SAND2024-06308

SANDIA REPORT

Sandia
Printed May 20, 2024 National
Laboratories

Sierra/SD — Example Problems Manual —
5.20

Sierra Structural Dynamics Development Team

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology
& Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports @osti.gov

Online ordering: http://www.osti.gov/scitech
Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road

Alexandria, VA 22312

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders @ntis.gov

Online order: https://classic.ntis.gov/help/order-methods

NYSH

National Nuyclear Security Adminisfration

ABSTRACT

The Example Problems Manual supplements the User’s Manual and the Theory Manual. The goal
of the Example Problems Manual is to reduce learning time for complex end to end analyses.
These documents are intended to be used together. See the User’s Manual for a complete list of
the options for a solution case. All the examples are part of the Sierra/SD test suite. Each runs as
is.

The organization is similar to the other documents: How to run, Commands, Solution cases,
Materials, Elements, Boundary conditions, and then Contact. The table of contents and index are
indispensable.

The Geometric Rigid Body Modes section is shared with the Users Manual.

This page left blank

CONTENTS

1. Training Problems

2. Thread Parallelism
2.1. Debugging Threading Approachesiiiiiiiiiiiiiieneenan.
2.2. Batch Submission / Optimal Parameters for KNL
2.3. Parameters for Running on HPC Clusters. o i i...

3. Transient Simulation About Sierra/SM Preload
3.1. Coupled Sierra/SM- Sierra/SD Eigenvalue Problems
3.2. User specified field names oottt
3.3. Troubleshooting Legacy Modelsi i,
3.4. Rigid Rims, Coupling with Concentrated Masses, and Superelements

4. Linear Solvers
4.1. Linear SOIVEr ACCUIACYttt e e e
4.2. Frequency response linear solver. i,

5. Comparing Sierra SM Explicit Transient to Direct and Modal FRF

6. Craig-Bampton Reduction

6.1. Definitionst
6.2. InputRequired e
6.2.1. Exodus Requirementscuiuiiiiiiiiiiinennnnnnnnnn.
6.2.2. SOIULIONo e
6.2.3. CBModelt
6.2.4. OULPUL . .ottt ettt e e e e e
6.2.5. HiStOTY .ottt e
6.3. EXampleo e
6.4. Verification of the Model
6.4.1. Comparison of Reduced and Full Eigenvalues
6.4.2. Comparison of Reduced and Full Displacements.......................
6.5. Whattodowiththe Results
6.5.1. SOIVING the SYSteMottt e e e e
6.5.2. Incorporate the reduced model into another system model
6.6, LIMItatiONnS . . . oottt ettt ettt e e e e e e e e e

7. Superelements
7.1. Superelement Example

15

17
17
18
20

23
25
27
28
28

33
34
37

39

43
43
43
44
44
44
45
45
46
49
49
49
51
51
52
52

53

10

11.

7.2. Submodel Model Extraction and Reduction..............
7.3. Superelement INSETtiONottt e
7.4, Units and WHMASSottt et e e e e e
7.5, Visualizationt i e e

Eigenvalue Problems

8.1. Geometric Rigid Body Modes i

8.2. Linear Buckling e
8.2.1. Shifted Eigenvalue......... i
8.2.2. Buckling Case Studyoiiiiii e

83. WetModes
8. 3.1, Mesh ..o
8.3.2. InputFile e
8.3.3. ReSUItS ...

Modal Transient

9.1. Process for serial inte@rationuuniineineinen i,
9.1.1. Compute modes of the systemmodel
90.1.2. Extract Modal force
9.1.3. Perform Time Integration of Modal Space
9.1.4. Expand to Physical Space i

9.2. HowtoUse Results. e

0.3, LIMItationsSottt ettt e e e e

0.4, Verificationt e

. Modal Random Vibration

101, SOIULION . .ottt
10.2. Ranboads oo
10.2.1. Matrix-Function. e
10.2.2. FUNCHION . ..ottt e e e e e e e e e
10.2.3. FreqUENCY . . oo oe ettt e e e e e e e e e e e e
1024, Damping . . .ooot ettt e e e e
JO.2.5. OULPUL .« oot e
10.2.6. EChO .. o e
10.3. Example Inputot e
10.4. Verification of the Model e
10.5. Whattodo withthe Results i
10.6. Limitations, Suggestions and Cautionsouieieiitneeneeneen ..

Fatigue

11.1. Example Fatigue Model
T1 11, GEOMELIY .o vttt ettt et e e e e e e e e e e e e et
T1.1.2. MaterialSo e
T1.1.3. Loads. . .o ot e

69
69
69
70
70
71
71
72
72

73
74
74
76
76
76
77
77
77
77
79
82
82

112, ReSUILS .« .. 88

11.2.1. Frequency Domainttt 88

11.22. Time Domain e e 88

11.2.3. COMPATISON . .\ttt ettt et e et e et e e e e et e eee e 89

12. Coupled Electro-mechanical Physics 91
12.1. Piezoelectric Material Input 92
12.2. Boundary Conditionsniinitnttin et 93
12.3. Transient Response Results i 94
12.4. Linear System Solver Issues and Recommendations 95

13. System Level Matrices of Viscoelastic FEA 97
14. Infinite Elements 99
14.1. Far-Field POStprocessingo v vttt ettt ee e 101

15. Acoustic Scattering 103
15.1. Scattering Sphere e 103

16. Random Pressure Loads 107
16.1. Example Problem Set-up e 107
16.2. Example: Input Specificationsottt 109
16.3. Example: Verifyingthe Load i 110
16.3.1. Average Nodal Forceot 110

16.3.2. Variance of Nodal Force i, 112

16.3.3. Temporal Nodal Force Autocorrelation................ coou.... 112

16.3.4. Spatial Cross Correlation it 113

16.4. Random Pressure COmMmENtsoouuiiuntin i, 114
16.5. Memory, Performance, Parallel and Anything Else of Interest................... 115

17. Lighthill Tensor Loading 117
17.1. Mesh Deformation For Fuego i, 118
17.2. Fuego SImulationot e e e 118
17.3. Processing Fuego output for Sierra/SD 119
17.4. Mesh for Sierra/SD 119
17.5. Sierra/SD simulationot 120

18. Pressure Transfer 121
19. Rotating Reference Frame 125
20. Tied Joints 129
20,1, Lap JOINt . oottt et e e e e e e e 129
20.2. Joint with SHP . . .o 131

21. Example Problem Input Files

21.1. Input. static.inp
21.2. Input. eigen.inp
21.3. Input. transient.inp
21.4. Input. modaltransient.inp . ..
21.5. Input. modalfrf.inp

21.6. Input. random_vibration.inp

21.7. Random Vibration Input. Vranlanp

21.8. Infinite Element Input
21.9. Random Pressure Input.

21.10Geometric Rigid Body Mode Input. i

21.11Wet Modes Input
21.12CBR Input
21.13 Acoustic Scattering Input . . .

21.14Lighthill Function Loading - Input

21.15Linear Buckling - Input
21.16Sierra SM FRF Comparison.
21.16.1.Modal FRF
21.16.2Direct FRF
21.16.3.Adagio Input.

21.17Piezoelectric Transient Input
21.18Rotating Frame Statics Input

Bibliography
Index

Distribution

133
133
135
136
138
140
142
144
146
147
149
151
153
154
156
158
159
159
160
161
164
166

167

169

171

LIST OF FIGURES

Figure 3-1.
Figure 3-2.
Figure 3-3.

Figure 4-1.

Figure 5-1.
Figure 5-2.

Figure 6-1.
Figure 6-2.

Figure 7-1.
Figure 7-2.
Figure 7-3.

Figure 8-1.
Figure 8-2.
Figure 8-3.
Figure 8-4.
Figure 8-5.
Figure 8-6.

Figure 10-1.
Figure 10-2.
Figure 10-3.
Figure 10-4.
Figure 10-5.
Figure 10-6.

Figure 11-1.
Figure 11-2.
Figure 11-3.
Figure 11-4.
Figure 11-5.
Figure 11-6.
Figure 11-7.

Figure 12-1.
Figure 12-2.

Applying Sierra/SD to the output of Sierra/SM: cantilevered beam. 23
SM/SD Transfer Model Geometry.ovuiineieniiinennen.. 26
Internal Steps in Sierra/SD Coupled Analysis, 27
dd_solver.dat output from GDSW. 36
Cantilever Beam FRF Setup o i 39
FRF Z-axis Modes Results, 40
Example CBRmodel. 47
Example CBR transient computations.couuveunneenneen.. 51
Superelement Model 54
Inserting the superelement connectivity inthemodel. 57
Modal Response of the Superelement. 60
Output of eigenvalues and Associated Error Bounds. 61
Ring Model for Buckling and Associated Deformation. 64
Solution Dependence on Shift........... 64
Floating Cylinder Mesh i i i 66
Relevant Portions of Wet Modes Input File. 67
Wet Modes Results. e 68
Example Random Vibration Geometry.iviieiinennen... 73
Example Matrix-Function 75
Single Input, Modal Random Vibration. 78
Scale factors for STunits. 80
Example scale factors for inches and pounds. 81
Example scale factors for English units. 81
Generic Circuit Board geometry. it 84
Generic Circuit Board components.ttt 85
Frequency Domain Loading ASD. i, 87
Time Domain Load Snapshot (left), and ASD (right). 87
Histogram of time domain loads with vertical bars at 1-sigma intervals. 87
Frequency Domain Damage Rate Estimates............................... 88
Time Domain Damage Estimate. i, 89
The single patch bimorphmodel. 91
Time history of voltage input (Gaussian pulse). 94

Figure 12-3.
Figure 13-1.

Figure 15-1.
Figure 15-2.

Figure 16-1.
Figure 16-2.
Figure 16-3.
Figure 16-4.
Figure 16-5.
Figure 16-6.
Figure 16-7.
Figure 16-8.
Figure 16-9.

Figure 17-1.
Figure 17-2.

Figure 18-1.
Figure 18-2.

Figure 19-1.
Figure 19-2.

Figure 20-1.
Figure 20-2.
Figure 20-3.
Figure 20-4.
Figure 20-5.
Figure 20-6.

Time history of voltage response., 94
Sample Input to determine Viscoelastic Matrices. 98
Elastic Sphere in Fluid Example. i ... 104
Example Scattering Input. 106
Example Random Pressure Geometry.iiuiiiieininninnen... 108
Example Random Pressure PSD and Correlation Functions. 108
Random Pressure Correlation Function 109
Random Pressure Load Section 110
Variation of Mean and STD of Force o ... 111
Distribution of Mean Forces on Surface. 112
Nodal Force Autocorrelation.c... i, 113
Nodal Force Spatial Cross Correlation.c.cvuiiiiiineinnen... 113
Nodal Effective Area. e e 114
Fuego mesh of Lighthill fluids domain 117
Sierra/SD domain for acoustic noise propagation 118
Pressures on STV ..o e 121
Transfered pressure on structural mesh 123
HEX20 mesh used in statics example problem for rotating reference frame.. . .. 126
Axial and transverse displacements for statics example problem for rotating

reference frame. i 127
Lap Joint with Contact Regions i, 129
Lap Joint Finite Element Mesh 130
Conventional Input for Whole Lap Model. 130
Tied Joint Input for Whole Lap Model. 131
Conventional Input for Whole Lap Model with Sliding Contact. 132
Tied Joint Input for Whole Lap Model with Sliding Contact. 132

10

LIST OF TABLES

Table 5-1.
Table 8-1.
Table 13-1.

Table 14-1.

Run Times (MIN:SEC). . . oot v ettt ettt e e et 41
Wet Mode Floating Cylinder Results. 68
Elastic/Viscoelastic Equivalent Matrices. 98
Available parameters for the infinite element section. 100

11

This page intentionally left blank.

12

Acknowledgments

The Sierra/SD software package is the collective effort of many individuals and teams. A core
Sandia National Laboratories based Sierra/SD development team is responsible for maintenance
of documentation, testing, and support of code capabilities. This team includes Dagny Beale,
Gregory Bunting, David Day, Clark Dohrmann, Payton Lindsay, Justin Pepe, and Julia Plews.

The Sierra/SD team also works closely with the Sierra Inverse and Plato teams to jointly enhance
and maintain several capabilities. This includes contributions from Wilkins Aquino, Mark Chen,
Brett Clark, Sean Hardesty, Clay Sanders, Chandler Smith, Adam Sokolow, Benjamin Treweek,
Timothy Walsh, and Ray Wildman.

The Sierra/SD team works closely with other Sierra teams on core libraries and shared tools.
This includes the DevOps, Sierra Toolkit, Solid Mechanics, Fluid Thermal Teams. Additionally,
analysts regularly provide code capabilities as well as help review and verify code capabilities,
testing, and documentation. Other individuals not already mentioned directly contributing to the
Sierra/SD documentation, testing, and code base during the last year include Frank Beckwith,
Simon Bignold, Leah Brinkman, Samuel Browne, Michael Buche, Nathan Crane, David Glaze,
Mark Hamilton, Jacob Healy, Andrew Kimler, Dong Lee, Mario LoPrinzi, Kevin Manktelow,
Scott Miller, Matthew Mosby, Tony Nguyen, Devin OConnor, Tolu Okusanya, Heather Pacella,
Krishen Parmar, Malachi Phillips, Kendall Pierson, Tim Shelton, Greg Sjaardema, Matt Staten,
Yaroslav Vasyliv, Johnathan Vo, Tyler Voskuilen, and Alan Williams.

Historically dozens of other Sandia staff, students, and external collaborators have also
contributed to the Sierra/SD product and its documentation.

Many other individuals groups have contributed either directly or indirectly to the success of the
Sierra/SD product. These include but are not limited to;

* Garth Reese implemented the original Sierra/SD code base. He served as principal
investigator and product owner for Sierra/SD for over twenty years. His efforts and
contributions led to much of the current success of Sierra/SD.

* The ASC program at the DOE which funded the initial Sierra/SD (Salinas) development as
well as the ASC program which still provides the bulk of ongoing development support.

* Line managers at Sandia Labs who supported this effort. Special recognition is extended to
David Martinez who helped establish the effort.

* Charbel Farhat and the University of Colorado at Boulder. They have provided incredible
support in the area of finite elements, and especially in development of linear solvers.

* Carlos Felippa of U. Colorado at Boulder. His consultation has been invaluable, and
includes the summer of 2001 where he visited at Sandia and developed the Hexshell
element for us.

* Danny Sorensen, Rich Lehoucq and other developers of ARPACK, which is used for
eigenvalue problems.

13

Esmond Ng who wrote sparspak for us. This sparse solver package is responsible for much
of the performance in Sierra/SD linear solvers.

The metis team at the University of Minnesota. Metis is an important part of the graph
partitioning schemes used by several of our linear solvers. These are copyright 1997 from
the University of Minnesota.

Padma Raghaven for development of a parallel direct solver that is a part of the linear
solvers.

The developers of the SuperLLU Dist parallel sparse direct linear solver. It is used through
GDSW for a variety of problems.

Leszek Demkowicz at the University of Texas at Austin who provided the HP3D! library
and has worked with the Sierra/SD team on several initiatives. The HP3D library is used to
calculate shape functions for higher order elements.

This work was supported by the Laboratory Directed Research and Development (LDRD)
program.

14

1. TRAINING PROBLEMS

The sections of a Sierra/SD input file are described in the Sierra SD Users’ Guide. An input file
has seven required sections: solution, file (Exodus mesh), load(s), outputs, echo, block (one per
element block in the input Exodus file) and material (one per unique material). In the file section,
the string FILEPATH must be replaced by the name of the input Exodus mesh file.

The input file for the statics solution method, 21.1, provided in the Appendix has the required
sections, and three optional sections: parameters, boundary and GDSW. The parameter Wtmass,
typically 1/(32.2ft/s> 12in/ ft), is used so that for example densities may be specified in units of
Ibs/ in3, as described in the Users’ Guide. Boundary conditions on a side set, or in this case a
node set, are specified in the boundary section. The GDSW section indicates that the threshold on
the relative residual norm be decreased from the default 1.e-6 if using the GDSW linear solver.

The input file 21.2 for the eigen solution method requests that the twelve lowest frequency modes
be computed. The eigen norm parameter indicates that the mode shapes will be normalized in a
way that is convenient for visualization. The default normalization uses the mass matrix. Here
solver_tol has been further reduced to 1.e — 10.

The transient simulation input file 21.3 uses the default Newmark method and has the total
simulation time of 1/100 seconds. The load specified by a tabulated Haversine pulse. The history
section indicates that the output quantities at each time step and at the specified node sets only will
be written to a different Exodus output file with the suffix h. In this case the history file name is
fixture-out.h. The history file is 20, 000 times smaller than the ordinary output file. Finally,
the restart option in the solution section means that the file fixture-out.rslt_trans will be written. It
is possible to restart the simulation using this restart file, as described in the Users’ Guide.

In a modal transient simulation, the transient problem is projected onto the subspace spanned by
the mode shapes of a user specified number of the lowest frequency modes. Modal transient
simulations are often convenient when a system has to be modeling using several loads. The
transient keyword has been replaced by the modaltransient keyword. Also, a single input
file is used for both the initial eigenvalue problem (20 modes), and the following modal transient
solution. This is called a multicase solution. Another difference is that the plural loads section
has been replaced by a numbered 1oad block; this is always the case with a multicase
simulation.

Returning to the first solution case in the modal transient simulation, the eigenvalue problem, a
shift is set to —1e + 6. The default shift is —1. Here the first eigenvalue is 1e + 8. The eigenvalue
problem is solved more efficiently and accurately if the shift is approximately —1 times the lowest
nonzero eigenvalue (flexible mode).

15

The frequency response function is used for example to confirm engineering assumptions about
the frequency content of the accelerations. The modalfrf solution case showing in the input file
21.5 concerns the frequency response function

i(w) = (K +iwC — *M) f(w),i = V-1.

Modal frequency response refers to using the mode shapes to diagonalize the transfer function. A
linear solver is not used to evaluate the transfer function, but is used in solving the eigenvalue
problem. The function here describes the frequency dependent load, the Fourier transform of the
temporal load. The damping section supplies the coefficient for mass proportional damping,

C = yM. The frequency block sets the spatial location and frequency range of the load.

In the modal frequency response problem note that there is both a history section and a frequency
section. The input file is for a multicase simulation. The history file section applies to the solution
of the eigenvalue problem, and is ignored during the solution of the frequency response problem.
And the frequency response section is ignored during the solution of the eigenvalue problem, and
applies only to the frequency response problem.

The last input file 21.6 will be discussed in the next section.

16

2. THREAD PARALLELISM

In addition to decomposition based MPI parallelism, Sierra/SD also supports thread parallelism
on some platforms (currently Trinity and GCC development platforms). Threads are activated by
the command line option “-nt <numThreads>". The ‘numThreads’ given will be the number of
OpenMP threads to use on each MPI rank. Threaded execution is most valuable on large models.
Using a mixture of thread parallelism and MPI parallelism can give optimal performance when
the number of MPI processes required would otherwise be very large. As a rule of thumb thread
parallelism will provide benefit when exceeding about 200 MPI processes or when more cores are
required than MPI ranks to obtain more memory. When using thread parallelism, the number of
threads used times the number of MPI ranks used should be setup to be equal the total number of
processor cores available on compute nodes.

Note: while the number of threads used in Sierra/SD is controlled by the command line option
“-nt”, it is recommended that the user also set the environment variable
‘OMP_NUM_THREADS’ to be the same value. While Sierra/SD does not depend on
‘OMP_NUM_THREADS?’, there might be other aspects of your workflow that would, and so we
recommend setting both to be consistent. In fact, Sierra/SD will output a warning if
‘OMP_NUM_THREADS’ does not match the value set by “-nt”.

2.1, Debugging Threading Approaches

Choosing an ideal set of parameters for a threaded run can be complex. There are many options to
choose from, and availability can vary. As such, it is frequently useful to obtain information about
exactly what your chosen set of parameters is doing on a given system. There are several
stand-alone codes that will accomplish this goal, but in Sierra/SD we have incorporated a
summary table that includes information about MPI ranks, threads, the physical core on which
each thread is running, and the core affinity of each thread. This table will be output in a typical
run if the “timing_summary” or “threading_summary” options are requested in the echo block.
Alternatively, you can output this table directly with the - -threading command line option, i.e.

mpirun -n 4 salinas -nt 2 --threading

This option allows you to check your run command and the effect of any environment variables
without invoking a full Sierra/SD run. Additionally, we will always issue a warning if we detect
any over-subscribed cores.

17

2.2. Batch Submission / Optimal Parameters for KNL

If you are not familiar with using a queued system, proceed with caution. A project can easily go
behind schedule. Due diligence (as described in the Users Manual) is necessary to minimize the

possibility of an input file error. Also, there may be more than one queue. It is also important to

do as much work as possible in the fastest queue.

Batch submission scripts for threaded runs must be tailored to the system you’re running on. In
the following example, we will focus on the Knights Landing (KNL) processor, as found on the
Mutrino-KNL platform.

There are 68 CPUs on a KNL node. Each has 4 hyperthreads. They are numbered O - 271.
* Cores 0 - 67 are the first hyperthread on CPUs 0 - 67
* Cores 68 - 135 are the second hyperthread on CPUs O - 67
* Cores 136 - 203 are the third hyperthread on CPUs 0 - 67
* Cores 204 - 271 are the fourth hyperthread on CPUs 0 - 67

The following will like the “Sierra" script set up a run on Mutrino/KNL including the number of
nodes needed.

#!/bin/bash
module load sierra/release.knl
export PATH=path_to_salinas:$PATH

#sbatch settings
accountNumber="your_WC_ID"
time="04:00:00"

input/decomp settings
inputFile="myExampleProblem.inp"

numRanks=51 # number of MPI procs/ranks

numThreadsPerRank=4 # number of threads per proc/rank

machine-specific information... obtain using lscpu

numSocketsPerNode=1 # number of sockets per node
for KNL, this is 1

numCoresPerSocket=64 # number of cores per socket
68 for KNL, but we don’t want to use them all
-> say 64

numThreadsPerCore=4 # number of CPUs/threads per core Chyperthreads)
for KNL, this is 4

#H###HAH AR ##AAH#E USER INPUT SECTION FINISHED ############HFHBR#HFHH

18

Determine number of sockets/nodes needed for procs*threads requested
NOT USING HYPERTHREADS

maxNumRanksPerSocketNeeded=$ [numCoresPerSocket/numThreadsPerRank] ;
minNumThreadsPerRankNeeded=\

$ [numCoresPerSocket*numThreadsPerCore/maxNumRanksPerSocketNeeded];

minNumSocketsNeeded=$ [numRanks/maxNumRanksPerSocketNeeded]
remainder=$ [numRanks%maxNumRanksPerSocketNeeded]
if [$remainder -gt O]; then
minNumSocketsNeeded=$ [minNumSocketsNeeded+1]
fi

minNumNodesNeeded=$ [minNumSocketsNeeded/numSocketsPerNode]
remainder=$ [minNumSocketsNeeded%numSocketsPerNode]
if [$remainder -gt ®]; then
minNumNodesNeeded=$ [minNumNodesNeeded+1]
fi

echo

echo "Machine info..."

echo -n "# sockets per node = $numSocketsPerNode,
echo -n "# cores per socket = $numCoresPerSocket,
echo "# threads per core = $numThreadsPerCore"
echo

echo -n "Requested $numThreadsPerRank threads
echo "and $numRanks MPI ranks"

echo

echo -n "Allocated $minNumThreadsPerRankNeeded threads per rank,
echo -n "$maxNumRanksPerSocketNeeded ranks per socket, "

echo -n "$minNumSocketsNeeded sockets, "

echo "and $minNumNodesNeeded nodes"

echo

"

echo "Generating sbatch submission script sbatchScript.sh"
echo

echo "#!/bin/bash" > sbatchScript.sh
echo "#SBATCH --account=$accountNumber" >> sbatchScript.sh

echo "#SBATCH --nodes=$minNumNodesNeeded" >> sbatchScript.sh
echo "#SBATCH --time=$time" >> sbatchScript.sh

MUTRINO... use these to get to the KNL partition

19

echo "#SBATCH -p knl" >> sbatchScript.sh
echo "#SBATCH -C knl,compute,quad,cache" >> sbatchScript.sh

echo "export OMP_NUM_THREADS=$numThreadsPerRank" >> sbatchScript.sh
echo "export OMP_PROC_BIND=true" >> sbatchScript.sh

echo "srun --cpu-bind=threads --cpus-per-task=$minNumThreadsPerRankNeeded
-n $numRanks \

salinas -nt $numThreadsPerRank -i $inputFile" >> sbatchScript.sh

sbatch sbatchScript.sh

The command “source script.name” runs the script. The script was designed to be adaptable to
systems other than Mutrino/KNL. In the following section it is modified to run on HPC Clusters.
Users are strongly advised to verify that their approach behaves as expected. After writing a
script, but before running it, reduce the duration to say one minute and replace “-1i
${inputFile}” with “-threading”. It should run quickly. And it shows where threads are
allocated. Also, run the script provided here without the actual sbatch command. It should
generate “sbatchScript.sh”.

2.3. Parameters for Running on HPC Clusters

Each HPC platform has a unique chip architecture, necessitating changes to the environment
variables used for launching applications that use both MPI and threading. This section presents
the modifications of the above Mutrino script needed to optimally running threaded applications
on an Institutional Cluster. These script modifications include different environment variables that
account for the differences in chip architectures as well as changes to account for differences in the
executables needed for launching MPI jobs. Sierra/SD is traditionally run as a MPI only process
on an Institutional Cluster. However, in some instances cores on each compute node are left idle,
and it therefore makes sense to put those idle cores to use by using threads. This is often the case
for memory bound problems, in which case the use of threads is an attractive solution as it does
not lead to an increase the in memory. As such, we have modified the Mutrino/KNL script from
the previous section with settings that we have found to work for the cluster, and which may be
useful when setting up a run on other machines using threading.

#!/bin/bash
module load sierra-devel/intel-17.0.1-openmpi-1.10
export PATH=path_to_openmp=on_salinas_build: $PATH

#sbatch settings
accountNumber="your_WC_ID"
time="04:00:00"

input/decomp settings

20

inputFile="myExampleProblem.inp"

numRanks=51 # number of MPI procs/ranks
numThreadsPerRank=4 # number of threads per proc/rank
machine-specific information... obtain using lscpu
numSocketsPerNode=2 # number of sockets per node
for chama, this is 2
numCoresPerSocket=8 # number of cores per socket
for chama, this is 8
numThreadsPerCore=1 # number of CPUs/threads per core Chyperthreads)
for chama, this is 1

#H####HAR AR #A### USER INPUT SECTION FINISHED ############H#FHBR#H#HHH

Determine number of sockets/nodes needed for procs*threads requested
NOT USING HYPERTHREADS

maxNumRanksPerSocketNeeded=$ [numCoresPerSocket/numThreadsPerRank] ;
minNumThreadsPerRankNeeded=\

$ [numCoresPerSocket*numThreadsPerCore/maxNumRanksPerSocketNeeded] ;

minNumSocketsNeeded=$ [numRanks/maxNumRanksPerSocketNeeded]
remainder=$ [numRanks%maxNumRanksPerSocketNeeded]
if [$remainder -gt O]; then
minNumSocketsNeeded=$ [minNumSocketsNeeded+1]
fi

minNumNodesNeeded=$ [minNumSocketsNeeded/numSocketsPerNode]
remainder=$ [minNumSocketsNeeded¥%numSocketsPerNode]
if [$remainder -gt ®]; then
minNumNodesNeeded=$ [minNumNodesNeeded+1]
fi

echo

echo "Machine info..."

echo -n "# sockets per node $numSocketsPerNode,
echo -n "# cores per socket = $numCoresPerSocket,
echo "# threads per core = $numThreadsPerCore"
echo

echo -n "Requested $numThreadsPerRank threads
echo "and $numRanks MPI ranks"

echo

echo -n "Allocated $minNumThreadsPerRankNeeded threads per rank,
echo -n "$maxNumRanksPerSocketNeeded ranks per socket, "

echo -n "$minNumSocketsNeeded sockets, "

"

n

21

echo "and $minNumNodesNeeded nodes"
echo

echo "Generating sbatch submission script $batchFile"
echo

echo "#!/bin/bash" > sbatchFile

echo "#SBATCH --account=$accountNumber" >> sbatchFile
echo "#SBATCH --nodes=$minNumNodesNeeded" >> sbatchFile
echo "#SBATCH --time=$time" >> sbatchFile

use this to run in the much faster "short" queue (16 nodes, 4 hours max]
echo "#SBATCH -p short,batch" >> sbatchFile

echo "export OMP_NUM_THREADS=$numThreadsPerRank" >> sbatchFile
echo "export OMP_PROC_BIND=true" >> sbatchFile

echo "mpiexec --map-by socket:pe=$minNumThreadsPerRankNeeded \
-n $numRanks \

salinas -nt $numThreadsPerRank -i $inputFile" >> sbatchScript.sh

sbatch sbatchFile

Note that this script will only work with a maximum number of threads equal to the number of
cores per socket. Note also that there is currently threads are disabled. To use threads a special
version of Sierra/SD needs to be build with openmp=on.

22

3. TRANSIENT SIMULATION ABOUT SIERRA/SM PRELOAD

Hand-off from Sierra/SM to Sierra/SD uses separate runs. First Sierra/SM writes the necessary
data to the output Exodus file. Second Sierra/SD reads the data and executes the analysis. An
updated Lagrangian approach is used, in the sense that the nodal coordinates in Sierra/SD are the
initial coordinates for Sierra/SM plus the final set of displacements computed in Sierra/SM. For
large models splitting the computation into two phases acts like a convenient restart.

The default names of the fields written by Sierra/SM differ from the default names of the same
fields read by Sierra/SD. The purpose of Sierra/SD’s receive_sierra_data solution case is to
address these inconsistencies.

A linear transient analysis of a preloaded cantilevered beam is described to illustrate how
Sierra/SM output is used. The preload deformed the beam, and the initial stress state contributes
to alterations in stiffness.

—
E—— ————— T ——
<
Large Load Deformed State Shock or RanVibe

Nonlinear Respanse

Figure 3-1. — Applying Sierra/SD to the output of Sierra/SM: cantilevered beam.

The content for this section is based on an example and explanatory information provided by
Vince Pericoli. All the files used in these simulations are available to members of the Sierra Users
group on the CEE SRN at:

unix> cd /projects/sierra/tests/master/tests
unix> 1s sd_sm_coupled_rtest/exampleproblemsmanual/sm_sd_handoff

A similar sequence of events, shown in Figure 3-1 could be used to model the shock or vibration
response of a body that has undergone substantial perturbations due to preload.

Originally the cantilever beam was statically loaded in Sierra/SM.

unix> sierra adagio -i simple_cantilever_sm.i

The Sierra/SM output syntax was configured to meet the input requirements of Sierra/SD.

23

Sierra/SM input deck syntax is described in the Sierra/SM documentation, particularly the
Output chapter.

When preload deformations are significant in Sierra/SM, for instance, in the case of foam
materials under high compression, it is important to consider mass conservation through the
transfer, since Sierra/SD computes stiffness and mass matrices in the deformed configuration.
Thus, material density must be updated on hand-off to reflect this deformation. As Sierra/SM
does not support density output directly, special output options must be included in the Sierra/SM
input deck.

Functions are typically defined in the sierra scope of the Sierra/SM input file.

BEGIN FUNCTION ElementDensity
type = analytic
expression variable: m = element element_mass
expression variable: v = element volume
evaluate expression = "m/v"

END

Density must then be requested for output from the Sierra/SM analysis, in addition to other
required hand-off variables, as follows.

BEGIN USER OUTPUT
compute element element_density as function ElementDensity
END
Begin results output sd_handoff
database name = sm_output/sm_to_sd.e
database Type = exodus
additional times {end_time}
nodal variables = displacement as displ
element variables = stress
element variables = element_density
component separator character = none
End

Option additional times is handy for creating an output file containing only the last time step,
and similar tasks. This reduces file size and also eliminates any ambiguity as to which step
provides the initial state to Sierra/SD. The component separator character = none
command is used with fields such as stress, stress_xx, and displacement, displ_x, where
underscore (_) is the default separator. Specifying none is optional but recommended.

The Sierra/SM and Sierra/SD material definitions must be nominally consistent. For this model,
Sierra/SM uses an elastic-plastic and Sierra/SD uses the small strain linearization of the model.
This is achieved by simply matching the youngs modulus and poissons ratio in Sierra/SM
input to the Sierra/SD input, E and nu. One key difference is, when density is handed off from
Sierra/SM, that the material density must be specified as an Exodus mesh variable in Sierra/SD.

24

MATERIAL FOAM
// original density = 26.
density exo_var scalar element_density

END

Expanded Sierra/SD support for Lamé materials has required that many of the possible
Sierra/SM element fields be read into Sierra/SD, especially the state variables associated with a
given Lamé model.

element variables = lame_state_hyperfoam

Adagio output can also include the Polar decomposition of the Total Lagrange deformation
gradient, even if the element itself uses an Updated Lagrange formulation. The decomposition is
stored in the element fields rotation and left_stretch.

element variables = left_stretch
element variables = rotation

When utilizing a Lamé model, it is also important to note that Sierra/SD computes a material
stiffness that combines material and geometric stiffness contributions; thus, the no_geom_stiff
option should be exercised when handing off data to Sierra/SD using the
receive_sierra_data solution case.

The SEACAS tool algebra can extract only the final results from any Sierra/SM output file,
given the approximate times of the last two time steps. Here is an example of how to do this if the
final two Sierra/SM simulation output times are approximately 1.99 and 2.0.

create an input file for SD containing only the last step
unix> algebra sm.exo smforsd.exo

algebra> tmin 1.995

algebra> save element

algebra> save nodal

algebra> end

Note also that an algebra session must terminate with end.

3.1. Coupled Sierra/SM- Sierra/SD Eigenvalue Problems

In this section, a modal analysis is applied to the output of Sierra/SM, also known as Adagio. A
nonlinear preload is computed in Sierra/SM, followed by a modal analysis in Sierra/SD. In this
approach, the modal analysis is performed about the nonlinear state that is computed in
Sierra/SM. This is the most convenient approach, since the modes about the deformed state are
typically of most interest.

25

This file transfer approach proceeds as follows. Here the Sierra/SM and Sierra/SD input decks
are named sierra.i and sd.inp. The model consists of four layers of material, with a
membrane layer between the bottom layers, as shown in Figure 3-2.

1.

Construct the input decks sierra.i and sd.inp. Both input decks contain modifications
required for hand-off as described in Section 3.

Execute Sierra/SM

The output Exodus file that is assigned in Sierra/SM is used as the geometry file for the
Sierra/SD analysis. This step will need to be inserted manually by the user.

Execute Sierra/SD. Figure 3-3 summarizes the steps of the analysis.

. Eigenvalues and modal frequencies are listed in the salinas.rslt file. Both modal

frequencies and mode shapes are in the file Sierra/SD output Exodus file. If as shown here
the second case is named two, then the output Exodus file is named salinas-two.exo
(see example below).

membrane

Figure 3-2. — SM/SD Transfer Model Geometry.

26

A.Read displacements, stresses and certain material parameters from
..... previous SM analysis. These are found in the Exodus output from
SM.

B. Update original coordinates to the deformed coordinates, X =
X, +U.

C. Compute element stiffness matrices from material properties.

D. Adjust stiffness matrices for stress preload.

E. Generate constraints.

F. Assemble system level matrices and solve eigenvalue problem.

Figure 3-3. - Steps in Sierra/SD Coupled Analysis. Most properties and element matrices are
recomputed in SD.

3.2. User specified field names

Sierra/SD can input most Sierra/SM output by guessing the naming convention. Ideally it would
be possible for Sierra/SD to read any Sierra/SM output. However, some fields that Sierra/SM
outputs to the Exodus file may have have user-defined labels or be user-defined variables. This
includes stresses, displacements and analysis time. Sierra/SD can only input data if the labels are
determined exactly. Sierra/SD has a corresponding capability for users to specify the input field
names in the File section of the input deck. The list of valid initialize variable name
label keys is extensive and documented [2]. In the provided example, the input Exodus file
input_mesh. g stores nodal displacements stored as dx, dy, and dz.

27

FILE
geometry_file = input_mesh.g

nodal displacement components stored in input_mesh.g...
initialize variable name = displacement(x) # x-component

variable type = node # nodal displacement
read variable = dx # from input "dx"
time = 2.5 # at the nearest step
with time >= 2.5

initialize variable name = displacement(y) # y-component
variable type = node # nodal displacement
read variable = dy # from input "dy"
step = FIRST # at the first step

initialize variable name = displacement(z) # z-component
variable type = node # nodal displacement
read variable = dz # from input "dz"
step = LAST # at the last step

END
3.3. Troubleshooting Legacy Models

1. The search tolerance for Sierra/SD Tied Data must be set carefully to ensure that the same
nodes that are in contact as in Sierra/SM.

a) Use very small search tolerance, in the range of one to two orders of magnitude
smaller than the capture tolerance in Sierra/SM should be sufficient.

b) Ideally, nodal contact information should be passed directly from Sierra/SM to
Sierra/SD (not currently available).

2. The sidesets used to define the tied contacts in Sierra/SD must be defined in the input
Exodus file used by Sierra/SM, even if they are not used in Sierra/SM.

3. The material properties for each element are not passed from Sierra/SM to Sierra/SD. This
is important with nonlinear models.

3.4. Rigid Rims, Coupling with Concentrated Masses, and Superelements

Extra steps are needed in both the Sierra/SM and the Sierra/SD analysis to treat parts of the mesh
as rigid bodies during the Sierra/SD analysis. This section reviews those steps in the case of a

28

Rigidset. The missing mass is accounted for by adding a concentrated mass. A similar approach
for a Superelement is also described.

Suppose for example that a model has sidesets with ids 901 and 902. If sidesets 901 and 902
surround two pieces of the mesh, then the following command block will make the surfaces rigid.
Although these parts are free to deform, the resulting modes are very high frequency and thus out
of range of the low frequency range of interest.

RIGIDSET setl
sideset 901
sideset 902

END

It is also often effective to add the mass properties of a rigid body onto its centroid. This can be
accomplished by coupling to a concentrated mass. For this, a sphere element needs to be added to
the mesh file. This can be done with a tool to manipulate the mesh such as Cubit or Patran (with
gjoin). The sphere can be added to the Sierra/SM input file, and it will be inactive for the first
stage analysis. For the Sierra/SD portion, the following blocks would connect the concentrated
mass to the rigid body.

RIGIDSET setl

sideset 901

sideset 902

centernode tied to node 28539 block 20
END

BLOCK 20
coordinate 1
Joint2G
kx=elastic 1.0e+10
ky=elastic 1.0e+10
kz=elastic 1.0e+10
krx=elastic 1.0e+10
kry=elastic 1.0e+10
krz=elastic 1.0e+10
END

BEGIN RECTANGULAR COORDINATE SYSTEM 1
origin 0 0 O
z point 0 0 1
xz point 1 0 1

END

BLOCK 17
conMass

29

mass 1.0el
Ixx 1.0el

offset 0 0 O
END

In this example, block 17 is the concentrated mass, and contains both the mass and inertial
properties of the rigid body. Thus, the actual rigid body would be given zero density. Block 17 is
also node 28539, and is connected to the reference node of the Rigidset through block 20 via the
statement centernode tiedto node 28539 block 20. The reference node of the Rigidset is
chosen to be the node in the Rigidset that is closest to its geometric centroid (which is computed by
averaging the coordinates of the nodes in the Rigidset). Since that node will most likely not be at
the same location as the concentrated mass node, block 20 will usually have a non-zero length.

We also note that in the statement "centernode tiedto node 28539 block 20", Node
28539 must be connected to a virtual Joint2G block, in this case block 20. That is, block 20 is not
part of the mesh file in Exodus, but instead is created internally in Sierra/SD during execution of
the code. It is necessary that block 20 be a virtual Joint2G block, otherwise the code will die with
a fatal error message. This element provides 6 components of elastic resistance (3 translations and
3 rotations) between the concentrated mass and the reference node of the rigid body. As these
elastic stiffnesses increase, the effect converges to a rigid bar between the pair of nodes.

This same approach can be used to couple to a Superelement in the case where the Superelement
has a single interface node. In that case, the Superelement is also represented in the mesh with a
sphere element, and the coupling between the Superelement and the reference node of the rigid
body is specified in exactly the same manner. In this case, however, block 17 is defined to be a
Superelement rather than a concentrated mass, and is given a corresponding Netcdf file that
contains the reduced mass and stiffness matrices of the Superelement.

RIGIDSET setl

sideset 901

sideset 902

centernode tiedto node 28539 block 20
END

BLOCK 20
coordinate 1
Joint2G
kx=elastic 1.0e+10
ky=elastic 1.0e+10
kz=elastic 1.0e+10
krx=elastic 1.0e+10

30

kry=elastic 1.0e+10
krz=elastic 1.0e+10
END

BEGIN RECTANGULAR COORDINATE SYSTEM 1

origin 0 0 O

z point 0 O 1

xz point 1 0 1
END

31

BLOCK 17
Superelement
file=’"superelement.ncf’
map

// local grid id «cid
1

VT B W N =

(== I R~ R — R — R~ R~ N~ I A L

S DD

END

32

4,

LINEAR SOLVERS

Many solution methods rely on reliable and efficient linear solvers. However, there are features in
models that may either impede convergence or degrade accuracy. The Helmholtz linear solver is
discussed separately in Section 4.2. In this section, common issues are tabulated and an example
with before and after configurations is reviewed.

1. Some problems occur only for models with lots of constraint equations, due to large

surfaces that are tied together (e.g. one large sideset constrained to another with many
nodes). A way to confirm that this is the issue is the check whether the problem is mitigated
if tied contact over large surfaces is turned off.

Decreasing the time step (e.g. halving) can mitigate convergence issues.

Suppose there are accuracy issues. Note that the tolerance on the residual is always larger
than the uncertainty in the solution vector. A linear system has a condition number, which is
always greater than 1. The uncertainty in the solution vector is the product of the condition
number and the tolerance on the residual.

There are alternative to GDSW. Sierra/SD provides serial sparse linear solvers, sparsepak
for symmetric positive definite systems, and SuperLU for other systems. In addition,
Pardiso is a general-purpose sparse solver that is available on Intel platforms. These
solvers are at least as robust as the iterative methods. It can be enlightening to try to use the
appropriate serial sparse linear solver as problem size permits.

Consider, for example, the following user provided configuration of the GDSW linear solver.

GDSW

prt_summary = 3
solver_tol = 1.0e-5
max_iter = 5000
orthog = 200
overlap = 1

diag_scaling
scale_option

END

diagonal
1

The options are generally intuitive. If the solver converges, and accuracy issues arise, then trying
a smaller solver_tol, and a larger max_iter is recommended. If the solver diverges, then
trying a larger solver_tol or a larger max_iter is recommended. A larger orthog is also
recommended. However, there are memory usage limitations. If there is an immediate error that

33

could be related to running out of memory, then try a smaller value of orthog or use more
processors. See the discussion of reducing memory usage in the training documents for details.

There is a hidden constraint on these options. With some Krylov methods, e.g. the default of
krylov_method = 1 (GMREY), it turns out that orthog > max_iter. For this reason, when
divergence is a problem, users often switch to gmresClassic, which allows orthog <
max_iter.

In this example, overlap = 1 is a small value for overlap. If you are running out of memory
with a higher value, then this might be a great idea. If the linear solver is diverging, you might try
a larger value (the default is 2).

The diag_scaling = diagonal option can be used either to find a convergent solver, or to find
a more accurate solver. On the other hand, there are cases in which selecting the option decreases
accurate.

In this case study, the user ultimately changed the GDSW configuration to the following to address
convergence issues.

GDSW

solver_tol = le-12

overlap = 2

num_vectors_keep = 0

orthog = 4000

max_iter = 4000

krylov_method = gmresClassic
END

The option num_vectors_keep can only be used with the classic version of GMRES
(krylov_method gmresClassic). The parameter orthog controls how many search direction are
stored. We store search directions to make the linear solver faster. More is generally better. The
point to understand is which search directions are stored. In this example, the first 4000 search
directions are stored. On later solves, the first num_vectors_keep are saved and recycled. The
default value of num_vectors_keep is orthog/2. In this case the solution has changed
significantly and you don’t want to use any of the old search directions. num_vectors_keep = 0
tells GDSW to start afresh and remove all search directions every time the maximum is reached.
Thus, the benefits of recycling are still retained, but the entire search space is periodically purged
of older search directions.

4.1. Linear Solver Accuracy

Linear solver errors are especially troublesome when the condition of the dynamic matrix is high.
This can be caused by various sources.

 Singular mass matrices.

34

Lack of a large shift for floating structures.
* Some complex constraint systems.
* Connection of very stiff and very compliant materials.
* Large concentrated masses.
* Poor decomposition, which affect the preconditioner and convergence rate.
* Redundant and/or conflicting constraints.
Any of these items can impact the linear solver sufficient to cause solution failure.

When using the GDSW solver, information on solver accuracy is readily obtained from
dd_solver.dat, which is written by default. Figure 4-1 provides an example of a portion of this
file. The top portion of the file contains information about the general solution. The operator
diagonal magnitudes provide a lower bound on the condition of the matrix, in this case 448463.
Condition numbers up to 1.e14 are solvable. Higher condition numbers are rarely solvable. The
condition numbers are determined after application of the MPCs.

The default name of this file can be overridden by the dd_solver_output_file option in the GDSW
section. Likewise, the default name of the Krylov solver output file (“krylov_solver.dat”) can be
overridden with the krylov_solver_output_file option.

Rigid body norms are then reported. Each row is the product, |AR;|, where R; is the
geometrically determined rigid body vector, and A is the dynamic matrix'. Low values for these
norms may indicate singularity.

The lower portion of the file provides information about each linear solve. The “recursive relative
residual” is computed indirectly as part of the solution. It is used to control the solution. At the
end of the solution, an “actual relative residual” is computed, r, = |Ax — b|/|b|. Large differences
between relative and actual residuals are a concern that the solution may lack accuracy.

The solver is designed to reduce the relative residual to a low tolerance. This residual relates to
the error in force in a statics problem. The error in displacement, dx, may be more important for
many applications. This error in the displacement depends on «, the condition of A, and the
relative residual. It is not directly computed nor reported.

ox
— < Krg
|x]

!For eigenvalue problems, A = K — oM, where o is the shift.

35

- domain decomposition solver summary -

preconditioner = GDSW
Krylov method = Right GMRES
solver option = Esmond
number of processors =1

solver tolerance = le-09
maximum number of iterations = 11

maximum number of restarts =1

maximum stored directions =0

solving scaled problem = no

operator diagonal magnitudes -

min = 31145.6

max = 1.39676e+10
max/min = 448463
Rigid Body Norm for Mode 1 0.0123875
Rigid Body Norm for Mode 2 8.43938e-07
Rigid Body Norm for Mode 3 0.012616
Rigid Body Norm for Mode 4 0.00206949
Rigid Body Norm for Mode 5 0.000878705
Rigid Body Norm for Mode 6 0.00423774
coarse space type = large
number of coarse levels =0

solver initialization time

Solve Iter Total Avg

1 1 1 1
2 1 2 1
3 1 3 1
4 1 4 1
39 1 39 1
40 1 40 1

0.0306559 seconds

Recursive Actual
Relative Relative
Residual Residual

7.22136e-12 1.16949e-11
4.55332e-12 1.7662e-11
8.1699%e-13 7.89586e-13
5.69584e-14 5.92117e-14

2.51249e-14 2.34535e-14
2.08119%e-14 2.18612e-14

(== — =

0
0

CPU (s)

.00170898
.00142002
.00141907
.00142908

.00145912
.00142503

total time for overlap preconditioner (seconds) = 0.0491779

Figure 4-1. — dd_solver.dat output from GDSW.

36

Total (s)
0.00170898
0.00312901
0.00454807
0.00597715

0.0559211
0.0573461

Avg (s)
0.00170898
0.0015645
0.00151602
0.00149429

0.00143387
0.00143365

4.2. Frequency response linear solver

This section is about using the Helmholtz linear solver. The reader is assumed to be familiar with
all the other documentation. Iterative linear solvers for some other types of problems are
discussed in Section 4. At this time using solver_tol below the default value is not
recommended due to observed inconsistencies suggesting that the wrong answer can be returned
to the user. Clarifying this issue has a low priority at this time.

Insufficient virtual memory problems. If insufficient memory problems arise, users must
determine their cause and explain them. This is difficult.

Zeroing out orthogH conserves memory. Note that the Helmholtz linear solver is less mature
than some other parts of GDSW. I have noticed in the past that setting krylov_methodH to 1
changed orthogH to 1000 (of course 1000 is the default value of orthog and 20 is the
documented default value of orthogH). The Sierra/SD parser has default value O for orthogH. It
is necessary to monitor the value reported for orthogH in dd_solver.dat.

Experiments with alternative mesh partitioners have been surprisingly productive for structures.

precision_option_0 single conserves memory in theory, but in practice it has been
problematic. It would help to use it with Flexible GMRES. Note that Flexible GMRES may
interact with orthogH like krylov_methodH.

Divergence problems. Address divergence either by adjusting the preconditioner configuration
parameters or by increasing the magnitude of the damping matrix. The former has the
disadvantage that there are many parameters. Given time the variety of parameters exposed to the
user will decrease. The latter has the disadvantage that it can change the solution.

Determining how much damping to use is beyond the scope of this note. If the response is
independent of the damping, then there is not too much damping. The case of slight increases in
the response due to the damping are less clear.

Configuring the preconditioner may involve trial and error. One approach is
useParallelDirectSolver yes. As long as there is enough memory available, the parallel
direct solver will almost surely work.

The remainder of these notes concern the trial and error approach to configuring the
preconditioner. Start by decreasing the preconditioner update frequency, despite the
computational cost.

Increasing the number of levels of overlap may help, particularly with shell elements. There is a
theoretical explanation for this.

Structural_damping and viscous_damping apply to the custom and the operator
preconditioners. A formula for the dependence of the preconditioner on these parameters appears
in the documentation. The code probably uses this formula. There are two important things to
know here. First: these parameters have nothing to do with the damping matrix, and only change
the preconditioner. The default values of the structural and viscous damping are respectively
12/100 and 0. Second: sometimes, changing (usually but not always increasing) the structural

37

damping improves the preconditioner (decreases iterations and decreases overall time to
solution).

The previous max_previous_sols solutions determine an initial guess for the current linear
system. The default is zero. I do not know the default initial guess. If max previous sols is
positive, then the initial guess is effective.

The Krylov subspaces generated to solve the initial linear systems are applied to the remaining
linear systems. Only the first orthogH Krylov vectors are used. In several studies, the value 100
has proved optimal.

cull method eigen is in theory the best way to refresh the Krylov vectors, but in my experience
it has never helped.

SC_optionH yes helps less often than the default, no, but is worth trying. It is particularly
important to type this option correctly. A similar option for other types of linear systems,
SC_option, is silently ignored for direct frequency response problems.

Preconditioner effectiveness may vary with both input frequency and the number of MPI ranks.
Subdomain diameter is inversely proportional to the cube root of the number of MPI ranks.
Subdomain mode shape wavelength is proportional to subdomain diameter, and frequency is
inversely proportional to wavelength. For these reasons increasing the number of MPI ranks can
improve simulation reliability at higher frequencies. My observations are consistent with this
prediction. For the same reason at a fixed low number of MPI ranks, as the frequency increases,
the effectiveness of the coarse grid correction within the preconditioner may deteriorate. Such
deterioration theoretically may be mitigated by setting the coarse_option to the non default
value none. Due to software defects, this strategy only became an option recently (9/2020).
However, this strategy has not helped so far.

38

5. COMPARING SIERRA SM EXPLICIT TRANSIENT TO DIRECT
AND MODAL FRF

FRFs are a matrix of relationships from forced input to either displacement, velocity, or
acceleration output. Typically, system response is accessed using acceleration.

Frequency Response Functions. The transfer function [H] relates the force input to the
displacement between two points in the system. The transfer function is symmetric and is formed
as a function of mass, damping, and stiffness. The transfer function is differentiable and the
relationship of the force to the acceleration is shown using the following in matrix form:

A=[H|F
More information can be found in the theory manual.

Mesh. Figure 5-1 shows a sample mesh that was used both as an input for Sierra/SD Modal and
Direct FRF as well as for the Sierra Solid Mechanics Code - Adagio. The Node where force is
applied is connected to the beam using a network of rigid Rbars and the force is applied in the
Z-direction.

Figure 5-1. — Cantilever Beam FRF example problem. The Input to the system is the Force applied
at the Node on the left and accelerations are output at nodes on the left. The input for the problem is
provided in Appendix A.21.16.1-21.16.3.

Input Deck.
LOADS

nodeset 500
force =0 0 1

Input Deck. Figure 5 shows the relevant portions of a direct
FRF input file. The keyword alpha =5 sets the mass damping
of the system. The frequency section has the frequency
range from .1-50Hz at .1Hz increments. A general rule of

scale . = thumb is that the load in the loads should be at least 1.5x
function = 1 .)
= the max frequency in the frequency section.

39

FUNCTION 1
type LINEAR
name "white noise"
data 0.0 1.0
data 200. 1.0
END

DAMPING
alpha = 5
END

FREQUENCY
freq_min = .1
freq_step = .1
freg_max = 50
acceleration
disp
nodeset 2

END

Figure 5-2 The Z-axis

response of the cantilever beam to forced input
of Figure 5-2 compares modal and direct FRF
with the same damping. There are enough
modes for the modal FRF to show nearly exact
agreement to the direct frf results. Each of
the frequencies used for the adagio input show
reasonable agreement. The discrepancies

seen are possibly due to the possibility that
the alpha damping in adagio is not one-to-one
related to the alpha damping in Sierra/SD.

Frequency Response Function [g/lb]

Table 5-1 shows T T e e R
each method’s run time. A caveat should

be noted here that 10 cycles were used in the
Adagio input to ensure that the system reached
steady state. Reducing the number of cycles

Figure 5-2. — Acceleration of end node in the Z-axis
direction.

reduces the run time proportionally. In

addition, with complex systems, eigen solution run time added to the modal FRF solver time may
approach the direct FRF solution time. It also should be noted that Adagio run was performed
with the knowledge of mode frequency locations. If it were not, it is possible that the frequencies
needed to plot would be closer together and more numerous.

40

Table 5-1. — Run Times (min:sec).

Method ‘ Time
Modal FRF (20 modes) | 00:09
Direct FRF | 02:41

Sierra SM (8 frequencies) \ 129:48

41

This page intentionally left blank.

42

6. CRAIG-BAMPTON REDUCTION

CBR solution method makes a superelement as specified in the CBModel section of the text input
file. The requirements for Sierra/SD to use this superelement are in the next section. This
reduction is often called a Component Mode Synthesis (or CMS).

It can be advantageous to reduce a model to its interface degrees of freedom. This is important in
modeling satellites, where the model of the satellite may be much larger than the model of the
remainder of the missile. Reduction of the satellite model to a linearized, Craig-Bampton model
makes it possible to share the dynamic properties of the model without requiring details of the
interior.

A limitation of Sierra/SD is that the CBR solution reduces the entire structural model to its
reduced system and transfer matrices. Other commercial codes can independently reduce different
portions of a model to a variety of reduced models in a single run.

6.1. Definitions

There are two types of modes computed and discussed using a Craig-Bampton model reduction.

Fixed interface modes. These are eigen modes of the structure if we fix the interface, by setting
interface degrees of freedom to zero. These modes are represented by ®. The analyst
decides how many of these modes to retain.

Constraint Modes These are the response of the structure if all interface degrees of freedom are
clamped except one. That degree of freedom has an imposed displacement of 1.0. These are
not modes in the usual sense, but they provide a spatial basis. Represented by P, there are
as many of these constraint modes as there are interface degrees of freedom.

6.2. Input Required

The following input is required to run the CBR solution.

43

6.2.1. Exodus Requirements

The only modification of the Exodus database is that a nodeset must be defined that identifies the
interface degrees of freedom. This nodeset must be large enough to ensure that it constrains the
model, i.e. if the node set is fixed, there will be no rigid body modes of the system.

In addition, the CBR model in Sierra/SD cannot be applied if any MPC or rigid links are directly
applied to the interface. The model must be linearized to perform this reduction, so nonlinear
elements and materials are not very meaningful.

6.2.2. Solution

The solution section must contain input for the number of modes. This is the number of fixed
interface modes to compute. It must be entered, and will be different than the number of system
modes desired. It must also contain shift to ensure that the matrices are not indefinite.

The CBR method has not been tested and verified after preloads or other solution cases that may
modify the tangent stiffness matrix. We’ve only looked at cases where the CBR method is the only
case in the solution block. The only exception to this is that an initial solution case computes the
system eigenvalues.

6.2.3. CBModel

The CBModel defines most of the parameters for the solution. It defines the interface boundary
nodes. Note that all degrees of freedom of each node is a part of the model. Either define all six
degrees of freedom as interface dofs, or permit them to be reduced in this step. Interface nodes
may be connected to any structural element (solids, shells or beams), but not to a constraint
relation.

Selecting the output_vector option will output both the fixed interface modes, @, and the
constraint modes ¥, to the output Exodus file (provided that disp output has been selected in the
OUTPUT section). These modes are not usually required as a part of the reduction process, but
they will be necessary if you should desire to complete a full data recovery after using the reduced
model in a subsequent analysis. These modes are the full complement of the displacement data
written to the OTM.

Because there are no Sierra/SD tests that fail if the OTM is incorrect, CBR solutions that generate
an OTM are beta capabilities. A CBR solution case generates the OTM if there is a history section
in the text input file.

As a check on the consistency of the model, the eigenvalues of the reduced system can be
computed. These eigenvalues and frequencies appear in the text result file, under the heading
eigenvalues of Reduced System. Itis strongly recommended that such analysis be compared
with a full system eigen analysis where the interface nodes are fully clamped. This ensures that

44

the model reduction process has not missed data important in the frequency of interest. Select this
option with the GlobalSolution keyword.

Example,

CBMODEL
nodeset=1
format=mfile
file=cbr.m
output_vector
GlobalSolution

END

However, finding the eigenvalues and frequencies of the original full system is potentially
confusing. One way to determine the full system modes is to use a multicase solution with first
case eigen and second case CBR. The eigenvalues of the full system appear in the text result file
under the heading eigenvalues, as expected. The confusing point is that if the only solution case
is CBR, then the Fixed Interface Modes appear in the result file under the eigenvalues heading.

6.2.4. Output

The output section is used to specify output quantities as well in the usual way. For the CBR
solution case, the output is the shape functions of the fixed interface and constraint modes.

6.2.5. History
For the CBR solution case, the history file contains the Output Transfer Matrix (OTM). Only the
following will be honored (others will be ignored).
e displacement
* strain
* stress
Note that transfer matrix for acceleration or velocity is obtained by differentiating the equation.

For MATLAB output, the meaning of the History section of the input text file is expropriated to
simplify the testing of the OTM. The history file is used to specify the portion of the model that
will be put in the output transfer matrix. The CBR method will use the specification to determine
what to write to the OTM if MATLAB format is specified.

Wtmass and Units. The matrices stored in the reduced model are the matrices for the analysis.
Thus, the mass matrix elements have been multiplied by the Wrmass parameter if applied. As a
result, if the eigen analysis is performed on these matrices the resulting eigenvalues will be

45

correct. When such a matrix is used as a superelement input (see Section 7), the matrix is not
multiplied by the Wtmass parameter again. !

Since the matrices have an implicit unit associated with them, the analyst must ensure that the units
used in the reduced model properly match the units used in the superelement system model.

6.3. Example

The geometry as shown in Figure 6-1 consists of a cone with a nodeset on the top and bottom
edge. The model reduction consists in reducing the stiffness matrix from the 80 nodes in this

model to the interface nodes (3 nodes on the base in nodeset 3). Thus, there are 18 constraint
modes. We choose to retain 4 fixed interface modes for this example. The input is included in
Chapter 21.12.

Running the model and examining the output, you will notice the following.

1. For this example there are two sets of eigenvalues (Ritz values) output to the screen. The
first, a set of 10 modes, corresponds to the eigen problem of the unreduced model which
includes 6 zero energy modes. The second set of modes is the fixed interface modes of the
analysis. The first 4 modes in CBR-CBR.exo correspond to these fixed interface modes.

2. The result file, CBR.rslt, contains three sets of eigenvalues; the two mentioned above and
the eigenvalues of the reduced system. No eigenvectors from the reduced system can be
output since there is no geometry database associated with it. The last set of eigenvalues
includes every eigenvalue of the reduced system.

Notice also that the eigenvalues of the reduced system are not identical to the unreduced
system. However, even with only four fixed interface modes, the first elastic mode agrees up
to the 4th digit. General practice would ensure that the maximum frequency of the fixed
interface modes is at least twice the frequency of interest.

3. The cbmap is found in both the result file and the reduced model output file. This map
relates rows and columns of the reduced system with physical quantities. The first of the 3
nodes in the nodeset has global id 1 as shown in the figure. All 6 degrees of freedom are
active at each node. And the cbmap has 18 rows.

4. The reduced system is 22 degrees of freedom, which consists of 4 fixed interface modes and
18 constraint modes (6 degrees of freedom associated with 3 nodes). The mass and stiffness
matrices are almost full. Generally, the constraint modes contribute full matrix terms to
both mass and stiffness.

5. Rerunning with mfile added to the output section creates many files that will not be
described here including the @ and ¥ matrices.

For example, if the analyst has a model in inches and pounds, the Wtmass parameter should be 1/386.4 or about
0.00259. This same Wtmass parameter must be applied to both a model reduction step, and to a subsequent
superelement insertion.

46

cbr.exo

Figure 6-1. — Example CBR model.

47

6. The output is written to the file CBR.m. Output 6.1 contains extracts from this file from
which you note the following.

a) All the data required for the model reduction is found in a single file.

b) The map of the reduced model is defined in cbmap. A map of the output transfer
matrix rows is OutMap.

¢) There are always 6 degrees of freedom per node in the OutMap. This example does
not show this, but there may be fewer in the cbmap. Note that while Kr and Mr are
reduced system matrices which must be nonsingular, OTM is a transfer matrix and can
include inactive degrees of freedom.

NumC=18;

NumEig=4;

Kr=zeros(22,22);
Kr(1,1)=7.703363317234302e+04;
Kr(2,2)=9.043236930586677e+04;

Mr=zeros(22,22);
Mr(l1,1)=1.000000000000000e+00;
Mr(1,5)=-9.545115933105166e-03;

% map of nodes in the output transfer matrix

% OutMap is the global node number

% There are exactly 6 outputs per node.

OutMap=zeros(1,32);

OutMap=[1 5 6 10 11 15 16 20 21 25 26 30 31 35 36 40 41 45 ...
0TM=zeros(192,22);

OTM(1,5)=1.000000000000000e+00;
0TM(2,6)=1.000000000000000e+00;

%cbmap(:,1) is global node id (1:n)
%cbmap(:,2) is coordinate (x=1, y=2, etc.)
%the first 4 dofs in the matrices are modes,
% while the last 18 dofs are interface dofs.
cbmap=[1 1

2

1

13
14
15
16

48

Output 6.1. Selected Reduced Model Output

6.4. Verification of the Model

The following are some things that can be done to ensure that the model has been properly
developed.

6.4.1. Comparison of Reduced and Full Eigenvalues

It is a very good idea to compare the eigenvalues of the full and reduced system. It will
approximately double the computational effort of the model reduction, but there is very little set
up time. The example does this. All that is required is to compute the results in a multi-case
approach. Begin by computing the eigenvalues of a full system. Then, in the next case compute
the reduced order model. By including GlobalSolution in the CBModel section, the eigenvalues
of the reduced system are also computed.

6.4.2. Comparison of Reduced and Full Displacements

It is significantly more complicated to compare the displacements of the two models because there
is no automatic upstream data recovery. Manual data recovery will have to be done in MATLAB.
We illustrate the method with a small transient run, but it could also be done for a eigen analysis
(or statics if the model is statically determinant).

Consider a calculation of 2000 time steps each of 10~ seconds. We impulsively load the structure
on the interface (nodeset 3) with a force in the y direction only. The load begins at zero, ramps to
10% at 10 us, and then ramps back to zero at 20 us. Output will be examined on nodesets 1 and 2.
This example is found in CBR_trans. inp.

Following the calculation, data from any of the output nodes can be evaluated using the history
file. The following commands evaluate the x displacement on node 70.

unix% exo2mat CBR-transient.h
unix% matlab

load CBR-transient
k=find(node_num_map==70) ;
plot(time,nvar®1(k,:));

The reduced model can be used to perform the same calculation. The MATLAB commands to do
this work once CBR.m has been read into MATLAB are included here.

49

nsteps=2000;

ff=zeros(1l,nsteps);

f£(2)=1;

neg=max(size(Kr));
force=zeros(neq, 1);

rows=NumEig + find(cbmap(:,2)==2);
force(rows)=1e6;

dt=1e-5;
u=CBRint (Kr,Mr, force, ff,dt);
time=(1l:nsteps) *dt;

k=find (OutMap==70) ;
orow=(k-1)*6+1; % x component of node 70
U70x=0TM(orow, :)*u;

The time integration is a standard Newmark integration performed using CBRint.m, which is
available in the test directory.

Finally, we can compare the results, which are shown in Figure 6-2. The data in the figure is
obtained by running the CBR reduction with a varying number of fixed interface modes. Note that
4 modes, and even 10 modes are not sufficient to capture the gross response of the structure at
node 70. Even at 50 modes there is high frequency data that has been lost. This is as expected
since the reduced model is designed to capture only the low frequency response of the structure.
The first elastic mode at 21 Hz has a period of 48 ms.

50

0.15 - . .

full model
—— 4 modes
0.1r —— 10 modes | |
— 50 modes
0.05
5
e OF
[0}
(8}
3
& -0.05
a
-0.1
-0.15
-0.2 ' : '
0 0.005 0.01 0.015 0.02
Time (ms)
Figure 6-2. — Example CBR transient computations.
6.5. What to do with the Results
6.5.1. solving the system

The reduced mass and stiffness matrices contain the dynamics of the system. These could be
solved in an eigen analysis for example in MATLAB.

[e_value,e_vector]=eig(Kr,Mr);

The eigenvalues, e_value, represent the system natural frequencies. The eigenvectors are a mix
of generalized and physical degrees of freedom. The OTM is used to compute the response on the
physical degrees of freedom on the nodesets in the history file.

Out=0TM*e_vector;

To find the response on a specific degree of freedom use the OutMap. For example, to find the Z
degree of freedom on node 25 of the model.

index = find(OutMap==25);
k = (index-1)*6 + 3;
for i=1:size(Out,?2)
fprintf(’Mode %d, Z value on node 25 = %g\n’,i,Out(k,i))

51

end

When this document was written no process was available to take these results back into an Exodus
database so the resulting displacement mode shapes can be plotted on the original model.

6.5.2. Incorporate the reduced model into another system model
This is one of the more important reasons for doing a model reduction. The approach depends on
the format of the new model. The following are options.

MATLAB. The model can be combined with other models in MATLAB. The trick is to use the
cbmap to tie together different degrees of freedom. I have not done this, but others have
expressed interest.

NASTRAN. NASTRAN can do this.

Sierra/SD. As of release 2.5, Sierra/SD can input a CBR model in netcdf format as a
superelement. See Section 7.

6.6. Limitations

CBR should work with any element. However, none of the interface degrees of freedom should be
part of either an SPC or an MPC of any kind.

52

7. SUPERELEMENTS

Superelements can greatly reduce the computational cost of large model. But they are hard to use.
Recall from Section 6 that in Sierra/SD we have no automatic superelement capability.
Superelements are usually used as follows. !

1. A full sized, complete model is generated.

2. Portions of the model are extracted, and a reduced CBR model is created from that extracted
model.

3. The full model is modified by removing the extracted portions and replacing each with a
superelement.

4. The modified model is analyzed.

5. The modified model is post processed.

This section describes each step for a realistic example.

7.1. Superelement Example

The full model is shown in Figure 7-1. The model consists of the following.

* A lower leg portion consisting of two solid blocks and several beam blocks for applying
loads and tying the model together. This will become superelement 1.

* A central joint section representing the bolted joint. The joint is nonlinear, and is the
primary interest in the study. It is a single, zero length beam that is attached to the upper
and lower leg sections. This will not become a superelement.

* An upper leg section that is similar to the lower leg. This will become superelement 2.

The two superelements are attached in very different ways to illustrate the issues introduced by the
connections. The lower model has only two interface nodes, at the centers of the networks 81 and
51. This makes a small structure that is easy to interface. However, because the interface nodes
may not be part of an MPC, it also requires that these two networks be beams rather than the rigid
Rbars that the analyst would prefer.

In contrast, the upper superelement uses Rbars, but they must be put in the residual structure.
Thus, blocks 52 and 82 are not part of the superelement. The consequence is that there are many

I'This section was originally written 2005. The example described here is no longer available. Only the system mesh
single_leg4.exo is archived.

53

Two Superelement (SE) Model

Id | # elements | type SE | color | Description

81 188 | bar 1 blue | lower load spreading network
11 11072 | Hex20 1 red | lower support block

12 2158 | Hex20 1 pink | lower joint support

51 54 | bar 1 cyan | joint connection network

53 1| bar |none | red | joint

52 124 | bar | none | blue | joint connection network

21 15024 | Hex20 | 2 | yellow | upper joint support

22 2106 | Hex20 | 2 green | upper support block

82 184 | bar | none | purple | load spreading network

blocks 61, 62, 63, 71, 72, 72 are not shown and connect the Hex blocks

Figure 7-1. — Exploded view (left) of model and (right) zoom view of joint.

54

interface degrees of freedom which greatly complicates interfacing to the superelement, and
significantly increases the computational cost of the model reduction.

The joint model (block 53) consists of a single Joint2G element. Topographically this is a 2
noded bar element which will be used to control the translations and rotations of the two points.
Block 53 is connected to the centers of the two network blocks (51 and 52) which connect to the
lower and upper joint supports respectively.

7.2. Submodel Model Extraction and Reduction

The two main ways of extracting a submodel from the original full model are to either 1) build up
the submodel from scratch, or 2) pull the model out of the original model. When the model
interface is complex, I would strongly recommend the second method. This is because it is
complicated to assign the interface nodes to the revised model when the superelement is
reinserted (see section 7.3). If the node number does not change between these two models, then
this book keeping is minimized.

Extracting portions of a system model for CBR reduction may be done using the Grepos utility
which preserves the node ordering.

§$ grepos input.exo output.exo
GREPOS> delete block all
GREPOS> undelete block 1
GREPOS> exit

SE1: The lower structure with a small interface

For this model I went into Patran and removed all the elements except those in blocks 11, 12, 51,
61, 62, 63 and 81. ? In hindsight removing blocks is easier with Grepos than Patran. To define the
interface, I defined nodeset 1111 at the center of the networks in blocks 51 and 81. I removed all
other nodeset and sidesets, and all empty block definitions. Nodeset 100 was created at random
points for an OTM, and the elements were renumbered. No nodes were removed.

A ““check” of this model in explore indicates that there are 77726 nodes that are not connected to
any element. This is as expected, and there are no other errors reported.

The model is split into 10 regions using stk_balance, and model reduction is performed on our
Linux cluster (liberty). Run times are shown below. Each processor required about 450MB of
memory.

ZBlocks 61, 62 and 63 contain RBar elements tying blocks 11 and 12. For simplicity, they are not shown in the figure.
Note that it is acceptable to have rigid elements inside the superelement, but not on the interface.

55

step elapsed time | comment

matrix assembly 00:12

CBR restructure 03:58

fixed interface modes 20:44 computed 50 eigenvalues
constraint modes 25:43 computed 12 constraint modes
model reduction 25:43

total (10 processors) 25:43 model size: 186 kB

SE2: The upper structure with a larger interface

Again, this model was developed by removing all elements that were not in the superelement
blocks (21,22,71,72,73). All the nodes are included to enable using RBars to tie to the
superelement. Nodeset 2222 is defined on the end points of all the bars in blocks 82 and 52. No
OTM will be used because many nodes are in the interface, so no additional nodeset is created.
As in SE1, empty or irrelevant blocks, nodesets and sidesets are removed, and the model
generated. The node count did not change. The element count is about 25% higher for this
superelement because the mesh of the original model is finer.

The model is split into 10 regions. Run times are shown below. Each processor required about
750MB of memory during the linear solve portion.

step elapsed time | comment
matrix assembly 00:14
CBR restructure 06:16
fixed interface modes 25:30 | computed 50 eigenvalues
constraint modes 1:47:39 | computed 924 constraint modes
model reduction 1:49:23
total (10 processors) 1:49:23 | model size: 15 MB
7.3. Superelement Insertion

Again, the original model is taken and culled back to only the remaining blocks. We keep only
blocks 52, 53 and 82. Sidesets are deleted, as they no longer point to valid elements. The node
sets are left in. Empty blocks are removed and the elements renumbered. There are only 309
elements remaining in the model.

Superelements must be inserted into the model. For SE 1, this is easy since there are only two
nodes in the superelement. We could use a superelement type, but choose to insert a truss element
for later visualization. The nodes for the connectivity may be found in nodeset 1111 in the
Exodus file.

Superelement 2 is more complicated because the interface is so much larger. It is important that
we maintain the order of the nodes, so we have a consistent stiffness matrix. Because we did not
remove any of the nodes from the model in earlier steps, the mapping from the superelement back
to the new model is greatly simplified.

56

$ mksuper residual.exo

| Sandia Tool: mksuper
| Salinas Release 4.11.0.20090227173358

Input Genesis file: residual.exo

MKSUPER> add nodeset

Enter the nodeset ID.

2222

Adding 308 nodes to superelement.

MKSUPER> write lleg_sel_and_2.exo

Wrote file ’1leg_sel_and_2.exo’ with 1 superelements.
MKSUPER> quit

Figure 7-2. — Inserting the superelement connectivity in the model.

Because superelement 2 has 308 nodes in the interface, no standard element can be used to
represent it. A nonstandard “super” type element must be added to the Exodus file. This is done
using the mksuper application.

There are several ways of defining the nodes for the superelement using mksuper. Because this is
a large interface, we use the nodeset option. In the residual structure we define nodeset 2222 to
apply to the same interface nodes as in the superelement model. We then use these nodes as the
connectivity for the element using “mksuper”. This step is illustrated in Figure 7-2. The mesh is
completed in the file /leg_sel_and_2.exo.

The input file is different from the original. We have two blocks associated with the superelement,
two blocks associated with the rigid links, and a single block for the joint. A sample is shown in
input 7.1, with the map for the smaller superelement shown in input 7.2.

SOLUTION
eigen nmodes=12 shift -1e6
END

FILE
geometry_file ’1leg_sel_and_2.exo’
END

BOUNDARY
nodeset 11 fixed
END

57

BLOCK 52
rbar
END

BLOCK 53
joint2g
kx=elastic 1leb6
ky=elastic le6
kz=elastic 1leb6
krx=elastic leb
kry=elastic 1le6
krz=elastic 1leb

END

BLOCK 82
rbar
END

BLOCK 1001
superelement
file=cbrselc.ncf
diagnostic=1
include map_sel.inp

END

BLOCK 1002
SUPERELEMENT
file=cbrse2c.ncf
include map.se2

END
Input 7.1. Superelement model input file

// node cid
map O 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

58

N NNNNNRRRRRROOORLDDDDDDRD
SOV WINRPOULD WNRFRP R

Input 7.2. DOF map for superelement 1

7.4. Units and Wtmass

It is critical that the analyst have the proper set of units when inserting a reduced model. See the
discussion in Section 6.2.5.

7.5. Visualization

The output of the analysis in the previous section is an Exodus model. The structure is limited,
but the portions of the model associated with each of the remaining blocks may be visualized.
Figure 7-3 shows the response. More development is required for better visualization, but the
displacements, etc. are available for visualization or for transfer to MATLAB or other plotting

59

z \

Y

Mode 9: 796.0 Hz

Figure 7-3. — Modal Response of the Superelement.

packages. * Display of the nodes and elements in the output transfer matrix of the superelement is
under development.

3Unfortunately many of the visualization tools don’t recognize the “superelement” type. For example, in versions
before release 8 of Ensight, the element and its nodes were not displayed.

60

8. EIGENVALUE PROBLEMS

Modal solutions form the basis of much of the analysis performed in Sierra/SD. It is essential that
we understand the accuracy of the solution computed eigenvalue pairs may have errors for a
variety of reasons, the most common is that the linear solvers all have tolerances, and errors in
these solutions feed directly into errors in eigenpairs. It is well-known that errors in eigenvectors
are typically significantly larger than errors in eigenvalues. If the relative error in an eigenvalue is
&, the relative error in the eigenvector is of the order of /.

At the conclusion of a modal analysis, the Sierra/SD application reports the eigenvalues and
associated error estimates. Figure 8-1 provides an example of this output. The first column of data
is the eigenvalue, which is related to the frequency f; by,

A= 2nf)

The second column is an estimate of the error bound on the eigenvalue, €; = [(K — A;M)¢;|>.
Generally, except for zero energy modes, the error bound should be tiny relative to A.

Ritz values (Real, Imag) and direct residuals
Col 1 Col 2
Row 1: -2.16338D-06 7.34617D-07
Row 2: 2.07696D+07 2.25677D-06
Row 3: 2.07858D+07 8.73909D-07
Row 4: 3.56376D+08 1.48725D-06
Row 5: 4.84777D+08 1.69662D-06
Row 6: 4.84906D+08 5.01020D-06
Row 7: 9.59039D+08 6.06316D-06
Row 8: 1.11917D+09 1.22741D-05
Row 9: 1.11917D+09 3.30643D-06

Figure 8-1. — Output of eigenvalues and Associated Error Bounds.

8.1. Geometric Rigid Body Modes

This section assumes that the reader is familiar with the parameter num_rigid_mode. In
Sierra/SD, it’s possible to use the geometric rigid body modes. There are three examples here.
The first example just brings in the rigid modes. The second example uses the modes in solving an
eigenvalue problem. The third example uses the modes in a modal transient simulation to deflate

61

out the rotations. An example input is found in the Appendix, (A.21.10). Rigid body modes are
requested in the Solution block.

SOLUTION
geometric_rigid_body_modes
END

PARAMETERS
num_rigid_mode 6
END

The number of rigid body modes must also be specified. Only values of 1,6 or 7 are supported.

Rigid body modes can be incorporated into the modes computed in a modal analysis, and then
used for other purposes. The resulting mode shapes are more accurate. Also, the rigid body
modes themselves are ordered in a way that makes sense to humans. Without the GRBM case, the
displacements and rotations are mixed together.

SOLUTION
case rigid
geometric_rigid_body_modes
case flexible

eigen
nmodes 10
shift -1e6
END
PARAMETERS
num_rigid_mode 6
END

Rigid body modes are the 6 lowest frequency eigenvectors. In this case 4 more modes are
computed, for 10.

In this example a modal transient simulation uses the geometric rigid body modes to deflate out the
(infinitesimal) rotation, while retaining the translational rigid body modes. This is equivalent to
use of the FilterRbmLoad for direct transient solutions (though accomplished differently).

SOLUTION

case out
geometric_rigid_body_modes

case vibration
eigen
nmodes 10

case filter
modalfiltercase
modalfilter rotation

62

case transient
modaltransient
time_step 1 e-5
nsteps 62
load 42
END

PARAMETERS
num_rigid_mode 6
END

MODALFILTER rotation
add all
remove 4:6

END

8.2. Linear Buckling

Several code errors were discovered and fixed in the buckling solution method during 2020. This
section has not been updated to document the current behavior.

8.2.1. Shifted Eigenvalue

A challenging part of buckling analysis is determination of the shift parameter, which provides a
convergence point for the solution. It should be chosen to be near the final solution, but not so
near that the solver will fail due to a singularity. The eigenvalue problem involves the load
dependent the material stiffness, K. The system to be solved is,

A=K, - K,.

The problem is solved using a shift invert strategy using ARPACK, where the operator is defined
as,

A= (K,-0K,) Ky

The buckling load must be multiplied by —A to determine the critical buckling load.

Estimating a shift is easy if the solution has been found, but it is difficult until the loading is
determined. Iteration may be necessary in many cases. First, note that the shift, o, will typically
be a negative number for a structure in compression.

Figure 8-3 illustrates data for the ring model shown in 8-2 as a function of the shift parameter, o.
As the shift value approaches the eigenvalue, the solution is found more readily. However, too
large a shift results in an incorrect solution. !

Recommendations.

I'The input for this example is found in Appendix A.21.15.

63

Figure 8-2. — Ring Model for Buckling and Associated Deformation.

Shift | Eigenvalue | Time
-1000 | -890.381 35
-500 | -396.23 35 Shift | Eigenvalue | Time
-400 | -396.23 35 -1.0000 | -396.232 35
-396.23 -396.23 34 -0.1000 | -396.232 35
-380 | -396.23 33 -0.0100 | -396.242 35
-200 | -396.23 34 -0.0010 | -394.775 35
-100 | -396.23 34 -0.0001 | -99.8013 35
-50 | -396.23 35 -1.0e-5 | -12.8036 35
-10 | -396.23 35 -1.0e-6 -0.9631 35
-1 -396.23 34 -1.0e-8 -0.0105 35
1 fail 56
10 fail 53

Figure 8-3. — Solution Dependence on Shift. A shift larger than the computed eigenvalue may generate
solver issues (the matrix is negative), while shifts near zero have round off issues.

64

1. Get the sign of the shift correct. Objects in compression will require a negative shift.

2. If the magnitude of the eigenvalue is greater than the shift, reduce the shift to less than the
eigenvalue.

3. You may want to evaluate a shift that is tiny relative to the eigenvalue. Generally, the
eigenvalue should not be sensitive to the value of the shift.

4. The shift selected may impact the convergence of the linear solver. Generally a shift close to
the eigenvalue leads to nearly singular linear system and may make the linear solver fail. A
shift further from the solution may be easier on the linear solver, but may result in a poor
convergence of the eigen solver.

8.2.2. Buckling Case Study

The pressure load at which the structure buckles is the buckling eigenvalue. This case study shows
how to build confidence in a buckling result.

The critical eigenvalue is the mode of smallest magnitude. I prefer to compute 10 modes to check
that I have computed the right mode. For example a model with symmetry has multiple mode
shapes at the critical eigenvalue. Small eigenvalue residual norms boost my confidence in a result.
The residual norms are shown in stdout. Improving the shift or reducing the linear solver
tolerance may reduce the residual.

Suppose that initially pressure= —1, shift= —100 and solver_tol= 1.e — 6, the eigenvalue is
6.1637¢4, it has multiplicity two, and the residual norms are 6e4 and 0.046. The residual norms
suggest that one of the approximate eigenvalues might be accurate. Given the eigenvalue we can
improve the shift. The magnitude of shift should be of about the same as the magnitude as the
eigenvalue but not too much larger. Shifting by —1.e4 does not change the eigenvalue and
decreases the residual to 0.0036. This gives me some confidence in the eigenvalue.

On the other hand if the initial pressure is —1.e — 4 with the same initial shift —100 and solver_tol
1.e — 6 then the eigenvalue is —2.84241e8 and the residual= 3300 with product pressure
eigenvalue = 2.84241e4. As this is the initial result nothing yet suggests that it’s wrong.

The first hint of a problem is that the smallest magnitude eigenvalue appears in the middle of the
table of residual norms in row 6. It would be more encouraging for the smallest magnitude
eigenvalue to be either at the top or the bottom of the table.

Here I will exercise my option to try a new shift instead of reducing the linear solver tolerance.
The eigenvalue suggests the shift —1e8.

With this shift the smallest eigenvalue is at the top of the table. The eigenvalue is 6.16374¢8, the
residual norm is .0017, and the product pressure eigenvalue= —6.16374¢4. I have no confidence
in the results due to the change in the product. However, the new shift reduced the residual by a
factor of 2¢6 lending credence to the new eigenvalue —6e4. Decreasing the linear solver tolerance
to 1.e — 8 leads to similar conclusions.

65

It is a good practice in this case to try a different initial pressure. The predicted eigenvalue
corresponding to pressure —1e4 is —6, suggesting the shift —1. The smallest eigenvalue is in the
first two rows. This is encouraging. It is also encouraging that the smallest residual is 0.0029. The
product pressure eigenvalue = —6.16374¢4 has been reproduced.

Every simulation that I tried with shift —1/|pressure| reproduced the product pressure eigenvalue
—6.16374e4. The pressure load that will buckle the structure is the buckling eigenvalue
6.16374¢4.

8.3. Wet Modes

Wet modes is a solution procedure that computes the normal modes for a structure partially
submerged in a fluid. In appropriate approximations, this may be analyzed as a real Eigen problem
of the structure with added mass on the wetted surface.

8.3.1. Mesh

Figure 8-4 shows a sample mesh for a wet modes problem. The structural mesh is a cylinder
composed of four node NQUAD shell elements, and the fluid mesh is composed of four node
tetrahedral elements. The wet mode solution case can be run either with a conforming mesh, or
using tied-data with a nonconforming mesh.

z
Y
x

Figure 8-4. — Wet Modes Sample Problem. The structural mesh is shown in blue, and the acoustic/fluid
mesh is shown in orange and green. The input for the problem is provided in Appendix A.21.11.

8.3.2. Input File

Figure 8-5 shows the relevant portions of a Wet Modes input file. The keyword fluidloading=yes
enables the wet-modes solution case. The parameter num_rigid_mode 6 removes the null space
for the structural problem. A boundary section is required to set the pressure on the outside of the

66

SOLUTION
eigen
nmodes 20
fluidloading=yes
END

PARAMETERS
num_rigid_mode 6
END

MATERIAL fluid
acoustic
density 3.46822e-003 // artificially high to demonstrate wet mode capability
cO® 22878

END

MATERIAL steel
e = 3.0e7
density = 7.324e-4
nu= 0.3

END

BOUNDARY
sideset 1
p=0
END

Figure 8-5. — Relevant Portions of Wet Modes Input File.

acoustic mesh to zero. Both structural and acoustic elements are required for a wet mode
analysis.

8.3.3. Results

Table 8-1 shows the results for the floating cylinder. Note that the density of the acoustic material
is artificially high to increase difference between the wet and dry solutions. Adding the fluid mass
to the structure reduces the natural frequency of the cylinder.

Figure 8-6 shows the results from the wet mode solution case. Note that much of the symmetry
that would normally be found in the dry case is missing. The location of the waterline (located at
the midpoint of Figure 8-6) can often discerned from the mode shapes.

67

Table 8-1. — Wet Mode Floating Cylinder Results.
Mode Dry Wet
1 79.82 18.07
5 177.994 | 46.72
10 207.878 | 70.11
15 307.325 | 91.70
20 367.93 | 117.266

Figure 8-6. — Wet Modes Results. The mode shapes from wet modes can be visualized like any other
Eigen solution case.

68

9. MODAL TRANSIENT

Standard Sierra/SD has a fine set of modal based solutions, including a modal transient integrator.
However, Sierra/SD is designed to focus on massively parallel solutions. It is not uncommon for
an analyst to generate a small modal solution, and to use the modal solution as part of a small
transient run. Since in modal space, the solution is diagonal, this completely uncouples the modes
and allows for an independent solution of each modal amplitude, g;.

Sierra/SD uses these solutions, but it assumes that the full solution on all output degrees of
freedom is required. In other words, the quantity g;(¢) is easily computed, but to transform back
to physical space, a fair amount of calculation must be performed, and it is performed on the full
system model. For transient dynamics, Sierra/SD performs the following operations.

1. Compute g;(¢) for all modes, i, at time .
2. Expand to physical space. x(t) = ¢q(1).

This requires participation of all processors that were involved in the calculation of the
modes.

3. Contract to a reduced physical space, if history output is requested.
This requires communication between processors.

In cases where the analyst requires only a subset of the data, this process can be streamlined by
performing the integration outside of Sierra/SD. The calculation is fast, and can be performed in
serial.

9.1. Process for serial integration

9.1.1. Compute modes of the system model

Modes are extracted in the usual way, i.e. perform a standard eigen extraction on the full system
model. Output a reduced order model by extracting a small portion of the eigenvectors to the
history file. Element variables of stress and strain may also be output.

HISTORY
nodeset 1
block 12
displacement
stress

END

69

9.1.2. Extract Modal force

The modal force, F(¢), can be written by specifying *mfile’ in the OUTPUT section of the
Sierra/SD input. The file is named “ModalFv.m”. The file contains a matrix of size Ny X
Nmodes, where Ny,405 15 the number of normal modes computed, and N, is the number of
spatial load vectors.

Recall that Sierra/SD defines time dependent loads as a sum of products of spatial and temporal
functions. For example, consider this example loads section.

LOADS
nodeset 111
force 1 0 0
function 111
sideset 22
pressure 1.0
function 2
END

This example time dependent force could be written as follows.
F(x,1) = N1 (x) Fi11(7) + Naz(x) Fa(2)

where the N (x) represents a function of space only, and F(¢) is a function of time only. In this
example, there are two spatially varying functions, and Ny, = 2.

We assume that the analyst has access to the time varying functions, F(¢), since they are part of
the input. Each of the spatial terms is multiplied by the eigenvectors to arrive it the modal
contribution.

ModalFv = (CDTNj)T

The total generalized force is then,

Fi0) = Z ModalFv;Fi(1)

9.1.3. Perform Time Integration of Modal Space

Time integration can be performed in MATLAB or other suitable integrator. The file,
“modal_int.m” provides an example time integrator using the standard trapezoidal rule. !

The result is g (;), for each mode j in the system, and for each time value ;.

IThis is the Newmark-Beta integrator with 8 = 1/4, and y = 1/2.

70

9.1.4. Expand to Physical Space

The integrated time values can be represented as a matrix (0, where each row of Q corresponds to
a normal mode coordinate, and each column represents a time value. The physical space is
represented by the product, $Q, where ¢ is the eigenvector in the reduced space.

Using exo2mat the eigenvectors are put into six variables. They can be reshaped into ¢ as
follows.

[nvar®1 nvar®2 nvar®3 nvar04 nvar®5 nvar®6];
reshape (something)

phi
phi

The transformation to physical space is,

XXX = phi * Q;
XX = reshape(XXX,n,6);

x = X(:, D)
y = X(:,2);
z = X(:,3);

Determining the element variables is not much different. A set of element results “eigenvectors”
is obtained using evarXX in place of nvarXX. The result is the product ¢ Q.

9.2. How to Use Results

The results from this calculation cannot be easily visualized as an animated structure because
there is typically insufficient data to reconstruct the model. However, time histories of nodal and
element data can be examined and plotted.

We can think of the integration as the solution of three equations in three unknowns.

EQnH +CGn+1 +Gns1 = f(t)
L
gn+l = Qn+§(Qn+Qn+1)
. N
dn+1 = Qn+§(‘7n+‘7n+l)

The latter two equations are used to eliminate the ¢, and g, terms, resulting in the algebraic equation for g,,4;.

At Ar? At

. 2 4) 4 4
k+ —C+—|qn1=Ff+¢(Gn+—qun)+ Gn+ 3 pdn+ 154

71

Related Calculations

Similar calculations are possible with other modal based solutions. For example, a modal
frequency response calculation is performed in the same way except that the modal amplitude is
given by the following. 5

Ji(w)

2
w? — W + 2Yiww;

gi(w) =

where fi(w) = ¢F (w) is given by Modal fv as before. The modal amplitude in this problem is
complex of course.

9.3. Limitations

The entire modal must fit in memory. Since this is a linear superposition model, only linear results
can be used. Further, while natural stresses can be computed, von Mises and other principal
stresses cannot be directly computed, as they are not linear functions of displacement.

The modal superposition method has significant limitations, independent of the particular solution
methodology. In particular, the method may be slow to converge spatially if the loading is not well
represented by a low frequency mode. Other methods such as the Craig-Bampton reduction can
be much better in these cases, though they suffer from having a coupled system of equations.

9.4. Verification

The simplest verification is to run a portion of the time history through the standard Sierra/SD
modal transient, and compare the results with the results from the reduced order model.

72

10. MODAL RANDOM VIBRATION

Random vibration is a complex phenomenon. A random input with defined spectral characteristics
is applied and the resulting power spectral response is computed. It may be complicated by having
multiple inputs with statistically defined cross correlations. The modalranvib module in
Sierra/SD performs this analysis using a linear superposition of normal modes. '

Input Deck and Exodus Requirements. The specification of the input for random vibration is
complicated. The easiest way to perform this analysis is to copy an existing input specification and
correct it for your specific model. The following sections will need attention.

The Exodus geometry specification is similar to other solutions.

Random load are often specified as an acceleration PSD, however an enforced acceleration cannot
be used in the solution method for Sierra/SD. Instead of an enforced acceleration, a large
concentrated mass may be inserted at the load point, and a Force applied to the mass. The load is
then distributed to the structure through rigid elements (Rbars) or other means.

A nodeset must be identified on the load point, and node or side sets should be identified on any
output points of interest. Be careful of nodal distribution factors other than 1!

As an example, we use the geometry shown in Figure 10-1. The load is applied to the mass on the
left of the long tube. We clamp all dofs except the Y at the load point.

Figure 10-1. — Example Random Vibration Geometry.

I'See Section 16 for a discussion of the loading for a random pressure loading applied on an extended surface. The
modalranvib approach is more applicable to a loading on a handful of locations.

73

10.1. Solution

The solution section is fairly straightforward, but note the following.

* While modalranvib can be performed in a single case solution, it is strongly suggested that a
multicase solution approach be used. Most of the computational effort for a large model is
typically consumed in computation of the normal modes. These calculations can be saved
using the “restart” option. The calculations of the random vibration results from the modes
cannot be restarted.

Using multicase simplifies keeping track of the output files.
* There are two methods for computing these modes.

SVD. The default method is the more complete. It computes a vector representing the
moment of the solution, and is recommended if detailed statistics on the statistical
moments of von Mises stress are required.

noSVD. The noSVD version is faster. If many (hundreds) of modes are involved, then the
noSVD version is significantly faster. The stress moments, M, and My, are also
computed.

Mj:/ w o (w)d w

* Two parameters control culling of unwanted modes. The 1fcutoff is used to control low
frequency modes. It is important to set this to a large negative value if you wish to keep
rigid body modes that may be important in the calculation of the autospectral response (see
10.4 below). On the other hand, these zero energy modes have no impact on stress, and are
by default eliminated from the calculation.

The keepmodes parameter can help reduce the number of modes used in the calculation. It
truncates modes based on their activity for the given loads.

10.2. RanLoads

This section is the most complicated structure in Sierra/SD input files. A random input function,
Sr(x, w) is Hermitian matrix valued, and depends on position, x, and frequency. The matrix order
ny is the number of independent inputs. If ny = 1, then Sr is real valued, as illustrated in the full
example of Figure 10-3 (on page 78). The random loads section of a multiple input case is
detailed in input 10.1.

Most loads in Sierra/SD are described as a sum of spatial and temporal functions. For Random
loads this is required, but in addition, the random loads are limited to having the same spatial
variation for each row of the matrix. Thus, Sr has order 3, only three spatial functions are
required. The spatial functions from the example of input 10.1 are defined in nearly the same
format as is used in a 1oads section. The balance of the definition is in the Matrix-Function
section.

74

RANLOADS
matrix=33 // defines a 3 by 3 matrix

load=1 // associates next spatial distribution with row 1
nodeset 11 // spatial distribution
force=0 1 0
load=2 // associates next spatial distribution with row 2
nodeset 22 // spatial distribution
force=110
load=3
sideset 3
force=0 0 1
END

Input 10.1. RanLoads example for multiple input. In this case, loads are applied at three
spatial locations as defined by the sideset and nodesets. The matrix-function determines the
correlation of these loads. (See Figure 10-2).

MATRIX-FUNCTION 33 MATRIX-FUNCTION 33
symmetry=symmetric symmetry=Hermitian
dimension=3x3 dimension=3x3
data 1,1 data 1,1

real function 1 real function 1
data 2,2 data 1,2
real function 1 real function 120
data 3,3 imaginary function 121
real function 3 data 1,3
END imaginary function 131
data 2,2
real function 1
data 2,3
real function 220
imaginary function 221
data 3,3
real function 3
END

Figure 10-2. — Example Matrix-Function. The example is referenced from the RanLoads example of
input 10.1. Both the left and right columns describe the spectral input to a three input system. On the
left, the inputs are completely uncorrelated (as there are no cross terms). The right example provides
correlation between the inputs.

75

10.2.1. Matrix-Function

This section defines the dimension of the input and the frequency functions that define the
temporal loading. For random vibration analysis, it must be of type Hermitian. Matrix functions
may be symmetric if there is no cross correlation, as in a single input system. The matrix function
will refer to one or more function definitions for the frequency content of each function.

As an aid in model verification, you may want to add nominalt to echo the value of the matrix at
a single frequency.

10.2.2. Function

The function definition is standard. Note that the “loglog” type function was provided to help in
the cases where the function is uses straight line interpolation in the log(frequency) and
log(amplitude) domain (which is very common for power input). The units of the output of these
functions is typically 1/Hz. It represents the frequency variation of the spectral density input.

10.2.3. Frequency

The frequency section is important for these reasons.

1. It provides the frequency band and step size over which the functions will be integrated.
This affects the accuracy of the RMS calculations. Note however, that there is little penalty
for increasing this quantity since the frequency integral is performed only once.

2. It is used to specify the output of frequency dependent transfer functions. For example, the
acceleration PSD is defined as,

A(w) = H'(0)S f(w)H(w).

where H is the acceleration transfer function, and H' is the complex conjugate transpose.

—?
H(w) =
() sz—wl.z—2jy,~wwi

i

Thus, the output specification of the frequency block determines which of these output
quantities will be written. Note that there is little point in outputting both displacement and
acceleration as they only differ by a factor of w®.

A special consideration should be given to the low frequency end of the frequency block.
Rigid body modes are usually undamped, so a singularity may be introduced if zero is
included in the frequency band.

76

10.2.4. Damping

Damping is important to this type analysis. Don’t forget it or leave it zero! All types of modal
damping specifications are appropriate.

10.2.5. Output

Specification of Vrms is the only output specification that is honored for modal random vibration
analysis. It triggers output of RMS values of stress, displacement and acceleration.

There are three values of RMS displacement — no results are output for rotational terms. The same
is true for acceleration. Note that these quantities are not vectors. The RMS values indicate the
most likely measurement of the square of the parameter, and includes the unique components of a
Hermitian 3 by 3 matrix. It cannot be combined or transformed as vector.

10.2.6. Echo

The RMS values are typically written to the output Exodus file. They could also be written to the
log file (or .rslt file) using the Vrms option. Some data is only available in the log file. If input is
selected, then the log file will contain a list of those modes that were retained in the modal
truncation together with the I';, value for that mode. Modes for which the Iy, term are much
smaller than other terms cannot contribute significantly to the total response.

10.3. Example Input

An example input for a single input random load is shown in Figure 10-3. Full detail is found in
the Appendix, A.21.7.

The input deck for the single input random vibration model shown in Figure 10-1 include a
Solution and a Ranloads section.

* The solution block specifies that 9 modes will be computed, but only the 3 most important
will be retained in the calculation of RMS quantities.

* The ranloads block specifies that the load will be applied only to nodeset 12 (the
concentrated mass), and that the force applied will be scaled by 1000 (the load mass). It
also points to the matrix function block for further input. The matrix-function section
defines the load as a single input, and points to the PSD contained in function 1.

77

SOLUTION
case eig
eigen nmodes=9
shift=-1e5
case rms
modalranvib // modal
keepmodes=3 // truncation

END
RANLOADS
matrix=1
load=1
nodeset 12
force=0 1 0 // convert force
scale 1.00e3 // to accel in g
END

MATRIX-FUNCTION 1
symmetry=symmetric
dimension=1x1
data 1,1

real function 1

END

FUNCTION 1
Name="Power_Spectral_Density’
type="loglog’
data 1.0 le-8
data 299 le-8
data 300 0.01
data 2000 0.03
data 8000 0.03
data 10000 0.01
data 10001 le-8

END

Frequency
freq_step=100
freq_min=300
freq_max=1e4
BLOCK=1:2000

END

DAMPING
gamma=0.01
END

PARAMETERS
wtmass=0.00259
END

Boundary

nodeset 12

rotx=0 roty=0 rotz=0 x=0 z=0
end

OUTPUTS
vrms
END

ECHO
input
END

BLOCK 101
material 101
quadt
thickness= 0.200000003E+00
END

BLOCK 102 // load mass
ConlMass
Mass=1.00e3
Ixx =0
Ixy =0
Iyy =0
Ixz =0
Iyz =0
Izz =0
Offset=0 0 0
END

Block 1000
RBar // RBE type element
END

MATERIAL 101
density=0.1
Isotropic
E=le+07
nu=0.35

END

Figure 10-3. — Single Input, Modal Random Vibration.

78

10.4. Verification of the Model

The obvious things come to mind in verifying the model for use in a random vibration analysis.
First, ensure that the model is appropriate for eigen analysis. Mass properties and fundamental
modes of vibration can be evaluated. Any rigid body modes should be near zero and not generate
significant stress.

Second, the input PSD should be verified. Since the input cannot be provided as an enforced
acceleration, it is typically specified as a load on a large mass. Examining the output acceleration
at that degree of freedom should reproduce the input power spectrum. There are important issues
that must be considered in evaluating the input PSD.

1. The rigid body modes of the system are critical to reproducing the input PSD. Typically,
only one degree of freedom is left free on the load point, and that structure is loaded in that
free direction. This corresponds to the action of a single axis shaker.

2. Rigid body modes are typically eliminated from the RMS stress calculation. This is done
because these modes do not contribute to stress, and they may dominate the numerical
solution, making it difficult to identify effects of other resonances. Further, one is often not
interested in the rigid body mode contribution to the acceleration or displacement, except
for the special case where the output PSD attempts to replicate the input. 2

Two factors can cause the rigid body modes to be removed from the calculation.

* Rigid body modes are typically removed using a low frequency cutoff. This is easily
managed using the Ifcutoff parameter in the solution block. >

* Any mode will be automatically eliminated if it is not a large contributor to the I'y,
matrix. This is more difficult to manage, but is rare for rigid body modes.

3. As noted below, scaling can be a thorny issue.

A word about scale factors and the Wtmass parameter is in order. To obtain the correct
acceleration, the applied force must be multiplied by a scale factor. Note that the spatial term will
be squared for terms on the diagonal of Sf, so the units are still units of force (not those of force
squared). For models with Wtmass=1, the input force is typically scaled by the product of the
mass of the large mass times a factor of g to provide in input PSD in g?>/Hz. For English units,
where the Wtmass parameter is used to scale the mass from [bm to [b f, that scale factor is already
entered, and the force should be scaled only by the weight of the large mass. Some examples are
provided in Figures 10-4, 10-5 and 10-6.

When the force is applied directly to the system, without a large test mass, verification is similar,
but care must be exercised on two counts.

2Sometimes we want to retain the rigid body modes for validation with experiment. This depends on the boundary
conditions applied during the test.

3The Ifcutoff parameter must be used to retain the rigid body modes if you wish to replicate the input acceleration
PSD. However, for numerical reasons, you should not normally retain rigid body modes when computing the RMS
values of stress or displacement.

79

1. It is usually best to eliminate all but the rigid body modes from the input verification
because system resonances can have a large (and confusing) impact on the results. This can
be done by setting the number of modes in the eigen solution to match the number of
anticipated rigid body modes.

2. When there is a single input, the product of the output acceleration spectra and the square of
the mass should equal the input power spectrum, (a?m? =) provided that the force causes
only a rigid body translation of the system. Rotations of the system confuse the verification.
In other words, apply the load along the center of mass of the system or constrain out
rotations in some manner.

Remember that the modal frequency response function can provide direct insight into the transfer
functions.

A third verification is important for multiple inputs, where it can be easy to confuse the input to
the SF matrix. It can help to use the nominalt option in the solution block to provide an output of
the matrix at some nominal frequency.

Scaling SI units In SI units, WTMASS=1. The acceleration of gravity is
9.8 m/s. Our nominal structure has a mass of 17 kg. To enforce acceleration,
we add a 5000 kg mass and apply forces to it. We need to apply 1.5 g?/Hz
over the band.

We establish the following.

* A PSD function that applies 1.5 at all frequencies.
* We determine that the force applied must be,

F :MloadA
=5000(9.8)

The scale factor is 49,000.

Figure 10-4. — Scale factors for SI units.

80

Scaling inches/pounds. For a model built in inches, with mass is specified
in pounds, with WTMASS=0.002588 the mass has the proper units. Our
nominal structure weighs 0.1 pounds, and to enforce acceleration, we add a
100 pound concentrated mass and apply forces to it. We have a complicated
loading, with a maximum of 200g%/Hz at 1 KHz. Parameters used are the
following.

* Our PSD function matches our complex loading. It has a maximum

of 200 at frequency 1000.
* We determine the force to be applied.

F :MloadA
=(100 - 0.002588)(386.4)

The scale factor is 100.

Figure 10-5. — Example scale factors for inches and pounds.

Scaling English units:

Our model is built in inches, and mass is specified in consistent units. We do
not need to correct the mass units, so we have WTMASS=1. Our nominal
structure has a mass of 258.8e-6 units, and to enforce acceleration, we add a
0.250 unit concentrated mass and apply forces to it. We have a complicated
loading, with a maximum of 200g?/Hz at 1 KHz. Parameters used are the
following.

* Our PSD function matches our complex loading. It has a maximum
of 200 at frequency 1000.

* We determine the force to be applied.

F = MloadA
(0.250)(386.4)

Thus, our scale factor is set to 96.6.

Figure 10-6. — Example scale factors for English units.

81

10.5. What to do with the Results

The RMS values of displacement and acceleration can be very useful in determining what
portions of the model may be experiencing large deformations or accelerations due to a random
load. Unfortunately, RMS quantities are not vector quantities. They are difficult to display on a
graphical representation of the data. One suggestion is that RMS displacement values be
converted to an RMS radius, and spheres of that radius be plotted on the nodes of the structure.

Typically, RMS accelerations are not plotted on the structure. Such information may be useful for
testing subcomponents. The full power spectra of acceleration is available at points specified as
acceleration output in the frequency block, and may be used for test specification of
subcomponents.

Root mean squared values of stress are more readily used, and may be displayed on the model any
standard post-processor. Regions of high RMS stress indicate areas prone to failure either through
instantaneously exceeding the yield stress, or through fatigue.

10.6. Limitations, Suggestions and Cautions

Must apply the loading directly to the model, you may not use enforced accelerations.

82

11. FATIGUE

Sierra/SD supports two forms of high cycle fatigue analysis. We will use both in this example.
1. Modal Random Vibration, which we will refer to as the "Frequency Domain" solution.
2. Modal or Direct Transient, which we will refer to as the "Time Domain" solution.

Frequency domain fatigue requires three solution cases in the input deck, and the Fatigue
keyword in the OUTPUTS section:

SOLUTION
case eig
eigen
nmodes 36
shift -1e6
case rand
modalRanVib
case fat
fatigue
END

OUTPUTS
fatigue
END

Time domain fatigue only requires a transient solution and the Fatigue keyword in either
OUTPUTS or HISTORY:

SOLUTION
case trans
transient
nsteps 3.5e5
time_step 1.25e-4
END

OUTPUTS

fatigue
END

83

Time domain and frequency domain fatigue estimates are not expected to match for several
reasons:

* Time domain estimates the total accumulated damage, while frequency domain estimates
the damage per second.

* Time domain can represent endurance limits and mean stresses, while frequency domain
cannot.

* Frequency domain estimates the expected damage due to a random process, while time
domain estimates the observed damage. Generating long enough time series for a
statistically significant estimate can be costly.

From here on out, we will look at a specific example in detail.

11.1. Example Fatigue Model

11.1.1. Geometry

Figure 11-1. — Generic Circuit Board geometry.

For this example we will be using a mock printed circuit board model (Figure 11-1) with all
dimensions arbitrarily chosen for visual appeal. We will be driving the model with a random force
on the underside of the structure while constraining all other translations and rotations to be zero
at the drive point. Components are attached to each other using all-to-all contact. We will be
focusing on the green electrical pins shown in Figure 11-2.

84

o g

Figure 11-2. — Generic Circuit Board components.

11.1.2. Materials

The material properties of the electrical pins are given in Sierra/SD syntax as:

MATERIAL al_with_fatigue
E = le7
NU= 0.3
Density = 0.1
Fatigue_Al = 20.68
Fatigue_A2 = -9.84
Fatigue_A3 0.63
Fatigue_A4 = 0.0
Fatigue_Stress_Scale = 0.001

END

The elastic properties are a rough approximation aluminum, while the fatigue properties are
specific to an un-notched 6061-T6 aluminum alloy. The 5 fatigue parameters are:

1. Fatigue_A1, complicated units, strictly positive
2. Fatigue_A2, dimensionless, strictly negative

3. Fatigue_A3, dimensionless, defines the damage contribution from mean stress, strictly
positive, 3 is large, 100 is not physical

4. Fatigue_A4, units of stress, defines an endurance limit below which no damage occurs,
strictly positive

5. Fatigue_Stress_Scale, optional, conversion rate between model stress units and damage
function stress units, e.g. convert psi to ksi

85

It is not necessary to define a Fatigue_Stress_Scale, but the option exists to prevent accidental
translation errors. The conversion rate of Fatigue_Al1 is given by:

Alyew = Al + A2 % 10g1o(1/C), Adypy = Adp1q * C,

where C is the conversion rate from old units to new units. Note that Sierra/SD does not attempt
these conversions directly. Instead, model stresses are converted to material units before being
applied to the damage function.

All together, these parameters define the number of cycles to failure N given a stress cycle with
peak Sy and valley S,,in:

logIO(N) = Al + A2 lOgIO(Smax(l - R)A3 - A4)’

where R = Syin/Smax-

In the frequency domain, we are only able to evaluate damage functions which can be represented
as:
N = S"

max = A’

where m and A are material constants derived from A1 to A4. To reduce 4 material constants
down to 2, we set A4 = 0, and assume R = —1 when doing frequency domain analyses. This limits
the types of problems which can be represented accurately in the frequency domain. There will be

more discussion of trade-offs later.

Since the geometry is arbitrary anyway, we don’t pay much attention to the other components.
The base structure and electrical components are modeled as aluminum. The circuit board
material is slightly less dense, and significantly stiffer than the aluminum, but still arbitrary.

11.1.3. Loads

The loading for this model is a single-point random force between 10 Hz and 2000 Hz with the
autocorrelation function shown in Figure 11-3, evaluated at 0.025 Hz intervals between 10 Hz and
4000 Hz.

By sampling this random function at intervals of 1.25e-4 seconds for 40 seconds (3.2e5 time
steps), we are able to generate a very close approximation in the time domain. Figure 11-4 shows
a small snapshot of the time domain load, and resulting Auto Spectral Density (ASD)

Figure 11-5 shows a histogram of the force levels seen in the time domain. Note that 40~ peaks
exist in the data, and some values approach 5o

86

Force (Ibs)

Force?/Hz

10° 10? 102 103
Frequency (Hz)

Figure 11-3. — Frequency Domain Loading ASD.

10 T T T T T T T i i
Time Domain ASD
8r m— Frequency Domain ASD
6 L
1072
¢ B
2 T
N\
0 [}
S 03
2| g 10
-4t
-6 F
-8t 10
-10 ‘ : ‘ ‘ : ‘ : ‘
0.014 0.016 0.018 0.02 0.022 0.024 10° 101 102 103
Time (seconds) Frequency (Hz)

Figure 11-4. — Time Domain Load Snapshot (left), and ASD (right).

-15 15

Force (lbs)

Figure 11-5. — Histogram of time domain loads with vertical bars at 1-sigma intervals.

87

11.2. Results

11.2.1. Frequency Domain

Damage estimates in the frequency domain come in two flavors: "Narrow Band" and "Wirsching".
Both are a damage rate, representing the damage per second seen by the element. "Narrow Band"
damage is intended for solutions where the stress response is occurs at a narrow band of
frequencies, while "Wirsching" damage includes a correction factor for wider frequency bands.
Unfortunately, Sierra/SD does not support spectral density outputs for von Mises stress, and so
we have no way of knowing which we should use in this case. Narrow band damage rates are
always larger than Wirsching damage rates.

_NarrowBandDamageRate _WirschingDamageRate
2.375e-05 1.439e-05
1.781e-05 1.079e-05
1.187e-05 7.194e-06
5.937e-06 3.597e-06
2.963e-38 1.783e-38

Figure 11-6. — Frequency Domain Damage Rate Estimates.

11.2.2. Time Domain

Sierra/SD supports one fatigue damage estimate in the time domain: "Damage". This is an
accumulated damage as a result of the transient environment, not a damage rate. In our case, the
loading duration was 40 seconds, so the largest average damage rate is 3.19¢75. The average
damage rate has been manually calculated in Figure 11-7 for comparison to frequency domain
results.

88

_Damage Damage_Rate

1.276e-04

i
6.381e-05 1.595e-06
3.190e-05 7.976e-07
7.567e-38 1.892e-39

Figure 11-7. — Time Domain Damage Estimate.

11.2.3. Comparison

The most obvious difference in these solutions is the cost. The modal transient solution took just
over 3 hours to complete, while a modal random vibration solution took only 1 minute with
fatigue outputs. Note: Requesting full acceleration and stress output on the pins also requires 3
hours, even in the frequency domain.

The solution quality suffers in the modal random vibration solution. In this example, we chose a
material with no endurance limit so that we could make the closest comparison possible, but the
frequency domain cannot account for mean stresses either. Together, these details significantly
increase the predicted damage in the frequency domain. The peak time domain damage estimate
was 4.5x lower than the Wirsching damage rate, and 7.4x lower than Narrow Band. This means
the difference between surviving 3.6 days at these levels, and surviving 19 hours (12 for Narrow
Band).

Note: The Wirsching damage estimate was not always conservative. One element in particular
saw roughly 2x more damage in the time domain than the Wirsching estimate, and was in the 70th
percentile of damaged elements. For that element, the Narrow Band estimate was a decent
approximation of the time domain (only 13% error).

89

This page left blank

90

12. COUPLED ELECTRO-MECHANICAL PHYSICS

The term "piezoelectricity" refers to the production of electrical charges on a surface by the
imposition of mechanical stress. Sierra/SD supports coupled electro-mechanical physics to
simulate the electro-mechanical behavior of piezoelectric materials when subjected to an electric
field or mechanical stress. One common application of piezoelectrics is in experimental modal
testing. Due to the electro-mechanical stiffness coupling, piezoelectrics provide a convenient
means to conduct structural dynamics tests since structural vibrations can be converted to electric
potentials (i.e. voltages) which can then be stored and processed.

This section demonstrates how to use Sierra/SD to simulate exciting and measuring structural
vibrations using voltages and piezoelectrics. A mechanical wave is generated from a prescribed
voltage time-history using one piezoelectric tile. It passes through the aluminum barrier and
excites the second piezoelectric tile. The deforming piezoelectric tile induces a time-varying
electric charge at its surface that we output in terms of voltage.

The demonstration model is shown in Figure 12-1. Symmetry faces indicated in Figure 12-1 mark
the surfaces with symmetry boundary conditions. The voltage input and response surfaces are
indicated. See Section 21.17 for the full input deck.

Symmetry

Face
Input
Surface
Voltage
Output Surface
Output Node Voltage Symmetry Face

Figure 12-1. — The single patch bimorph model.

91

121. Piezoelectric Material Input

The piezoelectric material constitutive properties must include the orthotropic elasticity tensor
(Cij), the permittivity tensor (permittivity_1ij), and the piezoelectric coupling tensor (e_1ij).
Here is the material block for this input deck:

// scale = 1e9 // voltage unit scale

// ep = 8.85418782e-12 // permittivity of free space

// D11 = ep * 762.5 * scale * scale
// D33 = ep * 663.2 * scale * scale
// E11 = -5.20279 * scale
// E33 = 15.0804 * scale
// E15 = 12.7179 * scale

MATERIAL PIEZOELECTRIC
ORTHOTROPIC_PIEZOELECTRIC
Cij = 1.39el1 .78ell .74ell
1.39ell .74ell

1.15el1
.25ell
.25ell
.31lell
permittivity_ij D11 O 0
0 D11 ©
0 ® D33
e_ij = © 0 E1l
0 0 El1
0 0 E33
0 E15 0
E15 O 0
0 0 0

density = 7500
END

Input 12.1. Piezoelectric Material
There are a few important details to note.

* Careful consideration for the coordinate system should be taken when specifying the
coupling matrix. The material’s poling direction is dependent on the coupling matrix,

92

which should be specified with respect to the global coordinate system (unless a local
coordinate system for that material block is specified). In this example, the piezoelectric
material is poled in the global z-axis.

* Since the permittivity matrix has units, its entries should be scaled by the permittivity of
free space. In this example, we define a variable ep for the permittivity of free space.

» We recommend changing the voltage units (volts V) to nanovolts (nV) where 1 nV = 107° V
. This scaling will significantly improve the condition of the system’s stiffness matrix and
hence the convergence of the FE solver. See Section 12.4 for more details on solver issues
related to piezoelectrics.

12.2. Boundary Conditions

The voltage signal used to excite the mechanical wave is a Gaussian pulse defined by the
superposition of a 10 kHz and 43 kHz sinusoidal waves weighted by a Gaussian pulse function
(Figure 12-2). The Gaussian pulse is applied to the surface labeled Input Surface Voltage. In this
example, we define the voltage time history explicitly with a function. Grounded voltage
conditions are prescribed on the barrier surfaces. The following presents the boundary input
including the symmetry boundary conditions.

BOUNDARY
sideset 5 //symmetry boundary condition

x =0
sideset 4 // symmetry boundary condition

y =0

sideset 6 // voltage input
transV = 1
function voltage_input
sideset 7 // grounded voltage
V=2~0
END

FUNCTION voltage_input

type linear

#include create_input_deck/voltage_input.inp
END

Input 12.2. Boundary Conditions

In addition to prescribing voltage boundary conditions, we also apply a voltage rigid set to enforce
an equipotential surface at the voltage output surface. The surface of the piezoelectric device
where voltage is measured is often plated with a purely conductive material such as copper; this
physically enforces an equipotential surface. The voltage rigid set simplifies our model by

93

enforcing the equipotential surface without having to model a super thin conductive layer. The

rigid set is specified in this problem as follows:

RIGIDSET setl
voltage
sideset 8
END
Input 12.3. Voltage Rigid Set
123. Transient Response Results

Figure 12-3 presents the voltage response at an arbitrary node located on the output surface. Since
we used a rigid set, the voltage is equal at every node along that surface.

%10 %

=
9]
T

-1 !
0 0.2 0.4 0.6 0.8 1

Time (ms)

Figure 12-2. — Time history of voltage input (Gaussian pulse).

2000 -
L ol L

S 1000 | [LI
© o0
S 1000 | il ! V

2000 ' i u . “N u”

0.2 0.4 0.6 0.8 1
Time (ms)

Figure 12-3. — Time history of voltage response.

94

12.4. Linear System Solver Issues and Recommendations

Elastic and permittivity material properties can differ by tens of orders of magnitude, causing
ill-conditioning of The coupled piezoelectric global stiffness matrix. To improve the matrix
condition, we recommend scaling the voltage units (volts V) to nanovolts (nV) where

1 nV = 1072 V. To scale voltage to nanovolts, the piezoelectric coupling matrix e; ; should be
multiplied by 10° and the permittivity matrix by 10'8.

Another option to account for ill-conditioning is to use the gdsw solver with diagonal scaling.
These solver parameters can be specified in the input deck as shown below. Diagonal scaling
should be thought of as a band-aid. If the conditioning of the system can be fixed by scaling the
underlying unit system, that is preferable to using diagonal scaling. The solver_tol option controls
the tolerance to which the underlying linear system is solved. The default tolerance is 1e — 6, a
tolerance of le — 12 will give a more accurate solution at the cost of increased computation time.
One way to check the convergence of the solver is to see if changing the solver tolerance

(le — 6 — 1le — 7) significantly changes the solution. If it does, a tighter solver tolerance is
needed. We recommend contacting the Sierra/SD team (sierra-help@sandia.gov) in choosing an
appropriate set of solver parameters.

SOLUTION
directfrf // solution method selected
solver = gdsw // solver specified
END
GDSW
diag_scaling = diagonal // diagonal scaling turned on
solver_tol = 1le-10 // convergence tolerance
END

Input 12.4. GDSW Solver Specification

95

This page left blank

96

13. SYSTEM LEVEL MATRICES OF VISCOELASTIC FEA MODEL '

In Sierra/SD, the constitutive model for an isotropic linear viscoelastic material uses a
normalized Prony series to describe the time-dependent decay from the glassy moduli to the
rubbery moduli. Following the theoretical development of the finite element formulation in the
theory manual, the element stiffness matrices may be cast as:

K,k = (Kg—Koo)/BTDKBdV (13.0.1)
Ky = (Gg-Go) / B"DgBav (13.0.2)
K, = Ko / B'DgBdV + G / B'DgBav (13.0.3)

The matrix B is the strain-displacement matrix that depends on the element shape function, while
the scalar parameters Ko, K, Ko and G represent the rubbery (subscript co) and glassy
(subscript g) bulk and shear moduli. Both Dk and D¢ are the constitutive matrices for the bulk
and shear terms, respectively. These element stiffness matrices (along with the element mass
matrix) are then assembled using standard finite element techniques, resulting in the
semi-discretized equations of motion for a structure with linear viscoelastic materials.

t

Mi + /IKV,KéK(t - 1)x(7)dr +/ Ky lc(t —1)x(t)dt + Kex = f(2) (13.0.4)
0 0

This coupled integro-differential equation contains real, symmetric NxN system-level mass (M),
viscoelastic bulk stiffness (K, g), viscoelastic bulk shear (K, k), and elastic stiffness (K,)
matrices. The Nx1 vectors x and f(¢) correspond to the physical displacements and externally
applied forces, respectively, and the dot represents the time derivative. The integral terms have a
simple functional form, such that the kernel functions are a constant matrix multiplied by a series
of normalized scalar exponential functions (Prony series).

One can extract the system level matrices (M, K, k , K, g, and K,) directly from Sierra/SD by
writing out the matrices of an isotropic linear elastic FEA model. The mass and stiffness matrices
are written to MATLAB “*.m” files when using the “dump” solution type in the Sierra/SD input
deck. The mass matrix extraction is straightforward since it only depends on the density; however,
extracting the individual stiffness matrices is more complicated. A method for extracting the
system-level bulk and shear stiffness matrices using the dump solution type is given in Table 13-1.
Figure 13-1 provides an example of the input required to extract the K, x stiffness matrix.

I'THIS SECTION PREPARED BY ROBERT KUETHER, ORG. 01556.

97

Output Matrix in Eq. (13.0.4) | Input Bulk Moduli | Input Shear Moduli
K, Ko G
K,k K, — Ko 0
K, q 0 Gg -G

Table 13-1. — Linear elastic material parameters to output system-level stiffness matrices using the
dump solution type.

SOLUTION
case ’'dump matrices’
dump
END

FILE
geometry_file ’'plate_9by9inch.exo’
END

ECHO
mass
END

BLOCK 1
hex20
material 1

END

//K_g = 9.8039e6
//K_inf = 7.0e6
//G_g = 3.7594e6
//G_inf = 2.5e6

MATERIAL 1
Isotropic
G= le-4 // essentially zero
K= 2.8039e6 // = K_g - K_inf
density=0.00024739

END

Figure 13-1. — Sample Input to determine Viscoelastic Matrices.

98

14. INFINITE ELEMENTS

In this section, we describe how to use infinite elements for acoustics. The elements enforce
high-order absorbing boundary conditions. As a post processing step, it is also possible to
evaluate the solution at far-field points outside of the acoustic mesh.

The infinite element specification begins with a sideset on the Exodus file of interest. That sideset
has to be a spherical surface or part of a spherical surface. Thus, a full spherical surface,
hemispherical surface, or a quarter of a sphere would all be acceptable. Note that the infinite
element accuracy will degrade if the element surfaces on the spherical boundary do not
adequately represent the spherical surface. The finite element surfaces will be faceted, but enough
elements on the boundary are needed to represent the spherical curvature.

Once a sideset is identified for the infinite element surface, the boundary section in the input deck
would be modified as follows.

BOUNDARY
sideset 1
infinite_element
use block 57

END

BLOCK 57
infinite_element
radial_poly = Legendre

order = 5
source = 0 0 O
neglect_mass = yes

END

Where block 57 contains the infinite element parameters. The number 57 is arbitrary; the user can
pick any number that is not assigned to a block in the input mesh Exodus file. The parameters are
summarized in Table 14-1. Only Legendre polynomials are available for the radial basis. The
order of the polynomial can vary from O to 19. Order O corresponds to a simple absorbing
boundary condition. Higher orders will be more accurate, but also more computationally
expensive. The source point is the location of the center of the spherical surface from which the
infinite elements originate. This would coincide with the origin of a spherical coordinate system
that is anchored to the spherical surface of the infinite elements. The neglect_mass option
indicates whether to neglect the mass matrix contributions from the infinite elements. Note that
for a spherical surface, the mass matrix contributions from an infinite element are identically zero.
However, when numerically generated, small entries will be present in the mass matrix, and thus

99

Parameter Description Options default
radial_poly the type of polynomial for radial | Legendre Legendre
expansion
order the order of the radial basis 0-19 0
source the location of the source point any 3 real numbers | 000
neglect_mass | indicates whether to neglect infi- | yes or no yes
nite element mass

Table 14-1. — Available parameters for the infinite element section.

an option is provided to include these terms in the analysis. It is recommended to neglect the mass
in most cases, and thus it would typically be set to yes. By default, neglect_mass is set to yes.

Note that infinite elements only require a specification of a sideset on the surface of interest. No
elements need be set up explicitly on this interface. Internally, Sierra/SD constructs virtual
elements and virtual nodes that define the actual infinite elements, but the analyst need not build a
layer of elements on the boundary of the sideset.

Currently, infinite elements are only set up to work in the time domain. We expect to provide the
frequency domain version in an upcoming release.

The infinite element formulation in Sierra/SD uses a Petrov-Galerkin formulation, rather than a
standard Galerkin formulation. As a result, nonsymmetric system matrices are encountered with
infinite elements. This restricts the solver options to the GDSW solver. In addition, special
options have to be selected in GDSW block to invoke the nonsymmetric solver for the linear solves.
If infinite elements are specified, Sierra/SD automatically selects the GDSW solver and the
correct options for solving. This makes the process easier for the analyst. However, we list the
GDSW options internally selected for completeness. A full input for infinite elements is found in
the Appendix (A.21.8).

GDSW
matrix_type nonsymmetric
krylov_method 1
solver_tol 1.0e-9
scale_option 1
coarse_solver LDM

I_solver LDM
O_solver LDM
END

Note that the nonsymmetric option lets the solver know that it should be expecting a
nonsymmetric matrix.

100

141. Far-Field Postprocessing

Due to the infinite element formulation, as a post processing step the response outside of the
acoustic mesh may be output. It can be computed at any point outside the mesh, and for any
period. The 1inesample capability may be used to write out the far-field data. This data may be
written in a readable MATLAB format, which can easily be read in to create plots of the data.
Linesample is placed in the 1inesample section as follows.

linesample
samples per line 10
endpoint ® 0 O 1
endpoint 0 0 O 0
format mfile

00
10

end
This example creates two lines, with 10 samples per line. The first line runs from the origin for

one unit in the X direction. The second line extends from the origin in the Y direction. For
example, the following section,

linesample

samples per line 2

endpoint ® O 50 0 0 50.001
end

will instruct Sierra/SD to output the acoustic results at the 2 points (0, 0, 50) and (0, 0, 50.001).
Since these 2 points are very close, the output will be almost the same. Thus, this is an example of
using linesample to output the results at a fixed point in space.

The output will be written to a Matlab m-file with the name “linedata.m”. One file is written per
analysis (results are joined analogous to history file output). For example, reading this file in will
create vectors Time and Displacement. In our case Displacement is just a placeholder for the
acoustic pressure.

The infinite element output in the far-field is always given with respect to some time shift. This is
due to the properties of the inverse Fourier transform. Details of this are given in the theory notes
on infinite elements. The time shifts are included in the linesample output for the analyst to use.
These will allow for plotting the time histories against the appropriate time vectors. For example,
to apply the time shift to the first point in the linesample data, one could use the following
MATLAB command.

shifted_time = time + TimeDelay(1l);

One TimeDelay value is available for each sample point in the linesample output.

Once the time data is properly shifted, the following command in MATLAB will plot the pressure
for the first sample point.

101

plot(shifted_time,Displacement(1,:))

102

15. ACOUSTIC SCATTERING

Acoustic analysis often includes the concepts of a “scattering” solution. By this, we mean an
analysis where it is relatively easy to specify the incident wave at all points in space, and we solve
for the reflected wave. Such analysis is seldom done for elasticity because the input medium is not
usually homogeneous and an a priori specification of the incident wave is a challenge. Such
scattering solutions are useful in a variety of contexts. A submarine in the ocean may be struck by
an incident “ping” from a neighboring ship. Such a ping is nearly a plane wave, and calculation of
the outbound wave is the item of interest. The total acoustic pressure (which is the sum of the
incident and scattered components) may not be important. Because the incident wave is known,
we do not need to model the vast region of space between the incident source and the scattering
object. This greatly reduces the cost of the computation.

The theory manual details the formulation. There are several salient issues.
1. The same PDE is solved for scattering and full pressure solutions.

2. The acoustic scattering loads are applied analytically as a pressure on the wet surface of the
structure.

3. A conjugate load is applied to the wet surface of acoustic medium. Thus, there are two
loads applied: a pressure load, P, on the elastic medium, and a velocity load on the acoustic
P

medium. For a plane wave, v = oo

4. Because there are two such loads, we have designed a limited number of specialized
functions for application of these loads. These functions ensure compatibility between the
elastic and acoustic portions of the model.

5. The natural output quantity is the scattered pressure.

6. Typically, absorbing boundary conditions are applied to the exterior of the mesh to reduce
reflection of the scattered wave.

Because scattering solutions use the same PDE as the full pressure calculation, the analyst could
complete an analysis by applying these loads independently. Using the scattering loads and set up
provides a more robust and simpler interface to scattering problems.

15.1. Scattering Sphere

The sample problem is an elastic sphere floating in an infinite acoustic medium. The meshes for
the sphere and fluid do not match at the interface, so tied surface specifications must be used. The

103

example problem is illustrated in Figure 15-1. A full example is listed in the Appendix
(A.21.13).

Figure 15-1. — Elastic Sphere in Fluid Example.

Solution

Within the solution section of the input, we specify the “scattering” keyword. This informs the
solver that consistency must be maintained between loads, and output pressures will be scattered
pressures.

Loads

The loads section should have a load applied to both the elastic and the fluid portions of the
model. In the example input of Figure 15-2, sideset 1 is the surface of the elastic material, and
sideset 2 is the corresponding surface of the fluid. Note that there are no checks made on this
loading. However, if the loads are not applied in pairs, the analysis is meaningless.

While other structural loads can be applied in a scattering problem, it is incorrect to apply
acoustic loads other than scattering loads. This is because we are redefining the acoustic variables
to apply to incident pressures. We cannot define the variable as “incident” in one portion of the
analysis and “total pressure” in another portion.

Functions
The functions referred to in the loads section must be capable of applying different functional

responses to the elastic and acoustic regions. Specification of the “scattering” keyword in the
solution section permits us to check this for consistency.

104

Tied Data
Because the elastic and acoustic regions of the model are not compatibly meshed, the surfaces
must be tied together with a tied surface specification. Sidesets 1 and 2 are again applied. It is not

necessary for the scattering problem to use tied data sections if the regions have compatible
meshes.

Outputs

Specification of “apressure” outputs the scattered pressure.

105

Solution
case out
transient
scattering
nsteps=1000
time_step=0.001
end
Loads
sideset 1
pressure=1
function=1
sideset 2
acoustic_vel=1.
function=1
End
Function 1
type=Plane_Wave
material=water
k0=450.
direction -1 0 0
end
Tied Data
name surfacel-2
surface 1,2
end
Outputs
apressure
displacement
end
material water
cO® = 5000
density =1
end

Figure 15-2. — Example Scattering Input.

106

16. RANDOM PRESSURE LOADS

In a previous section we discussed random vibration input (see section 10). That section addresses
a loading where the frequency content (or power spectral density) of the loading is known for a
few points on the structure. In contrast, for hypersonic vehicles a random loading may occur at
thousands of points on the surface. Many aspects of the loading are the same, but the specification
is different, and for performance reasons, the solutions are performed differently.

The starting point for this analysis requires the following.
1. A surface sideset where the loading will be applied.

2. A temporal correlation function to apply on the surface. The temporal correlation function
is the inverse Fourier transform of a power spectral density (PSD).

3. A spatial correlation relation. Currently, that relation may only be specified as a pair of
exponential decay constants.

Details of the problem setup may be found in the User’s Manual. This section provides a simple
example of the setup and an informal discussion of the sources of the data.

16.1. Example Problem Set-up

For our example, we consider a cylinder in a flow field as shown in Figure 16-1. The structure is a
right circular cylinder of diameter 1 unit, and height 2 units. The flow is directed towards this
cylinder in the X direction, and the PSD and corresponding temporal correlation function are
shown in Figure 16-2. Input is found in the Appendix (A.21.9).

We are interested in this example, in frequencies up to 500 Hz, so the cutoff frequency is 500 Hz.
There is no point in adding energy above the desired cutoff frequency — it only complicates the
procedure. ! The PSD of the input thus controls much of the solution.

The spatial correlation is often more difficult to obtain. For our example, we require a decay
constant of 2.0 units in the flow direction, and 5.0 perpendicular to the flow. One can think of
corresponding decay distances of 0.5 and 0.2 respectively. Thus, down the flow, points more than
about 1.5 units away will not be well correlated. > Perpendicular to the flow, correlations decay
even faster.

! Although the physics has energy above 500 Hz, cutting off the PSD at 500 Hz. is required because a higher cutoff
frequency narrows the correlation function with no added accuracy.
2correlation=exp (—3) = 0.0498

107

PSD Amplitude

0.4

0.3

0.2

0.1

BN

Figure 16-1. — Example Random Pressure Geometry.

Correlation Function

0

L
100

L
200

. o4
300 400 500 600 700 800 900 1000 -0.01 -0.008 -0.006 -0.004 -0.002 [0002 0004 0006 0008 0.01
Frequency Time(s)

Figure 16-2. — Example Random Pressure PSD and Correlation Functions.

108

One rarely has much experimental data about the spatial correlation. Some information is
sometimes garnered from the temporal correlation. For example, if the correlation function has a
characteristic time, 7, one would expect the spatial correlation length to be of the order of 6 = v,
where v is the flow velocity. For a structure in a fluid, the dimensions of the turbulent layer also
provide a bound on the spatial correlation.

16.2. Example: Input Specifications

The physical quantities of the previous section can be interpreted and expressed as Sierra/SD
input as follows.

* The temporal correlation function of Figure 16-2 can be digitized as a Sierra/SD function.
In Figure 16-3 we use a triangular pulse for simplicity. The correlation function should be
symmetric about the origin, and it should have the value of 1.0 at the origin. The
correlation_function is used in the load section, as shown in Figure 16-4.

* In the loads section, we also define the following quantities.

cutoff_freq =500
coordinate =1 to set flow direction
ntimes =5 varies from 3 to 20. Too small causes poor

replication of the temporal correlation func-
tion. Too large results in ill conditioning and
singularity.

Recall that the full correlation matrix is a tensor product of the spatial correlation with temporal
components. The “NTimes” parameter controls the number of samples in the time domain.

All that remains is setting the spatial correlation decay constants in the loads section. The full text
is shown in Figure 16-4.

correlation_length_z = 0.5
correlation_length_r = 0.2

FUNCTION 1
type linear
data -0.001909859319285 0
data O 1
data 0.0019098593192856 0
END

Figure 16-3. — Random Pressure Correlation Function. The temporal correlation is digitized as a “time
only” function. For purposes of illustration, we use a simple triangular function here.

109

LOADS
sideset 1

randompressure
cutoff_freq = 500
delta_t = 0.001
correlation_function = 1
ntimes = 5
correlation_length_z
correlation_length_r
coordinate = 1

e
N U

END

BEGIN RECTANGULAR COORDINATE SYSTEM 1
origin @ 0 O
z point 1 ® 0
xz point 1 0 1

END

Figure 16-4. — Random Pressure Load Section. Note that the “flow” direction is the Z coordinate
direction of coordinate frame 1.

16.3. Example: Verifying the Load

This is a fairly complex input, and it is advisable to verify the generated loads to ensure
consistency. We examine four quantities.

1. average force on a node.
2. variance of the force on a node.
3. temporal force correlation on a single node.

4. cross correlation of forces between nodes.

b

All these quantities require output of the total input force, which is obtained by specifying “force’
in the “outputs” section of the Sierra/SD input. We will use MATLAB tools to evaluate many of
the results. Data can be read into MATLAB from the Exodus results using “exo2mat” or using
other methods.

16.3.1. Average Nodal Force

The average nodal force may be determined either by evaluating the MATLAB results directly, or
using the “statistics” output from Sierra/SD. The built in statistical output is easiest. Supply the
“statistics” keyword to the “outputs” section, and results will be written to an additional Exodus
file. This has the added benefit that these results may be easily visualized using Paraview or
Ensight. See Figure 16-5.

110

For long time integration, the average value of the nodal force should approach zero. Shorter time
samples will have greater variation. The random variables depend on “cutoff_freq”. The
number of random samples can be computed as,

Nsamples = Timegpalysis - cutoft_freq

The fractional mean of the force should be within about 3/y/Ngampies- Or,

_ Fmean 3
Erroryean = 7 <
o \/Nsamples

Here F, is the force applied for a correlation function of 1. It involves the scale factors of the
function, the sideset distribution factors and the effective area for each node. > See the comments
section, 16.4 for, discussion on the effective area.

For the example in Figure 16-5, mean forces are of the order of 1/1000. In this example, we took
10,000 time steps, with each of 0.1 ms for a total time Timeuq1ysis = 1 5. With
Delta_T = 1/cutoff_freq = 1 ms, the total number of random samples is Nygmpies = 1000.

For nodes in the center of the loading area, the effective area is about 0.0098 square units.
Because the sideset distribution factors are all one, we have F, = 0.0098. Then,

E 0.001
rYOtmean = ——oe
“"0.0098
=0.1
which is greater than ——— = 0.095. A distribution of the mean is shown in Figure 16-6.

V1000

= BN

0.000e+00

Figure 16-5. — Variation of Mean and Standard Deviation of Force Magnitude on the Surface.

3 A simple way to estimate F, is to run a very short transient analysis after having converted the random pressure load
to a constant unit pressure.

111

Figure 16-6. — Distribution of Mean Forces on Surface.

16.3.2. Variance of Nodal Force

The standard deviation, which is the square root of the variance, is also available as an output
from the analysis, and may be plotted on the structure using standard visualization tools. See
Figure 16-5.

Again, the standard deviation is a statistical quantity, which is only meaningful for large numbers
of samples. In the limit of large N, the standard deviation should approach F,, as defined above,
provided that the correlation function is 1 at time 0.

The plots show a value of Fy;; ~ 0.0085 which is under the expected value of 0.0098. Because the
averaging process tends to round out the correlation function, the measured values of the standard
deviation are typically somewhat less than F,. The autocorrelation function analysis of the
following section should make this more clear.

16.3.3. Temporal Nodal Force Autocorrelation

The statistics of the loading on a single node should recover the initial input temporal correlation.
Figure 16-7 shows the correlation function extracted from the raw time response data. The
correlation function may be computed as,

1
fe(n) = F_g Zl: WiWi_n.

Where w; is the force on a node at time #;. This data can only be obtained using MATLAB or
another external tool, i.e. it is not available as part of the statistical output. In MATLAB we get
this with, C = xcorr(£f1,f1), where f1 is the force time history on a node of the surface. We
recover a correlation that is similar to the original triangle correlation in the input. Because of
interpolation and finite sample length, we do not expect the same curves precisely.

The curves of Figure 16-7 should be considered “good enough” in a statistical sense. A temporal
interpolation from multiples of Delta_T to the integration time step is being performed, which
smooths the values of the correlation.

112

0.8-

Correlation Function

T
= measured
— — —target

16.3.4.

The previous section discussed the autocorrelation function, i.e. the temporal correlation of
signals on the same spatial location. We can also examine the cross correlation functions. We will

0
Normalized Time

Spatial Cross Correlation

only evaluate the functions at the peak.

This is more difficult. We use the MATLAB “find” method to get the indices of the nodes with
x =—0.5, and y = 0. We loop through these nodes, and compute the “xcorr” function between the
node at the center and the other nodes. The peak value of this solution is then plotted versus the

distance in Figure 16-8.

15 20

Figure 16-7. — Nodal Force Autocorrelation.

Cross Correlation
o o o o o o o o
n w = o (2] ~ © ©
T T T T T T T T

o
T

o

o
— O
I

O measured
target

[}

—

o

0.1

I I
0.2 0.3 0.4 0.5 0.6
Distance From Node

0.7

o
o o
;

8

0.9 1

Figure 16-8. — Nodal Force Spatial Cross Correlation.

There are obvious differences between the measured loads and the target. The correlations for
close distances are lower. This is understood to be generated by the temporal interpolation

113

function. At large distances, the cross correlations never go to zero because of the finite length of
the sample.

16.4. Random Pressure Comments

Effective Area

Random pressures are computed as force loads using a consistent pressure calculation. Pressures
at the nodes are spread through the element shape functions to result in nodal forces. For a
uniform mesh, this is similar to lumping the pressures from a fixed area onto the nodes with

F = P - Area. In Figure 16-9 an element based mesh is shown along a corresponding effective
area for the nodes. For a uniform quadrilateral mesh like the example above, the nodal effective
area is the same as the area of an element face.

Nodal Effective Area

Figure 16-9. — Nodal Effective Area.

Temporal Interpolation

To improve performance, the random pressure loading procedure computes random pressures at
multiples of “Delta_T” and then interpolates to integration time steps. A piecewise linear
interpolation introduces unacceptable errors; sinc(x) interpolation is much better.

Interpolation can be avoided by choosing the integration and sampling times to be equal. In no
case should the integration time be larger than the sampling time.

Singularities

To compute the proper temporal and spatial correlations for the forces, we need to perform a
Cholesky factorization of the correlation matrix. This factor will fail if the matrix is singular.
Remember that the correlation matrix that we factor is a tensor product of temporal and spatial
components, C = Cparial ® Cremporai- If €ither component is singular, the matrix C is singular.
Several common issues can cause singularity of this matrix.

114

1. Taking NTimes too large or too small. For small Delta_T, NTimes must be large enough to
sample the time correlation function. However, studies show that the condition number of
the matrix grows exponentially with NTimes. The target value is 5. Values above 20 are not
recommended; Cremporal 1s numerically singular.

2. Spatial degeneracy, leading to Cspariar = 0. We have only one means of entering the spatial
correlation parameters, viz. the correlation_length variables pair. If either of these
quantities are so large that §/correlation_length is very close to zero (with § representing
the distance from one node to another on the mesh), then the spatial portion of the matrix
becomes singular. Effectively, these locations are no longer independent, but must apply the
same load vector.

3. Using a Delta_T = 1/cutoff_freq and the default sinc function for a correlation function may
generate a Cremporal Singularity. 4 This is because we are now evaluating the correlation
function at multiples of 7, where it is always zero.

Time Step

The integration time step specified in the SOLUTION section must always be less than or equal to
Delta_T.

Sinc Function

The sinc function defined as sin (x)/x is important in at least two places in the code. First, it is the
only function available for the temporal interpolation function. Second, by default, we use the sinc
function as the correlation function. In most cases, this use of the function should probably be
replaced by another function. We use it as the default because it represents the Fourier transform
of a flat PSD, which is the simplest loading.

16.5. Memory, Performance, Parallel and Anything Else of Interest

The matrices generated for these operations are all square and dense. The matrix order is

d = Ngpatial * Niemporal- HEre ngpariqr 1s the number of points in the surface and ns¢ppora; =NTimes.
Because memory requirements grow as the square of these variables, it is important to manage
these carefully. Practically, models up to d = 10° are possible in parallel, but they take a lot of
time.

The operation count for Cholesky factorization of a dense matrix is of order d>. Thus, the
computational cost increases much faster than model size. The parallel solutions of the
Cholesky system are not scalable. In a scalable problem, doubling the size of the problem, and
also doubling the number of processors should not change the solution time. Although the sparse

“In this example, we intentionally use the triangular function both for simplicity, and to avoid this problem.

115

linear solvers for FE solution are scalable, the Cholesky factorization required to compute random
pressure loads is not scalable.

The dense Cholesky factorization from the ScalLAPACK library is used. The parallel
decomposition for this solve is completely different from the FEM decomposition, and is
computed internally without user intervention. The user input for the parallel solution is exactly
the same as the serial input. However, at this time, parallel solutions are limited to platforms built
under the Intel compiler with MKL libraries. The solution will fail on other platforms.

116

17. LIGHTHILL TENSOR LOADING

In this section we provide the steps for applying the Lighthill tensor as a load in a Sierra/SD
acoustics simulation. The Lighthill tensor captures the noise generated by unsteady convection in
fluid flow simulation. In this work, we use the Sierra/TF incompressible thermal fluids code
Fuego to simulate a small chamber, shown in Figure 17-1, that undergoes a sinusoidal pumping
motion in the x-direction. The air moving in and out of the chamber produces turbulence that is
captured by the Lighthill tensor computed during the Fuego simulation. The divergence of the
Lighthill tensor is handed off to Sierra/SD and is used as an acoustic source term for far-field
acoustic noise modeling in the larger semi-circular domain shown in Figure 17-2.

a)

Figure 17-1. — a) Fuego mesh of fluids domain where sideset 2 (green) is absorbing, sideset 4 (blue)
undergoes the pumping motion, and all other sides shown in red are fixed. Sideset 2 shown in green
will be tied to the larger Sierra/SD domain shown in Figure 17-2. b) Fuego mesh shown on z-plane. c)
Fuego interpolation mesh for output of the divergence of the Lighthill Tensor. Domain dimensions are
also shown in ¢).

These simulations are part of the Sierra test suite and provide regression testing for both the
Sierra/SD and Fuego parts of Lighthill noise modeling. Lighthill loading has also been verified in
Sierra/SD for a 1-D waveguide with documentation provided in the Sierra/SD verification
manual. The input for this example is provided in Appendix A.21.14.

Producing the Lighthill load and applying it in Sierra/SD is a 5 step process. The initial steps
produce the divergence of the Lighthill tensor from a Fuego CFD simulation and are found in the
test repository:

fuego_rtest/fuego/mesh_deformation_file/

Questions about these initial steps should be directed to the Sierra Thermal Fluids team.

The final steps involve preparing the Fuego output for use in Sierra/SD and then running the
Sierra/SD simulation and are found in the input deck. Questions about the final steps should be
directed to the Sierra/SD team.

117

? /EZ
a) b)

Figure 17-2. — a) Sierra/SD domain for acoustic noise propagation. The yellow block is the Fuego
output domain containing divT and the red block is the additional domain for the Sierra/SD simulation.
The pink sideset will interface with infinite elements. b) Sierra/SD tetrahedron mesh coarsened out
from the Fuego mesh.

17.1. Mesh Deformation For Fuego

This section describes the process of producing a deformation field used to drive the Fuego
simulation. Questions about Aria should be directed to the Sierra/TF team. The files referenced in
this section are found in the directory:

fuego_rtest/fuego/mesh_deformation_file/

In this example, Aria is used to produce the displacement field using the input file
generate_displ.i. This file produces sinusoidal displacement in the x-direction on sideset 4,
shown in blue in Figure 17-1a. The displacement of sideset 4 is given by

x(t) = asin (rwt) (17.1.1)

where the w=1000Hz, a=0.02m, and displacement in the y- and z-direction is fixed. The
simulation is terminated at r=6e-3s. The Aria simulation is executed with the command:

aria -i generate_displ.i

which produces the file displacements. e that is used as input for Fuego. The Aria simulation is
small and is run in serial.

17.2. Fuego Simulation

This section describes the process of running Fuego to produce the divergence of the Lighthill
Tensor. Questions about Fuego should be directed to the Sierra/TF team. The files referenced in
this section are found in the directory:

fuego_rtest/fuego/mesh_deformation_file/

The Fuego input file is fluid. i and is executed with the command:

mpirun -np 8 fuego -i fluid.i

The Fuego simulation is terminated at r=3e-3s. The Fuego simulation is discretized by the
tetrahedron mesh shown in Figure 17-1b. The Fuego simulations writes the divergence of the

118

Lighthill tensor out to the coarser hexahedron mesh shown in Figure 17-1c as nodal data. This data
is written to acoustic.e.8. [0-7] and provides the loading for the Sierra/SD simulation.

17.3. Processing Fuego output for Sierra/SD

This section describes the steps required to run a Sierra/SD simulation using the Fuego output.
Questions about this section should be directed to the Sierra/SD team. The regression test
Lighthill Fuego hemisphere. test colocated with the input deck executes all steps in this and the
next sections

The first step is to join the partitioned Fuego files back together using the epu Seacas tool:

epu -auto acoustic.e.8.0

The above Fuego simulation writes the divergence of the Lighthill tensor out as nodal data with
the variable names: divT_x, divT_y, divT_z. The Fuego domain is much smaller than the
Sierra/SD domain. If these two domains were joined together into a single Exodus file, nodal
data of divT=0 would be created on the larger Sierra/SD domain. To circumvent this unnecessary
storage of divT data on the Sierra/SD mesh, we convert the Fuego divT data to nodeset data using
the ejoin Seacas tool:

ejoin -output acoustic_nodeset.exo -convert_nodal_to_nodesets all
acoustic.e

which produces the output file acoustic_nodeset.exo.

17.4. Mesh for Sierra/SD

The Sierra/SD simulation will use the Fuego divT data as a source term to model noise
propagation in a larger domain. For this example we join the smaller Fuego mesh containing the
interpolated divT data to a larger semi-circular domain, see Figure 17-2a. A cubit journal file for
creating the semi-circular mesh contained in half_sphere. jou. This mesh must contain
sidesets (sideset 5 in the cubit journal file) that will be tied to sideset 2 in the Fuego output mesh,
shown in green if Figure 17-1a. This mesh also contains sideset 6 on the exterior of the
semicircular domain which will be used for applying absorbing boundary conditions via infinite
elements. The two separate meshes are joined together with the ejoin Seacas tool:

ejoin -output acoustic_nodeset_half_sphere_distribution_factors.exo
half_sphere.exo acoustic_nodeset.exo

This produces the full meshed domain shown in Figure 17-2b for the Sierra/SD simulation. This
mesh is then decomposed into four domains using stk_balance:

mpirun -np 4 stk_balance acoustic_distribution_factors.exo templ

119

17.5. Sierra/SD simulation

This Sierra/SD simulation will be described in this section. Lighthill loading causes Sierra/SD to
use the acceleration potential form of the acoustic equation. The Sierra/SD input file is included
in Section 21.14. The Sierra/SD simulation is terminated after t=0.06s, which is twice as long as
the Fuego simulation. For the final 0.03s of the simulation there will not be any available Fuego
produced divT data to be read in for Lighthill Loading. For this case, the final divT data read in at
t=0.03s will be applied for the remainder of the simulation, which produces a warning to this
effect.

Some Lighthill specific portions of the attached Sierra/SD input file are:

1. The Lighthill loading is applied as a function load the LOADS section with the Function
described in FUNCTION 1. Lighthill loading is described in User’s Manual and the
verification manual.

2. Tied data ties together the Fuego and Sierra-SD domains. Sidesets must be defined on these
surfaces when they are created in Cubit. It is difficult to add a sideset to a mesh after it
contains nodal data, i.e. The sidesets needed to tie the meshes together must be defined on
the mesh used for Fuego output before the Fuego simulation is run.

3. Infinite elements are used on sideset 6 to absorb the pressure waves.

120

18. PRESSURE TRANSFER

It is a common Sierra/SD use case to run an aerodynamics code, and then need to transfer the
structural loads from the aerodynamics code to Sierra/SD to solve the structural problem. For this
example, we describe how to transfer pressure loads from other analysis tools to Sierra/SD.

Here we begin with a three dimensional finite element mesh, that is the skin of a “Sierra Test
Vehicle,” STV. The STV is composed of Quad4 (2D) elements, each with a set of element
variables, including pressure. The STV is a blunt, circular paraboloid that is 3 meters long with a
2 meter diameter. Figure 18-1 shows the pressure output on the transfer mesh
"post-surf-mna/surface.e".

pressure

5.799e+02
4.366e+02
2.932e+02

1.499e+02
6.553e+00

Figure 18-1. — Pressures on STV

Before running Sierra/SD, the user should check and see that the desired variables are in the

99, <

transfer exodus mesh. This can be done by “module load sierra”; “explore
post-surf-mna/surface.e”; “names”. The output from explore is shown below, and can confirm that
“pressure” exists in the output file. The fields other than “pressure” are not necessary for this

example.

Variables Names:
Global:
Nodal:
Element: Ma density
pressure primitives_1

121

primitives_2 primitives_2
primitives_4 primitives_5
temperature velocity_x
velocity_y velocity_z
wall-C_p

Nodeset:

Sideset:

Next, we look at the Sierra/SD input file.

FILE
geometry_file ’stv_test_model.g’
END

TRANSFER ’post-surf-mna/surface.e’
destination sidesets wetted_surf
copy variable = pressure
variable type = element

END

FUNCTION read_pressure
type = exodusread
sideset = wetted_surf
exo_var = scalar pressure
interp = linear

END

LOAD 1
sideset wetted_surf
pressure 1.0
function read_pressure
END

Here we see four distinct sections. As with all Sierra/SD runs, the geometry file is defined as
“stv_test_model.g.” This is the standard finite element model with all the geometric complexities
of the structural model.

Next, we see the Transfer Exodus file, “post-surf-mna/surface.e”. This is the transfer mesh, and
only contains the shell of the model (2D Quad4 elements). The next three lines copy the element
variable “pressure” from the transfer mesh to the sideset “wetted_surf” on the structural mesh.

The Function block defines a function of type exodusread, which reads the scalar pressure
from the sideset “wetted_surf”. The syntax “interp = linear” tells Sierra/SD to interpolate linearly
in time.

Finally, the Load block defines a pressure load of magnitude 1 on the sideset “wetted_surf,” using
the function read_pressure.

122

_AppliedPressure_sideset_4
3.679e+05
2.857e+05
2.034e+05
1.212e+05
3.902e+04

Figure 18-2. — Transfered pressure on structural mesh

123

This page intentionally left blank.

124

19. ROTATING REFERENCE FRAME

For certain types of analysis it is useful to express structural deformations relative to a rotating
reference frame. For example, while the displacements of a rotating vertical axis wind turbine are
large in a fixed frame, they may be small when measured relative to a reference frame which
rotates with the base of the turbine. A significant benefit of using a rotating reference frame is that
a linear structural analysis, like what Sierra/SD offers, can be a well-suited and efficient
alternative to a fully nonlinear analysis.

The effects of a rotating coordinate system on the equilibrium equations are twofold. First,
loading terms involving the angular velocity Q and angular acceleration Q are present.
Specifically, angular velocity loads are proportional to Q while loads associated with angular
acceleration are proportional to €. Second, the rotating coordinate system affects the system
matrices. In the case of angular velocity, there is a symmetric contribution to the stiffness matrix
proportional to Q2 and a skew symmetric contribution (Coriolis) contribution to the damping
matrix proportional to . For angular acceleration, there is a skew symmetric contribution to the
stiffness matrix which is proportional to Q. We note that the skew symmetric damping matrix
does not lead to energy dissipation, but will result in complex eigenvectors for a modal analysis.
We also note for a constant angular velocity the structure becomes preloaded for a steady state
static analysis. This preload can affect the stiffness matrix (through stress stiffening effects), but
we do not discuss this topic further here.

Including the effects of a rotating reference frame is done by including body loads as shown
below. Here, the reference frame rotates about the origin of coordinate system rotz. The angular
velocity and angular acceleration are 500 and 200, respectively, about axis 3. There are a couple
of important points to mention here. First, separate body sections are needed to include both
angular velocity and angular acceleration. Second, it’s important that the same coordinate system
be used for both angular velocity and angular acceleration. Third, angular acceleration loads are
appropriate only for models with sufficient essential boundary conditions to fully constrain away
any rigid body motions.

LOADS
body
angular_velocity = 0 @ 500
coordinate rotz
body
angular_acceleration = 0 0 200
coordinate rotz
END

125

Including the effects of angular acceleration is currently only supported for static analyses.
Further, Sierra/SD can be used for a snapshot static analysis where both Q and Q can be nonzero.
Clearly, the angular velocity changes over time for nonzero . This would lead to changes in the
stiffness and damping matrices over time, but those effects are ignored in the snapshot static
analysis.

To illustrate a static analysis with nonzero Q and €, consider the beam-like structure modeled with
HEX?20 elements shown in Figure 19-1. For this model all the nodes are constrained at the left end.
This means that the displacements of these nodes are all zero with respect to the rotating frame.
The values for Q and Q are shown in the input block above. Axial and transverse displacements
are shown in Figure 19-2. Not surprisingly, the beam stretches along its length and transverse
displacements lag behind the direction of the angular acceleration. We note that the body load for
a point with position vector r relative to the origin of the rotating coordinate frame is given by

b=-Qx(Qxr)-Qxr,

where p is the mass density of the material.

A snapshot static analysis can be used to help understand the importance of Q and Q.
Alternatively, one can get a rough idea of their importance by comparing to the smallest flexible
circular frequency w (in radians per second). If Q < w; and Q < w%, then their importance is
not likely to be significant.

Figure 19-1. — HEX20 mesh used in statics example problem for rotating reference frame.

The input for this example is provided in Appendix A.21.18.

126

Figure 19-2. — Axial and transverse displacements for statics example problem for rotating reference

frame.

Axial Displacement

2.5

1.5

0.5

-102 Angular Acceleration and Velocity Results

127

L . [—
\\\ - "-;-
. p o
\\\\ d///_.-
I N
2 4 6 8 10
X

1-0.03

1-0.04

1-0.05

1-0.06

Transverse Displacement

This page intentionally left blank.

128

20. TIED JOINTS

The Tied Joint provides an interface to the whole joint models. Multiple connection methods
are supported, including weighted constraint equations.

Separate shear and normal forces are supported. The separation also reduces requirements on the
constraints. The whole surface is no longer required to have 6 rigid body modes. The normal tied
interface keeps surfaces together. This relaxes the requirements for shear constraints. The Tied
Joint permits constraints that look more like a collection of trusses, not a collection of beams.

Rotational DOFs are necessary for the structure to move as a rigid body. However, the adjacent
elements may have no rotational stiffness. This introduces singularities. Avoiding the rotational
DOFs is important.

Normal direction constraints are tied surfaces. Shear direction constraints are a truss network. For
curved surfaces, constraints may be inconsistent.

20.1. Lap joint

A lap joint contains regions of “welded” contact, microslip, and macroslip as shown in Figure
20-1. An elastic spring approximates normal forces. Tied surfaces approximate shear behavior of
the “welded” region. The macroslip region is free. The region of microslip depends on the
loading. Microslip introduces loss into the structure. This region is well approximated by an Iwan
element.

Macroslip Region
Microslip Region
Welded Region

Figure 20-1. — Lap Joint with Contact Regions. The physics of bolted lap joints is complex. Tied
Joints use a combination of constraints, springs and optionally Iwan elements to generate a reduced
order model of the structure.

Without a Tied Joint, this lap joint can be modeled using a whole joint model. Each of the contact
surfaces is rigidized (using a rigid set). A Joint2G connects the surfaces. The mesh is represented

129

in Figure 20-2. Figure 20-3 illustrates the conventional means of connecting this structure. This
method reduces all the behavior of the joint to a single Joint2G element. That element must be
included as part of the mesh. Because the surfaces are allowed to translate and rotate
independently, interpenetration can occur. Nevertheless, the method is effective in representing
the energy loss that occurs in this structure.

[1]

Joint2G

Figure 20-2. — Lap Joint Finite Element Mesh. The physical lap joint is represented by a reduced order
model which uses disconnected meshes of the top and bottom material. These are shown separated in
the cartoon but may have overlapping nodes. In a conventional connection the Joint2G which represents
the bolt must be explicitly meshed. The Tied Joint approach generates that element internally.

Rigidset

sideset 1
end
Rigidset

sideset 2
end

Block 3
Joint2G

Kz = Elastic 1e6
Kx =1Iwan 1

Ky =Iwan 1

Krx = Elastic 1e9
Kry = Elastic 1e9
Krz = Elastic 1e9

END

Figure 20-3. — Conventional Input for Whole Lap Model.
The input included in Figure 20-4 represents the same physics. The normal definition is “none”

because the normal stiffness is part of the Joint2G structure. The shear side definition is “rigid”
corresponding to a rigid set definition on each of the surfaces. No mesh of block 3 is required.

130

Tied Joint
Normal Definition = none
surface 1,2
Shear Definition
side = rigid
connect to Block 3
end
Block 3
Joint2G
Kz = Elastic 1e6
Kx =1Iwan 1
Ky =Iwan 1
Krx = Elastic 1e9
Kry = Elastic 1e9
Krz = Elastic 1e9
END
Figure 20-4. — Tied Joint Input for Whole Lap Model.
20.2. Joint with Slip

The whole joint model of section 20.1 can be modified to prevent penetration of the two surfaces.
The models are shown in Figures 20-5 and 20-6 for the conventional and Tied Joints.

Sliding contact or slip keeps two surfaces in contact with no resistance to transverse motion.
Because the sliding contact constrains the normal behavior, the Joint2G parameters for that
direction are irrelevant. Because the surfaces are flexible, properly constraining the transverse
motion of the connection nodes is challenging. The constraint method is specified using the side.
The Rrod and average methods are available. Example 20-5 uses the Rrod approach.

131

Rigidrod
sideset 1
end
Rigidrod
sideset 2
end
Block 3
Joint2G
Kx =Iwan 1
Ky =1Iwan 1
Krz = Elastic 1e9
END
Tied Data
name = "block_3_tj’
surface 1,2
transverse slip
end

Figure 20-5. — Conventional Input for Whole Lap Model with Sliding Contact.

Tied Joint
Normal Definition = slip
surface 1,2
Shear Definition
side = Rrod
connect to Block 3
end
Block 3
Joint2G
Kx =Iwan 1
Ky =Iwan 1
Krz = Elastic 1e9
END

Figure 20-6. — Tied Joint Input for Whole Lap Model with Sliding Contact.

132

21. EXAMPLE PROBLEM INPUT FILES

21.1. Input. static.inp

Refer to Section 1 for details of the test.

SOLUTION
title ’static run of a test fixture model’
statics

END

PARAMETERS
wtmass=0.00259
END

FILE
geometry_file 'FILEPATH’
END

LOADS
nodeset 2
force 1.0 0.0 0.0
scale 200.0
END

BOUNDARY
nodeset 1
fixed
END

OUTPUTS
displacement
stress

END

ECHO
mass block
END

BLOCK 1
material 1
END

BLOCK 2
rbar
END

BLOCK 3
ConMass
Mass 1.0e7
Ixx 1.0e8
Iyy 1.0e8
Izz 1.0e8
Offset= 0.0 0.0 0.0
END

MATERIAL 1

133

// fixture - Ti
density=0.16
E=1.6e+07
nu=0.3

END

GDSW

solver_tol=1e-8
END

134

21.2. Input. eigen.inp

Refer to Section 1 for details of the test.

SOLUTION

title ’eigen run of a test fixture model’

eigen
nmodes 12
END

PARAMETERS
wtmass=0.00259
eigen_norm=visualization
END

FILE
geometry_file 'FILEPATH’
END

BOUNDARY
nodeset 1
fixed
END

OUTPUTS
displacement
END

ECHO
mass block
END

BLOCK 1
// fixture
material 1
END

BLOCK 2
rbar
END

BLOCK 3
ConlMass
Mass 1.0e7
Ixx 1.0e8
Iyy 1.0e8
Izz 1.0e8
Offset= 0.0 0.0 0.0
END

MATERIAL 1
// fixture - Ti
density=0.16
E=1.6e+07
nu=0.3

END

GDSW
solver_tol 1.0e-10
END

135

21.3. Input. transient.inp

Refer to Section 1 for details of the test.

SOLUTION

title ’test fixture model transient simulation’

transient
time_step 1.0e-4
nsteps 100
End

PARAMETERS
wtmass=0.00259
End

FILE
geometry_file ’'FILEPATH’
End

LOADS
nodeset 1
force 0.0 1.0 0.0
scale 1.0e7
function 8
End

HISTORY
nodeset 33, 148, 270
displacement
acceleration

End

OUTPUTS
End

Function 8 // Haversine pulse
type analytic

evaluate expression = "amp = 1.5e3; period= 3.6e-4; omega = pi/period;

End

ECHO
mass block
End

Block 1 // fixture
material 1
End

Block 2
rbar
End

Block 3
ConlMass
Mass 1.0e7
Ixx 1.0e8
Iyy 1.0e8
Izz 1.0e8
Offset= 0.0 0.0 0.0
End

MATERIAL 1 // fixture - Ti
density=0.16

E=1.6e+07
nu=0.3
End

136

(t>period)?(0.0): (amp*sin(omega*t)r2)"

GDSW
solver_tol 1.0e-8
End

137

21.4. Input. modaltransient.inp

Refer to Section 1 for details of the test.

SOLUTION
title ’modal transient run of a test fixture model’
case eigen
eigen
nmodes 20
shift -1le6
case trans
modaltransient
time_step 1.0e-4
nsteps 100
load 1
End

PARAMETERS
wtmass=0.00259
End

FILE
geometry_file 'FILEPATH’
End

LOAD 1
nodeset 1
force 0.0 1.0 0.0
scale 1.0e7
function 8
End

HISTORY
nodeset ’33’
nodeset ’148’
nodeset ’270’
disp
velocity
acceleration

End

OUTPUTS
End

ECHO
mass block
End

// Block and material input

BLOCK 1
// fixture
material 1
End

BLOCK 2
rbar
End

BLOCK 3
ConlMass
Mass 1.0e7
Ixx 1.0e8
Iyy 1.0e8
Izz 1.0e8
Offset= 0.0 0.0 0.0

138

End

MATERIAL 1
// fixture - Ti
density=0.16
E=1.6e+07
nu=0.3

End

// Haversine pulse
Function 8

type analytic

evaluate expression = "amp = 1.5e3; period= 3.6e-4; omega = pi/period; (t>period)?(0.0):(amp*sin(omega*t)+2)"
End

GDSW

solver_tol=1le-12
End

139

21.5. Input. modalfrf.inp

Refer to Section 1 for details of the test.

SOLUTION
title ’modal frf run of a test fixture model’
case eigen
eigen
nmodes 20
shift -1le6
restart auto
case frf
restart auto
modalfrf
load 1
END

PARAMETERS
wtmass=0.00259
END

FILE
geometry_file 'FILEPATH’
END

LOAD 1
nodeset 1
force 0.0 1.0 0.0
scale 1.0e7
function 1
END

FUNCTION 1
type linear
data 0.0 1.
data 1.0e8 1.
END

0
0

FREQUENCY
nodeset 270
acceleration
freq_min 100
freq_max 8000
freq_step 200

END

DAMPING
gamma 0.02
END

HISTORY
nodeset ’33’
nodeset ’148’
nodeset ’270’
acceleration

END

OUTPUTS
END

ECHO
mass block

END

// Block and material input

140

BLOCK 1
// fixture
material 1
END

BLOCK 2
rbar
END

BLOCK 3
ConMass
Mass 1.0e7
Ixx 1.0e8
Iyy 1.0e8
Izz 1.0e8
Offset= 0.0 0.0 0.0
END

MATERIAL 1
// fixture - Ti
density=0.16
E=1.6e+07
nu=0.3

END

GDSW
solver_tol=1e-10
END

141

21.6. Input. random_vibration.inp

Refer to Section 1 for details of the test.

SOLUTION
title ’modal random vibration run of a test fixture model’
case eigen
eigen
nmodes 20
shift -1le6
case modalranvib
modalranvib
lfcutoff -10
END

PARAMETERS
wtmass=0.00259008
END

FILE
geometry_file 'FILEPATH’
END

LOADS
END

FREQUENCY
nodeset 1,270
acceleration
freq_min 100
freq_max 8000
freq_step 200

END

DAMPING
gamma 0.02
END

*

// scale = concentrated mass wtmass
RANLOADS
matrix 1
load 1
nodeset 1
force 1.0 0.0 0.0
scale 2.59%e+4
load 2
nodeset 1
force 0.0 1.0 0.0
scale 2.59%e+4
load 3
nodeset 1
force 0.0 0.0 1.0
scale 2.59%e+4
END

MATRIX-FUNCTION 1
name ’Power Spectral Density input’
symmetry Hermitian
dimension 3x3
data 1,1

real function 1
data 2,2
real function 1
data 3,3
real function 1
END

142

FUNCTION 1

Name = "Power_Spectral_Density"

type = linear
data 100.0
data 300.0
data 500.0
data 700.0
data 7500.0
data 7700.0
data 7900.0
data 8100.0
END

OUTPUTS
displacement
acceleration
vrms

END

ECHO
mass block
END

// Block and material input

BLOCK 1
// fixture
material 1
END

BLOCK 2
rbar
END

BLOCK 3
ConMass
Mass 1.0e7
Ixx 1.0e8
Iyy 1.0e8
Izz 1.0e8

Offset= 0.0 0.0 0.0

END

MATERIAL 1

0
0
0.
0
0
0

.001
01
.1
.1
.01

0.001
0.

// fixture - Ti

density=0.16

E=1.6e+07
nu=0.3
END
GDSW

solver_tol=1e-8

END

143

21.7. Random Vibration Input. Vran1.inp

Refer to Section 10 for details of the test.

SOLUTION

case eig

eigen nmodes=55

shift=-1e5

case rms

modalranvib

truncationMethod = displacement

keepmodes=17 // force modal truncation
End

RANLOADS
matrix=1 // loads input in lbs.
load=1 // The PSD is in g*2/Hz.
nodeset 12 // F = accel * mass
force=0 1 0 // accel * (scale_factor)
scale 1.00e3 // = accel * ((1000%.00259)*384.6)
End

Frequency
freq_step=100
freq_min=300
freq_max=1e4
BLOCK=all

End

MATRIX-FUNCTION 1
Name=input_Power_Spectral_Density
symmetry=symmetric
dimension=1x1
data 1,1

real function 1

End

FUNCTION 1
Name="Power_Spectral_Density’
type=loglog
data 1.0 le-8
data 299 le-8
data 300 0.01
data 2000 0.03
data 8000 0.03
data 10000 0.01
data 10001 le-8

End

DAMPING
gamma=0.01
End

PARAMETERS
wtmass=0.00259
End

FILE
geometry_file 'FILEPATH’
End

BOUNDARY

nodeset 124

rotx=0 roty=0 rotz=0 x=0 z=0
End

144

LOADS
End

OUTPUTS
vrms
End

ECHO
vrms
End

GDSW
solver_tol le-9
End

BLOCK 101

material 101

quadt

thickness= 0.200000003E+00
End

BLOCK 102
ConlMass

Mass=1000
Ixx =0
Ixy =0
Iyy =0
Ixz =0
Iyz =0
Izz =0
Offset=0 0 0

End

Block 10001

RBAR // RBE type elements

// # links 16
End
Block 1000

material=1000

beam?2

area=1

il=.1

i2=.1

j=.2

orientation=1 0 .10
end

MATERIAL 101
density=0.1
Isotropic
E=1e+07
nu=0.35

End

MATERIAL 1000
density=0.1le-5
Isotropic
E=1e+09
nu=0.35

End

145

21.8. Infinite Element Input

Refer to Section 14 for details of the test.

Solution
transient
time_step 1.0e-2
nsteps 500

End

File
geometry_file 'FILEPATH’
End

Linesample
samples per line 2
endpoint 0 ® 500 0 0 500.001
format exodus

End

Outputs
apressure
End

Echo
input off
End

Boundary
sideset 1
infinite_element
use block 111
End

Block 1
material "air"
End

Block 111
infinite_element
radial_poly legendre
order 3
neglect_mass yes
ellipsoid_dimensions 200 200 200
End

Material "air"
density 1.293
acoustic
cO® 332.0

End

Function 3
type analytic
evaluate expression = "sin(2 * pi * t)"
End
Loads
sideset 2
acoustic_accel -1.0
function 3
End
GDSW
solver_tol 1.0e-9
End

146

21.9. Random Pressure Input

Refer to Section 16 for details of the test.

SOLUTION
transient
time_step 1.0e-4
nsteps 20

end

FILE
geometry_file ’cylinder_random.exo’
end

LOADS
sideset 1
randompressure
Delta_T=1le-3
cutoff_freq = 4.999999994286667e+02
correlation_length_z 0.5
correlation_length_r = 0.2
ntimes =5
correlation_function = 1
coordinate 1

end

Begin rectangular coordinate system 1
origin =00
z point 10
Xz point 10
end

0
0
1

BOUNDARY
end

function 1
type linear
data -0.001909859319285 0
data 0 1
data 0.001909859319285 0
end

OUTPUTS

statistics

force

pressure // DON’T DELETE
end

PARAMETERS
RandomNumberGenerator = test
end

ECHO
input = off
end

GDSW

LO_option 0
krylov_method=1
max_iter=2000
solver_tol=1le-4
orthog=4000
prt_summary=1
prt_debug=1
overlap = 20
prt_timing yes

147

coarse_option 0
end

BLOCK 1
material 1
end

MATERIAL 1
E 72e9 //(N/m*2)
nu .33
density 2700 //(kg/m*3)
end

148

21.10. Geometric Rigid Body Mode Input

Refer to Section 8.1 for details of the test.

SOLUTION
case out
geometric_rigid_body_modes
case flexible_modes
eigen
nmodes 10
END

FILE
geometry_file FILEPATH
END

BOUNDARY
END

PARAMETERS
num_rigid_mode 6
RbmTolerance 2.e-6
// Interestingly this is not the tolerance that gdsw uses.
wtmass=0.00259
END

OUTPUTS
disp
END

ECHO
mass block
END

LOADS
sideset 3
traction 1 11
scale = 1.0
END

DAMPING
beta 2.0e-6
END

TIED JOINT
normal definition = slip
surface 1,2
search tolerance 1.0e-3
side = free
connect to block 3
END

BLOCK 1
material 1
nonlinear=no

END

BLOCK 2
material 1
nonlinear=no

END

BLOCK 3
coordinate 2
joint2g
kx = Iwan 1

149

ky = Iwan 1
krz = elastic 1.0e9
END

MATERIAL 1
density 0.3
E = 3.0e7
nu = 0.3
END

PROPERTY 1
chi -.82
phi_max = 1.75e-4
R = 5.5050e+6
S = 2.1097e+6
END

Begin rectangular coordinate system 2
origin = 0 -3.83232e-2 -5.96407
z point = 1.0 -3.83232e-2 -5.96407
Xz point 1.0 0.4616768 -6.46407
end

GDSW
max_numterm_C1 500
krylov_method 1
prt_constraint 1
END

150

21.11. Wet Modes Input

Refer to Section 8.3 for details of the test.

SOLUTION
title=’ Acoustic analysis’
case rigid
geometric_rigid_body_modes
case flex
eigen
nmodes 20
fluidloading=yes // Wet Modes Calculation
END

GDSW
solver_tol 1.0e-6
krylov_method 1
overlap 2

END

FILE
geometry_file FILEPATH // Submerged Cylinder
END

LOADS
END

PARAMETERS
num_rigid_mode 6
END

BOUNDARY
sideset 102 // outer acoustic surface
p=0
sideset 103 // free surface
slosh = 2.59e-3 /// 1/(32.2*%12 in/s/s)
END

TIED DATA
surface 101, 1
search tolerance = 2
END

OUTPUTS
disp
END

ECHO
mass
input

END

MATERIAL steel
e = 3.0e7
density = 7.324e-4
nu = 0.3

END

MATERIAL fluid

acoustic

density 3.46822e-006

c® 22878 // sound speed
END

BLOCK 1
material = steel

151

thickness = 1.3644
nquad
END

BLOCK 2
material = steel
thickness = 1.3644
nquad

END

BLOCK 101

material = fluid
//tetd
END

152

21.12, CBR Input

Refer to Section 6 for details of the test.

SOLUTION
case eigl // compute the full system. floating.
eigen nmodes=10 shift=-1e6
case cbhr // reduce the model

cbr

shift=0.

nmodes 4

title CBR example for "How To" document’
END
cbmodel

nodeset=nodelist_3

format=mfile

file=cbr.m

globalsolution
end

history
nodeset 1:2
disp

end

FILE
geometry_file ’cbr.exo’
END

BOUNDARY
// free/free system
END

OUTPUTS
disp
END

ECHO
END

BLOCK 1
material 2
END

MATERIAL 2

E 30e6

nu .3

density 0.288
END

153

21.13. Acoustic Scattering Input

Refer to Section 15 for details of the test.

SOLUTION
case out
transient
time_step 1.66666666667e-06
nsteps 1000
nskip = 1
load 10
scattering
title ’scattering’
END

FILE
geometry_file 'FILEPATH’
END

Parameters
End

History
velocity
nodeset 1
nodeset 2

End

BOUNDARY
sideset 1
infinite_element
use block 111
sideset 4
y=0
rotz=0
rotx=0
sideset 5
x=0
rotz=0
roty=0
END

LOAD 10
sideset 2
acoustic_vel = 100
function = 1

sideset 3
pressure = 1
function = 1
scale 100

END
TIED DATA

Surface 2,3
search tolerance = 5

END
FUNCTION 1
type planar_step_wave
origin = 0 0 -10
direction ® 0 1
k0 = 1.0
material = "water"
END

154

OUTPUTS
END

ECHO
END

BLOCK 1
material "water"
END

BLOCK 2

material "steel"
nquad

thickness = 0.1
END

Block 111
infinite_element
order = 10
ellipsoid_dimensions 30 30 30
END

MATERIAL "water"

from paper 0.96e-4 1b-sec2/in4
density 0.96e-4

acoustic

c® 60000
END

MATERIAL "steel"
E 0.29e8

nu .3

density 0.732e-3
END

GDSW
solver_tol le-12
krylov_solver = gmres
prt_summary 3

END

155

21.14. Lighthill Function Loading - Input

Refer to Section 17 for details of the test.

SOLUTION
transient
time_step 1.0e-4
nsteps 50
nskip 1
rho 0.9
lumped_consistent
END

FILE
geometry_file ’templ/acoustic_nodeset_distribution_factors.exo’
END

LOADS
nodeset 1
Lighthill = 1.0
function = 1
END

LINESAMPLE
samples per line 100
endpoint 0. 0. 0. -1 0. 0.
format exodus

END

FUNCTION 1
type exodusread
nodeset 1
name "divT_"
exo_var vector divT_
interp = linear

END

BOUNDARY
sideset 6
infinite_element
use block 111
END

OUTPUTS
END

ECHO
END

BLOCK 1
material 1
END

BLOCK 2
material 1
END

Block 111

infinite_element
ellipsoid_dimensions 1 1 1
order = 8
source_origin = 0.05 0 ©
neglect_mass = yes

END

156

MATERIAL 1

acoustic

density 1.1

cO® 343 // reduced to slow down wave
END

Tied Data

surface 2, 5
End

157

21.15. Linear Buckling - Input

Refer to Section 8.2 for details of the test.

SOLUTION

buckling
bucklingSolver = {ARPACK_MODE}
nmodes 1
shift=-100

END

FILE
geometry_file ’'FILEPATH’
END

BOUNDARY

nodeset 1
y=0

nodeset 2
x=0

nodeset 3
z=0

END

LOADS
sideset 1
pressure = 1.0
END

OUTPUTS
deform
END

ECHO
END

BLOCK 1
material 1
END

Material 1

E 10e6

nu 0.0

density 0.098 // not used in statics
END

158

21.16.

Refer to Section 5 for details of the test.

21.16.1.

SOLUTIO!

N

case eig
eigen

nmodes = 20

case test2
modalfrf

END

FILE

geometry_file = 'beam_frf.e’

END

LOADS

Sierra SM FRF Comparison

Modal FRF

nodeset 500

force = 6.0 0.0 1.0

scale = 1
function = 1

END

FUNCTION 1
LINEAR

type

name

data

data
END

DAMPING

"white noise"

0.0 1
200.

alpha = 5

END

BLOCK 1

material = 1 // rubber linear

END
BLOCK 9
rbar

END

BLOCK 9

0

1

conmass
mass = le-3

Ixx

Iyy

Izz
END

MATERIAL 1 // linear

le-3
le-3
le-3

isotropic

density 0.0343

E 21
nu =
END

8

.499

PARAMETERS

wtmass = 0.002588

END

.0
1.0

159

OUTPUTS
disp
stress

END

FREQUENCY
freq_min = .1
freq_step = .1
freq_max = 50
acceleration
disp
nodeset 2

END

ECHO
mass=block
END

21.16.2. Direct FRF

SOLUTION
case test2
directfrf
END

FILE
geometry_file = 'beam_frf.e’
END

LOADS
nodeset 500
force = 0.0 0.0 1.0
scale = 1
function = 1
END

FUNCTION 1
type LINEAR
name "noise"
data 0.0 1.0
data 200. 1.0
END

DAMPING
alpha = 5
END

BLOCK 1
material = 1 // rubber linear
END

BLOCK 90
rbar
END

BLOCK 91
conmass
mass = le-3
Ixx = le-3
Iyy = le-3
Izz = le-3

END

MATERIAL 1 // linear
isotropic

160

density 0.0343
E 218
nu = .499

END

PARAMETERS
wtmass = 0.002588
END

OUTPUTS
disp
stress

END

FREQUENCY
freq_min = .1
freq_step = .1
freq_max = 50
acceleration
disp
nodeset 2

END

ECHO
mass=block
END

21.16.3. Adagio Input

begin sierra beam_sm_fft

begin function prescribed_force
type is piecewise analytic
begin expressions
0.0 "le-4*sin(2*pi*t)"
end expressions
end

begin material rubber
density = {0.0343%0.002588}

begin parameters for model elastic
poissons ratio = 0.499
youngs modulus = 218
end parameters for model elastic
end material rubber

begin material rbar
density = 0
begin parameters for model elastic
poissons ratio = 0
youngs modulus = le-7
end parameters for model elastic
end material rbar

begin rigid body rbar
end rigid body rbar

begin beam section rbar_sec
rigid body = rbar

section = bar

width = le-7

height = le-7

taxis =001

end

161

begin point mass section conmass
mass = {le-3*0.002588}
end

begin finite element model fft_run
database name = beam_frf.e
database type = exodusII

- Block id 1 had name bar

begin parameters for block block_1
material = rubber
model = elastic

end parameters for block block_1

- Block id 90 had name rbar
begin parameters for block block_90
material =rbar
model = elastic
section = rbar_sec
end parameters for block block_90

- Block id 91 had name conmass

begin parameters for block block_91
section = conmass

end parameters for block block_91

end finite element model fft_run
begin presto procedure beam_fft

#
*** Time step control information
begin time control

begin time stepping block pl
start time = 0.0
begin parameters for presto region presto
time step scale factor = 1.0
step interval = 100
end parameters for presto region
end time stepping block pl

termination time = 100
end time control
begin presto region presto

begin viscous damping

include all blocks

mass damping coefficient = 5
end viscous damping

use finite element model fft_run
output description
begin results output results
start time = 0
database name = beam_frf-out.e
database type = exodusII
At Time 0.0, Increment = 1.0e-1
#At Time 0.0, Increment = 1.0e-5
nodal Variables = displacement as displ
nodal Variables = velocity as vel
nodal Variables = acceleration as accel
end results output results

begin prescribed force

162

node set = nodelist_500
component = z
function = prescribed_force
scale factor =1
end prescribed force

end presto region presto

end presto procedure beam_fft

end sierra beam_sm_fft

163

21.17. Piezoelectric Transient Input

Refer to Section 12 for details of the test.

SOLUTION
solver=gdsw
transient
time_step = 1.000000e-06
nsteps = 1001
END

FILE
geometry_file ’1/single_patch.par’
END

LOADS
END

GDSW
END

BOUNDARY
sideset 5 // symmetry boundary condition
x=0
sideset 4 // symmetry boundary condition
y=20
sideset 6 // voltage input
transV = 1
function voltage_input
sideset 7 // grounded voltage
V=20
END

RIGIDSET setl
voltage
sideset 8

END

FUNCTION voltage_input // voltage input in scaled units (Vin * le-9)
type linear
name "voltage_in"
{include(create_input_deck/voltage_input.inp)}#

END

ECHO
END

OUTPUTS
disp
voltage

END

BLOCK 1
material Aluminum
hex8u

END

BLOCK 2
material Piezoelectric
hex8u

END

BLOCK 3

material Piezoelectric
hex8u

164

END

MATERIAL ALUMINUM
density = 2700
E = {70 * 1049}
nu = 0.33

END

// {C11 = 1.38999e+11}
// {C12 = .778366e+11}
// {C13 = .742836e+11}
// {C33 = 1.15412e+11}
// {C44 = 2.5641e+10}
// {C66 = 3.0581e+10}

// {scale = 1e9}

// {ep = 8.85418782e-12 * scale * scale}
// {D11 = ep * 762.5}
// {D33 = ep * 663.2}

// {E11 = -5.20279 * scale}
// {E33 = 15.0804 * scale}
// {E15 = 12.7179 * scale}

MATERIAL PIEZOELECTRIC
ORTHOTROPIC_PIEZOELECTRIC
Cij = {C11} {C12} {C13}
{C11} {C13}
{C33}
{C44}
{C44}
{C66}

permittivity_ij {D11} ® 0
0 {D11} ©
0 ® {D33}

eij= 0 © {E11}
o o {E11}
® 0 {E33}

o {E15} ©

{E15} o 0

0 o 0

density = {7500}
END

165

21.18. Rotating Frame Statics Input

Refer to Chapter 19 for details of the test.

SOLUTION
statics
END

parameters
end

FILE

geometry_file hex20Beam40x.g

END

BOUNDARY
sideset baseSurf
fixed
END

LOADS
body

angular_acceleration = 0@ 0 200

coordinate rotz
body

angular_velocity = 0 0 500

coordinate rotz
END

OUTPUTS
disp
END

ECHO
END

BLOCK myTestBeam
material example_mat
END

Material example_mat
E 30.0E6
nu 0.33
density 0.00074
END

begin rectangular coordinate system rotz

origin =0 1 0

z point =0 15

xz point =110
end

166

BIBLIOGRAPHY

[1] F. Fuentes et al. “Orientation embedded high order shape functions for the exact sequence
elements of all shapes”. In: Computers and Mathematics with Applications 70.1 (2015),
pp- 353458 (cit. on p. 14).

[2] S D Team. SD — User’s Manual. Tech. rep. SAND2021-12518. living document with more
recent versions. PO Box 5800, Albuquerque, NM 87185-5800: Sandia National
Laboratories, 2022 (cit. on p. 27).

167

This page left blank

168

INDEX

Sierra/SM Far-Field Postprocessing, 101
Adagio, 23 linesample, 101
) neglect_mass, 99
Adagio, 23
receive_sierra_data, 23 Joint2G, 55, 129
buckling, 63 krylov_solver_output_file, 35
CBR Lighthill tensor, 117
CBModel, 44 Linear Solvers, 33
eigen, 44
GlobalSolution, 44 Modal Random Vibration, 73
Limitations, 52 function, 76
multicase, 44 input, 77
output_vector, 44 keepmodes, 74
Wtmass, 45 Ifcutoft, 74
CBR see Craig-Bampton reduction, 43 Limitations, 82
CMS see component mode synthesis, 43 loads, 74
component mode synthesis, 43 Matrix-Function, 76
Coupling modalranvib, 73
Sierra/SM, 23 nominalt, 76
Craig-Bampton reduction, 43 Vrms, 77
Wtmass, 79
dd_solver_output_file, 35 Modal Transient, 69

Direct and Modal FRF, 39
Ng, Esmond, 14

Eigenvalue

accuracy, 61 piezoelectricity, 91
Farhat, Charbel, 13 C—.I.J’9922
fatigue, 83 c-l:

permittivity_ij, 92
Pressure Transfer, 121
boundary, 121

Felippa, Carlos, 13
FilterRbmLoad, 62

GDSW
accuracy, 34
Infinite Elements, 100

Random Pressure Loads, 107
Comments, 114

Geometric Rigid Body Modes, 61 correlation_function, 109
Performance, 115
Infinite Elements, 99 spatial correlation, 107
boundary, 99 temporal correlation, 107

169

Verification, 110
rigid body mode, 61
Rotating reference frames, 125

Scattering, 103
Superelement, 53
mksuper, 56
post processing, 59
visualization, 59

170

SuperLU, 14

Threading, 17

Tied Joint, 129
average, 131
Rrod, 131
side, 131

Training, 15

Wet Modes, 66

DISTRIBUTION

Email—Internal

Name Org. Sandia Email Address
Technical Library 1911 sanddocs@sandia.gov
Hardcopy—Internal
Number of :
Copies Name Org. Mailstop
1 K. H. Pierson 1542 0845

171

This page intentionally left blank.

172

173

Sandia
National
Laboratories

Sandia National Laboratories is
a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of Sandia
LLC, a wholly owned subsidiary
of Honeywell International Inc.,
for the U.S. Department of
Energy’s National Nuclear
Security Administration under
contract DE-NA0003525.

	Training Problems
	Thread Parallelism
	Debugging Threading Approaches
	Batch Submission / Optimal Parameters for KNL
	Parameters for Running on HPC Clusters

	Transient Simulation About Sierra/SM Preload
	Coupled Sierra/SM- Sierra/SD Eigenvalue Problems
	User specified field names
	Troubleshooting Legacy Models
	Rigid Rims, Coupling with Concentrated Masses, and Superelements

	Linear Solvers
	Linear Solver Accuracy
	Frequency response linear solver

	Comparing Sierra SM Explicit Transient to Direct and Modal FRF
	Craig-Bampton Reduction
	Definitions
	Input Required
	Exodus Requirements
	Solution
	CBModel
	Output
	History

	Example
	Verification of the Model
	Comparison of Reduced and Full Eigenvalues
	Comparison of Reduced and Full Displacements

	What to do with the Results
	solving the system
	Incorporate the reduced model into another system model

	Limitations

	Superelements
	Superelement Example
	Submodel Model Extraction and Reduction
	Superelement Insertion
	Units and Wtmass
	Visualization

	Eigenvalue Problems
	Geometric Rigid Body Modes
	Linear Buckling
	Shifted Eigenvalue
	Buckling Case Study

	Wet Modes
	Mesh
	Input File
	Results

	Modal Transient
	Process for serial integration
	Compute modes of the system model
	Extract Modal force
	Perform Time Integration of Modal Space
	Expand to Physical Space

	How to Use Results
	Limitations
	Verification

	Modal Random Vibration
	Solution
	RanLoads
	Matrix-Function
	Function
	Frequency
	Damping
	Output
	Echo

	Example Input
	Verification of the Model
	What to do with the Results
	Limitations, Suggestions and Cautions

	Fatigue
	Example Fatigue Model
	Geometry
	Materials
	Loads

	Results
	Frequency Domain
	Time Domain
	Comparison

	Coupled Electro-mechanical Physics
	Piezoelectric Material Input
	Boundary Conditions
	Transient Response Results
	Linear System Solver Issues and Recommendations

	System Level Matrices of Viscoelastic FEA
	Infinite Elements
	Far-Field Postprocessing

	Acoustic Scattering
	Scattering Sphere

	Random Pressure Loads
	Example Problem Set-up
	Example: Input Specifications
	Example: Verifying the Load
	Average Nodal Force
	Variance of Nodal Force
	Temporal Nodal Force Autocorrelation
	Spatial Cross Correlation

	Random Pressure Comments
	Memory, Performance, Parallel and Anything Else of Interest

	Lighthill Tensor Loading
	Mesh Deformation For Fuego
	Fuego Simulation
	Processing Fuego output for Sierra/SD
	Mesh for Sierra/SD
	Sierra/SD simulation

	Pressure Transfer
	Rotating Reference Frame
	Tied Joints
	Lap joint
	Joint with Slip

	Example Problem Input Files
	Input. static.inp
	Input. eigen.inp
	Input. transient.inp
	Input. modaltransient.inp
	Input. modalfrf.inp
	Input. random_vibration.inp
	Random Vibration Input. Vran1.inp
	Infinite Element Input
	Random Pressure Input
	Geometric Rigid Body Mode Input
	Wet Modes Input
	CBR Input
	Acoustic Scattering Input
	Lighthill Function Loading - Input
	Linear Buckling - Input
	Sierra SM FRF Comparison
	Modal FRF
	Direct FRF
	Adagio Input

	Piezoelectric Transient Input
	Rotating Frame Statics Input

	Bibliography
	Index
	Distribution

