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ABSTRACT
The Example Problems Manual supplements the User’s Manual and the Theory Manual. The goal
of the Example Problems Manual is to reduce learning time for complex end to end analyses.
These documents are intended to be used together. See the User’s Manual for a complete list of
the options for a solution case. All the examples are part of the Sierra/SD test suite. Each runs as
is.

The organization is similar to the other documents: How to run, Commands, Solution cases,
Materials, Elements, Boundary conditions, and then Contact. The table of contents and index are
indispensable.

The Geometric Rigid Body Modes section is shared with the Users Manual.
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1. SOLUTION CASES

Sierra/SD supports different analysis types via solution cases. This section covers simple
examples of several of the most common of these solution cases. Each of these input decks use the
same ’Fixture’ mesh shown in Figure 1-1.

Figure 1-1. – Fixture Mesh Used in Several Examples

The sections of a Sierra/SD input file are described in the Sierra SD Users’ Guide. An input file
has several common sections: solution, file (Exodus mesh), load(s), outputs, echo, block (one per
element block in the input Exodus file) and material (one per unique material).

The input file for the statics solution method, 21.1, provided in the Appendix has the common
sections, and three optional sections: parameters, boundary and GDSW. The parameter Wtmass,
typically 1/(32.2 𝑓 𝑡/𝑠2 12𝑖𝑛/ 𝑓 𝑡), is used so that for example densities may be specified in units of
𝑙𝑏𝑠/𝑖𝑛3, as described in the Users’ Guide. Boundary conditions on a side set, or in this case a
node set, are specified in the boundary section. The GDSW section indicates that the threshold on
the relative residual norm be decreased from the default 1.e-6 if using the GDSW linear solver.

The input file 21.2 for the eigen solution method requests that the twelve lowest frequency modes
be computed. The eigen norm parameter indicates that the mode shapes will be normalized in a
way that is convenient for visualization. The default normalization uses the mass matrix. Here
solver_tol has been further reduced to 1.𝑒 − 10.

The transient simulation input file 21.3 uses the default Newmark method and has the total
simulation time of 1/100 seconds. The load is specified by a tabulated Haversine pulse. The
history section indicates that the output quantities at each time step and at the specified node sets
only will be written to a different Exodus output file with the suffix h. In this case the history file
name is fixture-out.h. The history file is 20, 000 times smaller than the ordinary output file.
Finally, the restart option in the solution section means that the file fixture-out.rslt_trans will be
written. It is possible to restart the simulation using this restart file, as described in the Users’
Guide.
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In a modal transient simulation, the transient problem is projected onto the subspace spanned by
the mode shapes of a user specified number of the lowest frequency modes. Modal transient
simulations are typically much faster than direct transient analyses. The transient keyword has
been replaced by the modaltransient keyword. Also, a single input file is used for both the
initial eigenvalue problem (20 modes), and the following modal transient solution. This is called a
multicase solution. Another difference is that the plural loads section has been replaced by a
numbered load block to define a load that applies to the transient solution, but not to the eigen
solution.

Returning to the first solution case in the modal transient simulation, the eigenvalue problem, a
shift is set to −1𝑒 + 6. Here the first eigenvalue is 1𝑒 + 8. The eigenvalue problem is solved more
efficiently and accurately if the shift is approximately −1 times the lowest nonzero eigenvalue
(flexible mode).

The modalfrf solution case showing in the input file 21.5 c concerns the frequency response
function The frequency response function is used for example to confirm engineering assumptions
about the frequency content of the accelerations.

𝑢̂(𝜔) = (𝐾 + 𝑖𝜔𝐶 − 𝜔2𝑀)−1 𝑓 (𝜔), 𝑖 =
√
−1.

Modal frequency response refers to using the mode shapes to diagonalize the transfer function. A
linear solver is not used to evaluate the transfer function, but is used in solving the eigenvalue
problem. The function here describes the frequency dependent load, the Fourier transform of the
temporal load. The damping section supplies the coefficient for mode proportional damping,
𝐶 = 𝛾𝑀 . The frequency block sets the spatial location and frequency range of the load.

In the modal frequency response problem note that there is both a history section and a frequency
section. The input file is for a multicase simulation. The history file section applies to the solution
of the eigenvalue problem, and is ignored during the solution of the frequency response problem.
The frequency response section is ignored during the solution of the eigenvalue problem, and
applies only to the frequency response problem.

The last input file 21.6 calculates the response of the to random vibration inputs. This solution has
similarities to the modalfrf solution case and additionally requires a frequency dependent load
definition. The outputs of this analysis are statistical properties of acceleration, velocity,
displacement, and stress to the random vibration inputs. This case is covered in more detail in
Section 9.
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2. TRANSIENT SIMULATION ABOUT SIERRA/SM PRELOAD

Hand-off from Sierra/SM to Sierra/SD uses separate runs. First Sierra/SM writes the necessary
data to the output Exodus file. Second Sierra/SD reads the data and executes the analysis. An
updated Lagrangian approach is used, in the sense that the nodal coordinates in Sierra/SD are the
initial coordinates for Sierra/SM plus the final set of displacements computed in Sierra/SM. For
large models splitting the computation into two phases acts like a convenient restart.

The default names of the fields written by Sierra/SM differ from the default names of the same
fields read by Sierra/SD. The purpose of Sierra/SD’s receive_sierra_data solution case is to
address these inconsistencies.

A linear transient analysis of a preloaded cantilevered beam is described to illustrate how
Sierra/SM output is used. The preload deformed the beam, and the initial stress state contributes
to alterations in stiffness.

Figure 2-1. – Applying Sierra/SD to the output of Sierra/SM: cantilevered beam.

The content for this section is based on an example and explanatory information provided by
Vince Pericoli. All the files used in these simulations are available to members of the Sierra Users
group on the CEE SRN at:

unix> cd /projects/sierra/tests/master/tests
unix> ls sd_sm_coupled_rtest/exampleproblemsmanual/sm_sd_handoff

A similar sequence of events, shown in Figure 2-1 could be used to model the shock or vibration
response of a body that has undergone substantial perturbations due to preload.

Originally the cantilever beam was statically loaded in Sierra/SM.

unix> sierra adagio -i simple_cantilever_sm.i

The Sierra/SM output syntax was configured to meet the input requirements of Sierra/SD.
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Sierra/SM input deck syntax is described in the Sierra/SM documentation, particularly the
Output chapter.

When preload deformations are significant in Sierra/SM, for instance, in the case of foam
materials under high compression, it is important to consider mass conservation through the
transfer, since Sierra/SD computes stiffness and mass matrices in the deformed configuration.
Thus, material density must be updated on hand-off to reflect this deformation. As Sierra/SM
does not support density output directly, special output options must be included in the Sierra/SM
input deck.

Functions are typically defined in the sierra scope of the Sierra/SM input file.

BEGIN FUNCTION ElementDensity
type = analytic
expression variable: m = element element_mass
expression variable: v = element volume
evaluate expression = "m/v"

END

Density must then be requested for output from the Sierra/SM analysis, in addition to other
required hand-off variables, as follows.

BEGIN USER OUTPUT
compute element element_density as function ElementDensity

END
Begin results output sd_handoff
database name = sm_output/sm_to_sd.e
database Type = exodus
additional times {end_time}
nodal variables = displacement as displ
element variables = stress
element variables = element_density
component separator character = none

End

Option additional times is handy for creating an output file containing only the last time step,
and similar tasks. This reduces file size and also eliminates any ambiguity as to which step
provides the initial state to Sierra/SD. The component separator character = none
command is used with fields such as stress, stress_xx, and displacement, displ_x, where
underscore (_) is the default separator. Specifying none is optional but recommended.

The Sierra/SM and Sierra/SD material definitions must be nominally consistent. For this model,
Sierra/SM uses an elastic-plastic and Sierra/SD uses the small strain linearization of the model.
This is achieved by simply matching the youngs modulus and poissons ratio in Sierra/SM
input to the Sierra/SD input, E and nu. One key difference is, when density is handed off from
Sierra/SM, that the material density must be specified as an Exodus mesh variable in Sierra/SD.
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MATERIAL FOAM
// original density = 26.
density exo_var scalar element_density
...

END

Expanded Sierra/SD support for Lamé materials has required that many of the possible
Sierra/SM element fields be read into Sierra/SD, especially the state variables associated with a
given Lamé model.

element variables = lame_state_hyperfoam

Adagio output can also include the Polar decomposition of the Total Lagrange deformation
gradient, even if the element itself uses an Updated Lagrange formulation. The decomposition is
stored in the element fields rotation and left_stretch.

element variables = left_stretch
element variables = rotation

When utilizing a Lamé model, it is also important to note that Sierra/SD computes a material
stiffness that combines material and geometric stiffness contributions; thus, the no_geom_stiff
option should be exercised when handing off data to Sierra/SD using the
receive_sierra_data solution case.

The SEACAS tool algebra can extract only the final results from any Sierra/SM output file,
given the approximate times of the last two time steps. Here is an example of how to do this if the
final two Sierra/SM simulation output times are approximately 1.99 and 2.0.

# create an input file for SD containing only the last step
unix> algebra sm.exo smforsd.exo
algebra> tmin 1.995
algebra> save element
algebra> save nodal
algebra> end

Note also that an algebra session must terminate with end.

2.1. Coupled Sierra/SM- Sierra/SD Eigenvalue Problems

In this section, a modal analysis is applied to the output of Sierra/SM, also known as Adagio. A
nonlinear preload is computed in Sierra/SM, followed by a modal analysis in Sierra/SD. In this
approach, the modal analysis is performed about the nonlinear state that is computed in
Sierra/SM. This is the most convenient approach, since the modes about the deformed state are
typically of most interest.
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This file transfer approach proceeds as follows. Here the Sierra/SM and Sierra/SD input decks
are named sierra.i and sd.inp. The model consists of four layers of material, with a
membrane layer between the bottom layers, as shown in Figure 2-2.

1. Construct the input decks sierra.i and sd.inp. Both input decks contain modifications
required for hand-off as described in Section 2.

2. Execute Sierra/SM

3. The output Exodus file that is assigned in Sierra/SM is used as the geometry file for the
Sierra/SD analysis. This step will need to be inserted manually by the user.

4. Execute Sierra/SD. Figure 2-3 summarizes the steps of the analysis.

5. Eigenvalues and modal frequencies are listed in the salinas.rslt file. Both modal
frequencies and mode shapes are in the file Sierra/SD output Exodus file. If as shown here
the second case is named two, then the output Exodus file is named salinas-two.exo
(see example below).

Figure 2-2. – SM/SD Transfer Model Geometry.

22



1) Read displacements, stresses and certain material parameters
from previous SM analysis. These are found in the Exodus
output from SM.

2) Update original coordinates to the deformed coordinates, 𝑋 =

𝑋𝑜 +𝑈.

3) Compute element stiffness matrices from material properties.

4) Adjust stiffness matrices for stress preload.

5) Generate constraints.

6) Assemble system level matrices and solve eigenvalue problem.

Figure 2-3. – Steps in Sierra/SD Coupled Analysis. Most properties and element matrices are
recomputed in SD.

2.2. User specified field names

Sierra/SD can input most Sierra/SM output by guessing the naming convention. Ideally it would
be possible for Sierra/SD to read any Sierra/SM output. However, some fields that Sierra/SM
outputs to the Exodus file may have have user-defined labels or be user-defined variables. This
includes stresses, displacements and analysis time. Sierra/SD can only input data if the labels are
determined exactly. Sierra/SD has a corresponding capability for users to specify the input field
names in the File section of the input deck. The list of valid initialize variable name
label keys is extensive and documented [2]. In the provided example, the input Exodus file
input_mesh.g stores nodal displacements stored as dx, dy, and dz.
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.

FILE
geometry_file = input_mesh.g

# nodal displacement components stored in input_mesh.g...
initialize variable name = displacement(x) # x-component
variable type = node # nodal displacement
read variable = dx # from input "dx"
time = 2.5 # at the nearest step

# with time >= 2.5
initialize variable name = displacement(y) # y-component
variable type = node # nodal displacement
read variable = dy # from input "dy"
step = FIRST # at the first step

initialize variable name = displacement(z) # z-component
variable type = node # nodal displacement
read variable = dz # from input "dz"
step = LAST # at the last step

END

2.3. Troubleshooting Legacy Models

1. The search tolerance for Sierra/SD Tied Data must be set carefully to ensure that the same
nodes that are in contact as in Sierra/SM.

a) Use very small search tolerance, in the range of one to two orders of magnitude
smaller than the capture tolerance in Sierra/SM should be sufficient.

b) Ideally, nodal contact information should be passed directly from Sierra/SM to
Sierra/SD (not currently available).

2. The sidesets used to define the tied contacts in Sierra/SD must be defined in the input
Exodus file used by Sierra/SM, even if they are not used in Sierra/SM.

3. The material properties for each element are not passed from Sierra/SM to Sierra/SD. This
is important with nonlinear models.

2.4. Rigid Rims, Coupling with Concentrated Masses, and Superelements

Extra steps are needed in both the Sierra/SM and the Sierra/SD analysis to treat parts of the mesh
as rigid bodies during the Sierra/SD analysis. This section reviews those steps in the case of a

24



Rigidset. The missing mass is accounted for by adding a concentrated mass. A similar approach
for a Superelement is also described.

Suppose for example that a model has sidesets with ids 901 and 902. If sidesets 901 and 902
surround two pieces of the mesh, then the following command block will make the surfaces rigid.
Although these parts are free to deform, the resulting modes are very high frequency and thus out
of range of the low frequency range of interest.

RIGIDSET set1
sideset 901
sideset 902

END

It is also often effective to add the mass properties of a rigid body onto its centroid. This can be
accomplished by coupling to a concentrated mass. For this, a sphere element needs to be added to
the mesh file. This can be done with a tool to manipulate the mesh such as Cubit or Patran (with
gjoin). The sphere can be added to the Sierra/SM input file, and it will be inactive for the first
stage analysis. For the Sierra/SD portion, the following blocks would connect the concentrated
mass to the rigid body.

RIGIDSET set1
sideset 901
sideset 902
centernode tied to node 28539 block 20

END

BLOCK 20
coordinate 1
Joint2G
kx=elastic 1.0e+10
ky=elastic 1.0e+10
kz=elastic 1.0e+10
krx=elastic 1.0e+10
kry=elastic 1.0e+10
krz=elastic 1.0e+10

END

BEGIN RECTANGULAR COORDINATE SYSTEM 1
origin 0 0 0
z point 0 0 1
xz point 1 0 1

END

BLOCK 17
conMass
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mass 1.0e1
Ixx 1.0e1
Iyy 1.0e1
Izz 1.0e1
Ixy 0.0
Ixz 0.0
Iyz 0.0
offset 0 0 0

END

In this example, block 17 is the concentrated mass, and contains both the mass and inertial
properties of the rigid body. Thus, the actual rigid body would be given zero density. Block 17 is
also node 28539, and is connected to the reference node of the Rigidset through block 20 via the
statement centernode tiedto node 28539 block 20. The reference node of the Rigidset is
chosen to be the node in the Rigidset that is closest to its geometric centroid (which is computed by
averaging the coordinates of the nodes in the Rigidset). Since that node will most likely not be at
the same location as the concentrated mass node, block 20 will usually have a non-zero length.

We also note that in the statement "centernode tiedto node 28539 block 20", Node
28539 must be connected to a virtual Joint2G block, in this case block 20. That is, block 20 is not
part of the mesh file in Exodus, but instead is created internally in Sierra/SD during execution of
the code. It is necessary that block 20 be a virtual Joint2G block, otherwise the code will die with
a fatal error message. This element provides 6 components of elastic resistance (3 translations and
3 rotations) between the concentrated mass and the reference node of the rigid body. As these
elastic stiffnesses increase, the effect converges to a rigid bar between the pair of nodes.

This same approach can be used to couple to a Superelement in the case where the Superelement
has a single interface node. In that case, the Superelement is also represented in the mesh with a
sphere element, and the coupling between the Superelement and the reference node of the rigid
body is specified in exactly the same manner. In this case, however, block 17 is defined to be a
Superelement rather than a concentrated mass, and is given a corresponding Netcdf file that
contains the reduced mass and stiffness matrices of the Superelement.

RIGIDSET set1
sideset 901
sideset 902
centernode tiedto node 28539 block 20

END

BLOCK 20
coordinate 1
Joint2G
kx=elastic 1.0e+10
ky=elastic 1.0e+10
kz=elastic 1.0e+10
krx=elastic 1.0e+10
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kry=elastic 1.0e+10
krz=elastic 1.0e+10

END
BEGIN RECTANGULAR COORDINATE SYSTEM 1
origin 0 0 0
z point 0 0 1
xz point 1 0 1

END
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BLOCK 17
Superelement
file=’superelement.ncf’
map
// local grid id cid
1 1
1 2
1 3
1 4
1 5
1 6
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

END
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3. LINEAR SOLVERS

Many solution methods rely on reliable and efficient linear solvers. However, there are features in
models that may either impede convergence or degrade accuracy. The Helmholtz linear solver is
discussed separately in Section 3.2. In this section, common issues are tabulated and an example
with before and after configurations is reviewed.

1. Some problems occur only for models with lots of constraint equations, due to large
surfaces that are tied together (e.g. one large sideset constrained to another with many
nodes). A way to confirm that this is the issue is the check whether the problem is mitigated
if tied contact over large surfaces is turned off.

2. Decreasing the time step (e.g. halving) can mitigate convergence issues.

3. Suppose there are accuracy issues. Note that the tolerance on the residual is always larger
than the uncertainty in the solution vector. A linear system has a condition number, which is
always greater than 1. The uncertainty in the solution vector is the product of the condition
number and the tolerance on the residual.

4. There are alternative to GDSW. Sierra/SD provides serial sparse linear solvers, sparsepak
for symmetric positive definite systems, and SuperLU for other systems. In addition,
Pardiso is a general-purpose sparse solver that is available on Intel platforms. These
solvers are at least as robust as the iterative methods. It can be enlightening to try to use the
appropriate serial sparse linear solver as problem size permits.

Consider, for example, the following user provided configuration of the GDSW linear solver.

GDSW
prt_summary = 3
solver_tol = 1.0e-5
max_iter = 5000
orthog = 200
overlap = 1
diag_scaling = diagonal
scale_option = 1

END

The options are generally intuitive. If the solver converges, and accuracy issues arise, then trying
a smaller solver_tol, and a larger max_iter is recommended. If the solver diverges, then
trying a larger solver_tol or a larger max_iter is recommended. A larger orthog is also
recommended. However, there are memory usage limitations. If there is an immediate error that
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could be related to running out of memory, then try a smaller value of orthog or use more
processors. See the discussion of reducing memory usage in the training documents for details.

There is a hidden constraint on these options. With some Krylov methods, e.g. the default of
krylov_method = 1 (GMRES), it turns out that orthog ≥ max_iter. For this reason, when
divergence is a problem, users often switch to gmresClassic, which allows orthog <
max_iter.

In this example, overlap = 1 is a small value for overlap. If you are running out of memory
with a higher value, then this might be a great idea. If the linear solver is diverging, you might try
a larger value (the default is 2).

The diag_scaling = diagonal option can be used either to find a convergent solver, or to find
a more accurate solver. On the other hand, there are cases in which selecting the option decreases
accurate.

In this case study, the user ultimately changed the GDSW configuration to the following to address
convergence issues.

GDSW
solver_tol = 1e-12
overlap = 2
num_vectors_keep = 0
orthog = 4000
max_iter = 4000
krylov_method = gmresClassic

END

The option num_vectors_keep can only be used with the classic version of GMRES
(krylov_method gmresClassic). The parameter orthog controls how many search direction are
stored. We store search directions to make the linear solver faster. More is generally better. The
point to understand is which search directions are stored. In this example, the first 4000 search
directions are stored. On later solves, the first num_vectors_keep are saved and recycled. The
default value of num_vectors_keep is orthog/2. In this case the solution has changed
significantly and you don’t want to use any of the old search directions. num_vectors_keep = 0
tells GDSW to start afresh and remove all search directions every time the maximum is reached.
Thus, the benefits of recycling are still retained, but the entire search space is periodically purged
of older search directions.

3.1. Linear Solver Accuracy

Linear solver errors are especially troublesome when the condition of the dynamic matrix is high.
This can be caused by various sources.

• Singular mass matrices.
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• Lack of a large shift for floating structures.

• Some complex constraint systems.

• Connection of very stiff and very compliant materials.

• Large concentrated masses.

• Poor decomposition, which affect the preconditioner and convergence rate.

• Redundant and/or conflicting constraints.

Any of these items can impact the linear solver sufficient to cause solution failure.

When using the GDSW solver, information on solver accuracy is readily obtained from
dd_solver.dat, which is written by default. Figure 3-1 provides an example of a portion of this
file. The top portion of the file contains information about the general solution. The operator
diagonal magnitudes provide a lower bound on the condition of the matrix, in this case 448463.
Condition numbers up to 1.e14 are solvable. Higher condition numbers are rarely solvable. The
condition numbers are determined after application of the MPCs.

The default name of this file can be overridden by the dd_solver_output_file option in the GDSW
section. Likewise, the default name of the Krylov solver output file (“krylov_solver.dat”) can be
overridden with the krylov_solver_output_file option.

Rigid body norms are then reported. Each row is the product, |𝐴𝑅 𝑗 |, where 𝑅 𝑗 is the
geometrically determined rigid body vector, and 𝐴 is the dynamic matrix1. Low values for these
norms may indicate singularity.

The lower portion of the file provides information about each linear solve. The “recursive relative
residual” is computed indirectly as part of the solution. It is used to control the solution. At the
end of the solution, an ”actual relative residual” is computed, 𝑟𝑎 = |𝐴𝑥 − 𝑏 |/|𝑏 |. Large differences
between relative and actual residuals are a concern that the solution may lack accuracy.

The solver is designed to reduce the relative residual to a low tolerance. This residual relates to
the error in force in a statics problem. The error in displacement, 𝛿𝑥, may be more important for
many applications. This error in the displacement depends on 𝜅, the condition of 𝐴, and the
relative residual. It is not directly computed nor reported.

𝛿𝑥

|𝑥 | ≤ 𝜅𝑟𝑎

1For eigenvalue problems, 𝐴 = 𝐾 − 𝜎𝑀 , where 𝜎 is the shift.
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— domain decomposition solver summary —
preconditioner = GDSW
Krylov method = Right GMRES
solver option = Esmond
number of processors = 1
...
solver tolerance = 1e-09
maximum number of iterations = 11
maximum number of restarts = 1
maximum stored directions = 0
solving scaled problem = no
operator diagonal magnitudes —
min = 31145.6
max = 1.39676e+10
max/min = 448463
Rigid Body Norm for Mode 1 = 0.0123875
Rigid Body Norm for Mode 2 = 8.43938e-07
Rigid Body Norm for Mode 3 = 0.012616
Rigid Body Norm for Mode 4 = 0.00206949
Rigid Body Norm for Mode 5 = 0.000878705
Rigid Body Norm for Mode 6 = 0.00423774
coarse space type = large
number of coarse levels = 0
solver initialization time = 0.0306559 seconds

Recursive Actual
Relative Relative

Solve Iter Total Avg Residual Residual CPU (s) Total (s) Avg (s)
1 1 1 1 7.22136e-12 1.16949e-11 0.00170898 0.00170898 0.00170898
2 1 2 1 4.55332e-12 1.7662e-11 0.00142002 0.00312901 0.0015645
3 1 3 1 8.1699e-13 7.89586e-13 0.00141907 0.00454807 0.00151602
4 1 4 1 5.69584e-14 5.92117e-14 0.00142908 0.00597715 0.00149429

...
39 1 39 1 2.51249e-14 2.34535e-14 0.00145912 0.0559211 0.00143387
40 1 40 1 2.08119e-14 2.18612e-14 0.00142503 0.0573461 0.00143365

total time for overlap preconditioner (seconds) = 0.0491779

Figure 3-1. – dd_solver.dat output from GDSW.

32



3.2. Frequency response linear solver

This section is about using the Helmholtz linear solver. The reader is assumed to be familiar with
all the other documentation. Iterative linear solvers for some other types of problems are
discussed in Section 3. At this time using solver_tol below the default value is not
recommended due to observed inconsistencies suggesting that the wrong answer can be returned
to the user. Clarifying this issue has a low priority at this time.

Insufficient virtual memory problems. If insufficient memory problems arise, users must
determine their cause and explain them. This is difficult.

Zeroing out orthogH conserves memory. Note that the Helmholtz linear solver is less mature
than some other parts of GDSW. I have noticed in the past that setting krylov_methodH to 1
changed orthogH to 1000 (of course 1000 is the default value of orthog and 20 is the
documented default value of orthogH). The Sierra/SD parser has default value 0 for orthogH. It
is necessary to monitor the value reported for orthogH in dd_solver.dat.

Experiments with alternative mesh partitioners have been surprisingly productive for structures.

precision_option_O single conserves memory in theory, but in practice it has been
problematic. It would help to use it with Flexible GMRES. Note that Flexible GMRES may
interact with orthogH like krylov_methodH.

Divergence problems. Address divergence either by adjusting the preconditioner configuration
parameters or by increasing the magnitude of the damping matrix. The former has the
disadvantage that there are many parameters. Given time the variety of parameters exposed to the
user will decrease. The latter has the disadvantage that it can change the solution.

Determining how much damping to use is beyond the scope of this note. If the response is
independent of the damping, then there is not too much damping. The case of slight increases in
the response due to the damping are less clear.

Configuring the preconditioner may involve trial and error. One approach is
useParallelDirectSolver yes. As long as there is enough memory available, the parallel
direct solver will almost surely work.

The remainder of these notes concern the trial and error approach to configuring the
preconditioner. Start by decreasing the preconditioner update frequency, despite the
computational cost.

Increasing the number of levels of overlap may help, particularly with shell elements. There is a
theoretical explanation for this.

Structural_damping and viscous_damping apply to the custom and the operator
preconditioners. A formula for the dependence of the preconditioner on these parameters appears
in the documentation. The code probably uses this formula. There are two important things to
know here. First: these parameters have nothing to do with the damping matrix, and only change
the preconditioner. The default values of the structural and viscous damping are respectively
12/100 and 0. Second: sometimes, changing (usually but not always increasing) the structural
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damping improves the preconditioner (decreases iterations and decreases overall time to
solution).

The previous max_previous_sols solutions determine an initial guess for the current linear
system. The default is zero. I do not know the default initial guess. If max previous sols is
positive, then the initial guess is effective.

The Krylov subspaces generated to solve the initial linear systems are applied to the remaining
linear systems. Only the first orthogH Krylov vectors are used. In several studies, the value 100
has proved optimal.

cull method eigen is in theory the best way to refresh the Krylov vectors, but in my experience
it has never helped.

SC_optionH yes helps less often than the default, no, but is worth trying. It is particularly
important to type this option correctly. A similar option for other types of linear systems,
SC_option, is silently ignored for direct frequency response problems.

Preconditioner effectiveness may vary with both input frequency and the number of MPI ranks.
Subdomain diameter is inversely proportional to the cube root of the number of MPI ranks.
Subdomain mode shape wavelength is proportional to subdomain diameter, and frequency is
inversely proportional to wavelength. For these reasons increasing the number of MPI ranks can
improve simulation reliability at higher frequencies. My observations are consistent with this
prediction. For the same reason at a fixed low number of MPI ranks, as the frequency increases,
the effectiveness of the coarse grid correction within the preconditioner may deteriorate. Such
deterioration theoretically may be mitigated by setting the coarse_option to the non default
value none. Due to software defects, this strategy only became an option recently (9/2020).
However, this strategy has not helped so far.
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4. COMPARING SIERRA SM EXPLICIT TRANSIENT TO DIRECT
AND MODAL FRF

FRFs are a matrix of relationships from forced input to either displacement, velocity, or
acceleration output. Typically, system response is accessed using acceleration.

Frequency Response Functions. The transfer function [H] relates the force input to the
displacement between two points in the system. The transfer function is symmetric and is formed
as a function of mass, damping, and stiffness. The transfer function is differentiable and the
relationship of the force to the acceleration is shown using the following in matrix form:

𝐴̄ = ¥[𝐻]𝐹̄

More information can be found in the theory manual.

Mesh. Figure 4-1 shows a sample mesh that was used both as an input for Sierra/SD Modal and
Direct FRF as well as for the Sierra Solid Mechanics Code - Adagio. The Node where force is
applied is connected to the beam using a network of rigid Rbars and the force is applied in the
Z-direction.

Figure 4-1. – Cantilever Beam FRF example problem. The Input to the system is the Force applied
at the Node on the left and accelerations are output at nodes on the left. The input for the problem is
provided in Appendix A.21.17.1-21.17.3.

Input Deck.
LOADS
nodeset 500
force = 0 0 1
scale = 1
function = 1
END

Input Deck. Figure 4 shows the relevant portions of a direct
FRF input file. The keyword alpha =5 sets the mass damping
of the system. The frequency section has the frequency
range from .1-50Hz at .1Hz increments. A general rule of
thumb is that the highest frequency mode requested in the
solution section should be at least 1.5x the max frequency
in the frequency section.
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FUNCTION 1
type LINEAR
name "white noise"
data 0.0 1.0
data 200. 1.0

END

DAMPING
alpha = 5
END

FREQUENCY
freq_min = .1
freq_step = .1
freq_max = 50
acceleration
disp
nodeset 2

END
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Figure 4-2. – Acceleration of end node in the Z-axis
direction.

Figure 4-2 The Z-axis
response of the cantilever beam to forced input
of Figure 4-2 compares modal and direct FRF
with the same damping. There are enough
modes for the modal FRF to show nearly exact
agreement to the direct frf results. Each of
the frequencies used for the adagio input show
reasonable agreement. The discrepancies
seen are possibly due to the possibility that
the alpha damping in adagio is not one-to-one
related to the alpha damping in Sierra/SD.

Table 4-1 shows
each method’s run time. A caveat should
be noted here that 10 cycles were used in the
Adagio input to ensure that the system reached
steady state. Reducing the number of cycles

reduces the run time proportionally. In
addition, with complex systems, eigen solution run time added to the modal FRF solver time may
approach the direct FRF solution time. It also should be noted that Adagio run was performed
with the knowledge of mode frequency locations. If it were not, it is possible that the frequencies
needed to plot would be closer together and more numerous.
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Table 4-1. – Run Times (min:sec).
Method Time

Modal FRF (20 modes) 00:09

Direct FRF 02:41

Sierra SM (8 frequencies) 129:48
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5. CRAIG-BAMPTON REDUCTION

The CBR solution method makes a superelement as specified in the CBModel section of the text
input file. The requirements for Sierra/SD to use this superelement are in the next section. This
reduction is often called a Component Mode Synthesis (or CMS). For limitations and use cases see
the Craig-Bampton reduction Solution Case section of the Users manual.

5.1. Input Required

The following input is required to run the CBR solution.

5.1.1. Solution

The solution section must contain input for the number of modes. This is the number of fixed
interface modes to compute. It must be entered, and will be different than the number of system
modes desired. It must also contain shift to ensure that the matrices are not indefinite. See the
Craig-Bampton reduction Solution Case section of the Users manual for more details on
full list of solution parameters.

5.1.2. CBModel

The CBModel defines most of the parameters for the solution. It defines the interface boundary
nodes. Note that all degrees of freedom of each node is a part of the model. Either define all six
degrees of freedom as interface dofs, or permit them to be reduced in this step. Interface nodes
may be connected to any structural element (solids, shells or beams), but not to a constraint
relation.

For example,

CBMODEL
nodeset=1
format=mfile
file=cbr.m
GlobalSolution = yes
inertia_matrix = yes

END
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See the example below for helpful insights on how to verify the model is a good approximation of
the original system.

5.1.3. History

For the CBR solution case, the history file contains the Output Transfer Matrix (OTM). The history
section is only necessary if the OTM output is desired. Otherwise, it is optional. Only the
following will be honored (others will be ignored).

• displacement

• strain

• stress

Note that the transfer matrices for acceleration and velocity are obtained by differentiating the
displacement equation.

5.2. Example

The geometry as shown in Figure 5-1 consists of a cone with a nodeset on the top and bottom
edge. The model reduction consists in reducing the stiffness matrix from the 80 nodes in this
model to the interface nodes (3 nodes on the base in nodeset 3). Thus, there are 18 constraint
modes. We choose to retain 4 fixed interface modes for this example. The input is included in
Chapter 21.13.

Running the model and examining the output, you will notice the following.

1. For this example there are two sets of eigenvalues (Ritz values) output to the screen. The
first, a set of 10 modes, corresponds to the eigen problem of the unreduced model which
includes 6 zero energy modes. The second set of modes is the fixed interface modes of the
analysis. The first 4 modes in CBR-CBR.exo correspond to these fixed interface modes.

2. The result file, CBR.rslt, contains three sets of eigenvalues; the two mentioned above and
the eigenvalues of the reduced system. No eigenvectors from the reduced system can be
output since there is no geometry database associated with it. The last set of eigenvalues
includes every eigenvalue of the reduced system.

Notice also that the eigenvalues of the reduced system are not identical to the unreduced
system. However, even with only four fixed interface modes, the first elastic mode agrees up
to the 4th digit. General practice would ensure that the maximum frequency of the fixed
interface modes is at least twice the frequency of interest.

3. The cbmap is found in both the result file and the reduced model output file. This map
relates rows and columns of the reduced system with physical quantities. The first of the 3
nodes in the nodeset has global id 1 as shown in the figure. All 6 degrees of freedom are
active at each node. And the cbmap has 18 rows.
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Figure 5-1. – Example CBR model.
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4. The reduced system is 22 degrees of freedom, which consists of 4 fixed interface modes and
18 constraint modes (6 degrees of freedom associated with 3 nodes). The mass and stiffness
matrices are almost full. Generally, the constraint modes contribute full matrix terms to
both mass and stiffness.

5. Rerunning with mfile added to the output section creates many files that will not be
described here including the Φ and Ψ matrices.

6. The output is written to the file CBR.m. Output 5.1 contains extracts from this file from
which you note the following.

a) All the data required for the model reduction is found in a single file.

b) The map of the reduced model is defined in cbmap. A map of the output transfer
matrix rows is OutMap.

c) There are always 6 degrees of freedom per node in the OutMap. This example does
not show this, but there may be fewer in the cbmap. Note that while Kr and Mr are
reduced system matrices which must be nonsingular, OTM is a transfer matrix and can
include inactive degrees of freedom.

NumC=18;
NumEig=4;
Kr=zeros(22,22);
Kr(1,1)=7.703363317234302e+04;
Kr(2,2)=9.043236930586677e+04;
...

Mr=zeros(22,22);
Mr(1,1)=1.000000000000000e+00;
Mr(1,5)=-9.545115933105166e-03;
...

% map of nodes in the output transfer matrix
% OutMap is the global node number
% There are exactly 6 outputs per node.
OutMap=zeros(1,32);
OutMap=[1 5 6 10 11 15 16 20 21 25 26 30 31 35 36 40 41 45 ...
OTM=zeros(192,22);
OTM(1,5)=1.000000000000000e+00;
OTM(2,6)=1.000000000000000e+00;
...

%cbmap(:,1) is global node id (1:n)
%cbmap(:,2) is coordinate (x=1, y=2, etc.)
%the first 4 dofs in the matrices are modes,
% while the last 18 dofs are interface dofs.
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cbmap=[1 1
1 2
1 3
1 4
1 5
1 6
...

Output 5.1. Selected Reduced Model Output

5.3. Verification of the Model

The following are some things that can be done to ensure that the model has been properly
developed.

5.3.1. Comparison of Reduced and Full Eigenvalues

It is a very good idea to compare the eigenvalues of the full and reduced system. It will
approximately double the computational effort of the model reduction, but there is very little set
up time. The example does this. All that is required is to compute the results in a multi-case
approach. Begin by computing the eigenvalues of a full system. Then, in the next case compute
the reduced order model. By including GlobalSolution in the CBModel section, the eigenvalues
of the reduced system are also computed. These eigenvalues and frequencies appear in the text
result file, under the heading Eigenvalues of Reduced System.

5.3.2. Comparison of Reduced and Full Displacements

It is significantly more complicated to compare the displacements of the two models because there
is no automatic upstream data recovery. Manual data recovery will have to be done in MATLAB.
We illustrate the method with a small transient run, but it could also be done for a eigen analysis
(or statics if the model is statically determinant).

Consider a calculation of 2000 time steps each of 10−5 seconds. We impulsively load the structure
on the interface (nodeset 3) with a force in the 𝑦 direction only. The load begins at zero, ramps to
106 at 10 𝜇𝑠, and then ramps back to zero at 20 𝜇𝑠. Output will be examined on nodesets 1 and 2.
This example is found in CBR_trans.inp.

Following the calculation, data from any of the output nodes can be evaluated using the history
file. The following commands evaluate the 𝑥 displacement on node 70.
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unix% exo2mat CBR-transient.h
unix% matlab
load CBR-transient
k=find(node_num_map==70);
plot(time,nvar01(k,:));

The reduced model can be used to perform the same calculation. The MATLAB commands to do
this work once CBR.m has been read into MATLAB are included here.

nsteps=2000;
ff=zeros(1,nsteps);
ff(2)=1;
neq=max(size(Kr));
force=zeros(neq,1);
rows=NumEig + find(cbmap(:,2)==2);
force(rows)=1e6;
dt=1e-5;
u=CBRint(Kr,Mr,force,ff,dt);
time=(1:nsteps)*dt;
k=find(OutMap==70);
orow=(k-1)*6+1; % x component of node 70
U70x=OTM(orow,:)*u;

The time integration is a standard Newmark integration performed using CBRint.m, which is
available in the test directory.

Finally, we can compare the results, which are shown in Figure 5-2. The data in the figure is
obtained by running the CBR reduction with a varying number of fixed interface modes. Note that
4 modes, and even 10 modes are not sufficient to capture the gross response of the structure at
node 70. Even at 50 modes there is high frequency data that has been lost. This is as expected
since the reduced model is designed to capture only the low frequency response of the structure.
The first elastic mode at 21 Hz has a period of 48 ms.
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Figure 5-2. – Example CBR transient computations.

5.4. What to do with the Results

5.4.1. solving the system

The reduced mass and stiffness matrices contain the dynamics of the system. These could be
solved in an eigen analysis for example in MATLAB.

[e_value,e_vector]=eig(Kr,Mr);

The eigenvalues, e_value, represent the system natural frequencies. The eigenvectors are a mix
of generalized and physical degrees of freedom. The OTM is used to compute the response on the
physical degrees of freedom on the nodesets in the history file.

Out=OTM*e_vector;

To find the response on a specific degree of freedom use the OutMap. For example, to find the 𝑍
degree of freedom on node 25 of the model.

index = find(OutMap==25);
k = (index-1)*6 + 3;
for i=1:size(Out,2)
fprintf(’Mode %d, Z value on node 25 = %g\n’,i,Out(k,i))
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end

When this document was written no process was available to take these results back into an Exodus
database so the resulting displacement mode shapes can be plotted on the original model.

5.4.2. Incorporate the reduced model into another system model

This is one of the more important reasons for doing a model reduction. The approach depends on
the format of the new model. The following are options.

Sierra/SD. Sierra/SD can input a CBR model in netcdf format as a superelement. See Section 6.

MATLAB. The model can be combined with other models in MATLAB. The trick is to use the
cbmap to tie together different degrees of freedom.

NASTRAN. NASTRAN can do this.
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6. SUPERELEMENTS

Superelements can greatly reduce the computational cost of large model. But they are hard to use.
Recall from Section 5 that in Sierra/SD we have no automatic superelement capability.
Superelements are usually used as follows. 1

1. A full sized, complete model is generated.

2. Portions of the model are extracted, and a reduced CBR model is created from that extracted
model.

3. The full model is modified by removing the extracted portions and replacing each with a
superelement.

4. The modified model is analyzed.

5. The modified model is post processed.

This section describes each step for a realistic example.

6.1. Superelement Example

The full model is shown in Figure 6-1. The model consists of the following.

• A lower leg portion consisting of two solid blocks and several beam blocks for applying
loads and tying the model together. This will become superelement 1.

• A central joint section representing the bolted joint. The joint is nonlinear, and is the
primary interest in the study. It is a single, zero length beam that is attached to the upper
and lower leg sections. This will not become a superelement.

• An upper leg section that is similar to the lower leg. This will become superelement 2.

The two superelements are attached in very different ways to illustrate the issues introduced by the
connections. The lower model has only two interface nodes, at the centers of the networks 81 and
51. This makes a small structure that is easy to interface. However, because the interface nodes
may not be part of an MPC, it also requires that these two networks be beams rather than the rigid
Rbars that the analyst would prefer.

In contrast, the upper superelement uses Rbars, but they must be put in the residual structure.
Thus, blocks 52 and 82 are not part of the superelement. The consequence is that there are many

1This section was originally written 2005. The example described here is no longer available. Only the system mesh
single_leg4.exo is archived.
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Two Superelement (SE) Model
Id # elements type SE color Description
81 188 bar 1 blue lower load spreading network
11 11072 Hex20 1 red lower support block
12 2158 Hex20 1 pink lower joint support
51 54 bar 1 cyan joint connection network
53 1 bar none red joint
52 124 bar none blue joint connection network
21 15024 Hex20 2 yellow upper joint support
22 2106 Hex20 2 green upper support block
82 184 bar none purple load spreading network

blocks 61, 62, 63, 71, 72, 72 are not shown and connect the Hex blocks

Figure 6-1. – Exploded view (left) of model and (right) zoom view of joint.
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interface degrees of freedom which greatly complicates interfacing to the superelement, and
significantly increases the computational cost of the model reduction.

The joint model (block 53) consists of a single Joint2G element. Topographically this is a 2
noded bar element which will be used to control the translations and rotations of the two points.
Block 53 is connected to the centers of the two network blocks (51 and 52) which connect to the
lower and upper joint supports respectively.

6.2. Submodel Model Extraction and Reduction

The two main ways of extracting a submodel from the original full model are to either 1) build up
the submodel from scratch, or 2) pull the model out of the original model. When the model
interface is complex, I would strongly recommend the second method. This is because it is
complicated to assign the interface nodes to the revised model when the superelement is
reinserted (see section 6.3). If the node number does not change between these two models, then
this book keeping is minimized.

Extracting portions of a system model for CBR reduction may be done using the Grepos utility
which preserves the node ordering.

$ grepos input.exo output.exo
GREPOS> delete block all
GREPOS> undelete block 1
GREPOS> exit

SE1: The lower structure with a small interface

For this model I went into Patran and removed all the elements except those in blocks 11, 12, 51,
61, 62, 63 and 81. 2 In hindsight removing blocks is easier with Grepos than Patran. To define the
interface, I defined nodeset 1111 at the center of the networks in blocks 51 and 81. I removed all
other nodeset and sidesets, and all empty block definitions. Nodeset 100 was created at random
points for an OTM, and the elements were renumbered. No nodes were removed.

A “check” of this model in explore indicates that there are 77726 nodes that are not connected to
any element. This is as expected, and there are no other errors reported.

The model is split into 10 regions using stk_balance, and model reduction is performed on our
Linux cluster (liberty). Run times are shown below. Each processor required about 450MB of
memory.

2Blocks 61, 62 and 63 contain RBar elements tying blocks 11 and 12. For simplicity, they are not shown in the figure.
Note that it is acceptable to have rigid elements inside the superelement, but not on the interface.
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step elapsed time comment
matrix assembly 00:12
CBR restructure 03:58
fixed interface modes 20:44 computed 50 eigenvalues
constraint modes 25:43 computed 12 constraint modes
model reduction 25:43
total (10 processors) 25:43 model size: 186 kB

SE2: The upper structure with a larger interface

Again, this model was developed by removing all elements that were not in the superelement
blocks (21,22,71,72,73). All the nodes are included to enable using RBars to tie to the
superelement. Nodeset 2222 is defined on the end points of all the bars in blocks 82 and 52. No
OTM will be used because many nodes are in the interface, so no additional nodeset is created.
As in SE1, empty or irrelevant blocks, nodesets and sidesets are removed, and the model
generated. The node count did not change. The element count is about 25% higher for this
superelement because the mesh of the original model is finer.

The model is split into 10 regions. Run times are shown below. Each processor required about
750MB of memory during the linear solve portion.

step elapsed time comment
matrix assembly 00:14
CBR restructure 06:16
fixed interface modes 25:30 computed 50 eigenvalues
constraint modes 1:47:39 computed 924 constraint modes
model reduction 1:49:23
total (10 processors) 1:49:23 model size: 15 MB

6.3. Superelement Insertion

Again, the original model is taken and culled back to only the remaining blocks. We keep only
blocks 52, 53 and 82. Sidesets are deleted, as they no longer point to valid elements. The node
sets are left in. Empty blocks are removed and the elements renumbered. There are only 309
elements remaining in the model.

Superelements must be inserted into the model. For SE 1, this is easy since there are only two
nodes in the superelement. We could use a superelement type, but choose to insert a truss element
for later visualization. The nodes for the connectivity may be found in nodeset 1111 in the
Exodus file.

Superelement 2 is more complicated because the interface is so much larger. It is important that
we maintain the order of the nodes, so we have a consistent stiffness matrix. Because we did not
remove any of the nodes from the model in earlier steps, the mapping from the superelement back
to the new model is greatly simplified.
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$ mksuper residual.exo
==============================================================
| Sandia Tool: mksuper
| Salinas Release 4.11.0.20090227173358
==============================================================

Input Genesis file: residual.exo
MKSUPER> add nodeset
Enter the nodeset ID.
2222
Adding 308 nodes to superelement.
MKSUPER> write 1leg_se1_and_2.exo
Wrote file ’1leg_se1_and_2.exo’ with 1 superelements.
MKSUPER> quit

Figure 6-2. – Inserting the superelement connectivity in the model.

Because superelement 2 has 308 nodes in the interface, no standard element can be used to
represent it. A nonstandard “super” type element must be added to the Exodus file. This is done
using the mksuper application.

There are several ways of defining the nodes for the superelement using mksuper. Because this is
a large interface, we use the nodeset option. In the residual structure we define nodeset 2222 to
apply to the same interface nodes as in the superelement model. We then use these nodes as the
connectivity for the element using “mksuper”. This step is illustrated in Figure 6-2. The mesh is
completed in the file 1leg_se1_and_2.exo.

The input file is different from the original. We have two blocks associated with the superelement,
two blocks associated with the rigid links, and a single block for the joint. A sample is shown in
input 6.1, with the map for the smaller superelement shown in input 6.2.

SOLUTION
eigen nmodes=12 shift -1e6

END

FILE
geometry_file ’1leg_se1_and_2.exo’

END

BOUNDARY
nodeset 11 fixed

END
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BLOCK 52
rbar

END

BLOCK 53
joint2g
kx=elastic 1e6
ky=elastic 1e6
kz=elastic 1e6
krx=elastic 1e6
kry=elastic 1e6
krz=elastic 1e6

END

BLOCK 82
rbar

END

BLOCK 1001
superelement
file=cbrse1c.ncf
diagnostic=1
include map_se1.inp

END

BLOCK 1002
SUPERELEMENT
file=cbrse2c.ncf
include map.se2

END

Input 6.1. Superelement model input file

// node cid
map 0 0

0 0
0 0
0 0
0 0
0 0
0 0
0 0
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0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1 1
1 2
1 3
1 4
1 5
1 6
2 1
2 2
2 3
2 4
2 5
2 6

Input 6.2. DOF map for superelement 1

6.4. Visualization

The output of the analysis in the previous section is an Exodus model. The structure is limited,
but the portions of the model associated with each of the remaining blocks may be visualized.
Figure 6-3 shows the response. More development is required for better visualization, but the
displacements, etc. are available for visualization or for transfer to MATLAB or other plotting
packages. 3 Display of the nodes and elements in the output transfer matrix of the superelement is
under development.

3Unfortunately many of the visualization tools don’t recognize the “superelement” type. For example, in versions
before release 8 of Ensight, the element and its nodes were not displayed.
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Figure 6-3. – Modal Response of the Superelement.
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7. EIGENVALUE PROBLEMS

Modal solutions form the basis of much of the analysis performed in Sierra/SD. It is essential that
we understand the accuracy of the solution computed eigenvalue pairs may have errors for a
variety of reasons, the most common is that the linear solvers all have tolerances, and errors in
these solutions feed directly into errors in eigenpairs. It is well-known that errors in eigenvectors
are typically significantly larger than errors in eigenvalues. If the relative error in an eigenvalue is
𝜀, the relative error in the eigenvector is of the order of

√
𝜀.

At the conclusion of a modal analysis, the Sierra/SD application reports the eigenvalues and
associated error estimates. Figure 7.1 provides an example of this output. The first column of data
is the eigenvalue, which is related to the frequency 𝑓 𝑗 by,

𝜆 𝑗 = (2𝜋 𝑓 𝑗 )2.

The second column is an estimate of the error bound on the eigenvalue, 𝜖 𝑗 = | (𝐾 − 𝜆 𝑗𝑀)𝜙 𝑗 |2.
Generally, except for zero energy modes, the error bound should be tiny relative to 𝜆.

Ritz values (Real, Imag) and direct residuals
---------------------------------------------

Col 1 Col 2
Row 1: -2.16338D-06 7.34617D-07
Row 2: 2.07696D+07 2.25677D-06
Row 3: 2.07858D+07 8.73909D-07
Row 4: 3.56376D+08 1.48725D-06
Row 5: 4.84777D+08 1.69662D-06
Row 6: 4.84906D+08 5.01020D-06
Row 7: 9.59039D+08 6.06316D-06
Row 8: 1.11917D+09 1.22741D-05
Row 9: 1.11917D+09 3.30643D-06

Output 7.1. Output of eigenvalues and Associated Error Bounds.

7.1. Geometric Rigid Body Modes

This section assumes that the reader is familiar with the parameter num_rigid_mode. In
Sierra/SD, it’s possible to use the geometric rigid body modes. There are three examples here.
The first example just brings in the rigid modes. The second example uses the modes in solving an
eigenvalue problem. The third example uses the modes in a modal transient simulation to deflate
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out the rotations. An example input is found in the Appendix, (A.21.11). Rigid body modes are
requested in the Solution block.

SOLUTION
geometric_rigid_body_modes

END

PARAMETERS
num_rigid_mode 6

END

The number of rigid body modes must also be specified. Only values of 1,6 or 7 are supported.

Rigid body modes can be incorporated into the modes computed in a modal analysis, and then
used for other purposes. The resulting mode shapes are more accurate. Also, the rigid body
modes themselves are ordered in a way that makes sense to humans. Without the GRBM case, the
displacements and rotations are mixed together.

SOLUTION
case rigid
geometric_rigid_body_modes
case flexible
eigen
nmodes 10
shift -1e6

END

PARAMETERS
num_rigid_mode 6

END

Rigid body modes are the 6 lowest frequency eigenvectors. In this case 4 more modes are
computed, for 10.

In this example a modal transient simulation uses the geometric rigid body modes to deflate out the
(infinitesimal) rotation, while retaining the translational rigid body modes. This is equivalent to
use of the FilterRbmLoad for direct transient solutions (though accomplished differently).

SOLUTION
case out
geometric_rigid_body_modes

case vibration
eigen
nmodes 10

case filter
modalfiltercase
modalfilter rotation

56



case transient
modaltransient
time_step 1 e-5
nsteps 62
load 42

END

PARAMETERS
num_rigid_mode 6

END

MODALFILTER rotation
add all
remove 4:6

END

7.2. Linear Buckling

Several code errors were discovered and fixed in the buckling solution method during 2020. This
section has not been updated to document the current behavior.

7.2.1. Shifted Eigenvalue

A challenging part of buckling analysis is determination of the shift parameter, which provides a
convergence point for the solution. It should be chosen to be near the final solution, but not so
near that the solver will fail due to a singularity. The eigenvalue problem involves the load
dependent the material stiffness, 𝐾𝑔. The system to be solved is,

𝐴 = 𝐾𝑚 − 𝜆𝐾𝑔 .

The problem is solved using a shift invert strategy using ARPACK, where the operator is defined
as,

𝐴 =
(
𝐾𝑚 − 𝜎𝐾𝑔

)−1
𝐾𝑚

The buckling load must be multiplied by −𝜆 to determine the critical buckling load.

Estimating a shift is easy if the solution has been found, but it is difficult until the loading is
determined. Iteration may be necessary in many cases. First, note that the shift, 𝜎, will typically
be a negative number for a structure in compression.

Figure 7-2 illustrates data for the ring model shown in 7-1 as a function of the shift parameter, 𝜎.
As the shift value approaches the eigenvalue, the solution is found more readily. However, too
large a shift results in an incorrect solution. 1

Recommendations.
1The input for this example is found in Appendix A.21.16.
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Figure 7-1. – Ring Model for Buckling and Associated Deformation.

Shift Eigenvalue Time
-1000 -890.381 35
-500 -396.23 35
-400 -396.23 35

-396.23 -396.23 34
-380 -396.23 33
-200 -396.23 34
-100 -396.23 34
-50 -396.23 35
-10 -396.23 35
-1 -396.23 34
1 fail 56

10 fail 53

Shift Eigenvalue Time
-1.0000 -396.232 35
-0.1000 -396.232 35
-0.0100 -396.242 35
-0.0010 -394.775 35
-0.0001 -99.8013 35
-1.0e-5 -12.8036 35
-1.0e-6 -0.9631 35
-1.0e-8 -0.0105 35

Figure 7-2. – Solution Dependence on Shift. A shift larger than the computed eigenvalue may generate
solver issues (the matrix is negative), while shifts near zero have round off issues.
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1. Get the sign of the shift correct. Objects in compression will require a negative shift.

2. If the magnitude of the eigenvalue is greater than the shift, reduce the shift to less than the
eigenvalue.

3. You may want to evaluate a shift that is tiny relative to the eigenvalue. Generally, the
eigenvalue should not be sensitive to the value of the shift.

4. The shift selected may impact the convergence of the linear solver. Generally a shift close to
the eigenvalue leads to nearly singular linear system and may make the linear solver fail. A
shift further from the solution may be easier on the linear solver, but may result in a poor
convergence of the eigen solver.

7.2.2. Buckling Case Study

The pressure load at which the structure buckles is the buckling eigenvalue. This case study shows
how to build confidence in a buckling result.

The critical eigenvalue is the mode of smallest magnitude. I prefer to compute 10 modes to check
that I have computed the right mode. For example a model with symmetry has multiple mode
shapes at the critical eigenvalue. Small eigenvalue residual norms boost my confidence in a result.
The residual norms are shown in stdout. Improving the shift or reducing the linear solver
tolerance may reduce the residual.

Suppose that initially pressure= −1, shift= −100 and solver_tol= 1.𝑒 − 6, the eigenvalue is
6.1637𝑒4, it has multiplicity two, and the residual norms are 6𝑒4 and 0.046. The residual norms
suggest that one of the approximate eigenvalues might be accurate. Given the eigenvalue we can
improve the shift. The magnitude of shift should be of about the same as the magnitude as the
eigenvalue but not too much larger. Shifting by −1.𝑒4 does not change the eigenvalue and
decreases the residual to 0.0036. This gives me some confidence in the eigenvalue.

On the other hand if the initial pressure is −1.𝑒 − 4 with the same initial shift −100 and solver_tol
1.𝑒 − 6 then the eigenvalue is −2.84241𝑒8 and the residual= 3300 with product pressure
eigenvalue = 2.84241𝑒4. As this is the initial result nothing yet suggests that it’s wrong.

The first hint of a problem is that the smallest magnitude eigenvalue appears in the middle of the
table of residual norms in row 6. It would be more encouraging for the smallest magnitude
eigenvalue to be either at the top or the bottom of the table.

Here I will exercise my option to try a new shift instead of reducing the linear solver tolerance.
The eigenvalue suggests the shift −1𝑒8.

With this shift the smallest eigenvalue is at the top of the table. The eigenvalue is 6.16374𝑒8, the
residual norm is .0017, and the product pressure eigenvalue= −6.16374𝑒4. I have no confidence
in the results due to the change in the product. However, the new shift reduced the residual by a
factor of 2𝑒6 lending credence to the new eigenvalue −6𝑒4. Decreasing the linear solver tolerance
to 1.𝑒 − 8 leads to similar conclusions.

59



It is a good practice in this case to try a different initial pressure. The predicted eigenvalue
corresponding to pressure −1𝑒4 is −6, suggesting the shift −1. The smallest eigenvalue is in the
first two rows. This is encouraging. It is also encouraging that the smallest residual is 0.0029. The
product pressure eigenvalue = −6.16374𝑒4 has been reproduced.

Every simulation that I tried with shift −1/|𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 | reproduced the product pressure eigenvalue
−6.16374𝑒4. The pressure load that will buckle the structure is the buckling eigenvalue
6.16374𝑒4.

7.3. Wet Modes

Wet modes is a solution procedure that computes the normal modes for a structure partially
submerged in a fluid. In appropriate approximations, this may be analyzed as a real Eigen problem
of the structure with added mass on the wetted surface.

7.3.1. Mesh

Figure 7-3 shows a sample mesh for a wet modes problem. The structural mesh is a cylinder
composed of four node NQUAD shell elements, and the fluid mesh is composed of four node
tetrahedral elements. The wet mode solution case can be run either with a conforming mesh, or
using tied-data with a nonconforming mesh.

Figure 7-3. – Wet Modes Sample Problem. The structural mesh is shown in blue, and the acoustic/fluid
mesh is shown in orange and green. The input for the problem is provided in Appendix A.21.12.

7.3.2. Input File

Figure 7-4 shows the relevant portions of a Wet Modes input file. The keyword fluidloading=yes
enables the wet-modes solution case. The parameter num_rigid_mode 6 removes the null space
for the structural problem. A boundary section is required to set the pressure on the outside of the
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SOLUTION
eigen

nmodes 20
fluidloading=yes

END

PARAMETERS
num_rigid_mode 6

END

MATERIAL fluid
acoustic
density 3.46822e-003 // artificially high to demonstrate wet mode capability
c0 22878

END

MATERIAL steel
e = 3.0e7
density = 7.324e-4
nu = 0.3

END

BOUNDARY
sideset 1
p=0

END

Figure 7-4. – Relevant Portions of Wet Modes Input File.

acoustic mesh to zero. Both structural and acoustic elements are required for a wet mode
analysis.

7.3.3. Results

Table 7-1 shows the results for the floating cylinder. Note that the density of the acoustic material
is artificially high to increase difference between the wet and dry solutions. Adding the fluid mass
to the structure reduces the natural frequency of the cylinder.

Figure 7-5 shows the results from the wet mode solution case. Note that much of the symmetry
that would normally be found in the dry case is missing. The location of the waterline (located at
the midpoint of Figure 7-5) can often discerned from the mode shapes.
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Table 7-1. – Wet Mode Floating Cylinder Results.
Mode Dry Wet

1 79.82 18.07
5 177.994 46.72
10 207.878 70.11
15 307.325 91.70
20 367.93 117.266

Figure 7-5. – Wet Modes Results. The mode shapes from wet modes can be visualized like any other
Eigen solution case.
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8. MODAL TRANSIENT

Standard Sierra/SD has a fine set of modal based solutions, including a modal transient integrator.
However, Sierra/SD is designed to focus on massively parallel solutions. It is not uncommon for
an analyst to generate a small modal solution, and to use the modal solution as part of a small
transient run. Since in modal space, the solution is diagonal, this completely uncouples the modes
and allows for an independent solution of each modal amplitude, 𝑞𝑖.

Sierra/SD uses these solutions, but it assumes that the full solution on all output degrees of
freedom is required. In other words, the quantity 𝑞𝑖 (𝑡) is easily computed, but to transform back
to physical space, a fair amount of calculation must be performed, and it is performed on the full
system model. For transient dynamics, Sierra/SD performs the following operations.

1. Compute 𝑞𝑖 (𝑡) for all modes, 𝑖, at time 𝑡.

2. Expand to physical space. 𝑥(𝑡) = 𝜙𝑞(𝑡).

This requires participation of all processors that were involved in the calculation of the
modes.

3. Contract to a reduced physical space, if history output is requested.

This requires communication between processors.

In cases where the analyst requires only a subset of the data, this process can be streamlined by
performing the integration outside of Sierra/SD. The calculation is fast, and can be performed in
serial.

8.1. Process for serial integration

8.1.1. Compute modes of the system model

Modes are extracted in the usual way, i.e. perform a standard eigen extraction on the full system
model. Output a reduced order model by extracting a small portion of the eigenvectors to the
history file. Element variables of stress and strain may also be output.

HISTORY
nodeset 1
block 12
displacement
stress

END
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8.1.2. Extract Modal force

The modal force, 𝐹̃ (𝑡), can be written by specifying ’mfile’ in the OUTPUT section of the
Sierra/SD input. The file is named “ModalFv.m”. The file contains a matrix of size 𝑁𝑣𝑒𝑐𝑡 x
𝑁𝑚𝑜𝑑𝑒𝑠, where 𝑁𝑚𝑜𝑑𝑒𝑠 is the number of normal modes computed, and 𝑁𝑣𝑒𝑐𝑡 is the number of
spatial load vectors.

Recall that Sierra/SD defines time dependent loads as a sum of products of spatial and temporal
functions. For example, consider this example loads section.

LOADS
nodeset 111
force 1 0 0
function 111

sideset 22
pressure 1.0
function 2

END

This example time dependent force could be written as follows.

𝐹 (𝑥, 𝑡) = 𝑁111(𝑥)𝐹111(𝑡) + 𝑁22(𝑥)𝐹2(𝑡)

where the 𝑁 (𝑥) represents a function of space only, and 𝐹 (𝑡) is a function of time only. In this
example, there are two spatially varying functions, and 𝑁𝑣𝑒𝑐𝑡 = 2.

We assume that the analyst has access to the time varying functions, 𝐹 (𝑡), since they are part of
the input. Each of the spatial terms is multiplied by the eigenvectors to arrive it the modal
contribution.

𝑀𝑜𝑑𝑎𝑙𝐹𝑣 = (Φ𝑇𝑁 𝑗 )𝑇

The total generalized force is then,

𝑓 𝑗 (𝑡) =
∑︁
𝑖

𝑀𝑜𝑑𝑎𝑙𝐹𝑣 𝑗𝑖𝐹𝑖 (𝑡)

8.1.3. Perform Time Integration of Modal Space

Time integration can be performed in MATLAB or other suitable integrator. The file,
“modal_int.m” provides an example time integrator using the standard trapezoidal rule. 1

The result is 𝑞 𝑗 (𝑡𝑖), for each mode 𝑗 in the system, and for each time value 𝑡𝑖.

1This is the Newmark-Beta integrator with 𝛽 = 1/4, and 𝛾 = 1/2.
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8.1.4. Expand to Physical Space

The integrated time values can be represented as a matrix 𝑄, where each row of 𝑄 corresponds to
a normal mode coordinate, and each column represents a time value. The physical space is
represented by the product, 𝜙𝑄, where 𝜙 is the eigenvector in the reduced space.

Using exo2mat the eigenvectors are put into six variables. They can be reshaped into 𝜙 as
follows.

phi = [ nvar01 nvar02 nvar03 nvar04 nvar05 nvar06];
phi = reshape(something)

The transformation to physical space is,

XXX = phi * Q;
XX = reshape(XXX,n,6);
x = X(:,1);
y = X(:,2);
z = X(:,3);

Determining the element variables is not much different. A set of element results “eigenvectors”
is obtained using evarXX in place of nvarXX. The result is the product 𝜓𝑄.

8.2. How to Use Results

The results from this calculation cannot be easily visualized as an animated structure because
there is typically insufficient data to reconstruct the model. However, time histories of nodal and
element data can be examined and plotted.

We can think of the integration as the solution of three equations in three unknowns.

𝑘̃𝑞𝑛+1 + 𝑐 ¤𝑞𝑛+1 + ¥𝑞𝑛+1 = 𝑓 (𝑡)

𝑞𝑛+1 = 𝑞𝑛 +
1
2
( ¤𝑞𝑛 + ¤𝑞𝑛+1)

¤𝑞𝑛+1 = ¤𝑞𝑛 +
1
2
( ¥𝑞𝑛 + ¥𝑞𝑛+1)

The latter two equations are used to eliminate the ¤𝑞𝑛+1 and ¥𝑞𝑛+1 terms, resulting in the algebraic equation for 𝑞𝑛+1.[
𝑘̃ + 2

Δ𝑡
𝑐 + 4

Δ𝑡2

]
𝑞𝑛+1 = 𝑓 + 𝑐( ¤𝑞𝑛 +

2
Δ𝑡
𝑞𝑛) +

(
¥𝑞𝑛 +

4
Δ𝑡

¤𝑞𝑛 +
4
Δ𝑡2

𝑞𝑛

)
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Related Calculations

Similar calculations are possible with other modal based solutions. For example, a modal
frequency response calculation is performed in the same way except that the modal amplitude is
given by the following.

𝑞𝑖 (𝜔) =
𝑓𝑖 (𝜔)

𝜔2 − 𝜔2
𝑖
+ 2𝛾𝑖𝜔𝜔𝑖

where 𝑓𝑖 (𝜔) = 𝜙𝐹 (𝜔) is given by 𝑀𝑜𝑑𝑎𝑙 𝑓 𝑣 as before. The modal amplitude in this problem is
complex of course.

8.3. Limitations

The entire modal must fit in memory. Since this is a linear superposition model, only linear results
can be used. Further, while natural stresses can be computed, von Mises and other principal
stresses cannot be directly computed, as they are not linear functions of displacement.

The modal superposition method has significant limitations, independent of the particular solution
methodology. In particular, the method may be slow to converge spatially if the loading is not well
represented by a low frequency mode. Other methods such as the Craig-Bampton reduction can
be much better in these cases, though they suffer from having a coupled system of equations.

8.4. Verification

The simplest verification is to run a portion of the time history through the standard Sierra/SD
modal transient, and compare the results with the results from the reduced order model.
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9. MODAL RANDOM VIBRATION

Random vibration is a complex phenomenon. A random input with defined spectral characteristics
is applied and the resulting power spectral response is computed. It may be complicated by having
multiple inputs with statistically defined cross correlations. The modalranvib module in
Sierra/SD performs this analysis using a linear superposition of normal modes. 1

Input Deck and Exodus Requirements. The specification of the input for random vibration is
complicated. The easiest way to perform this analysis is to copy an existing input specification and
correct it for your specific model. The following sections will need attention.

The Exodus geometry specification is similar to other solutions.

Random load are often specified as an acceleration PSD, however an enforced acceleration cannot
be used in the solution method for Sierra/SD. Instead of an enforced acceleration, a large
concentrated mass may be inserted at the load point, and a Force applied to the mass. The load is
then distributed to the structure through rigid elements (Rbars) or other means.

A nodeset must be identified on the load point, and node or side sets should be identified on any
output points of interest. Be careful of nodal distribution factors other than 1!

As an example, we use the geometry shown in Figure 9-1. The load is applied to the mass on the
left of the long tube. We clamp all dofs except the 𝑌 at the load point.

Z

Y

X

Figure 9-1. – Example Random Vibration Geometry.

1See Section 16 for a discussion of the loading for a random pressure loading applied on an extended surface. The
modalranvib approach is more applicable to a loading on a handful of locations.
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9.1. Solution

The solution section is fairly straightforward, but note the following.

• While modalranvib can be performed in a single case solution, it is strongly suggested that a
multicase solution approach be used. Most of the computational effort for a large model is
typically consumed in computation of the normal modes. These calculations can be saved
using the “restart” option. The calculations of the random vibration results from the modes
cannot be restarted.

Using multicase simplifies keeping track of the output files.

• There are two methods for computing these modes.

SVD. The default method is the more complete. It computes a vector representing the
moment of the solution, and is recommended if detailed statistics on the statistical
moments of von Mises stress are required.

noSVD. The noSVD version is faster. If many (hundreds) of modes are involved, then the
noSVD version is significantly faster. The stress moments, 𝑀2 and 𝑀4, are also
computed.

𝑀 𝑗 =

∫ ∞

−∞
𝜔 𝑗𝜎2(𝜔)𝑑 𝜔

• Two parameters control culling of unwanted modes. The lfcutoff is used to control low
frequency modes. It is important to set this to a large negative value if you wish to keep
rigid body modes that may be important in the calculation of the autospectral response (see
9.4 below). On the other hand, these zero energy modes have no impact on stress, and are
by default eliminated from the calculation.

The keepmodes parameter can help reduce the number of modes used in the calculation. It
truncates modes based on their activity for the given loads.

9.2. RanLoads

This section is the most complicated structure in Sierra/SD input files. A random input function,
𝑆𝐹 (𝑥, 𝜔) is Hermitian matrix valued, and depends on position, 𝑥, and frequency. The matrix order
𝑛 𝑓 is the number of independent inputs. If 𝑛 𝑓 = 1, then 𝑆𝐹 is real valued, as illustrated in the full
example of Figure 9-3 (on page 72). The random loads section of a multiple input case is detailed
in input 9.1.

Most loads in Sierra/SD are described as a sum of spatial and temporal functions. For Random
loads this is required, but in addition, the random loads are limited to having the same spatial
variation for each row of the matrix. Thus, 𝑆𝐹 has order 3, only three spatial functions are
required. The spatial functions from the example of input 9.1 are defined in nearly the same format
as is used in a loads section. The balance of the definition is in the Matrix-Function section.
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RANLOADS
matrix=33 // defines a 3 by 3 matrix
load=1 // associates next spatial distribution with row 1
nodeset 11 // spatial distribution
force= 0 1 0

load=2 // associates next spatial distribution with row 2
nodeset 22 // spatial distribution
force= 1 1 0

load=3
sideset 3
force=0 0 1

END

Input 9.1. RanLoads example for multiple input. In this case, loads are applied at three
spatial locations as defined by the sideset and nodesets. The matrix-function determines the

correlation of these loads. (See Figure 9-2).

MATRIX-FUNCTION 33
symmetry=symmetric
dimension=3x3
data 1,1

real function 1
data 2,2

real function 1
data 3,3

real function 3
END

MATRIX-FUNCTION 33
symmetry=Hermitian
dimension=3x3
data 1,1

real function 1
data 1,2

real function 120
imaginary function 121

data 1,3
imaginary function 131

data 2,2
real function 1

data 2,3
real function 220
imaginary function 221

data 3,3
real function 3

END

Figure 9-2. – Example Matrix-Function. The example is referenced from the RanLoads example of
input 9.1. Both the left and right columns describe the spectral input to a three input system. On the
left, the inputs are completely uncorrelated (as there are no cross terms). The right example provides
correlation between the inputs.
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9.2.1. Matrix-Function

This section defines the dimension of the input and the frequency functions that define the
temporal loading. For random vibration analysis, it must be of type Hermitian. Matrix functions
may be symmetric if there is no cross correlation, as in a single input system. The matrix function
will refer to one or more function definitions for the frequency content of each function.

As an aid in model verification, you may want to add nominalt to echo the value of the matrix at
a single frequency.

9.2.2. Function

The function definition is standard. Note that the “loglog” type function was provided to help in
the cases where the function is uses straight line interpolation in the log(frequency) and
log(amplitude) domain (which is very common for power input). The units of the output of these
functions is typically 1/𝐻𝑧. It represents the frequency variation of the spectral density input.

9.2.3. Frequency

The frequency section is important for these reasons.

1. It provides the frequency band and step size over which the functions will be integrated.
This affects the accuracy of the RMS calculations. Note however, that there is little penalty
for increasing this quantity since the frequency integral is performed only once.

2. It is used to specify the output of frequency dependent transfer functions. For example, the
acceleration PSD is defined as,

𝐴(𝜔) = 𝐻†(𝜔)𝑆 𝑓 (𝜔)𝐻 (𝜔).

where 𝐻 is the acceleration transfer function, and 𝐻† is the complex conjugate transpose.

𝐻 (𝜔) =
∑︁
𝑖

−𝜔2

𝜔2 − 𝜔2
𝑖
− 2 𝑗𝛾𝑖𝜔𝜔𝑖

Thus, the output specification of the frequency block determines which of these output
quantities will be written. Note that there is little point in outputting both displacement and
acceleration as they only differ by a factor of 𝜔4.

A special consideration should be given to the low frequency end of the frequency block.
Rigid body modes are usually undamped, so a singularity may be introduced if zero is
included in the frequency band.
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9.2.4. Damping

Damping is important to this type analysis. Don’t forget it or leave it zero! All types of modal
damping specifications are appropriate.

9.2.5. Output

Specification of Vrms is the only output specification that is honored for modal random vibration
analysis. It triggers output of RMS values of stress, displacement and acceleration.

There are three values of RMS displacement – no results are output for rotational terms. The same
is true for acceleration. Note that these quantities are not vectors. The RMS values indicate the
most likely measurement of the square of the parameter, and includes the unique components of a
Hermitian 3 by 3 matrix. It cannot be combined or transformed as vector.

9.2.6. Echo

The RMS values are typically written to the output Exodus file. They could also be written to the
log file (or .rslt file) using the Vrms option. Some data is only available in the log file. If input is
selected, then the log file will contain a list of those modes that were retained in the modal
truncation together with the Γ𝑞𝑞 value for that mode. Modes for which the Γ𝑞𝑞 term are much
smaller than other terms cannot contribute significantly to the total response.

9.3. Example Input

An example input for a single input random load is shown in Figure 9-3. Full detail is found in the
Appendix, A.21.7.

The input deck for the single input random vibration model shown in Figure 9-1 include a
Solution and a Ranloads section.

• The solution block specifies that 9 modes will be computed, but only the 3 most important
will be retained in the calculation of RMS quantities.

• The ranloads block specifies that the load will be applied only to nodeset 12 (the
concentrated mass), and that the force applied will be scaled by 1000 (the load mass). It
also points to the matrix function block for further input. The matrix-function section
defines the load as a single input, and points to the PSD contained in function 1.
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SOLUTION
case eig
eigen nmodes=9
shift=-1e5

case rms
modalranvib // modal
keepmodes=3 // truncation

END

RANLOADS
matrix=1
load=1
nodeset 12
force=0 1 0 // convert force
scale 1.00e3 // to accel in g

END

MATRIX-FUNCTION 1
symmetry=symmetric
dimension=1x1
data 1,1
real function 1

END

FUNCTION 1
Name=’Power_Spectral_Density’
type=’loglog’
data 1.0 1e-8
data 299 1e-8
data 300 0.01
data 2000 0.03
data 8000 0.03
data 10000 0.01
data 10001 1e-8

END

Frequency
freq_step=100
freq_min=300
freq_max=1e4
BLOCK=1:2000

END

DAMPING
gamma=0.01

END

PARAMETERS
wtmass=0.00259
END

Boundary
nodeset 12
rotx=0 roty=0 rotz=0 x=0 z=0

end

OUTPUTS
vrms

END

ECHO
input

END

BLOCK 101
material 101
quadt
thickness= 0.200000003E+00

END

BLOCK 102 // load mass
ConMass
Mass=1.00e3
Ixx =0
Ixy =0
Iyy =0
Ixz =0
Iyz =0
Izz =0
Offset= 0 0 0

END

Block 1000
RBar // RBE type element

END

MATERIAL 101
density=0.1
Isotropic
E=1e+07
nu=0.35

END

Figure 9-3. – Single Input, Modal Random Vibration.

72



9.4. Verification of the Model

The obvious things come to mind in verifying the model for use in a random vibration analysis.
First, ensure that the model is appropriate for eigen analysis. Mass properties and fundamental
modes of vibration can be evaluated. Any rigid body modes should be near zero and not generate
significant stress.

Second, the input PSD should be verified. Since the input cannot be provided as an enforced
acceleration, it is typically specified as a load on a large mass. Examining the output acceleration
at that degree of freedom should reproduce the input power spectrum. There are important issues
that must be considered in evaluating the input PSD.

1. The rigid body modes of the system are critical to reproducing the input PSD. Typically,
only one degree of freedom is left free on the load point, and that structure is loaded in that
free direction. This corresponds to the action of a single axis shaker.

2. Rigid body modes are typically eliminated from the RMS stress calculation. This is done
because these modes do not contribute to stress, and they may dominate the numerical
solution, making it difficult to identify effects of other resonances. Further, one is often not
interested in the rigid body mode contribution to the acceleration or displacement, except
for the special case where the output PSD attempts to replicate the input. 2

Two factors can cause the rigid body modes to be removed from the calculation.

• Rigid body modes are typically removed using a low frequency cutoff. This is easily
managed using the lfcutoff parameter in the solution block. 3

• Any mode will be automatically eliminated if it is not a large contributor to the Γ𝑞𝑞
matrix. This is more difficult to manage, but is rare for rigid body modes.

3. As noted below, scaling can be a thorny issue.

A word about scale factors and the Wtmass parameter is in order. To obtain the correct
acceleration, the applied force must be multiplied by a scale factor. Note that the spatial term will
be squared for terms on the diagonal of 𝑆𝐹 , so the units are still units of force (not those of force
squared). For models with Wtmass=1, the input force is typically scaled by the product of the
mass of the large mass times a factor of 𝑔 to provide in input PSD in 𝑔2/𝐻𝑧. For English units,
where the Wtmass parameter is used to scale the mass from 𝑙𝑏𝑚 to 𝑙𝑏 𝑓 , that scale factor is already
entered, and the force should be scaled only by the weight of the large mass. Some examples are
provided in Figures 9-4, 9-5 and 9-6.

When the force is applied directly to the system, without a large test mass, verification is similar,
but care must be exercised on two counts.

2Sometimes we want to retain the rigid body modes for validation with experiment. This depends on the boundary
conditions applied during the test.

3The lfcutoff parameter must be used to retain the rigid body modes if you wish to replicate the input acceleration
PSD. However, for numerical reasons, you should not normally retain rigid body modes when computing the RMS
values of stress or displacement.
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1. It is usually best to eliminate all but the rigid body modes from the input verification
because system resonances can have a large (and confusing) impact on the results. This can
be done by setting the number of modes in the eigen solution to match the number of
anticipated rigid body modes.

2. When there is a single input, the product of the output acceleration spectra and the square of
the mass should equal the input power spectrum, (𝑎2𝑚2 = 𝑆) provided that the force causes
only a rigid body translation of the system. Rotations of the system confuse the verification.
In other words, apply the load along the center of mass of the system or constrain out
rotations in some manner.

Remember that the modal frequency response function can provide direct insight into the transfer
functions.

A third verification is important for multiple inputs, where it can be easy to confuse the input to
the 𝑆𝐹 matrix. It can help to use the nominalt option in the solution block to provide an output of
the matrix at some nominal frequency.

Scaling SI units In SI units, WTMASS=1. The acceleration of gravity is
9.8𝑚/𝑠. Our nominal structure has a mass of 17 kg. To enforce acceleration,
we add a 5000 kg mass and apply forces to it. We need to apply 1.5 g2/Hz
over the band.
We establish the following.

• A PSD function that applies 1.5 at all frequencies.

• We determine that the force applied must be,

𝐹 =𝑀load𝐴

=5000(9.8)

The scale factor is 49,000.

Figure 9-4. – Scale factors for SI units.
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Scaling inches/pounds. For a model built in inches, with mass is specified
in pounds, with WTMASS=0.002588 the mass has the proper units. Our
nominal structure weighs 0.1 pounds, and to enforce acceleration, we add a
100 pound concentrated mass and apply forces to it. We have a complicated
loading, with a maximum of 200𝑔2/Hz at 1 KHz. Parameters used are the
following.

• Our PSD function matches our complex loading. It has a maximum
of 200 at frequency 1000.

• We determine the force to be applied.

𝐹 =𝑀𝑙𝑜𝑎𝑑𝐴

=(100 · 0.002588) (386.4)

The scale factor is 100.

Figure 9-5. – Example scale factors for inches and pounds.

Scaling English units:

Our model is built in inches, and mass is specified in consistent units. We do
not need to correct the mass units, so we have WTMASS=1. Our nominal
structure has a mass of 258.8e-6 units, and to enforce acceleration, we add a
0.250 unit concentrated mass and apply forces to it. We have a complicated
loading, with a maximum of 200g2/Hz at 1 KHz. Parameters used are the
following.

• Our PSD function matches our complex loading. It has a maximum
of 200 at frequency 1000.

• We determine the force to be applied.

𝐹 = 𝑀𝑙𝑜𝑎𝑑𝐴

= (0.250) (386.4)

Thus, our scale factor is set to 96.6.

Figure 9-6. – Example scale factors for English units.
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9.5. What to do with the Results

The RMS values of displacement and acceleration can be very useful in determining what
portions of the model may be experiencing large deformations or accelerations due to a random
load. Unfortunately, RMS quantities are not vector quantities. They are difficult to display on a
graphical representation of the data. One suggestion is that RMS displacement values be
converted to an RMS radius, and spheres of that radius be plotted on the nodes of the structure.

Typically, RMS accelerations are not plotted on the structure. Such information may be useful for
testing subcomponents. The full power spectra of acceleration is available at points specified as
acceleration output in the frequency block, and may be used for test specification of
subcomponents.

Root mean squared values of stress are more readily used, and may be displayed on the model any
standard post-processor. Regions of high RMS stress indicate areas prone to failure either through
instantaneously exceeding the yield stress, or through fatigue.

9.6. Limitations, Suggestions and Cautions

Must apply the loading directly to the model, you may not use enforced accelerations.
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10. FATIGUE

Sierra/SD supports two forms of high cycle fatigue analysis. We will use both in this example.

1. Modal Random Vibration, which we will refer to as the "Frequency Domain" solution.

2. Modal or Direct Transient, which we will refer to as the "Time Domain" solution.

Frequency domain fatigue requires three solution cases in the input deck, and the Fatigue
keyword in the OUTPUTS section:

SOLUTION
case eig
eigen
nmodes 36
shift -1e6

case rand
modalRanVib

case fat
fatigue

END

OUTPUTS
fatigue

END

Time domain fatigue only requires a transient solution and the Fatigue keyword in either
OUTPUTS or HISTORY:

SOLUTION
case trans
transient
nsteps 3.5e5
time_step 1.25e-4

END

OUTPUTS
fatigue

END
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Time domain and frequency domain fatigue estimates are not expected to match for several
reasons:

• Time domain estimates the total accumulated damage, while frequency domain estimates
the damage per second.

• Time domain can represent endurance limits and mean stresses, while frequency domain
cannot.

• Frequency domain estimates the expected damage due to a random process, while time
domain estimates the observed damage. Generating long enough time series for a
statistically significant estimate can be costly.

From here on out, we will look at a specific example in detail.

10.1. Example Fatigue Model

10.1.1. Geometry

Figure 10-1. – Generic Circuit Board geometry.

For this example we will be using a mock printed circuit board model (Figure 10-1) with all
dimensions arbitrarily chosen for visual appeal. We will be driving the model with a random force
on the underside of the structure while constraining all other translations and rotations to be zero
at the drive point. Components are attached to each other using all-to-all contact. We will be
focusing on the green electrical pins shown in Figure 10-2.
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Figure 10-2. – Generic Circuit Board components.

10.1.2. Materials

The material properties of the electrical pins are given in Sierra/SD syntax as:

MATERIAL al_with_fatigue
E = 1e7
NU= 0.3
Density = 0.1
Fatigue_A1 = 20.68
Fatigue_A2 = -9.84
Fatigue_A3 = 0.63
Fatigue_A4 = 0.0
Fatigue_Stress_Scale = 0.001

END

The elastic properties are a rough approximation aluminum, while the fatigue properties are
specific to an un-notched 6061-T6 aluminum alloy. The 5 fatigue parameters are:

1. Fatigue_A1, complicated units, strictly positive

2. Fatigue_A2, dimensionless, strictly negative

3. Fatigue_A3, dimensionless, defines the damage contribution from mean stress, strictly
positive, 3 is large, 100 is not physical

4. Fatigue_A4, units of stress, defines an endurance limit below which no damage occurs,
strictly positive

5. Fatigue_Stress_Scale, optional, conversion rate between model stress units and damage
function stress units, e.g. convert 𝑝𝑠𝑖 to 𝑘𝑠𝑖
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It is not necessary to define a Fatigue_Stress_Scale, but the option exists to prevent accidental
translation errors. The conversion rate of Fatigue_A1 is given by:

𝐴1𝑛𝑒𝑤 = 𝐴1𝑜𝑙𝑑 + 𝐴2 ∗ log10(1/𝐶), 𝐴4𝑛𝑒𝑤 = 𝐴4𝑜𝑙𝑑 ∗ 𝐶,

where 𝐶 is the conversion rate from old units to new units. Note that Sierra/SD does not attempt
these conversions directly. Instead, model stresses are converted to material units before being
applied to the damage function.

All together, these parameters define the number of cycles to failure 𝑁 given a stress cycle with
peak 𝑆𝑚𝑎𝑥 and valley 𝑆𝑚𝑖𝑛:

log10(𝑁) = 𝐴1 + 𝐴2 log10(𝑆𝑚𝑎𝑥 (1 − 𝑅)𝐴3 − 𝐴4),

where 𝑅 = 𝑆𝑚𝑖𝑛/𝑆𝑚𝑎𝑥 .

In the frequency domain, we are only able to evaluate damage functions which can be represented
as:

𝑁 ∗ 𝑆𝑚𝑚𝑎𝑥 = 𝐴,
where 𝑚 and 𝐴 are material constants derived from 𝐴1 to 𝐴4. To reduce 4 material constants
down to 2, we set 𝐴4 = 0, and assume 𝑅 = −1 when doing frequency domain analyses. This limits
the types of problems which can be represented accurately in the frequency domain. There will be
more discussion of trade-offs later.

Since the geometry is arbitrary anyway, we don’t pay much attention to the other components.
The base structure and electrical components are modeled as aluminum. The circuit board
material is slightly less dense, and significantly stiffer than the aluminum, but still arbitrary.

10.1.3. Loads

The loading for this model is a single-point random force between 10 Hz and 2000 Hz with the
autocorrelation function shown in Figure 10-3, evaluated at 0.025 Hz intervals between 10 Hz and
4000 Hz.

By sampling this random function at intervals of 1.25e-4 seconds for 40 seconds (3.2e5 time
steps), we are able to generate a very close approximation in the time domain. Figure 10-4 shows
a small snapshot of the time domain load, and resulting Auto Spectral Density (ASD)

Figure 10-5 shows a histogram of the force levels seen in the time domain. Note that 4𝜎 peaks
exist in the data, and some values approach 5𝜎.
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Figure 10-3. – Frequency Domain Loading ASD.

Figure 10-4. – Time Domain Load Snapshot (left), and ASD (right).

Figure 10-5. – Histogram of time domain loads with vertical bars at 1-sigma intervals.
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10.2. Results

10.2.1. Frequency Domain

Damage estimates in the frequency domain come in two flavors: "Narrow Band" and "Wirsching".
Both are a damage rate, representing the damage per second seen by the element. "Narrow Band"
damage is intended for solutions where the stress response is occurs at a narrow band of
frequencies, while "Wirsching" damage includes a correction factor for wider frequency bands.
Unfortunately, Sierra/SD does not support spectral density outputs for von Mises stress, and so
we have no way of knowing which we should use in this case. Narrow band damage rates are
always larger than Wirsching damage rates.

Figure 10-6. – Frequency Domain Damage Rate Estimates.

10.2.2. Time Domain

Sierra/SD supports one fatigue damage estimate in the time domain: "Damage". This is an
accumulated damage as a result of the transient environment, not a damage rate. In our case, the
loading duration was 40 seconds, so the largest average damage rate is 3.19𝑒−6. The average
damage rate has been manually calculated in Figure 10-7 for comparison to frequency domain
results.
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Figure 10-7. – Time Domain Damage Estimate.

10.2.3. Comparison

The most obvious difference in these solutions is the cost. The modal transient solution took just
over 3 hours to complete, while a modal random vibration solution took only 1 minute with
fatigue outputs. Note: Requesting full acceleration and stress output on the pins also requires 3
hours, even in the frequency domain.

The solution quality suffers in the modal random vibration solution. In this example, we chose a
material with no endurance limit so that we could make the closest comparison possible, but the
frequency domain cannot account for mean stresses either. Together, these details significantly
increase the predicted damage in the frequency domain. The peak time domain damage estimate
was 4.5x lower than the Wirsching damage rate, and 7.4x lower than Narrow Band. This means
the difference between surviving 3.6 days at these levels, and surviving 19 hours (12 for Narrow
Band).

Note: The Wirsching damage estimate was not always conservative. One element in particular
saw roughly 2x more damage in the time domain than the Wirsching estimate, and was in the 70th
percentile of damaged elements. For that element, the Narrow Band estimate was a decent
approximation of the time domain (only 13% error).
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11. COUPLED ELECTRO-MECHANICAL PHYSICS

The term "piezoelectricity" refers to the production of electrical charges on a surface by the
imposition of mechanical stress. Sierra/SD supports coupled electro-mechanical physics to
simulate the electro-mechanical behavior of piezoelectric materials when subjected to an electric
field or mechanical stress. One common application of piezoelectrics is in experimental modal
testing. Due to the electro-mechanical stiffness coupling, piezoelectrics provide a convenient
means to conduct structural dynamics tests since structural vibrations can be converted to electric
potentials (i.e. voltages) which can then be stored and processed.

This section demonstrates how to use Sierra/SD to simulate exciting and measuring structural
vibrations using voltages and piezoelectrics. A mechanical wave is generated from a prescribed
voltage time-history using one piezoelectric tile. It passes through the aluminum barrier and
excites the second piezoelectric tile. The deforming piezoelectric tile induces a time-varying
electric charge at its surface that we output in terms of voltage.

The demonstration model is shown in Figure 11-1. Symmetry faces indicated in Figure 11-1 mark
the surfaces with symmetry boundary conditions. The voltage input and response surfaces are
indicated. See Section 21.18 for the full input deck.

Figure 11-1. – The single patch bimorph model.
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11.1. Piezoelectric Material Input

The piezoelectric material constitutive properties must include the orthotropic elasticity tensor
(Cij), the permittivity tensor (permittivity_ij), and the piezoelectric coupling tensor (e_ij).
Here is the material block for this input deck:

// scale = 1e9 // voltage unit scale

// ep = 8.85418782e-12 // permittivity of free space
// D11 = ep * 762.5 * scale * scale
// D33 = ep * 663.2 * scale * scale

// E11 = -5.20279 * scale
// E33 = 15.0804 * scale
// E15 = 12.7179 * scale

MATERIAL PIEZOELECTRIC
ORTHOTROPIC_PIEZOELECTRIC
Cij = 1.39e11 .78e11 .74e11

1.39e11 .74e11
1.15e11
.25e11
.25e11
.31e11

permittivity_ij D11 0 0
0 D11 0
0 0 D33

e_ij = 0 0 E11
0 0 E11
0 0 E33
0 E15 0
E15 0 0
0 0 0

density = 7500
END

Input 11.1. Piezoelectric Material

There are a few important details to note.

• Careful consideration for the coordinate system should be taken when specifying the
coupling matrix. The material’s poling direction is dependent on the coupling matrix,
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which should be specified with respect to the global coordinate system (unless a local
coordinate system for that material block is specified). In this example, the piezoelectric
material is poled in the global z-axis.

• Since the permittivity matrix has units, its entries should be scaled by the permittivity of
free space. In this example, we define a variable 𝑒𝑝 for the permittivity of free space.

• We recommend changing the voltage units (volts 𝑉) to nanovolts (𝑛𝑉) where 1 𝑛𝑉 = 10−9 𝑉

. This scaling will significantly improve the condition of the system’s stiffness matrix and
hence the convergence of the FE solver. See Section 11.4 for more details on solver issues
related to piezoelectrics.

11.2. Boundary Conditions

The voltage signal used to excite the mechanical wave is a Gaussian pulse defined by the
superposition of a 10 kHz and 43 kHz sinusoidal waves weighted by a Gaussian pulse function
(Figure 11-2). The Gaussian pulse is applied to the surface labeled Input Surface Voltage. In this
example, we define the voltage time history explicitly with a function. Grounded voltage
conditions are prescribed on the barrier surfaces. The following presents the boundary input
including the symmetry boundary conditions.

BOUNDARY
sideset 5 //symmetry boundary condition
x = 0

sideset 4 // symmetry boundary condition
y = 0

sideset 6 // voltage input
transV = 1
function voltage_input

sideset 7 // grounded voltage
V = 0

END

FUNCTION voltage_input
type linear
#include create_input_deck/voltage_input.inp

END

Input 11.2. Boundary Conditions

In addition to prescribing voltage boundary conditions, we also apply a voltage rigid set to enforce
an equipotential surface at the voltage output surface. The surface of the piezoelectric device
where voltage is measured is often plated with a purely conductive material such as copper; this
physically enforces an equipotential surface. The voltage rigid set simplifies our model by
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enforcing the equipotential surface without having to model a super thin conductive layer. The
rigid set is specified in this problem as follows:

RIGIDSET set1
voltage
sideset 8

END

Input 11.3. Voltage Rigid Set

11.3. Transient Response Results

Figure 11-3 presents the voltage response at an arbitrary node located on the output surface. Since
we used a rigid set, the voltage is equal at every node along that surface.
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Figure 11-2. – Time history of voltage input (Gaussian pulse).
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Figure 11-3. – Time history of voltage response.
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11.4. Linear System Solver Issues and Recommendations

Elastic and permittivity material properties can differ by tens of orders of magnitude, causing
ill-conditioning of The coupled piezoelectric global stiffness matrix. To improve the matrix
condition, we recommend scaling the voltage units (volts 𝑉) to nanovolts (𝑛𝑉) where
1 𝑛𝑉 = 10−9 𝑉 . To scale voltage to nanovolts, the piezoelectric coupling matrix 𝑒𝑖 𝑗 should be
multiplied by 109 and the permittivity matrix by 1018.

Another option to account for ill-conditioning is to use the gdsw solver with diagonal scaling.
These solver parameters can be specified in the input deck as shown below. Diagonal scaling
should be thought of as a band-aid. If the conditioning of the system can be fixed by scaling the
underlying unit system, that is preferable to using diagonal scaling. The solver_tol option controls
the tolerance to which the underlying linear system is solved. The default tolerance is 1𝑒 − 6, a
tolerance of 1𝑒 − 12 will give a more accurate solution at the cost of increased computation time.
One way to check the convergence of the solver is to see if changing the solver tolerance
(1𝑒 − 6 → 1𝑒 − 7) significantly changes the solution. If it does, a tighter solver tolerance is
needed. We recommend contacting the Sierra/SD team (sierra-help@sandia.gov) in choosing an
appropriate set of solver parameters.

SOLUTION
directfrf // solution method selected
solver = gdsw // solver specified

END

GDSW
diag_scaling = diagonal // diagonal scaling turned on
solver_tol = 1e-10 // convergence tolerance

END

Input 11.4. GDSW Solver Specification
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12. SYSTEM LEVEL MATRICES OF VISCOELASTIC FEA MODEL 1

In Sierra/SD, the constitutive model for an isotropic linear viscoelastic material uses a
normalized Prony series to describe the time-dependent decay from the glassy moduli to the
rubbery moduli. Following the theoretical development of the finite element formulation in the
theory manual, the element stiffness matrices may be cast as:

𝐾𝜈,𝐾 =
(
𝐾𝑔 − 𝐾∞

) ∫
𝐵𝑇𝐷𝐾𝐵𝑑𝑉 (12.0.1)

𝐾𝜈,𝐺 =
(
𝐺𝑔 − 𝐺∞

) ∫
𝐵𝑇𝐷𝐺𝐵𝑑𝑉 (12.0.2)

𝐾𝑒 = 𝐾∞

∫
𝐵𝑇𝐷𝐾𝐵𝑑𝑉 + 𝐺∞

∫
𝐵𝑇𝐷𝐺𝐵𝑑𝑉 (12.0.3)

The matrix 𝐵 is the strain-displacement matrix that depends on the element shape function, while
the scalar parameters 𝐾∞, 𝐾𝑔, 𝐾∞ and 𝐺𝑔 represent the rubbery (subscript ∞) and glassy
(subscript 𝑔) bulk and shear moduli. Both 𝐷𝐾 and 𝐷𝐺 are the constitutive matrices for the bulk
and shear terms, respectively. These element stiffness matrices (along with the element mass
matrix) are then assembled using standard finite element techniques, resulting in the
semi-discretized equations of motion for a structure with linear viscoelastic materials.

𝑀 ¥𝑥 +
∫ 𝑡

0
𝐾𝜈,𝐾𝜁𝐾 (𝑡 − 𝜏) ¤𝑥(𝜏)𝑑𝜏 +

∫ 𝑡

0
𝐾𝜈,𝐺𝜁𝐺 (𝑡 − 𝜏) ¤𝑥(𝜏)𝑑𝜏 + 𝐾𝑒𝑥 = 𝑓 (𝑡) (12.0.4)

This coupled integro-differential equation contains real, symmetric 𝑁x𝑁 system-level mass (𝑀),
viscoelastic bulk stiffness (𝐾𝜈,𝐾), viscoelastic bulk shear (𝐾𝜈,𝐾), and elastic stiffness (𝐾𝑒)
matrices. The 𝑁x1 vectors 𝑥 and 𝑓 (𝑡) correspond to the physical displacements and externally
applied forces, respectively, and the dot represents the time derivative. The integral terms have a
simple functional form, such that the kernel functions are a constant matrix multiplied by a series
of normalized scalar exponential functions (Prony series).

One can extract the system level matrices (𝑀 , 𝐾𝜈,𝐾 , 𝐾𝜈,𝐺 , and 𝐾𝑒) directly from Sierra/SD by
writing out the matrices of an isotropic linear elastic FEA model. The mass and stiffness matrices
are written to MATLAB “*.m” files when using the “dump” solution type in the Sierra/SD input
deck. The mass matrix extraction is straightforward since it only depends on the density; however,
extracting the individual stiffness matrices is more complicated. A method for extracting the
system-level bulk and shear stiffness matrices using the dump solution type is given in Table 12-1.
Figure 12-1 provides an example of the input required to extract the 𝐾𝜈,𝐾 stiffness matrix.

1THIS SECTION PREPARED BY ROBERT KUETHER, ORG. 01556.
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Output Matrix in Eq. (12.0.4) Input Bulk Moduli Input Shear Moduli
𝐾𝑒 𝐾∞ 𝐺∞
𝐾𝜈,𝐾 𝐾𝑔 − 𝐾∞ 0
𝐾𝜈,𝐺 0 𝐺𝑔 − 𝐺∞

Table 12-1. – Linear elastic material parameters to output system-level stiffness matrices using the
dump solution type.

SOLUTION
case ’dump matrices’
dump

END

FILE
geometry_file ’plate_9by9inch.exo’

END

ECHO
mass

END

BLOCK 1
hex20
material 1

END

//K_g = 9.8039e6
//K_inf = 7.0e6
//G_g = 3.7594e6
//G_inf = 2.5e6

MATERIAL 1
Isotropic
G= 1e-4 // essentially zero
K= 2.8039e6 // = K_g - K_inf
density=0.00024739

END

Figure 12-1. – Sample Input to determine Viscoelastic Matrices.
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13. GENERAL ELEMENT COORDINATE SYSTEM

The input deck for this model is at 21.8. Orthotropic materials, such as fiber reinforced
composites, are common structural materials. In some cases the orthotropic directions align with
simple geometric shapes such as cylinders or spheres. In those cases the coordinate system can be
defined via cylindrical, spherical, rectangular, or other simple coordinate systems. However, in
general cases the coordinate system will have no such simple alignment. In this case an
element-by-element coordinate system can be defined in the mesh file and then used for the
coordinate system.

An extremely common case is orthotropic directions that line up with the geometry of the body.
For example fiber reinforced composites that wrap around the exterior of a shape. A python script
exists to define coordinate systems for this case, and is demonstrated in this example along with
the Sierra/SD inputs to use those directions.

The model setup is shown in Figure 13-1. Block 1 will be an orthotropic material with its
coordinate system aligned with the exterior boundary. The ’elemToSidesetDirections.py’ script
will setup the coordinate system via:

export PATH=/projects/sierra/toolset/5.22/contrib/testTools/adagio/:$PATH
elemToSidesetDirections.py --input turbine_section.g \

--output turbine_section_coord.g \
--blocks 1 --sideset 1 --variable matCoord \
--zdir 0 0 1

This script uses exodus.py to populate an element coordinate system on block 1 such that at each
element the local X direction points towards the sideset, the local Z direction is orthogonal to X
and points towards the provided zdir, and the local Y direction is the remaining orthogonal
direction. The three direction vectors will be output per element in the matCoord_1, matCoord_2,
and matCoord_3 variables, as shown in Figure 13-2.

The coordinate system is imported form the mesh file by populating the internal variables
’material_direction_1’, ’material_direction_2’, and ’material_direction_3’ via:

Figure 13-1. – Model Setup. Block 1 in lavender (left) sideset 1 in red (right.)
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Figure 13-2. – Coordinate system vectors X (red), Y(green), and Z(blue.)
;

geometry_file turbine_section_coord.g
initialize variable name = material_direction_1
read variable = matCoord_2_
variable type = element

initialize variable name = material_direction_2
read variable = matCoord_1_
variable type = element

initialize variable name = material_direction_3
read variable = matCoord_3_
variable type = element

And then those imported coordinate directions are used by the element via:

coordinate from_transfer

In this case the orthotropic material represents carbon reinforced composite and has a strong ’E1’
axis of the material. This strong E1 axis is aligned with the local Y coordinate system defined in
the mesh file giving a strong axis that wraps around the wing structure. A modal solution is then
solved. In the Eigen output file the correct application of the material coordinate system can be
confirmed by requesting the ’material_direction_1’, ’material_direction_2’, and
’material_direction_3’ element variables in the OUTPUTS section.
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14. INFINITE ELEMENTS

In this section, we describe how to use infinite elements for acoustics. The elements enforce
high-order absorbing boundary conditions. As a post processing step, it is also possible to
evaluate the solution at far-field points outside of the acoustic mesh.

The infinite element specification begins with a sideset on the Exodus file of interest. That sideset
has to be a spherical surface or part of a spherical surface. Thus, a full spherical surface,
hemispherical surface, or a quarter of a sphere would all be acceptable. Note that the infinite
element accuracy will degrade if the element surfaces on the spherical boundary do not
adequately represent the spherical surface. The finite element surfaces will be faceted, but enough
elements on the boundary are needed to represent the spherical curvature.

Once a sideset is identified for the infinite element surface, the boundary section in the input deck
would be modified as follows.

BOUNDARY
sideset 1
infinite_element
use block 57

END

BLOCK 57
infinite_element
radial_poly = Legendre
order = 5
source = 0 0 0
neglect_mass = yes

END

Where block 57 contains the infinite element parameters. The number 57 is arbitrary; the user can
pick any number that is not assigned to a block in the input mesh Exodus file. The parameters are
summarized in Table 14-1. Only Legendre polynomials are available for the radial basis. The
order of the polynomial can vary from 0 to 19. Order 0 corresponds to a simple absorbing
boundary condition. Higher orders will be more accurate, but also more computationally
expensive. The source point is the location of the center of the spherical surface from which the
infinite elements originate. This would coincide with the origin of a spherical coordinate system
that is anchored to the spherical surface of the infinite elements. The neglect_mass option
indicates whether to neglect the mass matrix contributions from the infinite elements. Note that
for a spherical surface, the mass matrix contributions from an infinite element are identically zero.
However, when numerically generated, small entries will be present in the mass matrix, and thus
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Parameter Description Options default
radial_poly the type of polynomial for radial

expansion
Legendre Legendre

order the order of the radial basis 0-19 0
source the location of the source point any 3 real numbers 0 0 0
neglect_mass indicates whether to neglect infi-

nite element mass
yes or no yes

Table 14-1. – Available parameters for the infinite element section.

an option is provided to include these terms in the analysis. It is recommended to neglect the mass
in most cases, and thus it would typically be set to yes. By default, neglect_mass is set to yes.

Note that infinite elements only require a specification of a sideset on the surface of interest. No
elements need be set up explicitly on this interface. Internally, Sierra/SD constructs virtual
elements and virtual nodes that define the actual infinite elements, but the analyst need not build a
layer of elements on the boundary of the sideset.

Currently, infinite elements are only set up to work in the time domain. We expect to provide the
frequency domain version in an upcoming release.

The infinite element formulation in Sierra/SD uses a Petrov-Galerkin formulation, rather than a
standard Galerkin formulation. As a result, nonsymmetric system matrices are encountered with
infinite elements. This restricts the solver options to the GDSW solver. In addition, special
options have to be selected in GDSW block to invoke the nonsymmetric solver for the linear solves.
If infinite elements are specified, Sierra/SD automatically selects the GDSW solver and the
correct options for solving. This makes the process easier for the analyst. However, we list the
GDSW options internally selected for completeness. A full input for infinite elements is found in
the Appendix (A.21.9).

GDSW
matrix_type nonsymmetric
krylov_method 1
solver_tol 1.0e-9
scale_option 1
coarse_solver LDM
I_solver LDM
O_solver LDM

END

Note that the nonsymmetric option lets the solver know that it should be expecting a
nonsymmetric matrix.
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14.1. Far-Field Postprocessing

Due to the infinite element formulation, as a post processing step the response outside of the
acoustic mesh may be output. It can be computed at any point outside the mesh, and for any
period. The linesample capability may be used to write out the far-field data. This data may be
written in a readable MATLAB format, which can easily be read in to create plots of the data.
Linesample is placed in the linesample section as follows.

linesample
samples per line 10
endpoint 0 0 0 1 0 0
endpoint 0 0 0 0 1 0
format mfile

end

This example creates two lines, with 10 samples per line. The first line runs from the origin for
one unit in the 𝑋 direction. The second line extends from the origin in the 𝑌 direction. For
example, the following section,

linesample
samples per line 2
endpoint 0 0 50 0 0 50.001

end

will instruct Sierra/SD to output the acoustic results at the 2 points (0, 0, 50) and (0, 0, 50.001).
Since these 2 points are very close, the output will be almost the same. Thus, this is an example of
using linesample to output the results at a fixed point in space.

The output will be written to a Matlab m-file with the name “linedata.m”. One file is written per
analysis (results are joined analogous to history file output). For example, reading this file in will
create vectors Time and Displacement. In our case Displacement is just a placeholder for the
acoustic pressure.

The infinite element output in the far-field is always given with respect to some time shift. This is
due to the properties of the inverse Fourier transform. Details of this are given in the theory notes
on infinite elements. The time shifts are included in the linesample output for the analyst to use.
These will allow for plotting the time histories against the appropriate time vectors. For example,
to apply the time shift to the first point in the linesample data, one could use the following
MATLAB command.

shifted_time = time + TimeDelay(1);

One TimeDelay value is available for each sample point in the linesample output.

Once the time data is properly shifted, the following command in MATLAB will plot the pressure
for the first sample point.
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plot(shifted_time,Displacement(1,:))
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15. ACOUSTIC SCATTERING

Acoustic analysis often includes the concepts of a “scattering” solution. By this, we mean an
analysis where it is relatively easy to specify the incident wave at all points in space, and we solve
for the reflected wave. Such analysis is seldom done for elasticity because the input medium is not
usually homogeneous and an a priori specification of the incident wave is a challenge. Such
scattering solutions are useful in a variety of contexts. A submarine in the ocean may be struck by
an incident “ping” from a neighboring ship. Such a ping is nearly a plane wave, and calculation of
the outbound wave is the item of interest. The total acoustic pressure (which is the sum of the
incident and scattered components) may not be important. Because the incident wave is known,
we do not need to model the vast region of space between the incident source and the scattering
object. This greatly reduces the cost of the computation.

The theory manual details the formulation. There are several salient issues.

1. The same PDE is solved for scattering and full pressure solutions.

2. The acoustic scattering loads are applied analytically as a pressure on the wet surface of the
structure.

3. A conjugate load is applied to the wet surface of acoustic medium. Thus, there are two
loads applied: a pressure load, 𝑃, on the elastic medium, and a velocity load on the acoustic
medium. For a plane wave, 𝑣 = 𝑃

𝜌𝑐
.

4. Because there are two such loads, we have designed a limited number of specialized
functions for application of these loads. These functions ensure compatibility between the
elastic and acoustic portions of the model.

5. The natural output quantity is the scattered pressure.

6. Typically, absorbing boundary conditions are applied to the exterior of the mesh to reduce
reflection of the scattered wave.

Because scattering solutions use the same PDE as the full pressure calculation, the analyst could
complete an analysis by applying these loads independently. Using the scattering loads and set up
provides a more robust and simpler interface to scattering problems.

15.1. Scattering Sphere

The sample problem is an elastic sphere floating in an infinite acoustic medium. The meshes for
the sphere and fluid do not match at the interface, so tied surface specifications must be used. The
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example problem is illustrated in Figure 15-1. A full example is listed in the Appendix
(A.21.14).

Figure 15-1. – Elastic Sphere in Fluid Example.

Solution

Within the solution section of the input, we specify the “scattering” keyword. This informs the
solver that consistency must be maintained between loads, and output pressures will be scattered
pressures.

Loads

The loads section should have a load applied to both the elastic and the fluid portions of the
model. In the example input of Figure 15-2, sideset 1 is the surface of the elastic material, and
sideset 2 is the corresponding surface of the fluid. Note that there are no checks made on this
loading. However, if the loads are not applied in pairs, the analysis is meaningless.

While other structural loads can be applied in a scattering problem, it is incorrect to apply
acoustic loads other than scattering loads. This is because we are redefining the acoustic variables
to apply to incident pressures. We cannot define the variable as “incident” in one portion of the
analysis and “total pressure” in another portion.

Functions

The functions referred to in the loads section must be capable of applying different functional
responses to the elastic and acoustic regions. Specification of the “scattering” keyword in the
solution section permits us to check this for consistency.
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Tied Data

Because the elastic and acoustic regions of the model are not compatibly meshed, the surfaces
must be tied together with a tied surface specification. Sidesets 1 and 2 are again applied. It is not
necessary for the scattering problem to use tied data sections if the regions have compatible
meshes.

Outputs

Specification of “apressure” outputs the scattered pressure.
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Solution
case out

transient
scattering
nsteps=1000
time_step=0.001

end
Loads

sideset 1
pressure=1
function=1

sideset 2
acoustic_vel=1.
function=1

End
Function 1

type=Plane_Wave
material=water
k0=450.
direction -1 0 0

end
Tied Data

name surface1-2
surface 1,2

end
Outputs

apressure
displacement

end
material water

c0 = 5000
density = 1

end

Figure 15-2. – Example Scattering Input.
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16. RANDOM PRESSURE LOADS

In a previous section we discussed random vibration input (see section 9). That section addresses
a loading where the frequency content (or power spectral density) of the loading is known for a
few points on the structure. In contrast, for hypersonic vehicles a random loading may occur at
thousands of points on the surface. Many aspects of the loading are the same, but the specification
is different, and for performance reasons, the solutions are performed differently.

The starting point for this analysis requires the following.

1. A surface sideset where the loading will be applied.

2. A temporal correlation function to apply on the surface. The temporal correlation function
is the inverse Fourier transform of a power spectral density (PSD).

3. A spatial correlation relation. Currently, that relation may only be specified as a pair of
exponential decay constants.

Details of the problem setup may be found in the User’s Manual. This section provides a simple
example of the setup and an informal discussion of the sources of the data.

16.1. Example Problem Set-up

For our example, we consider a cylinder in a flow field as shown in Figure 16-1. The structure is a
right circular cylinder of diameter 1 unit, and height 2 units. The flow is directed towards this
cylinder in the 𝑋 direction, and the PSD and corresponding temporal correlation function are
shown in Figure 16-2. Input is found in the Appendix (A.21.10).

We are interested in this example, in frequencies up to 500 Hz, so the cutoff frequency is 500 Hz.
There is no point in adding energy above the desired cutoff frequency – it only complicates the
procedure. 1 The PSD of the input thus controls much of the solution.

The spatial correlation is often more difficult to obtain. For our example, we require a decay
constant of 2.0 units in the flow direction, and 5.0 perpendicular to the flow. One can think of
corresponding decay distances of 0.5 and 0.2 respectively. Thus, down the flow, points more than
about 1.5 units away will not be well correlated. 2 Perpendicular to the flow, correlations decay
even faster.

1Although the physics has energy above 500 Hz, cutting off the PSD at 500 Hz. is required because a higher cutoff
frequency narrows the correlation function with no added accuracy.

2correlation=exp (−3) = 0.0498
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Figure 16-1. – Example Random Pressure Geometry.
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Figure 16-2. – Example Random Pressure PSD and Correlation Functions.
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One rarely has much experimental data about the spatial correlation. Some information is
sometimes garnered from the temporal correlation. For example, if the correlation function has a
characteristic time, 𝜏, one would expect the spatial correlation length to be of the order of 𝛿 = 𝑣𝜏,
where 𝑣 is the flow velocity. For a structure in a fluid, the dimensions of the turbulent layer also
provide a bound on the spatial correlation.

16.2. Example: Input Specifications

The physical quantities of the previous section can be interpreted and expressed as Sierra/SD
input as follows.

• The temporal correlation function of Figure 16-2 can be digitized as a Sierra/SD function.
In Figure 16-3 we use a triangular pulse for simplicity. The correlation function should be
symmetric about the origin, and it should have the value of 1.0 at the origin. The
correlation_function is used in the load section, as shown in Figure 16-4.

• In the loads section, we also define the following quantities.

cutoff_freq = 500
coordinate = 1 to set flow direction

ntimes = 5 varies from 3 to 20. Too small causes poor
replication of the temporal correlation func-
tion. Too large results in ill conditioning and
singularity.

Recall that the full correlation matrix is a tensor product of the spatial correlation with temporal
components. The “NTimes” parameter controls the number of samples in the time domain.

All that remains is setting the spatial correlation decay constants in the loads section. The full text
is shown in Figure 16-4.

correlation_length_z = 0.5
correlation_length_r = 0.2

FUNCTION 1
type linear
data -0.001909859319285 0
data 0 1
data 0.0019098593192856 0

END

Figure 16-3. – Random Pressure Correlation Function. The temporal correlation is digitized as a “time
only” function. For purposes of illustration, we use a simple triangular function here.
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LOADS
sideset 1

randompressure
cutoff_freq = 500
delta_t = 0.001
correlation_function = 1
ntimes = 5
correlation_length_z = 0.5
correlation_length_r = 0.2
coordinate = 1

END

BEGIN RECTANGULAR COORDINATE SYSTEM 1
origin 0 0 0
z point 1 0 0
xz point 1 0 1

END

Figure 16-4. – Random Pressure Load Section. Note that the “flow” direction is the 𝑍 coordinate
direction of coordinate frame 1.

16.3. Example: Verifying the Load

This is a fairly complex input, and it is advisable to verify the generated loads to ensure
consistency. We examine four quantities.

1. average force on a node.

2. variance of the force on a node.

3. temporal force correlation on a single node.

4. cross correlation of forces between nodes.

All these quantities require output of the total input force, which is obtained by specifying “force”
in the “outputs” section of the Sierra/SD input. We will use MATLAB tools to evaluate many of
the results. Data can be read into MATLAB from the Exodus results using “exo2mat” or using
other methods.

16.3.1. Average Nodal Force

The average nodal force may be determined either by evaluating the MATLAB results directly, or
using the “statistics” output from Sierra/SD. The built in statistical output is easiest. Supply the
“statistics” keyword to the “outputs” section, and results will be written to an additional Exodus
file. This has the added benefit that these results may be easily visualized using Paraview or
Ensight. See Figure 16-5.
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For long time integration, the average value of the nodal force should approach zero. Shorter time
samples will have greater variation. The random variables depend on “cutoff_freq”. The
number of random samples can be computed as,

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 𝑇𝑖𝑚𝑒𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 · cutoff_freq

The fractional mean of the force should be within about 3/
√︁
𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠. Or,

𝐸𝑟𝑟𝑜𝑟𝑚𝑒𝑎𝑛 =

����𝐹𝑚𝑒𝑎𝑛𝐹𝑜

���� < 3√︁
𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠

Here 𝐹𝑜 is the force applied for a correlation function of 1. It involves the scale factors of the
function, the sideset distribution factors and the effective area for each node. 3 See the comments
section, 16.4 for, discussion on the effective area.

For the example in Figure 16-5, mean forces are of the order of 1/1000. In this example, we took
10,000 time steps, with each of 0.1 ms for a total time 𝑇𝑖𝑚𝑒𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 = 1 𝑠. With
𝐷𝑒𝑙𝑡𝑎_𝑇 = 1/cutoff_freq = 1𝑚𝑠, the total number of random samples is 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 1000.

For nodes in the center of the loading area, the effective area is about 0.0098 square units.
Because the sideset distribution factors are all one, we have 𝐹𝑜 = 0.0098. Then,

𝐸𝑟𝑟𝑜𝑟𝑚𝑒𝑎𝑛 =
0.001
0.0098

= 0.1

which is greater than 3√
1000

= 0.095. A distribution of the mean is shown in Figure 16-6.

Figure 16-5. – Variation of Mean and Standard Deviation of Force Magnitude on the Surface.

3A simple way to estimate 𝐹𝑜 is to run a very short transient analysis after having converted the random pressure load
to a constant unit pressure.

107



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−3

0

20

40

60

80

100

120

140

160

|mean force|

C
o

u
n

t

Figure 16-6. – Distribution of Mean Forces on Surface.

16.3.2. Variance of Nodal Force

The standard deviation, which is the square root of the variance, is also available as an output
from the analysis, and may be plotted on the structure using standard visualization tools. See
Figure 16-5.

Again, the standard deviation is a statistical quantity, which is only meaningful for large numbers
of samples. In the limit of large 𝑁 , the standard deviation should approach 𝐹𝑜, as defined above,
provided that the correlation function is 1 at time 0.

The plots show a value of 𝐹𝑠𝑡𝑑 ≈ 0.0085 which is under the expected value of 0.0098. Because the
averaging process tends to round out the correlation function, the measured values of the standard
deviation are typically somewhat less than 𝐹𝑜. The autocorrelation function analysis of the
following section should make this more clear.

16.3.3. Temporal Nodal Force Autocorrelation

The statistics of the loading on a single node should recover the initial input temporal correlation.
Figure 16-7 shows the correlation function extracted from the raw time response data. The
correlation function may be computed as,

𝑓𝑐 (𝑛) =
1
𝐹2
𝑜

∑︁
𝑖

𝑤𝑖𝑤𝑖−𝑛.

Where 𝑤𝑖 is the force on a node at time 𝑡𝑖. This data can only be obtained using MATLAB or
another external tool, i.e. it is not available as part of the statistical output. In MATLAB we get
this with, C = xcorr(f1,f1), where f1 is the force time history on a node of the surface. We
recover a correlation that is similar to the original triangle correlation in the input. Because of
interpolation and finite sample length, we do not expect the same curves precisely.

The curves of Figure 16-7 should be considered “good enough” in a statistical sense. A temporal
interpolation from multiples of Delta_T to the integration time step is being performed, which
smooths the values of the correlation.
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Figure 16-7. – Nodal Force Autocorrelation.

16.3.4. Spatial Cross Correlation

The previous section discussed the autocorrelation function, i.e. the temporal correlation of
signals on the same spatial location. We can also examine the cross correlation functions. We will
only evaluate the functions at the peak.

This is more difficult. We use the MATLAB “find” method to get the indices of the nodes with
𝑥 = −0.5, and 𝑦 = 0. We loop through these nodes, and compute the “xcorr” function between the
node at the center and the other nodes. The peak value of this solution is then plotted versus the
distance in Figure 16-8.
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Figure 16-8. – Nodal Force Spatial Cross Correlation.

There are obvious differences between the measured loads and the target. The correlations for
close distances are lower. This is understood to be generated by the temporal interpolation
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function. At large distances, the cross correlations never go to zero because of the finite length of
the sample.

16.4. Random Pressure Comments

Effective Area

Random pressures are computed as force loads using a consistent pressure calculation. Pressures
at the nodes are spread through the element shape functions to result in nodal forces. For a
uniform mesh, this is similar to lumping the pressures from a fixed area onto the nodes with
𝐹 = 𝑃 · 𝐴𝑟𝑒𝑎. In Figure 16-9 an element based mesh is shown along a corresponding effective
area for the nodes. For a uniform quadrilateral mesh like the example above, the nodal effective
area is the same as the area of an element face.

Nodal Effective Area

Figure 16-9. – Nodal Effective Area.

Temporal Interpolation

To improve performance, the random pressure loading procedure computes random pressures at
multiples of “Delta_T” and then interpolates to integration time steps. A piecewise linear
interpolation introduces unacceptable errors; sinc interpolation is much better.

Interpolation can be avoided by choosing the integration and sampling times to be equal. In no
case should the integration time be larger than the sampling time.

Singularities

To compute the proper temporal and spatial correlations for the forces, we need to perform a
Cholesky factorization of the correlation matrix. This factor will fail if the matrix is singular.
Remember that the correlation matrix that we factor is a tensor product of temporal and spatial
components, 𝐶 = 𝐶𝑠𝑝𝑎𝑡𝑖𝑎𝑙 ⊗ 𝐶𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 . If either component is singular, the matrix 𝐶 is singular.
Several common issues can cause singularity of this matrix.
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1. Taking NTimes too large or too small. For small Delta_T, NTimes must be large enough to
sample the time correlation function. However, studies show that the condition number of
the matrix grows exponentially with NTimes. The target value is 5. Values above 20 are not
recommended; 𝐶𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 is numerically singular.

2. Spatial degeneracy, leading to 𝐶𝑠𝑝𝑎𝑡𝑖𝑎𝑙 = 0. We have only one means of entering the spatial
correlation parameters, viz. the correlation_length variables pair. If either of these
quantities are so large that 𝛿/correlation_length is very close to zero (with 𝛿 representing
the distance from one node to another on the mesh), then the spatial portion of the matrix
becomes singular. Effectively, these locations are no longer independent, but must apply the
same load vector.

3. Using a Delta_T = 1/cutoff_freq and the default sinc function for a correlation function may
generate a 𝐶𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 singularity. 4 This is because we are now evaluating the correlation
function at multiples of 𝜋, where it is always zero.

Time Step

The integration time step specified in the SOLUTION section must always be less than or equal to
Delta_T.

Sinc Function

The sinc function defined as sin (𝑥)/𝑥 is important in at least two places in the code. First, it is the
only function available for the temporal interpolation function. Second, by default, we use the sinc
function as the correlation function. In most cases, this use of the function should probably be
replaced by another function. We use it as the default because it represents the Fourier transform
of a flat PSD, which is the simplest loading.

16.5. Memory, Performance, Parallel and Anything Else of Interest

The matrices generated for these operations are all square and dense. The matrix order is
𝑑 = 𝑛𝑠𝑝𝑎𝑡𝑖𝑎𝑙 · 𝑛𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 . Here 𝑛𝑠𝑝𝑎𝑡𝑖𝑎𝑙 is the number of points in the surface and 𝑛𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 =NTimes.
Because memory requirements grow as the square of these variables, it is important to manage
these carefully. Practically, models up to 𝑑 = 105 are possible in parallel, but they take a lot of
time.

The operation count for Cholesky factorization of a dense matrix is of order 𝑑3. Thus, the
computational cost increases much faster than model size. The parallel solutions of the
Cholesky system are not scalable. In a scalable problem, doubling the size of the problem, and
also doubling the number of processors should not change the solution time. Although the sparse

4In this example, we intentionally use the triangular function both for simplicity, and to avoid this problem.
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linear solvers for FE solution are scalable, the Cholesky factorization required to compute random
pressure loads is not scalable.

The dense Cholesky factorization from the ScaLAPACK library is used. The parallel
decomposition for this solve is completely different from the FEM decomposition, and is
computed internally without user intervention. The user input for the parallel solution is exactly
the same as the serial input. However, at this time, parallel solutions are limited to platforms built
under the Intel compiler with MKL libraries. The solution will fail on other platforms.
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17. LIGHTHILL TENSOR LOADING

In this section we provide the steps for applying the Lighthill tensor as a load in a Sierra/SD
acoustics simulation. The Lighthill tensor captures the noise generated by unsteady convection in
fluid flow simulation. In this work, we use the Sierra/TF incompressible thermal fluids code
Fuego to simulate a small chamber, shown in Figure 17-1, that undergoes a sinusoidal pumping
motion in the x-direction. The air moving in and out of the chamber produces turbulence that is
captured by the Lighthill tensor computed during the Fuego simulation. The divergence of the
Lighthill tensor is handed off to Sierra/SD and is used as an acoustic source term for far-field
acoustic noise modeling in the larger semi-circular domain shown in Figure 17-2.

a)																																						b)																																												c)
x

y 0.1cm

0.03cm

Figure 17-1. – a) Fuego mesh of fluids domain where sideset 2 (green) is absorbing, sideset 4 (blue)
undergoes the pumping motion, and all other sides shown in red are fixed. Sideset 2 shown in green
will be tied to the larger Sierra/SD domain shown in Figure 17-2. b) Fuego mesh shown on z-plane. c)
Fuego interpolation mesh for output of the divergence of the Lighthill Tensor. Domain dimensions are
also shown in c).

These simulations are part of the Sierra test suite and provide regression testing for both the
Sierra/SD and Fuego parts of Lighthill noise modeling. Lighthill loading has also been verified in
Sierra/SD for a 1-D waveguide with documentation provided in the Sierra/SD verification
manual. The input for this example is provided in Appendix A.21.15.

Producing the Lighthill load and applying it in Sierra/SD is a 5 step process. The initial steps
produce the divergence of the Lighthill tensor from a Fuego CFD simulation and are found in the
test repository:
fuego_rtest/fuego/mesh_deformation_file/
Questions about these initial steps should be directed to the Sierra Thermal Fluids team.

The final steps involve preparing the Fuego output for use in Sierra/SD and then running the
Sierra/SD simulation and are found in the input deck. Questions about the final steps should be
directed to the Sierra/SD team.
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a)																																																										b)
Figure 17-2. – a) Sierra/SD domain for acoustic noise propagation. The yellow block is the Fuego
output domain containing divT and the red block is the additional domain for the Sierra/SD simulation.
The pink sideset will interface with infinite elements. b) Sierra/SD tetrahedron mesh coarsened out
from the Fuego mesh.

17.1. Mesh Deformation For Fuego

This section describes the process of producing a deformation field used to drive the Fuego
simulation. Questions about Aria should be directed to the Sierra/TF team. The files referenced in
this section are found in the directory:
fuego_rtest/fuego/mesh_deformation_file/

In this example, Aria is used to produce the displacement field using the input file
generate_displ.i. This file produces sinusoidal displacement in the x-direction on sideset 4,
shown in blue in Figure 17-1a. The displacement of sideset 4 is given by

𝑥(𝑡) = 𝑎 sin (𝜋𝜔𝑡) (17.1.1)

where the 𝜔=1000Hz, 𝑎=0.02m, and displacement in the y- and z-direction is fixed. The
simulation is terminated at 𝑡=6e-3s. The Aria simulation is executed with the command:
aria -i generate_displ.i
which produces the file displacements.e that is used as input for Fuego. The Aria simulation is
small and is run in serial.

17.2. Fuego Simulation

This section describes the process of running Fuego to produce the divergence of the Lighthill
Tensor. Questions about Fuego should be directed to the Sierra/TF team. The files referenced in
this section are found in the directory:
fuego_rtest/fuego/mesh_deformation_file/

The Fuego input file is fluid.i and is executed with the command:
mpirun -np 8 fuego -i fluid.i
The Fuego simulation is terminated at 𝑡=3e-3s. The Fuego simulation is discretized by the
tetrahedron mesh shown in Figure 17-1b. The Fuego simulations writes the divergence of the
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Lighthill tensor out to the coarser hexahedron mesh shown in Figure 17-1c as nodal data. This data
is written to acoustic.e.8.[0-7] and provides the loading for the Sierra/SD simulation.

17.3. Processing Fuego output for Sierra/SD

This section describes the steps required to run a Sierra/SD simulation using the Fuego output.
Questions about this section should be directed to the Sierra/SD team. The regression test
Lighthill Fuego hemisphere.test colocated with the input deck executes all steps in this and the
next sections

The first step is to join the partitioned Fuego files back together using the epu Seacas tool:
epu -auto acoustic.e.8.0
The above Fuego simulation writes the divergence of the Lighthill tensor out as nodal data with
the variable names: divT_x, divT_y, divT_z. The Fuego domain is much smaller than the
Sierra/SD domain. If these two domains were joined together into a single Exodus file, nodal
data of divT=0 would be created on the larger Sierra/SD domain. To circumvent this unnecessary
storage of divT data on the Sierra/SD mesh, we convert the Fuego divT data to nodeset data using
the ejoin Seacas tool:
ejoin -output acoustic_nodeset.exo -convert_nodal_to_nodesets all
acoustic.e
which produces the output file acoustic_nodeset.exo.

17.4. Mesh for Sierra/SD

The Sierra/SD simulation will use the Fuego divT data as a source term to model noise
propagation in a larger domain. For this example we join the smaller Fuego mesh containing the
interpolated divT data to a larger semi-circular domain, see Figure 17-2a. A cubit journal file for
creating the semi-circular mesh contained in half_sphere.jou. This mesh must contain
sidesets (sideset 5 in the cubit journal file) that will be tied to sideset 2 in the Fuego output mesh,
shown in green if Figure 17-1a. This mesh also contains sideset 6 on the exterior of the
semicircular domain which will be used for applying absorbing boundary conditions via infinite
elements. The two separate meshes are joined together with the ejoin Seacas tool:
ejoin -output acoustic_nodeset_half_sphere_distribution_factors.exo
half_sphere.exo acoustic_nodeset.exo
This produces the full meshed domain shown in Figure 17-2b for the Sierra/SD simulation. This
mesh is then decomposed into four domains using stk_balance:
mpirun -np 4 stk_balance acoustic_distribution_factors.exo temp1
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17.5. Sierra/SD simulation

This Sierra/SD simulation will be described in this section. Lighthill loading causes Sierra/SD to
use the acceleration potential form of the acoustic equation. The Sierra/SD input file is included
in Section 21.15. The Sierra/SD simulation is terminated after t=0.06s, which is twice as long as
the Fuego simulation. For the final 0.03s of the simulation there will not be any available Fuego
produced divT data to be read in for Lighthill Loading. For this case, the final divT data read in at
t=0.03s will be applied for the remainder of the simulation, which produces a warning to this
effect.

Some Lighthill specific portions of the attached Sierra/SD input file are:

1. The Lighthill loading is applied as a function load the LOADS section with the Function
described in FUNCTION 1. Lighthill loading is described in User’s Manual and the
verification manual.

2. Tied data ties together the Fuego and Sierra-SD domains. Sidesets must be defined on these
surfaces when they are created in Cubit. It is difficult to add a sideset to a mesh after it
contains nodal data, i.e. The sidesets needed to tie the meshes together must be defined on
the mesh used for Fuego output before the Fuego simulation is run.

3. Infinite elements are used on sideset 6 to absorb the pressure waves.
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18. PRESSURE TRANSFER

It is a common Sierra/SD use case to run an aerodynamics code, and then need to transfer the
structural loads from the aerodynamics code to Sierra/SD to solve the structural problem. For this
example, we describe how to transfer pressure loads from other analysis tools to Sierra/SD.

Here we begin with a three dimensional finite element mesh, that is the skin of a “Sierra Test
Vehicle,” STV. The STV is composed of Quad4 (2D) elements, each with a set of element
variables, including pressure. The STV is a blunt, circular paraboloid that is 3 meters long with a
2 meter diameter. Figure 18-1 shows the pressure output on the transfer mesh
"post-surf-mna/surface.e".

Figure 18-1. – Pressures on STV

Before running Sierra/SD, the user should check and see that the desired variables are in the
transfer exodus mesh. This can be done by “module load sierra”; “explore
post-surf-mna/surface.e”; “names”. The output from explore is shown below, and can confirm that
“pressure” exists in the output file. The fields other than “pressure” are not necessary for this
example.

Variables Names:
Global:
Nodal:
Element: Ma density

pressure primitives_1
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primitives_2 primitives_2
primitives_4 primitives_5
temperature velocity_x
velocity_y velocity_z
wall-C_p

Nodeset:
Sideset:

Next, we look at the Sierra/SD input file.

FILE
geometry_file ’stv_test_model.g’

END

TRANSFER ’post-surf-mna/surface.e’
destination sidesets wetted_surf
copy variable = pressure
variable type = element

END

FUNCTION read_pressure
type = exodusread
sideset = wetted_surf
exo_var = scalar pressure
interp = linear

END

LOAD 1
sideset wetted_surf
pressure 1.0
function read_pressure

END

Here we see four distinct sections. As with all Sierra/SD runs, the geometry file is defined as
“stv_test_model.g.” This is the standard finite element model with all the geometric complexities
of the structural model.

Next, we see the Transfer Exodus file, “post-surf-mna/surface.e”. This is the transfer mesh, and
only contains the shell of the model (2D Quad4 elements). The next three lines copy the element
variable “pressure” from the transfer mesh to the sideset “wetted_surf” on the structural mesh.

The Function block defines a function of type exodusread, which reads the scalar pressure
from the sideset “wetted_surf”. The syntax “interp = linear” tells Sierra/SD to interpolate linearly
in time.

Finally, the Load block defines a pressure load of magnitude 1 on the sideset “wetted_surf,” using
the function read_pressure.
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Figure 18-2. – Transfered pressure on structural mesh
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19. ROTATING REFERENCE FRAME

For certain types of analysis it is useful to express structural deformations relative to a rotating
reference frame. For example, while the displacements of a rotating vertical axis wind turbine are
large in a fixed frame, they may be small when measured relative to a reference frame which
rotates with the base of the turbine. A significant benefit of using a rotating reference frame is that
a linear structural analysis, like what Sierra/SD offers, can be a well-suited and efficient
alternative to a fully nonlinear analysis.

The effects of a rotating coordinate system on the equilibrium equations are twofold. First,
loading terms involving the angular velocity Ω and angular acceleration ¤Ω are present.
Specifically, angular velocity loads are proportional to Ω2 while loads associated with angular
acceleration are proportional to ¤Ω. Second, the rotating coordinate system affects the system
matrices. In the case of angular velocity, there is a symmetric contribution to the stiffness matrix
proportional to Ω2 and a skew symmetric contribution (Coriolis) contribution to the damping
matrix proportional to Ω. For angular acceleration, there is a skew symmetric contribution to the
stiffness matrix which is proportional to ¤Ω. We note that the skew symmetric damping matrix
does not lead to energy dissipation, but will result in complex eigenvectors for a modal analysis.
We also note for a constant angular velocity the structure becomes preloaded for a steady state
static analysis. This preload can affect the stiffness matrix (through stress stiffening effects), but
we do not discuss this topic further here.

Including the effects of a rotating reference frame is done by including body loads as shown
below. Here, the reference frame rotates about the origin of coordinate system rotz. The angular
velocity and angular acceleration are 500 and 200, respectively, about axis 3. There are a couple
of important points to mention here. First, separate body sections are needed to include both
angular velocity and angular acceleration. Second, it’s important that the same coordinate system
be used for both angular velocity and angular acceleration. Third, angular acceleration loads are
appropriate only for models with sufficient essential boundary conditions to fully constrain away
any rigid body motions.

LOADS
body
angular_velocity = 0 0 500
coordinate rotz

body
angular_acceleration = 0 0 200
coordinate rotz

END
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Including the effects of angular acceleration is currently only supported for static analyses.
Further, Sierra/SD can be used for a snapshot static analysis where both Ω and ¤Ω can be nonzero.
Clearly, the angular velocity changes over time for nonzero ¤Ω. This would lead to changes in the
stiffness and damping matrices over time, but those effects are ignored in the snapshot static
analysis.

To illustrate a static analysis with nonzero Ω and ¤Ω, consider the beam-like structure modeled with
HEX20 elements shown in Figure 19-1. For this model all the nodes are constrained at the left end.
This means that the displacements of these nodes are all zero with respect to the rotating frame.
The values for Ω and ¤Ω are shown in the input block above. Axial and transverse displacements
are shown in Figure 19-2. Not surprisingly, the beam stretches along its length and transverse
displacements lag behind the direction of the angular acceleration. We note that the body load for
a point with position vector 𝒓 relative to the origin of the rotating coordinate frame is given by

𝒃 = −𝛀 × (𝛀 × 𝒓) − ¤𝛀 × 𝒓,

where 𝜌 is the mass density of the material.

A snapshot static analysis can be used to help understand the importance of Ω and ¤Ω.
Alternatively, one can get a rough idea of their importance by comparing to the smallest flexible
circular frequency 𝜔1 (in radians per second). If Ω ≪ 𝜔1 and ¤Ω ≪ 𝜔2

1, then their importance is
not likely to be significant.

Figure 19-1. – HEX20 mesh used in statics example problem for rotating reference frame.

The input for this example is provided in Appendix A.21.19.
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Figure 19-2. – Axial and transverse displacements for statics example problem for rotating reference
frame.
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20. TIED JOINTS

The Tied Joint provides an interface to the whole joint models. Multiple connection methods
are supported, including weighted constraint equations.

Separate shear and normal forces are supported. The separation also reduces requirements on the
constraints. The whole surface is no longer required to have 6 rigid body modes. The normal tied
interface keeps surfaces together. This relaxes the requirements for shear constraints. The Tied
Joint permits constraints that look more like a collection of trusses, not a collection of beams.

Rotational DOFs are necessary for the structure to move as a rigid body. However, the adjacent
elements may have no rotational stiffness. This introduces singularities. Avoiding the rotational
DOFs is important.

Normal direction constraints are tied surfaces. Shear direction constraints are a truss network. For
curved surfaces, constraints may be inconsistent.

20.1. Lap joint

A lap joint contains regions of “welded” contact, microslip, and macroslip as shown in Figure
20-1. An elastic spring approximates normal forces. Tied surfaces approximate shear behavior of
the “welded” region. The macroslip region is free. The region of microslip depends on the
loading. Microslip introduces loss into the structure. This region is well approximated by an Iwan
element.

Welded Region

Microslip Region

Macroslip Region

Figure 20-1. – Lap Joint with Contact Regions. The physics of bolted lap joints is complex. Tied
Joints use a combination of constraints, springs and optionally Iwan elements to generate a reduced
order model of the structure.

Without a Tied Joint, this lap joint can be modeled using a whole joint model. Each of the contact
surfaces is rigidized (using a rigid set). A Joint2G connects the surfaces. The mesh is represented
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in Figure 20-2. Figure 20.1 illustrates the conventional means of connecting this structure. This
method reduces all the behavior of the joint to a single Joint2G element. That element must be
included as part of the mesh. Because the surfaces are allowed to translate and rotate
independently, interpenetration can occur. Nevertheless, the method is effective in representing
the energy loss that occurs in this structure.

Joint2G

Figure 20-2. – Lap Joint Finite Element Mesh. The physical lap joint is represented by a reduced order
model which uses disconnected meshes of the top and bottom material. These are shown separated in
the cartoon but may have overlapping nodes. In a conventional connection the Joint2G which represents
the bolt must be explicitly meshed. The Tied Joint approach generates that element internally.

Rigidset
sideset 1

end
Rigidset
sideset 2

end

Block 3
Joint2G
Kz = Elastic 1e6
Kx = Iwan 1
Ky = Iwan 1
Krx = Elastic 1e9
Kry = Elastic 1e9
Krz = Elastic 1e9

end

Input 20.1. Conventional Input for Whole Lap Model.

The input included in Figure 20.2 represents the same physics. The normal definition is “none”
because the normal stiffness is part of the Joint2G structure. The shear side definition is “rigid”
corresponding to a rigid set definition on each of the surfaces. No mesh of block 3 is required.

Tied Joint
Normal Definition = none
surface 1,2

Shear Definition
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side = rigid
connect to Block 3

end
Block 3
Joint2G
Kz = Elastic 1e6
Kx = Iwan 1
Ky = Iwan 1
Krx = Elastic 1e9
Kry = Elastic 1e9
Krz = Elastic 1e9

end

Input 20.2. Tied Joint Input for Whole Lap Model.

20.2. Joint with Slip

The whole joint model of section 20.1 can be modified to prevent penetration of the two surfaces.
The models are shown in Figures 20.3 and 20.4 for the conventional and Tied Joints.

Sliding contact or slip keeps two surfaces in contact with no resistance to transverse motion.
Because the sliding contact constrains the normal behavior, the Joint2G parameters for that
direction are irrelevant. Because the surfaces are flexible, properly constraining the transverse
motion of the connection nodes is challenging. The constraint method is specified using the side.
The Rrod and average methods are available. Example 20.3 uses the Rrod approach.

Rigidrod
sideset 1

end
Rigidrod
sideset 2

end
Block 3
Joint2G
Kx = Iwan 1
Ky = Iwan 1
Krz = Elastic 1e9

END

Tied Data
name = ’block_3_tj’
surface 1,2
transverse slip

end
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Input 20.3. Conventional Input for Whole Lap Model with Sliding Contact.

Tied Joint
Normal Definition = slip
surface 1,2

Shear Definition
side = Rrod
connect to Block 3

end

Block 3
Joint2G
Kx = Iwan 1
Ky = Iwan 1
Krz = Elastic 1e9

end

Input 20.4. Tied Joint Input for Whole Lap Model with Sliding Contact.
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21. EXAMPLE PROBLEM INPUT FILES

21.1. Input. static.inp

Figure 21-1. – Fixture Mesh Used in static.inp

Refer to Section 1 for details of the test.

SOLUTION
title ’static run of a test fixture model’
statics

END

PARAMETERS
wtmass=0.00259

END

FILE
geometry_file ’fixture.exo’

END

LOADS
nodeset 2
force 1.0 0.0 0.0
scale 200.0

END

BOUNDARY
nodeset 1
fixed

END

OUTPUTS
displacement
stress

END

ECHO
mass block

END
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BLOCK 1
material 1

END

BLOCK 2
rbar

END

BLOCK 3
ConMass
Mass 1.0e7
Ixx 1.0e8
Iyy 1.0e8
Izz 1.0e8
Offset= 0.0 0.0 0.0

END

MATERIAL 1
// fixture - Ti
density=0.16
E=1.6e+07
nu=0.3

END

GDSW
solver_tol=1e-8

END
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21.2. Input. eigen.inp

Figure 21-2. – Fixture Mesh Used in eigen.inp

Refer to Section 1 for details of the test.

SOLUTION
title ’eigen run of a test fixture model’
eigen
nmodes 12

END

PARAMETERS
wtmass=0.00259
eigen_norm=visualization

END

FILE
geometry_file ’fixture.exo’

END

BOUNDARY
nodeset 1
fixed

END

OUTPUTS
displacement

END

ECHO
mass block

END

BLOCK 1
// fixture
material 1

END

BLOCK 2
rbar

END

BLOCK 3
ConMass
Mass 1.0e7
Ixx 1.0e8
Iyy 1.0e8
Izz 1.0e8
Offset= 0.0 0.0 0.0
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END

MATERIAL 1
// fixture - Ti
density=0.16
E=1.6e+07
nu=0.3

END

GDSW
solver_tol 1.0e-10

END
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21.3. Input. transient.inp

Figure 21-3. – Fixture Mesh Used in transient.inp

Refer to Section 1 for details of the test.

SOLUTION
title ’test fixture model transient simulation’
transient
time_step 1.0e-4
nsteps 100

End

PARAMETERS
wtmass=0.00259

End

FILE
geometry_file ’fixture.exo’

End

LOADS
nodeset 1
force 0.0 1.0 0.0
scale 1.0e7
function 8

End

HISTORY
nodeset 33, 148, 270
displacement
acceleration

End

OUTPUTS
End

Function 8 // Haversine pulse
type analytic
evaluate expression = "amp = 1.5e3; period= 3.6e-4; omega = pi/period; (t>period)?(0.0):(amp*sin(omega*t)^2)"

End

ECHO
mass block

End

Block 1 // fixture
material 1

End
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Block 2
rbar

End

Block 3
ConMass
Mass 1.0e7
Ixx 1.0e8
Iyy 1.0e8
Izz 1.0e8
Offset= 0.0 0.0 0.0

End

MATERIAL 1 // fixture - Ti
density=0.16
E=1.6e+07
nu=0.3

End

GDSW
solver_tol 1.0e-8

End
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21.4. Input. modaltransient.inp

Figure 21-4. – Fixture Mesh Used in modaltransient.inp

Refer to Section 1 for details of the test.

SOLUTION
title ’modal transient run of a test fixture model’
case eigen
eigen
nmodes 20
shift -1e6

case trans
modaltransient
time_step 1.0e-4
nsteps 100
load 1

End

PARAMETERS
wtmass=0.00259
End

FILE
geometry_file ’fixture.exo’

End

LOAD 1
nodeset 1
force 0.0 1.0 0.0
scale 1.0e7
function 8

End

HISTORY
nodeset ’33’
nodeset ’148’
nodeset ’270’
disp
velocity
acceleration

End

OUTPUTS
End

ECHO
mass block

End
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// Block and material input

BLOCK 1
// fixture
material 1

End

BLOCK 2
rbar

End

BLOCK 3
ConMass
Mass 1.0e7
Ixx 1.0e8
Iyy 1.0e8
Izz 1.0e8
Offset= 0.0 0.0 0.0

End

MATERIAL 1
// fixture - Ti
density=0.16
E=1.6e+07
nu=0.3

End

// Haversine pulse
Function 8
type analytic
evaluate expression = "amp = 1.5e3; period= 3.6e-4; omega = pi/period; (t>period)?(0.0):(amp*sin(omega*t)^2)"

End

GDSW
solver_tol=1e-12

End
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21.5. Input. modalfrf.inp

Figure 21-5. – Fixture Mesh Used in modalfrf.inp

Refer to Section 1 for details of the test.

SOLUTION
title ’modal frf run of a test fixture model’
case eigen
eigen
nmodes 20
shift -1e6

restart auto
case frf
restart auto
modalfrf
load 1

END

PARAMETERS
wtmass=0.00259

END

FILE
geometry_file ’fixture.exo’

END

LOAD 1
nodeset 1
force 0.0 1.0 0.0
scale 1.0e7
function 1

END

FUNCTION 1
type linear
data 0.0 1.0
data 1.0e8 1.0

END

FREQUENCY
nodeset 270
acceleration
freq_min 100
freq_max 8000
freq_step 200

END

DAMPING
gamma 0.02
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END

HISTORY
nodeset ’33’
nodeset ’148’
nodeset ’270’
acceleration

END

OUTPUTS
END

ECHO
mass block

END

// Block and material input

BLOCK 1
// fixture
material 1

END

BLOCK 2
rbar

END

BLOCK 3
ConMass
Mass 1.0e7
Ixx 1.0e8
Iyy 1.0e8
Izz 1.0e8
Offset= 0.0 0.0 0.0

END

MATERIAL 1
// fixture - Ti
density=0.16
E=1.6e+07
nu=0.3

END

GDSW
solver_tol=1e-10

END
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21.6. Input. random_vibration.inp

Figure 21-6. – Fixture Mesh Used in rvib.inp

Refer to Section 1 for details of the test.

SOLUTION
title ’modal random vibration run of a test fixture model’
case eigen
eigen
nmodes 20
shift -1e6

case modalranvib
modalranvib
lfcutoff -10

END

PARAMETERS
wtmass=0.00259008
END

FILE
geometry_file ’fixture.exo’

END

LOADS
END

FREQUENCY
nodeset 1,270
acceleration
freq_min 100
freq_max 8000
freq_step 200

END

DAMPING
gamma 0.02

END

// scale = concentrated mass * wtmass
RANLOADS
matrix 1
load 1
nodeset 1
force 1.0 0.0 0.0
scale 2.59e+4

load 2
nodeset 1
force 0.0 1.0 0.0
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scale 2.59e+4
load 3
nodeset 1
force 0.0 0.0 1.0
scale 2.59e+4

END

MATRIX-FUNCTION 1
name ’Power Spectral Density input’
symmetry Hermitian
dimension 3x3
data 1,1
real function 1

data 2,2
real function 1

data 3,3
real function 1

END

FUNCTION 1
Name = "Power_Spectral_Density"
type = linear
data 100.0 0.
data 300.0 0.001
data 500.0 0.01
data 700.0 0.1
data 7500.0 0.1
data 7700.0 0.01
data 7900.0 0.001
data 8100.0 0.

END

OUTPUTS
displacement
acceleration
vrms

END

ECHO
mass block

END

// Block and material input

BLOCK 1
// fixture
material 1

END

BLOCK 2
rbar

END

BLOCK 3
ConMass
Mass 1.0e7
Ixx 1.0e8
Iyy 1.0e8
Izz 1.0e8
Offset= 0.0 0.0 0.0

END

MATERIAL 1
// fixture - Ti
density=0.16
E=1.6e+07
nu=0.3

END
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GDSW
solver_tol=1e-8

END
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21.7. Random Vibration Input. Vran1.inp

Figure 21-7. – Mesh Used in vran1.inp

Refer to Section 9 for details of the test.

SOLUTION
case eig
eigen nmodes=55
shift=-1e5
case rms
modalranvib
truncationMethod = displacement
keepmodes=17 // force modal truncation

End

RANLOADS
matrix=1 // loads input in lbs.
load=1 // The PSD is in g^2/Hz.
nodeset 12 // F = accel * mass

force=0 1 0 // = accel * (scale_factor)
scale 1.00e3 // = accel * ((1000*.00259)*384.6)
End

Frequency
freq_step=100
freq_min=300
freq_max=1e4
BLOCK=all

End

MATRIX-FUNCTION 1
Name=input_Power_Spectral_Density
symmetry=symmetric
dimension=1x1
data 1,1
real function 1

End

FUNCTION 1
Name=’Power_Spectral_Density’
type=loglog
data 1.0 1e-8
data 299 1e-8
data 300 0.01
data 2000 0.03
data 8000 0.03
data 10000 0.01
data 10001 1e-8

End
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DAMPING
gamma=0.01

End

PARAMETERS
wtmass=0.00259
End

FILE
geometry_file ’vtube.exo’

End

BOUNDARY
nodeset 124
rotx=0 roty=0 rotz=0 x=0 z=0

End

LOADS
End

OUTPUTS
vrms
End

ECHO
vrms

End

GDSW
solver_tol 1e-9

End

BLOCK 101
material 101
quadt
thickness= 0.200000003E+00

End

BLOCK 102
ConMass
Mass=1000
Ixx =0
Ixy =0
Iyy =0
Ixz =0
Iyz =0
Izz =0
Offset= 0 0 0

End

Block 1000
material=1000
beam2
area=1
i1=.1
i2=.1
j=.2
orientation=1 0 .10

end

MATERIAL 101
density=0.1
Isotropic
E=1e+07
nu=0.35

End
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MATERIAL 1000
density=0.1e-5
Isotropic
E=1e+09
nu=0.35

End
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21.8. General Coordinate Input

Figure 21-8. – Mesh Used in coord.inp

Refer to Section 13 for details of the test.

SOLUTION
eigen
nmodes 8

END

FILE
geometry_file turbine_section_coord.g
initialize variable name = material_direction_1
read variable = matCoord_2_
variable type = element

initialize variable name = material_direction_2
read variable = matCoord_1_
variable type = element

initialize variable name = material_direction_3
read variable = matCoord_3_
variable type = element

END

MATERIAL ortho
density = 1.0e-4
orthotropic_prop
E1 = 2.30e+7
E2 = 0.15e+7
E3 = 0.15e+7
NU12 = 0.28
NU23 = 0.28
NU13 = 0.28
G12 = 0.24e+7
G23 = 0.0503e+7
G13 = 0.24e+7

END

MATERIAL elastic
density = 2.0e-4
E = 1.0e+7
nu = 0.3

END

BLOCK 1
material ortho
coordinate from_transfer

END

BLOCK 2 3
material elastic

END

OUTPUTS
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disp
material_direction_1
material_direction_2
material_direction_3

END
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21.9. Infinite Element Input

Figure 21-9. – Mesh Used in infinite_100elem_transient.inp

Refer to Section 14 for details of the test.

Solution
transient
time_step 1.0e-2
nsteps 500

End

File
geometry_file ’infinite_100elem.exo’

End

Linesample
samples per line 2
endpoint 0 0 500 0 0 500.001
format exodus

End

Outputs
apressure

End

Echo
input off

End

Boundary
sideset 1
infinite_element
use block 111

End

Block 1
material "air"

End

Block 111
infinite_element
radial_poly legendre
order 3
neglect_mass yes
ellipsoid_dimensions 200 200 200

End
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Material "air"
density 1.293
acoustic
c0 332.0

End

Function 3
type analytic
evaluate expression = "sin(2 * pi * t)"

End
Loads
sideset 2
acoustic_accel -1.0
function 3

End
GDSW
solver_tol 1.0e-9

End
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21.10. Random Pressure Input

Figure 21-10. – Mesh Used in cylinder_random.inp

Refer to Section 16 for details of the test.

SOLUTION
transient
time_step 1.0e-4
nsteps 20

end

FILE
geometry_file ’cylinder_random.exo’

end

LOADS
sideset 1
randompressure
Delta_T=1e-3
cutoff_freq = 4.999999994286667e+02
correlation_length_z 0.5
correlation_length_r = 0.2
ntimes = 5
correlation_function = 1
coordinate 1

end

Begin rectangular coordinate system 1
origin = 0 0 0
z point = 1 0 0
xz point = 1 0 1

end

BOUNDARY
end

function 1
type linear
data -0.001909859319285 0
data 0 1
data 0.001909859319285 0

end

OUTPUTS
statistics
force
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pressure // DON’T DELETE
end

PARAMETERS
RandomNumberGenerator = test

end

ECHO
input = off

end

GDSW
LO_option 0
krylov_method=1
max_iter=2000
solver_tol=1e-4
orthog=4000
prt_summary=1
prt_debug=1
overlap = 20
prt_timing yes
coarse_option 0

end

BLOCK 1
material 1

end

MATERIAL 1
E 72e9 //(N/m^2)

nu .33
density 2700 //(kg/m^3)

end
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21.11. Geometric Rigid Body Mode Input

Figure 21-11. – Mesh Used in simpleTiedCase.inp

Refer to Section 7.1 for details of the test.

SOLUTION
case out
geometric_rigid_body_modes

case flexible_modes
eigen
nmodes 10

END

FILE
geometry_file ’simpleTied.exo’

END

BOUNDARY
END

PARAMETERS
num_rigid_mode 6
RbmTolerance 2.e-6

// Interestingly this is not the tolerance that gdsw uses.
wtmass=0.00259
END

OUTPUTS
disp

END

ECHO
mass block

END

LOADS
sideset 3
traction 1 1 1
scale = 1.0

END

DAMPING
beta 2.0e-6

END

TIED JOINT
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normal definition = slip
surface 1,2
search tolerance 1.0e-3

side = free
connect to block 3

END

BLOCK 1
material 1
nonlinear=no

END

BLOCK 2
material 1
nonlinear=no

END

BLOCK 3
coordinate 2
joint2g
kx = Iwan 1
ky = Iwan 1
krz = elastic 1.0e9
END

MATERIAL 1
density 0.3
E = 3.0e7
nu = 0.3

END

PROPERTY 1
chi -.82
phi_max = 1.75e-4
R = 5.5050e+6
S = 2.1097e+6

END

Begin rectangular coordinate system 2
origin = 0 -3.83232e-2 -5.96407
z point = 1.0 -3.83232e-2 -5.96407
xz point = 1.0 0.4616768 -6.46407

end

GDSW
max_numterm_C1 500
krylov_method 1
prt_constraint 1

END
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21.12. Wet Modes Input

Figure 21-12. – Mesh Used in floatingCylinder.inp

Refer to Section 7.3 for details of the test.

SOLUTION
title=’ Acoustic analysis’
case rigid

geometric_rigid_body_modes
case flex
eigen
nmodes 20
fluidloading=yes // Wet Modes Calculation

END

GDSW
solver_tol 1.0e-6
krylov_method 1
overlap 2

END

FILE
geometry_file ’floatingCylinder.exo’ // Submerged Cylinder

END

LOADS
END

PARAMETERS
num_rigid_mode 6

END

BOUNDARY
sideset 102 // outer acoustic surface
p=0

sideset 103 // free surface
slosh = 2.59e-3 /// 1/(32.2*12 in/s/s)

END

TIED DATA
surface 101, 1
search tolerance = 2

END

OUTPUTS
disp

153



END

ECHO
mass
input

END

MATERIAL steel
e = 3.0e7
density = 7.324e-4
nu = 0.3

END

MATERIAL fluid
acoustic
density 3.46822e-006
c0 22878 // sound speed

END

BLOCK 1
material = steel
thickness = 1.3644
nquad

END

BLOCK 2
material = steel
thickness = 1.3644
nquad

END

BLOCK 101
material = fluid

//tet4
END
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21.13. CBR Input

Figure 21-13. – Mesh Used in cbr.inp

Refer to Section 5 for details of the test.

SOLUTION
case eig1 // compute the full system. floating.
eigen nmodes=10 shift=-1e6

case cbr // reduce the model
cbr
shift=0.
nmodes 4
title ’CBR example for "How To" document’

END

cbmodel
nodeset=nodelist_3
format=mfile
file=cbr.m
globalsolution

end

history
nodeset 1:2
disp

end

FILE
geometry_file ’cbr.exo’

END

BOUNDARY
// free/free system
END

OUTPUTS
disp

END

ECHO
END

BLOCK 1
material 2

END
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MATERIAL 2
E 30e6
nu .3
density 0.288

END
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21.14. Acoustic Scattering Input

Figure 21-14. – Mesh Used in sphere_ps.inp

Refer to Section 15 for details of the test.

SOLUTION
case out
transient

time_step 1.66666666667e-06
nsteps 1000
nskip = 1
load 10
scattering

title ’scattering’
END

FILE
geometry_file ’sphere_ps.exo’

END

Parameters
End

History
velocity
nodeset 1
nodeset 2

End

BOUNDARY
sideset 1
infinite_element
use block 111

sideset 4
y=0
rotz=0
rotx=0

sideset 5
x=0
rotz=0
roty=0

END

LOAD 10
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sideset 2
acoustic_vel = 100
function = 1

sideset 3
pressure = 1
function = 1
scale 100

END

TIED DATA
Surface 2,3
search tolerance = 5

END

FUNCTION 1
type planar_step_wave
origin = 0 0 -10
direction 0 0 1
k0 = 1.0
material = "water"

END

OUTPUTS
END

ECHO
END

BLOCK 1
material "water"
END

BLOCK 2
material "steel"

nquad
thickness = 0.1

END

Block 111
infinite_element
order = 10
ellipsoid_dimensions 30 30 30

END

MATERIAL "water"
# from paper 0.96e-4 lb-sec2/in4

density 0.96e-4
acoustic
c0 60000

END

MATERIAL "steel"
E 0.29e8
nu .3
density 0.732e-3
END

GDSW
solver_tol 1e-12
krylov_solver = gmres
prt_summary 3

END
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21.15. Lighthill Function Loading - Input

Figure 21-15. – Mesh Used in acoustic_nodeset.inp

Refer to Section 17 for details of the test.

SOLUTION
transient
time_step 1.0e-4
nsteps 50
nskip 1
rho 0.9
lumped_consistent

END

FILE
geometry_file ’temp1/acoustic_nodeset_distribution_factors.exo’

END

LOADS
nodeset 1
Lighthill = 1.0
function = 1

END

LINESAMPLE
samples per line 100
endpoint 0. 0. 0. -1 0. 0.
format exodus

END

FUNCTION 1
type exodusread
nodeset 1
name "divT_"
exo_var vector divT_
interp = linear

END

BOUNDARY
sideset 6
infinite_element
use block 111

END

OUTPUTS
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END

ECHO
END

BLOCK 1
material 1
END

BLOCK 2
material 1
END

Block 111
infinite_element

ellipsoid_dimensions 1 1 1
order = 8
source_origin = 0.05 0 0
neglect_mass = yes

END

MATERIAL 1
acoustic
density 1.1
c0 343 // reduced to slow down wave
END

Tied Data
surface 2, 5
End
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21.16. Linear Buckling - Input

Figure 21-16. – Mesh Used in ring20.inp

Refer to Section 7.2 for details of the test.

SOLUTION
buckling
bucklingSolver = {ARPACK_MODE}
nmodes 1
shift=-100

END

FILE
geometry_file ring20.exo

END

BOUNDARY
nodeset 1
y=0

nodeset 2
x=0

nodeset 3
z=0

END

LOADS
sideset 1
pressure = 1.0

END

OUTPUTS
deform

END

ECHO
END

BLOCK 1
material 1

END

Material 1
E 10e6
nu 0.0
density 0.098 // not used in statics

END
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21.17. Sierra SM FRF Comparison

Figure 21-17. – Mesh Used in All Decks

Refer to Section 4 for details of the test.

21.17.1. Modal FRF

SOLUTION
case eig
eigen
nmodes = 20

case test2
modalfrf

END

FILE
geometry_file = ’beam_frf.e’

END

LOADS
nodeset 500
force = 0.0 0.0 1.0
scale = 1
function = 1

END

FUNCTION 1
type LINEAR
name "white noise"
data 0.0 1.0
data 200. 1.0

END

DAMPING
alpha = 5
END

BLOCK 1
material = 1 // rubber linear

END

BLOCK 90
rbar
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END

BLOCK 91
conmass
mass = 1e-3
Ixx = 1e-3
Iyy = 1e-3
Izz = 1e-3

END

MATERIAL 1 // linear
isotropic
density 0.0343
E 218
nu = .499

END

PARAMETERS
wtmass = 0.002588

END

OUTPUTS
disp
stress

END

FREQUENCY
freq_min = .1
freq_step = .1
freq_max = 50
acceleration
disp
nodeset 2

END

ECHO
mass=block

END

21.17.2. Direct FRF

SOLUTION
case test2
directfrf

END

FILE
geometry_file = ’beam_frf.e’

END

LOADS
nodeset 500
force = 0.0 0.0 1.0
scale = 1
function = 1

END

FUNCTION 1
type LINEAR
name "noise"
data 0.0 1.0
data 200. 1.0

END

DAMPING
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alpha = 5
END

BLOCK 1
material = 1 // rubber linear

END

BLOCK 90
rbar

END

BLOCK 91
conmass
mass = 1e-3
Ixx = 1e-3
Iyy = 1e-3
Izz = 1e-3

END

MATERIAL 1 // linear
isotropic
density 0.0343
E 218
nu = .499

END

PARAMETERS
wtmass = 0.002588

END

OUTPUTS
disp
stress

END

FREQUENCY
freq_min = .1
freq_step = .1
freq_max = 50
acceleration
disp
nodeset 2

END

ECHO
mass=block

END

21.17.3. Adagio Input

begin sierra beam_sm_fft

begin function prescribed_force
type is piecewise analytic
begin expressions

0.0 "1e-4*sin(2*pi*t)"
end expressions

end

begin material rubber
density = {0.0343*0.002588}

begin parameters for model elastic
poissons ratio = 0.499
youngs modulus = 218
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end parameters for model elastic
end material rubber

begin material rbar
density = 0
begin parameters for model elastic
poissons ratio = 0
youngs modulus = 1e-7

end parameters for model elastic
end material rbar

begin rigid body rbar
end rigid body rbar

begin beam section rbar_sec
rigid body = rbar
section = bar
width = 1e-7
height = 1e-7
t axis = 0 0 1
end

begin point mass section conmass
mass = {1e-3*0.002588}
end

begin finite element model fft_run
database name = beam_frf.e
database type = exodusII

# - Block id 1 had name bar
begin parameters for block block_1
material = rubber
model = elastic

end parameters for block block_1

# - Block id 90 had name rbar
begin parameters for block block_90
material =rbar
model = elastic
section = rbar_sec

end parameters for block block_90

# - Block id 91 had name conmass
begin parameters for block block_91
section = conmass

end parameters for block block_91

end finite element model fft_run

begin presto procedure beam_fft

#
# *** Time step control information
begin time control

begin time stepping block p1
start time = 0.0
begin parameters for presto region presto
time step scale factor = 1.0
step interval = 100

end parameters for presto region
end time stepping block p1

termination time = 100

end time control
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begin presto region presto

begin viscous damping
include all blocks
mass damping coefficient = 5

end viscous damping

use finite element model fft_run
### output description ###
begin results output results
start time = 0
database name = beam_frf-out.e
database type = exodusII

At Time 0.0, Increment = 1.0e-1
#At Time 0.0, Increment = 1.0e-5

nodal Variables = displacement as displ
nodal Variables = velocity as vel
nodal Variables = acceleration as accel

end results output results

begin prescribed force
node set = nodelist_500
component = z
function = prescribed_force
scale factor = 1
end prescribed force

end presto region presto

end presto procedure beam_fft

end sierra beam_sm_fft
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21.18. Piezoelectric Transient Input

Figure 21-18. – Mesh Used in transient.inp

Refer to Section 11 for details of the test.

SOLUTION
solver=gdsw
transient
time_step = 1.000000e-06
nsteps = 1001

END

FILE
geometry_file ’single_patch.exo’

END

LOADS
END

GDSW
default_solver = nopivot

END

BOUNDARY
sideset 5 // symmetry boundary condition
x = 0

sideset 4 // symmetry boundary condition
y = 0

sideset 6 // voltage input
transV = 1
function voltage_input

sideset 7 // grounded voltage
V = 0

END

RIGIDSET set1
voltage
sideset 8

END

FUNCTION voltage_input // voltage input in scaled units (Vin * 1e-9)
type linear
name "voltage_in"
{include(create_input_deck/voltage_input.inp)}#

END

167



ECHO
END

OUTPUTS
disp
voltage
END

BLOCK 1
material Aluminum
hex8u

END

BLOCK 2
material Piezoelectric
hex8u

END

BLOCK 3
material Piezoelectric
hex8u

END

MATERIAL ALUMINUM
density = 2700
E = {70 * 10^9}
nu = 0.33

END

// {C11 = 1.38999e+11}
// {C12 = .778366e+11}
// {C13 = .742836e+11}
// {C33 = 1.15412e+11}
// {C44 = 2.5641e+10}
// {C66 = 3.0581e+10}

// {scale = 1e9}

// {ep = 8.85418782e-12 * scale * scale}
// {D11 = ep * 762.5}
// {D33 = ep * 663.2}

// {E11 = -5.20279 * scale}
// {E33 = 15.0804 * scale}
// {E15 = 12.7179 * scale}

MATERIAL PIEZOELECTRIC
ORTHOTROPIC_PIEZOELECTRIC
Cij = {C11} {C12} {C13}

{C11} {C13}
{C33}
{C44}
{C44}
{C66}

permittivity_ij {D11} 0 0
0 {D11} 0
0 0 {D33}

e_ij = 0 0 {E11}
0 0 {E11}
0 0 {E33}
0 {E15} 0

{E15} 0 0
0 0 0

density = {7500}
END
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21.19. Rotating Frame Statics Input

Figure 21-19. – Mesh Used in beam.inp

Refer to Chapter 19 for details of the test.

SOLUTION
statics

END

parameters
end

FILE
geometry_file hex20Beam40x.g

END

BOUNDARY
sideset baseSurf
fixed

END

LOADS
body
angular_acceleration = 0 0 200
coordinate rotz

body
angular_velocity = 0 0 500
coordinate rotz

END

OUTPUTS
disp

END

ECHO
END

BLOCK myTestBeam
material example_mat

END

Material example_mat
E 30.0E6
nu 0.33
density 0.00074

END
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begin rectangular coordinate system rotz
origin = 0 1 0
z point = 0 1 5
xz point = 1 1 0

end
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