

SANDIA REPORT

Printed February 12, 2024

Sandia
National
Laboratories

Sierra/SD – Its2Sierra – User's Manual – 5.18

Sierra Structural Dynamics Development Team

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: <http://www.osti.gov/scitech>

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: <https://classic.ntis.gov/help/order-methods>

ABSTRACT

The Integrated Tiger Series (ITS) generates a database containing energy deposition data. This data, when stored on an **Exodus** file, is not typically suitable for analysis within **Sierra Mechanics** for finite element analysis. The **its2sierra** tool maps data from the ITS database to the **Sierra** database.

This document provides information on the usage of **its2sierra**.

This page left blank

CONTENTS

1. Introduction	13
2. Command Line	15
3. The Input File	17
4. Theory	19
4.1. Blockwise Algorithm	19
4.2. Nearest Neighbor Algorithm	19
4.3. Energy conservation	19
4.4. Diagnostic information	19
4.4.1. Energy scaling	19
4.4.2. ITS data point usage	20
5. Example	21
Index	25
Distribution	27

This page intentionally left blank.

LIST OF FIGURES

Figure 3-1. Sample input file for its2sierra	18
Figure 5-1. ITS model with EDEP energy.	22
Figure 5-2. ITS2Sierra Input	22
Figure 5-3. Wedge15 elements in the Sierra model with mapped ITS energy.	23
Figure 5-4. Hex20 elements in the Sierra model with mapped ITS energy.	23

This page intentionally left blank.

LIST OF TABLES

Table 3-1. Input options for the <code>its2sierra</code> input file. Keywords and default values are given.....	17
---	----

This page intentionally left blank.

Acknowledgments

The **Sierra/SD** software package is the collective effort of many individuals and teams. A core Sandia National Laboratories based **Sierra/SD** development team is responsible for maintenance of documentation, testing, and support of code capabilities. This team includes Dagny Beale, Gregory Bunting, David Day, Clark Dohrmann, Payton Lindsay, Justin Pepe, and Julia Plews.

The **Sierra/SD** team also works closely with the Sierra Inverse and Plato teams to jointly enhance and maintain several capabilities. This includes contributions from Ryan Alberdi, Wilkins Aquino, Brett Clark, Sean Hardesty, Clay Sanders, Chandler Smith, Adam Sokolow, Benjamin Treweek, Timothy Walsh, and Ray Wildman.

The **Sierra/SD** team works closely with other Sierra teams on core libraries and shared tools. This includes the DevOps, Sierra Toolkit, Solid Mechanics, Fluid Thermal Teams. Additionally, analysts regularly provide code capabilities as well as help review and verify code capabilities, testing, and documentation. Other individuals not already mentioned directly contributing to the **Sierra/SD** documentation, testing, and code base during the last year include Simon Bignold, Leah Brinkman, Samuel Browne, Michael Buche, Mark Chen, Nathan Crane, Jared Crean, David Glaze, Mark Hamilton, Sidharth Joshi, Andrew Kimler, Dong Lee, Mario LoPrinzi, Kevin Manktelow, Matthew Mosby, Devin OConnor, Tolu Okusanya, Heather Pacella, Krishen Parmar, Kendall Pierson, Tim Shelton, Greg Sjaardema, Matt Staten, Johnathan Vo, Tyler Voskuilen, Alan Williams, and Riley Wilson.

Historically dozens of other Sandia staff, students, and external collaborators have also contributed to the **Sierra/SD** product and its documentation.

Many other individuals groups have contributed either directly or indirectly to the success of the **Sierra/SD** product. These include but are not limited to;

- Garth Reese implemented the original **Sierra/SD** code base. He served as principal investigator and product owner for **Sierra/SD** for over twenty years. His efforts and contributions led to much of the current success of **Sierra/SD**.
- The ASC program at the DOE which funded the initial **Sierra/SD** (Salinas) development as well as the ASC program which still provides the bulk of ongoing development support.
- Line managers at Sandia Labs who supported this effort. Special recognition is extended to David Martinez who helped establish the effort.
- Charbel Farhat and the University of Colorado at Boulder. They have provided incredible support in the area of finite elements, and especially in development of linear solvers.
- Carlos Felippa of U. Colorado at Boulder. His consultation has been invaluable, and includes the summer of 2001 where he visited at Sandia and developed the Hexshell element for us.
- Danny Sorensen, Rich Lehoucq and other developers of ARPACK, which is used for eigenvalue problems.

- Esmond Ng who wrote *sparspak* for us. This sparse solver package is responsible for much of the performance in **Sierra/SD** linear solvers.
- The *metis* team at the University of Minnesota. *Metis* is an important part of the graph partitioning schemes used by several of our linear solvers. These are copyright 1997 from the University of Minnesota.
- Padma Raghaven for development of a parallel direct solver that is a part of the linear solvers.
- The developers of the SuperLU Dist parallel sparse direct linear solver. It is used through GDSW for a variety of problems.
- Leszek Demkowicz at the University of Texas at Austin who provided the HP3D¹ library and has worked with the **Sierra/SD** team on several initiatives. The HP3D library is used to calculate shape functions for higher order elements.

This work was supported by the Laboratory Directed Research and Development (LDRD) program.

1. INTRODUCTION

The Integrated Tiger Series (ITS) generates a database containing energy deposition data. This data, when stored on an **Exodus** file, is not typically suitable for analysis within **Sierra Mechanics** for finite element analysis. The **its2sierra** tool maps data from the ITS database to the **Sierra** database.

This page intentionally left blank.

2. COMMAND LINE

its2sierra is a command line tool to be run on a single process (serial execution). **its2sierra** requires the user to provide a valid Exodus file containing ‘EDEP’ and ‘VOL’ element variables. An Exodus file for the Sierra mesh is also required, as is an input file for the tool. A new Exodus containing the Sierra mesh with ITS element data is created.

The **its2sierra** tool is executed as:

```
its2sierra itsfile.exo inputsierra.exo outputsierra.exo its2sierra.inp
```

where

- **itsfile.exo** is the output file from an ITS run. It must contain EDEP and VOL element data.
- **inputsierra.exo** is an Exodus mesh suitable for FEA in Sierra-SD or Sierra-SM.
- **outputserra.exo** is an Exodus mesh with the same mesh/geometry as inputserra.exo, but with the EDEP from itsfile.exo.
- **its2sierra.inp** is an input file as described in Section 3.

This page intentionally left blank.

3. THE INPUT FILE

The **its2sierra** input file is used to specify mapping (sets of) blocks of elements between the ITS mesh and the Sierra mesh. Each section of the input file specifies an ITS block (or set of blocks) for which energies are mapped to a Sierra block (or set of blocks). Other parameters can be used to specify how that mapping is done. Table 3-1 lists the options in each block, and their defaults. Each section of the file begins with the keyword ‘ITSBlocks’ and ends with the keyword ‘END’. Arbitrary numbers of sections may exist, and the text parsing is upper/lowercase agnostic.

Keyword	Purpose
ITSBlocks	Begins a section of its2sierra input. Lists ITS blocks to be used in this set
Mapping	Type of mapping to be used in this set Default = Blockwise 4.1 Option = Nearest_Neighbor 4.2
Sierra_Blocks	Lists Sierra blocks to be used in this set
Scale_Energy	Scales energy in the sierra mesh by this number Default = 1
Scale_Mesh	Scales the mesh geometry of the ITS mesh by this number Default = 1
itsBB	ITS bounding box length multiplier for nearest_neighbor mapping Default = 10
sierraBB	ITS bounding box length multiplier for nearest_neighbor mapping Default = 10
integration_point	Write energy data to Sierra integration points. Cannot be used with the keyword ‘centroid’.
centroid	Write energy data to Sierra element centroids. Cannot be used with the keyword ‘integration_point’.
END	Ends a set of ITS blocks

Table 3-1. – Input options for the `its2sierra` input file. Keywords and default values are given.

A sample input file is given in Figure 3-1.

```

// its2sierra input file example
itsblocks = 1 3 7
    mapping = nearest_neighbor
    sierra_blocks = 2 4 8
    scale_energy = 1
    scale_mesh = 0.0254 #Convert units of ITS mesh
    itsBB = 20
    sierraBB = 10 #Same as default
    integration_point
end

// Second input section
itsblocks = 2
    mapping = blockwise
    sierra_blocks = 3
    scale_energy = 1
    scale_mesh = 0.0254
    centroid
end

```

Figure 3-1. – Sample input file for `its2sierra`. The Sierra mesh consists of four blocks numbered {2, 3, 4, 8}. The ITS mesh has four blocks numbered {1, 2, 3, 7}. Comments are specified with either ‘//’ or ‘#’.

4. THEORY

4.1. Blockwise Algorithm

The ‘blockwise’ algorithm assigns a uniform energy density to Sierra mesh. As such, it does not preserve *any* gradient information. The total energy (sum of density \times volume) of all ITS blocks in the input section is distributed uniformly to the Sierra blocks listed in the section. The destination blocks in the structural mesh are all assigned the same energy density, determined from their total volume to conserve energy.

4.2. Nearest Neighbor Algorithm

For each Sierra output point location (centroids or integration points), the ‘nearest neighbor’ (NN) algorithm finds the nearest ITS data point and maps the energy directly (no interpolation). The nearest neighbor search is done using axis aligned bounding boxes. The length of each side of the bounding boxes defaults to 10 times the cube root of the element volume, or $10 V^{1/3}$. The factor of 10 can be changed in the input file through the parameters `itsBB` and/or `sierraBB`.

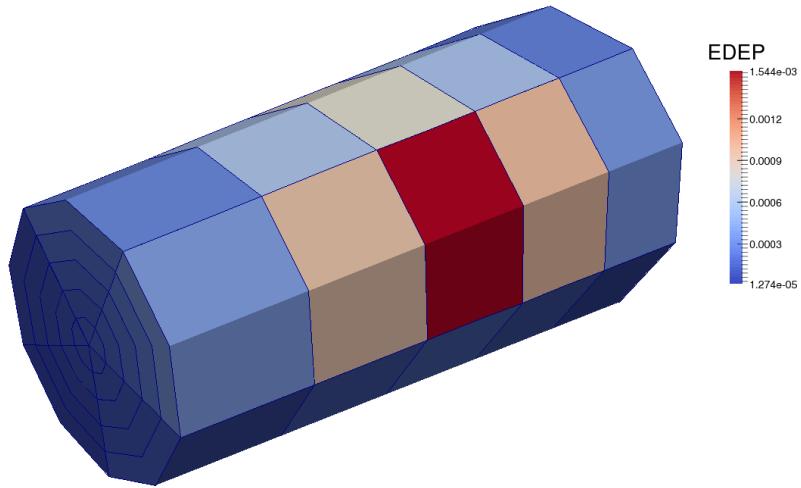
4.3. Energy conservation

It is important that the total energy of the ITS mesh is conserved when transferred to the Sierra mesh. `its2sierra` computes a scaling factor that is applied to the mapped energy on the Sierra mesh. The scaling factor is applied after the mapping is complete to ensure energy conservation. The closer the scaling factor is to unity, the better the energy transfer between meshes.

4.4. Diagnostic information

4.4.1. Energy scaling

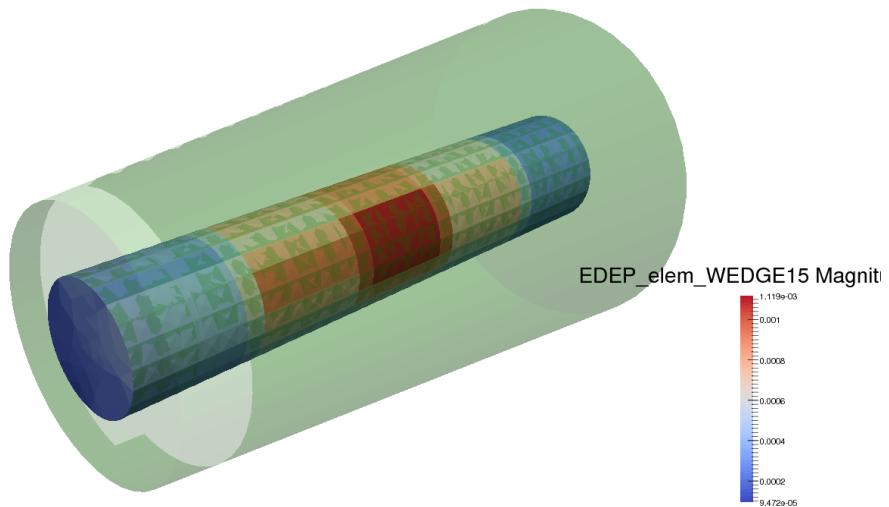
Energy scaling information is written to both standard output and the file ‘EnergyScalingStatistics.txt’.

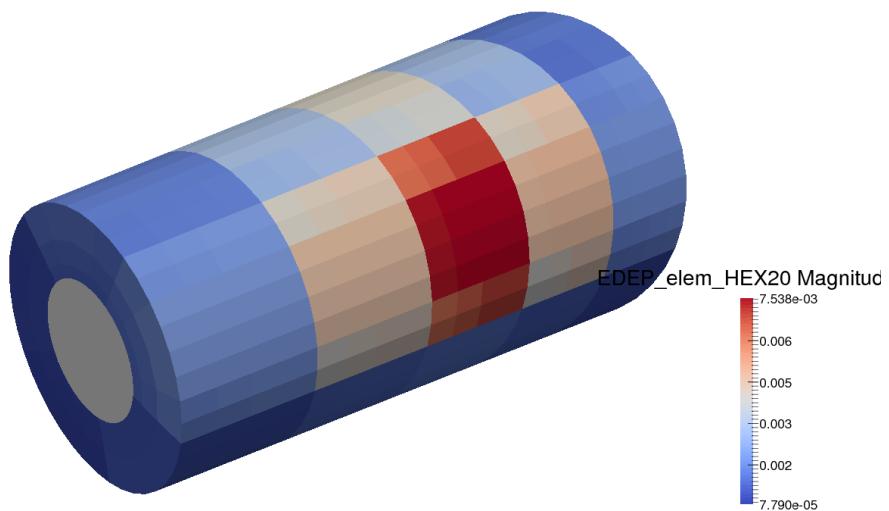

4.4.2. *ITS data point usage*

The file ‘itsUsageStatistics.txt’ archives a list of ITS block numbers and element numbers for which the energy input was not used in the mapping to the Sierra mesh.

5. EXAMPLE

Figure 5-1 depicts an ITS mesh (20 node hexahedrons) with EDEP data. **its2sierra** is run with the input file specified in Figure 5-2. The Sierra mesh consists of quadratic wedge and hex elements. The mapped energy is show on the wedge and hex elements in Figures 5-3 and 5-4, respectively.


For further information see the SierraSD Design Manual.


Figure 5-1. – ITS model with EDEP energy.

```
// its2sierra input file example
itsblocks = 1
    mapping = nearest_neighbor
    sierra_blocks = 1 2
    scale_energy = 1
    scale_mesh = 1
    integration_point
end
```

Figure 5-2. – **its2sierra** input file for a single ITS block of Hex20 elements. The Sierra mesh consists of two blocks: Hex20 elements and Wedge15 elements. Nearest neighbor mapping is used, and data is output at the integration points.

Figure 5-3. – Wedge15 elements in the Sierra model with mapped ITS energy.

Figure 5-4. – Hex20 elements in the Sierra model with mapped ITS energy.

This page intentionally left blank.

INDEX

Farhat, Charbel, [11](#)

Felippa, Carlos, [11](#)

Ng, Esmond, [12](#)

SuperLU, [12](#)

This page intentionally left blank.

DISTRIBUTION

Email—Internal

Name	Org.	Sandia Email Address
Technical Library	1911	sanddocs@sandia.gov

Hardcopy—Internal

Number of Copies	Name	Org.	Mailstop
1	K. H. Pierson	1542	0845

This page intentionally left blank.

**Sandia
National
Laboratories**

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.