
SANDIA REPORT
Unlimited Release
Printed March 4, 2024

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

SIERRA Code Coupling Module:
Arpeggio
User Manual – Version 5.18
Samuel R. Subia, James R. Overfelt, David G. Baur

SAND2024-02417

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology &
Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its
use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: https://classic.ntis.gov/help/order-methods

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

ABSTRACT
The SNL Sierra Mechanics code suite is designed to enable simulation of complex multiphysics
scenarios. The code suite is composed of several specialized applications which can operate either in
standalone mode or coupled with each other. Arpeggio is a supported utility that enables loose coupling
of the various Sierra Mechanics applications by providing access to Framework services that facilitate
the coupling. More importantly Arpeggio orchestrates the execution of applications that participate in
the coupling. This document describes the various components of Arpeggio and their operability. The
intent of the document is to provide a fast path for analysts interested in coupled applications via simple
examples of its usage.

3

This page intentionally left blank.

4

CONTENTS

Contents 5

List of Figures 8

1. Introduction 9

1.1. Coupled Physics Approaches . 9

1.2. Sierra Mechanics Coupling . 10

1.3. Communication of Data (Transfer Services) . 11

1.4. Solution Control . 11

1.5. Coupling Strategies . 12

1.6. Coupling with Arpeggio . 15

1.7. Outline of the Manual . 16

2. Getting Started 17

2.1. Setting The Environment-Users External to Sandia Labs . 17

2.2. Setting The Environment-Users at Sandia Labs . 17

2.3. Running Arpeggio . 17

2.4. Arpeggio Environment Overview . 18

2.5. Overview of the Input File Structure . 19

2.6. Fields . 25

2.7. User Fields . 25

3. Model Definition 27

3.1. Model Overview . 27

3.2. Finite Element Model . 29

3.3. Parameters For Block . 35

5

3.4. Global Constants . 46

3.5. Definition For Function . 50

3.6. Values . 58

3.7. Restart Overview . 58

4. Solution Control Reference 59

4.1. Overview . 59

4.2. Solution Control Description . 69

4.3. System . 70

4.4. Transient . 76

4.5. Nonlinear . 81

4.6. Subcycle . 86

4.7. Sequential . 91

4.8. Initialize . 96

4.9. Parameters For . 97

5. Transfer Reference 103

5.1. Overview . 103

5.2. Transfer . 109

6. Input Output Region Reference 123

6.1. Input_Output Region Overview . 123

6.2. Input_Output Region . 124

7. Examples 131

7.1. One-Way Coupling From File . 132

7.2. One-Way Coupling Using Transfer From Different Mesh . 136

7.3. One-Way Coupling Using Transfer . 141

7.4. Two-Way Coupling With Transfer . 146

7.5. Two-Way Coupling Using Transfer of Element Death . 155

7.6. estack Regression Test . 161

6

7.7. tv Regression Test . 178

Bibliography 181

Index 183

Distribution 186

7

LIST OF FIGURES

1.1-1. Loose Coupling Schematic (Z Scheme). 10

1.3-1. Sierra Mechanics Data Types. 11

1.5-1. One-way Loose Coupling At Same Time Step. 13

1.5-2. Deferred One-way Loose Coupling At Same Time Step. 14

1.5-3. One-way Loose Coupling with Subcycling Schematic. 14

1.5-4. Two-way Loose Coupling Schematic. 15

1.6-1. Thermal-Mechanical With Thermal One-Way Element Death. 16

1.6-2. Thermal-Mechanical With Two-Way Element Death. 16

2.4-1. Schematic UML class diagram for the Expression subsystem. 19

5.1-1. Valid Transfer Operations . 104

5.1-2. Invalid Transfer Operation . 105

8

1. INTRODUCTION

The SNL Sierra Mechanics code suite is designed to enable numerical simulations of complex
multi-physics scenarios. The code suite is composed of specialized applications which can operate either
in standalone mode or in a coupled mode with other Sierra Mechanics applications. Arpeggio is a
supported utility that enables loose coupling of the various Sierra Mechanics applications by providing
access to Framework services that facilitate application coupling. Utilizing these services Arpeggio is able
orchestrate the execution of applications that participate in code coupling. This document describes the
Framework services used by Arpeggio for coupling and the inter-operability of these services for
coupling of Sierra SM and Sierra TF applications. Through the use of simple examples, the document
also provides a resource for analysts interested performing in coupled-physics simulations.

1.1. COUPLED PHYSICS APPROACHES

When modelling tightly-coupled physics, the numerical representation of all PDEs within a region of
interest are often combined a single system matrix and solved using a nonlinear solution strategy specific
to the application. This approach to solving coupled-physics problems is available for a limited set of
physics in the Sierra Mechanics TF module. Relaxing the notion of tight-coupling one could
alternatively obtain solutions for each of the physics independently and patch the individual solutions
together in some prescribed manner, this is the essence of loosely-coupled physics simulations.

The numerical analysis community has long recognized the need to include results from various physics
in a single simulation. However, the fact that most application codes are often developed around single
physics often limits the extent to which coupled-physics simulations can be achieved. Early approaches
to coupled-physics simulations often simplified the coupling by level of importance by assigning
primary physics and secondary physics roles. Here the primary physics depended upon secondary
physics and the dependence of secondary physics upon primary physics was deemed less important.
Under this assumption coupled physics simulations can be realized by first performing independent
simulations of the secondary physics followed by a simulation of the primary physics utilizing results of
the initial simulation. Figure 1.1-1 illustrates the coupling approach for a quasi-static solution step from a
state tn to state tn+1. Broadly speaking, loose-coupling strategies are classified as Z-methods, since a Z
describes the basic pattern of data communication between the physics applications. The one-way view
of loosely-coupled physics lends itself to file-based approaches where single state results are obtained on
a common spatially meshed discretization. Here the problem solutions are generally obtained at cell
vertices (nodes) or cell centers (elements). Quite often each physics simulation lends itself to a particular
spatial discretization and this gave rise to the introduction of an intermediate mapping step whereby the
secondary physics results were mapped onto the primary physics discretization as in the MAPVAR
utility [1]. For transient coupled-physics simulations best results are obtained when sharing a common

9

nt tn+1
t∆

Secondary Physics

Primary Physics

Figure 1.1-1.. Loose Coupling Schematic (Z Scheme).

time discretization but in many cases this is impractical and the coupling is based upon closest-time
matched solutions or interpolations of solutions in time.

1.2. SIERRA MECHANICS COUPLING

Sierra Mechanics physics applications deal with solving PDEs on a physical geometric domain, a
Region. In defining a coupled physics problem, users configure one or more Regions corresponding
to some particular physics. Each Region considers one or more PDEs to be solved on either the entire
input mesh or on a portion of the mesh. When the Region physics are coupled one can elect whether
to solve the physics in a tightly-coupled manner in a single application or by loosely coupling individual
Region results. Here we note that for loose coupling the physical geometry and spatial discretization
must overlap but need not be identical in each of the participating Regions.

In the context of Sierra Mechanics, loosely-coupled physics nonlinear solutions are obtained on each of
the Regions and then combined to form an overall coupled solution. Not surprisingly there are
numerous ways one can approach loose-coupling since different strategies are appropriate to different
problem sets. That is, the solution for one Region may depend strongly upon the solution in another
Region but not vice-versa (one-way coupled), or the the solution for each Region may depend upon
the solution the other Region (two-way coupling). The goal of Sierra Mechanics is to provide services
which enable one to easily perform variants of a multi-physics coupling.

Some considerations which are relevant to the loose-coupling solution strategies include

• Communication of data from one Region to another Region (Transfer),

• Initialization of the individual Regions,

• Solution for the individual Regions (Advance),

• Time stepping or pseudo-time stepping for the individual Regions,

• Time synchronization of participating Regions,

• Conditional convergence,

10

• Drive mesh adaptivity,

• Sequencing for all of the above.

Within Sierra Mechanics communication of data between application Regions is handled by the
Framework Transfer service and all aspects of solution behavior are managed by another Framework
service, Solution Control. Mesh Adaptivity is managed through the Percept library.

1.3. COMMUNICATION OF DATA (TRANSFER
SERVICES)

In Sierra Mechanics application data is generally associated with nodes, elements, faces or edges of a
meshed discretization as shown in Figure 1.3-1. A loose-coupling between applications implies the
dependence of one application on data supplied from some external source. Since the physical location
of data on the external source may or may not map geometrically onto the the other application
solution, provisions must be made to perform this data mapping in a flexible manner. It is important to
note that these mappings can be accomplished both for the case of different mesh and different element
types. Within Sierra Mechanics this responsibility is handled by Framework Transfer services. Here it is
important to note that Framework Transfer services enable the external source data to include element,
face and edge data as well as nodal data.

Node Element Face Edge

Figure 1.3-1.. Sierra Mechanics Data Types.

1.4. SOLUTION CONTROL

The Solution Control subsystem controls the execution of coupled multi-physics applications. Solution
control provides two basic operations for controlling the solution of a multi-physics system by defining
the order for object execution and by setting parametric values on the controlled objects at the proper
time. For transient problems this approach enables the applications to easily transition through the
designated time periods. The same system can also service steady-state simulations by treating them in a
sequential manner. The solution controllers are able to initialize Region data, set parameter values,
advance Regions, execute transfers, call events and send notifications based on the input file
specifications.

11

1.4.1. Region Initialization

When beginning execution, all applications require some baseline initialization operations at the
Region level. When performing some loose-coupling simulations the dependence of data may may
require that initialization of data be performed in some specific manner. Here the manner in which
initialization occurs is determined by how the application solution variables are defined and the
application code implementation of initialization. As an example for a thermal-mechanical coupling
one might initialize the reference temperature state in the solid before any temperature change in the
solid were allowed to occur. Solution Control provides a means for performing various types of
non-standard data initialization.

1.4.2. Solution

Each set of coupled physics represents a System of equations which must be solved. While participating
in loose-coupling an application physics will attempt to advance its solution to a later state. In the
parlance of Solution Control this step is known as an advance event. Here the details of code operations
associated with advancing the solution are controlled entirely by the physics application. Additionally,
because the advance can occur conditionally it provides flexibility in how the coupling is performed.

1.4.3. Time Stepping

Within Sierra Mechanics each application is allowed to define its own notion of solution time. The
Solution Control time step controller probes the individual application solution time and uses that
information to determine how time should be advanced for the coupled physics. For couplings of
transient simulations with quasi-static applications, the time step controller manages a unified notion of
pseudo-time and physical time seamlessly, even when the time step selection is adaptive.

1.4.4. Conditional Events

In loosely-coupled simulations the need often arises to perform some high level operations
conditionally. Here Solution Control is able to probe the application for current states or variables to
determine whether whether some coupling action should occur. These conditionals can be applied to
both the data transfer or advance Solution Control events. Examples of conditional events are included
in Chapter 4.

1.5. COUPLING STRATEGIES

Using the Solution Control one can easily define loose couplings between two or more Regions. For
example, some or all of a solution from one Region may be transferred to another Region where it is
treated as a constant, external field. The aggregate nonlinear problem including the contributions from
all of the Regions may be iterated to convergence. The details of which physics are solved in each

12

Region and the nonlinear solution strategy used within and between Regions is completely specified
through the input file. Furthermore, a Sierra Mechanics user may pick a simple, minimal algorithm
without needing to fit it into an overly-generalized worst-case scenario that represents the union of all
possible algorithms.

Dynamically-specified loose coupling has many potential advantages that users may leverage to obtain
solutions. First, the resulting linear system is considerably smaller than a fully-coupled system and
contains far fewer off-diagonal contributions which can significantly improve the performance of linear
solvers. Furthermore the resulting linear system may have a more desirable mathematical properties,
such as being symmetric positive-definite, this permits the use of tailored iterative solutions techniques.
Other extensions to loose coupling include subcycling of transient simulations where each Region may
advance in time with its own time step size and in-core coupling to other applications based upon the
Sierra framework.

The simplest loose-coupling strategy is a one-way coupling between two applications, App I and App
II, is shown schematically in Figure 1.5-1. Here it is assumed that information (data) from App I is
needed by App II but App I is independent (decoupled) from App II. Furthermore it is assumed that
the applications can proceed at the same time step. In this case the solution for each application can
proceed in locked step.

nt tn+1 tn+2 tn+3
t∆ t∆t∆

App I

App II

transfer

Figure 1.5-1.. One-way Loose Coupling At Same Time Step.

A variant of the simplest loose-coupling would be the case where the dependence of App II solutions on
App I data is such that update of the App I data can be deferred for several steps. This type coupling
behavior can be enforced using a conditional advance event in Solution Control. As an example, a data
transfer event defined for every two time steps of each application is shown schematically in
Figure 1.5-2.
In some couplings the temporal response of one application physics, App I, is much faster than that of
another physics, App II. Here one may wish to advance the App I physics many time steps before
requiring an update of its contribution to the App II information, Figure 1.5-3. Here Solution Control
provides a facility denoted as subcycling to invoke this behavior.
When the coupling between App I and App II is circular in nature, (i.e. App I solutions depend upon
App II and vice versa) the coupling can be achieved by adding an additional Transfer step to the
one-way coupling approach. However, if the coupling dependency is fairly strong it may be prudent to
ascertain a converged solution between the physics models before advancing to the solution step. Here
the conditional event aspect of Solution Control can be employed to iterate App I and App II until a

13

nt tn+1 tn+2 tn+3
t∆ t∆t∆

App I

App II

transfer

Figure 1.5-2.. Deferred One-way Loose Coupling At Same Time
Step.

t∆ t∆t∆
I I I

t∆ t∆t∆
II II II

nt tn+1 tn+2 tn+3

App I

App II

transfer

Figure 1.5-3.. One-way Loose Coupling with Subcycling
Schematic.

solution of the desired quality is obtained. The strategy is depicted in Figure 1.5-4 and is supported as
the Nonlinear option within Solution Control.

14

nt tn+1 tn+2 tn+3t∆ t∆ t∆

App I

App II

transfer

Figure 1.5-4.. Two-way Loose Coupling Schematic.

1.6. COUPLING WITH ARPEGGIO

While the previous sections have described the component utilities needed to enable coupled physics
simulations but little has been said of existing tools composed of these utilities. Previous efforts in the
development of Sierra Mechanics focused upon thermal-mechanical coupling of the Calore and Adagio
applications with the Calagio utility to analyze problems of thermal stress. Here Sierra Mechanics
utilities were used to solve the temperature state, then initializing the reference temperature state in
Adagio followed by subsequent solves and transfer of the temperature state to Adagio to obtain a
thermal stress state in the deformed configuration. Within the Calagio utility extra efforts were made to
obscure the use of Framework utilities lying outside the realm of Calore and Adagio. Early one-way
coupling efforts were later followed by two-way couplings where the deformed configuration was
communicated to Calore and the heat transfer problem could be solved in the updated geometry.
Although couplings with Calagio were largely successful it was recognized that incremental
improvements in coupling capability came with a high price in terms of code development effort both
to alter the predefined coupling strategies and to hide the underlying implementation from the analyst
within the application code. Moreover, the predefined coupling strategy approach prevented the analyst
from fully exploiting the resources available within Sierra Mechanics and the applications themselves.
These shortcomings provided a motivation for creation of the Arpeggio utility in which the analyst
fully specifies details of the coupling strategy.

1.6.1. Coupling Including Element Death

Coupling strategies in predecessors of Arpeggio precluded the possibility of simulations that required
syncronization of the meshed discretization such as element death. Here the transfer capability in
conjunction with a consistent notion of an application code indicator of element death
(Death_Status) enables coupled simulations that include element death. Prevalent uses of this
capability are one-way coupled thermal-mechanical simulations with thermally-driven element death
Figure 1.6-1 and two-way coupled thermal-mechanical simulations with element death driven by either
application Figure 1.6-2. For both types of coupling the mechanical code behavior is essentially the same
as for a two-way coupling. On the other hand, in the case of two-way coupling the one-way coupling

15

thermal invocation of a death criteria test is altered by the addition of an Aria Region level command
line, Transfer Element Death, to trigger marking of dead elements upon transfer.

Each application manages element death by applying/testing user defined death criteria to mark
elements as dead with a death_status variable. Couplings including element death will involve transfer
of a source application’s death_status variable to an intermediate field (user variable) on the target
application. This intermediate field will then be used in evaluation of death criteria on the target
application.

Thermal

Solve Nonlinear

Jacobian Test

Elem Death Test

− Thermal Criteria

− Death_Status

Elem Death Test

Death_Status

Temperature

Solve Nonlinear

Mechanical

Jacobian Test

Figure 1.6-1.. Thermal-Mechanical With Thermal One-Way Ele-
ment Death.

Solve Nonlinear

Jacobian Test

− Temperature Criteria

− Death_Status

Elem Death Test

− Structural Criteria

Elem Death Test

Mechanical

Elem Death Test

− Death_Status

Thermal

Solve Nonlinear

Jacobian Test

Temperature

Displacement

Death_Status

Figure 1.6-2.. Thermal-Mechanical With Two-Way Element
Death.

1.7. OUTLINE OF THE MANUAL

Chapter 2 discusses the overall Sierra Mechanics environment for running Arpeggio, including the
layout for the Arpeggio input file. Sierra Mechanics users familiar with the overall environment need
only browse the input file structure and move directly to the sections describing Framework Transfer 5
and Solution Control 3.7. Experienced Sierra Mechanics users may opt to move directly to examples of
coupling in Chapter 7

16

2. GETTING STARTED

2.1. SETTING THE ENVIRONMENT-USERS EXTERNAL
TO SANDIA LABS

To access Sierra/Arpeggio one will likely need to setup the user environment. This setup will differ upon
location and the local system administrator can provide information on setting up your local
environment.

2.2. SETTING THE ENVIRONMENT-USERS AT SANDIA
LABS

The environment for using Arpeggio is the same as for individual Sierra applications and can be
configured by module files. The modules ensure that the look and feel of running Sierra applications is
the same across a multitude of compute platforms. To obtain the proper environment for code
execution one simply runs:

% module load sierra

2.3. RUNNING ARPEGGIO

This section includes some very simple examples of how to run Arpeggio. For more information on
running on some of Sandia’s clusters, etc. see [2].

In its simplest form, Arpeggio can be run like this:

% sierra arpeggio -i myrun.i

In this example, myrun.i is the Arpeggio input file. The output – nonlinear iterations, time step
information, etc. – will be written to a file called myrun.log. So, you can monitor the progress of the
simulation by watching the log file. Alternatively, you can have all of the output sent to the display by
using the -l logfile command line option. If you set the log file to be - (a single “minus” character)
all of the output will be sent to the standard output (usually your display):

% sierra arpeggio -i myrun.i -l -

17

If you would like to use aprepro in your input file, add the -a command line option to have your
input file automatically processed:

% sierra arpeggio -i myrun.i -l - -a

Oftentimes we want to run Arpeggio remotely or locally in a batch mode, save any standard output and
perhaps even logout from a session. Unfortunately, termination of the session through either voluntary
(interactive) or involuntary (timeout) logout may in effect terminate the Arpeggio job. In this case one
can prevent the job from terminating by using the Unix nohup command in conjunction with the
standard execution command line.

% nohup sierra arpeggio -i myrun.i -l YourLogFile -a

If one wishes to run the job in a background mode the nohup command should be terminated with &
at the end of the command line.

2.4. ARPEGGIO ENVIRONMENT OVERVIEW

The Sierra Mechanics code suite is composed of several specialized applications which can operate either
in standalone mode or coupled with each other. The various application models and algorithms are
integrated into the Sierra framework through the architecture illustrated in Figure 2.4-1. A Sierra-based
application has four layers of code: Domain, Procedure, Region, and Model/Algorithm.

The outermost layer of an application is the Domain, or “main” program of the application. This
domain layer is implemented by the Sierra Framework to manage the startup/shutdown of an
application, and to orchestrate the execution of an application-proved set of procedures.

Code at the Procedure level is responsible for evolving one or more loosely coupled set of physics
through a sequence of steps. This sequence may be a set of time steps, nonlinear solver iterations, or
some combinations of these or other types of steps.

An application mauy define multiple procedures to implement hand-off coupling between physics
within the same main program. In hand-off coupling the first (or preceding) procedure completes
execution, mesh and field data is transferred to a succeeding procedure, and the succeeding procedure
continues the simulation with a different set of physics. For example, the first thermal procedure could
calculate a temperature distribution inside a differentially heated fluid, and the second procedure could
simulate natural convection of the fluid due to the density gradients set up by the resulting temperature
field.

Code at the Region level is responsible for evolving a tightly coupled set of physics throug a single step.
Loose coupling of Regions is supported by the advanced transfer services provided by the Sierra
framework.

Each Region owns (1) a set of models or algorithms that implement its tightly coupled set of physics
and solvers and (2) an in-memory parallel distributed mesh and field database. This mesh and field data
is fully distributed among parallel processors via domain decomposition.

18

“Main”

Procedure (time step control)
Region A

(single time step)

Models

Mesh and Fields

Region B
(single time step)

Models

Mesh and Fields

Transfer

Parallel
Synchronous

Parallel
Asynchronous

Parallel
Distributed

Figure 2.4-1.. Schematic UML class diagram for the Expression
subsystem.

2.5. OVERVIEW OF THE INPUT FILE STRUCTURE

An Arpeggio model is described by commands contained in an ASCII input file. The structure of the
input file follows a nested hierarchy. The topmost level of this hierarchy is named the domain. Below
the domain lies a level named procedure, followed by the region level as depicted in Figure 2.4-1.

The domain level contains one or more procedures. At the domain level, one will also find commands
associated with describing the finite element mesh, the linear solver set-up, material properties
associated with a defined material, and user functions associated with source terms and boundary
conditions that are added into Arpeggio’s intrinsic set of functions.

The procedure level contains one or more regions. The procedure level is also used to specify the time
stepping parameters, and interactions between regions, such as data transfers. Essentially at the
procedure level, loose coupling algorithms are specified. Loose coupling here is defined within the
context of Arpeggio’s implicitly full-coupled paradigm. Whenever an independent variables’s
interaction with other variables in the solution procedure is not fully represented in the global matrix,
the algorithm for loose coupling of that variable and its associated equation will be described at the
procedure level. This loose coupling algorithm is known as a “solution control description”. The
procedure level contains a command block specifying the solution control procedure. An analogy to
this block in simpler codes would be top level loop. For example in time dependent applications, the
solution control description block would involve a block to solve the time dependent problem repeated
for each time step until the desired solution time is reached.

19

The Region level is used to specify details about the physics to be solved. Details related to the solve
include boundary conditions and initial conditions, where materials models are applied, and where
surface and volumetric source terms are applied. Here the meshed discretization and material properties
described at the domain level are tied into the problem statement by virtue of their names.

Global constraint equations are also specified at the region level. At the region level, specification of
information written to the output file and the frequency at which output occurs. Additional
post-processing associated with the output is specified. For example, additional volumetric fields which
are functions of the independent variables may be specified to be added to the output file.

There are two types of commands in the input file. The first type is referred to as a block command. A
block command is a grouping mechanism. A block command contains a set of commands made up of
other block commands and line commands. A line command is the second type of command. The
domain, procedure, and region levels are all parsed as block commands. A block command is defined in
the input file by a matching pair of Begin and End lines. For example,

Begin SIERRA myJob
... block commands

End SIERRA myJob

A set of key words for the block command follows the “Begin” and “End” keywords. In most cases a
user-specified name is added to the block commands. In the example above the keywords, SIERRA
myJob, are added. Optionally, the keyword may be left off of the end of the block.

The second type of command is the line command. A line command is used to specify parameters
within a given block command. In the remaining chapters and sections of this manual, the scope of
each block and line command is identified, along with summaries of the meanings. Note that the
ordering of any commands within a command block is arbitrary. Thus,

Begin Finite Element model fluid
Database name is pipeflow2d.g
Use Material water for block_1

End Finite Element model fluid

will have the same effect as

Begin Finite Element model fluid
Use Material water for block_1
Database name is pipeflow2d.g

End Finite Element model fluid

And the ordering of command blocks within the domain/procedure/region blocks are
arbitrary–allowing you conderable freedom to collect and arrange commands. Note that the terms
“command block” and “block command” are interchangeable.

The Sierra command block must contain a block for a procedure containing at least one Region. For a
case where only an Aria Region is being used:

20

Begin procedure myProcedureName
.
Begin Aria region myRegionName
.

End Aria region myRegionName
End procedure myProcedure

and similarly for a case using both Aria and Adagio Regions:

Begin procedure myProcedureName
.
Begin Adagio region myAdagioRegionName
.

End Adagio region myAdagioRegionName
.
Begin Aria region myAriaRegionName
.

End Aria region myAriaRegionName
End procedure myProcedure

The procedure command block is used to contain all of the application code commands that are
associated with a solution procedure defined for a set of Regions. The myProcedureName and name
keywords of the procedure and region blocks are left up to you. Note that the procedure command
block must be present in the input file and must contain at least one application code Region
command block. The procedure command block also contains other important command blocks such
as the SOLUTION CONTROL block.

2.5.1. Syntax Conventions for Commands

In this section we describe the conventions used in presenting all the command descriptions in the
remainder of this manual. There are four basic kinds of tokens, or words, that an application code
expects to find as it parses an input file. These are keywords, names, parameters and delimiters.

2.5.1.1. Keywords

The words which distinguish one block command, or line command, from another we term keywords.
Keywords are denoted in this manual in the monospaced font, for example, BOUNDARY CONDITION.

21

2.5.1.2. Names

The word, or words, that you supply on the same line of the begin line of a block command, is the
name. Many times you may need to supply this name as a character parameter in a separate line
command. Names are denoted in italics, name , as are parameters.

It is worth noting that the interpreter used to process standard input command lines is also used to
process lines defining algebraic operations. This means that a "-" appearing within a name would be
interpreted as a subtraction operation and as a consequence, the use of "-" within a name is not allowed.
Thus instead of

Begin Adagio region name-1

one could perhaps use

Begin Adagio region name_1.

2.5.1.3. Parameters

There are three types of input parameters one will need to supply to line commands: character strings,
integers, and real numbers. These are denoted in the documentation as (C), (R), and (I), respectively.

In most cases character strings may be specified in a free format. One exception to this paradigm is when
a string begins a number. In this case the character string must be specified within quotation marks in
order to be properly interpreted.

Real numbers may be entered in decimal form or exponential form. For example 0.0001, .1E-3, 10.0d-5
are all equivalent. Furthermore, if a real(R) is expected, an integer can be used.

Integer values (I) need not include a decimal point in their specification.

2.5.1.4. Multiple Parameters

For the case when a list of one or more paremeters is allowed, or required, for a command, (C,...)
denotes a list of character strings, (I,...) a list of integers, and (R, ...) a list of real numbers. For a list of
character strings, the separator between the strings must be one or more spaces or tab characters.
Therefore, phrases with multiple spaces and words in them are tokenized into multiple character
parameters before being processed by the application. For a list of real or integer numbers the comma
can also be used as a separator.

2.5.1.5. Enumerated Parameters

Certain commands have predefined parameters, called enumerations, which are listed within {}. Each
parameter in the list is separated using | . The default parameter for the list of parameters is enclosed by
<>.

22

2.5.1.6. Delimiters

The keywords of a line command are often required to be separated from the parameters by a delimiter.
You have a choice of delimiters to use: the equal sign, =, or a word. In this manual, we denote the
choices surrounded by {}, and separated by |. You may use any one of the delimiters from those listed.
For example, the line command to specify the density within the Calore Material Block command is

Density {= |IS} (R)

Examples of valid forms you could write in the input file are

Begin Property Specification for Calore Material water
...
Density = 1.0E-3 # kg/m\^3 at 20C
...

End

and

Begin Aria Material water
...
Density is constant rho = 1.0E-3 # kg/m\^3 at 20C
...

End

2.5.1.7. White Space

Command keywords, names, and parameters and delimiters must have spaces around them.

2.5.1.8. Indentation

All leading spaces and/or tab characters are ignored in the input file. Of course, we recommend that you
use indentation to improve the readability for yourself and others that may need to see your files.

2.5.1.9. Case Sensitivity

None of the command keywords, parameters, or delimiters read from the input file are case sensitive.
For example, the following two lines are equivalent:

Use Material water for block_1
.

and

23

USE material wATer for blOCK_1
.

The exception to this rule are file names used for input and output, because the current operating
systems on which SIERRA applications are run are based on UNIX, where file names are case
sensitive.

2.5.1.10. Comments and Line Continuation

You may place comments in the input file starting with either the $ or # character. All further characters
on a line following a comment character are ignored.

You can continue a command in the input file to the next line by using the line continuation character
$, or you may optionally following it with a comment#. All further characters on the same line
following a line continuation character $ are ignored, and the characters on the following line are joined
and parsing continues. An example is the line command used to specify the title of a thermal model:

Begin SIERRA Job_Indentifier
This thermal model for Calore simulates a convective heat transfer

Title The title command is used to set the analysis title $\
Convective heat transfer to a part. The analysis $\
makes use of conjugate heat transfer to account for $\
cooling of a part due to flowing water.

...
End SIERRA Job_Indentifier

2.5.1.11. Checking the Syntax

Errors in the input deck can be checked by adding the command, “–check-syntax” to the aria command
line. For example,

sierra arpeggio --check-syntax -i input.i

This command will print the code echo of the input deck and any syntax errors within it to the
display.

24

2.6. FIELDS

Fields are defined as variables which are distributed on mesh objects (e.g. nodes, elements, faces or
edges). The mesh object and Field data may be distribued among parallel processors via a domain
decomposition algorithm. Each application registers Fields by name on its own Region. In a
coupled-physics simulation Framework transfer services may be called on to communicate these Fields
to another application. For example, the temperature Field in one application may be communicated to
a solid mechanics application in order to perform a thermal-stress analysis.

2.7. USER FIELDS

Situations often arise where one wishes to provide Field data storage so that data can be transferred into
or out of the application. Each of the application codes provide some mechanism for enabling this type
of data access. Additionally, User Fields are often used to as additional storage needed in user supplied
subroutines.

25

This page intentionally left blank.

26

3. MODEL DEFINITION

3.1. MODEL OVERVIEW

Sierra Framework services provide overall control of input commands, discretization input data and
output data, IO. Additionally they provide a directed interaction of Framework services at the so-called
Domain level with with the application code at the Region level. This controlled interaction is enabled
by commands that follow.

The model discretization (mesh) and the mesh components to be used in the model are defined at the
Domain level and are later referenced by the application at the Region level. The association of material
properties with portions of the mesh are also defined here within the Finite Element Model command
block/s. For some couplings using the same mesh a single Finite Element Model may be used but for
most cases one will use separate Finite Element Model command blocks for each Region. A sample
outline of a setup for coupling of a solid mechanics application sm and a thermal-fluid tf is shown
below.

Begin Sierra myJob
.
Begin Finite Element Model my_fem_model_sm
.

End
.
Begin Finite Element Model my_fem_model_tf
.

End

Begin Global Constants
.

End
.
Model definition commands

- Material definitions for sm
- Function definitions for sm
- Local Coordinate Systems for sm
.
- Material definitions for tf

27

- Function definitions for tf
- Local Coordinate Systems for tf

.

28

Begin Procedure My_Procedure
.
procedural commands

- Solution Control Description
- Transfer operations

.
Begin Adagio Region My_Adagio_Region
.
use Finite Element Model my_fem_model_sm
.
- sm Region level commands
.

End
.
Begin Aria Region My_Aria_Region
.
use Finite Element Model my_fem_model_tf
.
- tf Region level commands
.

End
.

End
.

End Sierra myJob

Note that a given application may not support the entire set of available options available in the Finite
Element Model command block, particularly in the Parameters for Block section. Rather than
attempting to include the entire set of command lines available in the Finite Element command block,
only a small subset of key command lines are shown here. One should consult documentation for the
specific application to find a complete listing of the relevant Finite Element Model command lines.

3.2. FINITE ELEMENT MODEL
Scope: Sierra

Begin Finite Element Model Finite-Element-Model-Name

Alias DatabaseName As InternalName

Component Separator Character Option Separator

Create GroupType NewSurfaceName Add SurfaceName...

Coordinate System {=|are|is} CoordinateSystem

Database Name {=|are|is} StreamName

29

Database Type {=|are|is} DatabaseTypes

Decomposition Method {=|are|is} Method

Omit Assembly AssemblyList...

Omit Block BlockList...

Omit Volume VolumeList...

Time Scale Factor Option Scale

Use Generic Names

Use Material MaterialName For VolumeList...

Begin Assembly Assembly_Name

End

Begin Block Blockname

End

Begin Parameters For Block Blockname

End

Begin Parameters For Phase Phase Name

End

Begin Parameters For Surface Surface_Name

End

End

Summary Describes the location and type of the input stream used for defining a geometry model
for the enclosing region.

30

3.2.1. Alias
Scope: Finite Element Model

Alias DatabaseName As InternalName

Parameter Value Default
DatabaseName string –
InternalName string –

Summary Name the database entity "DatabaseName" as "InternalName"

Description This "InternalName" may then be referenced in the data file in addition to the original
name.

3.2.2. Component Separator Character
Scope: Finite Element Model

Component Separator Character Option Separator

Parameter Value Default
Option {=|is} –
Separator string –

Summary The separator is the single character used to separate the output variable basename (e.g.
"stress") from the suffices (e.g. "xx", "yy") when displaying the names of the individual
variable components. For example, the default separator is "_", which results in names
similar to "stress_xx", "stress_yy", ... "stress_zx". To eliminate the separator, specify an
empty string ("") or NONE.

3.2.3. Create
Scope: Finite Element Model

Create GroupType NewSurfaceName Add SurfaceName...

Parameter Value Default
GroupType {edgeset|elemset|faceset|nodeset|

sideset|surface}
–

NewSurfaceName string –
SurfaceName string... –

Summary Create a new set (node, edge, face, element, side/surface) as the union of two or more
existing sets. The sets must exist in the mesh database or have been created by a previous
CREATE command.

31

3.2.4. Coordinate System
Scope: Finite Element Model

Coordinate System {=|are|is} CoordinateSystem

Parameter Value Default
CoordinateSystem {axisymmetric|barycentric|cartesian

|cyclidic|cylindrical|polar|
quadriplanar|skew|spherical|toroidal
|trilinear}

–

Summary The interpretation of the geometry data stored in this database. Optional. Defaults to
Cartesian.

3.2.5. Database Name
Scope: Finite Element Model

Database Name {=|are|is} StreamName

Parameter Value Default
StreamName string –

Summary The base name of the database containing the output results. If the filename begins with
the ’/’ character, it is an absolute path; otherwise, the path to the current directory will
be prepended to the name. If this line is omitted, then a filename will be created from the
basename of the input file with a ".g" suffix appended.

3.2.6. Database Type
Scope: Finite Element Model

Database Type {=|are|is} DatabaseTypes

Parameter Value Default
DatabaseTypes {catalyst|catalyst_exodus|cgns|

dof|dof_exodus|exodus|exodusii|
exonull|generated|genesis|null|
parallel_exodus|textmesh}

–

Summary The database type/format used for the mesh.

32

3.2.7. Decomposition Method
Scope: Finite Element Model

Decomposition Method {=|are|is} Method

Parameter Value Default
Method {block|cyclic|external|geom_kway

|hsfc|kway|kway_geom|linear|map|
metis_sfc|random|rcb|rib|variable}

–

Summary The decomposition algorithm to be used to partition elements to each processor in a
parallel run.

3.2.8. Omit Assembly
Scope: Finite Element Model

Omit Assembly AssemblyList...

Parameter Value Default
AssemblyList string... –

Summary Specifies that the element blocks that are in the assemblies in AssemblyList will be
omitted from the analysis.

Description If an assembly is used to omit an element block, then it is illegal to refer to that element
block later in the file. Any of the element blocks omitted will be removed from any
assembly that contains them.

3.2.9. Omit Block
Scope: Finite Element Model

Omit Block BlockList...

Parameter Value Default
BlockList string... –

Summary Specifies that the element blocks named in the blockList be omitted from the analysis.

Description If an element block is omitted, then it is illegal to refer to it later in the input file e.g an
initial condition may not be specified on an omitted element block. The elements, faces,
etc are never created and it is as if the omitted element blocks did not exist in the mesh
file. If a surface is completely determined by the omitted element block, then it is illegal
to specify boundary conditions on that surface. However, if the surface spans multiple
element blocks, boundary conditions may be applied on the portion of the surface
supported by the element blocks that are not omitted.

33

3.2.10. Omit Volume
Scope: Finite Element Model

Omit Volume VolumeList...

Parameter Value Default
VolumeList string... –

Summary Specifies that the volumes named in the volumeList be omitted from the analysis.

Description If a volume is omitted, then it is illegal to refer to it later in the input file e.g an initial
condition may not be specified on an omitted volume. The elements, faces, etc are never
created and it is as if the omitted volumes did not exist in the mesh file. If a surface is
completely determined by the omitted volume, then it is illegal to specify boundary
conditions on that surface. However, if the surface spans multiple volumes, boundary
conditions may be applied on the portion of the surface supported by the volumes that
are not omitted.

3.2.11. Time Scale Factor
Scope: Finite Element Model

Time Scale Factor Option Scale

Parameter Value Default
Option {=|is} –
Scale real –

Summary The scale factor to be applied to the times on the mesh database. If the scale factor is 20
and the times on the mesh database are 0.1, 0.2, 0.3, then the application will see the mesh
times as 2, 4, 6.

3.2.12. Use Generic Names
Scope: Finite Element Model

Summary If this command is present then the name of all blocks and sets in the mesh will be of the
form "type_"+id. For example, an element block with id=42 will be named "block_42"; a
sideset with id 314 will be named "surface_314". If there are any names in the mesh file,
those names will be aliases for the blocks and sets. If this command is not present, then if
a name is in the mesh file, it will be used as the name and the generic generated name will
be an alias. This is used as a workaround in codes that do not correctly handle named
blocks and sets or as a workaround in meshes which contain non-user-specified names.

34

3.2.13. Use Material
Scope: Finite Element Model

Use Material MaterialName For VolumeList...

Parameter Value Default
MaterialName string –
VolumeList string... –

Summary Associate the given volumes with the indicated material name.

3.3. PARAMETERS FOR BLOCK
Scope: Finite Element Model

Begin Parameters For Block Blockname

Active For Procedure ProcedureName During Periods PeriodNames...

Bending Hourglass Option {=|are|is} Hgval

Density Scale Factor {=|are|is} densityScaleFactor

Deposit Specific Internal Energy Edep [Over Time Tdep Starting At
Time Tinit]

Effective Moduli Model {=|are|is} Option

Element Numerical Formulation {=|are|is} Option

Energy Iteration Tolerance {=|are|is} Eit

Hourglass Option {=|are|is} Hgval

Hourglass Option {=|are|is} Hgval

Inactive For Procedure ProcedureName During Periods PeriodNames...

Include All Blocks

Inversion Aversion Exponent {=|are|is} ia_exponent

Inversion Aversion Stiffness {=|are|is} ia_stiffness

Inversion Aversion Transition Jacobian {=|are|is}
transition_jacobian

Linear Bulk Viscosity {=|are|is} Lbv

Local Coordinate System {=|are|is} Mesh Entities

Material MatName

35

Material = MatName

Max Energy Iterations {=|are|is} Mei

Membrane Hourglass Option {=|are|is} Hgval

Minimum Effective Dilatational Moduli Ratio {=|are|is}
minEffectiveModuliRatio

Minimum Effective Shear Moduli Ratio {=|are|is}
minEffectiveModuliRatio

Model {=|are|is} ModelName

Nonlocal Regularization Kmeans Cell Size {=|are|is}
kmeans_cell_size

Nonlocal Regularization Kmeans Maximum Iterations {=|are|is}
kmeans_maximum_iterations

Nonlocal Regularization Kmeans Tolerance {=|are|is}
kmeans_tolerance

Nonlocal Regularization On stateVariableName With Length Scale {=|
are|is} lengthScale [And Staggering]

Nonlocal Regularization Partitioning Scheme {=|are|is}
PartitioningScheme

Phase PhaseLabel {=|are|is} MaterialName

Quadratic Bulk Viscosity {=|are|is} Qbv

Remove Block {=|are|is} ExcludeBlockList...

Section {=|are|is} SectionName

Solid Mechanics Use Model ModelName

Transverse Shear Hourglass Option {=|are|is} Hgval

End

Summary Specifies analysis parameters associated with each element block.

36

3.3.1. Active For Procedure
Scope: Parameters For Block

Active For Procedure ProcedureName During Periods PeriodNames...

Parameter Value Default
ProcedureName string –
PeriodNames string... –

Summary Lists the solution periods during which the given BC, solver, preconditioner, etc. is
active. Multiple uses of this line command within a single block will have a cumulative
affect.

3.3.2. Bending Hourglass
Scope: Parameters For Block

Bending Hourglass Option {=|are|is} Hgval

Parameter Value Default
Option {stiffness|viscosity} –
Hgval real –

Summary Supplies the hourglass stiffness and viscosity parameters for bending deformation in a
shell element block.

3.3.3. Density Scale Factor
Scope: Parameters For Block

Density Scale Factor {=|are|is} densityScaleFactor

Parameter Value Default
densityScaleFactor real –

Summary Specifies a scale factor to apply to the density defined in the material. This value must be
greater than zero. The default is 1.0 (no scaling).

37

3.3.4. Deposit Specific Internal Energy
Scope: Parameters For Block

Deposit Specific Internal Energy Edep [Over Time Tdep Starting At Time
Tinit]

Parameter Value Default
Edep real –

Summary Defines the amount of specific (per unit mass) internal energy to be deposited in the
material. The energy is deposited over time tdep, beginning at time tinit. The optional
parameters tdep and tinit both default to zero, so the energy will be deposited
instantaneously at time zero if they are not specified. The deposition is uniform in space,
so each element in the block has the same amount edep added to its specific internal
energy.

3.3.5. Effective Moduli Model
Scope: Parameters For Block

Effective Moduli Model {=|are|is} Option

Parameter Value Default
Option {elastic|probed|pronto} –

Summary Specifies the method used to determine the effective moduli. This choice can have a
significant effect on the resulting hourglassing behavior. The models are: * elastic: use the
initial elastic moduli * pronto: use the old PRONTO method for computing elastic
moduli this approach is straight out of PRONTO, PRESTO’s predecessor. This is a
bounded tangent method. * probe: Use a pronto-like method, but pass in a an artificial
probe strain rate rather than the actual strain.

3.3.6. Element Numerical Formulation
Scope: Parameters For Block

Element Numerical Formulation {=|are|is} Option

Parameter Value Default
Option {new|old} –

Summary Specifies which element numerical formulation to use for this block.

38

3.3.7. Energy Iteration Tolerance
Scope: Parameters For Block

Energy Iteration Tolerance {=|are|is} Eit

Parameter Value Default
Eit real –

Summary Specifies the tolerance criteria for exiting the iterative solve of the implicit internal energy
update equation. Applicable when using EOS material models with extracted energy
updates.

3.3.8. Hourglass
Scope: Parameters For Block

Hourglass Option {=|are|is} Hgval

Parameter Value Default
Option {stiffness|viscosity} –
Hgval real –

Summary Supplies the hourglass stiffness and viscosity parameters for this element block.

3.3.9. Hourglass
Scope: Parameters For Block

Hourglass Option {=|are|is} Hgval

Parameter Value Default
Option {exponent|transition strain} –
Hgval real –

Summary Supplies the hourglass stiffness and viscosity parameters for this element block.

3.3.10. Inactive For Procedure
Scope: Parameters For Block

Inactive For Procedure ProcedureName During Periods PeriodNames...

Parameter Value Default
ProcedureName string –
PeriodNames string... –

39

Summary Lists the solution periods during which the given BC, solver, preconditioner, etc. is
inactive. Multiple uses of this line command within a single block will have a cumulative
affect.

3.3.11. Include All Blocks
Scope: Parameters For Block

Summary Use this parameters definition for all blocks.

When using this option within the FINITE ELEMENT MODEL command block the
PARAMETERS FOR BLOCK will not use a Blockname.

3.3.12. Inversion Aversion Exponent
Scope: Parameters For Block

Inversion Aversion Exponent {=|are|is} ia_exponent

Parameter Value Default
ia_exponent integer 5

Summary Sets the exponent used to compute the smooth approximate nodal jacobian ratio. A
higher exponent results in a more-accurate approximation to the ratio. This is only active
for uniform gradient elements. Default = 5.

3.3.13. Inversion Aversion Stiffness
Scope: Parameters For Block

Inversion Aversion Stiffness {=|are|is} ia_stiffness

Parameter Value Default
ia_stiffness real 1.e5

Summary Sets a stiffness parameter for the inversion aversion penalty. This is only active for
uniform gradient elements. Default = 1.0e5.

40

3.3.14. Inversion Aversion Transition Jacobian
Scope: Parameters For Block

Inversion Aversion Transition Jacobian {=|are|is} transition_jacobian

Parameter Value Default
transition_jacobian real 0

Summary Sets the critical relative nodal Jacobian ratio for inversion aversion. If this value is
nonzero, an additional recoverable energy term is added which penalizes further element
distortion. This energy is only active for uniform gradient elements.

3.3.15. Linear Bulk Viscosity
Scope: Parameters For Block

Linear Bulk Viscosity {=|are|is} Lbv

Parameter Value Default
Lbv real –

Summary Supplies the linear coefficient for the bulk viscosity computations.

3.3.16. Local Coordinate System
Scope: Parameters For Block

Local Coordinate System {=|are|is} Mesh Entities

Parameter Value Default
Mesh Entities string –

Summary Associate coordinate system with mesh entity.

Description Specify the local coordinate system to be used in conjunction with given element blocks.

3.3.17. Material
Scope: Parameters For Block

Material MatName

Parameter Value Default
MatName string –

Summary Associates this element block with its material properties.

41

3.3.18. Material =
Scope: Parameters For Block

Material = MatName

Parameter Value Default
MatName string –

Summary Associates this element block with its material properties.

3.3.19. Max Energy Iterations
Scope: Parameters For Block

Max Energy Iterations {=|are|is} Mei

Parameter Value Default
Mei integer –

Summary Specifies the maximum number of iterations to take in solving the implicit internal
energy update equation. Applicable when using EOS material models with extracted
energy updates.

3.3.20. Membrane Hourglass
Scope: Parameters For Block

Membrane Hourglass Option {=|are|is} Hgval

Parameter Value Default
Option {stiffness|viscosity} –
Hgval real –

Summary Supplies the hourglass stiffness and viscosity parameters for membrane deformation in a
shell or membrane element block.

3.3.21. Minimum Effective Dilatational Moduli Ratio
Scope: Parameters For Block

Minimum Effective Dilatational Moduli Ratio {=|are|is}
minEffectiveModuliRatio

Parameter Value Default
minEffectiveModuliRatio real –

42

Summary Specifies a minimum effective DILATATIONAL moduli ratio. This value keeps the
effective moduli from dropping below minEffectiveModuliRatio*ElasticModulus. This
can aid in keeping the corresponding time step and bulk viscosity terms dropping to zero

3.3.22. Minimum Effective Shear Moduli Ratio
Scope: Parameters For Block

Minimum Effective Shear Moduli Ratio {=|are|is} minEffectiveModuliRatio

Parameter Value Default
minEffectiveModuliRatio real –

Summary Specifies a minimum effective SHEAR moduli ratio. This value keeps the effective
moduli from dropping below minEffectiveModuliRatio*ElasticModulus. This can aid
in keeping the corresponding hourglass stiffness terms dropping to zero

3.3.23. Model
Scope: Parameters For Block

Model {=|are|is} ModelName

Parameter Value Default
ModelName string –

Summary Associates a solid mechanics material model with this element block. The material
parameters for this block are specified in the material denoted by the MATERIAL
command.

3.3.24. Nonlocal Regularization Kmeans Cell Size
Scope: Parameters For Block

Nonlocal Regularization Kmeans Cell Size {=|are|is} kmeans_cell_size

Parameter Value Default
kmeans_cell_size real –

Summary This line command specifies the cell size used to construct the background grid for the
computation of the centroidal Voronoi tessellation for the Kmeans partitioning scheme.

43

3.3.25. Nonlocal Regularization Kmeans Maximum Iterations
Scope: Parameters For Block

Nonlocal Regularization Kmeans Maximum Iterations {=|are|is}
kmeans_maximum_iterations

Parameter Value Default
kmeans_maximum_iterations integer –

Summary This line command specifies the maximum number of iterations to perform for Lloyd’s
algorithm for the computation of the centroidal Voronoi tessellation for the Kmeans
partitioning scheme.

3.3.26. Nonlocal Regularization Kmeans Tolerance
Scope: Parameters For Block

Nonlocal Regularization Kmeans Tolerance {=|are|is} kmeans_tolerance

Parameter Value Default
kmeans_tolerance real –

Summary This line command specifies the relative tolerance for Lloyd’s algorithm. Iterations
continue until the maximum number is reached or the L2 norm of a vector of all the
center steps is less or equal than the tolerance times the cell size of the background grid.

3.3.27. Nonlocal Regularization On
Scope: Parameters For Block

Nonlocal Regularization On stateVariableName With Length Scale {=|are|is}
lengthScale [And Staggering]

Parameter Value Default
stateVariableName string –
lengthScale real –

Summary This line command will cause the mesh to be partitioned into sub domains where each
sub domain volume is on the order of lengthScale3 and regularizes the governing PDE
by averaging the material state variable stateVariableName over the sub domain.

44

3.3.28. Nonlocal Regularization Partitioning Scheme
Scope: Parameters For Block

Nonlocal Regularization Partitioning Scheme {=|are|is} PartitioningScheme

Parameter Value Default
PartitioningScheme {kmeans|metis|zoltan_hypergraph|

zoltan_rcb|zoltan_rib}
–

Summary This line command specifies the type of partitioning algorithm used to perform the
domain decomposition for the nonlocal regularization method

3.3.29. Phase
Scope: Parameters For Block

Phase PhaseLabel {=|are|is} MaterialName

Parameter Value Default
PhaseLabel string –
MaterialName string –

Summary Associate phase PhaseLabel with material Material_Name on this block.

3.3.30. Quadratic Bulk Viscosity
Scope: Parameters For Block

Quadratic Bulk Viscosity {=|are|is} Qbv

Parameter Value Default
Qbv real –

Summary Supplies the quadratic coefficient for the bulk viscosity computations.

3.3.31. Remove Block
Scope: Parameters For Block

Remove Block {=|are|is} ExcludeBlockList...

Parameter Value Default
ExcludeBlockList string... –

Summary List of blocks to exclude.

45

3.3.32. Section
Scope: Parameters For Block

Section {=|are|is} SectionName

Parameter Value Default
SectionName string –

Summary Specifies the section to use for this element block.

3.3.33. Solid Mechanics Use Model
Scope: Parameters For Block

Solid Mechanics Use Model ModelName

Parameter Value Default
ModelName string –

Summary Associates a solid mechanics material model with this element block. The material
parameters for this block are specified in the material denoted by the MATERIAL
command.

3.3.34. Transverse Shear Hourglass
Scope: Parameters For Block

Transverse Shear Hourglass Option {=|are|is} Hgval

Parameter Value Default
Option {stiffness|viscosity} –
Hgval real –

Summary Supplies the hourglass stiffness and viscosity parameters for transverse shear deformation
in a shell element block.

3.4. GLOBAL CONSTANTS
Scope: Sierra

Begin Global Constants empty

Faradays Constant {=|are|is} Faraday

Gravity Vector {=|are|is} Gravity1 Gravity2 Gravity3

Ideal Gas Constant {=|are|is} Sigma

K-E Turbulence Model Parameter Param {=|are|is} Value

46

K-W Turbulence Model Parameter Param {=|are|is} Value

Les Turbulence Model Parameter Param {=|are|is} Value

Light Speed {=|are|is} LightSpeed

Planck Constant {=|are|is} PlanckConstant

Stefan Boltzmann Constant {=|are|is} Sigma

Turbulence Model Param Number {=|are|is} Value

End

Summary Set of universal constants for a simulation.

3.4.1. Faradays Constant
Scope: Global Constants

Faradays Constant {=|are|is} Faraday

Parameter Value Default
Faraday real –

Summary Faraday’s Constant. NOTE: Another Faraday’s constant value can be specified while
using certain code capabilities. This global constants value will be discarded for any other
specified Faraday’s constant values.

3.4.2. Gravity Vector
Scope: Global Constants

Gravity Vector {=|are|is} Gravity1 Gravity2 Gravity3

Parameter Value Default
Gravity real_1 real_2 real_3 –

Summary Gravity constant in vector form, acceleration components.

47

3.4.3. Ideal Gas Constant
Scope: Global Constants

Ideal Gas Constant {=|are|is} Sigma

Parameter Value Default
Sigma real –

Summary Ideal gas constant. NOTE: Another ideal gas constant value can be specified while using
certain code capabilities. This global constants value will be discarded for any other
specified ideal gas constant values.

3.4.4. K-E Turbulence Model Parameter
Scope: Global Constants

K-E Turbulence Model Parameter Param {=|are|is} Value

Parameter Value Default
Param string –
Value real –

Summary k − ϵ RANS turbulence model parameters.

3.4.5. K-W Turbulence Model Parameter
Scope: Global Constants

K-W Turbulence Model Parameter Param {=|are|is} Value

Parameter Value Default
Param string –
Value real –

Summary k − ω RANS turbulence model parameters.

3.4.6. Les Turbulence Model Parameter
Scope: Global Constants

Les Turbulence Model Parameter Param {=|are|is} Value

Parameter Value Default
Param string –
Value real –

Summary LES turbulence model parameters.

48

3.4.7. Light Speed
Scope: Global Constants

Light Speed {=|are|is} LightSpeed

Parameter Value Default
LightSpeed real –

Summary Speed of Light. Depending on the units involved in the specific problem by the user, this
value will differ.

3.4.8. Planck Constant
Scope: Global Constants

Planck Constant {=|are|is} PlanckConstant

Parameter Value Default
PlanckConstant real –

Summary Planck Constant. Depending on the units involved in the specific problem by the user,
this value will differ.

3.4.9. Stefan Boltzmann Constant
Scope: Global Constants

Stefan Boltzmann Constant {=|are|is} Sigma

Parameter Value Default
Sigma real –

Summary Stefan-Boltzmann constant. Depending on the units involved in the specific problem by
the user, this value will differ.

3.4.10. Turbulence Model
Scope: Global Constants

Turbulence Model Param Number {=|are|is} Value

Parameter Value Default
Param string –
Value real –

Summary Turbulence model Schmidt and Prandtl numbers

49

3.5. DEFINITION FOR FUNCTION
Scope: Sierra

Begin Definition For Function FunctionName

Abscissa {=|are|is} Name...

Abscissa Offset {=|are|is} Abscissa_offset

Abscissa Scale {=|are|is} Abscissa_scale

At Discontinuity Evaluate To Option

Column Titles Titles1 Titles2...

Data File = filename [X From Column xcol Y From Column ycol]

Debug {=|are|is} Option

Differentiate Expression {=|are|is} Expr

Evaluate Expression {=|are|is} Expr

Evaluate From x0 To x1 By Dx

Expression Variable: Expr = VarType value_var_name... [State
StateEnum]

Expression Variable: Expr

Field Types Titles1 Titles2...

Ordinate {=|are|is} Name...

Ordinate Offset {=|are|is} Ordinate_offset

Ordinate Scale {=|are|is} Ordinate_scale

Scale By x

Type {=|are|is} Type

X Offset {=|are|is} X_offset

X Scale {=|are|is} X_scale

Y Offset {=|are|is} Y_offset

Y Scale {=|are|is} Y_scale

Begin Expressions empty

End

Begin Values empty

End

50

End

Summary Defines a function in terms of its type and values.

3.5.1. Abscissa
Scope: Definition For Function

Abscissa {=|are|is} Name...

Parameter Value Default
Name string... –

Summary Specifies a string identifier for the independent variable. Optionally specify a scale and/or
offset value which transforms the abscissa values into scaled_abscissa = scale * (abscissa +
abscissa_offset).

3.5.2. Abscissa Offset
Scope: Definition For Function

Abscissa Offset {=|are|is} Abscissa_offset

Parameter Value Default
Abscissa_offset real –

Summary Alias for X OFFSET

3.5.3. Abscissa Scale
Scope: Definition For Function

Abscissa Scale {=|are|is} Abscissa_scale

Parameter Value Default
Abscissa_scale real –

Summary Alias for X SCALE

51

3.5.4. At Discontinuity Evaluate To
Scope: Definition For Function

At Discontinuity Evaluate To Option

Parameter Value Default
Option {left|right} –

Summary Control the behavior of a piecewise constant function when evaluated at a discontinuity
(plus or minus a small tolerance). The default behavior is to take the value to the right of
the discontinuity. If "Left" is specified, the value to the left of the discontinuity is taken
instead.

3.5.5. Column Titles
Scope: Definition For Function

Column Titles Titles1 Titles2...

Parameter Value Default
Titles string_1 string_2... –

Summary Name the columns (and also defined the expected number of columns) for Multicolumn
Piecewise Linear tabular data.

3.5.6. Data File
Scope: Definition For Function

Data File = filename [X From Column xcol Y From Column ycol]

Parameter Value Default
filename string –

Summary Function will read tabular data from an input file. Compatible with the piecewise linear
function type. File must be of form like:

\# EXAMPLE FILE
1.099 1191
1.101 221
5.9011 133.1

Lines headed by a # are considered comments and will be ignored. Data itself must by in
tabular columns separated by whitespace or commas.

52

3.5.7. Debug
Scope: Definition For Function

Debug {=|are|is} Option

Parameter Value Default
Option {off|on} –

Summary Prints functions to the log file.

3.5.8. Differentiate Expression
Scope: Definition For Function

Differentiate Expression {=|are|is} Expr

Parameter Value Default
Expr (expression) –

Summary Specifies the expression of derivative of evaluation expression.

3.5.9. Evaluate Expression
Scope: Definition For Function

Evaluate Expression {=|are|is} Expr

Parameter Value Default
Expr (expression) –

Summary Specifies the expression to evaluate.

Description This will greatly help with manufactured solutions, and be useful for other purposes as
well. This uses the STK expression evaluator to evaluate the provided string. See the STK
user manual for details about valid syntax.

begin definition for function pressure
type is analytic
evaluate expression is "x <= 0.0 ? 0.0 : (x < 0.5 ? x*200.0

: (x < 1.0 ? (x - 0.5) *50.0 + 100.00 : 150.0))"
end definition for function pressure

53

3.5.10. Evaluate From
Scope: Definition For Function

Evaluate From x0 To x1 By Dx

Parameter Value Default
x0 real –
x1 real –
Dx real –

Summary Specifies the range and evaluation interval.

3.5.11. Expression Variable:
Scope: Definition For Function

Expression Variable: Expr = VarType value_var_name... [State StateEnum
]

Parameter Value Default
Expr string –
VarType {element|element_sym_tensor|

element_tensor|element_vector|face
|global|nodal|nodal_sym_tensor|
nodal_tensor|nodal_vector}

–

value_var_name string... –

Summary Specifies what the arguments of an expression correspond to. For example:

BEGIN DEFINITION FOR FUNCTION dx_shear
TYPE = ANALYTIC
EXPRESSION variable: mx = NODAL model_coordinates(x)
EXPRESSION variable: my = NODAL model_coordinates(y)
EXPRESSION variable: time = GLOBAL time
EVALUATE EXPRESSION = "(time/{termTime})*({stretchx}*(mx - 0.0) + ((my-0.25)/0.5)*{stretchxy})"

END

Assuming the above expression is being evaluated on nodes the current values for x and y
model coordinates would be placed into mx and my and current analysis time placed into
time

54

3.5.12. Expression Variable:
Scope: Definition For Function

Expression Variable: Expr

Parameter Value Default
Expr string –

Summary Specifies what the arguments of an expression exists, but does not define it correspond
to. For example:

BEGIN DEFINITION FOR FUNCTION dx_shear
TYPE = ANALYTIC
EXPRESSION variable: mx
EXPRESSION variable: my
EXPRESSION variable: time
EVALUATE EXPRESSION = "(time/{termTime})*({stretchx}*(mx - 0.0) + ((my-0.25)/0.5)*{stretchxy})"

END

Call function must determine what each variable actually is is based off of the string
name

3.5.13. Field Types
Scope: Definition For Function

Field Types Titles1 Titles2...

Parameter Value Default
Titles string_1 string_2... –

Summary The field types (GLOBAL/NODE/ELEMENT) that correspond to the column titles
listed for the multicolumn data.

3.5.14. Ordinate
Scope: Definition For Function

Ordinate {=|are|is} Name...

Parameter Value Default
Name string... –

Summary Specifies a string identifier for the dependent variable. Optionally specify a scale and/or
offset value which transforms the ordinate values into scaled_ordinate = scale * (ordinate
+ ordinate_offset).

55

3.5.15. Ordinate Offset
Scope: Definition For Function

Ordinate Offset {=|are|is} Ordinate_offset

Parameter Value Default
Ordinate_offset real –

Summary Alias for Y OFFSET

3.5.16. Ordinate Scale
Scope: Definition For Function

Ordinate Scale {=|are|is} Ordinate_scale

Parameter Value Default
Ordinate_scale real –

Summary Alias for Y SCALE

3.5.17. Scale By
Scope: Definition For Function

Scale By x

Parameter Value Default
x real –

Summary Specifies a scale factor to be applied.

3.5.18. Type
Scope: Definition For Function

Type {=|are|is} Type

Parameter Value Default
Type {analytic|constant|multicolumn

piecewise linear|piecewise analytic|
piecewise constant|piecewise linear|
piecewise multivariate|xtable}

–

Summary Specifies the type of function.

56

3.5.19. X Offset
Scope: Definition For Function

X Offset {=|are|is} X_offset

Parameter Value Default
X_offset real –

Summary Sets an offset for the x-axis

3.5.20. X Scale
Scope: Definition For Function

X Scale {=|are|is} X_scale

Parameter Value Default
X_scale real –

Summary Sets a scale factor for the x-axis

3.5.21. Y Offset
Scope: Definition For Function

Y Offset {=|are|is} Y_offset

Parameter Value Default
Y_offset real –

Summary Sets an offset for the y-axis

3.5.22. Y Scale
Scope: Definition For Function

Y Scale {=|are|is} Y_scale

Parameter Value Default
Y_scale real –

Summary Sets a scale factor for the y-axis

57

3.6. VALUES
Scope: Definition For Function

Begin Values empty

Xyvalues...

End

Summary Lists the values of the function. The values should be listed one pair per line,
independent variable first, with whitespace or comma as a separator.

3.6.1.
Scope: Values

Xyvalues...

Parameter Value Default
Xyvalues real... –

Summary For a piecewise linear function, lists an x-y pair for the nth interpolation point.

3.7. RESTART OVERVIEW

Sierra Framework services provide convenient utilities for restarting an analysis from previous results.
The most general capability supplements the results of a previous analysis with internal state variables to
continue an analysis. In this case the input mesh is supplied from the Input Database Name from the
Finite Element Model command block 3.1 and the restart information is obtained from the the Input
Database Name from the Restart Data command block. Continuation of a job using restart data
output is invoked using the command line which follows.

58

4. SOLUTION CONTROL REFERENCE

4.1. OVERVIEW

Arpeggio uses the solution control (SC) library from the SIERRA Framework to orchestrate execution
of simulations. All Arpeggio input files must include a Solution Control Description block in the
Procedure section of the input file. This description contains directives for executing a steady-state
(sequential) or transient analysis, either of which can include nested nonlinear iteration or subcycling.
Within the description one selects a named solution control system where the details of execution are
more clearly spelled out. Because there are similarities between the Sequential, Transient, Nonlinear
Iteration and Subcycling many operations are shared between these directives. However, each of these
segments must be uniquely named internally so they can be properly managed under solution
control.

Within each SC system, execution of a problem defined at the Region level corresponds to an Advance
directive. Thus a steady-state analysis could conceivably be carried out with a single Advance directive.
For transient analysis the system can contain several time blocks, each with a corresponding Advance
directive. Examples of different control structures are first demonstrated, followed by syntactical
descriptions of the solution control structures.

4.1.1. Steady Analysis

As an example, the solution control command block for a steady-state Aria analysis would reflect the
structure indicated below:

Begin Sierra myJob
.
. Materials, Solvers, Finite Element Model

Begin Procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Begin Sequential MySolveBlock
Advance myRegion

End

59

End
End

Begin Aria Region myRegion
.
. ICs, BCs, equations, output instructions
.
. myRegion output
.

End Aria Region myRegion

End Procedure myProcedure
.

End Sierra myJob

Problems of fully-coupled physics are best solved within a single application. As an alternative,
loose-coupling is often carried out by supplying local application variables that define the coupling to
another application. Solution control provides various means of carrying out these analyses depending
upon the strength of physics coupling within a solution step.

When the different problem physics are weakly-coupled one often assumes that for each solution step it
is sufficient to supply current values of variables involved in the coupling to the the other physics. In
cases of stronger coupling one may chose to iterate on the exchange of information between the two
physics until the interaction between physics has converged within a solution step before advancing.

A solution control command block for steady-state analysis containing nonlinear iteration for Aria and
Adagio would reflect the general structure indicated below. Here the nonlinear iteration will continue
until user specified criteria, Parameters for Nonlinear Iteration satisfy the converged criteria
and the solution will then advance.

Begin Sierra myJob
.
. Materials, Solvers, Finite Element Model

Begin Procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Begin Sequential MySolveBlock
Begin Nonlinear Iteration

Advance myAriaRegion
Advance myAdagioRegion
transfer adagio_to_aria

End Nonlinear Iteration

60

End
End

End

Begin Parameters for Nonlinear Iteration
Converged when "myAriaRegion.MaxInitialNonlinearResidual(0) < 1E-1 &&

myAdagioRegion.MaxInitialNonlinearResidual(0) < 1E-1 "
End

Begin transfer adagio_to_aria
.
. transfer commands
.

End transfer adagio_to_aria

Begin Aria Region myAriaRegion
.
. ICs, BCs, equations
. myAriaRegion output
.

End Aria Region myAriaRegion

Begin Adagio Region myAdagioRegion
.
. ICs, BCs, equations
. myAdagioRegion output
.

End Adagio Region myAdagioRegion

End Procedure myProcedure
.

End Sierra myJob

4.1.2. Transient Analysis

In the case of transient analysis the solution control command block will contain specification of times
for which the analysis will be carried out. Additionally, parameters defining the time integration for
each Region must also be supplied by the user. Details concerning time integration parameters are
included in the user manual for the application.

61

A simple example of transient analysis including two Aria Regions would resemble the structure shown
below:

Begin Sierra myJob
.
. Materials, Solvers, Finite Element Model
.
Begin Procedure My_Aria_Procedure

Begin Solution Control Description

Use System Main

Begin System Main
Simulation Start Time = 0.0
Simulation Termination Time = 10.0
Simulation Max Global Iterations = 1000

Begin Transient Time_Block_1
Advance My_Aria_Region

End
Begin Transient Time_Block_2

Advance My_Aria_Region
End

End

Begin Parameters For Transient Time_Block_1
Start Time = 0.0
Number of steps = 8
Begin Parameters For Aria Region My_Aria_Region

Time Step Variation = Fixed
Initial Time Step Size = 0.001

End
End

Begin Parameters For Transient Time_Block_2
Begin Parameters For Aria Region My_Aria_Region

Time Step Variation = Adaptive
Initial Time Step Size = 0.001
Predictor-Corrector Tolerance = 1e-3
Minimum Time Step Size = 1e-6

End
End

62

End
.

End Procedure My_Aria_Procedure
.

End Sierra myJob

A simple example of stronger coupling for transient analysis with nonlinear iteration would resemble
the structure indicated below. Here time step for advancement to the next solution step is negotiated
between coupled Regions based upon their respective Transient parameters.

Begin Sierra myJob
.
. Materials, Solvers, Finite Element Model
.
Begin Procedure My_Aria_Procedure

Begin Solution Control Description

Use System Main

Begin System Main
Simulation Start Time = 0.0
Simulation Termination Time = 10.0
Simulation Max Global Iterations = 1000

Begin Transient Time_Block
Begin Nonlinear Iteration

Advance myAriaRegion
transfer aria_to_adagio
Advance myAdagioRegion
transfer adagio_to_aria

End Nonlinear Iteration
End

End

Begin Parameters for Nonlinear Iteration
Converged when "myAriaRegion.MaxInitialNonlinearResidual(0) < 1E-1 &&

myAdagioRegion.MaxInitialNonlinearResidual(0) < 1E-1 "
End

Begin Parameters For Transient Time_Block_1
Start Time = 0.0
Termination Time = 10.0
Begin Parameters For Aria Region myAriaRegion

Time Step Variation = adaptive

63

Initial Time Step Size = 0.001
Predictor-Corrector Tolerance = 1e-3
Minimum Time Step Size = 1e-6

End
Begin Parameters For Adagio Region myAdagioRegion

Time increment = 0.001
End

End

End Solution Control Description

Begin transfer adagio_to_aria
. transfer commands

End transfer adagio_to_aria

Begin transfer aria_to_adagio
. transfer commands

End transfer aria_to_adagio
.

End Procedure My_Aria_Procedure
.

End Sierra myJob

Similarly, subcycled iterations in a two-way coupling between Aria and Presto could also be carried out
in a transient analysis. In this case Presto subcycles at a small time step, Aria has a larger time step and
the solution will advance when the two time applications arrive at the same solution time.

In most application codes management of variable state is done using pointer-swaps and with SC one
can manage the states available an application through appropriate choice of transfer to the subcycled
application. Here transfer of temperature state new to both presto state old and new will allow the same
temperature to be used by presto throughout the subcyle operation.

Begin Sierra myJob
.
Begin Procedure My_Aria_Procedure

Begin Solution Control Description

Use System Main

Begin System Main
Simulation Start Time = 0.0
Simulation Termination Time = 10.0
Simulation Max Global Iterations = 1000

64

Begin Transient Time_Block_1
Transfer Presto_to_Aria
Advance My_Aria_Region
Transfer Aria_to_Presto
Begin Subcycle PrestoSubcycle

Advance PrestoRegion
End

End

End

Begin Parameters For Transient Time_Block_1
Start Time = 0.0
Number of steps = 8

Begin Parameters For Aria Region My_Aria_Region
Time Step Variation = Fixed
Initial Time Step Size = 0.001

End

Begin Parameters for Presto Region PrestoRegion
initial time step = 1.0e-6
time step scale factor = 1.0
time step increase factor = 10.
step interval = 500

End
End

End
.
Begin transfer presto_to_aria

. transfer commands
End transfer presto_to_aria

Begin transfer aria_to_presto
Copy Volume Nodes From My_Aria_region to PrestoRegion
Send Field solution->Temperature State New to Temperature State New
Send Field solution->Temperature State New to Temperature State Old

End transfer aria_to_presto
.
Begin Aria Region myAriaRegion
.
.

End Aria Region myAriaRegion

65

Begin Presto Region myPrestoRegion
.
.

End Presto Region myPrestoRegion

End Procedure myProcedure
.

End Sierra myJob

4.1.3. Conditional Operations

It is important to note that Solution Control can orchestrate the execution of one Region or the
execution of many Regions. Within a loosely-coupled code analysis SC is also used to control the
movement of data between the coupled codes using the Transfer subsystem.

The outline views of various couplings include both Transfer and Advance events. In the examples
above the event will always occur in the sequence specified. Alternatively one can specify that the event
be carried out conditionally subject to criteria described syntactically as a "C" language
[When− expression] where the expression criteria includes internal code variables or explicit
evaluations. Here the input [When− expression] is parsed and transformed into an executable "C"
statement. While some of the internal code variables used by a [When− expression] are intuitive (i.e.
CURRENT_TIME and CURRENT_STEP) many others are application dependent. The most widely used
explicit evaluations are measures of convergence based upon solution residuals adagio.norm(0.0) for
solid mechanics applications and aria.MaxResidualNorm(0.0) for thermal-fluid applications.
Other thermal-fluid evaluations used in convergence comparisons are
aria.MaxInitialNonlinearResidual(0.0),
aria.MaxInitialNonlinearCorrection(0.0) and
aria.MaxInitialNonlinearCorrection(0.0).

Several examples of [When− expression] are given below noting that the "C" expression must be
enclosed in quotes within the input file.

Convergence based upon comparison of application residuals:

Begin parameters for nonlinear converge_step_p1
following two lines shown must be a single input command line
converged when $"(aria.MaxResidualNorm(0.0) < 1.e-6 && adagio.norm(0.0)

< 1.e-6) || CURRENT_STEP > 2000"
End parameters for nonlinear converge_step_p1

Transfer at first step and then every four steps:

Transfer aria_to_adagio when "(CURRENT_STEP == 1) || (CURRENT_STEP % 4 == 0)"

Advance the region at second step:

66

advance aria_region when "CURRENT_STEP == 2"

Additionally, one may also use application specific global variables in the [When− expression]
criteria. Global variables that are generally available for use are listed as such in the simulation log file.
Unfortunately these variables may not be directly accessible to the user. Hence consultation with an
application developer may be required in this regard.

4.1.4. Variable Initialization

In the case of transient analysis it is sometimes necessary to initialize a distribution of values before the
analysis actually begins. As an example, one may want to initialize a Field that will be transferred to
another Region with a distribution of values with the goal of setting a reference state. For this purpose
solution control provides a means for variable initialization, Initialize.

Begin Sierra myJob
.
. Materials, Solvers, Finite Element Model
.
Begin Procedure My_Aria_Procedure

Begin Initialize
Transfer var1_Region_to_var2_My_Aria_Region

End Initialize

Begin Solution Control Description

Use system Initialize
Use System Main

Begin System Main
Simulation Start Time = 0.0
Simulation Termination Time = 10.0
Simulation Max Global Iterations = 1000

Begin Transient Time_Block_1
Advance My_Aria_Region
Advance var1_Region

End
End

Begin Parameters For Transient Time_Block_1
Start Time = 0.0
Number of steps = 8
Begin Parameters For Aria Region var1_Region

67

. parameter commands
End
Begin Parameters For Aria Region My_Aria_Region

. parameter commands
End

End

End
.
. Var1_Region commands
.
. My_Aria_Region commands
.

End Procedure My_Aria_Procedure
.

End Sierra myJob

4.1.5. Mixed Physics Usage

There are certains steps one will have to take when it is desired to just advance either the Aria or Adagio
region in one of the transient blocks in an Arpeggio simulation.

The example shown below displays an Adagio-only second transient block. All transferred fields from
the disabled app to the still-enabled app need to be handled using the steps described below. With this
example, the only relevant transferred field is the temperature.

The first step taken was to switch new and old temperature states in Aria between the transient blocks.
This will allow the Adagio region in the next transient block to use the latest temperature solution from
Aria. The other notable syntax in the second transient block is to keep the aria to adagio transfer
command in place. This input syntax will make sure the Adagio region uses a consistent temperature
value while the region is being advanced.

Use System Main
Begin System Main

Begin Transient time_block
Advance aria_region

#begin subcycle
Transfer aria_to_adagio
Advance adagio_region
#end subcycle

Transfer adagio_to_aria

68

End Transient time_block

Transfer T_switch

Begin Transient time_block2
Advance aria_region

#begin subcycle
Transfer aria_to_adagio
Advance adagio_region
#end subcycle

End Transient time_block2
End System Main

Begin Transfer aria_to_adagio
Copy Volume Nodes from aria_region to adagio_region
Send Field solution->TEMPERATURE State NEW to Temperature State NEW

End Transfer aria_to_adagio

Begin Transfer adagio_to_aria
Copy Volume Nodes from adagio_region to aria_region
Send Field DISPLACEMENT State New to Solution->Mesh_Displacements State New

End Transfer adagio_to_aria

Begin Transfer T_switch
Copy Volume Nodes From Aria_region to Aria_region
Send Field solution->Temperature State Old to solution->Temperature State New
Send Field solution->Temperature State New to solution->Temperature State Old

End

4.2. SOLUTION CONTROL DESCRIPTION
Scope: Procedure

Begin Solution Control Description Name

Use System Name

Begin Adaptiveloop Name

End

Begin Initialize Name

69

End

Begin Parameters For

End

Begin System Name

End

End

Summary Contains the commands needed to execute an analysis using the arpeggio procedure that
uses Solver Control.

4.2.1. Use System
Scope: Solution Control Description

Use System Name

Parameter Value Default
Name string –

Summary This set the name of which system to use.

4.3. SYSTEM
Scope: Solution Control Description

Begin System Name

Adapt Region_name... Using Field_name... [When When-expression
]

Adapt Mesh For AdaptRegionName Using AdaptBlockName [When
WhenExpression]

Compute Indicator On Region_name... Using Indicator_name... [
When When-expression]

Event Name... [When When-expression]

Execute Postprocessor Group Group_name... On Region_name... [
When When-expression]

Indicatemarkadapt Region_name Using Indicator Marker [When
When-expression]

70

Mark Region_name... Using Marker_name... [When When-expression
]

Markadapt Region_name Using Marker [When When-expression]

Output Name [When When-expression]

Postprocess Aria Region RegionName [Equation System
EquationSystemName |When WhenExpression]

Simulation Max Global Iterations {=|are|is} Number

Simulation Start Time {=|are|is} Number

Simulation Termination Time {=|are|is} Number

Transfer Name [When When-expression]

Use Initialize Name

Begin Adaptivity Name

End

Begin Adaptiveloop Name

End

Begin Sequential Name

End

Begin Transient Name

End

End

Summary This block wraps a solver system for a given name. The NAME parameter is the name
used to define the system. There can be more than one system block in the Solver
Control Description block. The "use system NAME" line command controls which one
is to be used.

71

4.3.1. Adapt
Scope: System

Adapt Region_name... Using Field_name... [When When-expression]

Parameter Value Default
Region_name string... –
Field_name string... –

Summary Used within a Solver Control block to indicate a mesh adaptation on the specific block
should be performed.

4.3.2. Adapt Mesh
Scope: System

Adapt Mesh For AdaptRegionName Using AdaptBlockName [When WhenExpression
]

Parameter Value Default
AdaptRegionName string –
AdaptBlockName string –
WhenExpression (expression) –

Summary Adapt the mesh using the adaptive command block name

4.3.3. Compute Indicator On
Scope: System

Compute Indicator On Region_name... Using Indicator_name... [When
When-expression]

Parameter Value Default
Region_name string... –
Indicator_name string... –

Summary Used within a Solver Control block to indicate a mesh adaptation on the specific block
should be performed.

72

4.3.4. Event
Scope: System

Event Name... [When When-expression]

Parameter Value Default
Name string... –

Summary Used within a Solver Control block to indicate a single step that has no time associated
with it. It can cause a solution transfer between regions or cause something to print.

4.3.5. Execute Postprocessor Group
Scope: System

Execute Postprocessor Group Group_name... On Region_name... [When
When-expression]

Parameter Value Default
Group_name string... –
Region_name string... –

Summary Used within a Solver Control block to cause the group named group_name to be
executed on region region_name.

4.3.6. Indicatemarkadapt
Scope: System

Indicatemarkadapt Region_name Using Indicator Marker [When When-expression
]

Parameter Value Default
Region_name string –
Indicator string –
Marker string –

Summary Shortcut line command... equivalent to: Compute Indicator On ... Mark ... Adapt ...

73

4.3.7. Mark
Scope: System

Mark Region_name... Using Marker_name... [When When-expression]

Parameter Value Default
Region_name string... –
Marker_name string... –

Summary Used within a Solver Control block to indicate a mesh adaptation on the specific block
should be performed.

4.3.8. Markadapt
Scope: System

Markadapt Region_name Using Marker [When When-expression]

Parameter Value Default
Region_name string –
Marker string –

Summary Shortcut line command... equivalent to: Mark ... Adapt ...

4.3.9. Output
Scope: System

Output Name [When When-expression]

Parameter Value Default
Name string –

Summary A Solver Control Output line command which execute a perform I/O on the region.

4.3.10. Postprocess Aria Region
Scope: System

Postprocess Aria Region RegionName [Equation System EquationSystemName |
When WhenExpression]

Parameter Value Default
RegionName string –
EquationSystemName string –
WhenExpression (expression) –

74

Summary Run Aria Region postprocessors. If specified, only the single equation system’s PPs are
run.

4.3.11. Simulation Max Global Iterations
Scope: System

Simulation Max Global Iterations {=|are|is} Number

Parameter Value Default
Number integer –

Summary The Total number of Solves.

4.3.12. Simulation Start Time
Scope: System

Simulation Start Time {=|are|is} Number

Parameter Value Default
Number real –

Summary Simulation starting time. (by default 0.0)

4.3.13. Simulation Termination Time
Scope: System

Simulation Termination Time {=|are|is} Number

Parameter Value Default
Number real –

Summary The drop dead time.

4.3.14. Transfer
Scope: System

Transfer Name [When When-expression]

Parameter Value Default
Name string –

Summary A Solver Control Transfer line command which executes all transfers defined from the
specified region. All transfers with a send region of ’name’ will be executed.

75

4.3.15. Use Initialize
Scope: System

Use Initialize Name

Parameter Value Default
Name string –

Summary This set the name of which initialization to use.

4.4. TRANSIENT
Scope: System

Begin Transient Name

Adapt Region_name... Using Field_name... [When When-expression
]

Advance Name... [When When-expression]

Adapt Mesh For AdaptRegionName Using AdaptBlockName [When
WhenExpression]

Compute Indicator On Region_name... Using Indicator_name... [
When When-expression]

Event Name... [When When-expression]

Execute Postprocessor Group Group_name... On Region_name... [
When When-expression]

Indicatemarkadapt Region_name Using Indicator Marker [When
When-expression]

Involve Name

Mark Region_name... Using Marker_name... [When When-expression
]

Markadapt Region_name Using Marker [When When-expression]

Output Name [When When-expression]

Postprocess Aria Region RegionName [Equation System
EquationSystemName |When WhenExpression]

Transfer Name [When When-expression]

Begin Adaptivity Name

End

76

Begin Adaptiveloop Name

End

Begin Nonlinear Name

End

Begin Subcycle Name

End

End

Summary This block is used to wrap a time loop.

4.4.1. Adapt
Scope: Transient

Adapt Region_name... Using Field_name... [When When-expression]

Parameter Value Default
Region_name string... –
Field_name string... –

Summary Used within a Solver Control block to indicate a mesh adaptation on the specific block
should be performed.

4.4.2. Advance
Scope: Transient

Advance Name... [When When-expression]

Parameter Value Default
Name string... –

Summary Used within a Solver Control block to indicate a single step that advances the solution.
The name is that matches the physics.

77

4.4.3. Adapt Mesh
Scope: Transient

Adapt Mesh For AdaptRegionName Using AdaptBlockName [When WhenExpression
]

Parameter Value Default
AdaptRegionName string –
AdaptBlockName string –
WhenExpression (expression) –

Summary Adapt the mesh using the adaptive command block name

4.4.4. Compute Indicator On
Scope: Transient

Compute Indicator On Region_name... Using Indicator_name... [When
When-expression]

Parameter Value Default
Region_name string... –
Indicator_name string... –

Summary Used within a Solver Control block to indicate a mesh adaptation on the specific block
should be performed.

4.4.5. Event
Scope: Transient

Event Name... [When When-expression]

Parameter Value Default
Name string... –

Summary Used within a Solver Control block to indicate a single step that has no time associated
with it. It can cause a solution transfer between regions or cause something to print.

78

4.4.6. Execute Postprocessor Group
Scope: Transient

Execute Postprocessor Group Group_name... On Region_name... [When
When-expression]

Parameter Value Default
Group_name string... –
Region_name string... –

Summary Used within a Solver Control block to cause the group named group_name to be
executed on region region_name.

4.4.7. Indicatemarkadapt
Scope: Transient

Indicatemarkadapt Region_name Using Indicator Marker [When When-expression
]

Parameter Value Default
Region_name string –
Indicator string –
Marker string –

Summary Shortcut line command... equivalent to: Compute Indicator On ... Mark ... Adapt ...

4.4.8. Involve
Scope: Transient

Involve Name

Parameter Value Default
Name string –

Summary Specify a physics participant to a coupled problem solved using matrix-free nonlinear.

79

4.4.9. Mark
Scope: Transient

Mark Region_name... Using Marker_name... [When When-expression]

Parameter Value Default
Region_name string... –
Marker_name string... –

Summary Used within a Solver Control block to indicate a mesh adaptation on the specific block
should be performed.

4.4.10. Markadapt
Scope: Transient

Markadapt Region_name Using Marker [When When-expression]

Parameter Value Default
Region_name string –
Marker string –

Summary Shortcut line command... equivalent to: Mark ... Adapt ...

4.4.11. Output
Scope: Transient

Output Name [When When-expression]

Parameter Value Default
Name string –

Summary A Solver Control Output line command which execute a perform I/O on the region.

4.4.12. Postprocess Aria Region
Scope: Transient

Postprocess Aria Region RegionName [Equation System EquationSystemName |
When WhenExpression]

Parameter Value Default
RegionName string –
EquationSystemName string –
WhenExpression (expression) –

80

Summary Run Aria Region postprocessors. If specified, only the single equation system’s PPs are
run.

4.4.13. Transfer
Scope: Transient

Transfer Name [When When-expression]

Parameter Value Default
Name string –

Summary A Solver Control Transfer line command which executes all transfers defined from the
specified region. All transfers with a send region of ’name’ will be executed.

4.5. NONLINEAR
Scope: Transient

Begin Nonlinear Name

Adapt Region_name... Using Field_name... [When When-expression
]

Advance Name... [When When-expression]

Adapt Mesh For AdaptRegionName Using AdaptBlockName [When
WhenExpression]

Compute Indicator On Region_name... Using Indicator_name... [
When When-expression]

Event Name... [When When-expression]

Execute Postprocessor Group Group_name... On Region_name... [
When When-expression]

Indicatemarkadapt Region_name Using Indicator Marker [When
When-expression]

Involve Name

Mark Region_name... Using Marker_name... [When When-expression
]

Markadapt Region_name Using Marker [When When-expression]

Output Name [When When-expression]

Postprocess Aria Region RegionName [Equation System
EquationSystemName |When WhenExpression]

81

Transfer Name [When When-expression]

Begin Subcycle Name

End

End

Summary This block is used to wrap a nonlinear solve loop.

4.5.1. Adapt
Scope: Nonlinear

Adapt Region_name... Using Field_name... [When When-expression]

Parameter Value Default
Region_name string... –
Field_name string... –

Summary Used within a Solver Control block to indicate a mesh adaptation on the specific block
should be performed.

4.5.2. Advance
Scope: Nonlinear

Advance Name... [When When-expression]

Parameter Value Default
Name string... –

Summary Used within a Solver Control block to indicate a single step that advances the solution.
The name is that matches the physics.

4.5.3. Adapt Mesh
Scope: Nonlinear

Adapt Mesh For AdaptRegionName Using AdaptBlockName [When WhenExpression
]

Parameter Value Default
AdaptRegionName string –
AdaptBlockName string –
WhenExpression (expression) –

Summary Adapt the mesh using the adaptive command block name

82

4.5.4. Compute Indicator On
Scope: Nonlinear

Compute Indicator On Region_name... Using Indicator_name... [When
When-expression]

Parameter Value Default
Region_name string... –
Indicator_name string... –

Summary Used within a Solver Control block to indicate a mesh adaptation on the specific block
should be performed.

4.5.5. Event
Scope: Nonlinear

Event Name... [When When-expression]

Parameter Value Default
Name string... –

Summary Used within a Solver Control block to indicate a single step that has no time associated
with it. It can cause a solution transfer between regions or cause something to print.

4.5.6. Execute Postprocessor Group
Scope: Nonlinear

Execute Postprocessor Group Group_name... On Region_name... [When
When-expression]

Parameter Value Default
Group_name string... –
Region_name string... –

Summary Used within a Solver Control block to cause the group named group_name to be
executed on region region_name.

83

4.5.7. Indicatemarkadapt
Scope: Nonlinear

Indicatemarkadapt Region_name Using Indicator Marker [When When-expression
]

Parameter Value Default
Region_name string –
Indicator string –
Marker string –

Summary Shortcut line command... equivalent to: Compute Indicator On ... Mark ... Adapt ...

4.5.8. Involve
Scope: Nonlinear

Involve Name

Parameter Value Default
Name string –

Summary Specify a physics participant to a coupled problem solved using matrix-free nonlinear.

4.5.9. Mark
Scope: Nonlinear

Mark Region_name... Using Marker_name... [When When-expression]

Parameter Value Default
Region_name string... –
Marker_name string... –

Summary Used within a Solver Control block to indicate a mesh adaptation on the specific block
should be performed.

4.5.10. Markadapt
Scope: Nonlinear

Markadapt Region_name Using Marker [When When-expression]

Parameter Value Default
Region_name string –
Marker string –

Summary Shortcut line command... equivalent to: Mark ... Adapt ...

84

4.5.11. Output

Scope: Nonlinear

Output Name [When When-expression]

Parameter Value Default
Name string –

Summary A Solver Control Output line command which execute a perform I/O on the region.

4.5.12. Postprocess Aria Region

Scope: Nonlinear

Postprocess Aria Region RegionName [Equation System EquationSystemName |
When WhenExpression]

Parameter Value Default
RegionName string –
EquationSystemName string –
WhenExpression (expression) –

Summary Run Aria Region postprocessors. If specified, only the single equation system’s PPs are
run.

4.5.13. Transfer

Scope: Nonlinear

Transfer Name [When When-expression]

Parameter Value Default
Name string –

Summary A Solver Control Transfer line command which executes all transfers defined from the
specified region. All transfers with a send region of ’name’ will be executed.

85

4.6. SUBCYCLE
Scope: Transient

Begin Subcycle Name

Adapt Region_name... Using Field_name... [When When-expression
]

Advance Name... [When When-expression]

Adapt Mesh For AdaptRegionName Using AdaptBlockName [When
WhenExpression]

Compute Indicator On Region_name... Using Indicator_name... [
When When-expression]

Event Name... [When When-expression]

Execute Postprocessor Group Group_name... On Region_name... [
When When-expression]

Indicatemarkadapt Region_name Using Indicator Marker [When
When-expression]

Involve Name

Mark Region_name... Using Marker_name... [When When-expression
]

Markadapt Region_name Using Marker [When When-expression]

Output Name [When When-expression]

Postprocess Aria Region RegionName [Equation System
EquationSystemName |When WhenExpression]

Transfer Name [When When-expression]

End

Summary This block is used to wrap a subcycle time loop.

86

4.6.1. Adapt
Scope: Subcycle

Adapt Region_name... Using Field_name... [When When-expression]

Parameter Value Default
Region_name string... –
Field_name string... –

Summary Used within a Solver Control block to indicate a mesh adaptation on the specific block
should be performed.

4.6.2. Advance
Scope: Subcycle

Advance Name... [When When-expression]

Parameter Value Default
Name string... –

Summary Used within a Solver Control block to indicate a single step that advances the solution.
The name is that matches the physics.

4.6.3. Adapt Mesh
Scope: Subcycle

Adapt Mesh For AdaptRegionName Using AdaptBlockName [When WhenExpression
]

Parameter Value Default
AdaptRegionName string –
AdaptBlockName string –
WhenExpression (expression) –

Summary Adapt the mesh using the adaptive command block name

87

4.6.4. Compute Indicator On
Scope: Subcycle

Compute Indicator On Region_name... Using Indicator_name... [When
When-expression]

Parameter Value Default
Region_name string... –
Indicator_name string... –

Summary Used within a Solver Control block to indicate a mesh adaptation on the specific block
should be performed.

4.6.5. Event
Scope: Subcycle

Event Name... [When When-expression]

Parameter Value Default
Name string... –

Summary Used within a Solver Control block to indicate a single step that has no time associated
with it. It can cause a solution transfer between regions or cause something to print.

4.6.6. Execute Postprocessor Group
Scope: Subcycle

Execute Postprocessor Group Group_name... On Region_name... [When
When-expression]

Parameter Value Default
Group_name string... –
Region_name string... –

Summary Used within a Solver Control block to cause the group named group_name to be
executed on region region_name.

88

4.6.7. Indicatemarkadapt
Scope: Subcycle

Indicatemarkadapt Region_name Using Indicator Marker [When When-expression
]

Parameter Value Default
Region_name string –
Indicator string –
Marker string –

Summary Shortcut line command... equivalent to: Compute Indicator On ... Mark ... Adapt ...

4.6.8. Involve
Scope: Subcycle

Involve Name

Parameter Value Default
Name string –

Summary Specify a physics participant to a coupled problem solved using matrix-free nonlinear.

4.6.9. Mark
Scope: Subcycle

Mark Region_name... Using Marker_name... [When When-expression]

Parameter Value Default
Region_name string... –
Marker_name string... –

Summary Used within a Solver Control block to indicate a mesh adaptation on the specific block
should be performed.

4.6.10. Markadapt
Scope: Subcycle

Markadapt Region_name Using Marker [When When-expression]

Parameter Value Default
Region_name string –
Marker string –

Summary Shortcut line command... equivalent to: Mark ... Adapt ...

89

4.6.11. Output

Scope: Subcycle

Output Name [When When-expression]

Parameter Value Default
Name string –

Summary A Solver Control Output line command which execute a perform I/O on the region.

4.6.12. Postprocess Aria Region

Scope: Subcycle

Postprocess Aria Region RegionName [Equation System EquationSystemName |
When WhenExpression]

Parameter Value Default
RegionName string –
EquationSystemName string –
WhenExpression (expression) –

Summary Run Aria Region postprocessors. If specified, only the single equation system’s PPs are
run.

4.6.13. Transfer

Scope: Subcycle

Transfer Name [When When-expression]

Parameter Value Default
Name string –

Summary A Solver Control Transfer line command which executes all transfers defined from the
specified region. All transfers with a send region of ’name’ will be executed.

90

4.7. SEQUENTIAL
Scope: System

Begin Sequential Name

Adapt Region_name... Using Field_name... [When When-expression
]

Advance Name... [When When-expression]

Adapt Mesh For AdaptRegionName Using AdaptBlockName [When
WhenExpression]

Compute Indicator On Region_name... Using Indicator_name... [
When When-expression]

Event Name... [When When-expression]

Execute Postprocessor Group Group_name... On Region_name... [
When When-expression]

Indicatemarkadapt Region_name Using Indicator Marker [When
When-expression]

Involve Name

Mark Region_name... Using Marker_name... [When When-expression
]

Markadapt Region_name Using Marker [When When-expression]

Output Name [When When-expression]

Postprocess Aria Region RegionName [Equation System
EquationSystemName |When WhenExpression]

Transfer Name [When When-expression]

Begin Adaptivity Name

End

Begin Adaptiveloop Name

End

Begin Nonlinear Name

End

End

91

Summary This block is used to wrap a sequential solution. It is used to wrap a sequence of
Non-Linear or pseudo time solve step solves.

4.7.1. Adapt
Scope: Sequential

Adapt Region_name... Using Field_name... [When When-expression]

Parameter Value Default
Region_name string... –
Field_name string... –

Summary Used within a Solver Control block to indicate a mesh adaptation on the specific block
should be performed.

4.7.2. Advance
Scope: Sequential

Advance Name... [When When-expression]

Parameter Value Default
Name string... –

Summary Used within a Solver Control block to indicate a single step that advances the solution.
The name is that matches the physics.

4.7.3. Adapt Mesh
Scope: Sequential

Adapt Mesh For AdaptRegionName Using AdaptBlockName [When WhenExpression
]

Parameter Value Default
AdaptRegionName string –
AdaptBlockName string –
WhenExpression (expression) –

Summary Adapt the mesh using the adaptive command block name

92

4.7.4. Compute Indicator On
Scope: Sequential

Compute Indicator On Region_name... Using Indicator_name... [When
When-expression]

Parameter Value Default
Region_name string... –
Indicator_name string... –

Summary Used within a Solver Control block to indicate a mesh adaptation on the specific block
should be performed.

4.7.5. Event
Scope: Sequential

Event Name... [When When-expression]

Parameter Value Default
Name string... –

Summary Used within a Solver Control block to indicate a single step that has no time associated
with it. It can cause a solution transfer between regions or cause something to print.

4.7.6. Execute Postprocessor Group
Scope: Sequential

Execute Postprocessor Group Group_name... On Region_name... [When
When-expression]

Parameter Value Default
Group_name string... –
Region_name string... –

Summary Used within a Solver Control block to cause the group named group_name to be
executed on region region_name.

93

4.7.7. Indicatemarkadapt
Scope: Sequential

Indicatemarkadapt Region_name Using Indicator Marker [When When-expression
]

Parameter Value Default
Region_name string –
Indicator string –
Marker string –

Summary Shortcut line command... equivalent to: Compute Indicator On ... Mark ... Adapt ...

4.7.8. Involve
Scope: Sequential

Involve Name

Parameter Value Default
Name string –

Summary Specify a physics participant to a coupled problem solved using matrix-free nonlinear.

4.7.9. Mark
Scope: Sequential

Mark Region_name... Using Marker_name... [When When-expression]

Parameter Value Default
Region_name string... –
Marker_name string... –

Summary Used within a Solver Control block to indicate a mesh adaptation on the specific block
should be performed.

4.7.10. Markadapt
Scope: Sequential

Markadapt Region_name Using Marker [When When-expression]

Parameter Value Default
Region_name string –
Marker string –

Summary Shortcut line command... equivalent to: Mark ... Adapt ...

94

4.7.11. Output

Scope: Sequential

Output Name [When When-expression]

Parameter Value Default
Name string –

Summary A Solver Control Output line command which execute a perform I/O on the region.

4.7.12. Postprocess Aria Region

Scope: Sequential

Postprocess Aria Region RegionName [Equation System EquationSystemName |
When WhenExpression]

Parameter Value Default
RegionName string –
EquationSystemName string –
WhenExpression (expression) –

Summary Run Aria Region postprocessors. If specified, only the single equation system’s PPs are
run.

4.7.13. Transfer

Scope: Sequential

Transfer Name [When When-expression]

Parameter Value Default
Name string –

Summary A Solver Control Transfer line command which executes all transfers defined from the
specified region. All transfers with a send region of ’name’ will be executed.

95

4.8. INITIALIZE
Scope: Solution Control Description

Begin Initialize Name

Advance Name... [When When-expression]

Event Name... [When When-expression]

Involve Name

Transfer Name [When When-expression]

End

Summary This block wraps a initializer for a given name. The NAME parameter is the name used
to define the initialization block. There can be more than one initialize block in the
Solver Control Description block. The "use initialize NAME" line command controls
which one is to be used.

4.8.1. Advance
Scope: Initialize

Advance Name... [When When-expression]

Parameter Value Default
Name string... –

Summary Used within a Solver Control block to indicate a single step that advances the solution.
The name is that matches the physics.

4.8.2. Event
Scope: Initialize

Event Name... [When When-expression]

Parameter Value Default
Name string... –

Summary Used within a Solver Control block to indicate a single step that has no time associated
with it. It can cause a solution transfer between regions or cause something to print.

96

4.8.3. Involve
Scope: Initialize

Involve Name

Parameter Value Default
Name string –

Summary Specify a physics participant to a coupled problem solved using matrix-free nonlinear.

4.8.4. Transfer
Scope: Initialize

Transfer Name [When When-expression]

Parameter Value Default
Name string –

Summary A Solver Control Transfer line command which executes all transfers defined from the
specified region. All transfers with a send region of ’name’ will be executed.

4.9. PARAMETERS FOR
Scope: Solution Control Description

Begin Parameters For

Converged When Convergence-expression

Incremental Number Of Steps {=|are|is} Number

Initial Deltat {=|are|is} Number

Number Of Adaptivity Steps {=|are|is} Number

Number Of Steps {=|are|is} Number

Reinitialize Transient

Start Time {=|are|is} Number

Suppress Output From Nonlinear Loop

Termination Time {=|are|is} Number

Time Step Quantum {=|are|is} TimeStepQuantum

Time Step Style TimeStepStyle...

Total Change In Time {=|are|is} Number

Begin Parameters For Aria Region RegionName

97

End

End

Summary A Solver Control PARAMETERS block to set up control data for the SC_type
parameter. Inside this block one sets the time step parameters or nonlinear parameters.

4.9.1. Converged When
Scope: Parameters For

Converged When Convergence-expression

Parameter Value Default
Convergence-expression (expression) –

Summary Set the convergence expression.

4.9.2. Incremental Number Of Steps
Scope: Parameters For

Incremental Number Of Steps {=|are|is} Number

Parameter Value Default
Number integer –

Summary The incremental number steps to run the time for nonlinear loop. Number of time steps
to run after restarting. NUMBER OF STEPS is total number of steps to run

4.9.3. Initial Deltat
Scope: Parameters For

Initial Deltat {=|are|is} Number

Parameter Value Default
Number real –

Summary Assign an initial delta T

98

4.9.4. Number Of Adaptivity Steps
Scope: Parameters For

Number Of Adaptivity Steps {=|are|is} Number

Parameter Value Default
Number integer –

Summary The number steps to run the time or nonlinear loop

4.9.5. Number Of Steps
Scope: Parameters For

Number Of Steps {=|are|is} Number

Parameter Value Default
Number integer –

Summary The number steps to run the time for nonlinear loop

4.9.6. Reinitialize Transient
Scope: Parameters For

Summary Reset time and re-initialize regions each step of the adaptivity loop.

4.9.7. Start Time
Scope: Parameters For

Start Time {=|are|is} Number

Parameter Value Default
Number real –

Summary Assign a start time.

4.9.8. Suppress Output From Nonlinear Loop
Scope: Parameters For

Summary Specify that the nonlinear loop will not output. Output will be handled by calls outside
of the nonlinear loop (such as an additional advance region call).

99

4.9.9. Termination Time
Scope: Parameters For

Termination Time {=|are|is} Number

Parameter Value Default
Number real –

Summary Assign a final time to stop

4.9.10. Time Step Quantum
Scope: Parameters For

Time Step Quantum {=|are|is} TimeStepQuantum

Parameter Value Default
TimeStepQuantum real –

Summary Set the time stepping quantum time for SNAP style stepping.

4.9.11. Time Step Style
Scope: Parameters For

Time Step Style TimeStepStyle...

Parameter Value Default
TimeStepStyle {clip|noclip|nosnap|snap} CLIP NOSNAP

Summary Set the time stepping style.

When CLIP is specified, the time step size will be clipped at the last step of the transient
loop so that it ends at the transient loop’s end time. If clip is not specified, the last time is
allowed to exceed to the transient loop’s end time and the following transient loop will
start at the exceeded end time.

When SNAP is specified, the time step is broken down into "quantum" time units. By
default this quantum time is 12 orders of magnitude down from the difference between
the start and end time for the transient loop. This value can be overridden using the
TIME STEP QUANTUM line command. All time values are "snapped" to multiples of
the quantum time by rounding to the nearest quantum multiple.

100

4.9.12. Total Change In Time
Scope: Parameters For

Total Change In Time {=|are|is} Number

Parameter Value Default
Number real –

Summary Use this number and the initial time to compute termination time.

101

This page intentionally left blank.

102

5. TRANSFER REFERENCE

5.1. OVERVIEW

Recall that Sierra Mechanics supports application data associated with nodes, elements, faces or edges of
a meshed discretization as in Figure 1.3-1. The Sierra Transfer utility provides the means by which to
communicate data between two Sierra application Regions. Generally speaking the same type of data is
most often communicated but data movement need not be for the same type, e.g. nodal data can be
communicated to element data and vice-versa.

The Transfer utility is fairly flexible as it provides the ability to move data directly onto another problem
domain either by direct copy or by interpolation. Analysts without prior experience with transfer are
often uncertain as to which type of transfer to use. The two capabilities function exactly as their names
imply but understanding which method to use requires a basic understanding of how each method
works.

Copy transfer assumes that the discretization for applications involved in the transfer are identical.
Moreover, copy transfer also assumes that the mesh is identical so that global IDs of nodes and elements
within each mesh are the same. Under these assumptions a geometric search of source to destination
locations is not necessary and a simple algorithm is able to perform the data transfer in a straightforward
manner.

Interpolation transfer is much more general than copy transfer since it assumes only that data from one
application must be geometrically mapped for use in another application. A mathematical definition of
this mapping is made possible using the results from a geometric search of points on the destination
mesh and their image on the sending mesh. With regard to code performance copy transfer will always
more efficient than interpolation transfer but is rarely applicable in mainstream simulations. Interpolate
transfer is designed to deal with complications that arise in mapping data from one application to the
other and is more reliable. As a rule, one should always use interpolation transfer and not copy transfer.
At the same time an analyst should strategize model construction so as to offset some of the
performance costs of interpolation transfer.

Even with a basic understanding of transfer users of what transfer operations should be defined. Several
proper transfer source and destinations are illustrated in Figure 5.1-1, here the numbers on the figures
correspond to the ExodusII global IDs of nodes or elements.

Problematic transfer source and destination configurations are illustrated in Figure 5.1-2. Once again the
numbers on the figures correspond to the ExodusII global IDs of nodes or elements.

In using the transfer utility one must clearly define the sending region (where the data resides) and the
the receiving region (the data destination). Additionally one must also specify the general geometric

103

5

6

7

8

9

10

11

12

13

14

15

16

1

2

4

3

5

6

7

8

9

10

12

11

1

2

3

4

13

14

15

16

COPY

NODE

1

3 2

4

10

6

14

11 12

139

58

16

7

15 24

2

7 4

10

15

25

23

9

12

8

3

17

13

11

NODE

INTERPOLATE

ELEMENT

INTERPOLATE

4

34

22

2

65

23

45

16

1

2

3

8

12

22

16

4

13

Figure 5.1-1.. Valid Transfer Operations

location of data sender and receiver based upon existing mesh entities (blocks or surfaces). Sender and
receiver need not be of same topology but the source and target destinations should overlap
geometrically. Clearly the definition mesh entities influences time spent in the geometric search process
and should be a key consideration in model construction.

The following section outlines the commands to be used in setting up transfer operations. Special
attention should be paid to the syntax of the SEND command line since it differs between COPY and
INTERPOLATION transfer.

Since several different uses of transfer can arise and several of those examples for steady problems are
included below. The same basic setup of transfer would apply to transient problems as well.

A skeleton outline of one-way transfer from Region_1 to Region_2 in a steady-state problem would
be:

Begin Sierra
.
Begin Transfer my_transfer

.
transfer commands for first_region to second_region
.

End
.

104

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

COPY

NODE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

COPY

NODE

1

2

3

4

5

6

7

8

9

9

65

7

34

1

8

2

2

6

7

8

10 13

15

1

5 9

12 14

4

11

3

COPY

ELEMENT

Figure 5.1-2.. Invalid Transfer Operation

Begin Procedure My_Aria_Procedure
.

Begin Solution Control Description
Use System Main
Begin System Main

Begin Sequential MySolveBlock
Advance first_Region
transfer my_transfer
Advance second_Region

End
End

End

Begin Aria Region first_region
.
eq energy for temperature On block_1 using q1 with lumped_mass diff
.

End

Begin Aria Region second_region
.

105

eq energy for temperature On block_1 using q1 with xfer
.

End

End
.

End Sierra

106

A skeleton outline of two-way transfer between Region_1 to Region_2 in a steady-state problem would
be:

Begin Sierra
.
Begin Transfer my_first_transfer

.
transfer commands for first_region to second_region
.

End
.
Begin Transfer my_second_transfer

.
transfer commands for second_region to first_region
.

End
.
Begin Procedure My_Aria_Procedure

.
Begin Solution Control Description

Use System Main
Begin System Main

Begin Sequential MySolveBlock
Advance first_Region
transfer my_first_transfer
Advance second_Region
transfer my_second_transfer

End
End

End

Begin Aria Region first_region
.
eq energy for temperature On block_1 using q1 with diff
eq species_3 for temperature On block_1 using q1 with xfer
.

End

Begin Aria Region second_region
.
eq energy for temperature On block_1 using q1 with xfer
eq species_3 for species_3 On block_1 using q1 with diff
.

End

107

End
.

End Sierra

108

Assume an input mesh for an Input_Output Region 6.1 contains a nodal variable ConvCoeff. In this
case a skeleton outline for one-way transfer of ConvCoeff to to Region_2 in a steady-state problem
would be:

Begin Sierra
.
Begin Transfer my_first_transfer

.
transfer commands for input_output_region to second_region
.
SEND field hNd state none TO ConvCoeff state none
.

End
.
Begin Procedure My_Aria_Procedure

.
Begin Solution Control Description

Use System Main
Begin System Main

Begin Sequential MySolveBlock
Advance first_Region
transfer my_first_transfer
Advance second_Region

End
End

End

Begin Input_Output io_region
USE FINITE ELEMENT MODEL my_input_transfer

End

Begin Aria Region second_region
.
USER FIELD REAL NODE SCALAR ConvCoeff on surface_1
.

End

End
.

End Sierra

5.2. TRANSFER
Scope: Procedure

109

Begin Transfer Transfer_name

Abort If Field Not Defined On Copy Transfer Send Or Receive Object

Abort If Search Object Outside Of Tolerance

All Fields

Copy Option1 Option2 From From_region_name To To_region_name

Distance Function Is Closest Receive Node To Send Centroid

Exclude Ghosted

From Option1 To Option2

Gauss Point Integration Order {=|are|is} Order

Geometric Tolerance {=|are|is} Geometric_tolerance

Inspect With File {=|are|is} File_name Ids {=|are|is} ID_list...

Interpolate Option1 Option2 From From_region_name To
To_region_name

Interpolation Function User_Subroutine

Nodes Outside Region {=|are|is} Option

Parametric Tolerance {=|are|is} Parametric_tolerance

Patch Recovery Evaluation {=|are|is} Option

Search Coordinate Field Source_field_name State Option1 To
Destination_field_name State Option2

Search Geometric Tolerance {=|are|is} Geometric_tolerance

Search Surface Gap Tolerance {=|are|is} Surface_gap_tolerance [
Or Less]

Search Type {=|are|is} [Option1 Option2 Option3]

Select One Receiver For Each Send Object

Select One Unique Receiver For Each Send Object

Send Predefined-transfer Fields

Send Block From_blocks... To To_blocks...

Send Field Source_field_name State Option1 To
Destination_field_name State Option2 [Lower Bound Lower_bound
Upper Bound Upper_bound]

110

Toggle Search Warnings {=|are|is} Option

Use Centroid For Geometric Proximity

Begin Receive Blocks

End

Begin Send Blocks

End

End

Summary Transfer region/mesh information. The mechanics/variables information will get sorted
out by the calling procedure.

5.2.1. Abort If Field Not Defined On Copy Transfer Send Or
Receive Object

Scope: Transfer

Summary For testing purposes only. Normally mesh objects in the send or receive mesh which do
not have the specified field defined on them are just ignored. This line command allows
the construction of tests in which it is known that every mesh object should have the
specified field defined on it and to abort if that field is not found.

5.2.2. Abort If Search Object Outside Of Tolerance
Scope: Transfer

Summary For debugging purposes only. Abort transfer if search object lie outside of specified
geometric tolerance.

This command is deprecated. Use "Nodes outside region = abort" instead.

5.2.3. All Fields
Scope: Transfer

Summary Select all fields for transfer that have same name and state for source and destination
regions.

111

5.2.4. Copy
Scope: Transfer

Copy Option1 Option2 From From_region_name To To_region_name

Parameter Value Default
Option1 {surface|volume} –
Option2 {constraints|elements|nodes} –
From_region_name string –
To_region_name string –

Summary Copy transfer elements, nodes or constraints from one region to another. The copy
transfer is very specific in that the sending and receiving mesh parts must have identical
global ids for every element to be copied. The copy transfer works by iterating over all the
mesh objects in the receiving mesh and using the global id of the receiving mesh object to
find a mesh object in the sending mesh with the same global id. The field to transfer is
then copied from the sending to receiving objects. There is no interpolation and the
actual coordinates of the sending and receiving objects are not used and could be very
different. The copy transfer is used in very special cases where the same mesh was read
into both the sending and receiving meshes, there was no element death and there was no
adaptivity. In this special case, a copy transfer can be much faster than an interpolation
transfer.

5.2.5. Distance Function Is Closest Receive Node To Send
Centroid

Scope: Transfer

Summary To be used in conjunction with "SELECT ONE UNIQUE RECEIVER FOR EACH
SEND OBJECT". This helped in the case where the sending and receiving element
blocks did not overlap and an element transfer was using element centroids for the
distance computation. The elements were very distorted so that a centroid of a surface
element could be far from the surface. It was wanted that the receiving element be the
one close to the surface of the block and close to the sending element in the adjacent
block. Using the corner nodes was enough since it was a tet mesh with plane faces. In this
particular and unusual case this alternative method of matching sending and receiving
elements was useful, but it is not expected to be used often or maybe never again.

5.2.6. Exclude Ghosted
Scope: Transfer

Summary exclude ghosted nodes from a copy transfer

112

5.2.7. From
Scope: Transfer

From Option1 To Option2

Parameter Value Default
Option1 {constraints|elements|nodes} –
Option2 {constraints|elements|faces|

gauss_points|nodes}
–

Summary Allows the send/receive mesh objects to be different. For a volume element field transfer
(e.g. shell) to a face rank field on a surface, use ’from elements to faces’.

5.2.8. Gauss Point Integration Order
Scope: Transfer

Gauss Point Integration Order {=|are|is} Order

Parameter Value Default
Order integer –

Summary Integration order to use when transferring to Gauss points.

5.2.9. Geometric Tolerance
Scope: Transfer

Geometric Tolerance {=|are|is} Geometric_tolerance

Parameter Value Default
Geometric_tolerance real –

Summary This is the dimensional tolerance applied during the initial (coarse) search. If specified,
all the coarse search boxes are padded by this value. The default behavior is for this to be
1e-9 times the problem bounding box size (diagonal) plus a 10 percent relative expansion
per element. If a value is specified for this, it is used as a padding in place of the default
with no relative box expansion.

During the interpolation transfer there is a geometric search based on the coordinates of
the send and receive objects. As part of this search, an axis aligned bounding box is
contracted for each sending object and GEOMETRIC TOLERANCE is used to make
this box bigger than just a tight bounding box. Lists of receiving points are then quickly
found within these axis aligned boxes.

If all points in the receiving mesh are within at least one box, no additional searching
needs to be done and the search algorithm is fast. If there are still points in the receiving
mesh that were outside of EVERY box, then a warning message will be issued about an

113

"expensive search for extrapolation" for these points. This ’expensive search" can be very
costly if a large number of receiving objects fall into this category and this line command
is provided for those special cases.

5.2.10. Inspect With File
Scope: Transfer

Inspect With File {=|are|is} File_name Ids {=|are|is} ID_list...

Parameter Value Default
File_name string –
ID_list integer... –

Summary STK Transfer inspection tool that allows user to output the search results for a specified
list of entity ids on the receive mesh. The rank of the entities is deduced from the type of
transfer being set up.

5.2.11. Interpolate
Scope: Transfer

Interpolate Option1 Option2 From From_region_name To To_region_name

Parameter Value Default
Option1 {surface|volume} –
Option2 {constraints|elements|nodes} –
From_region_name string –
To_region_name string –

Summary Interpolate will transfer elements, nodes or constraints from one mesh to another. The
interpolation transfer is very general in that the field values to transfer will be
interpolated from the sending to receiving mesh based on the coordinates of the sending
and receiving mesh objects.

Many line commands can be used to modify the behavior of the interpolation transfer
but the basic algorithm is straightforward. Every mesh object in the receiving mesh is
converted into a point. For elements this is the average of the nodal coordinates. An
element in the sending mesh containing this point is found. If the field to transfer is
nodal, the element shape functions are used to interpolate the nodal field to the receiving
point. If the field to transfer is elemental, a bi-linear least squares fit based upon
neighboring elements is first performed and then used to define the interpolation of the
element field at the receiving point.

114

5.2.12. Interpolation Function
Scope: Transfer

Interpolation Function User_Subroutine

Parameter Value Default
User_Subroutine string –

Summary Allows an application defined subroutine to be used for the interpolation. Normally the
interpolation transfer will determine the best type of interpolation to use: Basis
functions for nodal fields and a neighborhood least squares fit for element fields. This
line command can be used to override this if needed. It also allows an application to
register it’s own special interpolation functions that can then be used if the special name
it was registered with is known.

5.2.13. Nodes Outside Region
Scope: Transfer

Nodes Outside Region {=|are|is} Option

Parameter Value Default
Option {abort|extrapolate|ignore|project|

truncate}
–

Summary This line command defines what to do when a receiving point is outside the scope of the
sending mesh.

IGNORE - The receiving mesh object can be ignored and will receive no value. This is
almost never a good idea as it can cause mesh objects just outside to have a zero value
when the nodes just inside the mesh might have very large values. This can result in a
discontinuous receiving field.

EXTRAPOLATE - This is the default behavior. The sending field is extrapolated
beyond the bounds of the sending mesh. This can lead to extrapolation error, such as
when a large gradient at the surface causes a negative values when only positive values are
acceptable. If this happens to the upper and lower bounds that can be placed on the
fields to be transferred with the SEND FIELD command.

TRUNCATE - The receiving coordinate is projected back to the surface of the sending
mesh to determine a value. This ensures that the receiving value is not outside of the field
values in the sending mesh.

PROJECT - This option is similar to TRUNCATE in which the receiving coordinate is
projected back to the surface of the sending mesh to determine a value. In this case more
effort is made to make sure that the projection is normal to the surface in the sending
mesh. Sometimes gives a better result than Truncate but is a little more expensive to
compute.

115

If the PROJECT option is used in transferring of surface values, the sending mesh
should envelope the receiving mesh. Failure to satisfy this condition will generally result
in failure of the transfer.

ABORT - If any receiving point is outside the sending mesh by more than the geometric
tolerance, abort the simulation. Do not attempt to project, extrapolate, or otherwise
handle the point.

5.2.14. Parametric Tolerance
Scope: Transfer

Parametric Tolerance {=|are|is} Parametric_tolerance

Parameter Value Default
Parametric_tolerance real –

5.2.15. Patch Recovery Evaluation
Scope: Transfer

Patch Recovery Evaluation {=|are|is} Option

Parameter Value Default
Option {linear least squares|linear moving

least squares|quadratic least squares
|quadratic moving least squares}

–

Summary This line command defines the available choices for the patch recovery and evaluation
algorithm when using interpolation for element variables. The default option is Linear
Least Squares.

5.2.16. Search Coordinate Field
Scope: Transfer

Search Coordinate Field Source_field_name State Option1 To
Destination_field_name State Option2

Parameter Value Default
Source_field_name string –
Option1 {new|nm1|nm2|nm3|nm4|none|old} –
Destination_field_name string –
Option2 {new|nm1|nm2|nm3|nm4|none|old} –

Summary Normally the interpolation transfers use the default coordinate field to determine
geometry information. This line command can be used to specify an alternate field.

116

5.2.17. Search Geometric Tolerance
Scope: Transfer

Search Geometric Tolerance {=|are|is} Geometric_tolerance

Parameter Value Default
Geometric_tolerance real –

5.2.18. Search Surface Gap Tolerance
Scope: Transfer

Search Surface Gap Tolerance {=|are|is} Surface_gap_tolerance [Or Less]

Parameter Value Default
Surface_gap_tolerance real –

Summary This is the dimensional tolerance applied during the initial (coarse) search. If specified,
all the coarse search boxes are padded by this value. The default behavior is for this to be
1e-9 times the problem bounding box size (diagonal) plus a 10 percent relative expansion
per element. If a value is specified for this, it is used as a padding in place of the default
with no relative box expansion.

This is a tricky parameter best ignored, let it default to something based on the problem
size. During the interpolation transfer there is a geometric search based on the
coordinates of the send and receive objects. As part of this search, an axis aligned
bounding box is contracted for each sending object and SEARCH GAP TOLERANCE
is used to make this box bigger than just a tight bounding box. Lists of receiving points
are then quickly found within these axis aligned boxes.

If all points in the receiving mesh are within at least one box, no additional searching
needs to be done and the search algorithm is fast. If there are still points in the receiving
mesh that were outside of EVERY box, then a warning message will be issued about an
"expensive search for extrapolation" for these points. This ’expensive search" can be very
costly if a large number of receiving objects fall into this category and this line command
is provided for those special cases.

The OR LESS optional parameter is used when the tolerance must be set to large value
for one part of the mesh but much of the mesh needs a much smaller value. In some cases
it is necessary for the tolerance to be set to the actual largest surface gap tolerance which
may be far too large a gap for the rest of the mesh. Setting OR LESS allows the search
tolerance to be reduced in areas of the mesh thus resulting in a faster search.

5.2.19. Search Type
Scope: Transfer

117

5.2.20. Select One Receiver For Each Send Object
Scope: Transfer

Summary This option will cause each sending object to be used once and only once. This will have
the side effect of some receiving objects not getting any value at all. If you use this option,
you will also want to set

NODES OUTSIDE REGION IGNORE

The example which necessitated this option was a case in which there was a delta
function defined on an element in the sending mesh. It was desirable that the delta
functions be summed into the receiving mesh such that the total value of the sending
was conserved. It was better to have only a single element on the receiving side have a
non-zero value that was the sum of sending values and not worry about how close the
receiving element was to the sending element. A check that this option is working is to
use Encore to computer the sum of the values of the sending and receiving fields to make
sure the total sum is the same.

5.2.21. Select One Unique Receiver For Each Send Object
Scope: Transfer

Summary An unusual flag to get around an odd problem. Normally each receive object transfers
from the nearest sending object so it is almost always the case that a send object will be
used multiple times to define a receiving value. This option will cause each sending
object to be used only once. This will have the side effect of some receiving objects not
getting any value at all. If you use this option, you will also want to set

NODES OUTSIDE REGION IGNORE

or else the uniqueness will be lost for nodes outside the sending region. The example
which necessitated this option was a case in which there was a delta function defined on
an element in the sending mesh. It was desirable that the delta function be defined on the
receiving mesh for only a single element in the neighborhood of the sending element.
The analysis was more sensitive to the number of delta functions on the receiving side
than the location. So it was better to have only a single element on the receiving side have
a non-zero value and not worry about how close the receiving element was to the sending
element.

118

5.2.22. Send
Scope: Transfer

Send Predefined-transfer Fields

Parameter Value Default
Predefined-transfer {} –

Summary Use predefined transfer semantics provided by the specified name.

5.2.23. Send Block
Scope: Transfer

Send Block From_blocks... To To_blocks...

Parameter Value Default
From_blocks string... –
To_blocks string... –

Summary Add element blocks to a particular same mesh element copy transfer operator.

The copy transfer can have multiple of these lines to define many blocks, but each line
sends a single block to a single block:

SEND BLOCK block_1 TO block_1
SEND BLOCK block_101 TO block_101

The interpolation transfer can have only a single SEND BLOCK line, but can define
many from/to blocks:

SEND BLOCK block_3 block_5 block_6 TO block_3 block_5

5.2.24. Send Field
Scope: Transfer

Send Field Source_field_name State Option1 To Destination_field_name State
Option2 [Lower Bound Lower_bound Upper Bound Upper_bound]

Parameter Value Default
Source_field_name string –
Option1 {new|nm1|nm2|nm3|nm4|none|old} –
Destination_field_name string –
Option2 {new|nm1|nm2|nm3|nm4|none|old} –

119

Summary Specifies the mapping between source and destination field names. Vector and tensor
fields can be subscripted using parenthesis and 1’s based or brackets and 0 based. Notes
on subscripting:

• Does not work for COPY transfers, only INTERPOLATION type transfers.

• If the field name itself actually contains either parenthesis or brackets then we are
in trouble and an error is going to be thrown due to a syntax error in index
specification.

• Only a single subscript is allowed so vectors of vectors or higher order tensors can
not use double subscripts. But it should be possible to determine the correct offset
within the field and pick out the correct value with a little effort.

• Once subscripted, only a single value will be transferred. It is not possible to
transfer multiple values starting at a certain index, instead multiple line commands
must be used, as shown above.

• The indexes can be 0 based with brackets or 1 based when using parenthesis.
Although this could be very confusing if mixed within a single line command.

• Both the from and to fields can be subscripted independently on the same line.

example

SEND FIELD velocity TO velocity
SEND FIELD temp TO temperature lower bound 0
SEND FIELD x TO y lower bound 10 upper bound 100
SEND FIELD A(2) TO B(3) lower bound 10 upper bound 100
SEND FIELD A[1] TO B[2] lower bound 10 upper bound 100

5.2.25. Toggle Search Warnings
Scope: Transfer

Toggle Search Warnings {=|are|is} Option

Parameter Value Default
Option {false|no|off|on|true|yes} –

Summary Specify whether warnings about entities outside of the search domain should be printed.
The default behavior is to always print these warning messages.

120

5.2.26. Use Centroid For Geometric Proximity
Scope: Transfer

Summary STK Transfer option to trigger the use of centroid based proximity comparison for
selecting the best interpolating entity when receive entities lie outside of the domain.
Default geometric proximity comparison is based on geometric projection which is more
expensive but accurate. The use of this option is a way to reduce computational cost
especially for meshes that are fairly regular. However, there is no guarantee of accuracy.

121

This page intentionally left blank.

122

6. INPUT OUTPUT REGION
REFERENCE

6.1. INPUT_OUTPUT REGION OVERVIEW

For some coupled simulations one can approximate part of the problem physics independent of the
entire problem physics. In order to facilitate this type of loose application coupling the Sierra
Framework provides the ability to input datasets that include the output of other simulations. An
application can then make requests of information from these datasets. In fullfilling these requests, data
can be extracted from these datasets and be copied or interpolated to another problem domain.
Moreover these requests can be satisfied by data interpolated through time. The mechanism provided to
achieve this end goal is known as the Input_Output Region and its usage is described in what follows.

The input_output region works in tandem with transfer 5.1 and solution control 4. Here transfer carries
out the communication of data and solution control provides synchronization of the data transfer.
Note that just like other Sierra Regions the input_output region must have its own Finite Element
model command block defined.

As an example, let us assume that an input mesh for an Input_Output Region contains a nodal variable
ConvCoeff that we wish to use in another Region. In this case an outline for one-way transfer of
ConvCoeff to to a Region, second_region, in a steady-state problem would be:

Begin Sierra
.
Begin Finite Element Model input_transfer
.

End
.
Begin Transfer my_first_transfer

.
transfer commands for input_output_region to second_region
.
SEND field hNd state none TO ConvCoeff state none
.

End
.
Begin Procedure My_Aria_Procedure

.

123

Begin Solution Control Description
Use System Main
Begin System Main

Begin Sequential MySolveBlock
Advance io_region
transfer my_first_transfer
Advance second_Region

End
End

End

Begin Input_Output io_region
USE FINITE ELEMENT MODEL my_input_transfer

End

Begin Aria Region second_region
.
use Finite Element Model input_transfer
.
USER FIELD REAL NODE SCALAR ConvCoeff on surface_1
.

End

End
.

End Sierra

6.2. INPUT_OUTPUT REGION
Scope: Procedure

Begin Input_Output Region Parameter_block_name

Create Element Field Field_name Of Type Option And Dimension
Dimension [Value {=|are|is} Number...]

Create Nodal Field Field_name Of Type Option And Dimension
Dimension [Value {=|are|is} Number...]

Fixed Time [{=|are|is} Fixed_time]

Offset Time {=|are|is} Period_offset_time

Periodicity Time {=|are|is} Periodicity_time

Start Time {=|are|is} Start_time

Time Interpolation Method {=|are|is} Method

124

Timestep Adjustment Interval {=|are|is} Nsteps

Use Finite Element Model ModelName [Model Coordinates Are
Nodal_variable_name]

Begin Heartbeat Label

End

Begin History Output Label

End

Begin Restart Data Label

End

Begin Results Output Label

End

End

Summary Example:

BEGIN INPUT TRANSFER model_name
USE FINITE ELEMENT MODEL fred
START TIME is 0
OFFSET TIME is 1
PERIODICITY TIME is 10

END INPUT TRANSFER model_name

6.2.1. Create Element Field
Scope: Input_Output Region

Create Element Field Field_name Of Type Option And Dimension Dimension [
Value {=|are|is} Number...]

125

Parameter Value Default
Field_name string –
Option {asym_tensor_03|complex|

full_tensor_22|full_tensor_36|integer
|long_integer|matrix_22|matrix_33
|real|sym_tensor_21|sym_tensor_31
|sym_tensor_33|unsigned_integer
|unsigned_integer_64|vector_2d|
vector_3d}

–

Dimension integer –

Summary Creates a Element Field name field_name on the region.

6.2.2. Create Nodal Field
Scope: Input_Output Region

Create Nodal Field Field_name Of Type Option And Dimension Dimension [
Value {=|are|is} Number...]

Parameter Value Default
Field_name string –
Option {asym_tensor_03|complex|

full_tensor_22|full_tensor_36|integer
|long_integer|matrix_22|matrix_33
|real|sym_tensor_21|sym_tensor_31
|sym_tensor_33|unsigned_integer
|unsigned_integer_64|vector_2d|
vector_3d}

–

Dimension integer –

Summary Creates a Nodal Field name field_name on the region.

6.2.3. Fixed Time
Scope: Input_Output Region

Summary The line specifies that the database will be read for a single, fixed time. Specifying the
actual time is optional. If the time is not specified, the final time plane in the database
will be read.

NOTE:

• This option takes precedence over the periodic specifications given by START
TIME, PERIODICITY TIME, and OFFSET TIME.

126

if FIXED TIME is specified then
if FIXED TIME value is given then (eg., FIXED TIME is 1.)

DATABASE TIME = FIXED TIME
else (eg., FIXED TIME)

DATABASE TIME = last time in database
else

if PERIODICITY TIME greater than 0 then
if APPLICATION TIME less than or equal to START TIME then

DATABASE TIME = APPLICATION TIME
else

DATABASE TIME = START TIME +
(APPLICATION TIME - START TIME) modulo PERIODICITY TIME

else
DATABASE TIME = APPLICATION TIME

now add OFFSET TIME to the computed DATABASE TIME

6.2.4. Offset Time
Scope: Input_Output Region

Offset Time {=|are|is} Period_offset_time

Parameter Value Default
Period_offset_time real –

Summary This value is added to the application time to determine what database time slice to
input. If OFFSET TIME were 15 than at application time 0 database time slice 15 would
be read from the file and used for the initial values. At application time 1, database time
slice 16 would be read.

NOTES:

• The OFFSET TIME is added in after the START TIME and PERIODICITY
TIME are used.

• The FIXED TIME option takes precedence over this option.

if FIXED TIME is specified then
if FIXED TIME value is given then (eg., FIXED TIME is 1.)

DATABASE TIME = FIXED TIME
else (eg., FIXED TIME)

DATABASE TIME = last time in database
else

if PERIODICITY TIME greater than 0 then
if APPLICATION TIME less than or equal to START TIME then

DATABASE TIME = APPLICATION TIME

127

else
DATABASE TIME = START TIME +
(APPLICATION TIME - START TIME) modulo PERIODICITY TIME

else
DATABASE TIME = APPLICATION TIME

now add OFFSET TIME to the computed DATABASE TIME

6.2.5. Periodicity Time
Scope: Input_Output Region

Periodicity Time {=|are|is} Periodicity_time

Parameter Value Default
Periodicity_time real –

Summary START TIME and PERIODICITY TIME taken together give the time frame from the
input database to use to initialize the application values. If START TIME is 25 and
PERIODICITY TIME is 10, then time slices from 25 to 35 will be used over and over
again as the application time runs from 0 to whatever. In general

DATABASE TIME is (APPLICATION TIME - START TIME) modulo PERIODICITY TIME

after the application time reaches the START TIME.

NOTES:

• The OFFSET TIME is added in after the START TIME and PERIODICITY
TIME are used.

• The FIXED TIME option takes precedence over this option.

if FIXED TIME is specified then
if FIXED TIME value is given then (eg., FIXED TIME is 1.)

DATABASE TIME = FIXED TIME
else (eg., FIXED TIME)

DATABASE TIME = last time in database
else

if PERIODICITY TIME greater than 0 then
if APPLICATION TIME less than or equal to START TIME then

DATABASE TIME = APPLICATION TIME
else

DATABASE TIME = START TIME +
(APPLICATION TIME - START TIME) modulo PERIODICITY TIME

else
DATABASE TIME = APPLICATION TIME

128

now add OFFSET TIME to the computed DATABASE TIME

6.2.6. Start Time
Scope: Input_Output Region

Start Time {=|are|is} Start_time

Parameter Value Default
Start_time real –

Summary The time in which to start applying PERIODICITY TIME. If PERIODICITY TIME
is not specified then START TIME is ignored.

NOTES:

• The OFFSET TIME is added in after the START TIME and PERIODICITY
TIME are used.

• The FIXED TIME option takes precedence over this option.

if FIXED TIME is specified then
if FIXED TIME value is given then (eg., FIXED TIME is 1.)

DATABASE TIME = FIXED TIME
else (eg., FIXED TIME)

DATABASE TIME = last time in database
else

if PERIODICITY TIME greater than 0 then
if APPLICATION TIME less than or equal to START TIME then

DATABASE TIME = APPLICATION TIME
else

DATABASE TIME = START TIME +
(APPLICATION TIME - START TIME) modulo PERIODICITY TIME

else
DATABASE TIME = APPLICATION TIME

now add OFFSET TIME to the computed DATABASE TIME

6.2.7. Time Interpolation Method
Scope: Input_Output Region

Time Interpolation Method {=|are|is} Method

Parameter Value Default
Method {closest|linear} –

129

Summary This line specifies how interpolation in time in the database will be handled. If linear (the
default option) is specified, quantities at a given point are linearly interpolated from the
bounding known time points. If the closest option is selected, then the closest known
time point will be taken.

6.2.8. Timestep Adjustment Interval
Scope: Input_Output Region

Timestep Adjustment Interval {=|are|is} Nsteps

Parameter Value Default
Nsteps integer –

Summary Specify the number of steps to ’look ahead’ and adjust the timestep to ensure that the
specified output times or simulation end time will be hit ’exactly’.

6.2.9. Use Finite Element Model
Scope: Input_Output Region

Use Finite Element Model ModelName [Model Coordinates Are
Nodal_variable_name]

Parameter Value Default
ModelName string –

Summary Associates a predefined finite element model with this region.

130

7. EXAMPLES

Sierra application code couplings with Arpeggio can be carried out in a variety of ways. In this chapter a
few simple problems are used to demonstrate some of the coupling approaches.

Here we note that success in performing the coupling hinges upon defining a proper setup for each of
the application codes participating in the coupling. Understandably the coupling becomes more
straightforward if one begins by first setting up each of the independent application code problems (i.e.
an application Region) and later unites the Regions under Arpeggio.

The purpose of the examples is simply to demonstrate the basics of how the problem setup will differ
for various use cases. The examples given here illustrate the use cases most likely to occur:

• One-way coupling of TF with Adagio from file on same mesh 7.1,

• One-way coupling of TF with Adagio from file on different mesh 7.2,

• One-way coupling of TF with Adagio on same mesh using transfer 7.3,

• Two-way coupling of TF with Adagio on same mesh 7.4,

• Two-way coupling of TF with Adagio on same mesh including element death7.5,

• One way coupling of TF with another TF, same mesh 7.7,

• One way coupling of TF with Presto on same mesh with subcycling 7.6,

Analysts are often confused by the usage of Field states, i.e. state new, state old, state none in transfer
operations. Generally speaking, state new and state old are associated with solution variables whereas
state none refers to variables that have a single state. The use of Field states is illustrated in various
examples which follow.

During a solution step, state old often serves as a reference or initial state and state new is simply the
latest solution. In a thermal-mechanical problem the temperature increment can be represented using
both state old and state new. Hence initial assignment of state old and state new to the same
temperature defines an initial state with no temperature increment.

Multi-state variables are often managed by an application by swapping the location of the state. As an
example, advance of the solution from one solution to the next step is accomplished by changing the
reference of the previous solution to state old and the current solution to state new. Hence assignment
of the same value to state old and state new in a transient simulation would mean that the variable is
unchanged even though time may be advancing. This is the desired behavior when performing
subcycling, variables at the outer scope are unchanged for the solution step while solution variables at
the inner scope continue to evolve during the subcycle.

131

7.1. ONE-WAY COUPLING FROM FILE

In many problems of coupled physics one of the physics (primary) is dependent upon the other physics
(secondary) but not vice-versa. In this case the coupling is considered to be one-way and can be
accomplished simply by supplying a secondary physics solution to the primary physics simulation. In
the context of problem solutions one would first solve the secondary physics problem and then
communicate the solution to a primary physics simulation. Perhaps the easiest way to carry out such a
simulation is to supply the secondary physics solution to the primary physics via file. The following
example describes the process as it might be carried out in Arpeggio.

7.1.1. Problem Statement

Consider a one-way coupled thermal structural analysis problem in which a body is free to expand as a
response to gradual temperature change in time. Although the problem geometry is changing due to
the structural deformation, the geometry change is assumed to have minimal effect upon heat transfer
in the body. For each time step, a heat conduction problem was solved for the temperature distribution
using the Aria code and the results were written to file. The Aria output file is then used as the input file
for Adagio where the temperatures are read into Adagio. Adagio subsequently solves for mechanical
equilibrium which includes calculation of thermal strains due to changing temperatures.

Here we note that the thermal solution file time planes need not correspond to the Adagio time planes
as the thermal solution will be interpolated in time to match the Adagio solution time. Furthermore, in
this problem, an Aria results file is the Adagio input discretization so the problems correspond to the
same mesh. Here it is important that the input Aria discretization contain the nodesets and sidesets
needed to carry out the Adagio simulation. Problems in which one might wish to solve the Adagio
problem on a different discretization can also be dealt with but in a slightly different manner.

7.1.2. Input File

begin sierra barOneWayCouple

begin function analytic_sigma_zz
type is analytic
evaluate expression = "lambda=5.769231e5; mu = 3.84615e5; Delta = 25; alpha = 1e-4; -((3*lambda*mu + 2*(mu^2))/(lambda+mu))*alpha*Delta"

end

begin function THERMAL_STRAIN
type is piecewise linear
ordinate is strain
abscissa is temperature
begin values

200.0 0.0
400.0 0.02

end values

132

end function THERMAL_STRAIN

define direction x with vector 1.0 0.0 0.0
define direction y with vector 0.0 1.0 0.0
define direction z with vector 0.0 0.0 1.0

begin material linear_elastic
density = 0.1
thermal log strain function = THERMAL_STRAIN

begin parameters for model elastic
youngs modulus = 1.e6
poissons ratio = 0.3

end parameters for model elastic

begin parameters for model elastic_plastic
youngs modulus = 1.e6
poissons ratio = 0.3
yield stress = 1.0e6
hardening modulus = 10.0
beta is 0.999999

end parameters for model elastic_plastic

end material linear_elastic

begin finite element model mesh_arpeggio
Database Name = 3dbar_temp.g
Database Type = exodusII
begin parameters for block block_1

material linear_elastic
model = elastic_plastic

end parameters for block block_1
end finite element model mesh_arpeggio

begin procedure Arpeggio_Procedure

$===
$ Add in solver control parameters
$===

begin solution control description

use system main

begin system main

begin transient mytransient

133

advance adagio
end transient mytransient

end system main

begin parameters for transient mytransient
start time = 0.0
termination time = 2.0
Number of Steps = 2
begin parameters for adagio region adagio

time increment = 1.0
end

end

end solution control description

$===
$ End ofsolver control parameters
$===

coupling is one_way using temperature distribution from file

$==
$ Define the Adagio region
$==

begin adagio region adagio

use finite element model mesh_arpeggio

begin user output
include all blocks
compute global analytic_sigma_zz as function analytic_sigma_zz
compute global sigma_zz as max of element stress(zz)
compute at every step

end

begin solution verification
skip times = 0.0 to 1.0
completion file = VerifSigmaZZ
verify global sigma_zz = function analytic_sigma_zz
tolerance = 1

end

begin prescribed temperature
include all blocks

134

read variable = temperature
end

definition of BCs
begin fixed displacement

surface = surface_10
components = z

end fixed displacement

begin fixed displacement
surface = surface_20
components = z

end fixed displacement

------------------###
Solver definition
------------------###

begin solver
Begin cg

Target relative Residual = 1.0e-11
Maximum Iterations = 30
Minimum Iterations = 1
begin full tangent preconditioner

automatic smoothing factor = 0.1
end

end
end

output description
begin Results Output output_adagio

Database Name = barOneWayCoupleFromFile_mech.e
Database Type = exodusII
At Step 0, Increment = 1
nodal Variables = temperature as temperature
nodal Variables = velocity as vel
nodal Variables = displacement as displ
element Variables = stress as stress
global Variables = timestep as TIMESTEP
global variables = external_energy as ExternalEnergy
global variables = internal_energy as InternalEnergy
global variables = kinetic_energy as KineticEnergy
global variables = momentum as Momentum

end results output output_adagio

end adagio region adagio

135

end procedure Arpeggio_Procedure

end sierra barOneWayCouple

7.2. ONE-WAY COUPLING USING TRANSFER FROM
DIFFERENT MESH

In some coupled physics one of the physics (primary) is dependent upon the other physics (secondary)
but not vice-versa. In this case the coupling is considered to be one-way and can be accomplished simply
by supplying a secondary physics solution to the primary physics simulation. In the context of problem
solutions one would first solve the secondary physics problem and then communicate the solution to a
primary physics simulation. As previously demonstrated one way to carry out such a simulation is to
supply the secondary physics solution to the primary physics via file 7.1. However, in some cases the
secondary physics solution is available on a vastly different geometry. In this case the secondary physics
solution must be interpolated onto the primary physics as needed. In Sierra Mechanics the
communication step of such an analysis is carried out using Solution Control and Transfer
operations. Here Transfer describes the information and Solution Control ensures sequencing of
information to the primary physics. The following example describes the solution process to perform a
coupled analysis using a precomputed thermal solution and Adagio.

7.2.1. Problem Statement

Consider a one-way coupled thermal structural analysis problem in which a body is free to expand as a
response to gradual temperature change in time. Althought the problem geometry is changing due to
the structural deformation, the geometry change is assumed to have minimal effect upon heat transfer
in the body. For this situation a reasonable approach may be to precompute the heat transfer solution
and then supply it to the mechanical simulation. Here a transient heat conduction problem on a full
geometry was solved for the temperature distribution using the Aria code and the results were saved to
file. Later on the previously computed temperature distribution was supplied to Adagio for solution of
mechanical equilibrium which includes calculation of thermal strains due to changing temperatures. In
this particular case the Adagio problem could be solved by invoking symmetry conditions so the model
geometry is a subset of the thermal model geometry.

In this particular case the Adagio problem could be solved by invoking symmetry conditions so the
model geometry is a subset of the thermal model geometry. During the simulation the transient thermal
solution is read from file these results are then communicated to Adagio using a transfer operation.
Once the Aria values are received by Adagio the structural problem is then solved. Since the thermal and
structural model geometries are different, it is necessary to use the transfer INTERPOLATE operation.
Note that the problem advances with the two applications lock stepped in time with the thermal
solution is being interpolated in both space and time.

136

7.2.2. Input File

#
Temperature to the thermal stress problem is transferred to Adagio from
a file containing the temperature-time history on a dissimilar mesh.
Here the Adagio problem exploits quarter-section symmetry.
#

begin sierra barOneWayCouple

begin function THERMAL_STRAIN
type is piecewise linear
ordinate is strain
abscissa is temperature
begin values

200.0 0.0
400.0 0.02

end values
end function THERMAL_STRAIN

define direction x with vector 1.0 0.0 0.0
define direction y with vector 0.0 1.0 0.0
define direction z with vector 0.0 0.0 1.0

begin material linear_elastic
density = 0.1
thermal engineering strain function = THERMAL_STRAIN

begin parameters for model elastic
youngs modulus = 1.e6
poissons ratio = 0.3

end parameters for model elastic

begin parameters for model elastic_plastic
youngs modulus = 1.e6
poissons ratio = 0.3
yield stress = 1.0e6
hardening modulus = 10.0
beta is 0.999999

end parameters for model elastic_plastic

end material linear_elastic

begin finite element model mesh_arpeggio
Database Name = quarter_model.g
Database Type = exodusII
begin parameters for block block_1

137

material linear_elastic
model = elastic_plastic

end parameters for block block_1
end finite element model mesh_arpeggio

begin finite element model input_transfer_temperature
Database Name = full_model_temperature.e
Database Type = exodusII

end finite element model input_transfer_temperature

begin procedure Arpeggio_Procedure

$===
$ Add in solver control parameters
$===

begin solution control description

use system main

begin system main

begin transient mytransient
advance transfer_input_region
transfer temperature_to_adagio
advance adagioRegion

end transient mytransient

end system main

begin parameters for transient mytransient
start time = 0.0
termination time = 2.0
Number of Steps = 2
begin parameters for adagio region adagioRegion

time increment = 1.0
end

end

end solution control description

$===
$ End ofsolver control parameters
$===

coupling is one_way using temperature distribution from IORegion
here the temperature history is obtained from a dissimilar mesh

138

begin transfer temperature_to_adagio
interpolate volume NODES FROM transfer_input_region TO adagioRegion
SEND BLOCK block_1 TO block_1
SEND field T state none TO Temperature state none
parametric TOLERANCE IS 0.01
geometric TOLERANCE IS 0.01
NODES OUTSIDE REGION IS IGNORE

end transfer temperature_to_adagio

$==
$ Define the Adagio region
$==

begin adagio region adagioRegion

use finite element model mesh_arpeggio

definition of BCs

begin fixed displacement
surface = surface_10
components = z

end fixed displacement

begin fixed displacement
surface = surface_20
components = z

end fixed displacement

symmetry conditions

begin fixed displacement
surface = surface_40
components = x

end fixed displacement

begin fixed displacement
surface = surface_30
components = y

end fixed displacement

Begin Initial temperature
magnitude=273.
include all blocks

End

139

------------------###
Solver definition
------------------###

begin solver
Begin cg

Target relative Residual = 1.0e-11
Maximum Iterations = 30
Minimum Iterations = 1
begin full tangent preconditioner

automatic smoothing factor = 0.1
end

end
end

output description
begin Results Output output_adagio

Database Name = barOneWayCoupleFromDifferentMesh.e
Database Type = exodusII
At Step 0, Increment = 1
nodal Variables = temperature as temperature
nodal Variables = velocity as vel
nodal Variables = displacement as displ
element Variables = stress as stress
global Variables = timestep as TIMESTEP
global variables = external_energy as ExternalEnergy
global variables = internal_energy as InternalEnergy
global variables = kinetic_energy as KineticEnergy
global variables = momentum as Momentum

end results output output_adagio

end adagio region adagioRegion

$==
$ Define the IORegion
$==

BEGIN INPUT_OUTPUT REGION Transfer_Input_Region
USE FINITE ELEMENT MODEL input_transfer_temperature

END INPUT_OUTPUT REGION Transfer_Input_Region

end procedure Arpeggio_Procedure

end sierra barOneWayCouple

140

7.3. ONE-WAY COUPLING USING TRANSFER

In many problems of coupled physics one of the physics (primary) is dependent upon the other physics
(secondary) but not vice-versa. In this case the coupling is considered to be one-way and can be
accomplished simply by supplying a secondary physics solution to the primary physics simulation. In
the context of problem solutions one would first solve the secondary physics problem and then
communicate the solution to a primary physics simulation. One way to carry out such a simulation is to
supply the secondary physics solution to the primary physics via file 7.1. However, in many instances it is
more convenient to carry out both simulations simultaneously and directly communicate the secondary
physics solution to the primary physics as needed. In Sierra Mechanics the communication step of such
an analysis is carried out using Solution Control and Transfer operations. Here Transfer describes
the information and Solution Control ensures sequencing of information to the primary physics. The
following example describes the solution process to perform a coupled analysis using Aria and
Adagio.

7.3.1. Problem Statement

Consider a one-way coupled thermal structural analysis problem in which a body is free to expand as a
response to gradual temperature change in time. Althought the problem geometry is changing due to
the structural deformation, the geometry change is assumed to have minimal effect upon heat transfer
in the body. For each time step, a heat conduction problem was solved for the temperature distribution
using the Aria code. Once the thermal solution has been obtained the temperature solution is
communicated to Adagio via Transfer and Adagio then solves for mechanical equilibrium which
includes calculation of thermal strains due to changing temperatures.

Note that the problem advances with the two applications lock stepped in time. In this problem the
Aria input discretization is identical to that of Adagio. During the simulation an Aria solution is
performed and Aria results are then communicated to Adagio using a transfer COPY operation. Once
the Aria values are received by Adagio the structural problem is then solved. Problems in which one
might wish to solve the Aria and Adagio problems on different discretizations can dealt with by making
simple modifications to the input replacing the transfer COPY operation with a INTERPOLATE
operation.

7.3.2. Input File

begin sierra barOneWayCouple

begin function analytic_sigma_zz
type is analytic
evaluate expression = "lambda=5.769231e5; mu = 3.84615e5; Delta = 25; alpha = 1e-4; -((3*lambda*mu + 2*(mu^2))/(lambda+mu))*alpha*Delta"

end

begin function THERMAL_STRAIN
type is piecewise linear

141

ordinate is strain
abscissa is temperature
begin values

200.0 0.0
400.0 0.02

end values
end function THERMAL_STRAIN

define direction x with vector 1.0 0.0 0.0
define direction y with vector 0.0 1.0 0.0
define direction z with vector 0.0 0.0 1.0

begin material linear_elastic
density = 0.1
thermal log strain function = THERMAL_STRAIN

begin parameters for model elastic
youngs modulus = 1.e6
poissons ratio = 0.3

end parameters for model elastic

begin parameters for model elastic_plastic
youngs modulus = 1.e6
poissons ratio = 0.3
yield stress = 1.0e6
hardening modulus = 10.0
beta is 0.999999

end parameters for model elastic_plastic

end material linear_elastic

BEGIN TPETRA EQUATION SOLVER solve_temperature
BEGIN CG SOLVER

BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
CONVERGENCE TOLERANCE = 1.0e-06
RESIDUAL SCALING = r0

END
END TPETRA EQUATION SOLVER

begin ARIA MATERIAL linear_elastic
thermal conductivity = constant k=401.0
specific heat = constant cp=385
density = constant rho=0.1
heat conduction = Fouriers_law

end ARIA MATERIAL linear_elastic

142

begin finite element model mesh_arpeggio
Database Name = 3dbar.g
Database Type = exodusII
begin parameters for block block_1

material linear_elastic
model = elastic_plastic

end parameters for block block_1
end finite element model mesh_arpeggio

begin procedure Arpeggio_Procedure

$===
$ Add in solver control parameters
$===

begin solution control description

begin initialize mytransient_init
advance AriaRegion
transfer TariatoTadagio_init
advance adagio

end initialize mytransient_init

use system main

begin system main
use initialize mytransient_init
begin transient mytransient

advance AriaRegion
transfer TariatoTadagio
advance adagio

end transient mytransient

end system main

begin parameters for transient mytransient
start time = 0.0
termination time = 2.0
Number of Steps = 2
BEGIN PARAMETERS FOR ARIA REGION AriaRegion

Initial Time Step Size = 1.0
Time Step Variation = Fixed

END

begin parameters for adagio region adagio
time increment = 1.0

143

end
end

end solution control description

$===
$ End ofsolver control parameters
$===

#coupling type is one_way

begin transfer TariatoTadagio_init
copy volume nodes from AriaRegion to adagio
send field solution->TEMPERATURE state new to temperature state old
send field solution->TEMPERATURE state new to temperature state new

end transfer TariatoTadagio_init

begin transfer TariatoTadagio
copy volume nodes from AriaRegion to adagio
send field solution->TEMPERATURE state new to temperature state new

end transfer TariatoTadagio

$==
$ Define the Aria region
$==

BEGIN ARIA REGION AriaRegion

use linear solver solve_temperature

nonlinear solution strategy = newton
maximum nonlinear iterations = 10
nonlinear residual tolerance = 1.0e-6
nonlinear relaxation factor = 1.0

use finite element model mesh_arpeggio

IC const at block_1 Temperature = 273.0
BC const dirichlet at nodelist_20 Temperature = 273.0
BC const dirichlet at nodelist_10 Temperature = 373.0

EQ ENERGY for TEMPERATURE on block_1 using Q1 with DIFF

output description

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = barOneWayCoupleTransfer_therm.e

144

at step 0, increment = 1
title Aria cube test
nodal variables = solution->TEMPERATURE as Temperature

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION AriaRegion

$==
$ Define the Adagio region
$==

begin adagio region adagio

use finite element model mesh_arpeggio

begin user output
include all blocks
compute global analytic_sigma_zz as function analytic_sigma_zz
compute global sigma_zz as max of element stress(zz)
compute at every step

end

begin solution verification
skip times = 0.0 to 1.0
completion file = VerifSigmaZZ
verify global sigma_zz = function analytic_sigma_zz
tolerance = 1

end

definition of BCs
begin fixed displacement

surface = surface_10
components = z

end fixed displacement

begin fixed displacement
surface = surface_20
components = z

end fixed displacement

------------------###
Solver definition
------------------###

begin solver
Begin cg

Target relative Residual = 1.0e-11

145

Maximum Iterations = 30
Minimum Iterations = 1
begin full tangent preconditioner

automatic smoothing factor = 0.1
end

end
end

output description
begin Results Output output_adagio

Database Name = barOneWayCoupleTransfer_mech.e
Database Type = exodusII
At Step 0, Increment = 1
nodal Variables = temperature as temperature
nodal Variables = velocity as vel
nodal Variables = displacement as displ
element Variables = stress as stress
global Variables = timestep as TIMESTEP
global variables = external_energy as ExternalEnergy
global variables = internal_energy as InternalEnergy
global variables = kinetic_energy as KineticEnergy
global variables = momentum as Momentum

end results output output_adagio

end adagio region adagio

end procedure Arpeggio_Procedure

end sierra barOneWayCouple

7.4. TWO-WAY COUPLING WITH TRANSFER

7.4.1. Problem Statement

This is a test of solving a simple one-dimensional thermal diffusion problem with Dirichlet BCs. The
test problem is shown schematically in Figure. Although the problem is one-dimensional we solve the
problem in a three-dimensional setting. Once the diffusion problem has been solved numerically the
temperature result is postprocessed to obtain a comparison with the analytical result and the
distribution of diffusive heat flux. This test input also demonstrates the use tabular function and
Encore function material property specification in Aria.

7.4.2. Input File

Converted: gapClosure.i using c2a 0.12

146

begin sierra gapClosure

begin definition for function THERMAL_STRAIN
type is piecewise linear
ordinate = strain
abscissa = temperature
begin values

373.0 0.0
1373.0 12e-3

end values
end definition for function THERMAL_STRAIN

begin definition for function tempLeft
type is piecewise linear
begin values

0.0 373
0.5 373
1.0 773
7.0 773
7.5 373
10.0 373

end
end

begin definition for function tempRight
type is piecewise linear
begin values

0.0 373
1.0 373
2.0 623
3.0 873
4.0 1123
5.0 873
6.0 623
7.0 373
10.0 373

end
end

define direction x with vector 1.0 0.0 0.0
define direction y with vector 0.0 1.0 0.0
define direction z with vector 0.0 0.0 1.0

begin Aria material linear_elastic
specific heat = constant cp = 1.0
density = constant rho = 0.1
heat conduction = basic

147

thermal conductivity = constant k = 250
end

begin property specification for material linear_elastic
density = 0.1
thermal log strain function = THERMAL_STRAIN

begin parameters for model elastic
youngs modulus = 1.e7
poissons ratio = 0.0

end parameters for model elastic

end property specification for material linear_elastic

begin finite element model mesh_calagio
Database Name = gapClosure.g

begin parameters for block block_1
material linear_elastic
model = elastic

end parameters for block block_1

begin parameters for block block_2
material linear_elastic
model = elastic

end parameters for block block_2

end finite element model mesh_calagio

BEGIN TPETRA EQUATION SOLVER solve_temperature
BEGIN gmres SOLVER

BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
CONVERGENCE TOLERANCE = 1.0e-07
RESIDUAL SCALING = None

END
END TPETRA EQUATION SOLVER

begin procedure Acca_Procedure

begin solution control description
Begin Initialize sys_init

advance aria
transfer aria_to_adagio_init
advance adagio

End initialize sys_init

148

Use System Main
Begin System Main

use Initialize sys_init
Simulation Start Time = 0.0
Simulation Termination Time = 8.0
Begin Transient p1

Begin Nonlinear converge_step_p1
advance aria
transfer aria_to_adagio
advance adagio
transfer adagio_to_aria

End Nonlinear converge_step_p1
End Transient p1
Begin Transient p2

Begin Nonlinear converge_step_p2
advance aria
transfer aria_to_adagio
advance adagio
transfer adagio_to_aria

End Nonlinear converge_step_p2
End Transient p2
Begin Transient p3

Begin Nonlinear converge_step_p3
advance_aria_and_adagio
advance aria
transfer aria_to_adagio
advance adagio
transfer adagio_to_aria

End Nonlinear converge_step_p3
End Transient p3
Begin Transient p4

Begin Nonlinear converge_step_p4
advance aria
transfer aria_to_adagio
advance adagio
transfer adagio_to_aria

End Nonlinear converge_step_p4
End Transient p4
Begin Transient p5

Begin Nonlinear converge_step_p5
advance aria
transfer aria_to_adagio
advance adagio
transfer adagio_to_aria

End Nonlinear converge_step_p5
End Transient p5

End System Main

149

Begin parameters for nonlinear converge_step_p1
converged when "(aria.MaxResidualNorm(0.0) < 1.e-6 &&\$

adagio.norm(0.0) < 1.e-6) || CURRENT_STEP > 10"
many other choices in documentation

End parameters for nonlinear converge_step_p1

Begin parameters for nonlinear converge_step_p2
converged when "(aria.MaxResidualNorm(0.0) < 1.e-6 &&\$

adagio.norm(0.0) < 1.e-6) || CURRENT_STEP > 10"
many other choices in documentation

End parameters for nonlinear converge_step_p2

Begin parameters for nonlinear converge_step_p3
converged when "(aria.MaxResidualNorm(0.0) < 1.e-6 &&\$

adagio.norm(0.0) < 1.e-6) || CURRENT_STEP > 10"
many other choices in documentation

End parameters for nonlinear converge_step_p3

Begin parameters for nonlinear converge_step_p4
converged when "(aria.MaxResidualNorm(0.0) < 1.e-6 &&\$

adagio.norm(0.0) < 1.e-6) || CURRENT_STEP > 10"
many other choices in documentation

End parameters for nonlinear converge_step_p4

Begin parameters for nonlinear converge_step_p5
converged when "(aria.MaxResidualNorm(0.0) < 1.e-6 &&\$

adagio.norm(0.0) < 1.e-6) || CURRENT_STEP > 10"
many other choices in documentation

End parameters for nonlinear converge_step_p5

begin parameters for transient p1
start time = 0.0
termination time = 1.0

BEGIN PARAMETERS FOR Aria REGION Aria
initial time step size = 0.5

time step variation = fixed
time integration method = first_order

END PARAMETERS FOR Aria REGION Aria

begin parameters for adagio region adagio
time increment = 1.0

end parameters for adagio region adagio

end

150

begin parameters for transient p2
start time = 1.0
termination time = 3.0

BEGIN PARAMETERS FOR Aria REGION Aria
initial time step size = 1.0

time step variation = fixed
time integration method = first_order

END PARAMETERS FOR Aria REGION Aria

begin parameters for adagio region adagio
time increment = 1.0

end parameters for adagio region adagio

end

begin parameters for transient p3
start time = 3.0
termination time = 4.0

BEGIN PARAMETERS FOR Aria REGION Aria
initial time step size = 0.5

time step variation = fixed
time integration method = first_order

END PARAMETERS FOR Aria REGION Aria

begin parameters for adagio region adagio
time increment = 0.5

end parameters for adagio region adagio

end

begin parameters for transient p4
start time = 4.0
termination time = 7.0

BEGIN PARAMETERS FOR Aria REGION Aria
initial time step size = 1.0

time step variation = fixed
time integration method = first_order

END PARAMETERS FOR Aria REGION Aria

begin parameters for adagio region adagio

151

time increment = 1.0
end parameters for adagio region adagio

end

begin parameters for transient p5
start time = 7.0
termination time = 8.0

BEGIN PARAMETERS FOR Aria REGION Aria
initial time step size = 0.5

time step variation = fixed
time integration method = first_order

END PARAMETERS FOR Aria REGION Aria

begin parameters for adagio region adagio
time increment = 0.5

end parameters for adagio region adagio

end

end solution control description

default to: standard_aria_to_adagio_init
begin transfer aria_to_adagio_init

copy volume nodes from aria to adagio
send field solution->temperature state old to temperature state old
send field solution->temperature state new to temperature state new

end

default to: standard_aria_to_adagio_advance
begin transfer aria_to_adagio

copy volume nodes from aria to adagio
send field solution->temperature state new to temperature state new

end

begin transfer adagio_to_aria
copy volume nodes from adagio to aria
send field displacement state new to solution->mesh_displacements state new

end

begin aria region Aria

EQ energy for temperature on all_blocks using Q1 with diff mass # src
EQ mesh for mesh_displacements on all_blocks using Q1 with xfer

152

Begin Initial Condition myICBlock
temperature = 373.0
add volume block_1
add volume block_2
$can have many of the above and below extent specifiers
$nodeset = nodelist_1
$surface = surface_1

End Initial Condition myICBlock

begin temperature boundary condition surface_14
add surface surface_14
temperature time function = tempLeft

end
begin temperature boundary condition surface_22

add surface surface_22
temperature time function = tempRight

end

begin contact definition mary
contact surface surf_12 contains surface_12
contact surface surf_24 contains surface_24
begin interaction harry

surfaces are surf_24 surf_12
normal tolerance = 10e-5

end
begin enforcement larry

gap conductance coefficient = constant value = 2000
enforcement for energy = gap_conductance

end
update search every 1 steps

end

use finite element model mesh_calagio model coordinates are model_coordinates
nonlinear solution strategy = newton
use dof averaged nonlinear residual
accept solution after maximum nonlinear iterations = true
use linear solver solve_temperature

end Aria region Aria

begin adagio region adagio
use finite element model mesh_calagio model coordinates are model_coordinates

output description
begin Results Output output_adagio

Database Name = gapClosure.e
At Step 0, Increment = 1

153

nodal Variables = temperature as temp
nodal Variables = velocity as vel
nodal Variables = displacement as displ
element Variables = stress as stress
global Variables = timestep as timestep
global variables = external_energy as ExternalEnergy
global variables = internal_energy as InternalEnergy
global variables = kinetic_energy as KineticEnergy
global variables = momentum as Momentum

end results output output_adagio

definition of BCs
begin fixed displacement

surface = surface_14 surface_22
components = x

end fixed displacement

begin fixed displacement
surface = surface_11 surface_21
components = y

end fixed displacement

Contact

begin contact definition
search = dash
contact surface surf_12 contains surface_12
contact surface surf_24 contains surface_24
begin interaction

side A = surf_24
side B = surf_12
normal tolerance = 2.5e-4

end
enforcement = al

end

------------------###
Solver definition
------------------###

begin solver

begin Loadstep predictor
type = secant
slip scale factor = 0.0

end

154

begin control contact
target relative residual = 1.0e-7
target residual = 1.0e-12
maximum iterations = 10
minimum iterations = 0

end

Begin cg
target relative residual = 1.0e-10
target residual = 1.0e-15
Maximum Iterations = 500
Minimum Iterations = 0

end

end

end adagio region adagio

end procedure Acca_Procedure

end sierra gapClosure

7.5. TWO-WAY COUPLING USING TRANSFER OF
ELEMENT DEATH

In some problems of coupled physics the effect of one physics is manifest in substantial change of
material in the other physics. One example of this is extreme softening leading to removal of material
owing to an elevated temperature limit. In these instances it is convenient to carry out both simulations
simultaneously and directly exchange solutions between the two physics and including a variable
denoting material softening/removal (element death). In Sierra Mechanics the communication step of
such an analysis is carried out using Solution Control and Transfer operations. Here Transfer
describes the exchanged information and Solution Control ensures sequencing of information
between the two physics. The following example describes the solution process to perform a coupled
analysis using Aria and Adagio in which elements are removed during the simulation.

7.5.1. Problem Statement

Consider a two-way coupled thermal structural analysis problem in which a body is free to expand as a
response to gradual temperature change in time. The problem geometry is changing due to the
structural deformation, and the geometry change is communicated back to the thermal problem. For
each time step, a heat conduction problem was solved for the temperature distribution using the Aria
code. Based upon the temperature solution, elements exceeding a threshold temperature are marked for
removal with a death_status variable (1 active, 0 inactive). Once the thermal solution has completed the

155

temperature solution and the death_status are communicated to Adagio via Transfer and Adagio then
solves for mechanical equilibrium including calculation of thermal strains due to changing
temperatures but on a domain that no longer contains elements marked for death by Aria. The
displacement solution is then communicated back to Aria where subsequent solves are carried out in
the current configuration.

It is important to note that each application has its own element death implementation. The exchange
of death_status from one application to another is made indirectly to an intermediate variable that
interfaces the other application’s element death implementation.

Here the problem solution advances with the two applications lock stepped in time. In this problem the
Aria input discretization is identical to that of Adagio. During the simulation an Aria solution is
performed and Aria results are then communicated to Adagio using a transfer COPY operation. Once
the Aria values are received by Adagio the structural problem is then solved and the entire process is
then repeated.

When mechanical deformation is small one might consider removal of the Aria mesh equation (EQ
mesh) and ignoring the transfer of displacement back to Aria. Situations in which element death is
driven by the mechanics solution are modeled in a similar manner as demonstrated here. Variants of this
problems in which one might wish to solve the Aria and Adagio problems on different discretizations
are usually much more difficult. A good starting point would be to make simple modifications to the
input replacing the transfer COPY operation with a INTERPOLATE operation.

7.5.2. Input File

begin sierra elemDeathSimpleAria

begin function disp_x
type = analytic
expression variable: t = global time
evaluate expression = "t*0.0002"

end function disp_x

begin Aria material linear_elastic
specific heat = constant cp = 385.0
density = constant rho = 0.1
heat conduction = basic
thermal conductivity = constant k = 1.0

end

begin property specification for material linear_elastic
density = 0.1
begin parameters for model elastic

youngs modulus = 1.e6
poissons ratio = 0.0

end parameters for model elastic
end property specification for material linear_elastic

156

begin finite element model mesh_arpgio
Database Name = elemDeathSimpleAria.g
Database Type = exodusII
begin parameters for block block_1 block_2

material linear_elastic
solid mechanics use model elastic

end parameters for block block_1 block_2
end finite element model mesh_arpgio

BEGIN TPETRA EQUATION SOLVER solve_temperature
BEGIN CG SOLVER

BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
CONVERGENCE TOLERANCE = 1.0e-07
RESIDUAL SCALING = None

END
END TPETRA EQUATION SOLVER

begin procedure Arpgio_Procedure

begin solution control description

use system main

begin initialize two_way_couple_init
Advance Aria
Transfer Aria_Adagio_Initial
transfer aria_adagio_element
Advance Adagio

end initialize two_way_couple_init

begin system main
use initialize two_way_couple_init
simulation termination time = 20.0
begin transient two_way_couple

advance Aria
transfer aria_adagio_element
transfer Aria_adagio_default
advance adagio
transfer adagio_Aria_default

end transient two_way_couple
end system main

begin parameters for transient two_way_couple

157

start time = 0.0

BEGIN PARAMETERS FOR Aria REGION Aria
initial time step size = 1.0
time step variation = fixed

END PARAMETERS FOR Aria REGION Aria

begin parameters for adagio region adagio
time increment = 1.0

end parameters for adagio region adagio

end parameters for transient two_way_couple

end solution control description

begin aria region Aria

EQ energy for temperature on all_blocks using Q1 with diff mass # lumped_mass mass src
EQ mesh for mesh_displacements on all_blocks using Q1 with xfer

Begin Initial Condition myICBlock
temperature = 273.0
add volume all_blocks

End Initial Condition myICBlock

begin temperature boundary condition surface_1
add surface surface_1
temperature = 273.0

end

begin temperature boundary condition surface_2
add surface surface_2
temperature = 373.0

end

use finite element model mesh_arpgio

begin element death temperature_death
add volume block_2
criterion is max nodal value of solution->temperature > 280.0

end element death temperature_death

nonlinear solution strategy = newton
use dof averaged nonlinear residual
accept solution after maximum nonlinear iterations = true
use linear solver solve_temperature

158

begin results output output_aria
Database Name = elemDeathSimpleAria_aria.e
Database Type = exodusII
At Step 0, Increment = 1
nodal variables = solution->temperature
nodal variables = solution->mesh_displacements as displacement
element variables = death_status as death_status
global Variables = timestep

end results output output_aria

end Aria region Aria

begin adagio region adagio

use finite element model mesh_arpgio

output description
begin results output output_adagio

Database Name = elemDeathSimpleAria_adagio.e
Database Type = exodusII
At Step 0, Increment = 1
nodal Variables = temperature
nodal Variables = velocity
nodal Variables = displacement
element Variables = stress
element variables = death_status
element variables = aria_death_status
global Variables = timestep
global variables = external_energy
global variables = internal_energy
global variables = kinetic_energy
global variables = momentum

end results output output_adagio

definition of BCs
begin fixed displacement

node set = nodelist_1
components = x y z

end fixed displacement

begin prescribed displacement
node set = nodelist_2
component = x
function = disp_x

end prescribed displacement

begin user variable aria_death_status

159

type = element real length = 1
initial value = 1.0

end user variable aria_death_status

begin element death elemdeath
block = block_2
criterion is element value of aria_death_status = 0.0
death method = deactivate element
death steps = 1

end element death elemdeath

------------------###
Solver definition
------------------###

begin solver
Begin cg

target relative residual = 1.0e-9
Maximum Iterations = 50
Minimum Iterations = 0
preconditioner = probe

end
end

end adagio region adagio

begin transfer Aria_adagio_initial
copy volume nodes from Aria to adagio
send field solution->temperature state new to temperature state old
send field solution->temperature state new to temperature state new

end transfer Aria_adagio_initial

begin transfer Aria_adagio_default
copy volume nodes from Aria to adagio
send field solution->temperature state new to temperature state new

end transfer Aria_adagio_default

begin transfer adagio_Aria_default
copy volume nodes from adagio to Aria
send field displacement state new to solution->mesh_displacements state new

end transfer adagio_Aria_default

begin transfer aria_adagio_element
copy volume elements from Aria to adagio
Send field death_status state none to aria_death_status state none

end transfer aria_adagio_element

160

end procedure Arpgio_Procedure

end sierra elemDeathSimpleAria

7.6. ESTACK REGRESSION TEST

7.6.1. Problem Statement

This is a test of solving a simple one-dimensional thermal diffusion problem with Dirichlet BCs. The
test problem is shown schematically in Figure. Although the problem is one-dimensional we solve the
problem in a three-dimensional setting. Once the diffusion problem has been solved numerically the
temperature result is postprocessed to obtain a comparison with the analytical result and the
distribution of diffusive heat flux. This test input also demonstrates the use tabular function and
Encore function material property specification in Aria.

7.6.2. Input File

#
Begin Sierra Aria_Presto_example

Define Direction Y_Axis With Vector 0.0 1.0 0.0

Begin Definition For Function Delta
Type is Piecewise Linear
Ordinate is Displacement
Abscissa is Time
Begin Values

0.000E+00 0.00000E+00
1.400E-04 1.40098E-03
2.800E-04 2.80392E-03
4.200E-04 4.20883E-03
5.600E-04 5.61571E-03
7.000E-04 7.02456E-03
8.400E-04 8.43538E-03
9.800E-04 9.84818E-03
1.120E-03 1.12630E-02
1.260E-03 1.26797E-02
1.400E-03 1.40985E-02
1.540E-03 1.55192E-02
1.680E-03 1.69419E-02
1.820E-03 1.83666E-02
1.960E-03 1.97933E-02
2.100E-03 2.12221E-02
2.240E-03 2.26528E-02

161

2.380E-03 2.40855E-02
2.520E-03 2.55202E-02
2.660E-03 2.69569E-02
2.800E-03 2.83957E-02
2.940E-03 2.98364E-02
3.080E-03 3.12792E-02
3.220E-03 3.27240E-02
3.360E-03 3.41709E-02
3.500E-03 3.56197E-02
3.640E-03 3.70706E-02
3.780E-03 3.85235E-02
3.920E-03 3.99785E-02
4.060E-03 4.14354E-02
4.200E-03 4.28945E-02
4.340E-03 4.43556E-02
4.480E-03 4.58187E-02
4.620E-03 4.72838E-02
4.760E-03 4.87511E-02
4.900E-03 5.02204E-02
5.040E-03 5.16917E-02
5.180E-03 5.31651E-02
5.320E-03 5.46406E-02
5.460E-03 5.61181E-02
5.600E-03 5.75977E-02
5.740E-03 5.90794E-02
5.880E-03 6.05631E-02
6.020E-03 6.20489E-02
6.160E-03 6.35368E-02
6.300E-03 6.50268E-02
6.440E-03 6.65189E-02
6.580E-03 6.80131E-02
6.720E-03 6.95094E-02
6.860E-03 7.10077E-02
7.000E-03 7.25082E-02
7.140E-03 7.40107E-02
7.280E-03 7.55154E-02
7.420E-03 7.70222E-02
7.560E-03 7.85311E-02
7.700E-03 8.00421E-02
7.840E-03 8.15552E-02
7.980E-03 8.30704E-02
8.120E-03 8.45878E-02
8.260E-03 8.61073E-02
8.400E-03 8.76289E-02
8.540E-03 8.91526E-02
8.680E-03 9.06785E-02
8.820E-03 9.22065E-02

162

8.960E-03 9.37367E-02
9.100E-03 9.52690E-02
9.240E-03 9.68035E-02
9.380E-03 9.83401E-02
9.520E-03 9.98788E-02
9.660E-03 1.01420E-01
9.800E-03 1.02963E-01
9.940E-03 1.04508E-01
1.008E-02 1.06055E-01
1.022E-02 1.07605E-01
1.036E-02 1.09157E-01
1.050E-02 1.10711E-01
1.064E-02 1.12267E-01
1.078E-02 1.13825E-01
1.092E-02 1.15385E-01
1.106E-02 1.16948E-01
1.120E-02 1.18513E-01
1.134E-02 1.20080E-01
1.148E-02 1.21649E-01
1.162E-02 1.23220E-01
1.176E-02 1.24794E-01
1.190E-02 1.26370E-01
1.204E-02 1.27948E-01
1.218E-02 1.29528E-01
1.232E-02 1.31111E-01
1.246E-02 1.32695E-01
1.260E-02 1.34282E-01
1.274E-02 1.35871E-01
1.288E-02 1.37463E-01
1.302E-02 1.39056E-01
1.316E-02 1.40652E-01
1.330E-02 1.42250E-01
1.344E-02 1.43850E-01
1.358E-02 1.45453E-01
1.372E-02 1.47058E-01
1.386E-02 1.48665E-01
1.400E-02 1.50274E-01
1.414E-02 1.51885E-01
1.428E-02 1.53499E-01
1.442E-02 1.55115E-01
1.456E-02 1.56733E-01
1.470E-02 1.58354E-01
1.484E-02 1.59977E-01
1.498E-02 1.61602E-01
1.512E-02 1.63229E-01
1.526E-02 1.64859E-01
1.540E-02 1.66491E-01

163

1.554E-02 1.68125E-01
1.568E-02 1.69762E-01
1.582E-02 1.71400E-01
1.596E-02 1.73042E-01
1.610E-02 1.74685E-01
1.624E-02 1.76331E-01
1.638E-02 1.77979E-01
1.652E-02 1.79629E-01
1.666E-02 1.81282E-01
1.680E-02 1.82937E-01
1.694E-02 1.84594E-01
1.708E-02 1.86253E-01
1.722E-02 1.87915E-01
1.736E-02 1.89580E-01
1.750E-02 1.91246E-01
1.764E-02 1.92915E-01
1.778E-02 1.94586E-01
1.792E-02 1.96260E-01
1.806E-02 1.97936E-01
1.820E-02 1.99614E-01
1.834E-02 2.01295E-01
1.848E-02 2.02978E-01
1.862E-02 2.04663E-01
1.876E-02 2.06351E-01
1.890E-02 2.08041E-01
1.904E-02 2.09733E-01
1.918E-02 2.11428E-01
1.932E-02 2.13125E-01
1.946E-02 2.14825E-01
1.960E-02 2.16527E-01
1.974E-02 2.18231E-01
1.988E-02 2.19938E-01
2.002E-02 2.21647E-01
2.016E-02 2.23359E-01
2.030E-02 2.25072E-01
2.044E-02 2.26789E-01
2.058E-02 2.28507E-01
2.072E-02 2.30229E-01
2.086E-02 2.31952E-01
2.100E-02 2.33678E-01
2.114E-02 2.35406E-01
2.128E-02 2.37137E-01
2.142E-02 2.38870E-01
2.156E-02 2.40606E-01
2.170E-02 2.42344E-01
2.184E-02 2.44085E-01
2.198E-02 2.45828E-01

164

2.212E-02 2.47573E-01
2.226E-02 2.49321E-01
2.240E-02 2.51071E-01
2.254E-02 2.52824E-01
2.268E-02 2.54579E-01
2.282E-02 2.56337E-01
2.296E-02 2.58097E-01
2.310E-02 2.59859E-01
2.324E-02 2.61624E-01
2.338E-02 2.63392E-01
2.352E-02 2.65162E-01
2.366E-02 2.66934E-01
2.380E-02 2.68709E-01
2.394E-02 2.70487E-01
2.408E-02 2.72267E-01
2.422E-02 2.74049E-01
2.436E-02 2.75834E-01
2.450E-02 2.77621E-01
2.464E-02 2.79411E-01
2.478E-02 2.81204E-01
2.492E-02 2.82999E-01
2.506E-02 2.84796E-01
2.520E-02 2.86596E-01
2.534E-02 2.88399E-01
2.548E-02 2.90204E-01
2.562E-02 2.92011E-01
2.576E-02 2.93821E-01
2.590E-02 2.95634E-01
2.604E-02 2.97449E-01
2.618E-02 2.99267E-01
2.632E-02 3.01087E-01
2.646E-02 3.02910E-01
2.660E-02 3.04735E-01
2.674E-02 3.06563E-01
2.688E-02 3.08393E-01
2.702E-02 3.10226E-01
2.716E-02 3.12062E-01
2.730E-02 3.13900E-01
2.744E-02 3.15741E-01
2.758E-02 3.17584E-01
2.772E-02 3.19430E-01
2.786E-02 3.21279E-01
2.800E-02 3.23130E-01
2.814E-02 3.24983E-01
2.828E-02 3.26840E-01
2.842E-02 3.28699E-01
2.856E-02 3.30560E-01

165

2.870E-02 3.32424E-01
2.884E-02 3.34291E-01
2.898E-02 3.36160E-01
2.912E-02 3.38032E-01
2.926E-02 3.39907E-01
2.940E-02 3.41784E-01
2.954E-02 3.43664E-01
2.968E-02 3.45546E-01
2.982E-02 3.47431E-01
2.996E-02 3.49319E-01
3.010E-02 3.51209E-01
3.024E-02 3.53102E-01
3.038E-02 3.54998E-01
3.052E-02 3.56896E-01
3.066E-02 3.58797E-01
3.080E-02 3.60701E-01
3.094E-02 3.62607E-01
3.108E-02 3.64516E-01
3.122E-02 3.66428E-01
3.136E-02 3.68342E-01
3.150E-02 3.70259E-01
3.164E-02 3.72179E-01
3.178E-02 3.74101E-01
3.192E-02 3.76027E-01
3.206E-02 3.77954E-01
3.220E-02 3.79885E-01
3.234E-02 3.81818E-01
3.248E-02 3.83754E-01
3.262E-02 3.85692E-01
3.276E-02 3.87634E-01
3.290E-02 3.89578E-01
3.304E-02 3.91525E-01
3.318E-02 3.93474E-01
3.332E-02 3.95426E-01
3.346E-02 3.97381E-01
3.360E-02 3.99339E-01
3.374E-02 4.01299E-01
3.388E-02 4.03263E-01
3.402E-02 4.05229E-01
3.416E-02 4.07197E-01
3.430E-02 4.09169E-01
3.444E-02 4.11143E-01
3.458E-02 4.13120E-01
3.472E-02 4.15100E-01
3.486E-02 4.17082E-01
3.500E-02 4.19068E-01
3.514E-02 4.21056E-01

166

3.528E-02 4.23047E-01
3.542E-02 4.25040E-01
3.556E-02 4.27037E-01
3.570E-02 4.29036E-01
3.584E-02 4.31038E-01
3.598E-02 4.33043E-01
3.612E-02 4.35050E-01
3.626E-02 4.37061E-01
3.640E-02 4.39074E-01
3.654E-02 4.41090E-01
3.668E-02 4.43109E-01
3.682E-02 4.45131E-01
3.696E-02 4.47156E-01
3.710E-02 4.49183E-01
3.724E-02 4.51213E-01
3.738E-02 4.53246E-01
3.752E-02 4.55282E-01
3.766E-02 4.57321E-01
3.780E-02 4.59363E-01
3.794E-02 4.61407E-01
3.808E-02 4.63455E-01
3.822E-02 4.65505E-01
3.836E-02 4.67558E-01
3.850E-02 4.69614E-01
3.864E-02 4.71673E-01
3.878E-02 4.73735E-01
3.892E-02 4.75800E-01
3.906E-02 4.77867E-01
3.920E-02 4.79938E-01
3.934E-02 4.82011E-01
3.948E-02 4.84087E-01
3.962E-02 4.86167E-01
3.976E-02 4.88249E-01
3.990E-02 4.90334E-01
4.004E-02 4.92422E-01
4.018E-02 4.94512E-01
4.032E-02 4.96606E-01
4.046E-02 4.98703E-01
4.060E-02 5.00803E-01
4.074E-02 5.02905E-01
4.088E-02 5.05011E-01
4.102E-02 5.07119E-01
4.116E-02 5.09231E-01
4.130E-02 5.11345E-01
4.144E-02 5.13462E-01
4.158E-02 5.15583E-01
4.172E-02 5.17706E-01

167

4.186E-02 5.19832E-01
4.200E-02 5.21962E-01
4.214E-02 5.24094E-01
4.228E-02 5.26229E-01
4.242E-02 5.28367E-01
4.256E-02 5.30508E-01
4.270E-02 5.32653E-01
4.284E-02 5.34800E-01
4.298E-02 5.36950E-01
4.312E-02 5.39103E-01
4.326E-02 5.41260E-01
4.340E-02 5.43419E-01
4.354E-02 5.45581E-01
4.368E-02 5.47746E-01
4.382E-02 5.49915E-01
4.396E-02 5.52086E-01
4.410E-02 5.54261E-01
4.424E-02 5.56438E-01
4.438E-02 5.58619E-01
4.452E-02 5.60802E-01
4.466E-02 5.62989E-01
4.480E-02 5.65179E-01
4.494E-02 5.67371E-01
4.508E-02 5.69567E-01
4.522E-02 5.71766E-01
4.536E-02 5.73968E-01
4.550E-02 5.76173E-01
4.564E-02 5.78382E-01
4.578E-02 5.80593E-01
4.592E-02 5.82807E-01
4.606E-02 5.85025E-01
4.620E-02 5.87245E-01
4.634E-02 5.89469E-01
4.648E-02 5.91696E-01
4.662E-02 5.93926E-01
4.676E-02 5.96159E-01
4.690E-02 5.98395E-01
4.704E-02 6.00634E-01
4.718E-02 6.02877E-01
4.732E-02 6.05122E-01
4.746E-02 6.07371E-01
4.760E-02 6.09623E-01
4.774E-02 6.11878E-01
4.788E-02 6.14136E-01
4.802E-02 6.16398E-01
4.816E-02 6.18662E-01
4.830E-02 6.20930E-01

168

4.844E-02 6.23201E-01
4.858E-02 6.25475E-01
4.872E-02 6.27752E-01
4.886E-02 6.30033E-01
4.900E-02 6.32316E-01
4.914E-02 6.34603E-01
4.928E-02 6.36893E-01
4.942E-02 6.39186E-01
4.956E-02 6.41483E-01
4.970E-02 6.43783E-01
4.984E-02 6.46085E-01
4.998E-02 6.48392E-01
5.012E-02 6.50701E-01
5.026E-02 6.53014E-01
5.040E-02 6.55329E-01
5.054E-02 6.57648E-01
5.068E-02 6.59971E-01
5.082E-02 6.62296E-01
5.096E-02 6.64625E-01
5.110E-02 6.66957E-01
5.124E-02 6.69293E-01
5.138E-02 6.71631E-01
5.152E-02 6.73973E-01
5.166E-02 6.76318E-01
5.180E-02 6.78667E-01
5.194E-02 6.81019E-01
5.208E-02 6.83374E-01
5.222E-02 6.85732E-01
5.236E-02 6.88094E-01
5.250E-02 6.90459E-01
5.264E-02 6.92827E-01
5.278E-02 6.95199E-01
5.292E-02 6.97574E-01
5.306E-02 6.99952E-01
5.320E-02 7.02334E-01
5.334E-02 7.04719E-01
5.348E-02 7.07107E-01
5.362E-02 7.09498E-01
5.376E-02 7.11893E-01
5.390E-02 7.14292E-01
5.404E-02 7.16693E-01
5.418E-02 7.19098E-01
5.432E-02 7.21507E-01
5.446E-02 7.23919E-01
5.460E-02 7.26334E-01
5.474E-02 7.28752E-01
5.488E-02 7.31174E-01

169

5.502E-02 7.33600E-01
5.516E-02 7.36028E-01
5.530E-02 7.38461E-01
5.544E-02 7.40896E-01
5.558E-02 7.43335E-01
5.572E-02 7.45777E-01
5.586E-02 7.48223E-01
5.600E-02 7.50673E-01
5.614E-02 7.53125E-01
5.628E-02 7.55581E-01
5.642E-02 7.58041E-01
5.656E-02 7.60504E-01
5.670E-02 7.62970E-01
5.684E-02 7.65440E-01
5.698E-02 7.67913E-01
5.712E-02 7.70390E-01
5.726E-02 7.72871E-01
5.740E-02 7.75354E-01
5.754E-02 7.77842E-01
5.768E-02 7.80332E-01
5.782E-02 7.82826E-01
5.796E-02 7.85324E-01
5.810E-02 7.87825E-01
5.824E-02 7.90330E-01
5.838E-02 7.92838E-01
5.852E-02 7.95350E-01
5.866E-02 7.97865E-01
5.880E-02 8.00384E-01
5.894E-02 8.02906E-01
5.908E-02 8.05432E-01
5.922E-02 8.07962E-01
5.936E-02 8.10494E-01
5.950E-02 8.13031E-01
5.964E-02 8.15571E-01
5.978E-02 8.18115E-01
5.992E-02 8.20662E-01
6.006E-02 8.23212E-01
6.020E-02 8.25767E-01
6.034E-02 8.28325E-01
6.048E-02 8.30886E-01
6.062E-02 8.33451E-01
6.076E-02 8.36020E-01
6.090E-02 8.38592E-01
6.104E-02 8.41168E-01
6.118E-02 8.43747E-01
6.132E-02 8.46330E-01
6.146E-02 8.48917E-01

170

6.160E-02 8.51507E-01
6.174E-02 8.54101E-01
6.188E-02 8.56699E-01
6.202E-02 8.59300E-01
6.216E-02 8.61905E-01
6.230E-02 8.64513E-01
6.244E-02 8.67125E-01
6.258E-02 8.69741E-01
6.272E-02 8.72361E-01
6.286E-02 8.74984E-01
6.300E-02 8.77611E-01
6.314E-02 8.80241E-01
6.328E-02 8.82875E-01
6.342E-02 8.85513E-01
6.356E-02 8.88155E-01
6.370E-02 8.90800E-01
6.384E-02 8.93449E-01
6.398E-02 8.96102E-01
6.412E-02 8.98758E-01
6.426E-02 9.01418E-01
6.440E-02 9.04082E-01
6.454E-02 9.06750E-01
6.468E-02 9.09421E-01
6.482E-02 9.12096E-01
6.496E-02 9.14775E-01
6.510E-02 9.17457E-01
6.524E-02 9.20144E-01
6.538E-02 9.22834E-01
6.552E-02 9.25528E-01
6.566E-02 9.28225E-01
6.580E-02 9.30927E-01
6.594E-02 9.33632E-01
6.608E-02 9.36341E-01
6.622E-02 9.39054E-01
6.636E-02 9.41770E-01
6.650E-02 9.44491E-01
6.664E-02 9.47215E-01
6.678E-02 9.49943E-01
6.692E-02 9.52675E-01
6.706E-02 9.55410E-01
6.720E-02 9.58150E-01
6.734E-02 9.60893E-01
6.748E-02 9.63640E-01
6.762E-02 9.66391E-01
6.776E-02 9.69146E-01
6.790E-02 9.71905E-01
6.804E-02 9.74667E-01

171

6.818E-02 9.77434E-01
6.832E-02 9.80204E-01
6.846E-02 9.82978E-01
6.860E-02 9.85757E-01
6.874E-02 9.88539E-01
6.888E-02 9.91325E-01
6.902E-02 9.94114E-01
6.916E-02 9.96908E-01
6.930E-02 9.99706E-01
6.944E-02 1.00251E+00
6.958E-02 1.00531E+00
6.972E-02 1.00812E+00
6.986E-02 1.01094E+00
7.000E-02 1.01375E+00

End Values
End Definition For Function Delta

begin definition for function TEMPERATURE
type is piecewise linear
ordinate is temperature
abscissa is time
begin values

0.00 1255.4
1.00 1255.4

end values
end definition for function TEMPERATURE

begin definition for function THERMAL_STRAIN
type is piecewise linear
ordinate is strain
abscissa is temperature
begin values

200.0 0.0
3000.0 0.0

end values
end definition for function THERMAL_STRAIN

Begin Property Specification For Material Resistor
density = 8.0E-4
thermal log strain function = THERMAL_STRAIN
begin parameters for model elastic

youngs modulus = 200.0E3 $ MPa
poissons ratio = 0.305

End
End

Begin Aria Material Resistor

172

Electric Displacement = Basic
Electrical Permittivity = Constant Kappa=3e-10 # N/V^2
Electrical Resistivity = Constant Rho=2e2 # Ohm-mm

End

Begin Property Specification For Material Metal
density = 8.0E-4
thermal log strain function = THERMAL_STRAIN
begin parameters for model elastic

youngs modulus = 200.0E3 $ MPa
poissons ratio = 0.305

End
End

Begin Aria Material Metal
Electric Displacement = Basic
Electrical Permittivity = Constant Kappa=1e-9 # N/V^2
Electrical Resistivity = Constant Rho=2e-5 # Ohm-mm

End

begin property specification for material dielectric
density = 8.0E-4
thermal log strain function = THERMAL_STRAIN
begin parameters for model elastic

youngs modulus = 200.0E3 $ MPa
poissons ratio = 0.305

end
end

Begin Aria Material Dielectric
Electric Displacement = Basic
Electrical Permittivity = Constant Kappa=3e-11 # N/V^2
Electrical Resistivity = Constant Rho=1e13 # Ohm-mm

End

begin finite element model mesh1
Database Name = estack.g
Database Type = exodusII

begin parameters for block block_1
material resistor
model = elastic
hourglass stiffness = 0.05
hourglass viscosity = 0.03

173

end parameters for block block_1

begin parameters for block block_2
material metal
model = elastic
hourglass stiffness = 0.05
hourglass viscosity = 0.03

end parameters for block block_2

begin parameters for block block_3
material dielectric
model = elastic
hourglass stiffness = 0.05
hourglass viscosity = 0.03

end parameters for block block_3

begin parameters for block block_4
material metal
model = elastic
hourglass stiffness = 0.05
hourglass viscosity = 0.03

end parameters for block block_4

end finite element model mesh1

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER

Begin Procedure The_Procedure

Begin Solution Control Description
Define solution control for advancing and transferring forces and
displacements between Aria and Adagio
Begin System Main

Begin Transient MyTransient1
Transfer Presto_to_Aria
Advance AriaRegion
Begin Subcycle PrestoSubcycle

Advance PrestoRegion
End

End
Begin Transient MyTransient2

Transfer Presto_to_Aria
Advance AriaRegion
Begin Subcycle PrestoSubcycle2

174

Advance PrestoRegion
End

End
simulation termination time = 0.07

End

Time-stepping parameters
Begin Parameters for Transient MyTransient1

Start Time = 0.0
time step style noclip
Termination Time = 0.035
Parameters for Aria region: fluid mechanics region
Begin Parameters for Aria Region AriaRegion

Initial Time Step Size = 1e-3
Time Step Variation = Fixed

End
Parameters for Adagio region: solid mechanics region
Begin Parameters for Presto Region PrestoRegion

initial time step = 1.0e-6
time step scale factor = 1.0
time step increase factor = 10.
step interval = 1
print banner interval for solution control = 10

End
End

Begin Parameters for Transient MyTransient2
Start Time = 0.035
time step style noclip
Termination Time = 0.07
Parameters for Aria region: fluid mechanics region
Begin Parameters for Aria Region AriaRegion

Initial Time Step Size = 1e-3
Time Step Variation = Fixed

End
Parameters for Adagio region: solid mechanics region
Begin Parameters for Presto Region PrestoRegion

time step scale factor = 1.0
time step increase factor = 10.
step interval = 5
print banner interval for solution control = 5

End
End

End Solution Control Description

Begin Transfer Presto_to_Aria

175

Copy Volume Nodes from PrestoRegion to AriaRegion
Send Field displacement State New to Solution->Mesh_Displacements State New

End

Begin Presto Region PrestoRegion

use finite element model mesh1
Begin Prescribed Temperature

function = TEMPERATURE
scale factor = 1.0
include all blocks

End

output description
begin Results Output output_presto

Database Name = estack_presto.e
Database Type = exodusII
At Time 0.0, Increment = 1.0E-4
nodal Variables = force_external as f_ext
nodal Variables = force_internal as f_int
nodal Variables = velocity as vel
nodal Variables = acceleration as accl
nodal Variables = displacement as displ
nodal Variables = temperature as temp
element Variables = stress as stress
global Variables = timestep as timestep
global variables = external_energy as ExternalEnergy
global variables = internal_energy as InternalEnergy
global variables = kinetic_energy as KineticEnergy
global variables = momentum as Momentum

End

definition of boundary conditions

begin fixed displacement
node set = nodelist_1
components = x

End

begin fixed displacement
node set = nodelist_2
components = z

End

begin fixed displacement
node set = nodelist_3
components = y

176

End

Begin Prescribed Displacement
Node set = nodelist_4
direction = y_axis
function = delta
scale factor = 1.0

End

End Presto Region PrestoRegion

Begin Aria Region AriaRegion
Use Finite Element Model mesh1
Use Linear Solver Direct_Solver
Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1e-6

EQ Voltage for Voltage on all_blocks using Q1 with DIFF
IC const at block_1 Voltage = 5
BC const dirichlet at nodelist_3 Voltage = 0 # ground
BC const dirichlet at nodelist_4 Voltage = 10 # prescribed

EQ Mesh for Mesh_Displacements on all_blocks using Q1 with XFER

Begin Results Output The_Output
Database Name = estack_aria.e
At step 0, increment = 1
Title Aria-Presto electro-mechanical coupling
Nodal Variables = solution->Voltage as V
Nodal Variables = solution->Mesh_Displacements as Disp

End

End Aria Region AriaRegion

End Procedure The_Procedure

End Sierra Aria_Presto_example

177

7.7. TV REGRESSION TEST

7.7.1. Problem Statement

This is a test of solving a simple one-dimensional thermal diffusion problem with Dirichlet BCs. The
test problem is shown schematically in Figure. Although the problem is one-dimensional we solve the
problem in a three-dimensional setting. Once the diffusion problem has been solved numerically the
temperature result is postprocessed to obtain a comparison with the analytical result and the
distribution of diffusive heat flux. This test input also demonstrates the use tabular function and
Encore function material property specification in Aria.

7.7.2. Input File

#
#
Begin Sierra Slump_Test

Begin Aria Material Bar
Thermal Conductivity = Constant k = 1.0
Electrical Conductivity = Constant sigma = 1.0
heat conduction = fouriers_law
current density = ohms_law

End

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN UMFPACK SOLVER
END

END TPETRA EQUATION SOLVER

Begin Finite Element Model The_Model
Database Name = mesh3d.g
Begin Parameters For Block block_1

Material Bar
End

End

Begin Procedure The_Procedure

begin solution control description
use system main

begin system main

begin sequential mysolveblk
advance Voltage_Region

178

transfer VtoT
advance Temperature_Region

end

end system main

end solution control description

begin transfer VtoT
copy volume nodes from Voltage_Region to Temperature_Region
send field solution->VOLTAGE state old to solution->VOLTAGE state new

end transfer VtoT

Begin Aria Region Voltage_Region

Use Finite Element Model The_Model

Use Linear Solver Direct_Solver

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-6
Nonlinear Relaxation Factor = 1.0

Sideset 1 : x = x_min
Sideset 2 : x = x_max
Sideset 3 : y = y_min
Sideset 4 : y = y_max
Sideset 5 : z = z_min
Sideset 6 : z = z_max
Sideset 10: y and z surfaces

EQ Current For Voltage On Block_1 Using Q1 With Diff
IC Const on block_1 Voltage = 0.0
BC Const Dirichlet at surface_1 Voltage = 10 # fat/low
BC Const Dirichlet at surface_2 Voltage = 0 # Thin/High End

Begin Results Output Label V_Output
Database Name = v.e
At Step 0, Increment is 1
Title TV Test - V Region
Nodal Variables = solution->VOLTAGE as V

End

End

Begin Aria Region Temperature_Region

179

Use Finite Element Model The_Model

Use Linear Solver Direct_Solver

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-6
Nonlinear Relaxation Factor = 1.0

Sideset 1 : x = x_min
Sideset 2 : x = x_max
Sideset 3 : y = y_min
Sideset 4 : y = y_max
Sideset 5 : z = z_min
Sideset 6 : z = z_max
Sideset 10: y and z surfaces

EQ Current For Voltage On Block_1 Using Q1 With xfer

EQ Energy For Temperature On Block_1 Using Q1 With Diff Src
IC Const on block_1 Temperature = 298
BC Flux for Energy on surface_3 = Nat_Conv H = 20 T_ref = 298
BC Flux for Energy on surface_4 = Nat_Conv H = 0.2 T_ref = 298
Source for Energy on Block_1 = Joule_Heating

Begin Results Output Label T_Output
Database Name = tv.e
At Step 0, Increment is 1
Title TV Test - T Region
Nodal Variables = solution->VOLTAGE as V
Nodal Variables = solution->TEMPERATURE as T

End

End

End

End

180

BIBLIOGRAPHY

[1] Gerald W. Wellman. Mapvar: a computer program to transfer solution data between finite element
meshes. SAND 1999-0466, Sandia National Laboratories, Albuquerque, NM, USA, March 1999. 1.1

[2] The SNTools Project. SNTools SourceForge Project. Online. 2.3

181

http://sourceforge-web.sandia.gov/projects/sntools/

This page intentionally left blank.

182

INDEX
A

Abort If Field Not Defined On Copy Transfer Send Or
Receive Object, 110, 111

Abort If Search Object Outside Of Tolerance, 110, 111
Abscissa, 50, 51
Abscissa Offset, 50, 51
Abscissa Scale, 50, 51
Active For Procedure, 35, 37
Adapt, 70, 72, 76, 77, 81, 82, 86, 87, 91, 92
Adapt Mesh, 70, 72, 76, 78, 81, 82, 86, 87, 91, 92
Adaptiveloop, 69, 71, 77, 91
Adaptivity, 71, 76, 91
Advance, 76, 77, 81, 82, 86, 87, 91, 92, 96
Alias, 29, 31
All Fields, 110, 111
Assembly, 30
At Discontinuity Evaluate To, 50, 52

B
barOneWayCoupleDifferentMesh

Statement, 136
barOneWayCoupleFromDifferentMesh

Input, 137
barOneWayCoupleFromFile

Input, 132
Statement, 132

barOneWayCoupleTransfer
Input, 141
Statement, 141

Bending Hourglass, 35, 37
Block, 30

C
Column Titles, 50, 52
Component Separator Character, 29, 31
Compute Indicator On, 70, 72, 76, 78, 81, 83, 86, 88, 91, 93
Converged When, 97, 98
Coordinate System, 29, 32
Copy, 110, 112
Create, 29, 31
Create Element Field, 124, 125
Create Nodal Field, 124, 126

D
Data File, 50, 52
Database Name, 29, 32

Database Type, 30, 32
Debug, 50, 53
Decomposition Method, 30, 33
Definition For Function, 50
Density Scale Factor, 35, 37
Deposit Specific Internal Energy, 35, 38
Differentiate Expression, 50, 53
Distance Function Is Closest Receive Node To Send

Centroid, 110, 112

E
Effective Moduli Model, 35, 38
elemDeathSimpleAria

Input, 156
Statement, 155

Element Numerical Formulation, 35, 38
Energy Iteration Tolerance, 35, 39
estack

Input, 161
Statement, 161

Evaluate Expression, 50, 53
Evaluate From, 50, 54
Event, 70, 73, 76, 78, 81, 83, 86, 88, 91, 93, 96
Exclude Ghosted, 110, 112
Execute Postprocessor Group, 70, 73, 76, 79, 81, 83, 86, 88,

91, 93
Expression Variable:, 50, 54, 55
Expressions, 50

F
Faradays Constant, 46, 47
Field Types, 50, 55
Finite Element Model, 29
Fixed Time, 124, 126
From, 110, 113

G
gapClosure

Input, 146
Statement, 146

Gauss Point Integration Order, 110, 113
Geometric Tolerance, 110, 113
Global Constants, 46
Gravity Vector, 46, 47

H
Heartbeat, 125

183

History Output, 125
Hourglass, 35, 39

I
Ideal Gas Constant, 46, 48
Inactive For Procedure, 35, 39
Include All Blocks, 35, 40
Incremental Number Of Steps, 97, 98
Indicatemarkadapt, 70, 73, 76, 79, 81, 84, 86, 89, 91, 94
Initial Deltat, 97, 98
Initialize, 69, 96
Input_Output Region, 124
Inspect With File, 110, 114
Interpolate, 110, 114
Interpolation Function, 110, 115
Inversion Aversion Exponent, 35, 40
Inversion Aversion Stiffness, 35, 40
Inversion Aversion Transition Jacobian, 35, 41
Involve, 76, 79, 81, 84, 86, 89, 91, 94, 96, 97

K
K-E Turbulence Model Parameter, 46, 48
K-W Turbulence Model Parameter, 47, 48

L
Les Turbulence Model Parameter, 47, 48
Light Speed, 47, 49
Linear Bulk Viscosity, 35, 41
Local Coordinate System, 35, 41

M
Mark, 71, 74, 76, 80, 81, 84, 86, 89, 91, 94
Markadapt, 71, 74, 76, 80, 81, 84, 86, 89, 91, 94
Material, 35, 41
Material =, 36, 42
Max Energy Iterations, 36, 42
Membrane Hourglass, 36, 42
Minimum Effective Dilatational Moduli Ratio, 36, 42
Minimum Effective Shear Moduli Ratio, 36, 43
Model, 36, 43

N
Nodes Outside Region, 110, 115
Nonlinear, 77, 81, 91
Nonlocal Regularization Kmeans Cell Size, 36, 43
Nonlocal Regularization Kmeans Maximum Iterations, 36,

44
Nonlocal Regularization Kmeans Tolerance, 36, 44
Nonlocal Regularization On, 36, 44
Nonlocal Regularization Partitioning Scheme, 36, 45
Number Of Adaptivity Steps, 97, 99
Number Of Steps, 97, 99

O
Offset Time, 124, 127

Omit Assembly, 30, 33
Omit Block, 30, 33
Omit Volume, 30, 34
Ordinate, 50, 55
Ordinate Offset, 50, 56
Ordinate Scale, 50, 56
Output, 71, 74, 76, 80, 81, 85, 86, 90, 91, 95

P
Parameters For, 70, 97
Parameters For Aria Region, 97
Parameters For Block, 30, 35
Parameters For Phase, 30
Parameters For Surface, 30
Parametric Tolerance, 110, 116
Patch Recovery Evaluation, 110, 116
Periodicity Time, 124, 128
Phase, 36, 45
Planck Constant, 47, 49
Postprocess Aria Region, 71, 74, 76, 80, 81, 85, 86, 90, 91,

95

Q
Quadratic Bulk Viscosity, 36, 45

R
Receive Blocks, 111
Reinitialize Transient, 97, 99
Remove Block, 36, 45
Restart Data, 125
Results Output, 125

S
Scale By, 50, 56
Search Coordinate Field, 110, 116
Search Geometric Tolerance, 110, 117
Search Surface Gap Tolerance, 110, 117
Search Type, 110, 117
Section, 36, 46
Select One Receiver For Each Send Object, 110, 118
Select One Unique Receiver For Each Send Object, 110,

118
Send, 110, 119
Send Block, 110, 119
Send Blocks, 111
Send Field, 110, 119
Sequential, 71, 91
Simulation Max Global Iterations, 71, 75
Simulation Start Time, 71, 75
Simulation Termination Time, 71, 75
Solid Mechanics Use Model, 36, 46
Solution Control Description, 69
Start Time, 97, 99, 124, 129
Stefan Boltzmann Constant, 47, 49
Subcycle, 77, 82, 86

184

Suppress Output From Nonlinear Loop, 97, 99
System, 70

T
Termination Time, 97, 100
Time Interpolation Method, 124, 129
Time Scale Factor, 30, 34
Time Step Quantum, 97, 100
Time Step Style, 97, 100
Timestep Adjustment Interval, 125, 130
Toggle Search Warnings, 111, 120
Total Change In Time, 97, 101
Transfer, 71, 75, 76, 81, 82, 85, 86, 90, 91, 95–97, 109, 110
Transient, 71, 76
Transverse Shear Hourglass, 36, 46
Turbulence Model, 47, 49
tv

Input, 178
Statement, 178

Type, 50, 56

U
Use Centroid For Geometric Proximity, 111, 121
Use Finite Element Model, 125, 130
Use Generic Names, 30, 34
Use Initialize, 71, 76
Use Material, 30, 35
Use System, 69, 70

V
Values, 50, 58

X
X Offset, 50, 57
X Scale, 50, 57

Y
Y Offset, 50, 57
Y Scale, 50, 57

185

DISTRIBUTION

Email—Internal

Name Org. Sandia Email Address

Technical Library 01911 sanddocs@sandia.gov

186

This page intentionally left blank.

187

Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.

	Contents
	List of Figures
	1 Introduction
	1.1 Coupled Physics Approaches
	1.2 Sierra Mechanics Coupling
	1.3 Communication of Data (Transfer Services)
	1.4 Solution Control
	1.4.1 Region Initialization
	1.4.2 Solution
	1.4.3 Time Stepping
	1.4.4 Conditional Events

	1.5 Coupling Strategies
	1.6 Coupling with Arpeggio
	1.6.1 Coupling Including Element Death

	1.7 Outline of the Manual

	2 Getting Started
	2.1 Setting The Environment-Users External to Sandia Labs
	2.2 Setting The Environment-Users at Sandia Labs
	2.3 Running Arpeggio
	2.4 Arpeggio Environment Overview
	2.5 Overview of the Input File Structure
	2.5.1 Syntax Conventions for Commands
	2.5.1.1 Keywords
	2.5.1.2 Names
	2.5.1.3 Parameters
	2.5.1.4 Multiple Parameters
	2.5.1.5 Enumerated Parameters
	2.5.1.6 Delimiters
	2.5.1.7 White Space
	2.5.1.8 Indentation
	2.5.1.9 Case Sensitivity
	2.5.1.10 Comments and Line Continuation
	2.5.1.11 Checking the Syntax

	2.6 Fields
	2.7 User Fields

	3 Model Definition
	3.1 Model Overview
	3.2 Finite Element Model
	3.2.1 Alias
	3.2.2 Component Separator Character
	3.2.3 Create
	3.2.4 Coordinate System
	3.2.5 Database Name
	3.2.6 Database Type
	3.2.7 Decomposition Method
	3.2.8 Omit Assembly
	3.2.9 Omit Block
	3.2.10 Omit Volume
	3.2.11 Time Scale Factor
	3.2.12 Use Generic Names
	3.2.13 Use Material

	3.3 Parameters For Block
	3.3.1 Active For Procedure
	3.3.2 Bending Hourglass
	3.3.3 Density Scale Factor
	3.3.4 Deposit Specific Internal Energy
	3.3.5 Effective Moduli Model
	3.3.6 Element Numerical Formulation
	3.3.7 Energy Iteration Tolerance
	3.3.8 Hourglass
	3.3.9 Hourglass
	3.3.10 Inactive For Procedure
	3.3.11 Include All Blocks
	3.3.12 Inversion Aversion Exponent
	3.3.13 Inversion Aversion Stiffness
	3.3.14 Inversion Aversion Transition Jacobian
	3.3.15 Linear Bulk Viscosity
	3.3.16 Local Coordinate System
	3.3.17 Material
	3.3.18 Material =
	3.3.19 Max Energy Iterations
	3.3.20 Membrane Hourglass
	3.3.21 Minimum Effective Dilatational Moduli Ratio
	3.3.22 Minimum Effective Shear Moduli Ratio
	3.3.23 Model
	3.3.24 Nonlocal Regularization Kmeans Cell Size
	3.3.25 Nonlocal Regularization Kmeans Maximum Iterations
	3.3.26 Nonlocal Regularization Kmeans Tolerance
	3.3.27 Nonlocal Regularization On
	3.3.28 Nonlocal Regularization Partitioning Scheme
	3.3.29 Phase
	3.3.30 Quadratic Bulk Viscosity
	3.3.31 Remove Block
	3.3.32 Section
	3.3.33 Solid Mechanics Use Model
	3.3.34 Transverse Shear Hourglass

	3.4 Global Constants
	3.4.1 Faradays Constant
	3.4.2 Gravity Vector
	3.4.3 Ideal Gas Constant
	3.4.4 K-E Turbulence Model Parameter
	3.4.5 K-W Turbulence Model Parameter
	3.4.6 Les Turbulence Model Parameter
	3.4.7 Light Speed
	3.4.8 Planck Constant
	3.4.9 Stefan Boltzmann Constant
	3.4.10 Turbulence Model

	3.5 Definition For Function
	3.5.1 Abscissa
	3.5.2 Abscissa Offset
	3.5.3 Abscissa Scale
	3.5.4 At Discontinuity Evaluate To
	3.5.5 Column Titles
	3.5.6 Data File
	3.5.7 Debug
	3.5.8 Differentiate Expression
	3.5.9 Evaluate Expression
	3.5.10 Evaluate From
	3.5.11 Expression Variable:
	3.5.12 Expression Variable:
	3.5.13 Field Types
	3.5.14 Ordinate
	3.5.15 Ordinate Offset
	3.5.16 Ordinate Scale
	3.5.17 Scale By
	3.5.18 Type
	3.5.19 X Offset
	3.5.20 X Scale
	3.5.21 Y Offset
	3.5.22 Y Scale

	3.6 Values
	3.6.1

	3.7 Restart Overview

	4 Solution Control Reference
	4.1 Overview
	4.1.1 Steady Analysis
	4.1.2 Transient Analysis
	4.1.3 Conditional Operations
	4.1.4 Variable Initialization
	4.1.5 Mixed Physics Usage

	4.2 Solution Control Description
	4.2.1 Use System

	4.3 System
	4.3.1 Adapt
	4.3.2 Adapt Mesh
	4.3.3 Compute Indicator On
	4.3.4 Event
	4.3.5 Execute Postprocessor Group
	4.3.6 Indicatemarkadapt
	4.3.7 Mark
	4.3.8 Markadapt
	4.3.9 Output
	4.3.10 Postprocess Aria Region
	4.3.11 Simulation Max Global Iterations
	4.3.12 Simulation Start Time
	4.3.13 Simulation Termination Time
	4.3.14 Transfer
	4.3.15 Use Initialize

	4.4 Transient
	4.4.1 Adapt
	4.4.2 Advance
	4.4.3 Adapt Mesh
	4.4.4 Compute Indicator On
	4.4.5 Event
	4.4.6 Execute Postprocessor Group
	4.4.7 Indicatemarkadapt
	4.4.8 Involve
	4.4.9 Mark
	4.4.10 Markadapt
	4.4.11 Output
	4.4.12 Postprocess Aria Region
	4.4.13 Transfer

	4.5 Nonlinear
	4.5.1 Adapt
	4.5.2 Advance
	4.5.3 Adapt Mesh
	4.5.4 Compute Indicator On
	4.5.5 Event
	4.5.6 Execute Postprocessor Group
	4.5.7 Indicatemarkadapt
	4.5.8 Involve
	4.5.9 Mark
	4.5.10 Markadapt
	4.5.11 Output
	4.5.12 Postprocess Aria Region
	4.5.13 Transfer

	4.6 Subcycle
	4.6.1 Adapt
	4.6.2 Advance
	4.6.3 Adapt Mesh
	4.6.4 Compute Indicator On
	4.6.5 Event
	4.6.6 Execute Postprocessor Group
	4.6.7 Indicatemarkadapt
	4.6.8 Involve
	4.6.9 Mark
	4.6.10 Markadapt
	4.6.11 Output
	4.6.12 Postprocess Aria Region
	4.6.13 Transfer

	4.7 Sequential
	4.7.1 Adapt
	4.7.2 Advance
	4.7.3 Adapt Mesh
	4.7.4 Compute Indicator On
	4.7.5 Event
	4.7.6 Execute Postprocessor Group
	4.7.7 Indicatemarkadapt
	4.7.8 Involve
	4.7.9 Mark
	4.7.10 Markadapt
	4.7.11 Output
	4.7.12 Postprocess Aria Region
	4.7.13 Transfer

	4.8 Initialize
	4.8.1 Advance
	4.8.2 Event
	4.8.3 Involve
	4.8.4 Transfer

	4.9 Parameters For
	4.9.1 Converged When
	4.9.2 Incremental Number Of Steps
	4.9.3 Initial Deltat
	4.9.4 Number Of Adaptivity Steps
	4.9.5 Number Of Steps
	4.9.6 Reinitialize Transient
	4.9.7 Start Time
	4.9.8 Suppress Output From Nonlinear Loop
	4.9.9 Termination Time
	4.9.10 Time Step Quantum
	4.9.11 Time Step Style
	4.9.12 Total Change In Time

	5 Transfer Reference
	5.1 Overview
	5.2 Transfer
	5.2.1 Abort If Field Not Defined On Copy Transfer Send Or Receive Object
	5.2.2 Abort If Search Object Outside Of Tolerance
	5.2.3 All Fields
	5.2.4 Copy
	5.2.5 Distance Function Is Closest Receive Node To Send Centroid
	5.2.6 Exclude Ghosted
	5.2.7 From
	5.2.8 Gauss Point Integration Order
	5.2.9 Geometric Tolerance
	5.2.10 Inspect With File
	5.2.11 Interpolate
	5.2.12 Interpolation Function
	5.2.13 Nodes Outside Region
	5.2.14 Parametric Tolerance
	5.2.15 Patch Recovery Evaluation
	5.2.16 Search Coordinate Field
	5.2.17 Search Geometric Tolerance
	5.2.18 Search Surface Gap Tolerance
	5.2.19 Search Type
	5.2.20 Select One Receiver For Each Send Object
	5.2.21 Select One Unique Receiver For Each Send Object
	5.2.22 Send
	5.2.23 Send Block
	5.2.24 Send Field
	5.2.25 Toggle Search Warnings
	5.2.26 Use Centroid For Geometric Proximity

	6 Input Output Region Reference
	6.1 Input_Output Region Overview
	6.2 Input_Output Region
	6.2.1 Create Element Field
	6.2.2 Create Nodal Field
	6.2.3 Fixed Time
	6.2.4 Offset Time
	6.2.5 Periodicity Time
	6.2.6 Start Time
	6.2.7 Time Interpolation Method
	6.2.8 Timestep Adjustment Interval
	6.2.9 Use Finite Element Model

	7 Examples
	7.1 One-Way Coupling From File
	7.1.1 Problem Statement
	7.1.2 Input File

	7.2 One-Way Coupling Using Transfer From Different Mesh
	7.2.1 Problem Statement
	7.2.2 Input File

	7.3 One-Way Coupling Using Transfer
	7.3.1 Problem Statement
	7.3.2 Input File

	7.4 Two-Way Coupling With Transfer
	7.4.1 Problem Statement
	7.4.2 Input File

	7.5 Two-Way Coupling Using Transfer of Element Death
	7.5.1 Problem Statement
	7.5.2 Input File

	7.6 estack Regression Test
	7.6.1 Problem Statement
	7.6.2 Input File

	7.7 tv Regression Test
	7.7.1 Problem Statement
	7.7.2 Input File

	Bibliography
	Index
	Distribution

