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SUMMARY

Molten salt reactors are a promising Gen IV design that could potentially supply safe,
efficient, and green energy. However, methods for completing material control and
accounting could still be optimized for effective utilization and support of these systems.
Radiometric data can provide highly valuable insight into the isotopic composition of
molten salts. Optical techniques, such as UV-vis and Raman, can provide elemental and
speciation composition of molten salts. The combination of these two approaches through
data fusion can 1) provide more comprehensive characterization of a given chemical
system and 2) potentially provide a pathway to reduce uncertainty of measurements. This
can be particularly valuable in molten salt reactor (MSR) salt loops where batches are
expected to be highly complex in composition which will produce complex data derived
from any analytical technique. Advanced data analysis will be needed for accurate
interpretation of the data obtained from MSR reactor fuels. Furthermore, tools that can
automate analysis or allow analysis to occur in real-time or near real-time would be game-
changing for on-line monitoring approaches, especially when using multiple techniques
to inform the same system.

Here, the application of chemometric modeling to multiple sets of spectroscopic data is
explored to outline possible routes for highly accurate and automated sensor fusion data
analysis. Chemometric modeling is a form of chemical data science that has been
extensively applied to data streams including optical spectroscopy data and as a proof of
concept for gamma spectroscopic data. It utilizes a multivariate approach to characterize
and quantify chemical targets. Each of these techniques provides different information
that more thoroughly informs accountancy on a single chemical system. This is
demonstrated by building chemometric models based on Raman, UV-vis, and gamma
data of a single chemical system and fusing that sensor data to build a single model. The
resulting models show good accountancy of a target species when sensor data is fused
as compared to models relying on only one instrument source for data. The results are
promising and suggest further investigation into more complex chemical systems which
can include a multi-analyte aqueous system or a proof-of-concept demonstration on a
molten salt sample.

This report meets milestone M3RS-25PN0401042, “Data fusion of optical and gamma
spectroscopy for chemometric analysis”.



Applying Chemometric Modeling to Radiometric Data

May 2025 v
CONTENTS
SUMMARY ..ot v
CONTENTS ..o v
FIGURES ..ot vi
TABLES ... vi
ACRONYMS AND ABBREVIATIONS ....coooiiiiiiicriieeteeiiseess et sessesaesessesaenens Vil
1. INEEOAUCHON ettt ettt ns 1
2. SETUP AND METHODOLOGIES.........cccooviiiiiiiiii s ssssssssssssans 1
2.1, Sample Preparation... ..t 1
2.2, INStIUMENTALION....ciiiiiiiiiicc bbb 2
2.3, Chemometric MOAEINE ......cccciiiiiiiiiiiiiiiiicr e 2
3. RESULTS AND DISCUSSION .....ccccoiiiiiiiiniiiiiiiscisssisisssse s sssssssssssssssssesnns 3
3.1, Discussion Of faW data....ccuieciiciiiice 3
3.2, Chemometric modeling and regression. ... 5
4. CONCLUSION AND RECOMMENDATIONS......c.ccooiiiiininiiniieeniseessiseessiseessisens 8
5. ACKNOWLEDGMENTS........coiiiiiiiiicicsss st sssssssss s 9

6. REFERENCES ...t 10



Applying Chemometric Modeling to Radiometric Data
May 2025 vi

FIGURES

Figure 3-1. Spectra of U at various concentrations in 0.27 M HNOs: (A) Gamma spectra with inset
showing gamma signatures for U-235 and U-238; (B) UV-vis spectra of showing absorbance
signature for UO;*"; and (C) Raman spectra with inset showing Raman signature for UO,*". ............. 4
Figure 3-2. Spectra of Pu*" at various concentrations in 0.5 M HNOs: (A) Gamma spectra with inset
showing gamma signatures for Pu-238, Pu-239, and Pu-240; (B) UV-vis spectra of showing

absorbance signature for Pu*’; and (C) Raman spectra with no Pu*" signatures. ........cocoeeerevrerecereeeneen. 5
Figure 3-3. PCR regression analysis of UO,*": (A) Gamma; (B) UV-vis; (C) Raman........cccecveeeeereeenccn. 6
Figure 3-4. PCR regression analysis of Pu*": (A) Gamma; (B) UV-ViS. .c.oeurrerererrinrereeenreneereeeneeeeeseseneens 6

Figure 3-5. PCR regression analysis of UO,*" and Pu*": (A) overlay of individual models for UO,*%;
(B) fused model for UO;*"; (C) ovetlay of individual models for Pu*"; (D) fused model for Pu*".......7

TABLES

Table 2-1. Concentrations of U sample series and Pu sample series used in in this study. ......ccceeeee.e. 2
Table 3-1. Model statistics including calibration uncertainty (RMSEC) and cross-validation

uncertainty (RMSECV) for models built on gamma, UV-vis, and Raman individually as well as fused
models Of all th1ee dAtASELS. ... 8



May 2025

ACRONYMS AND ABBREVIATIONS

DOE
DSA

FY
MC&A
MCA
MSC
MSR
NIST
PC
PCA
PCR
PNNL
RMSEC
RMSECV
UV-vis

US Department of Energy

digital signal analyzer

fiscal year

material control & accountancy
multi-channel analyzer

multiplicative scatter correction

molten salt reactor

National Institute of Standards and Technology
principal component

principal component analysis

principal component regression

Pacific Northwest National Laboratory
root-mean-square error of calibration
root-mean-square error of cross validation

Ultraviolet-visible

vii



May 2025 1

1. Introduction

Next generation nuclear reactor designs offer safety and performance improvements
compared to the existing and operating reactors. Molten salt reactors (MSRs) are an
example of this, providing improved energy harvesting efficiency and very low likelihood
of uncontrolled criticality. However, MSRs represent a paradigm shift, and new tools will
be needed to support a variety of needs, including meeting material control and
accounting (MC&A) requirements. Monitoring via a wide variety of tools and sensors can
meet these needs, provided tools are advanced to perform within the conditions
anticipated for MSR systems.

Radiometric monitoring, for example is important to safeguarding fuel within an MSR."
Spectroscopic monitoring is also useful to inform MSR chemistry and elemental
composition both at the front and back end of MSR operations.? 3 These and other
analytical techniques proposed for the MC&A of MSRs are anticipated to have significant
signal complexity. This complexity of signal would make it difficult to accurately and
quickly analyze radiometric data using existing approaches to analyzing such data. The
use of advanced chemometric methods has been demonstrated for gamma spectral data
of aqueous reprocessing solutions under aqueous reprocessing conditions**®, as well as
optical spectral data of a molten chloride system.’

This report aims to build on previous work to develop quantitative chemometric modelling
approaches using both gamma and optical spectroscopic techniques. Models were
developed on both uranium and plutonium spectral data and analyzed using principal
component regression (PCR). Comparisons are made between models developed using
a single technique (gamma, ultraviolet-visible (UV-vis), or Raman) and models made
fusing the data from all techniques into a single model. Chemometric modeling has been
extensively applied to a wide range of data types to enable highly accurate data analysis.®
13 However, it has not yet been applied to any large extent to gamma spectroscopy data,
though some machine learning demonstrations have been completed.’ Data fusion
methods can allow for more robust models, where spectral fingerprint information can be
provided by multiple techniques.'® '® These fused models can also be applied to more
systems where a single technique would be insufficient to quantify all analytes of interest.
Another key opportunity to be explored is the ability of data fusion models to lower
uncertainty of quantification through the combination of disparate data streams. This will
be addressed as proof of concept here, where initial positive results suggest further study
in the future could be valuable.

2. SETUP AND METHODOLOGIES

2.1. Sample Preparation

Samples of uranyl nitrate, UO2(NOs3)2 or plutonium (IV) nitrate, Pu(NOs)4 in a nitric acid
matrix were analyzed according to the concentrations listed in Table 2-1. The samples
were prepared from the stock concentration received. Sample dilutions were chosen to
match concentration ranges expected in a typical solvent extraction system. UV-vis and
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Raman samples were collected first. Those same samples were then counted at the
gamma detector.

Table 2-1. Concentrations of U sample series and Pu sample series used in in this study.

[UOZ], M [Pu®], x10° M
in 0.27 M HNO; in 0.5 M HNO;
1.96 32.76
0.98 9.90
0.49 4.95
0.25 2.47
0.12 1.24
0 0.62
0.31
0.15
0.08
0

2.2. Instrumentation

Raman and UV-Vis spectroscopic instruments were acquired from Spectra Solutions Inc.,
and each utilized a high throughput volume phase holographic grating spectrograph with
a thermoelectrically cooled two-dimensional charge-coupled device detector. The UV-vis
instrument had a functional wavelength range of approximately 450 — 850 nm. The
Raman instrument utilized a ~200 mW 532 nm excitation laser with a fiber optic Raman
probe with a backscattering (180°) optical design. The wavenumber axis was calibrated
using naphthalene and the resolution was <5 cm'. The wavenumber range was 140 —
4500 cm™.

Gamma spectroscopy measurements were systematically conducted using low-energy
germanium detectors (LEGes) with thin beryllium windows, optimized for performance in
the energy range of 46 to 1000 keV. The Lynx digital signal analyzer (DSA) module from
Mirion Technologies (Meriden, CT, USA) was employed to process the signals from the
detectors. The Lynx module utilizes an ultra-fast Analog-to-Digital converter to digitize the
signals, which are then stored in an integrated multi-channel analyzer (MCA). The
Genie2000 Spectroscopy Software Suite, developed by Mirion Technologies, was used
to perform the analysis, including isotopic identification and quantification. The detectors
were energy and efficiency calibrated using standards traceable to the National Institute
of Standards and Technology (NIST).

2.3. Chemometric Modeling

Gamma and optical spectral processing were performed using MATLAB Version 9.13
(R2022b),"” and chemometric modeling was performed using PLS Toolbox Version 9.2.1
software from Eigenvector Research Inc.'® PCR' models were developed for the
quantification of U and Pu using gamma, UV-vis, and Raman spectral data. Details on
the use of chemometric modeling for spectral data are discussed elsewhere.? The gamma
data was first normalized by dividing the counts at each energy by the total number of
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counts in the spectrum. This data was then preprocessed by applying a multiplicative
scatter correction (MSC) following by mean centering the data. The UV-vis data was
preprocessed by applying a first derivative (second-order polynomial with a 15-point filter
width) followed by mean centering. The Raman data was preprocessed by first applying
a first order baseline correction to the water band (2500 — 4000 cm-") followed by a
normalization to the area under the water band to account for fluctuations in the laser
power over time. A first derivative (second-order polynomial with a 15-point filter width)
was then applied followed by mean centering. 3 principal components (PCs) were used
for the U models and 4 PCs were used for the Pu models. For fused models, spectral
data from gamma, UV-vis, and Raman were individually preprocessed and then fused
into a single dataset using the Multiblock Model tool in PLS Toolbox. A block variance
scaling was applied to each set of data to account for differences in signal intensity
between techniques. A “leave one out” cross validation method was utilized where one
sample was successively removed from the model and then the remaining samples were
used to predict the concentration of the removed sample. This was repeated until every
sample was left out of the model. This was used as a validation of model performance.
This cross validation method was employed due to the small dataset.

3. RESULTS AND DISCUSSION

3.1. Discussion of raw data

The U spectral data collected to build the regression models below are shown in Figure
3-1. The spectra were collected as a series of 2-fold dilutions from 1.96 M to 0.1225 M
plus a 0 M as a blank. Figure 3-1A shows the gamma spectra of these samples, with the
inset showing characteristic peaks that include signatures at 92.78 and 186.20 keV, which
are consistent with U-238%° and U-235,2" respectively. The UV-vis data in Figure 3-1B
shows an optical fingerprint at ~485 nm and below?2. The Raman data in Figure 3-1C
shows fingerprints at ~870 cm™ and ~1050 cm™* for UO22* 22 and NO3",%3 respectively. All
of these unique signatures showed the anticipated decrease in spectral response as the
concentrations were diluted 2-fold.
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Figure 3-1. Spectra of U at various concentrations in 0.27 M HNOs: (A) Gamma spectra with inset
showing gamma signatures for U-235 and U-238; (B) UV-vis spectra of showing absorbance
signature for UO2?*; and (C) Raman spectra with inset showing Raman signature for UO2?*.

The Pu spectra showed similar trends based on dilution as shown in Figure 3-2. The
gamma spectrum in Figure 3-2A includes characteristic peaks at 43.5 keV for Pu-238,
45.23 keV for Pu-240, and 51.63 keV for Pu-239.2* The absorbance spectra show Pu**
peaks at around 480 nm, 550 nm, 660 nm, and 805 nm (Figure 3-2B).?°> Pu** does not
have any Raman active signatures (Figure 3-2C) because Raman is a vibrational
technique and captures molecular species. Therefore, an individual Raman PCR model
was not built.
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Figure 3-2. Spectra of Pu** at various concentrations in 0.5 M HNOs: (A) Gamma spectra with
inset showing gamma signatures for Pu-238, Pu-239, and Pu-240; (B) UV-vis spectra of showing
absorbance signature for Pu**; and (C) Raman spectra with no Pu** signatures.

3.2. Chemometric modeling and regression

Individual PCR models were built for the quantification of UO2?* using gamma, UV-vis,
and Raman techniques. The results are shown in Figure 3-3. These parity plots show the
known UO2%* concentration vs. the model measured UO2?* concentration. The 1:1 slope
of the regression indicates an accurate model. The model statistics are provided in Table
3-1. These include the root-mean-square error of calibration (RMSEC) which provides the
uncertainty in the calibration data as well as the root-mean-square error of cross
validation (RMSECV) which is the uncertainty of prediction for data left out of the model.
The RMSECYV values were larger than the RMSEC, which is expected when a sample is
removed from the dataset and the model is built from the remaining samples. From Figure
3-3 and the RMSE values, it can be seen that Raman was the most accurate technique
for the quantification of UO2?* in this concentration range and gamma was the least
accurate of the three techniques.
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Figure 3-3. PCR regression analysis of UO2?*: (A) Gamma; (B) UV-vis; (C) Raman.

PCR models were also developed for the quantification of Pu** and the results are shown
in Figure 3-4 and Table 3-1. In this case, UV-vis was the best technique for the
quantification of Pu** shown by the lower RMSE values. For Pu**, Raman would be the
worst technique as Pu** is Raman inactive and therefore, a model was not built. The
RMSECYV values are again higher than the RMSEC due to the relatively small sample
set. The comparison of chemometric models of these two radionuclides is a good
example of the importance of using multiple techniques simultaneously, in order to

provide quantification of multiple species of interest, where a single technique alone
would be insufficient.
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A comparison was then made between models built on individual techniques and fused
data. Figure 3-5 shows a comparison of the model results for each individual technique
(Figure 3-5A and Figure 3-5C) and the fused models with data from the three techniques
combined into a single model for UO2?* (Figure 3-5B) and Pu** (Figure 3-5D). The model
statistics for the fused models are also provided in Table 3-1. In the case of UO2?*, the
fused model RMSEs were similar to the Raman dataset, indicating again that Raman is
the preferred technique for the quantification of uranyl in the concentration range studied
here. This may not be the case at different concentration ranges. The Pu fused model
performed better than any individual model and was similar to the UV-vis model. This
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work shows that combining data from multiple sources can improve the accuracy of

quantification. But even in cases where uncertainty is

not improved, the fused models

performed similar to the best individual technique, meaning that accuracy is not lost. Plus,
data fusion techniques can provide a simplified and more automated analysis and can be
applied to more complex analyte streams where a single technique cannot be used for

every analyte of interest.
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Table 3-1. Model statistics including calibration uncertainty (RMSEC) and cross-validation
uncertainty (RMSECV) for models built on gamma, UV-vis, and Raman individually as well as
fused models of all three datasets.

Pu
Technique RMSEC, M RMSECV, M RMSEC, x10°M | RMSECV, x10-M
Gamma 0.048 0.19 1.4 9.1
UV-vis 0.017 0.33 0.15 3.7
Raman 0.0022 0.016 N/A N/A
Fused 0.0076 0.097 0.14 3.6

4. CONCLUSION AND RECOMMENDATIONS

In this work, it was demonstrated that data science tools such as chemometric modeling
can be used in concert with data fusion, or the combination of data from multiple sensors,
to build highly accurate and precise models for quantification of uranium and plutonium.
In general, observed trends suggest models built from fused data can exhibit lower
uncertainties than models built from data collected on a single sensor modality. This was
demonstrated on uranyl and Pu(lV), where a series of samples were measured on
Raman, UV-is, and gamma spectroscopy. In the uranyl system the fused model
outperformed the UV-vis and gamma models in terms of lower uncertainties. Interestingly,
the Raman model did display a lower uncertainty than the fused model, but this is likely
due to the very strong Raman fingerprint displayed by uranyl. Similarly, for the Pu(IV)
system, UV-vis and fused models showed relatively similar uncertainties. It should be
noted this same performance may not be observed for other chemical targets or continue
to persist in more complex mixed systems. In addition to potentially reducing error in
quantification, the data fusion approach also provides the opportunity for multiple systems
or analytes to be analyzed simultaneously, also allowing for a more complete picture of
the MSR behavior and accounting.

Each analytical technique modeled in this work provides benefits for MC&A of MSR
systems. It should be noted that the applicability of chemometric modeling is not limited
to only these techniques. There is potential to incorporate other techniques — such as
electrochemistry or other spectroscopies — into fused models to further inform the MC&A
of MSRs and other systems while reducing uncertainty of quantification. Additionally, this
fused model approach to accuratelyaccount for the species in these aqueous samples
using multiple analytical techniques sets the groundwork for integrating into more
complex chemical systems, such as the combined data fusion modelling on a molten salt
sample.
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