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ABSTRACT

The Fusion of Simulation, Experiment, and Data (FuSED) team provides a set of tools for solving
inverse problems in structural dynamics and thermal physics, and also sensor placement
optimization via Optimal Experimental Design (OED). These methods are used for designing
experiments, model calibration, and verification/validation analysis of systems. This document
provides a user’s guide to the input for the three apps that are supported for these methods.
Details of input specifications, output options, and optimization parameters are included.

Results from the use of this software should cite:
Aquino, Wilkins, Jacob R. Desmond, Andrew J. Kurzawski, Cameron A. McCormick, Clay M.
Sanders, Chandler B. Smith, Benjamin C. Treweek, and Timothy F. Walsh. FuSED – User’s
Manual – 5.24. Sandia National Laboratories, 2024.
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1. Inverse Methods in Sierra/SD

1.1. Inverse Solution Methods in Sierra/SD

Sierra/SD supports a wide variety of different analyses or solution methods. Input consists of an
Exodus mesh file and a text input file. Solution methods are specified in the text input file in the
solution section. For details on using Sierra/SD, including analysis types and solution methods
not related to inverse problems, the reader is directed to the Sierra/SD User’s Manual [14].

The Solution section of the input file defines the type of physics to simulate. Analysis types
relevant to inverse problems are shown in Table 1-1.

Table 1-1. – Inverse Solution Types.
Solution Type Description
eigen-inverse Inverse solution to find material properties to produce

given eigen solution
ModalFrf-inverse Inverse solution to find load or power spectral density

(PSD) to produce given modal frf
modaltransient-inverse Inverse solution to find load to produce given modal

transient
directfrf-inverse Inverse solution to find load or material properties to

produce given frequency response
transient-inverse Inverse solution to find load or material properties to

produce given transient solution

Each of the inverse solution methods described in Table 1-1 supports particular variables that can
be inverted for in the solution process. Table 1-2 shows the matrix of supported inverse solution
methods and the corresponding variables that can be extracted for each solution method. More
details on the each inverse solution method and supported variables are given in the next
sections.

Table 1-2. – Matrix of Supported Inverse Solution Types and Corresponding Design Variables.
Data Types Material ID Blk-Beta ID Force ID Interface ID Objective Functions

FRF X X X X L2 MECE (beta)
CPSD X L2
Modal X X L2, MPE, MAC

transient X X X L2

1



1.2. DirectFRF-Inverse Solution Case

Parameter Type Default Description

Table 1-3. – DirectFRF-Inverse Solution Case Parameters.

The directfrf-inverse solution method is used to solve an inverse problem for a direct
frequency response analysis. As in a forward solution, most of the parameters of an inverse
frequency response method are found in other sections1. The user provides complex
displacements and/or pressures at a set of nodes in the model, and the solution to the inverse
problem is a set of loads, materials, etc. that best correspond with the user’s input.

The forward problem is defined in Eq. (1.1)K + iωC−ω
2M︸ ︷︷ ︸

≡A(ω)

u = f (ω) (1.1)

where u is the Fourier transform of the response u, and f is the Fourier transform of the applied
force.The inverse equation is identical, but must be solved with optimization subject to
regularization because measurements are available only at a subset of the analysis degrees of
freedom.

The basic requirements for a directfrf-inverse simulation are as follows:

Optimization: Control over the optimization problem is specified in the optimization block. See
Sec. 1.7.1 for further details.

Inverse-Problem: The inverse-problem block provides the connection to the measurement
data. It is also where design_variable is specified (e.g., load, material, etc.).

Truth Table: The truth table data_truth_table from the inverse-problem block is a list of the
indices of the global node numbers (a.k.a. target nodes) where displacements or acoustic
pressures are measured. See Sec. 1.7.3 for file format details.

Data File: Experimentally determined “target” displacements are read from real_data_file
and imaginary_data_file specified in the inverse-problem block. See Sec. 1.7.3 for file
format details.

Frequency: The frequencies at which the problem is solved are specified in the frequency
block.

Sierra/SD uses the Rapid Optimization Library (ROL) for solving optimization problems. During
the optimization solution ROL writes an output file, ROL_Messages.txt that contains convergence
information. Section 1.7.8 contains a discussion of the output file that is written by ROL.

1The forward solution supports a Padé expansion. This is not supported for inverse methods.
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1.2.1. Load Identification

solution
directfrf-inverse

end
inverse-problem

design_variable = load
data_truth_table = ttable.txt
real_data_file = dataReal.txt
imaginary_data_file = dataImag.txt

end
optimization
% optimization_package = ROL_lib

ROLmethod = trustregion
TRstep = truncatedcg
Max_iter_Krylov = 20
Use_FD_hessvec = false
Use_inexact_hessvec = false
opt_tolerance = 1e-12
opt_iterations = 2

end
loads

sideset 301
inverse_load_type = spatially_constant
pressure=10
function = 1

end

Input 1.1. Direct frequency response load identification example input

Specifying design_variable = load applies inverse methods to determine sideset loads which
best correspond with the measured displacements and/or acoustic pressures provided by the user.
The material and model parameters do not change during the solution. For structures, the loads
are pressures or tractions2, and for acoustics, the loads are acoustic accelerations. Note that for
structures, inversion is based on the signed magnitudes of the tractions; the direction of each
traction is fixed.

An example input deck is given in input 1.1. In addition to the input blocks discussed in the
beginning of this section, there are several others specific to
design_variable = load:

Loads: See Sec. 1.7.6 for a description of the inverse parameters in the loads block for load
identification problems.

2Moments and point forces are not currently supported.
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Frequency: For unknown loads, the frequencies at which the problem is solved are independent.
That is, a separate load identification is performed at each frequency.

Pressure or traction load identification through modal frequency response is also supported for
structures (see Sec. 1.4.1). Because modal solutions are significantly cheaper than direct
solutions, one approach might be to begin the inverse optimization with modalfrf-inverse, then
use the output as the initial guess for a follow-up directfrf-inverse case. Section 1.7.7
contains a discussion of the current limitations with inverse load methods.

1.2.2. Material Identification

Specifying design_variable = material with the directfrf-inverse method applies
inverse methods to determine material parameters when provided with both loads and structural
displacements and/or acoustic pressures in a given finite element model3. The load parameters do
not change during the solution. As in the previous section, the forward problem is defined in
Eq. (1.1), and the inverse equation is identical but must be solved with optimization subject to
regularization because measurements are available only at a subset of the analysis degrees of
freedom. The solution provides the material parameters for elements in the model that are
specified to have unknown materials.

In addition to the input blocks discussed at the beginning of this section, there are several others
specific to design_variable = material:

Block: See Sec. 1.7.4 for a description of the block specifications for material inverse problems.

Material: See Sec. 1.7.5 for a description of the provides material specifications for material
inverse problems.

Frequency: For unknown materials, the same set of material properties apply for every
frequency in the simulation, except in the case of frequency-dependent material properties.

Viscoelastic material identification is also supported using measured homogenized complex bulk
and shear moduli. This capability is limited to structural-only problems where all material blocks
are isotropic viscoelastic.

1.2.3. Multi-Experiment Material Identification

In the same manner as design_variable = material described in the previous section,
design_variable = multi_material may be used to apply inverse methods in the frequency
domain to determine material parameters. Here, multiple inverse problems are combined. For
instance, if two different load and displacement conditions result in two separate responses for the
same set of material properties, this method will use both responses to determine a single set of
material properties.

3As the system matrices (and consequently the modes) change at every inverse iteration, design_variable cannot
be set to material for modalfrf-inverse problems.
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Most parameters for a multi-experiment inverse frequency method are similar to those for a
single-experiment inverse frequency method. The differences occur in the following sections:

Loads: The loads block must be empty for this solution case; anything the user specifies here
will be overwritten by what they specify in the load block.

Load: Each load block provides a separate set of loads for each experiment individually.

Inverse-Problem: In addition to the parameters discussed earlier, the inverse-problem section
must include values for nresponses for the number of experiments and loadID to specify
a list of loads, one for each experiment.

1.2.4. Circuit Parameter Identification For Piezoelectric Modeling

In piezoelectric modeling with electric circuits, the circuit parameters are real constants, and can
be any combination of resistance, capacitance and inductance values. Specifiying
inverse_material_type = homogeneous in a circuit block input can be used to identify these
constants. This capability is currently only supported for the directfrf-inverse solution case.
User must also specify upper and lower bounds for each circuit parameter used in a given circuit
block. For example, input 1.2 inverts for three circuit parameters defined in Block 1. The
keyword inverse_material_type = homogenous declares that circuit parameters in this block
are treated as inverse parameters. The upper and lower bounds for each parameters are specificed
with keywords capacitance_bounds, resisance_bounds and inductance_bounds. The
upper and lower constants are user specified real values.

If needed, user can also identify circuit parameters concurrently with material model as decribed
in 1.2.2.

BLOCK 1
electrical_circuit
inverse_material_type = homogeneous
capacitance = 1e-9
resistance = 50
inductance = 1e-6
capacitance_bounds = 1e-12 1e-6
resistance_bounds = 1 100
inductance_bounds = 1e-9 1e-3

END

Input 1.2. Directfrf circuit parameter identification example input
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1.3. Eigen-Inverse Solution Case

Parameter Type Default Description

nmodes Integer 10 Number of modes to extract.

shift Real -1.0e6
Shift to apply to matrix system to
allow solving singular systems.

untilfreq Real Inf Target frequency to reach.

ModalFilter string none Modal filter to define modes to retain.

modalAdjoint-
Solver

gdsw| camp| both camp
Select solver for the inverse problem
(eigenvector material identification
only

repeatEigenval-
ueTolerance Real 1.e-4 Tolerance for repeated eigenvalues.

Table 1-4. – Eigen-Inverse Solution Case Parameters.

The eigen-inverse solution method is used to solve an inverse problem for an eigen analysis. In
this solution method, only material identification is currently supported. Specifying
design_variable = material applies inverse methods in the modal domain to determine
material properties on a block or element when provided with modal frequencies and mode
shapes. The user specifies some of the lowest modes of the structure, and optionaly the mode
shapes of the structure at locations in the model.

The standard parameters for modal analysis also apply here. The analysis requires input both for
measurement data and for control of various optimization parameters. See the following sections
for details:

Optimization: Control over the optimization problem is specified in the optimization block. See
Sec. 1.7.1 for further details.

Inverse-Problem: The inverse-problem block provides the connection to the measurement
data. Of particular importance are the parameters modal_data_file and
modal_weight_table, which are described further in Sec. 1.7.3. Also necessary is the
parameter design_variable = material.

Block: For material ID problems, the optimization strategy for 3D element blocks is specified
using the inverse_material_type keyword within the block section. This is also the
section in which optimization parameters are specified for joint2g elements. See
Sec. 1.7.4 for details.

Material: For material ID problems, additional options to control the identification of 3D
elements are specified in the material section. These include which material parameters
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are being inverted for and the bound constraints on those parameters. For details, see
Sec. 1.7.5.

Sierra/SD uses the Rapid Optimization Library (ROL) for solving optimization problems. During
the optimization solution ROL writes an output file, ROL_Messages.txt that contains convergence
information. Section 1.7.8 contains a discussion of the output file that is written by ROL.

1.3.1. Eigenvalue Material Identification

solution
eigen-inverse
nmodes=12
shift=-1e5

end
inverse-problem

design_variable = material
modal_data_file = modal_data.txt
modal_truth_table = modal_truth.txt

end
optimization

optimization_package = ROL_lib
ROLmethod = trustregion
TRstep = secant
scaleDesignVars = yes
Max_iter_Krylov = 50
Use_FD_hessvec = false
Use_inexact_hessvec = true
opt_tolerance = 1e-10
opt_iterations = 30

end

Input 1.3. Eigen material identification example input

In the case of eigenvalue optimization, only the modal frequencies are included in the objective
function. An example input is shown in input 1.3. The theory for this problem is available in [5].
The objective function for the eigen value problem is given as:

J(λλλ,uuu, ppp) =
N

∑
i=1

[
βi

2

(
λi −λmi

λmi

)2
]
+R (ppp). (1.2)

Where m is the number of modes, βi is zero or one, λi is the computed eigenvalue, λmi is the
measured eigenvalue, and R (ppp) is the regularization term.
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1.3.2. Eigenvector Material Identification

In this case, both the eigenvalues (modal frequencies) and eigenvectors (mode shapes) are
matched in the inverse solution. A detailed description of the theory and implementation details
of this solution case is given in [5]. To use this capability, it is necessary to specify the keywords
data_file and data_truth_table for the eigenvector data and eigenvector truth table,
respectively, which specify the modal shape amplitude data and truth table information. The latter
allows one to differentiate between a tri-axial and uni-axial accelerometer.

The objective function extends Eq. (1.2) by adding the eigenvector term.

J(λλλ,uuu, ppp) =
N

∑
i=1

[
βi

2

(
λi −λmi

λmi

)2

+
κi

2

∥uuui −uuumi∥2
QQQ

∥uuumi∥2
QQQ

]
+R (ppp) , (1.3)

where uuui is the computed eigenvector, uuumi is the measured eigenvector, and QQQ is the observation
matrix obtained from the truth table.

The issues an implementation must handle include repeated modes, crossing modes, the singular
adjoint linear system, and eigenvector scaling.

1.3.2.1. Repeated Modes When the computed or measured data contain repeated eigenvalues,
the associated eigenvectors are not deterministic and steps are taken to orthogonalize these modes
with respect to the measured data. The measured data must be sufficient enough for this
orthogonalization for the inverse problem to converge.

Modes with repeated roots commonly occur in structures exhibiting geometric symmetry (e.g. a
beam with a symmetric cross section about two axes). A collection of measurement locations that
is not geometrically symmetric may introduce minor numerical error into the orthogonalization
operation, as the geometric symmetry of the rotated repeated modes will not be preserved. When
repeated modes are expected in a structure, specifying geometrically-symmetric measurement
locations can improve the unique rotation of computed mode shapes into the direction of
measured shapes. Furthermore, repeated modes can also occur at iterations in the inverse process
even when no repeated modes are present in the measured data. In the SOLUTION section, the
user can set repeatEigenvalueTolerance (default value is 1e−4) as the threshold value to
decide whether two computed eigenvalues are repeated.

When a pair of repeated modes is detected, such that the |λi −λi+1|< εtol (where εtol is the
repeated root tolerance), we employ a rotation and mass-reorthonormalization strategy to create
consistent, unique pairings from the pair of computed modes to a pair of measured repeated
modes.

Let {uuui,uuu j} represent two mode shapes with repeated roots; {vvvi,vvv j} are a pair of measured mode
shapes targeted for the rotation operation. (Note, the indices i, j of target measured shapes do not
necessarily correspond to the indices of the computed repeated modes.) We form linear
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combinations of the computed modes as their projected components in the direction of the
measured mode shapes:

ũuui =
uuuT

i [Q]vvvi

vvvT
i [Q]vvvi

uuui +
uuuT

j [Q]vvvi

vvvT
i [Q]vvvi

uuu j (1.4)

ũuu j =
uuuT

i [Q]vvv j

vvvT
j [Q]vvv j

uuui +
uuuT

j [Q]vvv j

vvvT
j [Q]vvv j

uuu j (1.5)

where [Q] is the observation matrix. We then follow by mass orthonormalizing the two rotated,
computed eigenvectors. We first scale ũuui by αi = ũuuT

i [M]ũuui, the mass inner product for ũuui:

ūuui =
1
αi

ũuui (1.6)

We then form ūuu j as:

ûuu j = ũuu j −
(
ūuuT

i [M]ũuu j
)

ūuui (1.7)

ūuu j =
1

α j
ûuu j (1.8)

where α j = ûuuT
j [M]ûuu j.

We note that the resulting {ūuui, ūuu j} remain mass-orthonormal,

ūuuT
i [M]ūuu j = δi j. (1.9)

1.3.2.2. Rigid Body Modes Eigen-inverse solution method uses modal test data to invert for
material properties in structures. As such, it does not match any model information to test data for
the rigid body modes of the system. Thus, we recommend using the num_rigid_mode parameter
in the parameters section to specify how many rigid modes are expected to be in the model and
test data to avoid rigid body modes being matched in the optimization process. We also
recommend using the truth table to exclude rigid body modes from being matched to test data.

PARAMETERS
num_rigid_modes 6

END

Input 1.4. Rigid Body Modes example input

1.3.2.3. Mode Swapping/Crossing If the computed eigenvalues of a structure are ordered from
smallest to largest, the ordering of mode shapes will typically change as the material parameters
are varied. This also causes non-differentiability in the objective function, which causes
difficulties in gradient-based optimization. Mode tracking refers to maintaining a correspondence
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of eigenpairs (eigenvalue and eigenvectors) between an original and an updated system
throughout changes in the eigenproblem. Measured data is often incomplete, having only a few
measured data points (physical accelerometer locations) on a model with millions of degrees of
freedom. An incorrect mode swap results in a discontinuity in the slope of the objective
function.

A mode tracking algorithm is used to minimize eigenvector misfit at each optimization step.

1.3.2.4. Singular Solve The Adjoint Solution is singular due to the fact that the eigenvector ui
is in the kernel of the coefficient matrix. In order for a solution to exist, the right hand side must
be orthogonal to ui . Additionally, if rigid body modes (λ = 0) or repeated mode are present,
components of the corresponding eigenvectors must also be removed from the right hand side
before the solve. Even when this is done, however, the resulting system of equations is singular
and a Helmholtz (indefinite) problem, which presents significant computational cost and
robustness challenges for iterative linear solvers.

The modalAdjointSolver = camp (default for eigenvector inversion) option enables a new
solver that uses a modal superposition of the previously computed eigenvectors to solve this
system of equations. When using the camp solver, it is recommended to request more modes than
contained in the measured data, and use the truth table file to remove these modes from the
optimization part of the solution.

1.3.2.5. Computed Eigenvector Scaling An important consideration in eigenvector
optimization is that the mode shapes computed in Sierra/SD are by default mass normalized.
Measured modal shape amplitudes, on the other hand, could present with very different scalings,
since any eigenvector can be scaled by an arbitrary scale factor and will still be a valid
eigenvector. Thus, the eigen-inverse solution method includes an automatic re-scaling of the
computed mode shapes in the optimization so that they have the same norm as the measured
mode shapes. This re-normalization allows them to be properly differenced in the objective
function. We note that this internal re-scaling requires no user intervention.

If the norms of the measured eigenvectors differ substantially from the norms of the eigenvectors
computed in Sierra/SD, then the re-scaling described in the previous paragraph is necessary to
correctly determine the next iteration of the design variables. The scaled computed eigenvector ũuui
can be written as

ũuui = αiuuui , (1.10)

where αi = |uuumi|/|uuui| such that the norm of ũuui is identical to the norm of eigenvector uuumi. With
this change, the eigenvector term in Eq. (1.3) becomes

J(uuu) =
N

∑
i=1

κi

2

∥αuuui −uuumi∥2
QQQ

∥uuumi∥2
QQQ

, (1.11)

A corresponding change to the gradient Juuu is also required, but this change is not discussed
here.
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1.3.2.6. Eigen Objective Instead of the default matching objective in Eq. (1.3), the user can
specify a modal projection error (MPE) objective by setting the eigen_objective parameter to
mpe in the inverse-problem section. The two options are a least squares MPE objective,
specified by setting the mpe_algorithm to ls (along with setting eigen_objective = mpe),
and a singular value decomposition (SVD) based MPE objective, specified by setting the
mpe_alorithm parameter to svd.

1.3.2.7. Projection Mode Selection By default, the modes used in the MPE objective are
selected according to the indices of their respective eigenvalues, using the N modes with the
lowest eigenvalues. If the user wishes to select the N modes with the greatest modal assurance
criterion (MAC) values, they can set the projection_mode_selection parameter to mac instead of
lowest.

1.4. ModalFRF-Inverse Solution Case

Parameter Type Default Description

nmodes Integer 10 Number of modes to extract.

shift Real -1.0e6
Shift to apply to matrix system to
allow solving singular systems.

untilfreq Real Inf Target frequency to reach.

ModalFilter string none Modal filter to define modes to retain.

lfcutoff Real -Inf

Exclude any modes below this
frequency from the modal
computation. Often used to exclude
rigid body modes.

Table 1-5. – ModalFRF-Inverse Solution Case Parameters.

The modalfrf-inverse solution method is used to solve an inverse problem for a modal
frequency response analysis. The modal FRF method is similar to the direct FRF method, except
the user must specify the number of modes nmodes. As in a forward solution, most of the
parameters in an inverse modal frequency response analysis are found in other sections, and as in
a directfrf-inverse problem, the user provides complex displacements and/or acoustic
pressures at a set of nodes in the model.

The forward problem is defined in equation (1.1). The inverse equation is identical, but must be
solved with optimization subject to regularization because measurements are available only at a
subset of the analysis degrees of freedom.

The basic requirements for a modalfrf-inverse simulation are as follows:
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Optimization: Control over the optimization problem is specified in the optimization block. See
Sec. 1.7.1 for further details.

Inverse-Problem: The inverse-problem block provides the connection to the measurement
data. It is also where design_variable is specified (e.g., load, material, etc.).

Truth Table: The truth table data_truth_table from the inverse-problem block is a list of the
indices of the global node numbers (a.k.a. target nodes) where displacements or acoustic
pressures are measured. See Sec. 1.7.3 for file format details.

Data File: Experimentally determined “target” displacements are read from real_data_file
and imaginary_data_file specified in the inverse-problem block. See Sec. 1.7.3 for file
format details.

Frequency: The frequencies at which the problem is solved are specified in the frequency
block.

Sierra/SD uses the Rapid Optimization Library (ROL) for solving optimization problems. During
the optimization solution ROL writes an output file, ROL_Messages.txt that contains convergence
information. Section 1.7.8 contains a discussion of the output file that is written by ROL.

1.4.1. Load Identification

solution
modalfrf-inverse
nmodes 100

end
inverse-problem

design_variable = load
data_truth_table = ttable.txt
real_data_file = data.txt
imaginary_data_file = data_im.txt

end
optimization

ROLmethod = trustregion
TRstep = truncatedcg
Max_iter_Krylov = 50
Use_FD_hessvec = false
Use_inexact_hessvec = false
opt_tolerance = 1e-10
opt_iterations = 2

end
loads

sideset 6
inverse_load_type = spatially_constant
pressure=1
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function = 1
sideset 6
inverse_load_type = spatially_constant
ipressure=1
function = 2

end
function 1

type linear
data 1 3
data 2 4

end
function 2

type linear
data 1 5
data 2 6

end

Input 1.5. Modal frequency response load identification example input

Specifying design_variable = load applies inverse methods to determine sideset loads which
best correspond with the measured displacements and/or acoustic pressures provided by the user.
The material and model parameters do not change during the solution. For structures, the loads
are pressures or tractions4, and for acoustics, the loads are acoustic accelerations. Note that for
structures, inversion is based on the signed magnitudes of the tractions; the direction of each
traction is fixed.

An example input deck is given in input 1.5. In addition to the input blocks discussed in the
beginning of this section, there are several others specific to design_variable = load:

Loads: See Sec. 1.7.6 for a description of the inverse parameters in the loads block for load
identification problems.

Frequency: For unknown loads, the frequencies at which the problem is solved are independent.
That is, a separate load identification is performed at each frequency.

Section 1.7.7 contains a discussion of the current limitations with inverse load methods.

1.4.2. PSD Load Identification

solution
modalfrf-inverse
nmodes 100

end
inverse-problem

4Moments and point forces are not currently supported.
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design_variable = psd_load
data_truth_table = ttable.txt
data_file = data.txt

end
optimization

ROLmethod = trustregion
TRstep = truncatedcg
Max_iter_Krylov = 50
Use_FD_hessvec = false
Use_inexact_hessvec = false
opt_tolerance = 1e-10
opt_iterations = 2

end
loads

sideset 6
inverse_load_type = spatially_constant
pressure=1
function = 1

sideset 6
inverse_load_type = spatially_constant
ipressure=1
function = 2

end
function 1

type linear
data 1 3
data 2 4

end
function 2

type linear
data 1 5
data 2 6

end

Input 1.6. Modal frequency response PSD load identification example input

Specifying design_variable = psd_load applies inverse methods to determine a load PSD
(power spectral density) as an output when provided with the PSD of acoustic pressures or
structural displacements and a finite element model. The input is similar to modal FRF load
identification, with a key exception. The design variables must be defined such that there are
independent real and imaginary parts of the force, traction, or pressure. Thus, there should be
twice the number of design variables as the dimension of load PSD, corresponding to real and
imaginary parts of the load. These design variables must be entered into the input file in the order
of the load index. Furthermore, for each load index, the design variable for the real part should be
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immediately followed by the design variable for the imaginary part. It is also important to note
that this example is not demonstrating a random load. That is shown in the next section.

An example input deck is given in input 1.6. In addition to the input blocks discussed in the
beginning of this section, there are several others specific to design_variable = psd_load:

Data File: Experimentally determined “target” response PSDs are read from the psd_data_file
described in Sec. 1.7.3.

Loads: See Sec. 1.7.6 for a description of the inverse parameters in the loads block for load
identification problems. loads block.

Frequency: For unknown loads, the frequencies at which the problem is solved are independent.
That is, a separate load identification is performed at each frequency.

1.4.3. Random PSD Load Identification

solution
modalfrf-inverse
nmodes 100

end
inverse-problem

design_variable = psd_load
data_truth_table = ttable.txt
psd_data_token = inputCPSD
data_type = accel

end
optimization

check_grad = no
optimization_package = ROL_lib
ROLmethod = linesearch
LSstep = Newton-Krylov
LS_curvature_condition = null
Max_iter_Krylov = 50
Use_FD_hessvec = false
Use_inexact_hessvec = false
opt_tolerance = 1e-6
opt_iterations = 1
use_SimOpt = no

end
LOADS

nodeset 117
force 1 0 0
inverse_load_type SPATIALLY_CONSTANT
function approx_zero1

nodeset 117
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iforce 1 0 0
inverse_load_type SPATIALLY_CONSTANT
function approx_zero4

nodeset 219
force 0 1 0
inverse_load_type SPATIALLY_CONSTANT
function approx_zero2

nodeset 219
iforce 0 1 0
inverse_load_type SPATIALLY_CONSTANT
function approx_zero5

nodeset 353
force 0 0 1
inverse_load_type SPATIALLY_CONSTANT
function approx_zero3

nodeset 353
iforce 0 0 1
inverse_load_type SPATIALLY_CONSTANT
function approx_zero6

END
FUNCTION approx_zero1

type linear
data 0.0 1e-6
data 1e10 1e-6

END
FUNCTION approx_zero2

type linear
data 0.0 1e-6
data 1e10 1e-6

END
FUNCTION approx_zero3

type linear
data 0.0 1e-6
data 1e10 1e-6

END
FUNCTION approx_zero4

type linear
data 0.0 1e-6
data 1e10 1e-6

END
FUNCTION approx_zero5

type linear
data 0.0 1e-6
data 1e10 1e-6
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END
FUNCTION approx_zero6

type linear
data 0.0 1e-6
data 1e10 1e-6

END

Input 1.7. Modal frequency response PSD random load identification example input

Specifying design_variable = psd_load applies inverse methods to determine a load PSD
(power spectral density) as an output when provided with the PSD of acoustic pressures,
structural accelerations (like in this example) or structural displacements and a finite element
model. The input is similar to modal FRF load identification, with two exceptions. First, the
design variables must be defined as a cpsd matrix with real and imaginary parts representing the
force, traction, or pressue. Thus, there should be twice the number of design variables as the
dimension of load CPSD matrix, corresponding to real and imaginary parts of the load. These
design variables must be entered into the input file in the order of the load index. Furthermore, for
each load index, the design variable for the real part should be immediately followed by the
design variable for the imaginary part. Second, a different data file format is required, although
the truth table format is identical. See Sec. 1.7.3 for further details.

An example input deck is given in input 1.7. In addition to the input blocks discussed in the
beginning of this section, there are several others specific to design_variable = psd_load:

Data File: Experimentally determined “target” response PSDs are read from a file with a name
identical to the psd_data_token with ”Response.txt” appended to the end described in
Sec. 1.7.3.

Loads: See Sec. 1.7.6 for a description of the inverse parameters in the loads block for load
identification problems. loads block.

Frequency: For unknown loads, the frequencies at which the problem is solved are independent.
That is, a separate load identification is performed at each frequency.
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1.5. ModalTransient-Inverse Solution Case

Parameter Type Default Description

nmodes Integer 10 Number of modes to extract.

shift Real -1.0e6
Shift to apply to matrix system to
allow solving singular systems.

untilfreq Real Inf Target frequency to reach.

ModalFilter string none Modal filter to define modes to retain.

lfcutoff Real -Inf

Exclude any modes below this
frequency from the modal
computation. Often used to exclude
rigid body modes.

time_step Real Time step size.

nsteps Integer Number of time steps to take.

start_time Real 0.0 Solution case start time.

nskip Integer 1 Results output frequency.

rho Real 1 Select time integrator.

load Integer Load to apply during solution case.

write_files
all| none| output|
history all

Controls which result files are written
during this solution.

Table 1-6. – ModalTransient-Inverse Solution Case Parameters.

solution
modaltransient-inverse
nsteps = 100
time_step = 1e-3
nskip = 1
nmodes = 100

end
inverse-problem

design_variable = load
data_truth_table = ttable.txt
data_file = dataReal.txt
tikhonovParameter 1.0e-5

end
optimization
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% optimization_package = ROL_lib
ROLmethod = trustregion
TRstep = truncatedcg
Max_iter_Krylov = 20
Use_FD_hessvec = false
Use_inexact_hessvec = false
opt_tolerance = 1e-12
opt_iterations = 2

end
loads

sideset 301
inverse_load_type = spatially_constant
pressure=10
function = 1

end

Input 1.8. Modal transient load identification example input

The modaltransient-inverse solution method is used to solve an inverse problem for a modal
transient analysis. In this solution method, only load identification is supported. Specifying
design_variable = load applies inverse methods to determine sideset loads with best
correspond with measured displacements and/or acoustic pressures provided by the user in the
modal time domain. This capability differs from load identification in a transient-inverse
problem (Sec. 1.6.1) only in that modal superposition is used to reduce computation time. As with
forward analysis, the modaltransient solution will converge to the direct solution as the number of
modes increases. See the SierraSD verification manual for an example of this convergence[15].

The parameters for load identification in a direct transient-inverse problem also apply in the
modaltransient-inverse case. The latter also requires the parameter nmodes, the number of
eigen modes calculated in the forward solve, as well as any additional parameters needed for the
eigen solution case. The eigen modes need only be calculated once, and then can be re-used for
each inverse iteration. Note that the Tikhonov parameter can be used to mollify instability in the
early time history.

An example is shown in input 1.8. The following input blocks are needed for
modaltransient-inverse with design_variable = load:

Optimization: Control over the optimization problem is specified in the optimization block. See
Sec. 1.7.1 for further details.

Inverse-Problem: The inverse-problem block provides the connection to the measurement
data. It is also where design_variable = load must be specified.

Truth Table: The truth table (data_truth_table from the inverse-problem block is a list of
the indices of the global node numbers (a.k.a. target nodes) where displacements or
acoustic pressures are measured. See Sec. 1.7.3 for file format details.
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Data File: Experimentally determined “target” displacements are read from data_file specified
in the inverse-problem block. See Sec. 1.7.3 for file format details.

Loads: See Sec. 1.7.6 for a description of the inverse parameters in the loads block for load
identification problems.

Section 1.7.7 contains a discussion of the current limitations with inverse load methods.

Sierra/SD uses the Rapid Optimization Library (ROL) for solving optimization problems. During
the optimization solution ROL writes an output file, ROL_Messages.txt that contains convergence
information. Section 1.7.8 contains a discussion of the output file that is written by ROL.

1.6. Transient-Inverse Solution Case

Parameter Type Default Description

time_step Real Time step size.

nsteps Integer Number of time steps to take.

start_time Real 0.0 Solution case start time.

nskip Integer 1 Results output frequency.

rho Real 1 Select time integrator.

load Integer Load to apply during solution case.

write_files
all| none| output|
history all

Controls which result files are written
during this solution.

Table 1-7. – Transient-Inverse Solution Case Parameters.

The transient-inverse solution method is used to solve in inverse problem for a time domain
analysis. With a few exceptions, the parameters for the forward transient solution case apply to
this solution method as well. The user provides a time series of displacements and/or pressures at
a set of nodes in the model, and the solution to the inverse problem is a set of loads, materials, etc.
that best correspond with the user’s input.

The basic requirements for a transient-inverse simulation are as follows:

Optimization: Control over the optimization problem is specified in the optimization block. See
Sec. 1.7.1 for further details.

Inverse-Problem: The inverse-problem block provides the connection to the measurement
data. It is also where design_variable is specified (e.g., load, material, etc.).
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Truth Table: The data_truth_table from the inverse-problem block is a list of the indices of
the global node numbers (a.k.a. target nodes) where displacements or acoustic pressures are
measured. See Sec. 1.7.3 for file format details.

Data File: Experimentally determined “target” displacements are read from data_file specified
in the inverse-problem block. See Sec. 1.7.3 for file format details.

Sierra/SD uses the Rapid Optimization Library (ROL) for solving optimization problems. During
the optimization solution ROL writes an output file, ROL_Messages.txt that contains convergence
information. Section 1.7.8 contains a discussion of the output file that is written by ROL.

1.6.1. Load Identification

solution
transient-inverse
nsteps = 100
time_step = 1e-3
nskip = 1

end
inverse-problem

design_variable = load
data_truth_table = ttable.txt
data_file = dataReal.txt

end
optimization
% optimization_package = ROL_lib

ROLmethod = trustregion
TRstep = truncatedcg
Max_iter_Krylov = 20
Use_FD_hessvec = false
Use_inexact_hessvec = false
opt_tolerance = 1e-12
opt_iterations = 2

end
loads

sideset 301
inverse_load_type = spatially_constant
pressure=10
function = 1

end

Input 1.9. Transient Load Identification Example
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Specifying design_variable = load applies inverse methods to determine sideset loads which
best correspond with the measured displacements and/or acoustic pressures provided by the user.
The material and model parameters do not change during the solution. For structures, the loads
are pressures or tractions5, and for acoustics, the loads are acoustic accelerations. Note that for
structures, inversion is based on the signed magnitudes of the tractions; the direction of each
traction is fixed.

An example input deck is given in input 1.9. In addition to the input blocks discussed in the
beginning of this section, there is another that is specific to design_variable = load:

Loads: See Sec. 1.7.6 for a description of the inverse parameters in the loads block for load
identification problems.

Section 1.7.7 contains a discussion of the current limitations with inverse load methods.

1.6.2. Material Identification

Specifying design_variable = material with the transient-inverse method applies
inverse methods to determine material parameters when provided with both loads and structural
displacements and/or acoustic pressures in a given finite element model6 The load parameters do
not change during the solution, which provides the material parameters for elements in the model
that are specified to have unknown materials.

In addition to the input blocks discussed in the beginning of this section, there are several others
specific to design_variable = material:

Block: See Sec. 1.7.4 for a description of the block specifications for material inverse problems.

Material: See Sec. 1.7.5 for a description of the provides material specifications for material
inverse problems.

1.7. Inverse Options in Sierra/SD

Inverse problems optimize parameters to reproduce experimental results. Inverse methods include
transient and direct frequency response load identification, direct frequency response material
identification, and material identification from eigenvalues. The methods are based on solving
optimization problems, with the goal to minimize the norm of the difference between measured
and predicted data. More detail is provided in the references found in the theory notes. Inverse
methods for identifying an unknown material (1.3, 1.2.2) or an unknown load (1.2.1, 1.6.1)
require solution block input. There may be additional input required, such as the specification of
test data results 1.7.3 and the specification of the parameters in the Optimization 1.7.1 and Inverse
Problem 1.7.2 sections. Input 1.10 illustrates a partial input for a “directfrf-materialid” problem.
Highlighted portions of the input are outlined below.

5Moments and point forces are not currently supported.
6As the system matrices (and consequently the modes) change at every inverse iteration, design_variable cannot

be set to material for modaltransient-inverse problems.
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Sierra/SD uses the Rapid Optimization Library (ROL) as an optimization engine. Portions of the
ROL documentation can be found on the Trilinos website.7

solution
directfrf-inverse

end
optimization

optimization_package = ROL_lib
ROLmethod = trustregion
TRstep = secant
opt_tolerance = 1e-10

end
inverse-problem

design_variable = material
data_truth_table = ttable.txt
real_data_file = data.txt
imaginary_data_file = data_im.txt

end
block 1
inverse_material_type=homogeneous
material 1

end
block 2
inverse_material_type=known
material 2

end
material 1

isotropic
density 10
G 1
K 1

end
material 2

isotropic
density 1
G 2
K 2

end

Input 1.10. Sample “directfrf-inverse” input for material identification. Portions of the

7 https://trilinos.org/packages/rol
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input that are specific to inverse methods are emphasized.

1.7.1. Optimization

The optimization section provides options to control the optimization strategy as part of an
inverse method such as material identification. Parameters for the optimization section are listed
in Table 1-8, and an example is shown in input 1.12.

Sierra/SD uses the Rapid Optimization Library (ROL) [11], which is a Trilinos [9] package for
large-scale optimization. ROL is particularly well suited for the solution of optimal design,
optimal control and inverse problems in large-scale engineering applications. The currently
supported methods are trust region and line search, and the corresponding parameters for these
methods are listed in Tables 1-8, 1-9 and 1-10. We note that the abbreviations tr and ls stand for
trust region and line search, respectively. We use these abbreviations to keep the parameter names
succinct.

The parameters in tables 1-9 and 1-10, are only a subset of the parameters available in ROL. In
place of defining parameters in the optimization section, the user may instead define the ROL
parameters directly using ROL’s XML input format and including the line xml_file =
<filename> in the optimization section, where <filename> is the name of the ROL XML file.
An example XML file can be provided upon request.

We note that for source inversion problems that involve directfrf-inverse , transient-inverse or
modaltransient-inverse solution cases, we recommend using Krylov-based methods such as line
search with the newton-krylov option, or trust region with truncatedcg option. An example for
that case is given in 1.11.

optimization
ROLmethod = trustregion
TRstep = truncatedcg
Max_iter_Krylov = 50
opt_tolerance = 1e-8
opt_iterations = 5
scaleDesignVars = yes | no

END

Input 1.11. Optimization Section Example for Source Inversion

In the case of material inversion problems, the best algorithm is problem-dependent, and may
require some experimentation to arrive at the optimal parameters. We note that for material
inverse problems, the parameter scaleDesignVars has been shown to significantly help
convergence. Accordingly, this parameter defaults to yes, but can be set to no to facilitate
convergence.
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Sierra/SD currently uses ROL methods for unconstrained and bound-constrained optimization
with line searches and trust regions (ROLmethod, boundConstraints, Table 1-8). To provide the
context for the parameter tables, we review some notation and provide references to optimization
textbooks.

Suppose X is a Hilbert space of functions mapping Ξ to R. For example, Ξ ⊂ Rn and X = L2(Ξ)
or Ξ = {1, . . . ,n} and X = Rn. We assume that the objective function f : X → R is twice
continuously Fréchet differentiable and that the bound constraints a, b ∈ X are given with a ≤ b
almost everywhere in Ξ. We focus on methods for solving unconstrained and bound-constrained
optimization problems,

minimize
x

f (x) and minimize
x

f (x) subject to a ≤ x ≤ b ,

respectively. The methods implemented in ROL utilize derivative information and two strategies
for guaranteed (global) convergence from remote starting points, line searches and trust regions.
We use the notation ∇ f (x) to the note the gradient of f at x and ∇2 f (x) to denote the Hessian of f
at x.

Line-search methods. Let xk be the k-th optimization iterate. For unconstrained problems, line
search methods compute an update to xk in the form of

xk+1 = xk +αksk ,

where sk is a descent vector, and αk > 0 is a scalar. The vector sk can be computed using a variety
of methods, including steepest descent, nonlinear conjugate gradients, quasi-Newton (secant)
methods and Newton-Krylov methods, see [13, Ch. 3, 5, 8 and 6, resp.] and [8, Ch. 6.3].
Table 1-9 lists the parameters corresponding to the choice of the method to compute the descent
vector sk (LSstep, Table 1-9). To compute the scalar αk, a line search approximately minimizes
the one-dimensional function φk(α) := f (xk +αsk), i.e., it approximately solves the optimization
problem

minimize
α

φk(α) := f (xk +αsk) .

In general, the approximate minimizer αk must satisfy sufficient decrease and curvature
conditions to guarantee global convergence [13, Ch. 3]. Sierra/SD uses the cubic interpolation
line search from ROL, which includes a backtracking procedure that satisfies the Armijo
sufficient decrease condition

φk(αk)≤ φk(0)+ c1αkφ
′
k(0) ⇐⇒ f (xk +αksk)≤ f (xk)+ c1αk⟨∇ f (xk),sk⟩X ,

where 0 < c1 < 1, and does not require a curvature condition. An initial guess for the line-search
parameter can be specified if steepest descent or nonlinear conjugate gradient methods are used
for the computation of the descent vector sk (initial_LS_Par, Table 1-9). For bound constrained
problems, the line search is a projected search. That is, the line search approximately minimizes
the one-dimensional objective function

φk(α) = f (P[a,b](xk +αsk)) ,
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where P[a,b] denotes the projection onto the upper and lower bounds. Such line-search algorithms
result in projected gradient, projected quasi-Newton and projected Newton algorithms (see
below).

Trust-region methods. For unconstrained problems, given the k-th iterate xk trust-region
methods compute the trial step sk by approximately solving the trust-region subproblem

minimize
s

1
2
⟨Bks,s⟩X + ⟨gk,s⟩X subject to ∥s∥X ≤ ∆k ,

where Bk ∈ L(X ,X ) is an approximation of ∇2 f (xk), gk approximates ∇ f (xk), and ∆k > 0 is the
trust-region radius. The approximate minimizer sk must satisfy the fraction of Cauchy decrease
condition

−1
2
⟨Bks,s⟩X −⟨gk,s⟩X ≥ κ0∥gk∥X min

{
∆k,

∥gk∥X
1+∥Bk∥L(X ,X )

}
for some κ0 > 0 independent of k. ROL implements several trust-region methods, including
Cauchy point, dogleg, double dogleg, and truncated conjugate gradient methods, see [13, Ch. 4]
and [8, Ch. 6.4]. Table 1-10 lists the parameters corresponding to the choice of the method
(TRstep, Table 1-10). Additionally, the user can specify the initial trust-region radius, ∆0
(initial_TR_Radius, Table 1-10). For bound constrained problems, ROL employs projected
gradient, projected secant, and projected Newton-type methods. These methods prune variables
based on the binding set (see below) and run standard trust-region subproblem solvers on the
remaining variables. To ensure sufficient decrease, ROL then performs a modified projected line
search.

Bound Constraints. The bound constraint methods in ROL require the active set of an iterate
xk,

Ak = {ξ ∈ Ξ : xk(ξ) = a(ξ)}∩{ξ ∈ Ξ : xk(ξ) = b(ξ)} .
The active set is the subset of Ξ corresponding to points in which xk is equal to the upper or lower
bound. The complement of the active set (called the inactive set), Ik = Ac

k = Ξ\Ak, is the subset
of Ξ corresponding to points in which xk is strictly between a and b. Given Ak and the gradient
gk = ∇J(xk), we define the binding set as

Bk = {ξ ∈ Ξ : xk(ξ) = a(ξ), −gk(ξ)< 0}∩{ξ ∈ Ξ : xk(ξ) = b(ξ), −gk(ξ)> 0} .

The binding set contains the values of ξ ∈ Ξ such that if xk(ξ) is equal to either the upper and
lower bound, then (xk −gk)(ξ) will violate bound. For both projected line-search and trust-region
methods, the step is computed by fixing the variables in the active set and only optimizing over
the inactive variables. That is,

sk|Ak = 0 and sk|Ik are free.

Considering active, inactive and binding variables results in poor overall performance. To
circumvent this behavior, ROL employs ε variations of this set. Namely, if ε > 0, then

Aε

k = {ξ ∈ Ξ : xk(ξ)≤ a(ξ)+ ε}∩{ξ ∈ Ξ : xk(ξ)≥ b(ξ)− ε}
Bε

k = {ξ ∈ Ξ : xk(ξ)≤ a(ξ)+ ε, −gk(ξ)< 0}∩{ξ ∈ Ξ : xk(ξ)≥ b(ξ)− ε, −gk(ξ)> 0} .
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The ε inactive set is similarly defined as the complement of the ε active set. ROL dynamically
controls ε so that as an algorithm approaches the optimal solution, ε decreases to zero. [10, 4, 12,
6, 7].

Krylov methods. Both line-search and trust-region methods may involve iterative methods of the
Krylov type in the step computation. If such methods are requested, the stopping conditions for
these sub-solvers can be defined through the parameters Absolute_Krylov_tol,
Relative_Krylov_tol and Max_iter_Krylov described in Table 1-8. Scenarios requiring Krylov
methods are triggered, for instance, if TruncatedCG is selected for a trust-region algorithm or if
newtonkrylov is selected for a line-search algorithm.

Parameter type default Description
ROLmethod select required LineSearch, TrustRegion
boundConstraints Yes/No Yes Bound constraints on design variables

scaleDesignVars Yes/No Yes
Controls scaling of design variables by initial
guess to make them nondimensional

opt_tolerance real 1e-10 Gradient tolerance

opt_iterations int 20
Maximum iterations; an iteration may in-
clude one solve of the Newton system

objective_tolerance real 1e-20 Objective function tolerance
Absolute_Krylov_tol real 1e-6 Krylov absolute tolerance
Relative_Krylov_tol real 1e-3 Krylov relative tolerance
Max_iter_Krylov int 20 Krylov iteration limit

Table 1-8. – Optimization Section Parameters

Parameter type default Description

LSstep select secant
nonlinearcg, steepest, secant, newtonkrylov,
newton (require useTransferMatrix=on 1-11)

initial_LS_Par real 1.0 only applicable for nonlinearcg and steepest.

Table 1-9. – Optimization Section Parameters for Line Search

Parameter type default Description

TRstep select Cauchypoint
TruncatedCG, CauchyPoint, Dogleg, Dou-
bleDogleg

initial_TR_Radius real -1 initial radius; if -1, ROL computes an initial
value

Table 1-10. – Optimization Section Parameters for Trust Region

optimization
ROLmethod = trustregion
TRstep = truncatedcg
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Max_iter_Krylov = 50
opt_tolerance = 1e-8
opt_iterations = 5

END

Input 1.12. Optimization Section Example

1.7.2. Inverse-Problem

The inverse-problem block of the input deck connects externally defined data describing the
test. The format for the files is described in the Inverse Data Files section (1.7.3). This section
also controls parameters of the optimization (such as regularization). Options for the
inverse-problem section are included in Table 1-11.

Inverse Problem Parameters Load Id Material Id
Transient FRF FRF Eigen

General Parameters
design_variable R R R R
data_file R NA NA NA
data_truth_table R R R NA
data_weight_table NA NA NA -
real_data_file NA R* R NA
imaginary_data_file NA R* R NA
psd_data_token NA R* R NA
modal_data_file NA NA NA R
modal_weight_table NA NA NA R
data_type - - - -
useTransferMatrix NA - - NA
link_blocks NA NA - -
Regularization Parameters
gradientSurfaceRegParameter - - NA NA
tikhonovParameter - - - -
gradientTikhonovRegularizationParameter NA NA - -
MECE_penalty NA NA - NA
Multi-Experiment Parameters
nresponses NA NA NA NA
loadID NA NA - NA

Table 1-11. – Inverse-Problem parameters. Items marked with “-” are optional. Items marked ’R’ are
required, and items marked NA are not applicable. An asterisk is present for FRF-Load Id because
either the real and imaginary data parameters or the psd data token are required, depending on if we are
solving for a random signal.
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1.7.2.1. Regularization Parameters

gradientSurfaceRegParameter a penalty term, penalizing jumps in load input parameters
between neighboring patches. Increasing the regularization parameter decreases
checker-boarding on multi-patch outputs.

tikhonovParameter a penalty term penalizing large values of the design variables. A larger term
forces smaller design variables.

MECE_penalty a penalty term, penalizes the size of the misfit error between the measured and
predicted data. Unlike least squares methods, MECE methods to not strive to exactly
reproduce the measured data. Increasing the penalty term decreases the misfit error.

1.7.2.2. Multi-Experiment Parameters

nresponses the number of experients in a multi-experiment inverse problem. If not specified by
the user, this parameter defaults to 1. This parameter must match the number of data files
listed for ‘real_data_file’ and ‘imaginary_data_file’.

loadID list of load identifiers, each corresponding to a separate experiment in a multi-experiment
inverse problem. The length of this list must match the value specified for ‘nresponses’.

1.7.2.3. Transfer Matrix Option The transfer matrix is a linear map between the design space
and the state space for linear inverse problems such as source inversion. When the
useTransferMatrix is set to true, the transfer matrix is internally computed and stored, and
explicitly used to compute the gradient and the full hessian matrix. This option may signficantly
decrease computational time at the expense of in core memory for select optimization problems
with some or all of the following characteristics: 1. small number of design variables, 2. linear
inverse problems with uncertainty, and 3. PSD source inversion problems (future release
capability). In addition to increased computational performance, this option will allow the user to
solve linear inverse problems using the full newton method (see Table 1-8).

Currently, the useTransferMatrix is only applicable to solution type inverse-directfrf problems,
and must be flagged with beta when executing Sierra/SD.

1.7.2.4. Link Blocks Option The link_blocks keyword enables connection of two inverse
material blocks to the same, shared set of unknown material properties. By default, referencing
the same material from multiple unknown blocks will otherwise cause a fatal error in Sierra/SD.
Linking blocks reduces the number of design variables in the inverse problem and should result in
faster convergence than if the linked blocks arrived at the same set of material properties
independently.

Note, the ‘link_blocks’ option is only applicable to material identification problems and is limited
to connecting two blocks with shared, homogeneous material properties. Additionally, only one
‘link_blocks’ command is currently permitted. Usage of ‘link_blocks’ is indicated by including
link_blocks <integer> <integer> in the inverse-problem section, where the two integer

29



arguments are the linked block ID numbers. For example, with link_blocks 1 2, both block 1
and block 2 will share the same unknown material properties.

1.7.3. Inverse Data Files

The interface for measured data involves several data files. The specific files needed depends on
the solution method, as summarized in Table 1-11. This section describes the data files and data
files formats. Input 1.13 provides an example of a frequency domain inverse problem.

inverse-problem
design_variable = load | material
data_truth_table = truthTable.txt
real_data_file = dataReal.txt
imaginary_data_file = dataImag.txt
data_type = disp | accel | moduli | voltage

end

Input 1.13. The inverse problem section for direct frequency response sets the names of the
files that contain user specified data.

In the case of a structural-only problem, the data_type can be set to either disp or accel,
indicating that the incoming data is in the form of displacements or accelerations, respectively. In
addition to displacement and acceleration data, the data_type can also be set to moduli for
viscoelastic material identification problems. For acoustics-only problems, data_type is not
applicable as the incoming data always corresponds to acoustic pressure. For models
incorporating piezoelectric materials, setting data_type to voltage indicates that the
experimental data is in the form of voltages. The parameter data_type defaults to disp if not
specified.

Data Truth Table

The data_truth_table file contains the global node numbers (a.k.a. target nodes) where the
experimental data measurements are given. The first line in the file contains the number of points
where measurements are given, and the remaining lines contain the global node numbers where
the experimental data is specified. If data_type is set to moduli, the data_truth_table file
contains the node numbers where the displacements are computed. IMPORTANT: If
superelements are used, the data truth table must not include superelement internal degrees of
freedom.

Figure 1-1 provides a simple example of the truth table format for an acoustics-only problem,
Figure 1-2 provides an example for a structural-only problem, and Figure 1-3 provides an
example for a structural acoustics problem. Note that for acoustics-only, the file consists of the
list of nodes where the acoustic measurements were taken. For voltage based problem, the file
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looks identical to an acoustic-only problem, where the listed nodes represent the locations where
voltage measurements were taken. For structural-only problems, each line in the truth table
contains 4 columns that indicate the node numbers where measurements were taken, and then 3
columns of binary (0/1) input that indicate which dofs (i.e. x, y, and z) are active in the
optimization. For structural acoustics problems, Fig. 1-3 shows that each line contains 5 columns,
with the first column again indicating the node number, and the remaining four columns contain
either 1 or 0, which allows to turn on/off the x, y, z, and pressure degrees of freedom in the
optimization.

The data truth table identifies the location of measurement data. For example, if the
experimental data is collected at three microphones, which correspond to nodes 10,
120, and 3004, then the data_truth_table file is as follows.

3
10
120
3004

Thus there are a total of 4 lines in the file, even though the first line specifies three
nodes for the measurement data. The global node numbers correspond to the global
ID in the exodus input to Sierra/SD. The order of the nodes in this list corresponds
to the order of the data in the corresponding real or imaginary data files. Other than
that, there is no restriction on the ordering of the node numbers (i.e. they do not
need to be in ascending or descending order).

Figure 1-1. – Sample Data Truth Table Input for Acoustic Problem

4
25 1 1 1
96 1 1 1
13 1 1 1
17 1 1 1

Figure 1-2. – Example Data Truth Table for Structures. There are 4 nodes, with numbers 25, 96, 13,
17. The second through fourth columns of 1, 1, 1 mean that all structural degrees of freedom are active,
the fifth column is acoustic and implied to be zero.
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4
5 0 1 0 0
6 0 1 0 0
7 0 0 0 1
8 0 0 0 1

Figure 1-3. – Example data truth table for Structural Acoustics. There are 4 nodes, with numbers 5 to
8. Nodes 5 and 6 are structural where only the y component of displacement is measured. Nodes 7 and
8 are acoustic, where only the pressure is measured.

Real Data File

For inverse problems in the frequency domain, the real_data_file contains the real component
of the measurement data at each frequency, corresponding to the nodes that are specified in the
data_truth_table file. For a multi-experiment inverse problem, several files must be
specified.

An example of the real_data_file for an acoustics-only problem is shown in Figure 1-4. The
first line of the file contains the number of nodes where measurement data is provided, followed
by the number of frequencies of data. Starting on the second line, the real part of the data at the
first node is given for all frequencies. In particularly, starting on the second line the data
corresponds to the first node in the truth table list, not the node with the lowest ID number.
Similarly, subsequent lines contain the real part of the data, at all frequencies, for the remaining
nodes. Note that, since this an acoustics-only example, only one line of data is needed for each
node in the truth table. The format for the data files describing voltages exactly matches the
format of the acoustics-only data file.

We build on the small example given in Figure 1-1 that has measurements at nodes
10, 120, and 3004, and consider the case where there are 2 frequencies in the data
set. The real_data_file file for an acoustics-only problem could look as follows

3 2
1.1 2.4
0.7 3.3
2.1 1.4

The actual values in the above table were chosen arbitrarily, but observe that there
is one “header row” followed by 3 data rows. There are 2 columns, corresponding
to the two frequencies of the measured data. The units of the measurements must
correspond to appropriate units in the analysis. One row of data is required for each
DOF in the truth table. Data is required even if the value in the truth table is zero.
If the truth table value for a DOF is zero, the data is not used in the analysis.

Figure 1-4. – Sample Real Data File Input for an acoustics-only problem
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An example of the real_data_file for a structural-only problem is shown in Figure 1-5.
Starting on the second line, the real part of the data at the first node is given for all frequencies. In
particularly the first node is the node first in the truth table list, not the node with the lowest ID
number. The x displacements for all nodes in the truth table is listed first, followed by the y
displacements for all nodes, followed by the z displacements for all nodes.

We build on the small example given in Figure 1-2 that has measurements at nodes
25, 96, 13, and 17, and consider the case where there is only 1 frequency in the data
set. The real_data_file file for a structural-only problem could look as follows

12 1
1.1 // x-displacement for node 25
0.7 // x-displacement for node 96
2.1 // x-displacement for node 13
1.1 // x-displacement for node 17
0.7 // y-displacement for node 25
2.1 // y-displacement for node 96
1.1 // y-displacement for node 13
0.7 // y-displacement for node 17
2.1 // z-displacement for node 25
1.1 // z-displacement for node 96
0.7 // z-displacement for node 13
2.1 // z-displacement for node 17

The actual values in the above table were chosen arbitrarily, but observe that there is
one “header row” followed by 12 data rows. There is only one column, correspond-
ing to the single frequency of the measured data. The units of the measurements
must correspond to appropriate units in the analysis. For structures these are units
of displacement. Rows 2−5 correspond to the x components of the displacements
at the nodes from the truth table, rows 6− 9 correspond to the y components of
displacement, and rows 10− 13 correspond to the z components. Note that the x
components of displacements for all nodes are listed first, followed by the y com-
ponents for all nodes, followed by the z components for all nodes. One row of data
is required for each DOF in the truth table. Data is required even if the value in the
truth table is zero. If the truth table value for a DOF is zero, the data is not used in
the analysis.

Figure 1-5. – Sample Real Data File Input for a structural-only problem

For viscoelastic material identification problems in the frequency domain with data_type set to
moduli, the real_data_file contains the real part of the shear and bulk modulus. An example
of the real_data_file is shown in Fig. 1-6. The first line of the file is always 2, followed by the
number of frequencies of data. Currently, this feature only supports one frequency of data, hence
the first row should read 2 1. The second and third lines are respectively the shear modulus and
bulk modulus. There is only one column, corresponding to a single frequency of measured data.
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The real_data_file file for a viscoelastic material identification problem with
data_type = moduli could look as follows

2 1
5.7 // Shear modulus
3.1 // Bulk modulus

The actual values in the above table were chosen arbitrarily, but observe that there
is one “header row” followed by 2 data rows.

Figure 1-6. – Sample Real Data File Input for a data type moduli problem

The frequencies of the measured data are specified in the frequency section. The frequencies
given by frequency section must correspond to the frequencies where the experimental data was
measured. These frequencies can be either uniformly or non-uniformly spaced, as specified in the
frequency section.

Imaginary Data File

The imaginary_data_file has the exact same format as the real_data_file except that it
contains the imaginary part of the data rather than the real part.

Random PSD Data File

In the context of PSD inversion, instead of specifying the real and imaginary data files, a single
psd_data_file is needed, which contains the complex (Hermitian) PSD matrices for all the
frequencies. The first two numbers in the psd_data_file must be the number of frequencies and
the number of (measured) response degrees of freedom. The remainder of the file contains the
PSD matrices, one matrix each for each frequency. The format of the PSD matrix should be in the
natural row-oriented format, with each line containing a row of the matrix. The complex values
should be entered in (real part, imaginary part) format, with space between the numbers.
Sierra-SD automatically checks if each of the PSD matrices is Hermitian and positive definite, as
each PSD matrix should be.

Data File

Transient time history data is stored in the data_file. The format is identical to the
real_data_file except for the addition of the time step as the third column in the first row.
Each column of data now corresponds to a time step of analysis. An example is shown in Fig. 1-7.
No interpolation is performed, and the measured data must exactly match the time steps of the
analysis. As in the real_data_file, the rows of data are grouped as all of the x components of
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displacements at the measured nodes, followed by all of the y displacements, followed by the z
displacements.

We note that for time-domain inverse problems, the data in the data_file must be padded with
zeros at the beginning, since the sensor data is typically started at time t = 0. The maximum
time-of-flight from the input loads to the sensors can be estimated easily (an upper bound is fine).
Then, dividing the maximum time-of-flight by the time step gives the number of zeros to be added
to the beginning of each time history. Without these zeros, the forward problem would not be able
to come up with loads that match the sensor data in the early time response, due to the finite wave
propagation speed.

6 4 0.1
0.0 0.0 2.1 2.3
0.0 0.0 2.3 3.5
0.0 0.0 3.6 4.1
0.0 0.0 1.5 1.8
0.0 0.0 0.9 1.4
0.0 0.0 3.4 9.5

Figure 1-7. – Sample Transient Data File Input for a structural-only problem

Modal Data File

The modal_data_file contains measured modal results for inversion with the eigen solution.
The first line of the file is the number of eigenvalues. Each subsequent line contains only the
eigen frequency of the measured mode. It is important that the simulation modes are in the same
order as the test modes.

Modal Weight Table

Not all computed eigenvalues may correspond to a test (or measured) mode. Further, even those
modes identified may be more or less important. The modal_weight_table contains the weights
applied to each computed mode.

The first line contains the number of weights, which must match the number of modes computed
in the analysis, and each subsequent line contains the weight for the corresponding computed
mode. All weights must be non-negative, and computed modes with no corresponding measured
data should have zero weight.
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Data Weight Table

In the case of eigenvector inversion (described in Sec. 1.3.2), the data_weight_table contains
weights applied to each computed eigenvector error. This parameter allows for independent
weighting of the eigenvalues and eigenvectors, but is not required; by default, it is the same as the
modal_weight_table.

As above, the first line contains the number of weights, which must match the number of modes
computed in the analysis, and each subsequent line contains the weight for the corresponding
computed mode. All weights must be non-negative, and computed modes with no corresponding
measured data should have zero weight.

1.7.4. Block section for Material Identification

inverse_material_type

For material inverse problems, the block section provides an additional option to control the
optimization strategy. In particular, blocks can be specified as known,
homogeneous, or heterogeneous, as shown in Table 1-12, and an example is shown in
input 1.14.

The default behavior for the inverse_material_type keyword is known, which implies that the
material parameters given in the corresponding material are fixed, and are not modified in the
optimization process. In the case where all blocks are known, there is no need to solve the
material inverse problem at all.

The remaining two options for the inverse_material_type keyword are:

• homogeneous. In this case, the material parameters are unknown and will be optimized
during the inversion process, but are treated as constant over the entire block. This option is
best used in the case when material properties are unknown in a block, but not expected to
vary much over the block.

• heterogeneous. In this case, the material parameters are also unknown, will be optimized
in the inversion process, but each element in the block will be given its own material
properties. This is typically referred to as spatially varying material properties.

In input 1.14 Block 1 is heterogeneous, Block 2 is
homogeneous, and Block 3 is known.

Parameter type Description
inverse_material_type string block inverse type

Table 1-12. – Block Section Parameters for Material Inversion
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block 1
material 1
inverse_material_type heterogeneous

END
block 2

material 2
inverse_material_type homogeneous

END
block 3

material 3
inverse_material_type known

END

Input 1.14. Basic Block Section Example for Material Inversion

joint2g and blkbeta

Additional material parameters that can be optimized include joint2g elements and block
proportional stiffness damping blkbeta. Since these parameters live in the block section rather
than in the material section, their bound constraints are specified in the former. An example of
input syntax for joint2g and blkbeta inputs for material optimization are given in Table 1-13
and input 1.15.

The joint2g elements involve 6 parameters that can be optimized. The
joint_truth_table specifies which of these parameters will be included in the optimization
solution. For example, in input 1.15, only the first (i.e. x-component) of the joint2g parameters
will be optimized. The remaining parameters will stay fixed in the optimization, including those
that are specified as NULL. In the case of blkbeta, the optimal blkbeta for the specified block
will be computed and written to the result file.

Parameter type Description
joint_elastic_bounds real real bounds on joint2g spring stiffnesses
joint_damper_bounds real real bounds on joint2g dashpot (damper) parameters
blkbeta_bounds real real bounds on block stiffness proportional damping

Table 1-13. – Block Section Parameters for Material Inversion

block 50
joint2g
kx = elastic 2.474e5
ky = elastic 2.e8
kz = elastic 2.e8
krx = NULL
kry = NULL
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krz = NULL
joint_elastic_bounds = 2.0e5 1e9
joint_truth_table = yes no no no no no

end

block 51
inverse_material_type = homogeneous
material 1
blkbeta 2.0e-4

end

Input 1.15. Block Section Example for joint2g and blkbeta Material Inversion

1.7.5. Material section for Material Identification

For material inverse problems, the material section provides additional options to control the
optimization strategy. Currently, for 3D elements, only isotropic, orthotropic,
isotropic_viscoelastic_complex, and acoustic material types are supported for material
inverse problems.

Table 1-14 shows which material parameters can be optimized in the different solution
procedures. Details of these parameters are discussed in the following sections and are
summarized in Table 1-15. In general, parameters associated with damping can only be optimized
in directfrf solutions, and those associated with stiffness can be optimized in either directfrf of
eigen .

Parameter directfrf-inverse eigen-inverse
K yes yes
G yes yes
E yes yes

Nu yes yes
K_real yes no

K_imag yes no
G_real yes no
G_real yes no

Cij yes no
c0 yes no

density yes no
joint2g elastic yes yes
joint2g damper yes no

blkbeta yes no
spotweld yes yes

Table 1-14. – Table of Supported Material Parameters for Inverse Methods
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For isotropic, orthotropic, and acoustic materials, the set of unknown material parameters may be
customized by explicitly specifying the parameter num_material_parameters and a list of
strings following material_parameters. These strings may include bulk and/or shear for
elastic materials, orthotropic for orthotropic elastic materials, sound_speed for acoustic
materials, and rho for all of the above.

Isotropic Material Inversion

For isotropic elastic materials, the user can invert for density and/or any two of K, G, E, or nu.
Isotropic materials are the default material type for 3D elements and the keyword isotropic is not
required. Bounds on the parameters are specified as shown in Table 1-15 and discussed on
page 42. Example material sections for isotropic inversion are shown in input 1.16. Note that the
parameters G_bounds, K_bounds, E_bounds, and Nu_bounds only apply to isotropic materials.

material 1
isotropic
G_bounds 0 1e4
K_bounds 0 1e4
G 100.0
K 200.0
density 10.0

end
material 2

isotropic
E_bounds 1e-10 1e40
Nu_bounds -0.9999 0.49999
E 1.0e6
Nu 0.25
density 10.0

end

Input 1.16. Material Section Example for Isotropic Material Inversion

Orthotropic Material Inversion

Unlike isotropic inversion, orthotropic inversion requires special care with respect to inadvertent
material instabilities, i.e., during the inversion iterations, the elasticity tensor may not satisfy
positive definiteness, potentially leading to the failure of even the forward solution. To avoid this,
we parametrize the material tensor using the standard normal moduli Eii, shear moduli Gi j, and
special dimensionless parameters Ai j = Ei j/

√
EiiE j j. This is referred to as Alpha

parametrization. Such parametrization lends to easier imposition of material stability constraint
which is done through a single inequality constraint and several bound constraints. Further details
will be provided in an upcoming SAND report. Notwithstanding the theoretical details, the user is
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asked to pay special attention to the definition of Ai j, when applying bound constraints on these
parameters. Bound constraints can be specified as as shown in Table 1-15, and an example is
shown in input 1.17. Note that the parameters Eij_bounds, Gij_bounds and Aij_bounds apply
only to orthotropic elastic materials. These parameters constrain the optimizer to work in a
restricted space of possible design variable values, and prevent convergence to physically
unrealistic values of the parameters. An alternative to Alpha parametrization is Cholesky
parametrization, where the modulus matrix is parametrized through Cholesky factorization,
avoiding the need of inequality constraints. This can be utilized by setting the flag
alphaparametrization to no.

Transverse Isotropic Material Inversion is performed essentially through orthotropic inversion,
by setting the flag transverselyisotropic to yes, followed by the plane of isotropy
represented by a two-digit number, i.e., 12, 23, or 13, where 1,2,3 represent the three axes of
material symmetry consistent with the coordinate system within the element block. Input 1.17
contains an example for transversely isotropic inversion.

material 3 // Full orthotropy
density = 1.0
orthotropic
Cij = 4.0 1.0 2.0
5.0 3.0
6.0
2.0
1.0
3.0

Eii_bounds = 0.01 20.0 0.01 20.0 0.01 20.0
Gij_bounds = 0.01 10.0 0.01 10.0 0.01 10.0
Aij_bounds = 0.0 0.707 0.0 0.707 0.0 0.707

end

material 4 //Transeverse isotropy
density = 1.0
orthotropic
alphaparametrization no
inequalityconstraints no
transverselyisotropic yes 23
Cij = 5 1 1
16 6

16
5
1
1
Eii_bounds = 1 100 1 10 1 100
Gij_bounds = 0.1 5 0.1 5 0.1 5
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end

Input 1.17. Material Section Example for Orthotropic Material Inversion

Viscoelastic Material Inversion

For isotropic viscoelastic materials, the user inverts for the real and imaginary components of the
shear and bulk moduli, Greal, Gimag, Kreal, and Kimag. Because these four components are
frequency-dependent, the initial guesses are specified in functions that define the values of these
parameters as a function of frequency. As shown in input 1.18, in this example functions 1−4
specify the initial guesses for the real and imaginary components of G and K. Note that
Greal_bounds, Kreal_bounds, Gim_bounds, and Kim_bounds only apply for viscoelastic
materials.

The directfrf-inverse method supports viscoelastic material identification using
homogenized moduli data by setting data_type to moduli in the inverse-problem block (see
section 1.7.3). This feature is only available for the inverse_material_type homogenous
option. In addition, all material blocks, including known materials, must be specified as
isotropic_viscoelastic_complex.

material 5
isotropic_viscoelastic_complex
Greal_bounds 0 1e4
Kreal_bounds 0 1e4
Gim_bounds 0 1e2
Kim_bounds 0 1e2

Greal = function 1
Gim = function 2
Kreal = function 3
Kim = function 4
density = 10.0

end

Input 1.18. Material Section Example for Viscoelastic Material Inversion

Acoustic Material Inversion

For acoustic materials, the user may invert for sound speed c0 and/or density. Alternatively, the
parameter impedance_match may be specified. This has the effect of optimizing for sound speed
c0 and density ρ0 under the condition where impedance Z = ρ0c0 is constant. Note that the
parameters impedance_match and c0_bounds apply only to acoustic materials.
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Material Bounds

Bounds on the material parameters are specified using a keyword for each parameter. Generally,
this keyword will have the form <parameter>_bound. The lower and upper bounds are then
specified as the first and second numbers, respectively, to follow this keyword. For example, in
input 1.16, E is restricted to be within 1e-10 and 1e40. A full list of the keywords that can be
specified in the material section, including those used to define bounds, is given in Table 1-15.

Important: The optimizer considers the endpoints of the bounds to be within the set of valid
parameter values. Therefore, the specified bounds must also be physical. As an example, if the
user specifies Nu_bounds = 0.0 0.5, then it is possible that nu will be evaluated at 0.5 and
Sierra/SD will throw a fatal error. As an alternative, the user may specify
Nu_bounds = 0.0 0.49999 and avoid early termination of the optimization due to this error.
Similarly, E, G, and K must be strictly positive. Instead of a lower bound of 0, the user should set
a lower bound of 1e-10 or some similarly small number.

Note that boundConstraints = yes is required for all material-ID type problems and will be
activated automatically for design_variable = material,
design_variable = multi_material, design_variable = damage, etc., regardless of the
user-defined value for boundConstraints.

Parameter type Description
G_bounds real real lower and upper bounds on shear modulus
K_bounds real real lower and upper bounds on bulk modulus
E_bounds real real lower and upper bounds on Young’s modulus
Nu_bounds real real lower and upper bounds on Poisson’s ratio
Greal_bounds real real lower and upper bounds on real part of shear modulus
Kreal_bounds real real lower and upper bounds on real part of bulk modulus
Gimag_bounds real real lower and upper bounds on imag part of shear modulus
Kimag_bounds real real lower and upper bounds on imag part of bulk modulus
Eij_bounds 6 reals lower and upper bounds on the three normal moduli
Gij_bounds 6 reals lower and upper bounds on the three shear moduli
Aij_bounds 6 reals lower and upper bounds on the three α parameters
density_bounds real real lower and upper bounds on density
c0_bounds real real lower and upper bounds on sound speed
impedance_match real value of ρ0c0 to match for acoustic materials
num_material_parameters int (optional) number of material parameters
material_parameters list of strings (optional) bulk, shear, rho, orthotropic, and sound_speed

Table 1-15. – Material Section Parameters for Material Inversion

Material Initial Guess

Initial guesses for the material parameters are also given in the material block. In general, if the
block section does not define the inverse_material_type as known, then the initial guess will
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be taken from whatever parameter values are given in the material block. As a concrete
example, in the case of isotropic elastic materials the initial guess is taken as the values for G and
K (or alternatively, E and nu) that are included in the material block. In the example shown in
input 1.16, the shear and bulk moduli are given initial guesses of 100 and 200, respectively.

Damage Identification

Damage identification is a design variable implemented for directfrf-inverse problems as a
special case of elastic material identification. In damage identification, a damage phase field
variable is used to interpolate between damaged (weak) and full-strength material, ideally
converging to near-binary values to indicate presence of material damage. Damage ID is activated
by design variable = damage in the inverse-problem block.

Damage identification employs techniques originated for topology optimization problems but
may used for a variety of applications, including identification of weakened material regions,
determination of contact area in a thin layer of elements at an interface, or two-phase material
design. The elastic damage model uses a Solid Isotropic Material with Penalization (SIMP)
model [3] that interpolates the isotropic elastic and mass density properties in the unknown
material between two phases using the scalar phase field variable β ∈ [0,1], expressed as

G(β) = G0 +(Gu −Gl)β
p (1.12)

K(β) = K0 +(Ku −Kl)β
p (1.13)

ρ(β) = ρ0 +(ρu −ρl)β
q, (1.14)

where {Gu,Ku,ρu} and {Gl,Kl,ρl} are the upper and lower bounds for the bulk modulus, shear
modulus, and density, respectively. Definition of different powers p ≥ q ≥ 1 for the elastic and
mass density components renders elastic properties relatively weaker, for a given mass density,
thus disincentivizing intermediate density values. Powers p and q are specified with
penalizationElasticity and penalizationMass, respectively.

Bounds of the material interpolation are specified by setting limits for shear modulus G_bounds,
bulk modulus K_bounds, and mass density density_bounds in the material block. Meanwhile,
the initial damage phase field value is controlled using the G, with respect to G_bounds, as

β
(0) =

(G−Gl)

(Gu −Gl)
. (1.15)

Initial density and K values must still be given, though are not used to determine the initial phase
field value. The solution for β is not available for output, but rather the material parameters are
output as evaluated within the penalized elastic and mass density models using the phase field
solution.

Damage identification is enabled for both homogeneous and hetereogeneous unknown material
blocks. In the homogeneous unknown material block case, only the penalization powers for the
mass density and elastic properties must be specified. In heterogeneous unknown material blocks,
additional filtering and projection operations are employed to control solution length scale and to
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encourage binary quality. Kernel filtering prevents development of mesh dependent or
checkerboard (i.e. alternating 0-1 phase field density) patterns. In this strategy, a weighted kernel
is convolved with the density field, producing a locally-averaged filtered field. The filter kernel
radius is defined in the inverse-problem block as filter_radius (default = 0.1), which should
be set no smaller than the minimum distance between element centroids in the unknown material
block.

A Heaviside-approximating function is then used to map filtered values closer to 0 or 1 bounds
and recover a more-binary valued field. The smooth Heavisde function is defined

β̃(β) :=
tanh(ζη)+ tanh(ζ(β−η))

tanh(ζη)+ tanh(ζ(1−η))
. (1.16)

Here, the slope of the smooth Heaviside ζ > 1 is specified by smooth_heaviside_slope, while
its inflection threshold η ∈ (0,1) is specified by smooth_heaviside_threshold. Typically,
modest values for smooth_heaviside_slope (5-10) can produce high contrast fields without
creating an excessively severe projection, which can impede optimization convergence.

Below, we summarize the necessary parameters in the material and inverse-problem sections
for damage identification problems.

Parameter type Description
G real initial value of shear modulus (determines initial phase field value)
K real initial value of bulk modulus
density real initial value for mass density
G_bounds real real lower and upper bounds on shear modulus interpolation
K_bounds real real lower and upper bounds on bulk modulus interpolation
density_bounds real real lower and upper bounds on mass density interpolation

Table 1-16. – Parameters in material section for Damage Identification

Parameter type Description
design_variable string damage
penalizationElasticity integer elasticity penalty exponent (default = 3)
penalizationMass integer elasticity penalty exponent (default = 1)
filter_radius real filter kernel radius (default = 0.1)
smooth_heaviside_slope real smooth heaviside projection slope (default = 1)
smooth_heaviside_threshold real smooth heaviside inflection threshold (default = 0.5)

Table 1-17. – Parameters in inverse-problem section for Damage Identification

Spot Weld Stiffness Inversion

Material parameter identification techniques can be extended to calibrate contact stiffness by
employing the spot weld construct in Sierra/SD. Spot welds are virtually-constructed element
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blocks at a contact interface, in which node-face interactions are assigned stiffnesses in normal
and tangential directions. Spot weld elements offer multiple benefits for representing contact:
they are minimally instrusive from the model construction perspective, they can provide
spatially-varying, tunable interface stiffness, and they are more scalable than tied data constraints,
as they are stored on the subdomain level. In SD inverse problems, these normal and tangential
stiffness parameters can be updated to improve the model’s match to supplied target or
experimental data.

Spot weld stiffnesses can be enabled as design variables by specification of several keywords in
the spot weld block definition. In the material identification solution context, the normal and
tangential stiffness parameters are treated as independent design variables. Syntax for spot weld
stiffness inversion involves including a few keywords in the conventional spot weld block
definition:

• Set inverse_material_type as either heterogeneous , homogeneous , or known .
Heterogeneous spot welds treat stiffnesses of each spot weld element as independent
design variables, whereas homogeneous spot welds have uniform stiffness parameters
assigned to all elements. Known treats the spot weld stiffnesses as known and deactivates
the design variables.

• Set initial stiffness guesses with normal displacement scale factor and tangential
displacement scale factor keywords.

• Define bounds on the normal and tangential stiffness values using keywords normal
displacement scale bounds and tangential displacement scale bounds. Lower bound
values must be positive and default to zero if not supplied.

Refer to Input 1.19 for an example definition of spot weld design variables. Currently, spot weld
inversion is tested for directfrf-inverse and eigen-inverse solution cases. For additional spot weld
syntax suggestions, refer to the Sierra/SD User’s Manual [14]. Note, as with conventional spot
welds, it is recommended to define a linear function with positive slope for the normal
displacement function and tangential displacement function keywords and allow the optimizer
to adjust the scale factors further.

Include keyword spot_weld in the OUTPUTS section to export spot weld stiffness solutions,
which are written to the spot_weld_norm_stiffness and spot_weld_tang_stiffness variables in
the output exodus file. Additionally, for homogeneous design variables, values are reported to
the DesignVariableIterations.txt file at each iteration.
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INVERSE-PROBLEM
modal_weight_table = val_weights.txt // data for eigen-inverse solution
modal_data_file = val_data.txt
data_truth_table = vec_ttable.txt
data_file = vec_data.txt
eigen_objective = matching
design_variable = {material | damage}
penalizationElasticity = 4 // penalty parameter for damage

END

BEGIN SPOT WELD
sideset = side_1
second surface = side_2
search tolerance = 0.01
normal displacement function = y_equals_x
normal displacement scale factor = 5e1 // initial guess
tangential displacement function = y_equals_x
tangential displacement scale factor = 5e1 //initial guess
inverse_material_type = {known | homogeneous | heterogeneous}
normal displacement scale bounds = 1e0 1e3
tangential displacement scale bounds = 1e0 1e3

END

FUNCTION y_equals_x
type analytic
evaluate expression “x”

END

Input 1.19. Example definition of spot weld for stiffness inversion

46



Spot Weld Damage Identification

In contact calibration or debond detection problems, identification of regions with full contact or
no contact is often desired. These scenarios can be addressed by using a “damage"
parameterization of the spot weld stiffness: here, the normal and tangential stiffnesses are
connected to a phase-field variable which is encouraged to converge to binary (i.e. 0 or 1) values
that represent soft or stiff contact. We employ a Rational Approximation of Material Properties
(RAMP) model to evaluate the normal and tangential stiffnesses, using the phase-field variable to
interpolate between the lower and upper stiffness bounds. For phase-field parameter β ∈ [0,1], the
stiffness property k = k(β) is evaluated

k(β) = kl +(ku − kl)
β

1+ p(1−β)
(1.17)

for bound values {kl,ku} and penalty parameter p > 0 (we suggest p ≥ 3).

This parameterization of the spot weld stiffness encourages convergence to binary stiffness fields
for multiple reasons. As the tangential and normal stiffnesses are connected together, an update to
one stiffness direction informs the value of the other stiffness direction, preventing disagreement
between the normal and tangential stiffness fields. Furthermore, the RAMP model reduces the
relative stiffness of intermediate phase-field values, allowing only phase-field values near 1 to
attain full stiffness. Finally, the dimensionality of the design variable is reduced under the
condensed phase-field parameter, which tends to improve convergence behavior.

Damage parameterization of the spot weld stiffness is specified with similar syntax to the material
damage parameter (see Table 1-17):

• Set design_variable = damage to select the damage parameterization for spot weld blocks.

• Define the penalty parameter p in Eq. 1.17 with penalizationElasticity=<double> . The
default value is 3.

• Set the initial guess for a spot weld damage block by defining the initial normal
displacement scale factor ; the initial phase-field value is inferred as the inverse of the
RAMP model for the initial normal stiffness. The tangential stiffness value is then
evaluated using the RAMP model and the initial phase-field value.

Example syntax is also shown in Input 1.19.

1.7.6. Loads section for Load Identification

For inverse load problems, the loads section provides additional options to control the
optimization strategy. Inverse loads are currently supported for acoustics and structures. Inverse
acoustic loads are only supported for sidesets. Inverse structural loads are supported on both
sidesets and nodesets. On sidesets, both pressures and traction loads may be optimized in the
inverse problem. For nodesets, both forces and moments can be optimized, the latter only being
applicable in the case when the nodeset in question has rotational degrees of freedom (e.g. a
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concentrated mass). Table 1-18 summarizes the load options which apply to inverse methods. The
inverse_load_type options are detailed in Table 1-19.

The default behavior for the inverse_load_type keyword is known, which implies that the loads
on that sideset or nodeset are fixed, and are not modified in the optimization process. In the case
where all blocks were known, there would be no need to solve the inverse loads problem.

In input 1.20 sideset 1 is known, sideset 2 is a real-valued, unknown acoustic load that is
spatially_constant, and sideset 3 is an imaginary-valued, unknown acoustic load that is
spatially_constant. We note that in the case of a transient problem, the loads block in an
inverse loads problem would look the same except that there would be no imaginary loads in that
case.

For acoustic problems currently inverse acoustic loads are limited to the acoustic_accel option.
The acoustic_vel keyword is not supported for acoustic loads.

Input 1.21 shows a similar example for a structural pressure, traction and force load case. This
example contains a known pressure load, and unknown pressure, traction, and force loads. Note
that in the case of traction and force loads, the direction of the traction load (in this case 111) is
fixed, and only the function amplitudes are calculated in the inverse problem.

In input 1.21, functions 1−4 contain the initial guesses for the load amplitudes for sidesets 1−3
and forces/moments on nodeset 4. These load amplitudes are then refined during the optimization
process. The resulting loads are written to a text file called force_function_data.txt, which could
then be included in a subsequent forward or inverse loads case in a restart analysis.

Parameter type Description
inverse_load_type string load inverse type

Table 1-18. – Loads Section Parameters for Force Inversion

Parameter Description
spatially_constant Load amplitude is unknown and will be optimized during the inver-

sion process, but is treated as constant over the entire sideset or node-
set.

spatially_variable Load amplitude is unknown and will be optimized during the inver-
sion process. Each dof on the sideset or nodeset is optimized.

known default. No optimization performed.

Table 1-19. – Inverse Load Type Options

loads
sideset 1
acoustic_accel = 1
function = 1

sideset 2
acoustic_accel = 1
function = 2
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inverse_load_type = spatially_constant
sideset 3
iacoustic_accel = 1
function = 3
inverse_load_type = spatially_constant

end

Input 1.20. Loads Section Example for Acoustic Force Inversion

loads
sideset 1
pressure = 1
function = 1

sideset 2
pressure = 1
function = 2
inverse_load_type = spatially_constant

sideset 3
traction = 1 1 1
function = 3
inverse_load_type = spatially_constant

nodeset 4
force = 0 1 1
function = 4
inverse_load_type = spatially_constant

nodeset 4
moment = 0 1 1
function = 5
inverse_load_type = spatially_constant

end

Input 1.21. Loads Section Example for Structural Force Inversion

1.7.7. Limitations for Inverse Load Problems

Limitations: There are a number of limitations which apply to transient load identification.
These include the following.

1. Structural, acoustic and structural-acoustic domains may be addressed.

2. Only the simple Newmark integrator should be used, i.e. do not use generalized alpha
integration and do not use the rho keyword.
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3. Pressure is always applied along the surface normal, and tractions are applied along the
direction specified in the loads block. Inverse methods do not support follower pressures.

4. Load identification applies to acoustic_accel loadings on acoustic sidesets,
pressures/tractions on structural sidesets, and forces and moments on structural nodesets.

5. In force identification problems, a pressure, traction or force may be applied on a shell. The
measured displacement fields in the truth table for shells can be applied to nodes with
rotational DOFs; however, only displacement DOFs can be specified in the data files.
Specifying rotational DOFs as measured data at nodes is not supported.

1.7.8. ROL Output for Inverse Problems

Sierra/SD uses the Rapid Optimization Library (ROL), which is part of Trilinos [9] for solving
optimization problems. During the optimization process, ROL writes out a text file called
ROL_Messages.txt that contains information about the convergence of the optimization solution.
It is important to examine this file to assure that the solution is adequately converged.

An example of a ROL_Messages.txt is given in Figure 1-8. The first 2 lines show the optimization
method that was used by ROL, and the following lines contain convergence information. Each
line corresponds to a single optimization iteration. The first column shows the iteration number
under the iter heading. The second column shows the value of objective function at that iteration,
under the value heading. The third column shows the absolute norm of the gradient (i.e. the
derivative of the objective function with respect to the optimization variables). In Figure 1-8 we
only show the first three columns of output as these will typically be of most interest to the user,
but the remaining columns contain information about step size, number of function evaluations,
etc... (Denis, Drew, any input here would be great).

For a typical Sierra/SD user, the first three columns in the ROL_Messages.txt file will typically
be of the most important to pay attention to. As the goal is to minimize the objective function, a
substantial decrease in the second column should be observed. Also, the desired minimum of the
optimization corresponds to a zero gradient, and thus the third column should be observed to be
as close to zero as possible.

Newton-Krylov with Cubic Interpolation Linesearch satisfying
Null Curvature Condition Krylov Type Conjugate Gradients
iter value gnorm
0 5.171112e-03 7.337197e-03
1 1.160506e-10 1.245979e-06
2 1.453148e-17 4.667996e-10

Figure 1-8. – Example of ROL_Messages.txt file for Inverse Problem Solution
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1.8. Example Inverse Problems

Inverse problems are class of problems where some portion of the solution to an analysis is
known, but the inputs to the problem are not. Inverse methods solve an optimization problem
where the inputs are optimized to match the solution. The current types of input problems
supported are Load ID (transient or FRF) and Material ID (Eigen and FRF).

1.9. Experimental Data

For inverse problems, experimental data is typically gathered in a lab. In acoustics, microphones
are used to measure acoustic pressure For the transient case, these are measured over a period of
time. For the FRF case, these are measured over a series of frequencies. Introducing additional
measurements at new data points generally improves the fidelity of the computed solution. On the
other hand, the computational difficulty of solving the inverse problem increases too. For this
demonstration, synthetic data is generated by solving a forward acoustic problem.

1.10. Inverse Problems - Load-ID

1.10.1. Experimental Model

The experimental model is shown in Figure 1-9. The Football Model is an ellipsoidal acoustic
mesh, with a cylindrical hole in the middle. 70 sidesets are placed around the exterior of the
football, allowing for different loading on each sideset.

Figure 1-9. – Inverse Football Problem Geometry. On the left, the sideset definitions on the surface.
On the right, the interior of the problem.

1.10.2. Forward Problem

To generate the experimental data, the model is solved with the solution method direct-frf. A
set of human generated loads is used to generate “experimental" pressures at a select set of nodes.
Any set of loads can be used. The Matlab function inputDataProcDynFreqAcoustic_Exo.m is
used to generate the experimental data files: ttable.txt, dataReal.txt, and dataImag.txt.
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This Matlab function requires the results from the forward run, and a nodeset containing the
nodes of interest. In practice, this data is generated experimentally, with the measured acoustic
pressures being inserted in dataReal.txt and dataImag.txt.

s o l u t i o n
d i r e c t f r f

end

l o a d s
s i d e s e t 4
a c o u s t i c _ a c c e l = 1 . 0
s c a l e = 2
f u n c t i o n = 10001
i n v e r s e _ l o a d _ t y p e = s p a t i a l l y _ c o n s t a n t \ \ i g n o r e d

end

Inverse keywords are ignored when running a forward problem.

1.10.3. Inverse Problem with known loads

Next, the experimental model is solved with solution method directfrf-inverse. and
design_variable = load. For the first run of the inverse problem, the synthetic loads were left
in place, as the “initial guess". The inverse problem converges on the first iteration, as the initial
guess is the exact solution to the inverse problem. This is an easy way to make sure the input file
are correct. The relative tolerance is shown in the first column of ROL_Messages.txt, and the
absolute tolerance is shown in the second column of ROL_Messages.txt. If the exact loading is
used as the initial guess, the relative error norm should be on the order of machine precision.

solution
directfrf -inverse

end

optimization
check_grad = no
optimization_package = ROL_lib
LSstep = Newton -krylov // recommended
LS_curvature_condition = null
max_iter_Krylov = 50 // tolerance on gradient
opt_tolerance = 1e-8 // of objective function
// with respect to parameters
objective_tolerance = 1e-4 // tolerance on
// objective function value
opt_iterations = 50 // before stopping

end

inverse -problem
design_variable = load
data_truth_table = ttable.txt
real_data_file = dataReal.txt
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imaginary_data_file = dataImag.txt
end

1.10.4. Inverse Problem with unknown loads

Next, the synthetic loads are removed, and the initial guess for the loading is set to be 0 at all time
steps. The inverse problem converged in four iterations, with an objective tolerance of 10−4. The
objective norm is a relative measure, and any objective norm of 10−6 or smaller is considered
more than sufficient. Alternatively opt_tolerance can be used to set the absolute tolerance.
Recommended values for opt_tolerance are problem dependent.

1.10.5. Verification

Finally, the loading output from the inverse run, force_function_data.txt, is used to run the
forward problem again. This file is designed so that it can replace the function file with no
changes. The problem is verified by checking the pressures at the selected nodes against the
initial run. Though the loading may not be exactly the same between the initial forward run and
the verification forward run, the inverse problem has been solved successfully, as the objective
function has been solved to the selected tolerance. To generate loading closer to the initial
loading, more nodal data can be added or tolerances can be tightened.

1.11. Inverse Problems - Material-ID

1.11.1. Experimental Model

The experimental model is a solid assembly of two steel blocks joined by a region of viscoelastic
foam material. Figure 1-10 shows the geometry of the test model.

Figure 1-10. – Foam block model with finite element mesh and force location

As shown in Figure 1-10, the model assembly consists of two equally-sized steel blocks, depicted
in yellow and green, joined by a region of viscoelastic foam material, shown in red. The model
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was discretized with a finite element mesh of Hex-8 elements. A periodic point load with a
frequency of 500 Hz was applied to the yellow block, also as shown in the figure. It was desired
to calculate the frequency-dependent viscoelastic material properties of the foam block, including
complex values for the bulk (K) and shear (G) moduli.

1.11.2. Inverse Problem input format

The relevant sections of the input used for this example are shown below, followed by some notes
about each section.

solution
directfrf-inverse

end
inverse-problem

design_variable = material
data_truth_table = ttable.txt
real_data_file = data.txt
imaginary_data_file = data_im.txt

end
optimization

optimization_package = ROL_lib
ROLmethod = trustregion
TRstep = secant
opt_tolerance = 1e-13
opt_iterations = 100

end

...

block 1
inverse_material_type = homogeneous
material 4
hex8f

end

...

material 4
isotropic_viscoelastic_complex
Greal_bounds -1000 100000
Kreal_bounds -1000 100000
Gim_bounds -1000000 1000000
Kim_bounds -1000000 1000000
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Greal = function 2
Gim = function 3
Kreal = function 4
Kim = function 5
density=0.010804

end

• solution section: defines the type of solution (inverse DirectFRF).

• inverse-problem section: specifies the design variable (material) and connects externally
defined data describing the test.

– The data truth table file contains the global node numbers where the experimental
data measurements are given. For example, the input below gives the number of nodal
locations (1) in the first line, followed by the single node id (212) showing all
structural dof active (1 1 1), and an inactive acoustic dof (assumed 5th column = 0).

1
212 1 1 1

– The real_data_file and imaginary_data_file contain the real and imaginary
parts of the measurement data at each frequency. For example, the input below (from
a real data file) gives the number of nodes (3) and frequencies (2), followed by the
data at each node. Each frequency requires a separate column of data.

3 2
-4.385640897908e-02 -3.985611576838e-02
2.898761003889e-02 3.478175302036e-03
-1.167004279970e-01 -8.319040683879e-02

• optimization section: provides options to control the optimization strategy. See the users
manual for more information on available optimization options.

• block section: provides an information on the material of the block. Options include,

known - The material parameters of the block will not be varied in the inverse solution.

homogeneous - Material properties are uniform within the block, and are varied to arrive
at the best fit for the data.

heterogeneous - Material properties vary element by element within the block, and are
varied to arrive at the best fit.

• material section: provides additional options to control the optimization strategy.
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1.11.3. Running the Inverse Problem

Next, the experimental model is solved as indicated above. A good choice for the first run of the
inverse problem is to use the actual material data used as the “initial guess". This causes our
problem to converge much faster than with a general guess, and is a good verification step for
problems where the material data is known a priori. Next, initial guesses for the material data is
set to be something other than the actual value to represent a typical initial guess. Convergence
data can be found in the file ROL_Messages.txt. The objective norm is a relative measure, and
any objective norm of 10−6 or smaller is sufficient. Alternatively opt_tolerance can be used to
set the absolute tolerance.

1.11.4. Verification

For the problem presented here, the following material data is obtained from running the inverse
problem (taken from the name_0.rslt file):

...

Block 1 Viscoelastic Material Properties
Real Part of K: 40000.002012
Imaginary Part of K: -0.005544
Real Part of G: 15999.999313
Imaginary Part of G: 5000.000812

...

This gives us values that we can then use as part of an input for a forward problem, and see if we
obtain the same values given in the input data from the truth table and data files. Though the
displacements may not be exactly the same between the initial forward run used to generate the
inverse data files and the verification forward run, the inverse problem has been solved
successfully, as the objective function has been solved to the selected tolerance. To generate more
exact results, more nodal data can be added or tolerances can be tightened.

1.11.5. Design Variables History Output

A file called DesginVariableIterations.txt is generated by each material identification
problem. The file contains changes in the values of each design variable throughout ROL
iterations. The file has several purposes, in addition to giving user an opurtunity to monitor the
progress of inversion algorithms, user can also restart inversion from any given ROL iterations.
An example of the output file for viscoeleastic material model inversion is given below.

ROL iteration: 0
Block 1 Viscoelastic Material Properties

Real Part of K: 30000.000000
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Imaginary Part of K: 0.000000
Real Part of G: 13000.000000
Imaginary Part of G: 0.000000

ROL iteration: 1
Block 1 Viscoelastic Material Properties

Real Part of K: 29999.999988
Imaginary Part of K: 0.000020
Real Part of G: 12999.999932
Imaginary Part of G: 0.000119

...
ROL iteration: 81
Block 1 Viscoelastic Material Properties

Real Part of K: 40000.002797
Imaginary Part of K: 0.000000
Real Part of G: 15999.999549
Imaginary Part of G: 4999.999960
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2. Inverse Methods with InverseAria

2.1. Introduction

Inverse Aria enables solving inverse problems with SIERRA/Aria using adjoint-based gradients
through an interface to the Rapid Optimization Library (ROL). The major advantage of
calculating gradients with adjoints comes in the form of computational savings as the design
space grows in size. Only one forward solve and one adjoint solve are required to compute the
gradient of the reduced objective function with respect to the design variable vector regardless of
the number of design variables. Contrast this with finite difference gradients where N+1 forward
solves are required for N design variables.

2.2. Outline

• Overview of inverse heat transfer capabilities

• How to build and run

• Inverse problems with example inputs

– Thermal conductivity

– Boundary heat flux

– Contact resistance

– Arrhenius source term (with FD gradients)

2.2.1. Beta Capabilities and Limitations

Inverse Aria is a still in early development and should be treated as a beta feature. There are three
over-arching problem types that Inverse Aria targets with each in various states of development.
Currently, only problems with the energy equation are supported by the adjoint solver. The three
classes of target problems are material property, boundary condition, and heat source inversion.
For the first two years of development (FY20 and FY21), Inverse Aria has been limited to solving
linear conduction problems. Typically, thermal engineering problems of interest contain
non-linear effects such as temperature dependent material properties, chemical decomposition,
and thermal radiation among others. In FY22, development shifted from adding new inverse
design variables to focusing on supporting non-linear heat conduction physics.

Thermal conductivity was the first target material property to be developed. Currently, thermal
conductivity inversion is possible in Inverse Aria for basic (non-porous) materials with a limited
number of boundary conditions. The user can invert for conductivity on a block by block or
element by element basis (see Sec. 2.4).

Heat flux to a surface was the first target boundary condition inversion problem. Both steady and
transient heat flux inversion are available in Inverse Aria as described in Sections 2.5 and 2.6.
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Another important boundary condition in thermal problems occurs at the interface between two
materials. Typically, this represented by a Robin boundary conditions characterized by a thermal
contact resistance or its inverse, thermal gap conductance (Sec. 2.7).

Specific combinations of parameters can be inverted for at once. Heat flux and contact resistance
on different boundaries can be solved together. To solve for a combination of thermal
conductivities and fluxes or contact resistances, the unknown conductivity block must not touch
any of the unknown surfaces.

Many real problems involve at least one reacting material. Examples include pyrolysis of organic
materials, ablation of thermal protection systems, and thermal runaway of batteries. These
reactions can add or remove heat from the system and are represented in Aria as volumetric heat
source/sink terms. Typically, these reactions can be model by Arrhenius forms. To achieve wider
ranging applicability, Inverse Aria must be able to solve problems with reacting source terms,
either inverting directly for the source term model parameters or inverting for other parameters
(material or boundary conditions) in problems where reacting materials are present. As a first step
towards enabling this functionality, inversion for the Arrhenius activation energy and frequency
factor with finite-difference gradients has been enabled in Inverse Aria. Development of this
feature serves to put the building blocks in place for solving this class for problems while further
research is conducted on deriving and implementing the adjoint solve.

Computation of the objective function requires experimental data and will typically benefit from
some form of regularization. Inclusion of experimental data is currently limited to time histories
of temperatures at user specified node locations.

A finial limitation is that problem size is currently constrained by available memory. To execute
an adjoint solve, all state variables at every node and time step must be saved in memory. This
constraint will be alleviated in future releases by using checkpointing schemes such as Wang et
al. [17].

2.2.2. Getting Started with Inverse Aria

Inverse Aria is included in the SIERRA module as of 5.17. It can be loaded with

$ module load sierra

and run as follows

$ inverse_aria -i <input_file> -opt <ROL_inputs> --beta

where the input file is the target Aria input deck, ROL inputs is an xml file containing inputs to
ROL, and the --beta flag is required. Among the inputs contained in the xml file is the location of
the experimental data file, optimization algorithm inputs, and termination criteria. Example ROL
input files can be provided upon request.

To build Inverse Aria, compile with the following command (e.g. for the release build)

$ bake InverseAria -e release
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An adjoint source term must always be present on all blocks when using adjoint-based gradients.
This is not required for optimization with finite difference gradients such as the Arrhenius source
terms. This term will be zero on the forward solves, and it is filled with the derivative of the
reduced objective function with respect to temperature during the adjoint solves. The adjoint
source term is specified as follows:

Source for energy on all_blocks = Optimization value = 0

Input 2.1. Adjoint source term syntax

A subset of boundary conditions are supported by Inverse Aria. These boundary conditions are no
flux (default), Dirichlet, flux, generalized convection, and generalized radiation. Usage of
boundary conditions outside of these will result in unexpected behavior in the adjoint solve. The
optimization keyword is no longer required for specifying boundary conditions.

Two output files are produced in addition to the normal output from Aria simulations that allow
the user to track the optimizer’s progress. “ROL_Messages.txt” displays optimizer convergence
values at each iteration such as the objective and gradient norms. “DesignVariableIterations.txt”
summarizes the design variable values at each iteration, where the values are tagged by material
or surface names. In the case of heterogeneous material property inversion, the minimum and
maximum values are reported with the material name.

2.2.3. Optimization .xml Inputs for Inverse Aria

In addition to the required parameters for a ROL optimization problem, there are a few Inverse
Aria specific inputs in the “.xml” optimization input file. First, the optimization data file is always
required. It consites of a text file with rows corresponding to individual measurement locations
where the first entry in the row is the node number on the mesh followed by a time history of
experimental measurements separated by commas. The syntax for pointing Inverse Aria to this
file is shown in Input 2.2.

<ParameterList name="Problem Data">
<Parameter name="Data File" type="string" value="data_file.txt" />

</ParameterList>

Input 2.2. Problem data file

Regularization methods can improve the stability of the inverse problem. Currently, Tikhonov
regularization is available in Inverse Aria, and it is activated by adding an “Inverse Aria”
parameter list with the regularization weight(s) to the “.xml” optimization input file. Examples
are shown for a single design variable problem and multi-design variable problem by Inputs 2.3
and 2.4 respectively.
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<ParameterList name="Inverse Aria">
<Parameter name="tikhonovParameter" type="double" value="500.0" />

</ParameterList>

Input 2.3. Single design problem regularization input

<ParameterList name="Inverse Aria">
<ParameterList name="tikhonovWeights">
<Parameter name="Material" type="double" value="2.0" />
<Parameter name="Flux" type="double" value="10.0" />
<Parameter name="GapConductance" type="double" value="5.0" />

</ParameterList>
</ParameterList>

Input 2.4. Multi-design problem regularization input

2.3. Inverse Problems

The chapter covers the current capabilities of Inverse Aria with examples of the required inputs.
The problems covered are thermal conductivity inversion, steady boundary heat flux inversion,
contact resistance inversion, and Arrhenius source term inversion with finite difference gradients.
The input decks and meshes for the examples can be found at
docs/fused/InverseAria/Examples.

2.4. Thermal Conductivity

An example use case for thermal conductivity inversion can arise in situations where two
materials are joined together by some sort of adhesive and the quality of the bond is unknown. A
simplified example is shown in Figure 2-11, where two cylinders are joined by a thin material of
unknown thermal conductivity. The domain is modeled as 2D axi-symmetric with a heat flux
applied to the outside of the outer cylinder and temperature measurements are only available at
this outer surface. In this example, synthetic data at each surface node were generated from an
Aria simulation with specified thermal conductivities in the joining layer.

There are two options in the material specification when inverting for thermal conductivity.
Choosing homogeneous will result in inverting for a single thermal conductivity value for the
entire material, whereas using heterogeneous will invert for a thermal conductivity value for every
element with that material. the syntax for a homogeneous thermal conductivity inversion problem
is

Begin Aria Material MatA
Density = Constant rho = 2702.
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Figure 2-11. – Domain of the example thermal conductivity inverse problem.

Specific Heat = Constant cp = 903.
Thermal Conductivity = Optimization type = homogeneous k = 300
Heat Conduction = Basic

End Aria Material MatA

Input 2.5. Homogeneous thermal conductivity inversion

and a heterogeneous problem is defined by

Begin Aria Material MatA
Density = Constant rho = 2702.
Specific Heat = Constant cp = 903.
Thermal Conductivity = Optimization type = heterogeneous k = 300
Heat Conduction = Basic

End Aria Material MatA

Input 2.6. Heterogeneous thermal conductivity inversion
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The user has the option to provide lower and upper bounds for the design variable on the thermal
conductivity line with the keywords lower_bound and upper_bound and values separated by
equals signs.

A simple example can be found at Examples/Thermal_Conductivity/Homogeneous_1_Block.
The key files are:

• layered_2D_inv.i - Inverse Aria input deck

• inverseInput.xml - ROL input parameters

• layered_2D_data.txt - Synthetic temperature data

• layered_2D.i - Aria input deck for generating synthetic data

• layered_2D.jou/g - Mesh journal file and genesis file

In this example, a 500 kW/m2 heat flux is applied to the outside of the cylinder, and the thermal
conductivity of the joining layer is treated as homogeneous. The inverse solution is found quickly
for this simple problem as shown by the objective function and gradient norm in Figure 2-12.

Figure 2-12. – Objective function and gradient norm at each iteration of the optimizer.

2.5. Steady Boundary Heat Flux

To invert for a steady heat flux on a surface, the “Optimization_Design” keyword is used.

BC Flux for Energy on surface_2 = Optimization_Design value = -1e6

Input 2.7. Steady heat flux inversion
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The example problem is composed of three materials with different material properties and a
steady flux on the right half of the top surface as shown in Figure 2-13 (left). Material A is a
conductive material, and materials B and C represent different internal layers with varying
material properties. In real experiments, data may only be available on one surface of the test
article, and for this example synthetic data are generated at the nodes along the bottom surface.
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B C
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Figure 2-13. – Domain of the example heat flux inverse problem (left) and residuals for the inverse
problem (right).

For the inverse problem we imagine a scenario where the heat flux along the entire top surface is
unknown, and we search for the fluxes on the left and right halves of the top surface (i.e. two
design variables). In the example input deck (Examples/Heat_Flux/Steady/layered_2D_inv.i), we
set an initial guess of 5 kW/m2 on both halves and the optimizer quickly finds the solution
(Fig. 2-13 right) of 30 kW/m2 on the top right half of the domain. The values of the heat fluxes at
the top surface can be viewed in the heartbeat file: layered_2D_flux_inv.txt.

2.6. Transient Boundary Heat Flux

Reconstructing an unknown transient heat flux can be accomplished in a variety of ways that all
require the specification of a functional dependence of the heat flux on time. In the present
formulation, the heat flux is modeled as a piecewise linear function between a set of
user-specified times. Two options are available for specifying these times: constant time intervals
and arbitrary time points.

To use constant time intervals, the “num_times” keyword is added to the boundary condition
specification.

BC Flux for Energy on surface_2 = Optimization_Design $
value = -1e6 num_times = 2

Input 2.8. Transient heat flux inversion with constant time intervals
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In this example input line, the total simulation time is divided in to two equal intervals with three
design variables (unknown heat fluxes) located at time 0, one half the simulation time, and the
final simulation time. For example, if the total simulation time is 300 seconds and the user selects
“num_times” = 2, the transient heat flux will be reconstructed at 0 s, 150 s, and 300 s with
piecewise linear functions between each of these points. The initial guess for the optimization
problem is a constant heat flux specified with the “value” keyword.

If the user desires more control over the specific time points and initial guess for the heat flux,
they can use a tabular user function. This input syntax will be familiar to current Aria users, as it
is commonly used to specify time varying boundary conditions or temperature dependent material
properties. The syntax for the boundary condition line is as follows

BC Flux for Energy on surface_2 = Optimization_Design_User_Function $
NAME = input_flux X = time

Input 2.9. Transient heat flux inversion with time intervals specified by a user function

This requires the specification of a user function in the Sierra domain of the input file. The name
of this function must match the name in the boundary condition line (“input_flux” in this case).

BEGIN DEFINITION FOR FUNCTION input_flux
type is piecewise linear
begin values

# t(s), W/m2
0 -2.0e4
200 -1.0e5
300 -5.0e4

end values
END DEFINITION FOR FUNCTION

Input 2.10. Transient heat flux inversion user function example

In the function above, the optimizer will invert for the heat flux at times 0 s, 200 s, and 300 s
using the values provided in the table as the initial guess.

An example transient heat flux inverse problem was created based on the steady heat flux
simulation in Section 2.5. This example uses the same geometry, heat flux location, and
temperature measurement locations on the bottom of the domain as the steady heat flux example.
Synthetic temperature data is generated using a heat flux profile that begins at 50 kW/m2 and
remains constant for 60 seconds (Fig. 2-14 left). The heat flux then decreases linearly to 0 kW/m2

over the next 40 seconds and remains at zero until the end of the simulation time.

The time interval for the inverse solution of the heat flux was set to 20 seconds, and the initial
guess was set at 10 kW/m2 for 100 seconds decreasing to 0 kW/m2 at 120 seconds as seen in
Figure 2-14 left. It is important to note that the time intervals are informed by the heat conduction
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time between the heated surface and the measurement locations. This heat conduction time is
modeled as t = δ2/α, where δ is the distance between the heat must travel and α is the thermal
diffusivity of the material. For the thermally “closest” thermocouple to the surface in this
geometry, the heat conduction time is approximately 9 seconds. This is effectively a lower limit
on the fidelity of the transient reconstruction as there is insufficient information to resolve smaller
times.
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Figure 2-14. – Transient heat flux with inverse solution (left) and residuals for the inverse problem
(right).

Figure 2-14 right shows the objective function and norm of the gradient versus optimization
iteration. Note that after a large initial decrease in the objective function and gradient, several
iterations are required to reach the “true” synthetic solution due to the loss of thermal information
as heat diffuses from the heated surface to the temperature measurement locations.

2.7. Thermal Contact Resistance

Thermal contact resistance is used to model is used to model resistance to heat transfer across a
gap between two materials in contact. This interaction is a function of multiple properties such as
material hardness, surface finish, interstitial material, etc. The reader is directed to the Aria User
Guide for a detailed description of the numerical implementation of this model [16].

Currently, three enforcement options for thermal contact resistance are available in Aria:
CONDUCTANCE, CONTACT_RESISTANCE, and GAP_CONDUCTANCE. Of these, CONDUCTANCE and
CONTACT_RESISTANCE are supported by Inverse Aria. The design variable is specified by the gap
conductance coefficient, which is the inverse of the contact resistance. This is done in the
enforcement block of the contact definition in the Aria input file with the “Optimization” keyword
as follows, where the “value” is set to the initial guess for the optimization problem.
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Begin Enforcement enf_1
Enforcement for Energy = Conductance
Gap Conductance Coefficient = Optimization value = 100

End Enforcement enf_1

Input 2.11. Gap conductance coefficient design variable specification

An example is provided in Examples/Contact_Resistance. The domain consists of an 2D
axi-symmetric cylinder where two materials are in contact, but the contact at different sections of
the material interface is uncertain. One could imagine a scenario where two materials are bound
together similar to the example in Section 2.4, where the interface is instead represented by
thermal contact boundaries. In this example, we choose three surfaces to have unknown contact
as highlighted in Figure 2-15 (left), with a heat flux applied to the outside of the cylinder and
temperature measurements along the central axis and outside surface. We generate synthetic
temperature data with Aria and defined thermal contact resistances and use this to solve the
inverse problem with an initial guess of 100 W/m2/K for the conductance at each interface.
Inverse quickly finds the synthetic conductance values in 9 iterations as shown in Figure 2-15
(right).
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Heat Flux

Figure 2-15. – Domain of the example contact resistance inverse problem (left). Contact arrow colors
correspond to line colors in the plot of design variable progress at each optimization iteration (right).
Dashed lines indicate the “true” values used to generate synthetic temperature data.
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2.8. Arrhenius Source Terms with Finite Differences

The reaction source term inversion feature differs from the other inverse problems in that it uses
finite differences and not adjoint solves to compute gradients of the objective function. This
requires less modification of the input file for inverse problems, but the inverse solution suffers
from the lack of adjoint-based gradients. This feature has been primarily implemented as a
stepping-stone towards adjoint solves with reaction source terms in Inverse Aria.

The Arrhenius form of a reaction is given as

k = Ae−Ea/RT (2.1)

where the rate constant (k) is a function of the pre-exponential factor (A), activation energy (Ea),
ideal gas constant (R), and temperature (T ). Typically, calibration of reaction models involves
searching for an A and Ea that fit experimental calorimetry data. Other parameters such as the
heat of reaction and concentration function are also candidates for inversion.

Inverse Aria currently supports inversion for A and Ea for an arbitrary number of reactions using
the following syntax in the General Chemistry block.

Begin Optimization Reaction_Name
Optimize = A log_transform = true
Optimize = Ea lower_bound = 1 upper_bound = 1e10

End

Input 2.12. Reaction source term inversion

In this example syntax, Reaction_Name must match the name of the reaction block with
unknown parameters. Initial guesses are set in the reaction block and the rate function must be
Arrhenius. The user can specify A and/or Ea as design variables with the Optimize = command.
Providing lower and upper bounds on the potential values for the design variable are optional.
Log transforming the design variable before sending it to ROL is also optional, with the default
being false.

Unlike problems that use adjoint-based gradients, solving a problem with finite differences does
not require modification of the boundary condition specification or the addition of an adjoint
source term in the input file. Only the optimization block must be provided by the user in the
General Chemistry block of the Aria input file. Additionally, the ROL input file must have the
following line to enable finite difference gradients

<Parameter name="Use FD Gradient" type="bool" value="true" />

Input 2.13. Switching to finite difference gradients in the ROL input file

The user is directed to the regression test suite (InverseAria_rtest) for examples with one and two
reactions (inverseProblems/one_rxn_one_param and inverseProblems/two_rxn_two_param).
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3. Optimal Experimental Design

3.1. Introduction to InverseOED

Inverse Optimal Experiment Design (InverseOED) is a massively parallel, nightly tested,
physics-agnostic Sierra app that rapidly optimizes sensor locations in order to minimize targeted
forms of uncertainty in the types of experiments used to estimate hidden parameters. In other
words, InverseOED performs sensor placement optimization for inverse problems.

Inverse problems and experiments are inherently coupled since it is often difficult to directly
measure the required quantities of interest and because the measured data is restricted to a small
subset of the spatial domain. Many experiments aim to estimate unknown parameters or boundary
conditions from a finite set of discrete measurements using an inverse problem. For example, in
acoustics vibration tests, the loudspeaker inputs that are needed to excite a structure to emulate a
flight environment are estimated via a frequency domain inverse problem.

InverseOED is based on the classical OED theory for linear inverse problems. The theory
includes additive noise models and uses the covariance of the estimated model parameters to
quantify the suitability of an experiment design. In general, an optimal design is a solution to the
optimization problem

q∗ ∈ argmin
q

Ψ(C(q)), (3.1)

where Ψ is a scalar function acting on matrices, C is the covariance matrix associated with the
estimated parameters, and q are candidate sensor weights. One can interpret the optimal design as
the design that minimizes uncertainty in the estimated parameters. An equivalent interpretation is
that the optimal design maximizes sensor information.

InverseOED provides a variety of objective functions and options so that the optimal design is
catered to the experimenter’s needs. For example, InverseOED provides different scalar functions
Ψ, called optimality criteria, that result in different measures of uncertainty such as average
prediction variance, maximum prediction variance, and average parameter variance. There are
also options for controlling the robustness of an experiment design using risk-adapted optimality
criteria. Finally, InverseOED also provides mechanisms for enforcing total sensor budgets,
enforcing fixed sensor locations, and placing multi-measurement devices such as triaxial
accelerometers.

3.2. Input Deck Introduction

The input deck is an XML formatted file (.xml) that is used to specify the optimality criterion, the
transfer matrix, and the parameters of the optimization algorithm. This section explains the input
deck parameters needed to run InverseOED.

XML files have parameter lists and parameters. The syntax for a parameter list and parameter are
given below.
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〈 ParameterList name="List Name"/〉
〈 Parameter name="name" type="string/int/bool/double" value="value" 〉

〈/ ParameterList〉

For the remainder of the document, we will remove the angular brackets and the type for
convenience and space.

All input decks must have a ParameterList name = "Inputs" at the beginning that encompasses
all the parameters the user wishes to pass to the algorithm.

ParameterList name = "Inputs"
User provided parameters

ParameterList

3.3. ParameterList: OED

The solution of the OED depends on the optimality criterion selected. This is specified with the
Optimality Type parameter within the OED parameter list as shown below.

Input Deck: OED
ParameterList name="OED"

Parameter name="Optimality Type" value="A/B/C/D/I/R/E"
ParameterList

For the gradient-based optimization algorithm, the user can choose between A, C, D, I and R. D
and E are available for the greedy algorithm, which is discussed in greater detail in section 3.6.
Table ?? provides a brief description for each criterion. The theory documentation describes each
optimality criterion in greater detail.

Criterion Ψ(C(p)) Description
A Tr(C) Average estimation variance (MSE)
C vTCv Variance of v ∈ ℜm times the estimator
D det(C) Volume of the uncertainty ellipsoid
I E[hTCh] Average prediction variance (MSPE)
R AVaRβ[hTCh] Tail average prediction variance for β ∈ [0, 1]
E max(λ(C)) Maximum eigenvalue

Table 3-20. – Optimality Criteria: C ∈ ℜmxm is the covariance matrix of the design parameters.

3.3.1. Initial Design

By default, the initial design weights are equal across all candidate sensors. If desired, the user
can specify the initial design weights, which may be useful if the user wants to warm start the
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algorithm at a set of specified weights or if an optimization run terminated early and a restart is
needed.

• Uniform Initial Guess: If true, then the initial weights at each sensor are equal. If false,
then an initial design guess must be provided. Default value is true.

• Initial Design Guess: A user specified text file containing the initial weights on each
sensor. This file will have the same format as a resulting optimal design text file. See
section 3.5 for a description of the results file format. This option can be used to restart an
optimization problem if the previous optimization algorithm terminated early. Note that the
sum of the weights should equal one.

Input Deck: Initial Design
ParameterList name="OED"

Parameter name="Uniform Initial Guess" value="true"
Parameter name="Initial Design Guess" value="initial.txt"

ParameterList

3.3.2. Baseline sensors

The user can specify a set of sensors that must be included in the final sensor design. This option
is available for both the greedy and Rapid Optimization Library’s (ROL) gradient-based OED
algorithms. In terms of the algorithm, the transfer matrix degrees of freedom associated with the
fixed sensor set is always included in the covariance calculation. The algorithm optimizes only
the excluded set of sensors. To enable this feature, the user needs to specify a list of indices
corresponding to the rows of the transfer matrix via a text file. This file must begin with the total
number of baseline sensors followed by the indices. These indices are written for C++, so 0
indicates the first sensor. The list is provided to the xml file via the following parameter sublist:

Input Deck: Baseline Sensors
ParameterList name = "OED"

Parameter name = "Use Baseline Sensors" value = "true"
Parameter name = "Baseline Sensors File" value = "baseline.txt"

ParameterList

The following example baseline sensor text file includes three total sensors: the fourth (3), first
(0), and seventh (6) sensor.

Example Baseline Sensor File
3 // Total number of sensors
3
0
6
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3.4. ParameterList: Linear Model

Currently, optimal experiment design assumes a linear regression model. In other words, there
exists a matrix H(q) ∈ Cn×m that maps the design parameters of interest θ(q) ∈ Cm to the
measured response data y(q) ∈ Cn, where m represents the number of design parameters and n
represents the number of measurement locations. We refer to the linear operator H as a transfer
matrix. The modal matrix used for modal expansion, the frequency response function for
frequency domain control problems, or the convolution matrix for time domain control problems
are a few common examples of the transfer matrix.

The simplest case is where each row of the transfer matrix corresponds to a single candidate
sensor and correspondingly a sensor weight. The more complex case is when there are multiple
observations of the data at a single sensor location. For example, in the frequency domain the
number of observations is equal to the number of frequency lines.

The transfer matrix is provided in the Linear Model parameter list. There are three options for
parsing the transfer matrix based on the domain type.

• General: Any transfer matrix can be specified using the general framework

• Frequency Domain: Specific to the frequency domain where the response at each
frequency line is independent

• Time Domain: Specific to the time domain where the response at each time step is
dependent

The following sections describes each domain type and the associated input deck.

3.4.1. General Framework

The user must write the transfer matrix to a .txt file. In the general framework, the user provides a
transfer matrix text file, a transfer matrix dimension file, and specifies the number of models
where models indicates the number of observations per sensor.

Input Deck: General Domain
ParameterList name="Linear Model"

Parameter name="Domain Type" value="General"
Parameter name="Number of Models" value="2"
Parameter name = "Transfer Matrix" value = "transferMatrix.txt"
Parameter name="Transfer Matrix Dimension" value = "tmDimFile.txt"

ParameterList

Further details on each parameter:
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• Transfer Matrix: User provided transfer matrix text (.txt) file that contains the full transfer
matrix.

• Transfer Matrix Dimension: User provided transfer matrix dimension text (.txt) file. The
first and second entry are respectively the total number of rows and columns of the full
transfer matrix.

• Number of Models: Total number of possible measurements at a sensor. For a frequency
domain problem, this value is the total number of frequencies, and in the time domain, the
total number of time steps. The user should check that the total number of rows of the
transfer matrix divided by the specified Number of Models is equal to the number of
possible sensors.

For example, consider a frequency domain problem with real valued (no-imaginary part) transfer
matrices. Let n0 be the number of frequency lines. The full transfer matrix will have n * no rows
and m * no columns. The format of the transfer matrix is as follows:

H =


H(ω1) 0 · · · 0

0 H(ω2) 0 · · 0
· 0 · ·
· · · ·
· · · 0
0 0 · · 0 H(ωno)


where H(ωi) is the frequency response function (FRF) at frequency ωi. Again H(ωi) has n rows
for the n sensor locations, and m columns for the number of design parameters associated with the
ith frequency. The rows and columns of H(ωi) must be ordered consistently for each frequency,
and the number of sensors and number of parameters must be equal for all frequencies. Note that
the full transfer matrix H is block diagonal since the measured response at ωi is independent of
parameters of ω j for i ̸= j. This format becomes more complex if H(ωi) is complexed value. In
that case, H(ωi) contains both the real and imaginary parts in the following block form.

H =

(
HR −HI
HI HR

)
where HR is the full transfer matrix containing the real part, and HI contains the imaginary part.

3.4.2. Frequency Domain

To avoid the parsing confusion for a complex-valued frequency domain transfer matrix, we
provide a simpler parsing interface where the user only needs to specify the real part of the
transfer matrix and the imaginary part as two separate files in the following format:
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H =


H(ω1)
H(ω2)

·
·
·

H(ωno)


Instead of providing a transfer matrix dimension file, the dimensions of the transfer matrix are
provided in the Linear Model parameter list as shown below. If there is no imaginary component
then set the Complex Valued parameter to false. The user can also use the frequency domain
parser to parse a transfer matrix that has only a single observation, such as the case of the modal
matrix, by setting the Number of Frequencies equal to one.

Input Deck: Frequency Domain

ParameterList name = "Linear Model"

Parameter name = "Domain Type" value = "Frequency"

Parameter name = "Number of Parameters" value = "3"

Parameter name = "Number of Outputs" value = "10"

ParameterList name = "Frequency Domain"

Parameter name = "Complex Valued" value = "true"

Parameter name = "Number of Frequencies" value = "2"

Parameter name = "Real Frequency Response Function" value = "realf"

Parameter name = "Imaginary Frequency Response Function" value = "imagf"

ParameterList

ParameterList

3.4.3. Time Domain

The third parsing option is for time domain type problems. When the transfer matrix is a function
of time, the user specifies the impulse response for each parameter-output combination. The
Domain Type option should be set to Time. By doing so, the code internally converts the impulse
responses into a convolution matrix which takes a Hankel matrix form. The number of models
will be equal to the total number of time steps. The time domain transfer matrix takes the
following form:

H =


H(t1)
H(t2)
·
·
·

H(tno)


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where H(ti) ∈ ℜnxm is the impulse response at the ith time step between the m parameters and n
outputs (the measurement locations). For example, the first row of H(ti) is the response at t = i at
outputs 1...m due to a delta function at the first parameter.

Input Deck: Time Domain
ParameterList name = "Linear Model"

Parameter name = "Domain Type" value = "Time"
Parameter name = "Number of Models" value = "2"
Parameter name = "Transfer Matrix" value = "matrix.txt"
Parameter name = "Transfer Matrix Dimension" value = "dimFile.txt"

ParameterList

Time domain inverse problems typically have hundreds of thousands of time steps, which appear
as observations in the OED app. The current version of the InverseOED app struggles with a large
number of observations due to the significant computational demand. We typically do not
recommend solving time domain OED problems with this app.

Time domain problems may be too computationally costly for the OED app.

3.5. Executing InverseOED and Results

3.5.1. InverseOED executable

To execute the InverseOED app, type the following in the command line:

mpirun -np numProcs oed_inverse -opt inputXML.xml

NumProcs is the number of processors used for parallel runs and inputXML.xml is the xml file
which contains the user specified options.

3.5.2. Parallel Runs

InverseOED splits the number of processors between algebraic operations for design variables
(sensor weights) and the stochastic objective function evaluations. InverseOED automatically
selects a reasonable processor configuration for each type of OED problem. In some cases, the
user can improve the algorithm’s performance by playing around with the Number of Design
Processors value, however the default tends to render sufficient performance.

The user specifies which fraction of processors are devoted to algebraic operations as follows:
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Input Deck: Processors
ParameterList name = "Problem"

ParameterList name = "Design"
Parameter name = "Number of Design Processors" value = "4"

ParameterList
ParameterList

For example, if Number of Design Processors is set to 5, and there are 60 processors, then 12
processors are devoted to the objective function and each of the 12 has 5 processors devoted to
algebraic operations. We recommend that Number of Design Processors roughly be 10 percent of
the total number of processors.

3.5.3. Results

After the optimization algorithm converges 3 (4 for I optimality) text files are outputted to the
current directory. I_optimal_design_final.txt contains the solution to the OED on the first
processor. The first column corresponds to the sensor label. This label is ordered consistently
with the order in which sensors appear in the transfer matrix. Columns 2 and 3 can be ignored.
Column 4 represents the probability measure of that sensor location. For a fully converged
solution where the optimization constraints are met, this value is between 0 and 1. The sum of all
probabilities equals 1. The probability measures can be interpreted as the percentage that the
sensor should be experimentally sampled. The candidate sensors with weights that are non-zero
should be selected for the experiment design.

If InverseOED is ran in parallel then numProcs total number of I_optimal_design files are printed
and concatenated into I_optimal_design_final.

The user can also specify the tail of the file outputs generated from the greedy algorithm as shown
below.

Input Deck:Output File Tail
ParameterList name = "Inputs"

Parameter name = "Output File Tail" value = "userDefinedTail"
ParameterList

3.6. Greedy Algorithm

The default OED algorithm in InverseOED is ROL’s convex optimization algorithm. This
algorithm may not be suitable if the user needs to constrain the final design by a total sensor
budget. In order to enforce a total sensor budget, InverseOED offers a greedy optimization
algorithm that strictly enforces the sensor budget. Greedy optimization is a heuristic approach
that does not guarantee the solver reaches the global optimal solution. However, the optimality
criteria that are available for Greedy are submodular or near-submodular, which guarantees that
the greedy solution will be close to optimal.
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The greedy algorithm is available for the D-criterion and E-criterion. The E-criterion is the
maximum eigenvalue of the covariance matrix and is only available for the greedy algorithm. In
order to run the greedy algorithm, the user provides the following parameters to the input deck:

Input Deck: Greedy
ParameterList name = "Inputs"

Parameter name = "Use Greedy Method" value = "true"
ParameterList

The total sensor budget is specified in the greedy parameter list as follows:

Input Deck: Greedy
ParameterList name = "Greedy"

Parameter name = "Budget" value = "5"
ParameterList

3.6.1. Multi-axis sensor placement (Original Version)

There are two ways to specify multi-axis sensor placement. This section is the original
method, maintained for backwards compatability. However, we recommend the new ver-
sion, section 3.6.2, which also support mutliple sensor types and multiple budgets.

The greedy algorithm in InverseOED is capable of optimizing multi-axis sensors such as triaxial
accelerometers.

The user provides a map between the rows of the transfer matrix and an unique sensor label. The
first row is the total number of sensors. The number of rows (not including the first row) should
be equal to the total number of rows of the transfer matrix. Here is an example of a triaxial sensor
mapping (3 degrees of freedom (DoFs) per unique sensor):

Example Transfer Map File
3 // Total number of sensors
0
0
0
1
1
1
2
2
2

In the above example, there are 3 total sensors where DoFs 1–3 correspond to sensor 1, DoFs 4–6
correspond to sensor 2, and DoFs 7–9 correspond to sensor 3. Finally, the user specifies the
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multi-axis option and the transfer map file in the xml under the Linear Model sublist as shown
below

Input Deck: Multi-axis Sensors
ParameterList name = "Linear Model"

Parameter name = "Use Transfer Map" value = "true"
Parameter name = "Transfer Map File" value = "transferMap.txt"

ParameterList

3.6.2. Multiple Budgets and Multiple Sensor Types

The greedy algorithm supports the optimization of multiple sensor types. For example, this
method can optimize triaxial and uniaxial sensors simultaneously. The method supports either
one total sensor budget or multiple sensor budgets: one budget for each sensor type. If one budget
is specified, the algorithm optimizes all sensor types until the total sensor budget is satisified. If
multiple budgets are specified, then the algorithm runs until each sensor budget is satisified.

We will use the following keywords throughout this section of the user manual:

• Sensor Label: An integer representing the sensor type. For instance, uniaxial sensors are
labeled as 0, and triaxial sensors as 1.

• Sensor ID: A unique integer assigned to each sensor, ranging from 0 to N, where N is the
total number of candidate sensors.

• Transfer Indices: The rows of the transfer matrix to which a sensor is mapped. For
example, a triaxial sensor might correspond to indices 10, 11, 12, while a uniaxial sensor
might map to index 10.

In summary, the user needs to provide the following information in order to solve multiple sensor
budget problems:

• A unique sensor label that identifies the type of sensor. This can be done via the Sensor
Labels xml parameter.

• For each candidate sensor, a unique sensor ID and its mapping to the transfer matrix
indices. This can be specified using the Transfer Map File xml parameter

• A budget for each unique sensor label. These budgets should be provided as a list using the
Budgets xml parameter list.

Multi-Budget: Sensor Label Specification

When using multiple budgets, a sensor labels file must be provided in the Greedy xml sublist as
shown below.
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Input Deck: Sensor Labels
ParameterList name = "Greedy"

Parameter name = "Sensor Labels" value = "sensor_labels.txt"
ParameterList

The first line of the sensor labels file specifies the total count of candidate sensors. Following this,
each line contains a sensor label, indicating the sensor type, with each line corresponding to a
unique sensor ID. In the provided example, there are three triaxial sensors labeled as 0 and two
uniaxial sensors labeled as 1, making a total of five candidate sensors.

The sensor labels file structure is as follows.

Example Sensor Labels File
5 // Total Candidate Sensors
0 // ID = 0, Label = 0 (Tri)
0 // ID = 1, Label = 0 (Tri)
0 // ID = 2, Label = 0 (Tri)
1 // ID = 3, Label = 1 (Uni)
1 // ID = 4, Label = 1 (Uni)

It is important to note that sensor labels cannot be arbitrary integers. The first sensor type must be
zero, and each subsequent sensor type should be assigned the next consecutive integer value (e.g.,
one, two, three, and so on).

Multi-Budget: Transfer Map Specification

The transfer map file links each sensor ID to specific rows in the transfer matrix (indices). The
original transfer map format is still compatible for single sensor/budget scenarios (see section
3.6.1). However, the following new format must be used for multiple budget problems. In
addition, we recommend this new format for single budget problems as well.

The new transfer map file format is as follows. The first line indicates the total number of
candidate sensors. An error occurs if this count mismatches the number provided in the sensor
labels file. Each following line represents a candidate sensor. The first column represents the
unique sensor ID (ranging from 0 to N, where N is the total sensor count), followed by n columns
of transfer map indices.

Let’s provide an example. Consider a structure with two possible sensor locations, each with
three measurable directions (DoFs). The goal is to optimize a combination of triaxial sensors and
uniaxial sensors. In this example, assume that the uniaxial sensors can only measure the
x-direction. There are four candidate sensors: two triaxial sensors, and two uniaxial sensors. Let’s
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assume the rows of the transfer matrix H are ordered as

H =


Node 1, DoF x
Node 1, DoF y
Node 1, DoF z
Node 2, DoF x
Node 2, DoF y
Node 2, DoF z


Then in this example, the transfer map is given by

Example Transfer Map File
4 // Total Candidate Sensors
0 0 1 2 // Node 1, Dofs x,y,z
1 3 4 5 // Node 2, Dofs x,y,z
2 0 // Node 1, Dof x only
3 3 // Node 2, Dof x only

The corresponding sensor labels would look like

Example Transfer Map File
4
0
0
1
1

Now consider a second example where the candidate uniaxial sensors could measure any of the
three directions. In this example, the transfer map file would look like

Example Transfer Map File
8 // Total Candidate Sensors
0 0 1 2 // Node 1, Dofs x,y,z
1 3 4 5 // Node 2, Dofs x,y,z
2 0 // Node 1, Dof x only
3 3 // Node 2, Dof x only
4 1 // Node 1, Dof y only
5 4 // Node 2, Dof y only
6 2 // Node 1, Dof z only
7 5 // Node 2, Dof z only

and the corresponding sensor labels are given as

Example Transfer Map File
8
0
0
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1
1
1
1
1
1

Multi-Budget: Overlapping Nodes

By default, the greedy algorithm does not select two sensors with overlapping dofs. This
implemenation prevents the algorithm from placing a uniaxial sensor and triaxial sensor at the
same location. Consider the previous example. If the algorithm selects the triaxial sensor with ID
1, which measures dofs 3, 4, 5, then the uniaxial sensors with IDs 3, 5, 7 will not be selected. To
turn off this behavior, set Allow DOF Overlap to true.

Input Deck: Sensor Overlap
ParameterList name = "Greedy"

Parameter name = "Allow DOF Overlap" value = "true"
ParameterList

When Allow DOF Overlap is true, then the algorithm can select two sensors that share DoFs.

Multi-Budget: Budget Specification

We use the Multiple Budgets parameter list to specify a sensor budget for each sensor type. The
budget label corresponds to the sensor label provided in the sensor label file.

Input Deck: Multiple Budget
ParameterList name = "Budgets"

Parameter name = "Sensor Type 0" int = "3"
Parameter name = "Sensor Type 1" int = "2"
...
Parameter name = "Sensor Type N" int = "n"

ParameterList

3.6.3. Greedy Mean Squared Error Objective Functions

In addition to the classical alphabet criteria, the greedy algorithm also supports mean squared
error (MSE) and mean squared prediction error (MSPE) objective functions.

MSE and MSPE are currently enabled for the Greedy algorithm ONLY.
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The MSE objective function is specified using the OED parameter list. MSE is computed in a
Monte Carlo fashion by sampling two random variables. The first is a prior distribution on the
inverse problem solution. The second is an additive measurement noise term. The additive noise
is an IID Gaussian with zero mean and variance provided by the user. The objective and variance
are specified in the XML file as shown below.

Input Deck: OED MSE
ParameterList name = "OED"

Parameter name = "Optimality Type" value = "MSE"
Parameter name = "Noise Variance" value = "1.0"

ParameterList

The solution prior is specified as a list of samples under the Sampler parameter list. The sample
files are provided in a sampler parameter list. The user specifies the total number of samples,
which must be equal to the total number of rows in the sample file. The user also specifies a
weights file, which can simply be one column of ones with a total number of rows equal to the
total number of samples. This file is currently ignored, but still must have consistent dimensions.
If the samples are complex then two files are provided: one for the real part and another for the
imaginary part. The sampler parameter list is shown below.

Input Deck: MSE Sampler
ParameterList name = "Sampler"

Parameter name = "Type" value = "User Defined Complex"
Parameter name = "Number of Samples" value = "# of Samples"

ParameterList name = "User Defined Complex"
Parameter name = "Points File Real" value = "realSamples.txt"
Parameter name = "Points File Imag" value = "imagSamples.txt"
Parameter name = "Weights File" value = "weights.txt"

ParameterList
ParameterList

Let’s provide some additional details for the sample text files. The total number of rows of the
sample list corresponds to the number of prior samples. Each row of the samples file corresponds
to a single realization of the prior with n total columns, where n is the number of unknown
parameters. In other words, n is the total number of columns of the provided transfer matrix. If
the problem contains multiple observations (e.g. multiple frequencies for frequency domain type
problems), then the number of columns is equal to the number of observations times the number
of parameters. For example, consider a source inversion problem in the frequency domain with
three unknown source locations and two frequencies. Let x(k)i j represent a sample where i
corresponds to the ith source location, j corresponds to the jth frequency, and k corresponds to the
kth sample. N is the total number of samples. Then the sample file takes the following form:

X =

 x(1)11 x(1)21 x(1)31 x(1)12 x(1)22 x(1)32
...

x(N)
11 x(N)

21 x(N)
31 x(N)

12 x(N)
22 x(N)

32

 .
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The MSPE objective function targets prediction error. The MSPE objective is enabled in a similar
fashion to the MSE objective,

Input Deck: OED MSPE
ParameterList name = "OED"

Parameter name = "Optimality Type" value = "MSPE"
Parameter name = "Noise Variance" value = "1.0"

ParameterList

Additionally, the user can specify specific degrees of freedom (DoFs) to compute the MSPE
objective at. The specified DoFs are provided as a text file through the following parameter list
interface.

Input Deck: MSPE Prediction Dofs
ParameterList name = "OED"
Parameter name = "Optimality Type" value = "MSPE"
Parameter name = "Noise Variance" value = "1.0"
ParameterList name = "MSE"
Parameter name = "Use Prediction Dofs" value = "true"
Parameter name = "Prediction Dofs File" value = "predDofs.txt"
ParameterList

ParameterList

In the prediction DoFs file, each listed index corresponds to a row in the transfer matrix. The
index corresponding to the first row of the transfer matrix is zero. The first row of the prediction
DoFs file should be the total number of prediction DoFs.

Example Prediction DoFs File
4 // Total number of prediction DoFs
0 // 1st row of transfer matrix
3 // 4th row of transfer matrix
10 // 11th row of transfer matrix
53 // 54th row of transfer matrix

Unlike the MSE objective, the MSPE objective can handle a different noise-generating model.
One can provide a second transfer matrix that is used to generate data. The number of parameters
in the data-generating transfer matrix does not need to equal to the number of parameters in the
OED transfer matrix. To specify a data-generating transfer matrix, first indicate the Data Model is
on.

Input Deck: MSPE Data Generating Model
ParameterList name = "OED"

Parameter name = "Optimality Type" value = "MSPE"
Parameter name = "Noise Variance" value = "1.0"
ParameterList name = "MSE"
Parameter name = "Data Model" value = "true"
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ParameterList
ParameterList

With Data Model set to true, the OED algorithm will look for a model labeled Data Model in the
XML file. The Data Model is identical to how we specify the transfer matrix. The number of
outputs and frequencies must match the OED transfer matrix, however the number of parameters
may be different. When data model is on, the parameter provided in the sample list will propagate
through the provided data model. Hence the number of parameters in the data model must be
consistent with the provided parameter samples. An example of the Data Model interface is
shown below.

Input Deck: MSPE Data Model
ParameterList name = "Data Model"
Parameter name = "Domain Type" value = "Frequency"
Parameter name = "Number of Parameters" value = "3"
Parameter name = "Number of Outputs" value = "10"
ParameterList name = "Frequency Domain"
Parameter name = "Complex Valued" value = "true"
Parameter name = "Number of Frequencies" value = "2"
Parameter name = "Real Frequency Response Function" value = "realF"
Parameter name = "Imaginary Frequency Response Function" value = "imagF"

ParameterList
ParameterList

3.7. Source Placement with Greedy

In some cases, the user may wish to optimally select the columns of the transfer matrix. We call
this problem source placement. For example, in multi-axis vibration testing, designers are
interested in placing electrodynamic shakers in order to excite the system of interest.

InverseOED can be used for source placement with the E-criterion and D-criterion objective
functions. Since these objective functions are invariant to the transpose of the transfer matrix,
InverseOED can be used to solve source placement problems.

The app is not specifically setup for source placement. However, one can transform their sensor
placement problem into a source placement problem by providing the app the transpose of the
transfer matrix. When the app parses the provided transposed transfer matrix, it treats the
columns of the (non-transposed) transfer matrix as candidate source locations. Ensure that the
listed outputs and parameters in the xml file reflect the transposed matrix dimensions.

3.8. Robust Model OED

The greedy algorithm also supports multiple models. This feature can be used to optimize a single
set of sensors for multiple models to achieve sensor locations that are robust to expected changes
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in models such as changes to boundary conditions or changes to subassemblies. There are two
Risk Type options to select from: Neutral and Averse. The risk neutral option minimizes the
average D-criteria (or E-criteria) across all models, while the risk averse option minimizes the
maximum D-criteria across all models.

The user specifies the risk type and total number of models in the Greedy sublist as shown
below

Input Deck: Robust Multi-Model OED
ParameterList name = "Greedy"

Parameter name = "Risk Type" value = "Neutral" (Averse)
Parameter name = "Linear Model Total" value = "10"

ParameterList

When multiple models are specified (i.e. Linear Model Total is greater than one), then the user is
expected to provide corresponding Linear Model sublists for each model. These models are
distinguished by appending the sublist with the corresponding number. For example, if the user
lists only two models then the following sublists are needed:

Input Deck: Multi-Model List
ParameterList name = "Linear Model 1"

Provide parameters for linear model one
ParameterList
ParameterList name = "Linear Model 2"

Provide parameters for linear model two
ParameterList

By default, the risk neutral option is used. For frequency domain problems, each frequency is
treated in a manner similar to a model. When risk neutral is used, the algorithm minimizes the
D/E criterion averaged across frequencies. When risk averse is used, the algorithm minimizes the
maximum D/E criterion over all frequencies. Note that this still holds true even for the
deterministic setting when only one Linear Model is provided.
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4. TRACE

4.1. Introduction

TRACE (TRACE Rapidly Acquires Contour Estimates) is currently in beta release and under
active development. The purpose of TRACE is to efficiently estimate inputs to a black box model
(aka high fidelity model) that will result in some failure criterion. For example, these inputs may
be the material characteristics in a structural FEM model and the failure criterion might be
exceeding some internal deformation threshold. We call the hypersurface separating these inputs
from inputs that do not result in failure the ‘decision boundary’. For example, this decision
boundary is given by the dashed line in Figure 4-16, which separates the input combinations that
result in failure (shown in orange) from the input combinations that don’t produce failure (shown
in blue).

Figure 4-16. – Example decision boundary. Orange indicates region of predicted failure.

Currently, TRACE is based on the machine learning technique of support vector machines
(SVMs). See references [1, 2] for details. TRACE efficiently estimates the decision boundary by
actively querying the high fidelity model over multiple iterations, adaptively learning which input
combinations result in the user-defined failure condition and which do not. Read further to learn
the many ways the TRACE algorithm can be adjusted for different use cases.

4.2. Minimal Working Example

The code below provides a minimal working example. There are two required files: the input deck
input.in and the Python implementation (or wrapper) of the high fidelity model in Model.py.
To run the tool, navigate to the directory where the files exist and run the following command:

fused_trace.py -i input.in

A directory called output will be created where the trained classifier (model.pickle), a log file
(trace.log), and other outputs will be saved.
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.
Many users have reported that when running TRACE an error occurs similar to

ModuleNotFoundError: No module named ’Model’

If you encounter this error, a simple fix is to execute

PYTHONPATH="$PWD:$PYTHONPATH"

in the current directory, prior to executing fused_trace.py.

The input deck input.in contains all the configuration details required to run TRACE:

input.in
"background samples" = 5000
"test samples" = 5000
"initial training samples" = 10
"regularization" = 1000.0
"iterations" = 100
"tolerance" = 1e-3

[variables]
"x" = [20, 200, "uniform"]
"y" = [10, 20, "uniform"]

[model]
"file" = "Model.py"

[model.parameters]
"p" = 1,
"L1" = 1,
"L2" = 1,
"u" = 0.1

The Model.py file contains the user-specified high fidelity model which inherits from the
HiFiModel class. The user’s model must implement the predict function.

Model.py
import sys
sys.path.append("path/to/src")

from HiFiModel import HiFiModel

class Model(HiFiModel):
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"""An example high fidelity model for modelling tip displacement
of a rod with two design parameters."""

def __init__(self, parameters):
"""Configure any constant parameters for your model here. You must
accept the parameters variable, even if you don’t use it."""
self.p = parameters["p"]
self.L1 = parameters["L1"]
self.L2 = parameters["L2"]
self.u = parameters["u"]

def predict(self, point):
"""This function accepts a point, and returns 0 or 1 depending
on whether it’s below the acceptable threshold or not."""
disp = self.p * (self.L1 / point[0] + self.L2 / point[1])
return 1 * (disp > self.u)

Rather than call the tool from the command line, users can also call the tool from a Python script.
For example:

import sys
sys.path.append("path/to/src")
from fused_trace import trace

if __name__ == "__main__":
trainer = trace("input.in")

By default, the results of TRACE are stored inside the output directory. This directory contains
the training data that the surrogate used, a pickled version of the surrogate itself, and a log file that
describes TRACE’s progress while training. Users are able to query a set of data points for their
predicted class labels using the trained surrogate. To access the surrogate model trained by
TRACE, run the following command to predict the labels of the samples named dataPoints
stored in input_data.mat:

predict.py -i input_data.mat -m output/model.pickle -n dataPoints

For more information on any of the command line interfaces, run fused_trace.py -h or
predict.py -h.

4.3. Input Deck Format

An input deck is required to configure and run TRACE. The format of the input deck is TOML
(Tom’s Obvious Minimal Language). The general format for specifying a configuration parameter
is
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"option name" = int, float, bool, "str", [list], or {dictionary_key = val}

Strings with spaces in them must be enclosed by single or double quotes. It is recommended
always to enclose strings in quotes to avoid inadvertent errors. Lists use the format typical of
Python lists, with opening and closing brackets and with elements separated by commas.
Dictionaries are similar but use braces in place of brackets. Lists and dictionaries may be nested
and can span multiple lines.

4.3.1. Algorithmic Parameters

Both the required and optional algorithmic parameters must appear at the beginning of the input
deck, before the [variables], [model], and [output] sections.

4.3.1.1. Required
The input deck has several required top-level entries or else the tool will raise an error. These are
given in Table 4-21 and described in detail below.

Parameter Type
background samples int ∈ [1,∞)
test samples int ∈ [1,∞)
initial training samples int ∈ [1,∞)
regularization float ∈ (0,∞)
iterations int ∈ [0,∞)
tolerance float ∈ [0,1]

Table 4-21. – Required Algorithmic Parameters

background samples The number of background samples from which the adaptive training
algorithm draws when selecting new points to train on.

test samples The number of background samples that the adaptive training algorithm uses to
check for convergence.

initial training samples The number of initial training samples that the adaptive trainer attempts
to train on.

regularization The regularization TRACE will use for the SVM classification. The higher this is,
the more the classes will be strictly separable. We suggest using 1000.

iterations The number of maximum iterations TRACE will use for training. If 0, only the initial
samples will be used for training.

tolerance The tolerance used for the convergence criteria. Closer to 0 means more difficult to
converge. We suggest 1e-5.
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4.3.1.2. Optional
In addition to the required top-level input deck parameters, there are several optional top-level
parameters that the user can specify. These are given in Table 4-22 and described in detail
below.

Parameter Type Default
adaptive algorithm str ∈ {"greedy", "basmis"} "greedy"
restart bool false
restart filename str initialTrainingData.mat
save data bool false
saved data filename str trainingData.mat
plot frequency int ∈ [0,∞) 0
num plot steps int ∈ [1,∞) 100
run in parallel bool false
number of processors int ∈ [1,∞) None
use lock bool false
iteration concurrency int ∈ [1,∞) 1
vertex N ×2 list of coordinates in

the input space
None

kernel str ∈ {"linear", "poly", "rbf",
"sigmoid"}

"rbf"

Table 4-22. – Optional Algorithmic Parameters

adaptive algorithm The adaptive learning algorithm TRACE uses.

restart If set to true, TRACE will read in a matlab file and set the initial training points from the
matlab file. If labels are not provided, it will run the HiFi model to ascertain them.

restart filename The name of the matlab file that the restart option uses. The matlab variables
should be

• training (required): N ×M array, N number of points, M dimensions of input
parameter space

• labels (optional): N ×1 array containing labels for the training points. 1 means fail,
0 means pass.

save data If enabled, TRACE will save a file after every training iteration so that one may restart
from it.

saved data filename The name of the file that save data uses.

plot frequency At the end of training, a convergence plot is automatically generated. For cases
with exactly two input parameters, a plot of the decision boundary is also automatically
generated. The user may optionally request that these plots be produced after every Nth

iteration using this option. A value of 0 means only generate plots after training has
completed.
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num plot steps The resolution of the decision boundary plot generated for 2D cases. For N plot
steps, an (N +1)× (N +1) grid is used for plotting. Each axis is divided into the same
number of steps, regardless of the input parameter ranges.

run in parallel If enabled, the multiple points that the adaptive algorithm identifies as the next
training points will be evaluated in parallel rather than one at a time.

number of processors How many processors to use for parallel evaluation of new training
points. If not specified, all available processors will be used. Unused if run in parallel is
not activated.

use lock If activated, pass a multiprocessing.Lock() instance to the user-defined predict()
function. Note that the user-defined predict() function must accept a lock keyword
argument. This may be helpful if there is a risk of race conditions that could adversely
affect the HiFiModel evaluation.

iteration concurrency How many iterations into the future to look when deciding which new
training points to evaluate. A value of 1 means the default sequential adaptive learning.
NOTE: The number of points that get passed to the HiFiModel will vary depending on the
number of classes and the algorithm chosen, but generally grows quite quickly. For
example, using the greedy algorithm with two classes, a concurrency of 1 means 2 points
must be evaluated; a concurrency of 2 means 10 points must be evaluated; a concurrency of
3 means 42 points must be evaluated; a concurrency of 4 means 170 points must be
evaluated.

vertex If supplied, only the polygonal subspace defined by the vertices will be considered when
selecting new training points to evaluate. NOTE: Only supported in 2D and vertices must
be in the correct order.

kernel The kernel used for kernelized SVM. If set to "linear", the classifier is equivalent to a
standard SVM. We strongly recommend the default of "rbf".

4.3.2. Variables

Specifying the variables is required, although it’s done separately from the other options. Under
the [variables] header of the input deck, each line will have a variable, e.g.
var1 = [3, 7, "uniform"] creates the variable var1∼ Uniform[3,7]. The variables have
names, and are ordered from top to bottom when reading in data. That is, order does matter and
the user’s high-fidelity model should expect the variables in the order in which they occur in the
input deck. Each variable consists of a list of three elements: the first distribution parameter, the
second distribution parameter, and the name of the distribution. A list of supported distributions
and their corresponding variables are in Table 4-23.

91



Distribution Variable List
var∼ Uniform[a,b] var = [a,b,"uniform"]
var∼ Normal(µ,σ) var = [µ,σ,"normal"]
var∼ Beta(α,β) var = [α,β,"beta"]

Table 4-23. – Supported Variable Distributions

4.3.3. Model Parameters

It is required to specify the high-fidelity model that will be used by TRACE. Model specification
is done under the [model] header. The full list of model parameters is in Table 4-24.

Parameter Type Required
file str Yes
class str No
parameters dict No

Table 4-24. – Model Parameters

file The file path (relative or absolute) to the model to load.

class The name of the class to import from file. If omitted, defaults to the name of the file.

parameters A dictionary of parameters passed to the model’s initializer. If omitted, defaults to
an empty dictionary. The parameter dictionary is always passed to the model’s initializer
(even if it’s not specified) so the model’s initializer should always except an input
parameters dictionary even if it’s not used.

4.3.4. Output Parameters

While output parameters are not required, the [output] block will allow the user to specify
output file names.

Parameter Type Default
path str "output"
saved data filename str "trainingData.mat"
saved model filename str "model.pickle"

Table 4-25. – Output Parameters

path Specify the directory for TRACE’s output. An error will be raised if the directory already
exists.

saved data filename Specify the filename for the training data that will be saved.

saved model filename Specify the filename for the surrogate model that will be saved.
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4.4. Postprocessing Probabilities

.
As of Sierra 5.24, this capability is not fully supported and may not work as doc-
umented. If you wish to use this capability, it is strongly recommended to use the
Sierra version of the day (i.e., sierra/daily) to get the latest fixes. If you do not
have access to the version of the day, please reach out to the FuSED team for assis-
tance.

It may be that some of the variables in the user’s high-fidelity model represent uncertain
parameters. Rather than a classifier that gives a completely deterministic prediction (0 or 1, pass
or fail), the pre-trained surrogate model can be used subsequently to predict probability of failure.
After training on the full variable space, the user can add a [postprocessing] block to the input
deck with the required parameters listed in Table 4-26 and described below.

4.4.1. Required Parameters

Parameter Type
model file str
uncertain variables list[str]
contours list[float] ∈ (0,1)
number of samples int

Table 4-26. – Required Failure Probability Parameters

model file The path to the surrogate model trained by TRACE, e.g., output/model.pickle.

uncertain variables Names of the variables that are considered uncertain. These names must
also occur in the [variables] block.

contours Probabilities for which TRACE will estimate contours. For example, [0.80, 0.90,
0.95] specifies that TRACE should separately find the 80% failure contour, 90% failure
contour, and 95% failure contour.

number of samples Number of samples used in the Monte Carlo estimation of probabilities. For
details of the approach, see [1].

To run the postprocessing step, execute TRACE using the postprocess argument as shown
below:

fused_trace.py postprocess -i input.in

A new directory named postprocess will be created, with a subdirectory therein for each value
specified in contours.
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5. Appendix

5.1. Optimal Experiment Design Theory

5.1.1. Inverse problem framework

This section introduces an abstract framework for OED applied to linear inverse problems. To
begin, we consider an abstract linear model of a system’s response for the ith experiment

yi = h⊤i θ, (5.1)

where θ ∈Knp are the unknown model parameters, h⊤i ∈Kno×np is the parameter-to-response map
associated with the ith experiment, and K=R or C. In modal expansion and in MIMO control, the
ith experiment corresponds to placing a sensor at the location of the ith degree of freedom (DoF),
i.e., mesh vertex. In general, h⊤i is a matrix that maps the parameters θ to a set of no observations.
For the MIMO control example, h⊤i is a block diagonal matrix that models the frequency response
function and θ represents the forces acting on the system. For modal expansion, h⊤i models the
system’s mode shapes and θ represents the expansion coefficients. In this report, we use the
standard transpose symbol x⊤ to refer to the complex conjugate when K= C.

Assume that we perform the ith experiment qi ∈ N times and assume that the measured response
of the jth instance of the ith experiment satisfies the additive noise relationship

ỹi, j = h⊤i θ+ εi, j for j = 1, . . . ,qi and i = 1, . . . ,n, (5.2)

where εi, j ∈Kno is a random vector representing the measurement noise and other modeling
errors. In addition, we assume that the noise is homoscedastic (i.e., εi, j does not depend on the
experiment i or the instance j) and that it is independent and identically distributed (iid) with
mean zero and covariance σ2Ino . Here, Ik denotes the k× k identity matrix. In particular, the iid
assumption ensures that

E[εi, jε
⊤
i′, j′] =

{
σ2Ino if i = i′ and j = j′

0no otherwise
. (5.3)

Here, 0k denotes the k× k matrix of zeros.

Inverse problems seek to estimate θ from selected experiments. In InverseOED, we formulate
inverse problems as the least-squares problem

θ̂ ∈ argmin
θ∈Knp

1
2

n

∑
i=1

qi

∑
j=1

∥∥∥ỹi, j −h⊤i θ

∥∥∥2

2
. (5.4)

To simplify notation, we define the quantities

M(q) :=
n

∑
i=1

qihih⊤i , Y (q) :=
n

∑
i=1

hi

qi

∑
j=1

ỹi, j, and E(q) :=
n

∑
i=1

hi

qi

∑
j=1

εi, j.

With this notation, the optimal solutions to the least-squares problem (5.4) solve the linear system
of equations

M(q)θ̂ = Y (q).
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Nonsingular M(q)

If M(q) is invertible, then the estimator θ̂ that solves (5.4) is unique and is given by

θ̂ = M(q)−1Y (q). (5.5)

Using the model (5.2) and the assumptions on the noise, we further see that the estimator
satisfies

θ̂ = M(q)−1

(
n

∑
i=1

qihih⊤i θ+E(q)

)
= θ+M(q)−1E(q),

where the expected value of E(q) is zero since E[εi, j] = 0 for all j = 1, . . . ,qi and i = 1, . . . ,n.
From this, we see that the expected value of the estimator θ̂ (averaged over the measurement
noise) is E[θ̂] = θ. That is, θ̂ is an unbiased estimator of θ. Moreover, the covariance matrix of the
estimated parameters in (5.5) is given by

C(q) = E[(θ̂−θ)(θ̂−θ)⊤] = M(q)−1E[E(q)E(q)⊤]M(q)−1.

From this, we notice that

E[E(q)E(q)⊤] =
n

∑
i=1

n

∑
i′=1

qi

∑
j=1

qi′

∑
j′=1

hiE[εi, jε
⊤
i′, j′ ]h

⊤
i′ = σ

2
n

∑
i=1

qihih⊤i ,

where the final equality follows from the assumption that εi, j are iid with covariance matrix σ2Ino ,
cf. (5.3). Hence, the covariance matrix associated with the estimator θ̂ is given by

C(q) = E[(θ̂−θ)(θ̂−θ)⊤] = σ
2M(q)−1. (5.6)

Measures of estimation and prediction variance

The mean-squared error committed when solving the estimation problems (5.4) or (??) is

E[∥θ̂−θ∥2] = E[∥θ̂−E[θ̂]∥2]+2E[θ̂−E[θ̂]]⊤(E[θ̂]−θ)+∥E[θ̂]−θ∥2

= E[∥θ̂−E[θ̂]∥2]+∥E[θ̂]−θ∥2, (5.7)

where the first term in (5.7) is the variance of the estimator θ̂ and the second is its bias. If θ̂ is the
solution to (5.4), then E[θ̂] = θ and the bias term is zero. On the other hand, if θ̂ is the solution to
(??), then the bias term is given by

∥E[θ̂]−θ∥2 =
∥∥((M(q)+R)−1M(q)− Inp)θ

∥∥2
=
∥∥(M(q)+R)−1Rθ

∥∥2

and can be bounded above by

∥E[θ̂]−θ∥2 ≤
∥∥(M(q)+R)−1R

∥∥2 ∥θ∥2 .
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The first term in (5.7), the estimation variance, is the trace of the covariance matrix, i.e.,

E[∥θ̂−E[θ̂]∥2] = tr(C(q)),

and is typically referred to as the A-optimality criterion. According to the previous discussion, a
reasonable approach to designing experiments is to minimize the function

q 7→ α tr(C(q))+(1−α)
∥∥(M(q)+R)−1R

∥∥2

for a fixed convex combination parameter α ∈ (0,1). Note that if α = (1+∥θ∥2)−1, then this
function is an upper bound for the mean-squared error, scaled by (1+∥θ∥2)−1. Unfortunately, θ

is typically not known, leading one to select α based on their preference to emphasize the
variance or bias terms.

Using the estimator θ̂, we arrive at an estimator for the predicted response given by g⊤i θ̂, where
gi = hiu for a user-provided vector u ∈Kno . As we did for the estimation error, we can compute
the mean-squared prediction error for the ith experiment as

E[|g⊤i θ̂−g⊤i θ|2] = E[|g⊤i θ̂−E[g⊤i θ̂]|2]+ |E[g⊤i θ̂]−g⊤i θ|2

= E[|g⊤i (θ̂−E[θ̂])|2]+ |g⊤i (E[θ̂]−θ)|2

The first term is the prediction variance, which is given by

E[|g⊤i (θ̂−E[θ̂])|2] = g⊤i C(q)gi, (5.8)

whereas the second term is the prediction bias, which is zero if θ̂ solves (5.4). When θ̂ solves
(??), the prediction bias is given by

|g⊤i (E[θ̂]−θ)|2 = |g⊤i ((M(q)+R)−1Rθ|2

and is bounded above by

|g⊤i (E[θ̂]−θ)|2 ≤ ∥R(M(q)+R)−1gi∥2∥θ∥2 =
[
g⊤i (M(q)+R)−1R2(M(q)+R)−1gi

]
∥θ∥2.

Given a weight vector w ∈ Rn with nonnegative entries, it is reasonable to choose the vector q to
minimize the function

q 7→
n

∑
i=1

wi

(
α g⊤i C(q)gi +(1−α)∥R(M(q)+R)−1gi∥2

)
for a fixed convex combination parameter α ∈ (0,1). The first term is called the I-optimality
criterion, which quantifies the average prediction variance.

In the forthcoming section, we discuss additional optimality criteria based on both the estimation
and prediction variance. In the current version, InverseOED does not support the nonsingular
covariance case, which includes the regularization term and the convex combination parameter.
However, these features maybe implemented for future versions of the InverseOED library.
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5.1.2. Gradient-based optimization formulation

InverseOED implements two classes of algorithms for performing OED: gradient-based
optimization algorithms and greedy algorithms. Each algorithm class determines the design
vector q by approximately minimizing a functional of the estimated parameter covariance
matrix.

We first present the exact design formulation of OED, which seeks a vector of nonnegative
integers q ∈ Nn. The entries of q correspond to the number of times each experiment is
performed. Given an experiment budget b ∈ N, we seek to compute an optimal design q∗ by
solving the integer optimization problem

q∗ ∈ argmin
q∈Nn

Ψ(C(q)) subject to
n

∑
i=1

qi = b. (5.9)

Again, the optimality criterion Ψ is a scalar function acting on matrices that quantifies estimation
or prediction uncertainty. The exact design problem (5.9) is difficult to solve since q is a required
to be a vector of nonnegative integers. To circumvent this challenge, we can set p = q/b and note
that if q satisfies the budget constraint in (5.9), then 0 ≤ pi ≤ 1 for i = 1, . . . ,n. If Ψ is positively
homogeneous (a condition that is typically satisfied by optimality criteria), then substituting
q = bp with p ∈ [0,1]n into (5.9) produces the approximate design problem

p∗ ∈ argmin
p∈[0,1]n

Ψ(C(p)) subject to
n

∑
i=1

pi = 1. (5.10)

The components of an optimal solution p∗ to (5.10) represent the frequency for which each
experiment is run. Multiplying p∗ by the budget b then produces an approximate design, which
can be rounded to the nearest integer value to produce a schedule of experiments.

For many common optimality criteria Ψ, the objective function Ψ(C(p)) in (5.10) is
differentiable and convex. In this case, the globally optimal solution to (5.10) can be computed
using a gradient-based optimization. The InverseOED app uses the Rapid Optimization Library to
formulate and solve (5.10) [ROL2017]. Note that from a practical point of view, the experiment
schedule q are only realizable if it is feasible to perform an experiment multiple times and we
note that running an experiment multiple times can reduce uncertainty in the estimated
parameters by improving the estimate of the noise in that experiment.

5.1.3. Greedy-based optimization formulation

For the greedy formulation, we consider only binary designs, i.e., qi ∈ {0,1} for i = 1, . . . ,n. This
models the situation in which each experiment can be performed only once. The greedy
algorithm, Algorithm 1, approximately solves the binary optimization problem

q∗ ∈ argmin
q∈{0,1}n

Ψ(C(q)) subject to
n

∑
i=1

qi = b. (5.11)
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Algorithm 1 The Greedy Algorithm
1: Initialization: S = /0 and M = 0
2: while M < b do
3: j∗ = argmin

j∈{1,...,n}\S
Ψ̂(S∪{ j})

4: S = S∪{ j∗}, M = M+1
5: end while

In the desciption of Algorithm 1, we employ the notation Ψ̂(S), where S is a subset of integers
between 1 and n, to denote Ψ(C(q)), where qi = 1 if i ∈ S and qi = 0 otherwise.

Although the greedy approach is a heuristic and results in a suboptimal solution, it is known to
work very well. In cases where the objective function is submodular it can be proven that the
greedy solution produces an objective function value that is within (1− e−1) of the optimal
objective value, where e is Euler’s constant [submodular2014]. Currently, the greedy algorithm
implemented in InverseOED is specialized for D-optimalty; one reason being that the
D-optimality criterion is submodular. We note that, in contrast to (5.10), the greedy algorithm
naturally enforces the sensor budget simply by terminating the search once the budget is
reached.

5.1.4. Optimality criteria

The goals of an inverse-based experiment are to use measured data to either (i) estimate the
parameters of a model or (ii) predict the unobserved response using the estimated parameter. By
choosing the optimality criterion Ψ in the objective function of (5.10), we can achieve experiment
designs that minimize either parameter or prediction uncertainty. Table 5-27 provides a list of the
optimality criteria that are implemented in the gradient-based version of the InverseOED app.

Table 5-27. – Optimality Criteria
Criterion Ψ(C) Description

A Tr(C) Average estimation variance
C v⊤Cv Variance of v ∈ Rm times the estimator
D det(C) volume of the covariance
I E[g⊤Cg] Average prediction variance
R AVaRβ[g⊤Cg] Tail average prediction variance for β ∈ [0, 1]

Based on our definition of experiment, we understand the prediction variance to mean the
variance of u⊤h⊤i θ̂ = g⊤i θ̂, where u ∈Kno is a user-defined vector (e.g., the vector of ones). It then
follows that the prediction variance is given by (5.8). We treat this quantity as a random variable
with respect to the sensor locations (DoFs). This interpretation allows us to formulate the I- and
R-optimality criteria in order to minimize statistics of the prediction uncertainty.

In the context of unregularized least-squares (5.4), it is customary to define Ψ so that
Ψ(C(q)) = +∞ if M(q) is singular. For example, the D-optimality criterion is given by
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Ψ(C) = det(C). Using the form of C(q) when M(q) is invertible, we can rewrite Ψ(C(q)) as

Ψ(C(q)) = σ
2npdet(M(q))−1.

In this form, Ψ(C(q)) is defined even when M(q) is singular; in which case, Ψ(C(q)) is infinite.

A-optimality

The A-optimality criterion seeks to minimize the estimation variance of θ̂ and is given by

Ψ(C) = tr(C) =
np

∑
i=1

Cii (5.12)

C-optimality

The C-optimality criterion seeks to minimize the variance of v⊤θ̂ for user-provided v ∈Knp and is
given by

Ψ(C) = v⊤Cv. (5.13)

D-optimality

The D-optimality criterion seeks to minimize the volume of the parameter uncertainty ellipsoid
associated with θ̂ and is given by

Ψ(C) = det(C) (5.14)

In the case of homoscedastic noise, D- and G-optimality are equivalent [Kiefer1960], where
G-optimality minimizes the maximum prediction variance over all experiments.

I-optimality

The I-optimality criterion seeks to minimize the average prediction variance over all candidate
experiments. Given a nominal probability distribution defined on the set of experiments {1, . . . ,n}
with probabilities wk ≥ 0, the I-optimality criterion is given by

Ψ(C) =
n

∑
k=1

wkg⊤k Cgk (5.15)

For example, setting wk = 1/n for k = 1, . . . ,n produces the I-optimality criterion associated with
the uniform distribution of experiments. Owing to the linearity and cyclic invariance properties of
the trace, we can rewrite the I-optimality criterion as

Ψ(C) =
n

∑
k=1

wktr
(

g⊤k Cgk

)
= tr

C

[
n

∑
k=1

wkgkg⊤k

]
︸ ︷︷ ︸

=:B

= tr(CB) .
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By computing the matrix B offline, the online computational expense for solving the I-optimal
design problem is comparable to solving the A-optimal design problem.

R-optimality

In general, G-optimality can be overly conservative as it minimizes the worst-case prediction
variance, while I-optimality does not penalize heavy tailed statistics. R-optimality is a new
risk-adapted optimality criterion that seeks a design that represents a trade-off between
G-optimality and I-optimality [KouriRisk2022, Kouri2022]. R-criteria is the average
value-at-risk of the prediction variance for a provided confidence level β ∈ (0,1). Given a nominal
distribution of experiments with probabilities wk ≥ 0, the R-optimality criterion is defined as

Ψ(C) = min
t∈R

{
t +

1
1−β

n

∑
k=1

wk max{0,g⊤k Cgk − t}

}
(5.16)

The average value-at-risk is a statistical measure of the tail of a random variable’s distribution. It
can be thought of as the the average of the (1−β)×100% largest scenarios for a fixed confidence
level β ∈ (0,1). For clarity, Figure 5-17 presents the probability distribution function of an
example prediction variance distribution and highlights the R-optimality value, which equals the
average taken over the shaded region. The user’s aversion to risk is reflected in the specified
confidence level, which sets the quantile at which the average value-at-risk is computed. It is
instructive to understand the cases when β = 0 and β = 1. As β approaches one, the R-optimality
criterion approaches the G-optimality criterion whereas if β = 0, the R-optimality criterion is the
I-optimality criterion.

Prediction Variance

Figure 5-17. – An example probability distribution function of the prediction variance where the R-
criteria equals the average taken over the shaded region

5.1.5. Structural dynamics inverse problem examples

We apply InverseOED to two structural dynamics inverse problems: modal expansion and MIMO
source inversion. This section provides a brief overview of these problems. For additional details
see [Mayes2020].
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Modal expansion

We begin by modeling the structure’s dynamic response as the solution to the system of
differential equations defined by the following governing equations of motion

Mü(t)+Cu̇(t)+Ku(t) = f (t) (5.17)

where M ∈ RNxN , C ∈ RNxN , and K ∈ RNxN are respectively the mass, damping, and stiffness
matrices. In cases where the structure is lightly damped, the mode shapes φr ∈ RN for
r = 1,2, . . . ,N can be found from the solution of the eigenvalue problem

(M−1K−λrI)φr = 0 (5.18)

The mode shapes form a basis for the dynamic response u(tk) at any instance of time tk. To simply
notation, let u := u(tk). We assume that u can be approximated by the span of a subset of nα mode
shapes, where nα < N. Then by definition, there exists a set of expansion coefficients z ∈ Rnα

such that

ui ≈ ũi =
nα

∑
j=1

φi, jz j (5.19)

The modal expansion inverse problem seeks to estimate z := z(tk) from the measured data. We
apply the inverse and associated OED framework to the modal expansion problem by
transforming (5.19) into the form of (5.1) using the following substitutions,

yi := ũi, h⊤i := φ
⊤
i , and θ = z

Note that the covariance of the estimated expansion coefficients is time independent since the
mode shapes are independent of time .

MIMO control

We now turn to our application of the OED to MIMO control problem in the temporal frequency
domain. The control problem entails estimating loads at a subset of n f ≤ N DoFs associated with
the control input locations in order to generate the measured response. We denote a particular
frequency in the temporal frequency domain by ω ∈ R. The frequency domain transformation of
(5.17) is given by the following system of algebraic linear equations

û(ω) = A(ω) f̂ (ω). (5.20)

where A(ω) ∈ CN×N is the frequency response function (FRF) defined as

A(ω) = (K− jωC+ω
2M)−1. (5.21)

Let f̄ (ω) ∈ Cn f denote the forces associated with the control input DoFs and a⊤i (ω) ∈ Cn f

represent the appropriately indexed FRF that maps the control forces to the response ûi(ω) ∈ C. It
follows that the response at DoF i is given by

ûi(ω) = a⊤i (ω) f̄ (ω) (5.22)
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Assuming the frequency domain is discretized into nω frequencies, we can express the MIMO
control OED problem in a form compatible with (5.1) by making the following substitutions

yi := [ûi(ω1), ûi(ω2), . . . , ûi(ωn)]

h⊤i :=


a⊤i (ω1) 0 · · · 0

0 a⊤i (ω2) · · · 0
...

... . . . ...
0 0 · · · a⊤i (ωnω

)


θ := [ f̄ (ω1), f̄ (ω2), . . . , f̄ (ωnω

)].

(5.23)

Note in the MIMO control problem, the number of observations no is equal to the number of
frequencies nω.
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