must rotate together. Spring elements are the same. The matrix
transforms exactly as the matrix for a spring element.

5.21. Rigid Elements

Sierra/SD supports standard pseudoelements for rigid bodies. These include,

* Rrod - a rigid truss element, infinitely stiff in extension, but with no coupling to bending degrees of
freedom. An element creates one constraint equation.

* RBar - arigid beam, with up to 6 constraint equations per element.

* RBE2 - arigid solid. With up to 6(n — 1) degrees of freedom deleted, where n is the number of
nodes. An RBE2 can stiffen a structure.

* RBE3 - an averaging type solid. This connects to many nodes, but removes up to 6 dofs on the
reference node.

A rigid element has infinite stiffness and zero mass. In the input Exodus mesh beam elements represent
rigid elements. In the input text file the corresponding block selects the type of rigid element.

Internally rigid elements are all stored and applied as special multi-point constraints. The RBE2 is a type of
RBar (multiple instances). Elements all activate DOFs, but not ordinary MPCs. A rigid element is an MPC
that activates DOFs.

Considerations for NASTRAN users

Rigid elements are intended to provide a capability similar to NASTRAN rigid elements. However, the
differences can be significant. One difference is due to the solvers. Sierra/SD solvers manage the
separation of dependent and independent DOFs, freeing the analyst from having to manage this complexity.
Specification of rigid elements in NASTRAN implies this relation. If applied in the most common ways
(such as an RBar constraining 6 dofs), the elements are the same. If some but not all DOFs are constrained,
and if the NASTRAN autospc capability is invoked, significant differences are possible.

5.21.1. Rrod

An Rrod is a pseudoelement which is infinitely stiff in the extension direction. The constraints for an Rrod
may be conveniently stated as ensuring that the dot product of the translation and the beam axial direction
for a Rrod vanishes. Each Rrod adds one constraint equation.

Consider the geometry of Figure 5-3. The equation of constraint for the Rrod is

Lyduy + Lyduy + L du, =0 (5.21.1)

153

Figure 5-3. — Rigid Element Geometry.

The undeformed and deformed extents of the bar may be expressed as L and [. After deformation,
du = dup — du 4. The undeformed and deformed bars have components

L, =xp—xa Iy, =Ly+duy
Ly=yp—ya ly =Ly+du,
L,=zp—za l, =L,+du,.

5.21.2. RBar
An RBar is a pseudoelement which is infinitely stiff in all the directions. An RBar can stiffen a structure.
The constraints for an RBar may be summarized as follows.

1. the rotations at either end of the RBar coincide,

2. the extension of the bar is zero,

3. translations at one end of the bar are consistent with rotations.

Apparently the last two of these constraints may be specified mathematically by requiring that the
translation be the cross product of the rotation vector and the bar direction.

T=RxL
where T is the translation difference of the bar (defined as ﬁz U 1),

R is the rotation vector, and

L is the vector from the first grid to the second.

154

The three constraints in the cross product, together with the three constraints requiring identical rotations at
both ends of the bar form the six required constraint equations. Referring to Figure 5-3, the six constraint
equations are !

duy +1,R, —I.R, = 0 (5.21.2)
duy +I.R, — IR, = 0 (5.21.3)
du, +1,Ry —I,R; = 0 (5.21.4)
R., = Ry, (5.21.5)
R,, = Ry, (5.21.6)
R, = R, (5.21.7)

Partial Constraints on an RBar

NASTRAN permits application of some constraints on an RBar. For example, one can apply the first 3
constraints, and ignore the constraints on rotation alone. In addition, NASTRAN permits control of which
end of the bars is constrained, and can split dependent and independent degrees of freedom between the
nodes. Although NASTRAN permits fewer than 6 dependent dofs, SD requires 6 independent dofs.

Sierra/SD uses two attributes in the Exodus file to partially constrain an RBar. An attribute labeled
“CID_FLAG_INDEP”is the constraint flag associated with the independent dofs. It should always be
“123456”, and it is always associated with the first node of the bar. The second attribute,
“CID_FLAG_DEPEND?”, establishes the dependent degrees of freedom on the second node of the bar. This
attribute determines which of the equations above are applied. For example, if CID_FLAG_DEPEND =
123000 then the first three constraint equations are applied.

With partial application of the constraint equations, the results can be confusing. If equations 5.21.5-5.21.7
are not applied, then the rotation terms in 5.21.2 are appropriate only to the independent node. This is not
always what is anticipated by the analyst. It is not possible to allocate DOFs to arbitrary ends of the bar. For
this reason, the rotation may differ from what is produced by NASTRAN. Recall that applying
CID_FLAG_INDEP = CID_FLAG_DEPEND = 1 results in an Rrod type constraint.

5.21.3. RBE3

The RBE3 applies distributed forces to many nodes. The structure is not stiffened.

The RBE3 uses the concept of a reference node. The theory follows the MSC documentation included in
section 5.22. RBE3 element is a simplification of the NASTRAN RBE3 element. One simplification is that
the RBE3 supports one weight that is applied to all the nodes. The NASTRAN RBE3 element supports
different weights for each of its nodes.

Earlier implementations of the RBE3 differed significantly from the MSC NASTRAN implementations
5.22.

IFor a zero length bar, the first three constraints are modified to become du, = duy = duz = 0.

155

5.21.3.1. Characteristic Length.

An element characteristic length is computed to allow scaling the equations. The distance between the
reference point (subscript ¢) and a connected point (subscript i) is expressed by the components

Li,x = Xi—Xg (5218)

Li,y = Yi— yq (5219)

Li,z = Zj— Zq (52110)
— 2 2

Li = \JL} +L; +L7, (5.21.11)

The characteristic length of the element is the average of these lengths,

Nc
L.= Z |L;|/N., (5.21.12)
i=1
where N, is the number of connected points. If L. is computed as a binary zero it is changed to a value of
unity.

To ensure that the element is invariant to a change of scale, the weighting functions wl through w6 provided
by the user are modified to produce a connected grid point’s weighting matrix.

. 2 2 2
W = diag(w1, wa, w3, waLZ, wsLZ, weL?).

That is, the rotational DOF coefficients are scaled by the square of the characteristic length.

5.21.3.2. Equilibration.

Conventional equilibration equations are applied. These equations relate a force applied at the reference
point to an equivalent force and moment applied at the reference node as illustrated in Figure 5-4. The
loads at the connection point, i, relate to the loads at the reference point.

100 0 L, -Li,
10 L, 0 Ly
Py=ST P, Sig= bt “hia 8 (5.21.13)
0 10
1

156

Figure 5-4. — Equilibration of loads.
i

A force of —¢é; at point i is equivalent to
L; aforce of —&; andamomentof 7, = L;
at point g.

i,x
5.21.3.3. Assembled Constraint.

As shown in Section 5.22 (equation 5.22.1), the loads on the set of all connection nodes may be computed
from the load on the reference node. S is a concatenation of the individual S;,,

S1,9
s=| 52 (5.21.14)
SNC"I
Ggi=A"'S'W, (5.21.15)
and
Pi =G ;Py. (5.21.16)
Similarly,
W= diag(Wl, Wz, ey Wc),
and A is an order 6 weighting matrix.
A=STws (5.21.17)

We require that A be non-singular, which corresponds to a requirement that the RBE3 be non-mechanistic.
The constraint relation follows directly from G ;, i.e. define the 6 by (6 + 6N.) matrix,

C=[-1,y Gy | (5.21.18)
and apply the constraint,
C[“a] - 0. (5.21.19)
U

Each row of C contains the constraint coefficients for one of the six possible constraints in the RBE3.

5.22. MSC documentation of the NASTRAN RBE3 element

The documentation of the modern RBE3 element is provided by MSC Software from their web page.'%*

Solution#: 4494 Last Modified Date: 06/01/00 09:06:19 AM
Product Line: MSC NASTRAN Product Name: MSC NASTRAN (1002 or 1004)
Product Version: Product Feature:
Article Type: FAQ Publish: Y

157

The RBE3 element is a volume or surface spline element similar to the RSPLINE line spline element. The
purpose of this memorandum is to develop a method for computing the terms in the equations of constraint
generated by the element.

A sample Bulk Data Entry for the element is :

$ EID [blank] REFGRID REFC WT1 C1 Gl1,1 Gl1,2
RBE3 15 5 123456 1.0 123 10 20
$ G1,3 Gl1,4 WT2 cz .

) 30 40

$ UM Gl C1 G2 Cc2 .

, UM 10 123 20 23 30 3

The grid points 10 through 40, entered in the Gi,j fields on the entry, are connected to a reference grid point
(number 5). The number of connected points, N, is unlimited. The physical principle used to generate the
constraint equation coeflicients is that the motion of a body connected to the reference grid point produces a
weighted least-squares best fit to the actual motions at the other connected grid points. The reference point
is connected by 1 through 6 DOFs (REFC specification). The connected points are also connected by 1
through 6 DOFs (Ci specification) with a weighting factor Wti. The UM data is optional, and is explained
below.

The reference is the original design document for this element. Over the years some changes have been
made in the interests of better theory and increased numerical robustness. Those changes are incorporated
in this document as though this were the original design document, to avoid the awkwardness of first
explaining older behaviors and then the present behavior. The original equations of the reference are
derived with conventional variational principles applied to displacement variables. The derivation used here
is based on force variable principles. This has proven to be more intuitive and better understood by some
engineers. The results derived by the displacement method theory and force method theory are identical.

5.22.1. Generation of unit weighting functions

The element is designed to allow use of any coordinate system at any connected grid point, the global
coordinate system in NASTRAN parlance. In the interests of clarity the equations are first developed for a
system where all variables are defined in one common coordinate system (the basic coordinate system),
then modified to allow global coordinates. An element characteristic length is computed to allow scaling
the equations. The distance between the reference point (subscript q) and a connected point (subscript i) is
expressed by the components

Lix = xi—x4
Li,y = Yi—Yq
Li,z = Zi—Zq
_ 2 2 2
Li = L2 417, +1,

158

The characteristic length of the element is the average of these lengths, L. = }.;_, |L;|/c, where c is the
number of connected points. If L. is computed as a binary zero it is changed to a value of unity. User
weighting functions w; produce a dimensionless nodal weighting matrix.

- 2 . - e~
w; =w;LZ, W =diag(w;, wa, w3, Wa, Ws, We).

Conventional equilibrium equations are developed,

[1 0 0 0 z -y

10 -z 0 «x

I y —x 0

Siq = 1 0 0
0 1 0

1

This matrix expresses the loads that must be applied to the reference point to react loads applied at a
connected point,
_ T
Py =SLPi

The equilibrium matrix can also be used to generate a loading pattern on the connected points due to a load
on the reference point. Let Pg;, be a set of arbitrary loads on the reference point. When this load is
applied, it is “beamed out” as loads on the connected points,

P Wi S
P

Pl = 2 = W2 SZ Xqun = WSiq
P We Se

X is a 6 by 6 matrix to be determined. The criterion used in its determination is that the load distribution
mechanism should be in equilibrium. The equilibrium condition is that

Pgowr =[S, S, .. S.|P;i=SLP;
Then
Pqour = S;'];]WSinPCIin
T
Ggi = WSX (5.22.1)
If Pgour = Pqin, then

X =(SLWSiy)™', Pi=WSXPq=Gl.Pq

5.22.1.1. Transformation.

The direction cosine matrix 7; expresses the transformation between u;, the values in basic coordinates, and
ii;, the values in global coordinates:
ui = Tyit;

The transformed equilibrium equations and weighting matrices are

159

115,

1.5
The transformed weighting matrix in global coordinates is
W; =T/ W;T;

The transformed A matrix is
A = Sl’. q WiSiq

A=) A
i

It is shown in the reference that the introduction of global coordinates modifies G4; as shown:
Ggi = TiA™ [SigIWi
This implies the dual relationship between displacements
ug = Gyiu;
Cast in the NASTRAN convention of constraint equations,

Ryi = —lyq Gyi]

and,
Rq,-[Ha] = 0.

uj

R is the rows of the matrix of MPC coefficients for one RBE3 element.

5.22.2. Selection of dependent dofs (Optional)

The default selection for dependent DOFs (m-set) are the REFC DOFs listed for the REFGRID. There are
modeling applications where it is convenient to use these DOFs in a set exclusive from the dependent set,
such as the analysis set (a-set). The dependent DOFs may be moved to the connected DOFs with the
optional UM data. The number of DOFs must match the number of REFC DOFs, and the selected DOFs in
the UM data must have non-zero weighting functions. If the subset of Rgi associated with these DOFs is
named Rmm, the Rqi matrix is pre-multiplied by the inverse of this quantity,

qu = R;liani = [_ImmlR;;}ann]

The user is required to select a UM set that produces an R,,;,, matrix that is stable for inversion. There are
TAN:Ss that describe techniques for selection of a good set of UM variables. The uncoupling of the
dependent equations allows some to be discarded, as described in the next section.

Equation selection. The total R,; is generated above. It has 6 rows. Six or fewer rows are transmitted to
the system constraint matrix R,,¢, depending on the REFC data. This data consists of a packed integer with
up to 6 numbers in the range of 1 to 6, and describes which rows are to be passed to R,,,¢. The remaining
rows are discarded.

160

5.22.3. Features for dimension independence

A good finite element should produce the same results regardless of the units of measure used in the model.
That is, the same structure modeled in millimeters, centimeters, or inches should provide identical results.
The RBE3 gains this valuable characteristic by scaling the rotation weights with an element characteristic
length, L, as described above. The effect of this scaling is demonstrated here by an example. In the
interests of simplicity all geometry is in the basic coordinate system and the only non-zero offsets are in the
z direction. The T matrix is then an identity matrix, and need not be listed in these equations. Consider the
problem, defined by the S;, matrix above and W; matrices below, where

x =x;i—x4 =0,
y =Yi—yq =0,
Z :Zi—zq >< 0

The user inputs up to six weighting factors w1 through w6. The weighting factors for rotation are
multiplied by Lesq = Lc?, the square of the characteristic lengths of the element. These modified terms are
underlined in the matrix below, for example, W, = L2w,4. The modified weighting factor matrix is then

o
w2
- w3
W= W4L%
Wng
W()L(z/,]
The contribution for grid point i to the equilibrium matrix A is
Wi 0 O 0 w1z 0
wy 0 -Waz 0 0
e w3 0 0 0
A=SWS= L2wy + 22wy 0 0
Sym L%ws + 22w 0
Liws |

The diagonal terms for rotation (for example Ass) have the form ng P+ 7w j» where w; is the rotational
weighting term, and w; the translation term active in rotation weighting because of offsets. The motivation
for modifying the rotation term can be seen in this addition of effects. Both L2 and z? are in the same units
of measure. When a model is changed from centimeters to millimeters, for example, the ratio of rotation
effects to offset effects is unchanged. This modification of the rotation term allows the solution in the area
of the RBE3 element to be the same for all units of measure. As z and L, are related by a common factor
the ratio of moment terms coming in directly from applied moments (L2ws) stays in constant ratio to the
moment terms from offsets (z?w1) regardless of whether lengths are measured in centimeters, millimeters,
or inches. This modification of the moment weight term provides dimension independence.

This example also provides an opportunity to discuss another counter-intuitive behavior of the RBE3
element, the difference between the user-supplied weighting functions and the actual values used in the

161

corresponding coefficients of the constraint matrix. Let us simplify the expression of A above by setting

z; = 0.0. A becomes a diagonal matrix, which when inverted and multiplied by W to form G, becomes an
identity matrix. The weighting factors are scaled to provide equilibrium. There may be little correlation
between the values in the weighting matrix and the values in the coefficients of the constraint matrix. The
requirements for equilibrium may change these values radically. Similarly, it shows that the significance of
the weighting factors is in their ratio to one another. If all are multiplied by 10, for example, the inversion of
the A matrix, used to impose equilibrium, removes this factor of 10 so that the coefficients of the constraint
matrix are unchanged.

Stability issues. The solution requires the inverse of A. It may be ill-conditioned for linear equation
solution. It is first equilibrated to make the inversion more stable. Let A4 be the diagonal terms of A. It is
pre- and post-multiplied by the inverse of Ay,

A=A 'AAL

This makes the diagonal terms of A unity. Any term multiplied by A is first multiplied by A4. A matrix
decomposition subroutine is used that provides an inverse conditioning number. As this number approaches
zero the solution becomes more ill-conditioned. A belt-and-suspenders check that is less mathematical and
more engineering-oriented is made by also computing the largest term in [A~!'A — I], which should be a
computational zero, and outputting this value when it passed a certain threshold. If the element is
determined to be pathologically ill-conditioned it causes a user fatal error exit.

The RBE3 element is independent of the units of measure. For example, a structure modeled in centimeters
will provide the same results when modeled in millimeters. An old formulation of the RBE3 element that
did not provide dimension independence can be reproduced by setting the characteristic length L. to one.

5.22.3.1. Theory

The modeler inputs a reference grid point, its connectivity, a weighting factor for other connected grid
points, their connectivity, and the connected grid point ids. An RBE3 element used for testing this new
capability of the form

$ EID [blank] REFGRID REFC WT C Gl G2
RBE3, 123,) 4 123456 1.0 123456 1 2
$ G3

, 3

The modeler’s intent here is to connect grid point 4, for all 6 of its DOFs to the 1, 2, and 3 grid points, for
their DOFs, with a uniform weighting factor for all. The element divides forces applied to point 4 to the
other grid points in a manner that is influenced by their geometry and weighting factors, in a manner that
maintains equilibrium. Define a line from the reference point to a connected point as an arm of the element.
In the revised theory, a characteristic length, L. of the element is calculated from the average length of its
arms. The square of this length is used to modify the weighting of the connected rotation DOFs. The
element is described and derived in TAN 4494. Some results of that derivation are used here. The
constraint equation terms applied to a connected point u; and the reference point u, are

Mq = quui

162

The constraint matrix itself has the following components:
Gqi = LA™ SigW;

T; is a rotation matrix that is an identity matrix when GID; and GID,, are in parallel coordinate systems. It
will be dropped from this discussion. S, is the traditional matrix for transmitting rigid body motion
between point “i” and point “q”. It has unit terms on the diagonal, and offset lengths on coupling terms
between translation and rotation in the upper triangle. W; is the user-supplied weighting functions, and A a
matrix used to force the element to meet equilibrium requirements. All MSC NASTRAN constraint-type
(R-) elements must meet an equilibrium condition, to avoid any possibility of internal constraints in the
element. It is tedious and instructive to work out a simple example by hand, for a simple geometry. We will

instead look at typical terms.

11342
1

The A matrix is generated by finding the resultants of loads applied at the connected points, measured at the
reference point. The 5,5 term for a single connected point is shown in the referenced TAN to be

A55 = Wws+ Z?Wz.

When A is inverted, this term operates on the corresponding S;,w; term
. 2
Gigss = ws/(ws +z;w1)

If z; is zero, the effects of this normalization is to "wash out" the ws weighting term, so that the coefficient
is 1.0. If z; is not zero, the ratio of translation load effects szl to rotation loads effects ws is

Ratio = ws/(z%wl)

This leads to a dimensional dependence, in that the ratio changes when the model is converted from
millimeters to centimeters, for example. This undesirable behavior is eliminated by multiplying the rotation
weighting factors by the square of the characteristic length, L.,

Ratio = L? « ws/(z%wl)

If z; (and L) have their units of measure changed, the ratio stays constant. If this modified weighting
constant is used on the 5,5 term
Gigss = Lws/(Liws +z;w1)

If z; = 0.0 the weighting terms wash out. If it is non-zero the denominator of this quantity is constant with
changes in units of measure.

Note that answers will change only when rotations are given connectivity for the connected DOFs, and then
only when the rotations at the connected DOFs are part of a redundant load path. This is because the
element is required to meet equilibrium conditions to avoid internal constraints, that is, single point
constraints that do not appear in the SPCFORCE output. If the load path is statically determinate the
equations used to impose equilibrium will adjust the values of internal loads in the element as needed to
meet equilibrium, regardless of the value of the weighting functions. Always meeting equilibrium
requirements ensures that there will be no internal SPC forces in the element.

163

5.23. Interpolation within an Element

It can be useful to sample a field within an element. This is necessary for verification of the input for
temperature fields applied at integration points, as in a X-ray deposition. If the fields are known at a variety
of points inside an element, we can use that information to determine the fields at an arbitrary location. In
the case of infinite elements, the fields “interior” to the element project to the entire space beyond the
element surface. Several means may be used to perform this interpolation. In Sierra/SD we use a least
squares projection onto a Pascal space, and then apply the Pascal shape functions to generate the
interpolated function. The least squares solution requires that there be more sample points than there are
shape functions.

As an example, consider temperatures applied at the Gauss integration points of a Hex20. The coordinates
of the 27 integration points are defined in Table 5-2. For a quadratic fit of the data, we can complete the
Pascal triangle to obtain the shape functions listed in Table 5-7. We generate a shape matrix, A, for which
each entry in the matrix is given as follows.

Ajj=P;(&)

Here, &; is the element coordinate of the i*" integration point.

index | Function, P;
1 1
2 m
3 m
4 3
5 77%
6 nimn
7 nmns
8 n%
9 n2m3
10 n%

Table 5-7. — Pascal Shape functions for 3D elements of order 2.

The coeflicients of the Pascal shape functions, b, are given by the solution to the least squares minimization
problem.
minimizel||x — Ab||

where x is the vector of known temperature values at the 27 integration points in the element, A is the shape
matrix defined above and b the vector of coefficients to determine. This problem is solved using the
LAPACK function dgels in Sierra/SD.

Once the coefficient vector is known, the solution at any location within the element may be determined by
expansion of the shape functions at the location of interest.

T(n1,m2,m3) = Z biPi(n1,1m2,13)
i

where P; are the shape functions of Table 5-7.

164

6. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

6.1. Acoustic and Structural Acoustic

In this section, we describe the various boundary conditions available in Sierra/SD for acoustics and
structural-acoustics. In each case we discuss the governing equations and discretization approaches.

6.1.1. Absorbing Boundaries

The need to truncate acoustic domains arises in exterior problems, where the fluid or solid domain is
infinite or semi-infinite. In these cases, the domain could be truncated either with infinite elements, or
absorbing boundary conditions. We describe below the simple absorbing boundary conditions that have
been implemented in Sierra/SD. Infinite elements (see section (6.1.2)) are also implemented in Sierra/SD.
We describe the cases of an acoustic space and an elastic space separately.

6.1.1.1. Acoustic Space

The implementation of absorbing boundary conditions begins by considering the weak formulation of the
equations of motion, in equations (3.2.6). On an absorbing boundary, one needs to consider the term

/ a—%ds, (6.1.1)
0!

Q,, on

which arises from the integration by parts on the acoustic space. Absorbing boundary conditions are
typically derived by applying impedance matching conditions to equation (6.1.1), in such a way that the
boundary completely absorbs waves of a given form. For example, the simplest absorbing boundary
conditions consist of plane wave and spherical wave conditions,’’ which are either the zero-th order
accurate Sommerfeld condition

oy —-10y

= 6.1.2
on cy Ot ()

or the first order accurate Bayliss-Turkel condition

oy _—loy 1
% B cr ot Rlp (613

where R is the radius of the absorbing spherical boundary.

Inserting equation (6.1.2) into equation (6.1.1), we obtain a term proportional to vy, which becomes a
damping matrix. Inserting equation (6.1.3) into equation (6.1.1), we obtain two matrix terms, one that
contributes to the damping matrix, and another that contributes to the stiffness matrix. Note that in the limit
of large R, the spherical wave condition reduces to the plane wave condition, since for large enough radius,
the spherical wave begins to resemble a plane wave.

Both conditions (6.1.2) and (6.1.3) are implemented in Sierra/SD.

165

6.1.1.2. Elastic Space

In the case of an elastic space, similar absorbing boundary conditions can be applied as were in the acoustic
space, except the boundary has to absorb both pressure and shear waves. In the case of an acoustic medium,
only pressure waves are of interest. Thus, the elastic space is more complicated.

The equation of motion for an elastic space can be written as
puy —V-o=f (6.1.4)

where p is the material density, u;, is the second time derivative of displacement, o is the stress, and f is
the forcing. A weak formulation of this equation can be constructed by multiplying with a test function and
integrating by parts.

‘/pu[,de+/0':deV—/ 0'swdS=/f-de (6.1.5)
v 4 ov 1%

where w is the test function, and o is the traction vector on dV, the boundary of volume V. The absorbing
boundary condition is imposed on the portions of 9V that point into the infinite space. In this derivation,
we assume that this includes the entire boundary V. If only part of the boundary pointed into the infinite
space, the derivation would be the same.

Considering the term

/ oswdS (6.1.6)
ov

we note that the traction vector o can be decomposed into its normal and tangential components, i.e.
o5 = 0, + 0. Then, we apply the conditions

Op = —pPCLVn (6.1.7)

O = —PCTV¢

where ¢y, and cr are the longitudinal and shear wave speeds in the medium, and v,,, v, are the normal and
tangential components of velocity vectors on the surface. Inserting these relations into equation (6.1.6)
yields two absorbing boundary matrices. Since these matrices involve the velocities, they become part of
the overall damping matrix of the structure.

6.1.2. Infinite Elements for Acoustics

Infinite elements have been around since the mid 1970’s. Excellent review articles can be found in,’.%°

In the early formulations, only frequency-domain formulations were considered, and system matrices were
developed that depended on frequency in a nonlinear manner. Though these formulations worked in the
frequency domain, there was no clear approach for transforming them to the time domain. As a result, time
domain formulations for infinite elements were delayed for some time. The formulations”>> in the time
domain formulation would involve convolution integrals that could be used with the frequency-dependent
system matrices. However, storing the time histories for the convolution integrals would be a significant
burden for a time-domain code.

In the early 1990’s, Astley'%!'>1? derived a conjugated formulation that resulted in system matrices that
were independent of frequency. This allowed the frequency domain formulation to be readily transformed

166

to the time domain, in the same way that is typically done in linear structural dynamics. He also derived a
scheme for post-processing the infinite element degrees of freedom to compute the far-field response at
points outside of the acoustic mesh. This approach followed from a time-shift applied to the infinite
element degrees of freedom.

The exterior acoustic problem consists of finding a solution p, outside of some bounded region €;. We refer
to Figure (6-1) for a description of the geometry. We have an interior domain €;, and an exterior domain
Q., and a boundary I" that separates the inner and outer domains. We wish to find the acoustic pressure p in
Q.. In the exterior domain ., the acoustic pressure must satisfy the acoustic wave equation

r

Qe

Figure 6-1. — Domains ; and Q, and interface I" for the exterior acoustic problem.

1

—P-Ap=0 (6.1.8)
c
a Neumann boundary condition on I"
0
5P _ g(x,1) (6.1.9)
on
and the Sommerfeld radiation condition at infinity
op 10p 1
— - - - 6.1.10
or " c Ot - r ()

asr — o9,

We note that the weight and test functions are chosen such that the Sommerfeld condition is satisfied
identically. Then, the weak formulation reads as follows

1
;ﬁq +Vp-VqdV = /quS (6.1.11)
I

e

In the frequency domain, the counterpart to equation (6.1.11) is as follows

—kZ/ pqu+/ Vp-quV:/quS (6.1.12)
Q. Qe r

where k = %

167

We will focus on conjugated infinite element formulations, which implies specific choices for the trial and
weight functions for the infinite elements. For the trial functions, we have

¢j(x,w) = Pj(x)e knx) (6.1.13)
and for the weight functions, we have
Wj(x,) = D(x)P(x)e#) (6.1.14)

where P(x), D(x), and p(x) are as yet undefined functions of x, and k = % is the wavenumber. The choice
of these functions will determine the particular infinite element approach. In our case, the exponential in
the weight functions involves a conjugate of the exponential in the trial functions. This results in the
exponential canceling out in the system matrices, thus rendering the matrices independent of frequency.

Given these trial functions, the solution p(x, w) can be written in an expansion
N
plr,w) =) q;(x,w)¢;(x,w) (6.1.15)
i=1

Substituting these expressions for trial and weight functions into equation (6.1.12), we obtain for following
expression

/ (PiVD+DVPi +ikDPiV,ll) . (VPJ' —ikPjV/,l) qi —kzDPinqidV (6116)
Qe

Separating out terms of w, we obtain the following expressions for the stiffness, mass and damping
matrices

K,'j =/ (PiVD+DVP,') VPJdV (6.1.17)
Q.
1
Cij = ;/ DP;Vu-VPj—PiP;VD -Vu—DP;VP;-VudV (6.1.18)
Q.
1
Mij=§/Q DP;Pj(1=Vu-Vu)dv (6.1.19)

Consider the phase function u(x). First, we note that the series expansions for the trial functions (the i
term is given by equation (6.1.13)), assume an outwardly propagating wave. The exact solution from which
these trial functions are derived involves a source point for the wave. We denote the distance from that
source point to a point on the base surface by a. The phase function is then defined by

ux)=r—a (6.1.20)

In spherical coordinates, the gradient of a function is equal to

Of 10f . 1 Of 4
Vf(r,0,¢) =f—+—— —0 6.1.21
fr.0.¢) =7 or " ro¢o " rsin(¢) 06 ()
Since the expression for u(x) depends only on r, we have
Vulx)="+ (6.1.22)

Thus, Vu(x) - Vu(x) = 1. This implies that when the boundary defining the infinite elements is a spherical
surface, the mass matrix from equation (6.1.19) is identically zero. This makes sense, since it ensures that

168

the modes are outgoing, and that there are no standing waves. Since a numerical integration of equation
(6.1.19) will never come out identically zero, the question then becomes whether to include this numerical
mass in the time integration, or whether to neglect it from the outset. This has important implications in the
stability of the time integration, as outlined in.'3

In terms of discretizing the infinite domain, infinite elements can be classified into 2 main approaches: the
separable approach, and the mapped approach. In the separable approach, the exterior domain is assumed
to be in a separable coordinate system, such as spherical or spheroidal. In the mapped approach, the nodes
on the exterior boundary are mapped into parent elements using a special mapping functions that map the
infinite domain into a finite reference element domain. The mapped approach is advantageous because it
allows a more arbitrary placement of nodes on the exterior surface. The separable approach requires the
exterior nodes to conform to a specific boundary, and thus this approach places more restrictions on the
mesh generation process.

6.1.2.1. Infinite Element Shape Functions

In our work, we have chosen the mapped approach due to its flexibility in mesh generation. The integrals in
equations (6.1.17), (6.1.19), and (6.1.18) are over an infinite domain, Q.. To perform numerical integration
of these integrals, we first must map onto a unit reference element, as in standard finite elements. The
mapping is as follows

N
x= Z M;(s,t,v)x; (6.1.23)
j=1

where x is a point in the infinite domain, x; are the coordinates of the mapping points, s, t define the base
coordinates of the base plane of the infinite element (which lies on the exterior surface of the acoustic
mesh), and v is the base coordinate in the infinite direction. If we consider a point on the exterior surface,
and its radial point a;, then the base coordinate along the radial edge emanating from this point is given

by,

vi=1-2a;/r; (6.1.24)
Equivalently, X
i a; = a2t (6.1.25)
1- Vi

Where r; is a radial distance from a virtual source point (or virtual origin). Each node on the infinite
element boundary may have a source point, as illustrated in Figure (6-2). Generally, the source point is
positioned to ensure that rays are normal to the surface.!”!# The mapping ensures that as the element
coordinate v approaches 1, the physical radial coordinate, » approaches infinity; thus mapping an infinite
space onto a unit element.

The virtual source point can provide an orthogonal basis in the radial direction. For non-spherical meshes,
one virtual source point is needed for each point on the infinite element boundary to ensure that the radial
expansions are normal to the surface and orthogonal to the surface shape functions, S; (s, #). This permit
writing the mapping function as a product of spatially separated terms, M;(s,t,v) = S;(s,#)R;(v). This
orthogonality is also necessary to ensure that the mass matrix remains positive semi-definite. The mass
matrix (from equation (6.1.19)) includes the term 1 — Vu - Vu. The magnitude of the gradient term, V, is
1.0 when the source is normal to the surface. It is greater than one otherwise, which leads to an indefinite
matrix, and can produce instability in dynamic integration.

169

Figure 6-2. — Infinite Element Radial Mapping. Each node on the infinite element boundary may have an origin,
O, (called a virtual source point) and an effective nominal radius, a;. The source point is chosen to ensure that
rays are normal to the surface. For a spherical boundary, all virtual source points are at the center of the sphere.

In Sierra/SD two methods are used to generate the source point location. The first travels the normal vector
a fixed distance b, where b is the dimension of the minor axis. The second method provides an offset that
intersect a plane normal to the vector and passing through the origin of the ellipsoid. These two methods
are illustrated in Figure (6-3).

Figure 6-3. — Methods of Locating Source Point. On the left, the source point is located on the surface normal, a
distance b into the structure, where b is the minor axis dimension. On the right, the source point is located along
the surface normal such that it intersects a plane normal to the vector, and containing the ellipsoid centroid.

The radial point a is interpolated over the infinite element base, to give

N

a(s,1) =)" aiSi(s,1) (6.1.26)

i=1

where S; (s, t) is the implied surface shape function of the base element on the exterior surface. In this way,
tetrahedrons or hexahedrons may be used in the acoustic mesh. For the infinite elements, the only
difference is the surface shape functions S; (s,). The radial interpolation is independent of the underlying
finite element. The mapping functions M; (s, ¢, v) given in equation (6.1.23) are constructed as tensor
products of the surface shape functions S; (s,) and radial basis mapping functions. The radial basis
mapping functions are typically defined to be linear functions that map the finite domain into the infinite

170

domain. These functions are given as,

2v
my(v) =
v—1
I+v
ma(v) = {
-V
(6.1.27)
Thus, when v = —1, we have that m|(v) = 1 and my(v) = 0. When v = 1, we have m;(v) = —oo and

my(v) = oo. In this way, the infinite domain is mapped to a finite domain.

The mapping functions M (s, t,v) are defined as tensor products of the surface shape functions S; (s, 7)
with the radial mapping functions from equation (6.1.27). For example, for an 8-node hex, the surface
shape functions are defined as,

_ (L+s)(1+1)

Si(s,1) 1

sy - L9020
Sy(s.1) = (1- Sl(l +1)
PEES (ET!

(6.1.28)

Then, the 8 functions M; (s, t,v) can be constructed by crossing each S; (s,) from equation (6.1.28) with an
m (v) from equation (6.1.27).

Equation (6.1.25) can then be used to compute the phase function u(x) at an arbitrary point

N

N
1+v 1+v
ux)y=r—a= ;(r —a;)S;(s,t) = ; aiSi(s,t): = a(s,t)l - (6.1.29)
With u(x) defined, we consider P(x). The [’ shape function P(x) is defined as
1
Pi(x) = 58i(5,0)(1 =)Q; () (6.1.30)

where Q ;(v) is a polynomial in a single variable. Various choices of Q ;(x) have been investigated,
including Lagrangian,'®!> Legendre,'! Jacobi,! and rational (integrated Jacobi).** Lagrangian shape
functions result in ill conditioned infinite element matrices. The other three choices all appear to give
acceptable levels of conditioning. Dreyer’! showed that the Jacobi polynomials in general give a better
condition than the Legendre polynomials. Regardless of the choice for Q(x), equations (6.1.23)

and (6.1.30) imply that P(x) will be a function of the reference element coordinates r, s, f, and thus can be
integrated over the reference element.

The function D(x) is defined as

1-v 2
D(x):(5) (6.1.31)

We have defined P(x), u(x), and D(x), in terms of the reference element coordinates r, s, ¢. The integrals
in equations (6.1.17), (6.1.18), and (6.1.19) can all be evaluated by standard Gaussian quadrature over the
reference unit element (either hex or tet).

171

6.1.3. Computation of solution at far-field points

After the solution to the acoustic problem is complete, the values of the coefficients in the expansion of
equation (6.1.15) are known. The next step is then to compute the solution at far-field points outside of the
acoustic mesh. We consider two cases below, one where the polynomial functions P(x) in equation (6.1.13)
is a Lagrangian shape function, and the other where P(x) is a more general polynomial (like a Legendre or
Jacobi polynomial). In the former case, the functions P(x) are associated with particular nodes having
values of 1 at the node and O at the other nodes. In the latter case, this property does not hold.

We assume that we wish to compute the solution at a node d that is at a location x4, and a radial distance
r = ||x4|| from the origin. This point is located on a radial line with a corresponding radial point a. Thus,
for this point we have uy = r — a., We have

N
plra,) =) q;(W)Pj(xg)e *Ha (6.1.32)
i=1

Note that *N’ in this case is the number of infinite element basis functions within the infinite element that
includes the point d. In the case of Lagrangian polynomials, we have the property that the function is equal
to 1 at the node of interest and is equal to O at the other nodes. Thus, in the case that the point x4 coincides
with a node in the infinite element, we have the expression

Pp(xa, w) = ga(w)e 4 (6.1.33)
where ¢4(w) is the infinite element shape function corresponding to node d. Equivalently, we have
qa(w) = p(xg, w)e (6.1.34)

Thus, the pressure at the node d is equal to the corresponding value of the coefficient of the infinite element
expansion corresponding to that node, multiplied by the factor e ~/*#a_ where u, is equal to the distance
(along the radial line) from the boundary of the acoustic domain to the node d.

If we take the inverse Fourier transform of equation (6.1.34), we get

d
qa(t) = p(xq,t+ ;) (6.1.35)

Thus, the pressure time history at node d is equal to a time-shifted value of the infinite element degree of
freedom g 4(t) corresponding to node d. This makes physical sense in that it would take the wave additional
time equal to % to reach the point d.

Next we consider the case when P(x) is not a Lagrangian polynomial. In this case, the point d could not be
associated with any particular node. In this case, we still have the relation

N
p(xa,w) =)" qj(w)Pj(xa)e 44 (6.136)
i=1

except in this case, the polynomials P(x) do not necessarily vanish at d. Thus, again bringing the
exponential to the other side of the equation, we have

N
p(xa, w)e™ 4 =" g (w)P;j(xa) (6.1.37)

i=1

172

Taking inverse Fourier transforms, we arrive at the result

d N
prai+=) = Zl q;(t)P;(xq) (6.1.38)

Since all quantities on the right-hand side of equation (6.1.38) are known after the finite/infinite element
solution is complete, we can post-process to compute the pressure at the field point x4.

6.1.4. Point sources

Point acoustic sources are common in acoustic modeling, and we provide some capability for doing this in
Sierra/SD. Here we describe the theory behind this implementation. The theory of point sources®®!? in
acoustics is typically formulated by considering a pulsating sphere of radius R, centered at the point x;.
Upon taking the limit as the radius of the sphere goes to zero, one obtains the equation for an acoustic point
source.

We consider a point source that is injecting mass into the acoustic domain at a rate

(1) = pQs (1) (6.1.39)

where 1 is the mass per unit time of fluid that is being injected into the domain, p is the density of the fluid,
and Q;(¢) is the volume velocity (volume per unit time) of the fluid that is entering the acoustic domain.
More on this will be given later in Section 6.3 on Lighthill’s approach, and its connection with the point
source. We can construct a point source consistent with the mass injection rate g defined in equation (3.1.1)
via multiplication of s by a Dirac delta function (which itself has units of one over volume). Because

dq/ 0t appears in the wave equation (3.1.11), one more time derivative of 7, is required:''?

1 6%p

2o

where p is the acoustic pressure at a point in the domain, c is the speed of sound, and p is the fluid density.
We note that the volume velocity can also be written as the time derivative of the volume in the source

— V2p = —iitg (1)6 (x — xy), (6.1.40)

av
Qs(1) = T (6.1.41)

where V is the volume enclosed by the source. Equation (6.1.41) is valid for a spherical source enclosing a
volume V, but in the case of a point source we shrink the radius to zero. The volume velocity, Qy, is also
sometimes called the source strength. It is the integral of the normal component of surface velocity over the
spherical surface of the source. Since the surface velocity is the same everywhere on the surface of the
sphere, the source strength is

Os = /vndS =Vn /dS = 4na’v, (6.1.42)
S s

where a is the radius of the sphere, and v,, is the normal component of velocity on the surface. By
considering the volume increase for a pulsating sphere, it is easy to see that equations (6.1.41) and (6.1.42)
are the same.

We note that in the Sierra/SD implementation of acoustics, we use the time derivative of pressure rather
than the pressure directly. We also scale the equation by density, since this is needed when the fluid
properties are not constant. Thus, we would modify equation (6.1.40) as follows

1 3%y Vi (0

9y _ = 5(x —xy), 6.1.43
pC2 6[2 p p ('x 'xS) ()

173

where p = 0y /9t. Equivalently, this gives

e —0 ()5 (x — xy) (6.1.44)

In the frequency domain, equation (6.1.40) is typically written as
(V2 + kz) ¢ = —4nAS(x — xy) (6.1.45)

where A is called the amplitude of the source. The solution to equation (6.1.45) in an unbounded domain
can be shown to be

A .
¢ = 7efkr (6.1.46)

where r = |x — x| is the distance from the source to the point x in the domain, and k = > is the
wavenumber. Assuming a time-harmonic expression for Qg (1) = Qe’ ", it follows from equation (6.1.44)
that Q and A are related by

4rA
0="2 (6.1.47)
P
The solution ¢ can therefore be expressed as
ejkr
¢ =p0 2 (6.1.48)
nr
or due to ¢y = dp/dt, as
ejkr
p=JjwpQ . (6.1.49)
r

Specification of dV /dt in equation (6.1.44) and d*V/dt? in equation (6.1.40) is covered in User’s
Manual.

A finite element formulation of the previous equation can be constructed as usual, by multiplying the
previous equation by a test function, and integrating by parts. We note that the domain of integration must
include the point x;, the location of the point source. Also, we note that the integration against the delta
function 6 (x — xy) is a duality pairing, rather than an integral, since the integral of a delta function is not
defined. In what follows, we assume that the point x; lies on a node in the finite element mesh. This will
facilitate the modeling, since we will typically define the point source on a nodeset or nodelist consisting of
a single node.

Denoting by V() the function space for the fluid, the weak formulation can be written as follows. Find
the mapping ¢ : [0,T] — V(L) such that

/iz¢dx+/ Vv V¢dx = —/ unpdds + Q4(1)
Q pc Q Y 0Q,

V¢ € V¢ (Qr), where i, is the prescribed velocity on the Neumann portion of the fluid boundary. We note
that the first term on the right-hand side is a surface excitation force, and thus only contributes nonzero
terms on nodes that lie on the surface f . The second term comes from the point source, and only

oQ,
contributes a nonzero term on the node where the point source is located.

Inserting a finite element discretization ¢(x) = ZII.\:’ | ¢iN;(x) into equation (6.1.50) results in the system of
equations
My + Ky = fa, (6.1.50)

174

VNT ;.

the stiffness matrix, and f, = fagz i, NTdx + Q,(t) is the external forcing vector from Neumann boundary
conditions. "

where N is the vector of shape functions, M = fQ —L NNT dx is the mass matrix, K = f
 pe Qf

IfQ = Cfl—‘t/ is computed with a void element in Presto, equation (6.1.50) can be used to compute the
right-hand side term and the corresponding acoustic response.

6.1.5. Perfectly Matched Layers

The perfectly matched layers are described in detail in Bunting et al.”® Given a structure S surrounded by
bounded interior domain €;, and an exterior domain €., the exterior acoustics problem consists of
determining the acoustic pressure, p, in domain Q, U ;. We refer to Figure 6-4 for a schematic of the
geometry. In a domain truncation strategy, boundary conditions are applied to the outermost boundary I,
of .Qi .

To illustrate the ideas, we assume an acoustic pressure wave propagating in the x-direction, with
wavenumber k = %, where w is the circular frequency, and c is the speed of sound. The wave takes the
form

p(x) = poe'™ (6.1.51)

As written, this wave is undamped, and will propagate indefinitely with no change of shape. However, if we
allow the wave to propagate on a coordinate system that has complex coordinates ¥ = a(x) + ib(x), where
a(x) and b(x) are functions of x, then the equation of the wave becomes®!

p()?) — poeikfc — poei(ka(x)ﬂ'kb(x)) — poe—kb(x)eika(x) (6152)

We observe that this wave corresponds to damped wave propagation, with decay coefficient equal to kb (x).
For a coordinate stretching of b(x) > 0, this wave will decay exponentially fast, which is the case
considered in this paper. If b(x) < 0, then the wave will grow exponentially fast.

In order for equation (6.1.52) to be a solution to a wave equation, that wave equation must itself be written
in a coordinate system that is complex, rather than real-valued. On the other hand, the corresponding finite
element implementation is most easily derived on a real-valued coordinate system. Thus, though the
governing partial differential equations of the PML are written in a complex coordinate field, the
corresponding weak formulation is mapped to a real coordinate system, to facilitate the finite element
implementation.

Figure 6-4. — Domains Q; and €, and interface I" for the exterior acoustic problem.

175

To build up to the ellipsoidal PML formulation, the following sections provide derivations of rectangular,
rotated rectangular, and spherical PML. These provide the building blocks for the ellipsoidal case. We will
subsequently show that the ellipsoidal formulation reduces to the spherical and rectangular cases by
choosing equal and large radii of curvature, respectively.

6.1.5.1. Cartesian PML

We define the PML domain as being a parallelepiped of dimension (24, 2b, 2¢), centered at the origin, with
an interior parallelepiped hole of dimension (2a, 2b, 2¢). Practically, this would correspond to the case
where the structure of interest, as complex shape it may have, was surrounded by an acoustic mesh that
terminated at the boundary of the inner parallelepiped. The PML would then occupy the region between the
inner and outer parallelepiped boundaries. A simple shift can be applied if the domain is not
origin-centered.

The PML formulation can be broken down into three steps. First the analytic continuation is used to map
the Helmholtz equation into the complex plane. Then the weak form is formulated on the complex plane,
and the chain rule is applied to map between the complex and real plane. Finally, the results from the chain
rule give a weak formulation over the real-valued domain, but with the dissipative properties stemming
from the transformation to complex coordinates.

6.1.5.1.1. Step 1. Analytic continuation The PML equations can be written in either first or second
order form. Here we consider the implementation of second order form. In the interior Q = €, the
acoustic pressure must satisfy the acoustic Helmholtz equation

-Ap—k*p=0 (6.1.53)
where k = ¢, and p is the acoustic pressure, a prescribed Neumann boundary condition on I's
0
9P _ o(x,w) (6.1.54)
on
and the Sommerfeld radiation condition for outgoing waves at infinity'?!
0 1
92 _ikpl=0(=], r— oo (6.1.55)
or r2

where k = 2. We note that equation (6.1.53) involves constant coefficients, meaning that the speed of
sound and density in the fluid are assumed to be constant. More specifically, equation (6.1.53) is
undamped, meaning that the waves will not attenuate as they propagate through the medium.

Equation (6.1.53) is written in terms of real coordinates. As illustrated earlier, the waves will decay in the
PML if the coordinates are considered as complex-valued rather than real-valued. Thus, we use analytic
continuation to map the Helmholtz equation into the complex plane

Ap-Kp=0 (6.1.56)
where the change of coordinates for the x-direction is defined as:
)E:x—L/ c(E)dE a<x<a (6.1.57)
w X
x=x+i/ o(£)dé —a<x<-a (6.1.58)
W Ja

Similar expressions describe the coordinate transformations for the other two coordinate axes.

176

6.1.5.1.2. Step 2. Weak formulation over complex-valued domain We note that the weak
formulation of equation (6.1.56) can be constructed using either a bilinear or sesquilinear formulation.
The difference is only whether complex conjugation is applied to the test functions. In standard finite
element methods for acoustics, these formulations lead to the same discrete system of equations. However,
with PML the formulations yield different numerical methods. In this paper we take the bilinear approach,
since it yields a complex-symmetric system of linear equations that can be exploited in the linear solver.
The bilinear weak form of equation (6.1.56) seeks p € Vf(QI) such that

43,45

f[Wpﬁq)—kzpq]dQF/ gqdls (6.1.59)
Qr I's

where the tildes indicate quantities defined over the complex extension of the domain €;, and g represents
the test function.

6.1.5.1.3. Step 3: Apply the chain rule From equation (6.1.58) and the Fundamental Theorem of
Calculus, we see that

0% _ ye(x) =1+ ig(x) (6.1.60)
O0x w

Similar expressions hold for the y and z coordinates. This implies that the gradients of acoustic pressure
can be transformed between the real and complex domains using a Jacobian

Vp = Jcartv~p (6.1.61)

where the Jacobian matrix for the Cartesian coordinate system J .., is defined as

Y 0 0
Jeart = 0 Yy 0 (6.1.62)
0 0 v,

Conversely, we can map from the complex to the real derivatives using the inverse of the Jacobian.

Vp=J...Vp (6.1.63)
where
y‘—x 0 0
-1 _ 1
cart — 0 Yy 0 (6164)
0o o0 L
Yz

The scale factor that maps Q; into Q; is the determinant of the Jacobian,

Wearr = YxVyYz (6 1 65)

177

6.1.5.1.4. Step 4: Revert to real-valued weak formulation Using the previous results and the
determinant relation from equation (6.1.65), the corresponding weak version of the Helmholtz equation is
given as follows. Find p € V() such that

/ [((Jear VD) - (Jzar V) = K2 pq| Wear dQy = / gqds. (6.1.66)
Qg l—‘S
We note that we can turn this into a Helmholtz equation with variable coefficients as follows
/ [A(VP, Vq) = K*pqlWear dQy = / 2qdTs (6.1.67)
Q I's

where A = W, 2}, J2E,. We note that A is a symmetric matrix, which follows from our choice to use a
bilinear formulation rather than sesquilinear. Matrix A can be interpreted in a general way, without being
tied to the cartesian coordinate system. The Jacobian matrices account for the different scaling factors for
the various coordinate systems. Note that equation (6.1.67) achieves all the goals that were set from the
beginning - a symmetric weak formulation over the real-valued domain, but with built-in dissipative
properties stemming from the transformation to complex coordinates.

In the following sections, we will derive PML equations for rotated Cartesian, spherical, and ellipsoidal
coordinates. In all cases, the weak formulation will be precisely the same as in equation (6.1.67), but with a
different Jacobian matrix J and corresponding determinant W. Thus, we will only derive expressions for J
in each of the coordinate systems.

6.1.5.2. Rotated Cartesian Coordinates

In this section we consider the case where the PML surface is extruded from a flat plane that is oriented at
an arbitrary angle in three-dimensional space. If we define x = x;,i = 1, 2, 3 as the unrotated coordinates
andx = x;.,i =1, 2, 3 as the coordinates in the rotated coordinate system, we have

ail diz2 a3
R=\| ay apxp ax (6.1.68)
asy dszp dasj

where a;; is the direction cosine between the x; and x;. axis. This defines the transformation as follows

’

x =Rx (6.1.69)
The Jacobian matrix for this case can be computed from the chain rule!®
’ ’ ’ 0 O
0(%,5,2) 8(%5.2) a(x,y,z Yx
Jrotears = 222D OQLE 0000 2) 1y) 0 | R = JeunR (6.1.70)
d(x,y,2) 0(x'y,2') d(x,y.2) 0 0
Yz
The inverse of this matrix is given as
Jr_oltcart =R" ;th (6.1.71)
Thus, the coefficient matrix for this case is given by
A= Wr()tcarlJr_oltcart ;g;cart
= rotcarlRTJc_Jr[(JcartR)_T (6172)
= cartRTJ;cirtJ;ZrtR

178

where we have used the fact that W,.orcqrr = Wearr. We see that this involves a simple rotation tensor
transformation applied to the diagonal Jacobian matrix given in the unrotated case, equation (6.1.64). Thus,
equation (6.1.67) applies, and can be used to construct the weak formulation in the rotated Cartesian case,
but with a modified coefficient matrix A given in equation (6.1.72).

6.1.5.3. Spherical Coordinates

In a similar manner, we can derive the Jacobian matrix for a spherical PML. Though other researchers'?>3

have chosen to solve the spherical PML equations directly in spherical coordinates, we prefer to map the
equations back to the Cartesian system to facilitate the finite element implementation. Thus, in this case our
Jacobian needs to account for this additional transformation. The formulation for this case is given in.'%
The mapping from spherical to Cartesian coordinates is given as

x = rsin(¢) cos(6)
y =rsin(¢) sin(6) (6.1.73)
z=rcos(¢)

The corresponding analytically continued coordinates are given as

X =7 sin(¢) cos(0)
y = Fsin(¢) sin(6) (6.1.74)
7 =Fcos(¢)

Note that the complex coordinate stretching occurs only in the radial direction, as dissipative effect is not
desired in the transverse directions. With these definitions the Jacobian matrix is given by the chain rule

yoo _0E5D _0(E5.D Ix)"
et = g, y,2) ~ 0(r,6,60) 8(r,9,6)
sin(¢) cos(8) 7cos(¢p)cos(f) —7sin(¢) sin(6)
sin(¢) sin(@) 7 cos(¢) sin(@) 7sin(¢) cos(H)
7 cos(e) —7 sin(¢) 0
[sin(¢) cos(8) rcos(¢p)cos(d) —rsin(¢p)sin(h)
sin(¢) sin(@) rcos(p) sin(@) 7 sin(P) cos()
cos(¢) —rsin(¢) 0

!

7
~
7

(6.1.75)

Once again, equation (6.1.67) applies, and can be used to construct the weak formulation in the case of
spherical coordinates, but with a modified coefficient matrix A given in equation (6.1.75).

We note that an advantage of the curvilinear PML formulation is that it is one-dimensional in the sense that
the stretching only happens in one of the coordinate directions, in this case the radial direction. Thus, we
can define the stretching as being in the radial direction only. This takes the form

F=r+2 [o(e)de (6.1.76)
w
which implies that

= =1+te) (6.1.77)
r w

179

6.1.5.4. Ellipsoidal Coordinates

In the case of ellipsoidal coordinates, we first must choose an appropriate coordinate system for the
complex stretching of the PML. Ellipsoidal coordinates can be expressed in various ways, but we have
found use of the coordinates developed by Burnett*® to be the most convenient for defining the PML. We
select the case of the prolate ellipsoid, with a > b = c. As in the spherical case, we prefer to solve the final
equations in Cartesian coordinates rather than ellipsoidal. Thus, we will apply complex stretching to the
ellipsoidal coordinate system, but will map the resulting equations back to Cartesian coordinates for the
finite element solution. Once again, these transformations can be applied with the Jacobian.

We define an ellipsoidal radius®® as

_ 1t
T
where ¢ and c; are the distances of a given point on the ellipse to the two foci. We note that on the
ellipsoidal surface, r is a constant, and is essentially a generalization of the notion of radial distance in the
case of a sphere. Given the major and minor radii @ and b of the ellipse, the distance to the focus along the
major axis is given by f = Va2 — b2

(6.1.78)

In terms of PML, we choose the direction of complex stretching to be along the direction defined in
equation (6.1.78). We note that unlike the radial direction for a sphere, equation (6.1.78) defines curvilinear
lines, and thus the PML layer will produce damping along those directions. This is necessary since if we
were to define damping along straight-line paths (say in the direction normal to the ellipsoid surface), then
the complex stretching would occur in all three directions r, ¢, 6.

Given these parameters, the ellipsoidal coordinate system is defined as

x =4Jr? — f2sin(¢) cos(6)
y = 4/r? = f?sin(¢) sin(6) (6.1.79)

z =rcos(¢)

Note that in the case of a sphere, a = b = ¢, which implies that f = 0, and these coordinates reduce to the
spherical case. The stretched coordinates in the ellipsoidal case are given by

\72 = f?sin(¢) cos(6)
§ = /72 — f2sin(¢) sin(6) (6.1.80)

7 =Fcos(¢)

This implies that the transformation matrix is given as

x

0(%,5,2) _ 8(%5,2) d(x,y,2)
d(x,y,2) ~ (r,¢,0) d(r,$,6)
\/% sin(¢) cos(0) 72 — f2cos(p)cos(8) —+/F2 — f2sin(¢) sin(6)

= \/%fz sin(¢) sin(0) 7% — f2cos(¢)sin() /7% — f2sin(¢) cos(6)
7 cos(¢) —7sin(¢) 0

l \/%ﬁ sin(@) cos(8) r2 — f2cos(¢) cos(d) —+/r2 — f2sin(¢) sin(8)

Jellipsoidal =

(6.1.81)

\/%ﬂ sin(¢) sin(@) vr? — f2cos(¢)sin(6) r? — f2sin(¢) cos(6)

cos(¢) —r sin(¢) 0

180

6.1.5.5. Ellipsoidal Coordinates with X axis as Major axis

The previous section assumed that the major axis of the ellipse was oriented along the z direction. For
completeness, we show here how to adjust the formulation in the case when the major axis is along the x
direction. In this case the ellipsoidal coordinate system is defined as

x =rcos(¢)

y = 4/r? = f?sin(¢) sin(6) (6.1.82)
z=4Jr? — f?sin(¢) cos(6)

Note that in the case of a sphere, a = b = ¢, which implies that f = 0, and these coordinates reduce to the
spherical case. The stretched coordinates in the ellipsoidal case are given by

X =7Fcos(¢)
y =7 — f*sin(¢) sin(6) (6.1.83)
7 = 4[F? = f?sin(¢) cos(6)

This implies that the Jacobian matrix is given as

_0(%5,2) 0(%7,2) d(x,y,2) "
T A(x,y,2) O(r,¢,0)d(r, $,6)

7 cos(e) —7sin(¢) 0
_ V% sin(¢) sin(0) /72 — f2cos(¢) sin() 2 — f2sin(¢) cos(6)
ﬁ sin(¢) cos(0) % — f2cos(p)cos(h) —+/i%2 — f2sin(¢) sin(6) (6.1.84)
cos(¢) —r sin(@) 0 -l

\/%fz sin(¢) sin(0) \r? — f2cos(¢)sin(d) +/r?2 — f2sin(¢) cos(6)

T sin(#) cos(6) VPP = 7 cos(#) cos(6) 7~ [Zsin(9) sin(0)

6.1.5.6. Relations Between the PML Formulations

It is clear that as the minor and major axis become equal, @ = b = ¢, and hence f = 0. This implies that the
Jacobian for ellipsoidal coordinates in equation (6.1.81) reduces to the spherical Jacobian given in equation
(6.1.75).

As an additional step, we consider that the spherical Jacobian reduces to that of the Cartesian in the limiting
case of a large radius of the inner sphere defining the PML boundary. This can be seen by considering
equations (6.1.76) and (6.1.77), which we repeat here for convenience

. r
Fert L / o(e)de (6.1.85)
W JR
which implies that
7’ 8~ J
7= _ y(r)=1+ Lo-(r) (6.1.86)
or w

181

As r and hence R become very large, we see from equation (6.1.76) that then # — r, since the imaginary
term will become vanishingly small compared to ». However, from equation (6.1.77) we see no limiting
change in 7 as r becomes large, since o(R) = 0 and () will be bounded by the thickness of the PML
layer. Thus, going back to equation (6.1.75), we have:

yoo o _0E5D 0(E5,D Iy
spherical — a(x’y, Z) - a(r’ ¢’ 9) (9(1", ¢’ 9)
[7 sin(¢) cos(6) Fcos(¢)cos(8) —7sin(¢) sin(6)
= | 7 sin(¢)sin(d) Fcos(¢)sin(6) Fsin(¢) cos(6)
7 cos(e) —7sin(¢) 0

[sin(¢) cos(0) rcos(¢)cos(d) —rsin(¢p)sin(H)
sin(¢) sin(@) rcos(p)sin(f) 7 sin(P) cos(8)

i cos(¢) —rsin(¢) 0

[7 sin(¢) cos(6) rcos(¢)cos(8) —rsin(¢)sin(6)
— | 7 sin(¢)sin(d) rcos(¢)sin(6) rsin(¢) cos(6)

| 7 cos(¢) —rsin(¢) 0 (6.1.87)
[sin(¢) cos(0) rcos(¢)cos(d) —rsin(¢p)sin(6)
sin(¢) sin(6) rcos(¢)sin(f) rsin(¢p) cos(6)
cos(¢) —rsin(¢) 0
sin(¢) cos(0) cos(¢) cos(8) —sin(¢) sin(6)
= | sin(¢)sin(8) cos(¢)sin(@) sin(¢p) cos(6)
cos(¢) —sin(¢) 0
y(r) 0 0O 1 00 sin(¢) cos(8) cos(¢) cos(8) —sin(¢) sin(6)
0O r O 0 % 0 sin(¢) sin(@) cos(¢) sin(8) sin(¢) cos(H)
0O 0 r 0 0 % cos(¢) —sin(¢) 0
For the cartesian case in the pure x direction, ¢ = 5 and 6 = 0.
1 0 0
R=]10 0 1 (6.1.88)
0 -1 0
and
y(r) 0 0
J = 0O 10 (6.1.89)
0 01

Similar substitutions can be applied for other values of ¢ and 6 that show the Jacobian reduce to a rotation
between spherical and cartesian coordinates. For off axes cases, the Jacobian will be a full matrix. Thus,
the limiting case of a large radius for the PML surface reduces to a one-dimensional PML layer.
Constructing a tensor product with PML layers in the other two directions produces a diagonal Jacobian
matrix as given for the Cartesian case in equation (6.1.62).

182

6.2. Waterline Determination

We develop the approach for solution of a rigid body floating in a fluid. When the ship is treated as a rigid
body, its equilibrium equations simplify to six equations in six unknowns that involve force and moment
balances in three coordinate directions. However, from symmetry considerations we may assume that the
displacements of the ship are zero in the plane of the waterline. Further, we assume that the angular rotation
of the ship about an axis normal to the waterline is also zero. Thus, the six equilibrium equations can be
reduced to three. For convenience, we take the ship to be fixed in space while the orientation of the
waterline plane is described by in-plane rotations #; and 8,. The position of the ship mass center above and
perpendicular to the waterline is denoted by the coordinate z. Additional details on the coordinate z and the
angles 6 and 6, are provided in Section 6.2.1.

Since the three equilibrium equations are nonlinear in the angles 6; and 6,, we employ Newton’s method
for their solution. The Newton step that is associated with the three equilibrium equations is obtained from
the solution of the linear system

Az F;
K| A6 | =—-| My |, (6.2.1)
AG; M,

where K7 is the tangent stiffness matrix. The terms Az, A8y, and A6, are incremental updates to the
coordinate z and the two angles 61 and 6. The terms on the right-hand side of (6.2.1) involve the net force
and moments acting about the ship center of mass due to buoyancy forces (pressure loads from water) and
gravity. Again, more details are provided later on the precise form of these terms. Additional details on the
implementation of Newton’s method are provided in § 6.2.4

6.2.1. Reference Frames

The position vector of a node 7 in a fixed reference frame A can be expressed as
Pn =Xn, 101 + X202 + X343, (6.2.2)

where (x,.1, X2, X, 3) are the coordinates of the node and a1, @, a3 are unit vectors aligned with
coordinate directions Xj, X», X3. We note in the present context that (x, 1, X, 2,X,.3) are the coordinates of
the node in the Exodus finite element model used by Sierra/SD. Further, we take a3 to be directed
vertically upward.

Consider a rigid body B with attached unit vectors b, b, b3 that are initially aligned with a1, a>, as. A
rotation of B by 8, about the @ direction results in

b, =a,, by=cosOia,+sinbiaz, bz=cosfiaz—sinba,. (6.2.3)

Next, consider a rigid body C with attached unit vectors ¢, ¢;, ¢3 that are initially aligned with by, b;, bs.
A rotation of C by 8, about the b, direction gives us

c1 =cosOrby —sinBrb3, co=by, c¢3=cosbb3+sinbb. (6.2.4)

Combining (6.2.3) and (6.2.4), we find

c1 =cosbraq +sinb,sinfja, — sin 6, cos 61 as, (6.2.5)
¢y =cosfiay +sinbas, (6.2.6)
c3 =sinfra; —cos @, sinfia, + cos b, cos 01as. (6.2.7)

183

water C3.N3

Figure 6-5. — Sketch showing ship, origin O of waterline frame, coordinate z, and angle 6;.

For purposes of convenience, we choose unit vector ¢3 to be in the direction normal to the waterline and
directed away from the water. Similarly, unit vectors ¢ and ¢ are also attached to the waterline frame.
Using summation notation, (6.2.5-6.2.7) can be expressed concisely as

¢ =cijaj, (628)

where the scalar coeflicient ¢;; = ¢; - a; and appears as the entry in row i and column j of the direction

cosine matrix
cosf, sinfysinf; —cosOsinb,

D = 0 cos 6 sin 0
sing, —sinf;cosf, cosBicosb,

We note that the columns of D are orthonormal, i.e., D~} = DT

The origin O of the waterline frame is chosen as the point of intersection of the line in direction ¢3 passing
through the ship mass center with the plane of the water (see Figure 6-5). Thus, the position vector of the
center of mass of the ship relative to O can be expressed as

Pcemjo = 2€3. (6.2.9)

6.2.2. Pressure at a Node

We would like to express the position vector of a node as in (6.2.2) relative to O rather than the origin of
reference frame A. To this end, let the position vector of the center of mass of the ship relative to the origin
of A be expressed as

Pem = Xem,1@1 + Xem, 282 + Xem,343. (6.2.10)

We note the coordinates (X¢m, 1, Xem,2, Xem,3) are readily available from Sierra/SD. Next, let the position
vector of O relative to the origin of A be expressed as

Po =X0,141 + X0 202 + X0 3a3. (6.2.11)
Since pem = po + Pemyjos it follows from the previous three equations and (6.2.8) that

X0.j = Xem,j —2¢3j J=1,2,3. (6.2.12)

184

The pressure at node n depends on its depth below the waterline. Specifically,

p(n) =-pg(pn—po) - €3
=—pg((xn,1 —x0,1)c13 + (Xn2 —X0,2)C23 + (Xn,3 — X0,3)C33), (6.2.13)

where p is the density of water and g is the acceleration of gravity. If the pressure calculated from (6.2.13)
is negative, this indicates the node is above the waterline and we set p(n) = 0.

6.2.3. Waterline Plane Specification

The initial guess in the Solution section is defined by ¢, £, £3 not on a line. Plowing on,
vi=bh—t, v2=0-1,

the unit normal to this plane is given by

Vi XV

n=12Y2 _ a4 naas + mas. (6.2.14)
[[v1 X vall

If n - a3 = n3 < 0, then we multiply n by -1 so that 7 points out of the water rather than into it.

We next show how to relate the waterline plane to the variables 61, 6, and z. Since n = ¢3, we find from
(6.2.7) and (6.2.14) that

sinf, =ny, -—sinfjcosb =ny, cosbicosbr =ns3, (6.2.15)
from which follows
0, = arcsin(ny), 6y = arctan(—ny/n3). (6.2.16)

We will print a warning message if either |0;| or |6,| is greater than /4 (45 degrees). Since the origin O is
in the plane of the waterline, n = ¢3, and po = pem — Pemjo, we find from (6.2.9) and (6.2.10) that

Z:(pcm_pO)'n
= (Xem,1 —X0,1)n1 + (Xem2 — X0,2)M2 + (Xem,3 — X0 3)13. (6.2.17)

We note in the previous expression that p o may be replaced by either #;, ¢, or #3 since these three points are
also in the waterline plane.

As described later, Newton’s method is used to solve one force and two equilibrium equations in terms of
the coordinate z and the angles 61 and ;. After a converged solution is obtained, it is important for the
analyst to confirm that the sideset used for the problem specification includes all element faces of the outer
ship surface which contain one or more nodes below the waterline.

6.2.4. Net Force and Moment Calculation

With equation (6.2.13) in hand, Sierra/SD can be used to calculate and assemble the water pressure loads

into equivalent nodal loads. This process involves the interpolation of nodal pressures to Gauss points and
numerical integration. The equivalent nodal loads can then be used to determine the net force and moment
acting on the ship. We outline a procedure for doing this calculation in the following paragraphs.

185

Let f; denote the load vector for subdomain (processor) i resulting from water pressure loads. We note each
row of f; corresponds to a load for a particular degree of freedom. For example, row 7 of f; may
correspond to a force at a specific node in coordinate direction 3. The vector f; is associated with a set N;
of nodes in subdomain i. Further, we note that the force vector f,, and the moment vector m,, at node

n € N; can be extracted directly from f;.

Let r, := pn — pcm denote the position vector from the ship center of mass to node n. Summing
contributions from all the nodes in N;, we find that the net force and moment contribution from subdomain
i is given by

Fi= > fu (6.2.18)
neN;

M=) raX f (6.2.19)
neNi

Summing contributions from all N subdomains, the net force and moment about the mass center of the ship
is given by

N
FS = Fi = Fs,lal + Fs’zaz + FS,3a3 (6.2.20)
i=1

N
M = M; = Ms,1a1 + Ms,zaz + MS,3a3. (6.2.21)

i1

Returning to (6.2.1), we have

F3s=F;s-c3—msg=c31Fs1+c32Fs2+c33F 3 —msg, (6.2.22)
My=M;-ci=ci,1Ms1+c1o2Msp+c13M, 3, (6.2.23)
My =M -cr=cr M +cr2Mg o+ co3Ms 3, (6.2.24)

where m is the mass of the ship.

Newton’s Method. The initial solution of the nonlinear equations applies Newton’s method directly on the
non-symmetric Kr. The matrix K7 will in general be non-symmetric due to follower contributions. If
convergence issues arise, we may be regularized using a variety of approaches.

The method can be summarized as follows.
1. Let f(p) represent the force balance, with p, the parameters equal to z, 61, and 6,.

2. Let Kr(p) = df (p)/dp represent the tangent stiffness matrix obtained by differentiating the force
balance with respect to the input parameters.

3. For each iteration, Newton’s method estimates a new parameter set,
-1
Pn+l = Pn — KT f(pn)

4. Tteration continues until the force balance approaches zero.

Tangent Matrix. We apply finite differences together with (6.2.22-6.2.24) to calculate the tangent matrix,
K. We use a finite difference step size of 0.001 for the dimensionless variables 8, and 6, while the step
size for z is 0.001 times a characteristic length of the ship.

186

6.3. Fluid Coupling through Lighthill’s Tensor

Convective, turbulent flow may be effectively coupled to acoustic formulations for sound propagation using
the Lighthill analogy. For convenience, we use a pressure formulation of the acoustic medium.

The inviscid Euler equations given in equation (3.1.10) including a source term are given by

ap

— V-u=0, 6.3.1

5 TPov-u ()
ou

pOE + Vp = S, (632)

where pg is a reference density, p is density, p is pressure, u is particle velocity, and S is a source term. We
note that in equation (6.3.2) the Pressure and density are related as

cp =p. (6.3.3)

Pressure formulation.

The acoustic pressure formulation is obtained by combining the mass and momentum balance equations.
The time derivative of (6.3.1) is
p+poV-u=0, (6.3.4)

where a superposed dot represented partial differentiation with respect to time. The divergence of (6.3.2)
is

poV-u+Vip=V.S. (6.3.5)
Substituting (6.3.3) and subsequently eliminating V - u, the acoustic pressure equation is
1
—=p-Vp=-V-S. (6.3.6)
o

Lighthill’s analogy®? is an approach to the problem of sound generation and propagation in turbulent flow.
The equations of motion are rearranged into a scalar, inhomogeneous wave equation where the source terms
are the noise generation due to turbulence in the fluid:

p-ciVip=V-(V-T), (6.3.7)
where T is known as the Lighthill tensor. It is expressed in Cartesian component form as
T;j = puiuj + (p = €5p)Sij = Tij, (6.3.8)
where the tensor 7 is the viscous stress tensor for the fluid.

The pressure form of (6.3.7) is

p-ciVip=ciV-(V-T) (6.3.9)
In Sierra/SD, only the pressure formulation of Lighthill’s method as given by the above equations is
implemented. This is in contrast to most acoustic solutions which employ a velocity potential
formulation.

Hand-off of Lighthill Tensor from Fuego.
The incompressible form of the Lighthill tensor is given by,
T,’j = PpUjily — Tij. (6310)

Fuego provides V - T of equation (6.3.10) as a nodal variable with an arbitrary name on an SD acoustic
mesh. We implement the weak form of (6.3.9) in Sierra/SD.

187

6.4. Analysis of Rotating Structures

In addition to the standard mass and stiffness matrices that arise in linear structural dynamics, force-based
matrices are also common. The most common include follower stiffness matrices from applied pressures,
and Coriolis/centrifugal matrices in rotating structures. These notes describe the design of the interface for
these additional matrices. We will focus on the following three terms

1. Follower stiffness matrix from applied pressure. This is a nonsymmetric term, but is symmetrized,
and becomes part of the stiffness matrix.

2. Centrifugal stiffness in rotating structures. This is a symmetric term, and becomes part of the
stiffness matrix.

3. Angular velocity adds a Coriolis damping matrix and a Coriolis virtual load. Angular acceleration
adds both an acceleration matrix to the stiffness and and acceleration virtual load. Coriolis damping
does not dissipate energy.

For rotating structures, the formulation is called the Lagrangian formulation to distinguish it from an
Eulerian formulation developed for a customer who maintains all documentation and testing of the
Eulerian formulation. Each models a structure in a coordinate system as in Figure 6-6, with fixed origin,
rotating with user specified angular velocity w, and angular acceleration w.

Figure 6-6. — A schematic of a structure that is rotating about fixed coordinate axes.

In the remainder of this document, the formulation is assumed to be the Lagrangian formulation.

The design of the implementation of this capability is documented.'?’
Symbol Description
K, angular acceleration Symbol ‘ Description
K, geometric stiffness matrix fa angular acceleration
G Coriolis matrix fe centrifugal force
K. centrifugal softening matrix

Table 6-1. — Notation for stiffness and damping matrices (left) and forces (right).

188

For readers puzzled by the absence of Euler’s force in Table 6-1, the angular acceleration force f is also
called Euler’s force, and the angular acceleration matrix, K, is also called the Euler force matrix.

The formulation and discretization is defined completely in the remaining subsections 6.4.1. The
Lagrangian approach®® seeks deformations about the rotating coordinate system. Of the many papers on
this topic, we found a few to be especially helpful **>*121:120 Tn the notation of Table 6-1, the governing
equation is,

Mii+Gi+ (K+Kg+ Ko+ Ke)u = fo + foe. (6.4.1)

Equation (6.4.1) depends on the unknown K, which is determined from a preliminary statics simulation,
(K+Kq+Ke)u = fo+ fa (6.4.2)

We assume that essential boundary conditions have been applied. Furthermore we assume that these
essential boundary conditions ensure that no rigid body modes are present. Equivalently, K + K, + K, is
nonsingular. The geometric stiffness matrix K, is determined from the associated stress field.

In the current implementation, w does not vary in time, even if @ is nonzero. We assume that the user has
chosen a sufficiently brief simulation that the change in w is negligible.

A direct time stepping algorithm based on equation (6.4.1) will approximate the the time history of the
structural displacement u about the rotating frame. Linear and nonlinear static and transient simulations are
tested. No one on the current SD Team knows what the nonlinear methods do.

Once K, has been determined, the associated eigenvalue problem is quadratic, with gyroscopic damping.
The eigenvalue problem corresponding to the ansatz fi(x,t) = u(x)e. Setting the force terms to zero,

(/12M + G + (K + Ko+ Ko + KC))u - 0. (6.4.3)

There are two motivations for using the symbol G for Coriolis’ matrix. The first is that it is also called the
gyroscopic damping. The element level Coriolis matrix of equation (6.4.11), is skew symmetric, implying
that the eigenvalue A = V1w for a real circular frequency w. The second, and actually much more
important, reason to use a G is to avoid confusion with the damping matrix and the constraint matrix, which
are both denoted by C.

6.4.1. Formulation and Discretization

The weak form is derived from the kinematics. Structural element assembly is discussed first, before solid
element assembly.

Symbol Description
B rotating frame
N inertial frame
{b;}?_, | basis aligned with B
w angular velocity
u displacement about B
r position vector
X position in B

Table 6-2. — Notation for Kinematics.

189

As summarized in Table 6-2, w is the angular velocity of B in N. The origin in B is fixed, and B has zero
translation with respect to the inertial frame N. N and B share the same origin. Notice that the time
derivative of x; in the rotating frame is zero.

The displacement, u, of a point in frame N rotating with respect to the frame B has position vector r,
r=x+u. (6.4.4)

Here x is the undeformed position of the point in B. In terms of w = ;b;, the velocity of the point in an
inertial frame N is then®

Ng Bq
V:Er:Er+wxr:u+wx(x+u). (6.4.5)
Taking another derivative, we find the acceleration of the point in an inertial frame to be
Na
a:Ev:ii+2w><u+w><(wx(x+u))+d)><x+ci)><u. (6.4.6)

This completes the description of the kinematics.

In an inertial reference frame, the homogeneous (zero force) equation of motion of a solid three
dimensional body is
pi—V.o=0.

The only non-standard step in the derivation of the weak formulation, by multiplying equation (6.4.1) by a
test function v, and ultimately integrating by parts, is the substitution equations (6.4.4) and (6.4.6). In order
to emphasize the names of the different terms, Coriolis (g), acceleration (a), and centripetal (c) bilinear
forms are introduced, along with the corresponding acceleration and centripetal force functions b, and
bC ’

g(u,v) = 2w xu,v)

a(u,v) ={(w xu,v) ba(v) =—(wxx,v)

c(u,v) ={(wx (wxu),v) be(v) = —(w X (wXx),V).

To match the order of the terms in the governing matrix equation (6.4.1), arranging the resulting terms as,

(i, vy +g(a,v) +/ o:VwdV+a(u,v)+c(u,v)
v (6.4.7)

= /o-nvdS +ba(v)+bc(v)
s

Note that the stiffness includes both the stiffness K associated with the material properties, as well as the
geometric stiffness K, associated with the stress state due to the steady-state spinning problem.

The centrifugal matrix K., which corresponds to c(u, v) is symmetric. This can be demonstrated using the

properties of the cross product. As expected,

glu,v) =-g(v,u), a(u,v)=-a(v,u).

A standard nodal finite element discretization is used. The vector shape function, Ny, for node i and in
coordinate direction k depends on the scalar i’”* shape function ¢; (x) for node i and a column, &, of the
appropriate identity matrix,

Ni(x) = ex¢i(x), d(x,1) = Ni(x)u;(1).

190

The element matrices and forces are defined as usual by evaluating the integrals in equation (6.4.7) over the
element, with entries,
Gij =g(Ni,Nj)
Ka,ij = Cl(N,', NI) fé = ba(Ni) (648)
Keij=c(Ni,Nj) fl =be(Nj)
Note that our isoparametric formulation evaluates forces using
X = Nl'Xi.

Also as usual, the 3 by 3 spin matrix Q is defined so that w x r = Q r.

6.4.1.1. A Two Node Beam Element

Although the weak form defines assembly in terms of integrals over elements, the goal of this section is to
explain how an implementation can be simplified by using equivalent algebraic expressions for element
matrices and loads in terms of the element mass matrix for a generic element x. For simplicity, the case
studies here is a beam element with both translational and rotational DOFs The assembly of other structural
elements is very similar to beam element assembly, as will be explained. The leading (or North West) 6 by
6 submatrix of the element mass matrix M* correspond to the DOFs of the first node of the element «.
Similarly, the trailing (or South East) 6 by 6 submatrix corresponds to the second node.

Equation (6.4.5) applies to the velocity v; of node i of e in the inertial frame N. In general the subscript i
refers to node i. In terms of the 6-vectors of DOFs v;, 1;, and u; associated with v;, &;, and u;,

w XX
w

0 0

There is an inconsistency here with the prior use of bold face type. In this section, only the vectors actually
stored in a computer are not in bold face. One way to remember that the symbol A denotes the matrix
representation of the cross product is that the Arabic word for cross product begins with an a. To express
the right-hand sides in terms of w, introduce

=1

A beam has n, = 2 nodes,

Vi:lfti+Aui+bi, A:[Q 0:|, bi:

, w; = [((1)):| , bi = Ax,- + wy, bi = Axi +W;. (649)

Vi = , Uk = , b= .
Vi, Un, by,

The vectors w, and x, are defined analogously. For an element with an arbitrary number of nodes, v, has
length 6n,. In this section the symbol /,, denotes an n by n identity matrix,

Ay =ARI,,, vi=tic+Acuc+b,.
With Lagrange’s equation characterizing the state of physical systems including «, in term of the kinetic
energy Ty,

2T, = ”vK”%WK = ||MK + Agug +bK”%\4K’

d (0T, B .) .
= (GMZ) = M"“(ii, + Aguty + Agiiye + by),
o7,
= ATM* (it + Agu + b,).
Ouy

191

Subtracting,

— K = M¥ii + (M A — ATM)it + (M*A — ATM*A
614,(Uk + (K P)MK + (K K K)MK (6.4.10)

+M“b, — ATM*b,.

d (0T 0T,
dt \ 0ui,

All that is left is to figure out how to interpret this equation. Due to equation (6.4.10),
G = M*A, - AL M*, (6.4.11)

the centrifugal softening matrix K. = —AZM KA., and the acceleration matrix K, = M A x- Substituting
equation (6.4.9),

fo=ATM*b, fa=—-M*“b, (6.4.12)
= AT M* (Axy + wy) = —M*(Ax, + W) (6.4.13)

The internal (strain) energy can be expressed as
_ 1 T K K
Uy = Eu"(K + Kg)u.

Ignoring external and damping forces for clarity, the equation of motion,

d (9T\ 9T, U, _,
dt o

i) ou. T duy

reduces to equation (6.4.1) for a rotating structure.

6.4.1.2. Solid Element Assembly

In summary, contributions from angular acceleration to element stiffness matrices and load vectors are

given by (6.4.14) and (6.4.15), respectively. Denote by I the k by k identity matrix. A solid element « has

3 by 3 block diagonal
M= / pipjpdVelL, A=Q®I,,.
1%

The skew stiffness matrix contributions are due to bilinear forms resembling (w X u, v). At a node, with
vector of shape functions N and spin tensor S(w), the corresponding matrix entries are (N, SN).

In terms of
Qi

w= ||,
Q3

you can formally write,
0 QM QoM
G=2| 3M 0 -QM
QLM UM 0

We are assuming that M is block diagonal, with one block per DOF, which is true due to the connection
between M and kinetic energy. However, using this expression to assemble G leaves many details to the
reader.

192

Returning to the expression for acceleration in (6.4.6), notice that the term 2€ X # gave rise to the Coriolis
matrix K. Notice also that the term Q X u is obtained from 2 x & simply by replacing 2 with 1, Q by Q
and & by u. Accordingly, the contribution from angular acceleration to the stiffness matrix is skew
symmetric and given by
0 -O3M LM
Ko=| QM 0 - M |. (6.4.14)
-OM QM 0

The term Q X x in (6.4.6) is associated in the weak formulation with

—/pv-(Qxx)dV,
1%

where the minus sign originates from moving this term to the right hand side of the equilibrium equations.
Notice the similarity of this term with the one in With the obvious modifications, the same module can
assemble both G and K,,.

The implementation assembles matrices using the force, one column at a time First # and x are
approximated using the same shape functions (isoparametric formulation). Second c, c; and c3 are vectors
of nodal coordinates in the corresponding directions. Third,

Q
w = QQ
€3

Angular acceleration contributes to the element load vector,

C1 Q3M62 —QzMC3
fa=-Ks| c2 | =| QMcz—Q3Mcy |, (6.4.15)
C3 QzMCl —QlMCQ

A stiffness matrix can be expressed in terms of the mass matrix and the rotational velocity (or acceleration)
by spelling out two details. Define N,, ; to be the shape function at node m for the ith DOF. Recalling that
Levi-Civita’s symbol, € ; ., is the sign of the permutation (i, j, k) if the indices are unique, vanishing
otherwise,

K(n,i,m, k) = Z<Nn,ia €,j kWjiNm k) =
Tk

Z €i,j,k@;j{Nn,is Nm,k)-
Tk

This is not the product of the mass matrix with any another matrix.

6.5. Random Pressure Loading

Input for random loads can be complicated. The most general type of input is the correlation matrix, which
is the inverse Fourier transform of the spectral density matrix,! S; j(w).

c(¥1,X2, 1) — 12) = E[P(X1,11)P(X2,12)] (6.5.1)

n the frequency domain we have the autospectral density matrix, and cross spectral density matrices which together form the
spectral density matrix. It typically has units of (PSI)?/Hz.

193

where E[] is the expected value of the pressure at two locations on the surface at respective times.

This could be defined as a user defined function. In the most general case, that is the best means of a
definition. However, defining that function is a real chore, and in many cases, the function can be more
easily defined.

6.5.1. Specialization for Hypersonic Vehicles

Some simplifications can reduce the complexity of the correlation matrix. In the following paragraphs, we
examine each of these, and arrive at a simplified parametric input for the correlation matrix.

Ergodic or Stationary Systems

Many variables change significantly during hypersonic flight. For example, the velocity of the body and the
density of the air may depend on the portion of the trajectory. However, within limited time bounds of the
trajectory, the system may be considered stationary. We represent this by writing the pressure as a product
of a deterministic function and a stationary function of time and space.

P(X,t) =c(X,))0(X,1) (6.5.2)
where, o is a slowly varying, deterministic function, and Q contains all the random processes.

The pressure field applied to the hypersonic body is not stationary. One reason is the deceleration of the
vehicle and the increase in dynamic pressure with time. However, we assume here that this non-stationary
behavior can be modeled by P = oQ, where Q is stationary and ergodic, and o is a scaling or modulation
function of time and space. This class of non-stationary model is called a modulated stationary process.
Because Q is stationary, E[Q(x1,t1)Q(x2,t2)] can be written as a function of ¢, — #1, call it 7(z2 — 7).
However, P is not stationary because E [P (x1,t1)P(x2,12)] = o (x1,t1)0 (x2,12)7(tr — 1) cannot be written
as a function only of (#; — t1); ¢} and ¢, appear in the o terms.

This can simplify computation of the correlations of the pressure.

E[P(X1,t1)P(X2,17)] (6.5.3)
o (X1, 11)0 (X2, 1) E[Q(X1,11) (X2, 12)] (6.5.4)

c(X1,X2,11,12)

Separation of spatial and temporal components

We may often separate the temporal and spatial components of the correlation function.

E[Q(X1,11)Q(X2,12)] = n(X1,%2) T(t1,12) (6.5.5)

Where 7(X1,X) contains the spatial component of correlation, and 7(#;, ;) contains the temporal
correlation.

194

Simplified Spatial Correlation

There is little data and few mathematical models of the spatial correlation of pressure on a body during
hypersonic flight. A report by Corcos>® is most commonly used. It describes the correlation variation as
products of decaying exponentials. There is some evidence that the variables may be “self similar”, at least
in the flow direction, so the decay constants are scalable with the frequency and velocity. The self-similar
properties are less well-established in the transverse directions.*” The spatial component of correlation may
be written as,

7(%1,%2) = exp(~azAz) exp(=B,Ay) (6.5.6)

In this expression, the spatial correlation terms depend on the separation in the stream (or flow) direction,
Az, and on the transverse separation, Ay.

Simplified Temporal Correlations

Aerodynamic models that predict the pressure power spectral density (PSD) on the surface of a hypersonic
body are still under development. Many of these models predict a PSD that is only a weak function of the
axial location. Thus, the PSD at the back of the body is a scaled version of those at the front. Further, with
high velocities, the PSD is flat within the band of interest. Thus, the PSD may be represented as a product
of a deterministic function of z and a single PSD. The correlations reflect this same product, and the
deterministic function o () can be employed to carry this scaling. If the PSD is flat over the bandwidth, the
temporal correlation may be further simplified. We may then write,

sin(we (1 — 12))
We (tl - t2)
where we use the fact that the Fourier transform of a constant frequency response with cutoff frequency w,

is a sin(x) /x.2

T(t1, 1) = (6.5.7)

Temporal Interpolation and Filtering

As noted above, we have an assumption that there is a cutoff frequency. Anything above that frequency is
out of band of the analysis, and can (should) be filtered. Equivalently, time steps less than 7' = 7/w, should
also be filtered. One way to approach this is to sample at an interval 7, and interpolate using a sin(x)/x
type filter as described below. Note that in addition to the benefit of filtering, sampling at an interval, 7', can
reduce the amount of memory used to store the temporal correlation.

Let [-v*,v*], 0 < v* < w,, be the frequency band of a deterministic function, x(¢), —oco < t < co. Then,

x(1) = lim Zn: x(kT)ay(t,T) (6.5.8)

where o
ar(t,T) % (6.5.9)
_ fsz—‘k;i)”] (6.5.10)

ZWhile a flat response results in a sin(x)/x, which is the default, many PSD responses are not flat, so a user defined temporal
function may be required.

195

“It is sufficient to know the values x(kT), with k = ...,-2, -1, 0, 1, 2, ... to reconstruct the entire signal x(¢),
—00 <t < 00"

Note:
t
= 1 if — =k 6.5.11
g if = ()
t
ar = 0 if T any other integer (6.5.12)
t
|| decreases to zero as ’f - k| increases. (6.5.13)

Advancing the Coarse Temporal Solution
The strategy described involves computation of the solution on a coarse temporal grid, with interpolation to
a fine time step as described above. The process for advancing the coarse time solution is described here.

The initial coarse solution, Y (x, T), is given by the solution to the Cholesky factor of the correlation
matrix.

Y = chol(¢)W (6.5.14)
where
¢ is the d(2n+ 1) x d(2n + 1) correlation matrix
%4 is a vector of zero mean, unit variance random variables,
and
Y is the properly correlated solution vector at the 2n+ 1 coarse
time values, 0, T, 27, ..., (2n + 1)T and the d sample
locations.
6.5.1.1. Temporal Advancement

As described in texts on stochastic calculus (see’® for example), we can compute the response of a Gaussian
random vector when a portion of the vector is known. Consider a random vector Y, which is partitioned
into a known part, Y, and a portion to be determined, Y). We may write, (see equation 2.109 of [°]),

£ = (Y(2)|Y(l)=z) (6.5.15)
~ N4, 0) (6.5.16)
where,
i = #(2)_,_C(Z,l)[c(l,l)]—l(z_u(l)) (6.5.17)
e = C(2,2)_6(2,1)[6(1,1)]—16(1,2) (6.5.18)

and ,um is the mean on each portion of the solution.

In words, we can express the normal distribution of the unknown vector as a random distribution with mean
[and variance given by the covariance matrix . The covariance does not depend on the previous samples
but only on the partition of the original covariance matrix. The mean depends weakly on the previous
sample, z.

The matrix c is partitioned as follows.

196

cLD s &, the original correlation matrix. It is a square matrix of dimension d(2n + 1).

¢22) s the d x d correlation matrix associated with zero time lag.

¢ is an additional set of d rows of the correlation matrix associated with the time lag (21 + 2)T.

C(0) C(T) cQr) ... | C((2n+2)T)
C(T) C(0) C(T)y .. | C((2n+1)T)
C((2n+2)T) C((2n+1)T) C(2nT) ... | C(0)

and C(T) is the d x d correlation matrix evaluated on the d spatial points at time lag T.

6.5.1.2. Procedure

The solution is advanced as follows.

1.

We augment the system to have d(2n + 2) equations. Thus, ¢! is the d(2n + 1) covariance
previously calculated.

. We use b = chol(c'"") to compute the desired mean of the new distribution. Specifically,

i = pu@+c@Dpp)y N (z-u) (6.5.19)
= D)7, (6.5.20)
= gz (6.5.21)

where we have used the fact that both u(1) and u(2) are zero. We store the rectangular matrix
g =c®V(b'b)~!. We no longer need the original covariance matrix &, nor its factor, b.

. We reuse g to compute the revised correlation matrix.

¢ = B ED[D]702) (6.5.22)
C(0) — g¢1? (6.5.23)

where C(0) is the d x d correlation matrix for a time lag of zero. The matrix ¢ is also d x d.

. We perform a Cholesky factor on ¢é. This is the second such factor, and it is performed on a smaller

space. It need be performed only on the first advancement as ¢ is a constant.

b = chol(é) (6.5.24)
. Compute the new distribution.
& = N4, 0 (6.5.25)
= [+chol(&)w (6.5.26)
= f+bw (6.5.27)

where w is a zero mean, unit normal Gaussian basis.

Move solution vector solution, Y, up by one, and insert £ in the new locations.

197

6.6. Removing Net Torques from Applied Loads

For structures without any connections to ground, there are six rigid body modes. Three modes correspond
to rigid body translations, while the remaining three are for rigid body rotation about the center of mass of
the structure. If the applied loads have a net torque about the center of mass, then we should expect the
structure to eventually begin tumbling as time progresses. If the net torque vanishes, then the small strain
approximation used in Sierra/SD is accurate since rotational deformations should remain small. This
expectation holds even in the presence of large displacements caused by loads with significant translational
rigid body components.

The purpose of these notes is to describe options for removing net torques from applied loads to avoid
tumbling in Sierra/SD during transient analyses. One option assumes that the center of mass is known,
while the second makes use of the mass matrix for the system finite element model. We note that net
translational loads are not removed using either of these options. Only the mass matrix option is used in
Sierra/SD.

Use of Mass Matrix. Let M and K denote the mass and stiffness matrices for the structure. Further, let
@, 4, and @, contain the translational and rotational rigid body modes. Both ®;,.,, and ®,.,, have 3
columns, and for floating structures K®;, ., = K®,,; = 0. We will assume the mass matrix M is
symmetric and positive definite, while the stiffness matrix is assumed to be symmetric and have 6 rigid
body modes as stated. Further, we assume for the damping matrix C that C®,.;,, = 0 and @rTme =0,
where @, p,, = [Diran DPror] If rigid body motion of the structure does not cause any damping forces,
then this assumption holds. One instance where this assumption on C does not hold is for models with mass

proportional damping.

Consider a node i of the model that has both translational and rotational degrees of freedom. The rows of
@, associated with this node are given by

[1 0 0 O riz —rin
0 1 O —ri3 0 Vil
i 100 1 rp -ri 0
q)rbm “10o 0 o0 1 0 0 > (661)
0O 00 O 1 0
(000 0 0 1

where r; = r;je| + rijpes + ri3es is the position vector of node 7 in the global coordinate system. Note here
that the origin for r; is the origin of the global coordinate system and does not necessarily coincide with the
center of mass of the system.

Sierra/SD mass orthonormalizes the rigid body modes. Namely,

q)T

rbm

M®,p,, =1, (6.6.2)

where [is the identity matrix (notice this equation also implies CI>rTmM ®,.,; = I). Moreover, the columns of

@, p,, are orthonormalized from the leftmost column to the right so that the rigid body translational modes
remain in the first three columns of ®,,,. ®,,, is the mass-orthonormalized rigid body mode matrix for
rotations.

The standard equations of motion can be expressed as

Mii+Cii+ Ku = f, (6.6.3)

198

where u and f are the displacement and applied force vectors. Next, consider the approximation
u = ®,p,q, where g is a 6x1 vector. Substituting u = ®@,p,,q into (6.6.3) and pre-multiplying by ®r it

follows from (6.6.2) and the assumptions K®,,,, = 0 and CD,.,,, = 0 that o
q=9,,/, (6.6.4)
or, equivalently,
Giran = Ofyanf (6.6.5)
Grot = o, f- (6.6.6)

Notice from (6.6.6) that there will be rigid body rotational accelerations if @7 f # 0. We will consider a
modified force vector of the form

f=f—-M®Dps, (6.6.7)

where s is a 3x1 vector to be determined from the condition
ol f=0. (6.6.8)

Substitution of (6.6.7) into (6.6.8) and use of & M®,.,, = I then gives us

rot

s=®! f (6.6.9)
and (6.6.7) then reads
f=f-M®, (DL, 1) (6.6.10)
Examination of Flexible Modes
By pre-multiplying (6.6.10) by ®7 , and using ®7 , M®,,, = I once again, one can confirm that ®7 , f = 0

as required to avoid rigid body rotational accelerations.

Let @ fc, denote the mode shape matrix for the undamped flexible modes. The mode shape matrix for all
the modes can be written as ® = [DPiran Pror DPfiex] Notice since both ®7 M® and ®T KD are
diagonal, it follows that (D;lequ)rm =0.

The generalized force associated with the flexible modes is given by
Friex = ®F . f. (6.6.11)

Since @;lequ)m, = 0, we then find

fflex = (I);;lexf - ®§[gxM®rot(®£)tf)
= Frten. (6.6.12)

Thus, the generalized force vector f flex for the modified force vector is identical to the original one frey.
This implies that the adjustments made to the original force vector do not modify the flexible response.
This is a nice feature.

199

Parallelization Issues

When the model is decomposed by element® the mass matrix provides requisite information about
duplication of nodal quantities on the boundaries. Thus, nodal quantities (which are replicated on
subdomains which share a boundary) are only counted once in a dot product. However, for statics, there is
no mass matrix, and the identity is substituted for the mass matrix. While the system matrix is the identity,
the appropriate submatrix of the identity on each subdomain is not a subdomain identity matrix. Itis a
diagonal matrix with entries,

f‘}}fb = 1/cardinality,,, 4.
This definition of the subdomain identity submatrix, I°*? permits multiplication without duplication of
values on the subdomain boundary. This submatrix must be used for orthogonalization and for the force
correction (equation 6.6.10).

Filter of Output Displacements

The mass matrix also provides stabilization of the solution matrix. For statics solutions on floating
structures, the solution matrix is the stiffness matrix, which is singular. Additional tools are in place to help
the linear solver with this challenge. In particular, GDSW (see e.g.*’) may solve such systems provided that
the dimension of the null space is provided. However, small non-equilibrated forces or round off in the
solver can still result in solution vectors in the range of the null space. For statics, these displacement
vectors are also filtered to eliminate the rigid body component. The filtering uses equation 6.6.10, with the
identity matrix replacing the mass matrix.

6.7. Traction Loads

In the traction loading of a side set, if the user specified coordinate frame C,, with basis

N N

(e1,82,83)

is specified with the traction vector, it is used to determine the directions of application of the loads so that
the third component remains the element normal vector, .

Loads are applied in the projected coordinate frame C,, with basis

N N A

(P1, P2, 1)

determined using the normal,
Pir=exhp, pr=RXpips
Here p; are positive scalar normalization terms. The event &, X # = 0 is handled by substituting
P1=¢é Xnpyand pr =i X py pa.
The direction in which forces will be applied depends on the coordinate systems. In particular side sets will
need to be chosen (or subdivided) to ensure that é, X i1 # 0.

In a cartesian coordinate frame, element normal vectors for tractions should not be aligned with the y
direction of the applicable coordinate frame. In the cylindrical frame (r, 8, z) or a spherical coordinate
frame (r, 6, ¢), element normal vectors aligned with the azimuthal direction are problematic.

3each element is one one subdomain.

200

Figure 6-7. — Coordinate Frame Projection for Tractions

6.8. Consistent Loads Calculations

Starting with equation 4.1-6 from Concepts and Applications of Finite Element Analysis by Cook et
al.[*"],

{re} = / BV E @b - /V (BT (ou}dV + / [N (F}aV + / INT(@}dS (68.1)

Ve Se

where each term is defined in Subsection 4.1 of the above mentioned reference. The load vector, {r.}, is
composed of four parts in equation 6.8.1. In this document, only the last part, which is the contribution of
the surface tractions to the load vector, will be considered. Rewriting,

(re) = /S [N]7 {®}ds 682)

Here, the integral is calculated over the surface of the element on which the surface traction, {®}, is
applied. Therefore,

()} = [0, D, D,]" (6.8.3)

and [N] is the shape function matrix of the element on which the surface tractions, {®}, are applied. To
generate a model for application inn Sierra/SD, {®} can be generated within PATRAN or other
preprocessors by applying a spatial field to a specified side set. In Sierra/SD however, these spatial field
values are available only on the surface nodes of the element. Using the nodal values of this surface
traction, the value at any surface location must be determined using an interpolation function over the
surface or side of the element. Since only one value per node may be specified on the side set in Sierra/SD,
a surface traction may be applied only in one direction at a time. Therefore, {®} will be defined as,

Ny
{@} =4 ny @(x,y,2) (6.8.4)
n;

201

6.8.1. Elements with consistent loads

Consistent loads are implemented for the following 3-D and 2-D elements:
* Hex8, Hex20, Tet4, Tet10, Wedge6
e Tria3, TriaShell ,Tria6 (four Tria3s)
¢ QuadT (two Tria3s), Quad8T (1 QuadT and 4 Tria3s)

6.8.2. Pressure Loading

Here, we will consider only pressure loads on 3-D elements, such that

nx
{®} =1 ny D(x,,2) (6.8.5)

n;

where [ny, ny, nz]T is the normal to the element face. Hence, the consistent loads can be calculated as,

{re} = [N]T{cl>}dS=/ [N]T®(x,y,2)(d@ x b)dS. (6.8.6)
S() Se
Here,
- Ox 0y 0z r
a= [ar’ 5 ar] (6.8.7)
> O0x dy Oz,r
b= [as’ P as] (6.8.8)

where @ is the pressure load, and (x, y, z) are the physical coordinate directions, and (r, s) are the local
element directions for the face of the element. The normal may be obtained by taking the cross-product of a@
and b.

6.8.3. Shape Functions for Calculating Consistent Loads

For 3-D elements, all the faces are either quadrilateral or triangular shaped. Hence, shape functions for
quads and triangles could be used to evaluate the consistent loads. However, application of the shape
functions for the 3-D elements, reduces code and “fits” better into the current finite element class structure.
This is what is currently implemented. This requires a “mapping” of the 3-D elements’ faces to a 2-D
plane. The additional overhead for using the 3-D elements is that each face of the element must have this
“mapping” which states how the elements’ 3-D shape functions map to a 2-D element. For example, for a
Hex20, the element coordinates (771, 172, 173) are defined in a particular way. For each face of the Hex20,
defined by a side id, the face has a local coordinate system (r, s). The “mapping” defines how (r, s) are
related to (171,772, 3). This also helps define how 2-D Gauss points are mapped to the 3-D face. These
mappings are available for all the linear and quadratic 3-D elements.

202

6.8.4. Shell Elements - consistent loads

All the 2-D elements (shell elements) compute loads based on the Tria3 shape functions. The consistent
loads calculations for the Tria3 can be “copied” to the TriaShell. This way all the shell elements use the
same consistent loads implementation. Since Carlos Felippa designed the Tria3, his consistent loads
implementation is used. The portion for linearly varying pressure loads is shown here. If the loads are
aligned along an edge, {¢}, they need to be decomposed into (gs, gn, gt). Where (s, n, t) are coordinate
directions along the element edge. Coordinate s varies along the element edge tangentially, » is normal to
the element edge, and ¢ is tangent to the element edge in the transverse direction, i.e., in the direction of the

thickness. Once, the edge load is decomposed, the equations for consistent loads are,

fls= 2%(7%1 +3¢52)La1
fla= 2%(761;11 +3qn2) L2y
fl= 21—0(751“ +3¢2) Lo
m'y = —i(36h1 +2412) L%y
60

1
mlt = _%(3(%11 + zq”Z)LZZI

1

= 2—0(361s1 +7q52) Lo
1

= %(3%1 +7qn2) Loy

1
[= %(3%1 +7q12) Lot

mls = mzs =0

1
m?, = @(2%1 +3q12) L%

1
m?, = E(ZQM +3gn2) L%

(6.8.9)
(6.8.10)

6.8.11)
(6.8.12)
(6.8.13)

(6.8.14)

where ¢, is the value of ¢ in the s direction at node 1 of the edge, L, is the length of the edge. The
superscripts 1,2 are the node numbers of the edge. Note, it is assumed here that the load ¢ is per unit length,
but this is not assumed when creating the sideset in PATRAN for example. Therefore, this distributed load
is multiplied, in Sierra/SD, by the thickness of the triangle.

203

For a pressure load on the face of the Tria3, the equations become,

Flomfly=ml= 2 =2 =mie= 2 =) =m®, =0 (6.8.15)
flo= %Pl + 97—0pz + 97—0p3) A (6.8.16)

1= %¢1;%m+£¢JA (6.8.17)

f= £Vn+%¢z+%pﬂA (6.8.18)

m'y = 320 [7(y31 + y21)p1 + (3y31 + 5y21) p2 + (Sy31 + 3y21) p3] (6.8.19)
m'y = 320 [7(x13 +x12)p1 + (Bx13 + 5x12) p2 + (5x13 + 3x12) p3] (6.8.20)
my = 320 [(5y12+3y32)p1 +7(y12 + y32) p2 + (3y12 + Sy32) p3l (6.8.21)
mzy 3120 [(5x21 4+ 3x23) p1 + T(x21 + x23) p2 + (3x21 + 5x23) p3] (6.8.22)
my = 31% [(3y23 +5y13)p1 + (Sy23 + 3y13)p2 + 7(y23 + y13) P3] (6.8.23)
m, = 320 [(Bxsp + Sx31)p1 + (5x32 + 3x31) p2 + 7(x32 + x31) p3] (6.8.24)

where y;; = y; — y; and x;; = x; — xj, A is the area of the triangle, p; is the value of the pressure load at
node i, and (x;, y;) are coordinates of the triangle in 2-D space.

Finally, the “pseudo” elements (QuadT, Quad8T, Triab) created by using triangles require overhead. For
example, the Quad8T is composed of 1 QuadT and 4 Tria3s. However, since it is defined as a Quad8T, it
has distribution factors at its 8 nodes, and these distribution factors have to be mapped to the 1 QuadT and
the 4 Tria3s. The number of distribution factors is 3 however, if the load is applied to its edge. Therefore,
this extra coding can be seen in the ElemLoad method of the shells’ classes.

6.9. Solution of Singular Linear Systems

It may be required on occasion to solve problems with singular coefficient matrices. For example, the static
analysis of a structure that has no essential boundary conditions (free-free) will typically have six rigid
body modes and the stiffness matrix is singular. In this subsection, we describe how singular linear systems
are handled by the GDSW solver and also provide supporting theory. The development below is for serial
runs, but the same approach is applied to the singular linear system associated with the coarse problem for
multi-processor runs.

Consider a structure with a symmetric and positive semi-definite stiffness matrix K. The columns of the
matrix Q span the null space of K. That is, KQ = 0 and Q7 Q = I, where I is an identity matrix. For
example, O can be obtained from Gram-Schmidt orthogonalization of the geometric rigid body modes.

We are interested in solving linear systems of the form

Ku=f. (6.9.1)

204

Since K is singular, we must have oT f =0 for a solution of (6.9.1) to exist. In other words, the force vector
must be orthogonal to the rigid body modes. We may perform a simple Gaussian elimination process with
row pivoting on the matrix Q to identify a set of linearly independent set of rows of Q. Without loss of
generality, let O, denote these rows of O and let us express Q as

| O
Q—[QZ],

where Q> is square and nonsingular by construction. Similarly, we express the stiffness matrix as

K11 Klz]
Ky K»n |’

Our first step is to show that K is positive definite. To this end, consider a vector v of the form
y=|"]
=1 o |’

v=0qg+0.q.,

where g and g, are vectors, QIQL = [and QIQ = 0. Notice if g = 0, then g, # 0 since v # 0. Likewise,
if g # 0, then we have from the lower block of the expression for v that

where v # 0. We may express v as

0=009+Q129..

Since Q5 is nonsingular and g # 0, it follows that g, # 0. Thus, in both cases we have ¢, # 0 which
implies v, = Q,¢q, # 0. Consequently, since v{Kvl > 0forallv, =Q,q, # 0, we have

vlTKle =vIKy = VIKVL > 0.

In other words, K1 is positive definite and thus nonsingular.

The following procedure is used in GDSW for solving (6.9.1) for serial runs. The same approach for
multi-processor runs applies to the singular linear system for the coarse problem.

1. Make sure f is orthogonal to Q by calculating f = f — (0T f).

ol

2. Solve the linear system

3. Remove any null space component by calculating u = i — Q(Q7 7).

We next verify that the solution from this procedure satisfies (6.9.1). Notice from Step 2 that i, = 0 and
Kiiiy + Kppiip = fi. (6.9.2)
The first block of equations in KQ = 0 reads as K110 + K120 = 0, which gives

Ki'Kin=-010;5".

205

Since QT f = 0, we also have
01 fi+0;f,=0.

From the previous two expressions it follows that

KuKi' fi=-05"01fi
=-0;" (=03) = f

It then follows from the previous equation and Step 2 that
Koty + Knily = K K fi = fo (6.9.3)

In summary, (6.9.2) and (6.9.3) verify that the i calculated from the procedure satisfies Kii = f. The final
step of the procedure removes any null space component from 7, and we can verify

Ku=K(i—Q(Q"ii) =Kii= f

and

0"u=0"@-0(Q"a)=0"i-Q"i=0.

206

7. CONTACT

7.1. Multipoint Constraints

User’s Manual describes MPCs. Here coordinate system dependencies are discussed.

MPCs may be defined in any coordinate system. However, all nodes in the MPCs are defined in the same
system. This is done for convenience in parsing, and not for any fundamental reason. Consider a constraint
equation where each entry in the equation could be specified in a different coordinate system.

> cu =0

where C; is a real coefficient, and uﬁk") represents the displacement of degree of freedom i in degree of
coordinate system k;. We can transform to the basic coordinate system using ufk") =2 Rj(.f"')ug.o), where

R is the rotation matrix for coordinate system k;. Then we may write,
(ki) (0) _
2 CiRGu =0
ij

or,

3 =0
i

where Ci(ki) = j Rl.(]].(")C . Note however, that in this analysis, we have assumed that the dimension of C is
3. Thus, rotation into the basic frame will likely increase the number of coefficients.

Sierra/SD is designed to support constraints through at least two methods. These include a constraint
transform method and Lagrange multipliers. Lagrange multiplier methods are used for all the parallel
solvers. The serial solver uses constraint transform methods.

7.2. Constraint Transformations in General Coordinate Systems

In general, constraint equations can be applied in any coordinate system. We here describe the
transformation equations and implications for general constraints in any coordinate system. The
implications of this use in Sierra/SD are also outlined.

Consider a constraint equation,

C'u' = Q (7.2.1)

where the primes indicate a generalized coordinate frame. The frame may be transformed to the basic
coordinate system using equation 1.4.1, and
u' = Ru (7.2.2)

207

Rewrite equation 7.2.1 as

(7.2.3)

where C = C’R.

Thus, a general system of constraint equations may be easily transformed to the basic system. Further, the
rotational matrix is a 3x3 matrix which may be applied to each node’s degrees of freedom separately.

7.2.1. Decoupling Constraint Equations

We still have a coupled system of equations. We partition the space into constrained and retained degrees of
freedom, and describe the constrained dofs in terms of its Schur complement.

u= [tr } (7.2.4)

Uc
The whole constraint equation may be similarly partitioned.

[& Ce] [tr } =[0] (7.2.5)

Uc
Note that C, is an cxr matrix, C, is cxc, and Q is a vector of length c¢. Under most conditions Q is null.

This may be solved for u..,
u.=C:'0-c:'Cou, (7.2.6)

We must be concerned with cases where C. may be either singular or over constrained. The former case
occurs if we try to eliminate ¢ equations, but the rank of C is less than c. This could occur if the equations
are redundant. We can over constrain the system only if Q is nonzero. Both these situations need attention,
but both can be dealt with.

We may also write the solution using a transformation matrix, 7.

[. } =[] [u] + 0 (7.2.7)
where 1
T= [.] (7.2.8)
Cre=-C-'C, (7.2.9)
and
0= [C;O‘Q] _ [g] (7.2.10)

208

7.2.2. Transformation of Stiffness Matrix

We assume a similar partition of the stiffness matrix. The equations for statics are then,

Ky Kre Ur | _ R,
[K. K.] [“]— [R. } (7.2.11)
or,)
(K1 [T1ur+[K][O] =R (7.2.12)
and
T"KTu, =T" {R-KQ} =R (7.2.13)

We can define the reduced equations,

K=T"KT =K, + K;cCrec + CL.Kr + CLK o Cre (7.2.14)
and, 5
- K Q
_7Tp _ 7T re¥
R =T"R-T [K..O] (7.2.15)
=R, + CrTCRC - Kch - CrTCKCCQ
The solution in the retained system is
Ku, =R (7.2.16)

The system may be solved using the reduced equations, and the constrained degrees of freedom may be
solved using equation 7.2.6. Much of this is detailed in Cook, but without the constrained right-hand side.

For eigendecomposition of the mass matrix may be transformed like the stiffness matrix in equation 7.2.14.
There is no force vector.

For transient dynamics the mass and stiffness matrix transform the same. The force vector and force vector
corrections may be time dependent. There is currently no structure to store these time dependent terms in
Sierra/SD.

7.2.3. Application to single point constraints

Our initial efforts at applying single point constraints (SPC) has been limited to the basic coordinate
system. In that system the equations decouple, C,. is unity and C,. is zero. Then equations 7.2.14 and
7.2.15 reduce to elimination of rows and columns.

To properly account for the coupling that occurs when the constraints are not applied in the basic coordinate
system, we must generate all the constraint equation on the node. This may be up to a 6x6 system. I believe
that there is no real conflict in first applying constraints in the basic system, then adding additional
constraints in other systems.

The process for applying constraints can be summarized as follows.
1. Generate the constraint equation in the generalized coordinate system (equation 7.2.1).

2. Transform the constraint equation to the basic coordinate system (equation 7.2.2).

209

3. Determine the constraint degrees of freedom. It may need to be done in concert with the next step to
keep from degrading the matrix condition.

4. Compute the two transformation matrices C.' and C,. from equations 7.2.5 and 7.2.9.

5. Compute the corrections to the force vector from equation 7.2.15. We currently do not have a
structure to store these corrections, except for the case of statics.

6. Compute the reduced mass and stiffness matrices from equation 7.2.14.
7. Eliminate the constraint degrees of freedom from the mass and stiffness matrix.
In addition, for post processing,

8. store the terms of the equations necessary to recover the constraint degrees of freedom (equation
7.2.6).

A few words about post processing could also prove useful. In the first implementation of Sierra/SD,
constraints were applied only in the basic coordinate system. The degree of freedom to eliminate was
obvious from the Exodus file, and its value was a constant (usually zero). In this later version, a more
general approach must be used. We use the following strategy.

1. degrees of freedom directly constrained to zero are handled implicitly. This is done by setting the
G-set vector to zero before merging in the A-set results. There is no storage cost for this.

2. Other degrees of freedom are managed using an spc_info object. An array of these objects will be
stored globally. Each object contains the degree of freedom to fill, an integer indicating the number
of other terms, a list of dofs/coefficients, and a constant. This facilitates solutions of the form,

retained dofs
uspc = constant + Z u;C; (7.2.17)

7.2.4. Multi Point Constraints

The application to multi-point constraints is straight forward. The only difference is that the whole system
of equations must be considered together. This changes the linear algebra significantly because the matrices
must be stored in sparse format. However, the steps that are applicable for single point constraints also
apply here. Subsection 7.1 deals more explicitly with MPCs.

7.2.5. Transformation of Power Spectral Densities

Note: The following is taken almost verbatim from Paez’s book [133]

PSD.

. We identify how to transform output

Let H(f) denote a frequency response function vector for a given input (in the global system) expressed
as,
H(f) = Hi(f)e1 + Ha(f)ex + H3(f)e3

where e; represents the unit vectors of this space. Note that H(f) is an output vector at a single location in
the model. H(f)) can also be expressed using an alternate set of unit vectors, €;.

H(f) = Hi(f)& + B2 ()& + H3(f)é;

210

Taking the dot product of these two equations and equating the results, we have,

M

AHi(f) =) criHi(f) (7.2.18)

k=1

where
Cki =€) - &

The spectral density function G;;(f) (for a given input and at a single output location) can be expressed
as,

Gij(f) = aH; (f)H;(f) (7.2.19)

where « is a constant and superscript * denotes complex conjugate. Similarly for the alternative coordinate
frame,

Gij(f) = aH; (f)H;(f)

We may use equation 7.2.18 to express G in terms of the H;. We may then use the spectral definition in
equation 7.2.19 to provide the transformation of spectral densities.

Gij(f)

3 3
04 (Z CkiH]t(f)) (Z ijHm(f))

k=1
= i > ckicmiGim (7.2.20)

This can be expressed in matrix notation as G = CTGC.

7.3. Orthogonality of MPC to Rigid Body Vectors

There are many requirements on multipoint constraints (MPCs). One that is essential is that the constraints
must be orthogonal to rigid body rotations. By this we mean that the multipoint constraints must not
constrain the system in a way that eliminates rigid body motion. This can be easily seen in modal analysis.
An ungrounded system with MPCs must retain 6 rigid body modes. Transient and static analysis has the
same issues, but here the problem may not be as obvious. Note that there are a variety of means of arriving
at the weights for a set of constraints, such as tied data. A mortar method preserves rigid body motion with
a different set of constraints. The weights for these systems may differ, but all must allow the body to freely
rotate. Clearly each constraint equation must satisfy this orthogonality independently.

For tied data a nodal dof on the node-surface X; is constrained to the nearest face by a row of C. R is a
function of the coordinates. Effectively R is a function of the lofting. Particular solutions of the family of
equations

C(AH)RA) =0 (7.3.1)

are determined, ensuring that C is a continuous function of the lofting parameter. In other words, enforcing
orthogonality changes the constraints as little as possible.

211

7.3.1. Beam Example

Figure 7-1 illustrates a node X3 constrained to a beam with nodes x| and X,. This beam is represented using
a 2 dimensional coordinate frame, and has no rotational degrees of freedom. The X axis is aligned with the
beam. There are two dof per node. The node X3 is located a distance d from the node X;.

1 3 2
O—— O

Figure 7-1. — Node Constrained Directly to Beam.

The displacement vector is defined as,
U= [ux Uy Ux U2y U3x M3y] (7.3.2)

The high level approach of sections 7.3.1 and 7.3.2 is to address certain deficiencies by activating different
dof of nodes. Some Sierra codes do not allow for constraints that couple different dof of the same nodes.

The constraints keeping node X3 on the beam (x3 = x| + d) are

(1-d) 0 d 0 -1 0

CO=1"0" (-a) 0 a 0 - (7.3.3)
and the corresponding three orthogonal rigid body vectors are,' The node
¥s = X3 = [x3,y3]Tx3 = [x1,x2][1 = d, d]T, y3 = 0. The origin o is chosen to make the rigid modes
orthogonal, 0 = x| + h, h = (x3 — x1)/2. Finally, x3 = 0 + (2d — 1)h.
1 0 1 0 1 0
ROT=0 1 01 0 1 , 0=1 (7.3.4)
0 -6 0 6 0 (2d-1)0

The constraints C are orthogonal (C - R = 0) to the rigid body vectors, R.

7.3.2. Offset Example

A small offset of a tied node above the tied face is common for a variety of reasons. For example, tying
together nodes on curved surfaces often introduces an offset from the plane of constraints, as is illustrated in
Figure 7-2. Figure 7-3 shows the general case in which the third node is offset, L, along the positive Y axis.

Figure 7-2. — Example Node on Face Constraint on Cylinder. The faceted faces produce a small offset from the
nodal location of a point on the matching cylinder.

'We are using infinitesimal rotations where sin(6) = 6.

212

The point on the node-surface, ¥y = X3 = [x3, y3]7, is lofted y3 = L. The corresponding rigid body modes

are
1 0 10 1 0
RDT=]0 1 010 1 |, A=Lsign(1/2-d)/h (7.3.5)
0 -1 01 4 (2d-1)

What is important here is that the rotation rigid body mode gains an extra term. Rotation of this beam about
the Z axis now has a term in X. These rotational rigid body modes are no longer orthogonal to the original
constraints, 7.3.3.

3
1 L 2
G—— 9

Figure 7-3. — Node Constrained Offset to Beam.

Row one of C(0) is the problem; row two of C(0) equals row two of C(1). In this paragraph, c(1) is row
one of C(1). As a sparse vector, the graph of c(4) is the set of nonzeros. The only vector orthogonal to the
RBM, with the same graph as C(0), namely [1,0,—1,0, 0, 0], does not constrain the node. The graph of
¢(A) will have to expand. Adding the y dof of active nodes to graph of C, the solution of equation 7.3.1 is

c()=[1-d,2/2,d,~-2/2,-1,0]

7.3.3. Correct MPC Equations

A solution to the problem can be obtained by using a projection onto the plane, as illustrated in Figure 7-4.
The constraints for the projected node are determined from the standard shape functions of the element
face, as in equation 7.3.3. However, we also maintain a perpendicular offset from that projection point on
the face to the constrained node.

Us = Up + iy
and,

U, =0x¢€

where 6 represents the rotation vector, and € represents the offset. When using shells and beams, we have 6
as a natural part of the rotational coordinates. For solids elements, we must compute 6.

Initially, one may conclude that higher order elements would alleviate the issues somewhat. Quadratic
shape functions for these elements can properly represent second order geometry and displacements.
However, multipoint constraints are inherently linear. We have not yet evaluated the effects of MPCs on
curved, higher-order element faces.

213

-
S o~ -

Figure 7-4. — Constraint Projection. Standard shape functions provide the constraint relations for the projected
point, Up,. A rigid perpendicular offset maintains the proper geometry to retain rigid body invariance, and is used
to compute ii,. The total, iy is the sum of these components.

214

7.3.4. Orthogonalization of Incorrect MPCs

A simple orthogonalization step can make the constraint weights once again orthogonal.” We compute,
@ = C-Ri/lIR]? (7.3.6)
¢ « C-aR; (7.3.7)

where C represents the constraint equation, and I_él- represents one of the orthogonalized rigid body modes.
As long as they span a full space, we can restrict R to the nodes in the constraint interaction. This allows us
to modify a constraint without generating terms that extend across the entire body. Typically, this operation
will add terms to C that were previously zero. In general, this operation must be performed for all rigid
body modes on each constraint.

The orthogonalization process of equation 7.3.7 works for shell and beam models that include rotational
degrees of freedom on the nodes of the constraint. If rotational dofs are added to constraints applied only to
solid elements, those constraints are ineffective because solid elements have no active rotational degrees of
freedom. However, if the degrees of freedom in the constraint spans the space properly, these rotational
degrees of freedom may be removed and only translational degrees of freedom retained. Equation 7.3.7 still
applies, but now is restricted to the translational degrees of freedom on nodes in the constraint.

7.3.4.1. Orthogonalization on incomplete space.

In some cases, there are insufficient degrees of freedom in the constraint equation to adequately span the
space of the rigid body vectors. With shells and beams this is not an issue because the six dofs on a single
node can represent 6 orthogonal rigid body rotations. When only solid elements are active, a minimum of
three nodes are required to represent the same six rigid body modes. When insufficient degrees of freedom
are available in the constraint, a few possibilities are presented for ensuring rigid body invariance.

1. In some cases the constraint may be orthogonal to all rigid body modes. No modification is necessary.

This is the case for two co-located nodes that are constrained by a rigid translation. It can be shown
in this case, that the rotation vector (expressed only as translational terms) is a null vector. The
orthogonality with that vector is trivially zero.

2. The constraint could be eliminated. This may be the correct solution for two nodes tied only by
rotation. In some cases, this may change the response of the solution.

3. Additional degrees of freedom from neighboring nodes could be introduced into the constraint. See
the discussion in Figure 7-5.

Detection:

A critical issue is the identification of conditions that result in bad solutions. This occurs when the
orthogonalization of the vector results in a null vector. To avoid numerical round-off issues we define this
such that,

C
— <9
C

Where C is the updated constraint equation determined from equation 7.3.7 and § is a small quantity.>

2Orthogonalization can be achieved in a variety of means. This is one simple approach.
3chosen as 1/1000.

215

No constraints are added to the system. That would change the solution. The number of nodes (dofs) that are
involved in the orthogonalization of the RBM increases. This is much like adding an extra independent term to a
RBES3 averaging element. Recall that we restricted the RBM to the nodes involved in the constraint. This was an
arbitrary choice, determined to avoid creating constraint equations that span the space of the solution. In this effort
we broaden the space to ensure that the reduced rigid body vectors are long enough to permit orthogonalization of
each vector with respect to the constraints.

Generally, we want to add degrees of freedom that are physically near the nodes in the constraint, however addition
of nodes that are collocated or co-linear with existing constraint nodes is not beneficial. We use the following
strategy.

1. Determine the centroid of the MPC, X,,, and a characteristic length, L.

2. Select the N nearest nodes from each processor, that are not part of the MPC. This requires a sort by location.
3. Communicate, and contract this list to the N nearest nodes in space.

4. Apply these additional degrees of freedom, and recompute the C vector and norms.

5

. If the norm is still zero, issue a message and abort.

Figure 7-5. — Additional Nodes in the MPC. Unimplemented.

7.3.5. Adding the same dof of new nodes

This section revisits the offset beam problem, discussed in section 7.3.2. Here the same dof of certain other
nodes are added to the graph. The constrained node is X5 = [xs, y5]7 x5 = [x1,x2][1 = d,d]", and y5 = L.
In node-face contact, the other vertices of the face that have been filtered out are the natural choice: (fi)?: 1
Typically

X3 ~%+[0,5]7, X~X+[0,5] (7.3.8)

The dimensionless parameters of interest are n = j/h, § < 0, and A = Lsign(1/2 — d)/h.
Hypothesis for x dof solution: 1 + A # 0 or equivalently y + Lsign(1/2 — d) # 0.

Differentiating equation (7.3.1), and once again letting ¢ denote row one of C, ¢R + cR = 0,cR = [0,0, 1]
Nodes ¥ and X, handled the ¢(0) term. Nodes X3 and X4 handle the ¢(0) term.

Define B as the result of removing the following rows and columns from R: remove the rows corresponding
to the first 2 nodes, remove even rows corresponding to the y dof in ¢, and remove the middle column.

It helps to consider the case in which the approximation (7.3.8) is exact,

17
B=|1 7
1 -2

The constraint is determined by B ¢(3 : 5) = [0, 1]7. The hypothesis is that B has full rank. If the

approximation (7.3.8) is exact, + 4 must be nonzero. More generally, the cross product of the columns is
nonzero if and only if B has full rank, a condition that can be read off from the coordinates.

Solving BT¢(3 : 5) = [0, 1]7 is not trivial. Unfortunately this type of equation is typically solved via
normal equations, whose inaccuracy increases with the need for accuracy. In terms of the economy size qr
factorization of B = QU, (Q has the same size as B and U in M (2, 2) is upper triangular),
c(3:5)=QR7T[0,1]T. That means, for f such that R” f = [0, 1]’, the constraint is ¢ = [0; Q f].

216

7.3.6. Lofted node-face constraints

An element may or may not be tied to a node, X, in a way that preserves rotations. This section is about
detecting constraints that do not preserve rotations, and then modifying the constraints so that rotations are
preserved. Lofting is a geometric characterization of the extent to which a node-face constraint preserves
rotations.

To understand all of this, let’s start with some simple cases: a node-face constraint tying a node to a planar
triangular face, a planar quadrilateral face, a discussion of lofting, and then remarks the extent to a planar
face accurately describes the general non-planar case.

A planar triangle is defined by three non-coincident nodes. A node-face constraint is not lofted if the
constrained node is in the plane of the triangular face. The vertex coordinates determine the matrix

I L)
R=11 X1 Y1 21
I x2 y2 22

Recall the concept of barycentric coordinates. The vertices are coplanar if and only if R has rank 3, in
which case the plane is the 2d set of points of the form

1

-

X

in the range of R”. Node triangular face contact involves the matrix

1 xo yo 2o
I x1 y1 21 .

R = , , V3, = 7.3.9
1 % oy o (x3,y3,23) = X ()

I x3 y3 z3

A node-face constraint, ¢, preserves rotations if and only if ¢! R = 0. Or geometrically, node on planar
triangular face constraints preserves rotations if and only if the constrained node is in the plane determined
by the triangular face. A constraint that does not preserve constraints is lofted some nonzero distance A
above the plane,

Xy =Xp +14d
Here X, is the orthogonal projection along the unit normal 7 of the lofted node onto the face.

The same argument applies to a planar quadrilateral. Although R is 4 by 4 in this case, still has rank of only
3. Barycentric coordinates define a plane, as in the case of a triangle. Finally, R is 5 by 4 in this case.

In node-face constraints, if the nodes are not planar, then barycentric coordinates define a surface, instead
of a plane. In the case of a quadrilateral, R may have rank 4, but it is nearly singular.

A lofted constraint is fixed by adding nodes so that R has a small condition number. This is done by adding
the nodes of the element that contains the face. There are pathological cases in the SD test suite in which
the "face" is a collection of nodes, and in these cases, nodes are added from one of the elements attached to
one of the nodes.

There’s a nifty construction of the new weights as a perturbation of the old weights, ¢, which not being
documented anywhere else, will be documented here. The construction is reviewed in the case of a node

217

tied to the quadrilateral face of a hexahedron. For the problem to be well posed, the new weights must be a
perturbation that is proportional to A. In light of this, it is helpful express the equations in terms of A:

R =R(1) =R(0) +esdii’, c=c(), c(0)TR0)=0
Our goal is to determine c¢(A) so that ¢(1)TR(2) = 0. Substituting
c¢(A) = c(0) + 2¢(0)

c(DHTR) = A(c(0)TR(0) + ¢(0)R(D)

Recalling that the last coordinate of ¢(0) is —1, c¢(0)T R(0) = —e4A(0,77). After adding (in this case the
other 4) nodes, there is a "reasonable" vector of weights s such that

R(0)s = lg]

Note that ¢(0) had to be re-indexed after adding nodes. The nifty trick is the identity
RT(A)(I+ c(O)eg) = R7(0). In particular

RT () (I + c(O)eST)s = [2] , ¢(0)=U+ c(O)e9T)s (7.3.10)

7.3.7. Rotationally Invariant Spot Weld Constraints

To support Spot Welds with finite gaps, a similar equation to (7.3.10) was applied to node-face constraints
using a least-squares fit to rigid rotation.

Here, our goal is to create the 15-by-3 constraint matrix Ce, referenced by (7.10.1). Where Cey,, is
expressed using the derivative of the constrained node’s displacement ii; with regard to displacements on
the face i .

Cegn = 6“;‘ (7.3.11)

That derivative is given as:
Ota _ [(ATA,)'AT(I- AN, x & 7.3.12
@_ p+(pp) p(_lp 8 ()

Where:
* g : Gap vector from projected point to constrained node
* A, : n-by-3 Rigid Rotation vectors of the face nodes
* A; : n-by-3 Rigid Translation vectors of the face nodes

* N, : 3-by-n Shape function matrix(7.3.13)

218

Nt 0O 0 Nb 0 0 N3 O O N4 O O
Ny=| 0O N, 0 0 N; 0 0 Ny 0 0O Ny O (7.3.13)
0 0NNy 0O 0 Nb O O Ny O O Ny

To understand equation (7.3.12), we can rewrite it in terms of a rotation vector about the projected point g:

X8 (7.3.14)

Note that there are multiple valid ways to estimate %, but we found equation (7.3.15) to be the most robust
when applied to poor quality elements.

a6
o, (ATAp)'AT(I - AN,) (7.3.15)

7.4. Constraints and infinite eigenvalues

Constraints (in §7.1) modify equation (2.6.1) to an eigenvalue problem

2 N N
A[/I}_B /l]w (7.4.1)
K cT M 0
Sk B
The modes and mode shapes and modes satisfy the equation
K¢ +CTA=Mpw?, (7.4.2)

Like superelements, Lagrange multipliers A are not part of the finite element mesh interface. Lagrange
multipliers are not exposed to users. When an eigenvalue problem is restarted, the Lagrange multipliers for
the modes in the restart file are all set to zero.

The remainder of this section discusses a subtle issue that developers need to understand "once in a blue
moon." If constraints are present then there are infinite modes

HEHE

Approximate solutions of the constrained eigenvalue problem can be misleading if the infinite modes are
not deflated. The deflation technique is due to Hans Weinberger. Fortunately in Sierra/SD, the deflation
matches the Lagrange multiplier methods used to solve the linear systems,*’*3 and is handled, for the most
part, behind the scenes. Sometimes however, such as during debugging, it is necessary to understand
this, and this section is included to address that case.

But before diving in, let’s go over what the constrained eigenvalue problem, equation (7.4.1), has in
common with equation (2.6.1). Multiplying ¢” and row one of equation (7.4.1),

K¢+ CTA=Mpuw?,

219

brings us to the unconstrained equation
T T 2
¢ K¢ =¢" Mpw".

The standard normalization
¢" (K. M)¢ = (A, 1)

is used here too. Although

Co =0,
note that .
K C
T _ T
[0, 1] [c 0 =[A7C,0]1 #0

is the force maintaining the constraints.

The elimination of the redundant constraints uses the partition (or more precisely reordering) C = [C,, C,]
so that C. square and non-singular. This is done by the linear solver. The corresponding partition of ¢ into
retained (independent) and constrained (dependent) vectors is

ér

?=1 4

The constraint equation is C,¢, + Cc¢. = 0, or C.'C, ¢, + ¢ = 0 or
Cre = —CJICr, e = Credyr. (7.4.3)

The dimension of ¢. equals the dimension of A. The partition also induces a change in the eigenvalue
problem.

Kga Kai CT zr | Maa Mgy br 1
Kia Ki CT /{ | Mg M b

To eliminate ¢,
[Kgq + K4iCre CF] [or] _ [Mg + MyiCyc

Kia + KiiCrc CCT 4 Mg+ M;;C,.] ¢rd (7.4.4)

And finally to eliminate A, in equation (7.4.4) subtract from row one —C!_ times row two. For S defined
by
S(K) = Kaa + KaiCre + C/cKia + C/ KiiCre,

the reduced eigenvalue problem is
S(K)¢r = S(M)Qbr/l

Given ¢, and A, equation (7.4.3) determines ¢.. And A is determined by

A=C." (Mg + MiiCre — Kia — KiiCre) 1

220

7.5. Sparsepak Contact Enforcement

Constraints may be eliminated using the constraint transform method. This is described in detail in Cook,
chapter 9 (ref?”). In this method, the analysis set is partitioned into constrained degrees of freedom and
retained degrees of freedom. The constrained dofs are eliminated.

Unlike many Finite Element programs, Sierra/SD does not support user specification of constraint and
residual degrees of freedom. The partition of constrained and retained degrees of freedom is performed
simultaneously in the “Gauss()” routine. This routine performs full pivoting so the constrained degrees of
freedom are guaranteed to be independent. Redundant specification of constraint equations is handled by
elimination of the redundant equations and issue of a warning. User selection of constrained dofs in
NASTRAN has led to serious difficulty to ensure that the constrained dofs are independent and never
specified more than once.

For constraint elimination we have a constraint matrix C = [C,., C.] where C. is a square, non-singular
matrix and C, is the solution. We wish to solve for,

Cre = _[CC]_ICr

This is equivalent to the Gauss-Jordan elimination problem for Kx = b if we let C,- = b, C. = K and

x = —Cyc. There is one additional wrinkle: we have mixed the rows of C so C. is intermingled with C,.
However, we only require that C¢ be non-singular. Therefore, if we do a Gaussian elimination with full
pivoting we should simultaneously obtain an acceptable reordering of C, and obtain C,...

In practice, it is not even necessary that C. be non-singular. It is not uncommon for two identical
constraints to be specified. The program issues a warning and continues.

Constraint transform methods do not currently support recovery of MPC forces.

The Gaussian elimination is presently being performed with a sparse package called "SuperLU," instead of
a dense Gaussian elimination, to speed up the time to create C,.. On some platforms, e.g., sgi and DEC, the
BLAS routine dmyblas2.c in the CBLAS directory of of the SuperLU directory (need
superlu-underscore-salinas.tar to create this) should be the one and only routine whose object file is placed
into the SuperLU-BLAS library (presently called libblas-underscore-super.a) to be linked in to create the
Sierra/SD executable. Failure to include this routine will cause failures of the type "Illegal value in call to
DSTRV" on the above platforms, and including more than dmyblas2.c can cause slow performance on
many platforms as the SuperLU-CBLAS could override the built-in BLAS routines. (The built-in routines
are almost always faster.)

7.6. GDSW Contact Enforcement

A GDSW contact enforcement method is summarized. Maintaining constraints, i.e. given any i, finding
“near by" u = Tii satisfying the constraints, is discussed at the end. Contact introduces a residual force to
the momentum equation,

Ku+CTa=f (7.6.1)

and the constraint
Cu=0, Cisrxn, r<n (7.6.2)

221

A null space basis Z of rank < n — r satisfies CZ = 0. The full rank case, rank(Z) = n — r, is addressed
here (with the complicated software handling the general case, and including many important
optimizations). Displacements are of the form u = Zv, and the momentum equation, (7.6.1), reduces to
(ZTKZ)v =Z"f.

Direct elimination is a null space basis method in which permutation matrices Q and P are found such
that

urp
Upp

0=QCPup =Csup =[Csy,Csp] [, u=Pup

Here D and I denote the dependent and independent sets. The full rank case has Csp nonsingular for
|S| = |D| =r. A clever notation is CpsCsp = I and CpsCsy; = Cpj. Independent displacements u;p are
independent of the constraints. Meanwhile upp depends on u;p through the constraints,

upp+Cprup =0, Z-=

]
CDI)
In practice an LU decomposition

CT:P[LL’I) }UQ

leads to
Lg MDP+L;‘ M1P=0, CD1=LBTL?.

The transformation T = PZ PIT resets the dependent constraints, leaving the independent constraints
invariant. Here P = [Pp, P;] so that in particular ii; p = PITL?.

7.7. Tied Friction

The work on tied surfaces with friction is under development. Details are maintained in our design
documentation.

7.8. Mortar Methods

For simplicity, we only consider one of the three components of displacement in the following
development; the same approach holds for the other two components of displacement. Let u; and u,
denote displacements on the b and a sides of a mesh interface. Ideally, we would like to satisfy

Ug = Uup

at all locations on the interface. This restriction, however, is only practical for meshes which are
conforming at the interface. Otherwise, displacements would be restricted to a low-order polynomial of
degree equal to that of the lowest-order finite element on either side of the interface. As a result, the
interface would be too stiff.

For mortar methods, the constraint u, = uy is only satisfied in a weak sense. Specifically, the mortar
constraints are of the form

/ﬂ(ua —up)dx =0, (7.8.1)
r

222

where I" denotes the interface and A is a Lagrange multiplier. Notice the familiar inconsistent tied contact
(node on face) constraints for node can be expressed in this form by choosing A as a Dirac delta function for
the subject node. For mortar methods it is important that constant functions are in the space of Lagrange
multipliers. Dirac delta functions cannot be combined to obtain a constant. Thus, we should not expect the
convergence rates of mortar and tied contact methods to be identical. Indeed, the convergence rates for tied
contact are in general suboptimal.”

Let g5 and g, denote vectors of nodal values of displacement on the b and a sides of the interface.
Similarly, let g, denote a vector of discrete values of the Lagrange multiplier. The displacements and
Lagrange multiplier are approximated (discretized) as follows:

Up = ¢, qb- (7.8.2)
Ua = L qa, (7.8.3)
A=¢hqa (7.8.4)

where ¢;, and ¢, are vectors of shape functions for the b and a sides of the interface, and ¢, is a vector of
shape functions for the Lagrange multiplier. A discrete form of the mortar constraints are obtained from
substitution of (7.8.2-7.8.4) into (7.8.1).

Mssqq + Mg, =0, (7.8.5)

where
Mg, = / Aapl dx, My, = / Aty dx. (7.8.6)
r r

The standard mortar method implemented in ACME uses

$a=da. (7.8.7)

In other words, the Lagrange multiplier shape functions are the same as the shape functions for the a side of
the interface. We note in the mortar methods literature that Lagrange multiplier shape functions are often
modified for a nodes on the boundary of the interface. The purpose for this modification is to avoid
redundant constraints at the intersection of two or more interfaces. At present, we make no such
modifications, but we will revisit this topic in a later section. Substitution of (7.8.7) into (7.8.6) gives

Msséandard :L¢a¢g dX, Mssrtnandard :A¢a¢z dx. (788)

Although the matrix M Sss“‘"d“rd is sparse and positive definite, its inverse is dense. Thus, if one were to
solve (7.8.5) for g, in terms of g, each a node displacement would depend on all the b side nodal
displacements in the general case. As a result, solvers which make use of this form of constraint elimination
would suffer from significant memory and computational demands for interfaces with large numbers of
nodes.

Dual mortar methods find and use a Lagrange multiplier basis which leads to a diagonal Mg matrix. Each
a node displacement depends on the b node displacements in a neighborhood of the a node. Eliminating
the a node displacements is efficient. Elimination is also efficient with tied contact.

Let o denote an element face on the a side of the interface. Further, let o-(I") denote the set of all such
faces on I'. From (7.8.6) we then have

Mg = Z Mo, Mgy = Z Mo, (789)

oeo () oeo(I')

223

where

Mo = / o dx, Mgpo = / P dx. (7.8.10)

For the dual mortar method, we choose the vector ¢, to be a linear combination of rows of ¢,. Specifically,
for each a face o we set

$a=Acdas (7.8.11)

where A, is a transformation matrix. To have a method which passes constant stress patch tests (linear
consistency), it must be possible to obtain a constant function from a linear combination of the rows of ¢,.
We see that A, equal to the identity matrix satisfies this condition since the sum of all a shape functions
over o is unity. In this case, however, we recover the standard mortar method. The present goal is to choose
A to satisfy the constant approximation property while also leading to a diagonal matrix M. To this end,
we follow the construction in'** and:'!?

Ay = D (MStandardy=1 (7.8.12)
where
D, = diag (/ da dx) . (7.8.13)
g
Replacing ¢, in (7.8.8) by A, ¢, we obtain
Ml =X [Agpapldx= D AgMitanderd = N p,, (7.8.14)
oceoc(M)Y? oeo(T) oeo(T)
Ml = X" | Agpaphdr= Y AgMinderd, (7.8.15)
oceo()YT ogeo()

Since each D, is diagonal, it follows that M4/ is also diagonal.

Numerical integration over each a face o is done in ACME by first decomposing o into a set of triangular
facets #(o) and then summing the contributions from each facet. Specifically, from ACME we have access
to the integrals

ptandard / badl dx, MSiandard / bady dx, (7.8.16)
t t

where ¢ € t(0). By assembling contributions to o, we then calculate

M;;g_ndard =/ ¢a¢£ dx = Z M;;tandard. (7817)
o

tet(o)

With Mstandard in hand, we then calculate

dual _ standard _ standardy\—1 jsstandard

Msst - A(TMsst - D(T(Mssg- Msst » (7818)
dual _ standard _ standardy\—1 jysstandard

Msmt - AO'Msst - DO'(MSSO—) Msmt . (7819)

Since M$iandard js symmetric and positive definite, it can be factored using the Cholesky decomposition.
Accordingly, products with the inverse of M ;‘;g”d“r 4 in (7.8.18) and (7.8.19) can be obtained with calls to
LAPACK routines DPOTRF and DPOTRS. It then only remains to calculate the entries of the diagonal matrix

D,.

Let e denote a vector of the same length as ¢, and with all its entries equal to 1. Since the sum of shape
functions in ¢, equals 1 in o, we have
ple=1. (7.8.20)

a

224

From (7.8.17) we then obtain

Mtandard g = / da(ple) dx = / ba dx. (7.8.21)

o

It follows from (7.8.13) that
D, = diag (M”a”d‘”de) . (7.8.22)

SsSO

The procedure used to calculate the transformed mortar matrices M44% and M344! for the dual Lagrange
multiplier basis is summarized as follows.

1. Calculate M3iandard by agsembling contributions from triangular facets as in (7.8.17).
2. Calculate the diagonal matrix D, according to (7.8.22).

3. Calculate the mortar matrices M 44! and M44¢! for the dual Lagrange multiplier basis according to
(7.8.18) and (7.8.19).

In summary, all that is needed is to replace the mortar matrices M3!@dard and pMstandard for each

triangular facet ¢ by their dual basis counterparts M94% and Md44! The remainder of the coding in ACME

remains the same. The only code changes on the Sierra/SD side is to pass a flag to ACME indicating
whether to use the dual mortar method.

A subsection titled Treatment of Interface Boundary explaining the special treatment of constrained nodes
on the interface boundary to avoid potential redundant constraint equations would be a welcome addition.
There is also room here for a subsection titled Nodal Coordinate Adjustments dealing with how to initially
move the constrained nodes to retain all six rigid body modes for curved interfaces or flat interfaces with
initial gaps.

7.9. Correction For Dynamic Constraint Equilibrium

Multipoint constraints defined in an initial condition that is in equilibrium are homogeneous. The constraint
equation applied to the displacement, velocity, or acceleration vanishes. A constraint generated at an
equilibrium maintains equilibrium for all time.

Under some circumstances in a transient analysis, constraints can be generated in a non-equilibrium state.
This occurs, for example, if two domains are initialized to different pressures and then connected via an
MPC. Additionally, MPCs created in the middle of a run, such as on a moving mesh, are often created in a
state that is at least subtly out of equilibrium. In this circumstance, it is required to bring the constraint into
an equilibrium state as quickly as possible to enforce the intended continuity. Generally, immediate
enforcement of a constraint on the primary variable will not regain equilibrium. For example, if
enforcement of the constraint immediately eliminates a displacement jump, this will cause a large
discontinuity of velocity at the constraint.

To remedy this situation, a special sequence of non-homogeneous constraints is generated that brings the
constraint back to equilibrium as quickly as possible: specifically, in three transient time steps.

Section 2.1 gives a detailed description of the Newmark beta time integration method. Let d* and d~
indicate the displacement variable on either side of an interface at which a constraint is to be applied. The

225

constraint violation across the interface is u = d* — d~. At the current step, we know the values
—d;

-V,

u, =d;
iy, =v;,
i, =a; —a,,

but time-stepping must be done in a special way to bring u, i, ii back to zero. Although not required for the
method to work, we simplify the following discussion by assuming the standard values of y = % and 8 = }L.
Rewriting in u equation 2.1.4 for the Newmark beta step, we obtain equations 7.9.1 and 7.9.2.

. Lo A

Up+l =Un + 7(”n +line) (7.9.1)
A? A

Upel =Uy, + At + Tun + Tﬁn+1 (7.9.2)

The target value for the constraint violation, u,.1, will be specified later. Equation 7.9.2 can thus be

rearranged to provide the unknown acceleration i, as a function of the known initial conditions and u,,,1,

shown in equation 7.9.3.

—ii, At? — duy, + dupyy — 4AtL,
Ar?

Recursively applying equations 7.9.1 and 7.9.3 yields the acceleration and velocity at the end of three steps

as a function of the assumed target values u,.1, Un+2, Uny+3 for the constraint violation:

(7.9.3)

liny1 =

—2uy + 2upe — Attty

Upyl = Ar (7.9.4)
—line 1 A2 — Aty + dupgn — dAt
iy = Un+1 Un+1 . Un+2 Un+1 (7.9.5)
At
-2 +2 — Atu
g = Un+1 Un+2 Un+1 (7.9.6)
At
~lina At — 4ty + 4ty — AAL
l;in+3 - Up+2 Up+2 . Up+3 Up+2 (797)
At
-2 +2 — Atu
43 = Un+2 uAr;+3 Un+2 (7.9.8)

Next assume a formula that will set the target constraint violation for the next step in terms of the current
displacement, velocity, and acceleration constraint violation. Assume there exist some unknown
coeflicients weighting the mismatch in current displacement, velocity, and acceleration as given in
Equations 7.9.9, 7.9.10, 7.9.11.

Uns1 =Cautn + CyAti, + C, A, (7.9.9)
Unsy =Cattne) + CyAtiiney + CuAt2iiny (7.9.10)
Unsz =Calinsa + CyAtiini + CaAt2iingo (7.9.11)

Equations 7.9.7, 7.9.8, 7.9.11 can be simultaneously solved to find the update coefficients that yield zero
displacement, velocity, and acceleration at the end of the third step:

Uns3 =0, tine3 =0, lins3 =0. (7.9.12)

Note that by plugging 7.9.9 into 7.9.10 to express u,+; in terms of Cy4, Cy, C,4, and 7.9.10 into 7.9.11 to
express u,., in terms of Cy4, C,, C,, the equations become non-linear in the unknown coefficients
Cy4,C,, C,. This solution yields the coefficients in equation 7.9.13:

3 1 1
= Co=3. Ca=rc (7.9.13)

Ca = 2’ 16

226

When the update coeflicients are used to set a target constraint violation at the next step, then for any initial
conditions the constraint will reach total equilibrium after three Newmark beta time steps. Once this
equilibrium is reached, the target displacement for the constraint becomes zero and for all future steps the
constraint is a standard homogeneous constraint. Two examples of the equations of motion utilizing the
constraint update coefficients are given in figures 7-6 and 7-7.

Disp
500 -
400

300

200

100 -
L L L L L Step
1 2 3 4 5
Figure 7-6. — Equilibration from u4 = 100 up = 500.
Disp
1500 -
1000|
500 |
L L L L L Step
1 2 3 4 5

Figure 7-7. — Equilibration from 4 =200 ug = 700 ti4 = —200 sip = 1600 ii4 = —1000 iigp = 400.

Implementation. The user interface is described in [116] in the General Commands chapter, GDSW
section, especially in the Troubleshooting subsection. A few more detailed comments on contact
enforcement are provided here.

In Sierra SD node-face tied contact, rigid elements, RBE3s, MPC equations introduce linear constraint
equations to the linear system. In the GDSW linear solver linear constraint equations are segregated into
Type 1 constraints and Type 2 constraints. Type 1 constraints are constraints where the number of terms in
the constraint equation is less than a threshold (the default is 250). For example, a tied contact node
constrained to the interior of a QUAD4 face would have 5 terms (1 for the node and 4 for the nodes of the
face). Rigid elements like RBE2s also have a small number of terms and are thus Type 1 constraints.

227

Type 1 constraints are directly eliminated in GDSW prior to solving the linear system. This reduces the
total number of equations to solve by the number of Type 1 constraints.

Type 2 constraints typically occur when RBE3 elements are used. RBE3 elements are "averaging"
constraint equations used as a modeling convenience to distribute a load from a node to a larger surface.
For example, one may like to connect a concentrated mass "uniformly" to the top of a cylindrical surface.
An RBES3 element will introduce 6 or fewer constraint equations, but each constraint equation can have a
whole bunch of terms proportional to the number of nodes on the "surface". Applying the constraint
elimination algorithm used for Type 1 constraints to Type 2 constraints may introduce large dense blocks in
the coefficient matrix. This increases the memory required to store the matrix and the factorizations of
subdomain matrices. The current algorithm in GDSW for handling Type 2 constraints avoids potentially
large increases in memory by requiring all constraints to be of Type 1.

Users may change it by setting max_numterm_C1 in the GDSW solver block. The big benefit of ensuring
that all constraints are Type 1 is that the rate of convergence for the iterative solves is much higher.

7.10. Spot Welds

Spot Welds in Sierra/SD are defined as node-face connections between dissimilar meshes with user defined
stiffnesses in the normal and tangential directions of the face.

Conceptually, spot welds can be represented by a 3-DOF linear spring attaching the constrained node at one
end to a node-face contact MPC at the other. In practice however, we represent spot welds using 9-node
quad elements which are exactly equivalent.

Element Matrices. We currently only define stiffness matrices for spot welds, but damping may be
possible in the future.

Each 27-by-27 spot weld stiffness matrix is defined as:

[Kelem] = [Ceqn] [Kspring] [Ceqn]T (7101)

Where Cegp is a 27-by-3 set of node-face contact constraints, and Ky ,ing is the 3-by-3 spring stiffness
matrix in the global coordinate system.

Given the user defined normal(K,,) and tangential(K;) stiffnesses, K ,ing is defined as:
K,

[Kspring] = [R] K, [R]” (7.10.2)
Ky

Where the rotation matrix R is chosen such that the local z axis(Z) is parallel to the normal vector of the
constrained face(#).

For non-planar faces, the normal vector 7 is evaluated at a point defined by projecting node 9 onto the
contact face. The projection process is done by DASH during setup.

228

7.10.1. An element block of possibly degenerate quad9 elements

The ordering of quad 9 vertices shown in Figure 7-8 means that a spot weld assigns a quadrilateral to the
first 8 quad nodes, with the dependent node last. A contact search may find triangles with 3 or 6 nodes, and
quadrilaterals with 4 and 8 nodes. The element block consists only of quad9s, with varying repeated nodes
depending on the number of nodes in the face. The repeated nodes always come from the face.

4 7 3
L L] $
9
g ® ® L B3
L2 -]
1 5 2
Quad9

Figure 7-8. — Quad9 Element Topology.

7.10.2. Stiffness Per Unit Area

The user can build spot welds with either a constant stiffness at every node, or stiffness per unit area. When
specifying stiffness per unit area, the area is evaluated on the surface owning the constrained nodes, not the
constrained faces. This preserves solution convergence with mesh refinement.

229

This page intentionally left blank.

230

8. OUTPUT

8.1. L, Projection of Gauss Point Stresses

The purpose of this chapter is to provide some background material on how nodal stress projection
calculations are performed in Sierra/SD. The first part provides a concise description of the L, projection,
which involves solving a least squares problem, while the second part deals more with implementation
details.

Given a square integrable stress function « and a finite element function uj, € Up, the stress projection
problem is to find the u#; which minimizes

G un) = /Qwh W) dx = (up — , up -),

where Q is the domain for the problem and the inner product of two square integrable functions f and g is
defined as

U®=me

For our purposes, Uy, is associated with low-order elements such as the HEXS, TET4, and WEDGE®6.
Minimization of G (uy,) gives the optimality conditions

(I/th - u,vh) =0 forall vy € Uy,

which is equivalent to
(uh, Vh) = (u, Vh) for all vy € Uy.

An interesting point to mention is that the stress u is known only at Gauss points or element centroids.
Thus, the inner product should be viewed as an approximation that is obtained in practice using numerical
integration. As we show in the following development, finding uy, is equivalent to solving the linear
system

Ma=>b,

where M is the assembled finite element mass matrix for unit density, a is a vector of nodal stresses, and b
is the assembled finite element load vector.

The domain for the problem is given by Q = Ufi 1 i, where €; is the domain of finite element i. A finite
element function defined over Q can be expressed as

N

un(x) = Y a;;(x) = a’ p(x),
j=1
where x denotes spatial position, N is the number of finite element nodes, a; is the value at node j, ¢;(x) is

the shape function for node j, and

ai #1(x)
e a:2 e = ¢2:(X)
an ¢ (x)

231

Our goal is to determine the nodal values in @ which minimize the functional

K
G(a) /Q (n(x) - u(x))? dx Z‘ /Q) () 8.11)
Within each Q;,
Ni
un(x) =)" aindin(x) = (Ria)" (Rig(x), (8.1.2)
k=1

where N; is the number of nodes for element i, a; are nodal values for element i, ¢;; (x) are shape
functions for element 7, and the superscript 7' denotes transpose. Further, R;a and R;¢(x) select nodal
values and shape functions from a and ¢(x), respectively, for element i. Notice the number of rows in R; is
N; and the number of columns is the total number of nodes N. In addition, each row of R; has a single
nonzero entry of 1.

Substituting (8.1.2) into (8.1.1), we find

i=1

i=1

K K
G(a)=a" (Z RiTMiRi) a-2a" Z Ribi+c, (8.1.3)

where

MiZ/Qi Rip(x)¢p(x)"RT dx, bi:'/g;i Ri¢(x)u(x) dx, C:/Q“(x)“(x) dx.

Notice that M; is the unit density mass matrix for element i and b; is the load vector for element i, which
depends on u(x). The expression for G in (8.1.3) can be written succinctly as

G(a)=a"Ma-2a"b +c,

where

K K
M= RIMR;, b= Rlb.
i=1 i=1

Notice that M and b are the assembled finite element mass matrix and load vector, respectively.
Minimization of G with respect to a then gives us

Ma=0>,

which can be solved for the vector of nodal values a.

For our stress projection calculations, we currently obtain the element mass matrix M; using the same
numerical integration rule as for the element stiffness matrix of the higher-order element. Projection of
HEXS centroid stresses is an exception where the integration rule for the mass matrix is the same as the
integration rule for the stiffness matrix of the HEXS element. In contrast, the element load vector b; is
obtained using an integration rule consistent with the number of locations in Q; where u(x) is available.
These two integration rules may be different, as is the case for HEXS8 elements where only a single point
integration rule is used for b;.

We refer the interested reader to a more comprehensive discussion of this topic in.'%?

232

INDEX

accuracy
null space, 57

added mass, 114

algorithms
fast modal freqeunce response, 43
fast modal transient, 42
modal transient, 41, 42

angular acceleration, 188

angular velocity, 188

anisotropy, 140

complex modes, 45
viscoelasticity, 46
viscofreq, 47

component mode synthesis, 54

constraint transformations, 207

coordinate frames, 23

coordinate systems, 23

correction of matrices, 57

Craig-Bampton reduction, 54
sensitivity, 59

distributed damping, 73
Iwan model, 73
modal Masing, 73

DOF, 15

DOF Set
Analysis-set, 18
Assembly-set, 17
Common-set, 17
full-set, 17
G-set, 18
M-set, 17
S-set, 17
Solution-set, 18
Structural-set, 17

eigen, 44

eigenvalue problem, 44
ARPACK, 44
buckling, 49
error estimation, 61

233

element residual method, 71
explicit, 62
quantity of interest, 71
Lanczos, 44
quadratic, 103
structural acoustics, 103
wet mode, 114
element
acoustic, 22
Allman, 143
beam?2, 146
gap, 152
geometric stiffness, 132, 188, 191
hex20, 136, 138
hex8, 132
Hexshell, 140
integration points, 136
matrix correction, 57, 127
membrane, 141
Nbeam, 147
nquad, 149
offset, 145
rigid, 153
rbar, 154
RBES3, 155
Rrod, 153
selective integration, 128
spring, 151
superelement, 22, 54, 75, 152
tet10, 136, 138
tria3, 145
tria6, 143
truss, 151
wedgel$5, 136
wedge6, 128, 138
Euler angles see Rotational DOFs, 19

Farhat, Charbel, 13

fatigue, 76

Felippa, Carlos, 13, 140, 145
filterRBM, 31

frequency response, 43
Iwan model see distributed damping, 73

Lighthill tensor, 187
Lighthill’s analogy, 187
load, 201
consistent, 201

mass lumping, 127
mass properties, 21
element, 21
matrix dimensions, 15
modal acceleration method, 37
modal Masing see distributed damping, 73
modal transient, 40, 42
mortar methods, 222
multipoint constraints, 207

Newmark beta, 25, 122
Ng, Esmond, 13
null space correction, 58

perfectly matched layers, 175

quaternions, 20

234

quaternions see Rotational DOFs, 20

relative_disp, 35
residual_vectors, 113
nrbms, 113
Rotational DOFs, 19

Euler angles, 19
quaternions, 20
rotational frame, 188

sa_eigen, 103, 108

scattering, 91

Sierra transfer, 53

single point constraint, 17

solution spaces, 15

spinning structure, 188

stress projections, 231

structural acoustics
eigenvalue, 103

SuperLU, 14

time integration, 122

viscoelasticity, 47, 122

BIBLIOGRAPHY

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

M. Ainsworth and J. T. Oden. A Posteriori Error Estimation in Finite Element Analysis. 1st ed.
John Wiley & Sons, Inc., 2000 (cit. on p. 61).

D. J. Allman. “A Compatible Triangular Element Including Vertex Rotations for Plane Elasticity
Problems”. In: Comput. and Struct. 19.1-2 (1996), pp. 1-8 (cit. on pp. 143, 144).

A. Alonzo et al. “An Adaptive Finite Element Scheme to Solve Fluid-Structure Vibration Problems
on Non-Matching Grids”. In: Computing and Visualization in Science 4 (2001), pp. 67-78 (cit. on
p- 82).

Kenneth F. Alvin et al. “Incorporation of Sensitivity Analysis into a Scalable Massively Parallel
Structural Dynamics FEM code”. In: Presented at the 5th U.S. Congress on Computational
Mechanics. Boulder, CO, Aug. 1999 (cit. on p. 60).

Kenneth F. Alvin et al. “Membrane triangles with corner drilling freedoms — I. The EFF element”.
In: Finite Elements in Analysis and Design 12 (1992), pp. 163—187 (cit. on p. 145).

M. Aminpour, J. Ransom, and S. McCleary. “A coupled analysis method for structures with
independently modelled finite element subdomains”. In: Int. J. Numer. Meth. Engng. 38 (1995),
pp- 3695-3718 (cit. on p. 82).

Anonymous. Abaqus Theory Manual. Dassault Systémes, 2011 (cit. on pp. 141, 142).

Peter Arbenz et al. “A Comparison of Eigensolvers for Large-scale 3D Modal Analysis using
AMG-Preconditioned Iterative Methods”. In: Int. J. Numer. Meth. Engng. 1 (2003), pp. 1-21
(cit. on p. 44).

R.J. Astley. “Infinite Elements Wave Problems: A Review of Current Formulations and an
Assessment of Accuracy”. In: Int. J. Numer. Meth. Engng. 49 (2000), pp. 951-976 (cit. on p. 166).

R. J. Astley. “Transient Wave Envelope Elements for Wave Problems”. In: Journal of Sound and
Vibration 192.1 (1996), pp. 245-261 (cit. on pp. 166, 169, 171).

R.J. Astley and J. P. Coyette. “Conditioning of Infinite Element Schemes for Wave Problems”. In:
Communications in Numerical Methods in Engineering 17 (2001), pp. 31-41 (cit. on p. 171).

R. J. Astley, J. P. Coyette, and L. Cremers. “Three dimensional Wave Envelope Elements of
Variable Order for Acoustic Radiation and Scattering Part II Formulation in the Time Domain”. In:
Journal of the Acoustical Society of America 103.1 (1998), pp. 64-72 (cit. on p. 166).

R.J. Astley and J. A. Hamilton. “The Stability of Infinite Element Schemes for Transient Wave
Problems”. In: Computer Meth. in Appl. Mech. Eng. 195 (2006), pp. 3553-3571 (cit. on p. 169).

R. J. Astley, G. J. Macaulay, and J. P. Coyette. “Mapped Wave Envelope Elements for Acoustical
Radiation and Scattering”. In: Journal of Sound and Vibration 170.1 (1994), pp. 97-118 (cit. on
p. 169).

R. J. Astley et al. “Three dimensional Wave Envelope Elements of Variable Order for Acoustic
Radiation and Scattering Part I Formulation in the Frequency Domain”. In: Journal of the
Acoustical Society of America 103.1 (1998), pp. 49—63 (cit. on pp. 166, 171).

235

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

B. A. Auld. Acoustic Fields and Waves in Solids, Second Edition. Vol. 1. Robert E. Krieger
Publishing Company, 1990 (cit. on p. 121).

M. Baruch and Y. Zemel. “Mass Conservation in the Identification of Space Structures”. In: AIAA
Journal 1239 (1989). ASME, ASCE, AHS, and ASC, Structures, Structural Dynamics and
Materials Conference, pp. 710-712 (cit. on p. 21).

Jean-Louis Batoz, Klaus-Jurgen Bathe, and Lee-Wing Ho. “A Study of Three-Node Triangular
Plate Bending Elements”. In: Int. J. Numer. Meth. Engng. 15 (1980), pp. 1771-1812 (cit. on
pp. 143, 144).

T. Belytschko, W. K. Liu, and B. Moran. Nonlinear Finite Elements for Continua and Structures.
1st ed. John Wiley & Sons, 2000 (cit. on pp. 28, 29, 141).

T. Belytschko, CS Tsay, and WK Liu. “A stabilization matrix for the bilinear Mindlin plate
element”. In: Computer Meth. in Appl. Mech. Eng. 29.3 (1981), pp. 313-327 (cit. on p. 150).

A. Bermudez, P. Gamallo, and R. Rodriguez. “A Hexahedral Face Element for Elastoacoustic
Vibration Problems”. In: JASA 109.1 (2001), pp. 422—425 (cit. on p. 82).

C. Bernardi, Y. Maday, and A. T. Patera. “A New Nonconforming Approach to Domain
Decomposition: the Mortar Element Method”. In: Nonlinear Partial Differential Equations and
Their Applications. Collége de France Seminar, Vol XI (Paris, 1989-1991). vol 299 of Pitman Res.
Math. Ser., Longman Sci. Tech., Harlow, 1994, pp. 13-51 (cit. on p. 223).

C. Bernardi and R. Verfurth. “Adaptive finite element methods for elliptic equations with
non-smoooth coefficients”. In: Numerische Mathematik 85 (2000), pp. 579-608 (cit. on p. 65).

Robert D. Blevins. Formulas for Natural Frequency and Mode Shape. Malabar, FL, USA: Krieger,
1984 (cit. on pp. 146, 148).

M. Brinkmeier et al. “A Finite Element Approach for the Simulation of Tire Rolling Noise”. In:
Journal of Sound and Vibration 309.1-2 (2008), pp. 20-39 (cit. on p. 108).

K. H. Brown et al. ACME: Algorithms for Contact in a Multiphysics Environment. Tech. rep.
SAND2004-5486. Sandia National Laboratories, Oct. 2004 (cit. on p. 85).

Gregory Bunting. Strong and Weak Scaling of the Sierra/SD Eigenvector Problem to a Billion
Degrees of Freedom. Tech. rep. SAND 2019-1217. Sandia National Laboratories, 2019 (cit. on
p. 44).

Gregory Bunting, C.B. Smith, and T. Walsh. Massively Parallel Capability in Sierra/SD for
Vibration with Piezoelectrics. Tech. rep. SAND2021-2373. PO Box 5800, Albuquerque, NM
87185-5800: Sandia National Laboratories, 2021 (cit. on p. 76).

Gregory Bunting et al. “Parallel Ellipsoidal Perfectly Matched Layers for Acoustic Helmholtz
Problems on Exterior Domains”. In: Journal of Computational Acoustics (2018) (cit. on p. 175).

D. S. Burnett and R. L. Holford. “An Ellipsoidal Acoustic Infinite Element”. In: Computer Meth. in
Appl. Mech. Eng. 164.1-2 (1998), pp. 49-76 (cit. on p. 180).

X. Cai and A. Odegard. “Parallel Simulation of 3D Nonlinear Acoustic Fields on a Linux Cluster”.
In: IEEE International Conference on Cluster Computing. 2000 (cit. on pp. 94, 95, 101, 103).

K. Castor et al. “Long-Range Propagation of Finite-Amplitude Acoustic Waves in an Ocean
Waveguide”. In: JASA 116.4 (2004), pp. 2004-2010 (cit. on p. 94).

H. C. Chen and R. L. Taylor. “Vibration Analysis of Fluid-Solid Systems Using a Finite Element
Displacement Formulation™. In: Int. J. Numer. Meth. Engng. 29 (1990), pp. 683—698 (cit. on p. 94).

236

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]
[48]
[49]

[50]

[51]

[52]

J. Chung and G. M. Hulbert. “A Time Integration Algorithm for Structural Dynamics with
Improved Numerical Dissipation - The Generalized Alpha Method”. In: JAM 60.2 (1993),
pp. 371-375 (cit. on pp. 88, 98).

J. L. Cippola and M. J. Butler. “Infinite Elements in the Time Domain using a Prolate Spheroidal
Multipole Expansion”. In: Int. J. Numer. Meth. Engng. 43 (1998), pp. 889-908 (cit. on p. 166).

F. Collino and P. Monk. “The Perfectly Matched Layer in Curvilinear Coordinates”. In: SIAM J.
Sci. Comp. 19.6 (1998), pp. 2061-2090 (cit. on p. 179).

R. D. Cook and M. E. Plesha D. S. Malkus. Concepts and Applications of Finite Element Analysis.
3rd. John Wiley & Sons, 1989 (cit. on pp. 49, 87, 88, 124, 144, 146, 150, 151, 201, 221).

G. M. Corcos. “Resolution of Pressure in Turbulence”. In: J. Acoustical Society of America 35.2
(1963), pp. 192-199 (cit. on p. 195).

R. R. Craig. Structural Dynamics: An Introduction to Computer Methods. John Wiley & Sons, 1981
(cit. on pp. 38, 54).

Chandler Davis and W. M. Kahan. “The Rotation of Eigenvectors by a Perturbation. III””. In: SIAM
J. Numer. Anal. 7.1 (1970), pp. 1-46 (cit. on p. 57).

David M. Day and Tim Walsh. Damped Structural Dynamics. Tech. rep. SAND2007-2072. Sandia
National Laboratories, 2007 (cit. on pp. 46, 47).

Lawrence J. DeChant and Justin A. Smith. Band Limited Correlation Estimates for A(éw/U) and
B(nw/U) Using Beresh et. al. 2013 Data Sets. Tech. rep. SAND2014-1123. Sandia National
Laboratories, 2014 (cit. on p. 195).

L. Demkowicz. Computing with hp-Adaptive Finite Elements, Volume 1: One and Two Dimensional
Elliptic and Maxwell Problems. Chapman and Hall, CRC, 2007 (cit. on p. 177).

L. Demkowicz and J. Shen. “A Few New (?) Facts about Infinite Elements”. In: Computer Meth. in
Appl. Mech. Eng. 195 (2006), pp. 3572-3590 (cit. on p. 171).

L. Demkowicz et al. Computing with hp-Adaptive Finite Elements, Volume 2: Frontiers, Three
Dimensional Elliptic and Maxwell Problems with Applications. Chapman and Hall, CRC, 2008
(cit. on p. 177).

J. M. Dickens, J. M. Nagawa, and M. J. Wittbrodt. “A critique of mode acceleration and modal
truncation augmentation methods for modal response analysis”. In: Comput. and Struct. 62.6
(1997), pp. 985-998 (cit. on p. 113).

Clark R. Dohrmann. GDSW 101. May 2008 (cit. on pp. 200, 219).
Clark R. Dohrmann. Some Notes on the 3-Level GDSW Solver. Aug. 2005 (cit. on p. 219).

Clark R. Dohrmann, S. Key, and M. Heinstein. “A Method for Connecting Dissimilar Finite
Element Meshes in Two Dimensions”. In: Int. J. Numer. Meth. Engng. 48 (2000), pp. 655-678
(cit. on p. 87).

Clark R. Dohrmann, S. Key, and M. Heinstein. “Methods for Connecting Dissimilar
Three-Dimensional Finite Element Meshes”. In: Int. J. Numer. Meth. Engng. 47 (2000),
pp. 1057-1080 (cit. on pp. 82, 87).

D. Dreyer and O. von Estorff. “Improved Conditioning of Infinite Elements for Exterior Acoustics”.
In: Int. J. Numer. Meth. Engng. 58 (2003), pp. 933-953 (cit. on p. 171).

R. Duran, C. Padra, and R. Rodriguez. “A Posteriori Error Estimates for the Finite Element
Approximation of Eigenvalue Problems”. In: Mathematical Models and Methods in Applied
Sciences 13.8 (2003), pp. 1219-1229 (cit. on p. 68).

237

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

M. S. Eldred, V. B. Venkayya, and W. J. Anderson. “Mode tracking issues in structural
optimization”. In: AIAA Journal 33.10 (1995), pp. 1926-1933 (cit. on p. 59).

M. Endo et al. “Flexible Vibration of a Thin Rotating Ring”. In: Journal of Sound and Vibration
92.2 (1984), pp. 261-272 (cit. on pp. 103, 189).

B. O. Enflo and C. M. Hedberg. Theory of Nonlinear Acoustics in Fluids. Kluwer Academic
Publishers, 2002 (cit. on pp. 94, 96).

A. Ertas, J. T. Krafcik, and S. Ekwaro-Osire. “Explicit Formulation of an Anisotropic Allman/DKT
3-Node Thin Triangular Flat Shell Elements”. In: Composite Material Technology 37 (1991),
pp- 249-255 (cit. on p. 144).

G. C. Everstine. “Finite Element Formulations of Structural Acoustics Problems”. In: Comput. and
Struct. 65.3 (1997), pp. 307-321 (cit. on pp. 81, 165).

C. Farhat and P. Geuzaine. “Design and Analysis of Robust ALE Time-Integrators for the Solution
of Unsteady Flow Problems on Moving Grids”. In: Computer Meth. in Appl. Mech. Eng. 193
(2004), pp. 4073—-4095 (cit. on p. 95).

C. Farhat, P. Geuzaine, and C. Grandmont. “The Discrete Geometric Conservation Law and the
Nonlinear Stability of ALE Schemes for the Solution of Flow Problems on Moving Grids”. In: J.
Comp. Phys. 174 (2001), pp. 669—694 (cit. on p. 95).

C. A. Felippa. The SS8 Solid-Shell Element: Formulation and a Mathematica Implementation.
Tech. rep. CU-CAS-02-03. Univ. Colo. at Boulder, 2002 (cit. on p. 140).

Carlos A. Felippa and Scott Alexander. “Membrane triangles with corner drilling freedoms — I11.
Implementation and performance evaluation”. In: Finite Elements in Analysis and Design 12
(1992), pp. 203-239 (cit. on p. 145).

Carlos A. Felippa and Carmelo Militello. “Membrane triangles with corner drilling freedoms — I1.
The ANDES element”. In: Finite Elements in Analysis and Design 12 (1992), pp. 189-201 (cit. on
p. 145).

D.P. Flanagan and T. Belytschko. “A Uniform Strain Hexahedron and Quadrilateral with Orthogonal
Hourglass Control”. In: Int. J. Numer. Meth. Engng. 17 (1981). doi, pp. 679-706 (cit. on p. 131).

D.P. Flanagan and T. Belytschko. “Simultaneous relaxation in structural dynamics”. In: Journal of
the Engineering Mechanics Division, ASCE 107 (1981), pp. 1039-1055 (cit. on p. 131).

B. Flemisch, M. Kaltenbacher, and B. Wohlmuth. “Elasto-acoustic and acoustic-acoustic coupling
on non-matching grids”. In: Int. J. Numer. Meth. Engng. 67.13 (2006), pp. 1791-1810 (cit. on p. 82).

R. L Fox and M. P. Kapoor. “Rate of Change of Eigenvalues and Eigenvectors”. In: AIAA Journal 6
(1968), pp. 24262429 (cit. on p. 59).

F. Fuentes et al. “Orientation embedded high order shape functions for the exact sequence elements
of all shapes”. In: Computers and Mathematics with Applications 70.1 (2015), pp. 353—-458 (cit. on

p. 14).
M. J. Gagen. “Novel Acoustic Sources from Squeezed Cavities in Car Tires”. In: JASA 106.2
(1999), pp. 794-801 (cit. on p. 94).

K. Gerdes. “A Review of Infinite Element Methods for Exterior Helmholtz Problems”. In: Journal
of Computational Acoustics 8 (1 2000), pp. 43—62 (cit. on p. 166).

Mircea Grigoriu. Stochastic Calculus, Applications in Science and Engineering. Birkhauser, 2002
(cit. on p. 196).

238

http://dx.doi.org/10.1002/nme.1620170504

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]
[85]

[86]
[87]

[83]

[89]

M. F. Hamilton and D. T. Blackstock. Nonlinear Acoustics. Academic Press, 1998 (cit. on
pp- 94-97).

I. Harari et al. “Recent Developments in Finite Element Methods for Structural Acoustics”. In:
Archives of Computational Methods in Engineering 3 (1996), pp. 132-311 (cit. on p. 81).

Bjgrn Haugen. “Buckling and Stability Problems for Thin Shell Structures Using High Performance
Finite Elements”. PhD thesis. Boulder: University of Colorado at Boulder, 1988 (cit. on p. 53).

V. Heuveline and R. Rannacher. “A Posteriori Error Control for Finite Element Approximations of
Elliptic Eigenvalue Problems”. In: Advances in Computational Mathematics 15 (2001),
pp- 107-138 (cit. on pp. 61, 62).

E. Hinton, T. Rock, and 0. C. Zienkiewicz. “A note on mass lumping and related processes in the
finite element method”. In: Earthquake Engineering & Structural Dynamics 4 (1976), pp. 245-249
(cit. on p. 127).

J. Hoffelner, H. Landes, and R. Lerch. “Calculation of Acoustic Streaming Velocity and Radiation
Force Based on Finite Element Simulations of Nonlinear Wave Propagation”. In: Proceedings of
IEEE Ultrasonics Symposium 1 (2000), pp. 585-588 (cit. on p. 95).

J. Hoffelner et al. “Finite Element Simulation of Nonlinear Wave Propagation in Thermoviscous
Fluids Including Dissipation”. In: IEEE Transactions on Ultrasonics, Ferroelectrics, and
Frequency Control 48.3 (2001), pp. 779-786 (cit. on pp. 94, 95, 101).

Thomas J. R. Hughes. The Finite Element Method—Linear Static and Dynamic Finite Element
Analysis. Prentice-Hall, Inc, 1987 (cit. on pp. 131, 138).

A. Ibrahimbegovic and E. L. Wilson. “A Modified Method of Incompatible Modes”. In:
Communications in Applied Numerical Methods 7 (1991), pp. 187-194 (cit. on pp. 132—-134).

Y. Jinyun. “Symmetric Gaussian quadrature formulae for tetrahedral regions”. In: Computer Meth.
in Appl. Mech. Eng. 43 (1984) (cit. on p. 138).

Steven G Johnson. “Notes on Perfectly Matched Layers”. In: Lecture notes, Massachusetts Institute
of Technology (2008) (cit. on p. 175).

Y. Kagawa et al. “Finite Element Simulation of Nonlinear Sound Wave Propagation”. In: Journal of
Sound and Vibration 154 (1992), pp. 125-145 (cit. on p. 95).

T. Kane and D. Levinson. Dynamics: Theory and Applications. The Internet-First University Press,
2005. urL: http://dspace.library.cornell.edu/handle/1813/62 (cit. on pp. 189, 190).

Samuel W. Key. personal communication. Dec. 2003 (cit. on p. 132).

Tae Soo Kim and Yoo Young Kim. “Mac-based mode-tracking in structural topology
optimization”. In: Comput. and Struct. 74 (2000), pp. 375-383 (cit. on p. 59).

Kinsler et al. Fundamentals of Acoustics. John Wiley & Sons, 1982 (cit. on p. 173).

V. P. Kuznetsov. “Equations of Nonlinear Acoustics”. In: Sov. Phys. Acoust. 16 (1971), pp. 467-470
(cit. on pp. 94, 96).

G. F. Lang. “Demystifying Complex Modes”. In: Sound and Vibration Magazine 28.8 (1989),

pp- 3640 (cit. on p. 106).

Matts Larsen. “A Posteriori and a Priori Error Analysis for Finite Element Approximations of
Self-Adjoint Elliptic Eigenvalue Problems”. In: SIAM J. Numer. Anal. 38.2 (2000), pp. 608—625
(cit. on pp. 61-63).

239

http://dspace.library.cornell.edu/handle/1813/62

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[971
[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

R. Laurenson. “Modal Analysis of Rotating Flexible Structures”. In: AIAA Journal 14.10 (1976),
pp. 14441450 (cit. on p. 189).

T. Laursen and M. Heinstein. “Consistent mesh tying methods for topologically distinct discretized
surfaces in nonlinear solid mechanics”. In: Int. J. Numer. Meth. Engng. 57 (2003), pp. 1197-1242
(cit. on pp. 82, 87).

R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users’ Guide. Philadelphia, PA, USA:
SIAM, 1998 (cit. on p. 44).

Michael J Lighthill. “On sound generated aerodynamically. I. General theory”. In: Proceedings of
the Royal Society of London A: Mathematical, Physical and Engineering Sciences 211.1107 (1952),
pp. 564-587 (cit. on p. 187).

Abimael F.D. Loula, Thomas J.R. Hughes, and Leopoldo P. Franca. “Petrov-Galerkin formulations
of the Timoshenko beam problem”. In: Computer Meth. in Appl. Mech. Eng. 63.2 (1987),
pp- 115-132. 1ssn: 0045-7825 (cit. on p. 147).

R. H. MacNeal. Finite Elements: Their Design and Performance. Marcel Dekker, 1994 (cit. on
p- 132).

R. H. MacNeal. The NASTRAN Theoretical Manual. NASTRAN Theoretical Manual was first
published by NASA through COSMIC. NASA no longer maintains NASTRAN and COSMIC no
longer exists. Various vendors reproduce this manual with permission from NASA. None, 1972
(cit. on p. 147).

G. Mahan. Applied Mathematics. Kluwer Academic Publishers, 2002 (cit. on p. 106).

S. Makarov and M. Ochmann. “Nonlinear and Thermoviscous Phenomena in Acoustics, Part I11”.
In: Acustica 83.2 (1997), pp. 197-222 (cit. on pp. 96, 97, 101).

J. Mandel. “An Iterative Substructuring Method for Coupled Fluid-Solid Acoustic Problems,” in: J.
Comp. Phys. 177 (2002), pp. 95-116 (cit. on p. 82).

P. J. Matuszyk and L. Demkowicz. “Parametric Finite Elements, Exact Sequences, and Perfectly
Matched Layers”. In: Computational Mechanics 51.1 (2013), pp. 35-45 (cit. on pp. 178, 179).

Ch Michler et al. “Improving the performance of Perfectly Matched Layers by means of
hp-adaptivity”. In: Numerical Methods for Partial Differential Equations 23.4 (2007), pp. 832-858
(cit. on p. 176).

Alejandro Mota et al. “Lie-group interpolation and variational recovery for internal variables”. In:
Computational Mechanics 52 (2013), pp. 1281-1299 (cit. on p. 232).

Matjaz Mrsnik, Janko Slavi¢, and Miha Botezar. “Frequency-domain methods for a
vibration-fatigue-life estimation - Application to real data”. In: International Journal of Fatigue 47
(2013), pp. 8-17 (cit. on p. 78).

MSC support. URL: http://support.mscsoftware.com/ (cit. on p. 157).

K. Naugolnykh and L. Ostrovsky. Nonlinear Wave Processes in Acoustics. Cambridge University
Press, 1998 (cit. on pp. 94, 96).

R. B. Nelson. “Simplified Calculation of Eigenvector Derivatives”. In: AIAA Journal 14.9 (1976),
pp- 1201-1205 (cit. on pp. 59, 60).

0. O. Ochoa and J. N. Reddy. Finite Element Analysis of Composite Laminates. Kluwer Academic
Publishers, 1992 (cit. on p. 150).

240

http://support.mscsoftware.com/

[108]

[109]

[110]

[111]
[112]
[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

J. T. Oden and S. Prudhomme. “Error Estimation of Eigenfrequencies for Elasticity and Shell
Problems”. In: Mathematical Models and Methods in Applied Sciences 13.3 (2003), pp. 323-344
(cit. on pp. 61, 71, 73).

M. A. Hamdi Y. Ousset and G. Verchery. “A Displacement Method for the Analysis of Coupled
Fluid-Structure Systems”. In: Int. J. Numer. Meth. Engng. 13 (1978), pp. 139-150 (cit. on p. 94).

A. D. Pierce. Acoustics: An Introduction to Its Physical Principles and Applications. ASA, 1989
(cit. on pp. 81, 173).

Serge Prudhomme. personal communication. Mar. 2004 (cit. on p. 71).
J. S. Przemieniecki. Theory Of Matrix Structural Analysis. Dover Publications, 1968 (cit. on p. 147).

Michael A. Puso. “A 3D mortar method for solid mechanics”. In: Int. J. Numer. Meth. Engng. 59
(2004), pp. 315-336 (cit. on pp. 82, 87, 89, 224).

J. N. Reddy. An Introduction to the Finite Element Method. 1st ed. McGraw Hill, 1984 (cit. on
pp. 149-151).

Garth Reese, Rich Field, and Daniel J. Segalman. “A Tutorial on Design Analysis Using von Mises
Stress in Random Vibration Environments”. In: Shock and Vibration. Digest 32.6 (2000) (cit. on
p. 33).

S D Team. SD — User’s Manual. Tech. rep. SAND2021-12518. living document with more recent
versions. PO Box 5800, Albuquerque, NM 87185-5800: Sandia National Laboratories, 2022 (cit. on
p. 227).

Y. Saad. Numerical Methods for Large Eigenvalue Problems. Manchester University Press UK,
1992 (cit. on p. 106).

Daniel J. Segalman. A Four-Parameter Iwan Model for Lap-Type Joints. Tech. rep. SAND
2002-3828. Sandia National Laboratories, Nov. 2002 (cit. on p. 74).

Daniel J. Segalman. “A Four-Parameter Iwan Model for Lap-Type Joints”. In: Journal of Applied
Mechanics 72 (Sept. 2005), pp. 752-760 (cit. on p. 74).

Daniel J. Segalman and Clark R. Dohrmann. A Method for Calculating the Dynamics of Rotating
Flexible Structures- Part II: Example Calculations. Tech. rep. SAND93-1768J. PO Box 5800,
Albuquerque, NM 87185-5800: Sandia National Laboratories, 1993 (cit. on p. 189).

Daniel J. Segalman and Clark R. Dohrmann. Dynamics of Rotating Flexible Structures by a Method
of Quadratic Modes. Tech. rep. SAND90-2737. PO Box 5800, Albuquerque, NM 87185-5800:
Sandia National Laboratories, 1990 (cit. on p. 189).

J. L. Shirron and T. E. Giddings. “A Finite Element Model for Acoustic Scattering from Objects
Near a Fluid-Fluid Interface”. In: Computer Meth. in Appl. Mech. Eng. 196 (2006), pp. 279-288
(cit. on p. 179).

David O. Smallwood. “An Improved Recursive Formula for Calculating Shock Response Spectra”.
In: Shock and Vibration Bulletin 51.2 (1981), pp. 211-217 (cit. on p. 75).

David O. Smallwood. “An Improved Recursive Formula for Calculating Shock Response Spectra”.
In: Shock and Vibration Bulletin 56.1 (1986), pp. 285-287 (cit. on p. 75).

L. H. Soderholm. “On the Kuznetsov Equation and Higher Order Nonlinear Acoustics Equations”.
In: Proc. 15th International Symposium on Nonlinear Acoustics, Gongen 524.1 (2000),
pp- 133-136 (cit. on pp. 94, 96).

241

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

R. L. Taylor, P. J. Beresford, and E. L. Wilson. “A Non-conforming Element for Stress Analysis”.
In: Int. J. Numer. Meth. Engng. 10 (1976), pp. 1211-1219 (cit. on pp. 132, 133).

S D Team. SD Design Manual. Tech. rep. SAND2021-4312. Sandia National Laboratories, 2021
(cit. on p. 188).

D. Thompson, P. P. Pébay, and J. N. Jortner. An Exodus Il Specification for Handling Gauss Points.
Tech. rep. SAND2007-7169. Sandia National Laboratories, 2007 (cit. on p. 136).

F. Tisseur and Karl Meerbergen. “The Quadratic Eigenvalue Problem”. In: SIAM Rev. 43.2 (2001),
pp- 235-286 (cit. on pp. 105-107, 111).

C. Vanhille, C. Conde, and C. Campos-Pozuelo. “Finite Difference and Finite Volume Methods for
Nonlinear Standing Ultrasonic Waves in Fluid Media”. In: Ultrasonics 42 (2004), pp. 315-318
(cit. on p. 95).

E. L. Wilson and M. Khalvati. “Finite Elements for the Dynamic Analysis of Fluid-Solid System”.
In: Int. J. Numer. Meth. Engng. 19 (1983), pp. 1657-1668 (cit. on p. 94).

Paul H. Wirsching and Mark C. Light. “Fatigue under wide band random stresses”. In: Journal of
the Structural Division, ASCE 106.7 (1980), pp. 1593-1607 (cit. on p. 77).

Paul H. Wirsching, Thomas L. Paez, and Keith Ortiz. Random Vibrations: Theory and Practice.
Courier Corporation, 2006 (cit. on pp. 76, 210).

Barbara I. Wohlmuth. “A Mortar Finite Element Method Using Dual Spaces for the Lagrange
Multiplier”. In: SIAM J. Numer. Anal. 38.3 (2000), pp. 989-1012 (cit. on pp. 87, 89, 224).

Min Yu, Zhong-Sheng Liu, and Da-Jun Wang. “COMPARISON OF SEVERAL APPROXIMATE
MODAL METHODS FOR COMPUTING MODE SHAPE DERIVATIVES”. In: Comput. and
Struct. 62.2 (1996), pp. 301-393 (cit. on pp. 59, 60).

0. C. Zienkiewicz and R. L. Taylor. “The Finite Element Method”. In: 4th ed. Vol. 2. McGraw-Hill
Book Company Limited, 1991. Chap. 1, pp. 23-26 (cit. on p. 144).

242

DISTRIBUTION

Email—Internal

Name

Org.

Sandia Email Address

Technical Library

1911

sanddocs@sandia.gov

Hardcopy—Internal

Number of
Copies

Name

Org.

Mailstop

1

Technical Library

1911

0845

243

This page left blank

244

245

Sandia
National
Laboratories

Sandia National Laboratories is
a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of Sandia
LLC, a wholly owned subsidiary
of Honeywell International Inc.,
for the U.S. Department of
Energy’s National Nuclear
Security Administration under
contract DE-NA0003525.

	Introduction
	Matrix Dimensions: Terminology
	Rotational Degrees of Freedom
	Mass Properties
	Coordinate Systems

	Structural Solution Procedures
	Linear transient analysis
	Predictor Corrector Adjustment
	Prescribed Accelerations
	Nonlinear transient analysis

	Damping of Flexible Modes Only
	Random Vibration
	Algorithm
	Power Spectral Density
	Tensor Transformations of PSD
	RMS Output
	RMS Stress
	Matrix properties for RMS stress

	Modal Frequency Response Methods
	No Rigid Body Modes
	Rigid Body Modes
	Example

	Fast Modal Solutions
	Modal Solution Summary
	Parallel Fast Modal
	Determination of Modal Force

	Eigenvalue Problems
	Modal Analysis of Linearly Damped Structures
	Output File Format
	Some Back Ground
	Trust Regions and Real Modes
	ViscoFreq - Approximate Viscoelastic Response

	Linear Buckling
	Eigen Problem Methods for Buckling
	Buckling with Constraints
	Geometric Stiffness

	Component Mode Synthesis
	Reduction of superelement matrices
	Craig-Bampton sensitivity analysis

	Eigenvalue Sensitivity Analysis
	A posteriori error estimation for eigen analysis
	Preliminaries
	An explicit error estimator
	Error estimates for elasticity
	Explicit Estimator - Multiple Materials
	Explicit Estimator Summary
	Approach II - quantity of interest estimator

	Nonlinear Distributed Damping
	Subsystem Damping with Linear Damper

	Shock Response Spectra
	Superposition for superelement recovery
	Coupled Electro-Mechanical Physics
	High Cycle Fatigue and Damage
	Competing Damage Models

	Acoustics Solution Methods
	Derivation of Acoustic Wave Equation
	Coupled Structural Acoustics
	Discussion of Matching vs Non-Matching Meshes on Wet Surface
	The Coupled Equations and Their Discretizations

	Acoustic Scattering
	Frequency Domain scattering

	Nonlinear Acoustics
	Weak Formulations
	Spatial and Temporal Discretization
	Structural Coupling

	SA_eigen
	Quadratic Modal Superposition
	Diagonalization and Modal Superposition
	Theory for modal superposition with sa_eigen
	Discussion of Eigenvectors and Superposition
	Notes on Implementation
	Complex Eigenvector Orthogonalization

	Modal Augmentation with Residual Vectors
	Wet Modes or Added Mass
	Case I - matching meshes at wet interface
	Case II - mismatched meshes at wet interface

	Material
	Anisotropic Materials
	Stress Vectors
	Strain Energy and Orientation

	Viscoelastic Materials
	Equations of motion
	Constitutive equations
	Linear Representation of Velocity
	Midpoint Representation of Velocity

	Elements
	Corrections to Element Matrices
	Mass lumping
	Selective integration
	Derivation

	Integration of Isoparametric Solids
	Mean Quadrature with Selective Deviatoric Control
	Bubble Functions

	Quadratic isoparametric solids
	Shape functions and integration points

	Wedge Shape Functions
	Tet10
	Hex20 shape functions and gradients
	Shape Function Ordering
	Anisotropy

	Hexshell usage and limitations
	Membrane
	6 noded Triangle
	3 noded Triangle
	Shell Offset
	Beam2
	Nbeam
	Navy quadrilateral
	Truss
	Spring
	Superelements
	Gap
	Rigid Elements
	Rrod
	RBar
	RBE3

	MSC documentation of the NASTRAN RBE3 element
	Generation of unit weighting functions
	Selection of dependent dofs (Optional)
	Features for dimension independence

	Interpolation within an Element

	Boundary conditions and initial conditions
	Acoustic and Structural Acoustic
	Absorbing Boundaries
	Infinite Elements for Acoustics
	Computation of solution at far-field points
	Point sources
	Perfectly Matched Layers

	Waterline Determination
	Reference Frames
	Pressure at a Node
	Waterline Plane Specification
	Net Force and Moment Calculation

	Fluid Coupling through Lighthill's Tensor
	Analysis of Rotating Structures
	Formulation and Discretization

	Random Pressure Loading
	Specialization for Hypersonic Vehicles

	Removing Net Torques from Applied Loads
	Traction Loads
	Consistent Loads Calculations
	Elements with consistent loads
	Pressure Loading
	Shape Functions for Calculating Consistent Loads
	Shell Elements - consistent loads

	Solution of Singular Linear Systems

	Contact
	Multipoint Constraints
	Constraint Transformations in General Coordinate Systems
	Decoupling Constraint Equations
	Transformation of Stiffness Matrix
	Application to single point constraints
	Multi Point Constraints
	Transformation of Power Spectral Densities

	Orthogonality of MPC to Rigid Body Vectors
	Beam Example
	Offset Example
	Correct MPC Equations
	Orthogonalization of Incorrect MPCs
	Adding the same dof of new nodes
	Lofted node-face constraints
	Rotationally Invariant Spot Weld Constraints

	Constraints and infinite eigenvalues
	Sparsepak Contact Enforcement
	GDSW Contact Enforcement
	Tied Friction
	Mortar Methods
	Correction For Dynamic Constraint Equilibrium
	Spot Welds
	An element block of possibly degenerate quad9 elements
	Stiffness Per Unit Area

	Output
	L2 Projection of Gauss Point Stresses

	Index
	Bibliography
	Distribution

