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SUMMARY  
Molten salt reactors are a promising Gen IV design that could potentially supply safe, 
efficient, and green energy. However, methods for completing material control and 
accounting could still be optimized for effective utilization and support of these systems. 
Radiometric data can provide highly valuable insight into the isotopic composition of 
molten salts. Optical techniques, such as UV-vis and Raman, can provide elemental and 
speciation composition of molten salts. The combination of these two approaches through 
data fusion can 1) provide more comprehensive characterization of a given chemical 
system and 2) potentially provide a pathway to reduce uncertainty of measurements. This 
can be particularly valuable in molten salt reactor (MSR) salt loops where batches are 
expected to be highly complex in composition which will produce complex data derived 
from any analytical technique. Advanced data analysis will be needed for accurate 
interpretation of the data obtained from MSR reactor fuels. Furthermore, tools that can 
automate analysis or allow analysis to occur in real-time or near real-time would be game-
changing for on-line monitoring approaches, especially when using multiple techniques 
to inform the same system.  

Here, the application of chemometric modeling to multiple sets of spectroscopic data is 
explored to outline possible routes for highly accurate and automated sensor fusion data 
analysis. Chemometric modeling is a form of chemical data science that has been 
extensively applied to data streams including optical spectroscopy data and as a proof of 
concept for gamma spectroscopic data. It utilizes a multivariate approach to characterize 
and quantify chemical targets. Each of these techniques provides different information 
that more thoroughly informs accountancy on a single chemical system. This is 
demonstrated by building chemometric models based on Raman, UV-vis, and gamma 
data of a single chemical system and fusing that sensor data to build a single model. The 
resulting models show good accountancy of a target species when sensor data is fused 
as compared to models relying on only one instrument source for data. The results are 
promising and suggest further investigation into more complex chemical systems which 
can include a multi-analyte aqueous system or a proof-of-concept demonstration on a 
molten salt sample.  

This report meets milestone M3RS-25PN0401042, “Data fusion of optical and gamma 
spectroscopy for chemometric analysis”.  
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1. Introduction  
Next generation nuclear reactor designs offer safety and performance improvements 
compared to the existing and operating reactors. Molten salt reactors (MSRs) are an 
example of this, providing improved energy harvesting efficiency and very low likelihood 
of uncontrolled criticality. However, MSRs represent a paradigm shift, and new tools will 
be needed to support a variety of needs, including meeting material control and 
accounting (MC&A) requirements. Monitoring via a wide variety of tools and sensors can 
meet these needs, provided tools are advanced to perform within the conditions 
anticipated for MSR systems.  

Radiometric monitoring, for example is important to safeguarding fuel within an MSR.1 
Spectroscopic monitoring is also useful to inform MSR chemistry and elemental 
composition both at the front and back end of MSR operations.2, 3 These and other 
analytical techniques proposed for the MC&A of MSRs are anticipated to have significant 
signal complexity. This complexity of signal would make it difficult to accurately and 
quickly analyze radiometric data using existing approaches to analyzing such data. The 
use of advanced chemometric methods has been demonstrated for gamma spectral data 
of aqueous reprocessing solutions under aqueous reprocessing conditions4-6, as well as 
optical spectral data of a molten chloride system.7 

This report aims to build on previous work to develop quantitative chemometric modelling 
approaches using both gamma and optical spectroscopic techniques. Models were 
developed on both uranium and plutonium spectral data and analyzed using principal 
component regression (PCR). Comparisons are made between models developed using 
a single technique (gamma, ultraviolet-visible (UV-vis), or Raman) and models made 
fusing the data from all techniques into a single model. Chemometric modeling has been 
extensively applied to a wide range of data types to enable highly accurate data analysis.8-

13 However, it has not yet been applied to any large extent to gamma spectroscopy data, 
though some machine learning demonstrations have been completed.14 Data fusion 
methods can allow for more robust models, where spectral fingerprint information can be 
provided by multiple techniques.15, 16 These fused models can also be applied to more 
systems where a single technique would be insufficient to quantify all analytes of interest. 
Another key opportunity to be explored is the ability of data fusion models to lower 
uncertainty of quantification through the combination of disparate data streams. This will 
be addressed as proof of concept here, where initial positive results suggest further study 
in the future could be valuable.  

2. SETUP AND METHODOLOGIES  
2.1. Sample Preparation 

Samples of uranyl nitrate, UO2(NO3)2 or plutonium (IV) nitrate, Pu(NO3)4 in a nitric acid 
matrix were analyzed according to the concentrations listed in Table 2-1. The samples 
were prepared from the stock concentration received. Sample dilutions were chosen to 
match concentration ranges expected in a typical solvent extraction system. UV-vis and 
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Raman samples were collected first. Those same samples were then counted at the 
gamma detector.  

Table 2-1. Concentrations of U sample series and Pu sample series used in  in this study.  

[UO2
2+], M  

in 0.27 M HNO3 
[Pu4+], ×10-3 M  
in 0.5 M HNO3 

1.96 32.76 
0.98 9.90 
0.49 4.95 
0.25 2.47 
0.12 1.24 

0 0.62 
  0.31 
  0.15 
  0.08 
  0 

2.2. Instrumentation  

Raman and UV-Vis spectroscopic instruments were acquired from Spectra Solutions Inc., 
and each utilized a high throughput volume phase holographic grating spectrograph with 
a thermoelectrically cooled two-dimensional charge-coupled device detector. The UV-vis 
instrument had a functional wavelength range of approximately 450 – 850 nm. The 
Raman instrument utilized a ~200 mW 532 nm excitation laser with a fiber optic Raman 
probe with a backscattering (180°) optical design. The wavenumber axis was calibrated 
using naphthalene and the resolution was <5 cm-1. The wavenumber range was 140 – 
4500 cm-1.   

Gamma spectroscopy measurements were systematically conducted using low-energy 
germanium detectors (LEGes) with thin beryllium windows, optimized for performance in 
the energy range of 46 to 1000 keV. The Lynx digital signal analyzer (DSA) module from 
Mirion Technologies (Meriden, CT, USA) was employed to process the signals from the 
detectors. The Lynx module utilizes an ultra-fast Analog-to-Digital converter to digitize the 
signals, which are then stored in an integrated multi-channel analyzer (MCA). The 
Genie2000 Spectroscopy Software Suite, developed by Mirion Technologies, was used 
to perform the analysis, including isotopic identification and quantification. The detectors 
were energy and efficiency calibrated using standards traceable to the National Institute 
of Standards and Technology (NIST). 

2.3. Chemometric Modeling  

Gamma and optical spectral processing were performed using MATLAB Version 9.13 
(R2022b),17 and chemometric modeling was performed using PLS Toolbox Version 9.2.1 
software from Eigenvector Research Inc.18 PCR19 models were developed for the 
quantification of U and Pu using gamma, UV-vis, and Raman spectral data. Details on 
the use of chemometric modeling for spectral data are discussed elsewhere.8 The gamma 
data was first normalized by dividing the counts at each energy by the total number of 
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counts in the spectrum. This data was then preprocessed by applying a multiplicative 
scatter correction (MSC) following by mean centering the data. The UV-vis data was 
preprocessed by applying a first derivative (second-order polynomial with a 15-point filter 
width) followed by mean centering. The Raman data was preprocessed by first applying 
a first order baseline correction to the water band (2500 – 4000 cm-1) followed by a 
normalization to the area under the water band to account for fluctuations in the laser 
power over time. A first derivative (second-order polynomial with a 15-point filter width) 
was then applied followed by mean centering. 3 principal components (PCs) were used 
for the U models and 4 PCs were used for the Pu models. For fused models, spectral 
data from gamma, UV-vis, and Raman were individually preprocessed and then fused 
into a single dataset using the Multiblock Model tool in PLS Toolbox. A block variance 
scaling was applied to each set of data to account for differences in signal intensity 
between techniques. A “leave one out” cross validation method was utilized where one 
sample was successively removed from the model and then the remaining samples were 
used to predict the concentration of the removed sample. This was repeated until every 
sample was left out of the model. This was used as a validation of model performance. 
This cross validation method was employed due to the small dataset.  

3. RESULTS AND DISCUSSION  
3.1. Discussion of raw data  

The U spectral data collected to build the regression models below are shown in Figure 
3-1. The spectra were collected as a series of 2-fold dilutions from 1.96 M to 0.1225 M 
plus a 0 M as a blank. Figure 3-1A shows the gamma spectra of these samples, with the 
inset showing characteristic peaks that include signatures at 92.78 and 186.20 keV, which 
are consistent with U-23820 and U-235,21 respectively. The UV-vis data in Figure 3-1B 
shows an optical fingerprint at ~485 nm and below22. The Raman data in Figure 3-1C 
shows fingerprints at  ~870 cm-1 and ~1050 cm-1 for UO22+ 22 and NO3-,23 respectively. All 
of these unique signatures showed the anticipated decrease in spectral response as the 
concentrations were diluted 2-fold. 
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Figure 3-1. Spectra of U at various concentrations in 0.27 M HNO3: (A) Gamma spectra with inset 
showing gamma signatures for U-235 and U-238; (B) UV-vis spectra of showing absorbance 
signature for UO22+; and (C) Raman spectra with inset showing Raman signature for UO22+.  

The Pu spectra showed similar trends based on dilution as shown in Figure 3-2. The 
gamma spectrum in Figure 3-2A includes characteristic peaks at 43.5 keV for Pu-238, 
45.23 keV for Pu-240, and 51.63 keV for Pu-239.24 The absorbance spectra show Pu4+ 
peaks at around 480 nm, 550 nm, 660 nm, and 805 nm (Figure 3-2B).25 Pu4+ does not 
have any Raman active signatures (Figure 3-2C) because Raman is a vibrational 
technique and captures molecular species. Therefore, an individual Raman PCR model 
was not built.  
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Figure 3-2. Spectra of Pu4+ at various concentrations in 0.5 M HNO3: (A) Gamma spectra with 
inset showing gamma signatures for Pu-238, Pu-239, and Pu-240; (B) UV-vis spectra of showing 
absorbance signature for Pu4+; and (C) Raman spectra with no Pu4+ signatures. 

3.2. Chemometric modeling and regression  

Individual PCR models were built for the quantification of UO22+ using gamma, UV-vis, 
and Raman techniques. The results are shown in Figure 3-3. These parity plots show the 
known UO22+ concentration vs. the model measured UO22+ concentration. The 1:1 slope 
of the regression indicates an accurate model. The model statistics are provided in Table 
3-1. These include the root-mean-square error of calibration (RMSEC) which provides the 
uncertainty in the calibration data as well as the root-mean-square error of cross 
validation (RMSECV) which is the uncertainty of prediction for data left out of the model. 
The RMSECV values were larger than the RMSEC, which is expected when a sample is 
removed from the dataset and the model is built from the remaining samples. From Figure 
3-3 and the RMSE values, it can be seen that Raman was the most accurate technique 
for the quantification of UO22+ in this concentration range and gamma was the least 
accurate of the three techniques.  
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Figure 3-3. PCR regression analysis of UO22+: (A) Gamma; (B) UV-vis; (C) Raman.  

PCR models were also developed for the quantification of Pu4+ and the results are shown 
in Figure 3-4 and Table 3-1. In this case, UV-vis was the best technique for the 
quantification of Pu4+ shown by the lower RMSE values. For Pu4+, Raman would be the 
worst technique as Pu4+ is Raman inactive and therefore, a model was not built. The 
RMSECV values are again higher than the RMSEC due to the relatively small sample 
set. The comparison of chemometric models of these two radionuclides is a good 
example of the importance of using multiple techniques simultaneously, in order to 
provide quantification of multiple species of interest, where a single technique alone 
would be insufficient.  
 

 

Figure 3-4. PCR regression analysis of Pu4+: (A) Gamma; (B) UV-vis.  

A comparison was then made between models built on individual techniques and fused 
data. Figure 3-5 shows a comparison of the model results for each individual technique 
(Figure 3-5A and Figure 3-5C) and the fused models with data from the three techniques 
combined into a single model for UO22+ (Figure 3-5B) and Pu4+ (Figure 3-5D). The model 
statistics for the fused models are also provided in Table 3-1. In the case of UO22+, the 
fused model RMSEs were similar to the Raman dataset, indicating again that Raman is 
the preferred technique for the quantification of uranyl in the concentration range studied 
here. This may not be the case at different concentration ranges. The Pu fused model 
performed better than any individual model and was similar to the UV-vis model. This 
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work shows that combining data from multiple sources can improve the accuracy of 
quantification. But even in cases where uncertainty is not improved, the fused models 
performed similar to the best individual technique, meaning that accuracy is not lost. Plus, 
data fusion techniques can provide a simplified and more automated analysis and can be 
applied to more complex analyte streams where a single technique cannot be used for 
every analyte of interest.  
 

 

Figure 3-5. PCR regression analysis of UO22+ and Pu4+: (A) overlay of individual models for UO22+; 
(B) fused model for UO22+; (C) overlay of individual models for Pu4+; (D) fused model for Pu4+.  
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Table 3-1. Model statistics including calibration uncertainty (RMSEC) and cross-validation 
uncertainty (RMSECV) for models built on gamma, UV-vis, and Raman individually as well as 
fused models of all three datasets.  
 

 U Pu 

Technique RMSEC, M RMSECV, M RMSEC, ×10-3M RMSECV, ×10-3M 

Gamma 0.048 0.19 1.4 9.1 

UV-vis 0.017 0.33 0.15 3.7 

Raman 0.0022 0.016 N/A N/A 

Fused 0.0076 0.097 0.14 3.6 

4. CONCLUSION AND RECOMMENDATIONS  
In this work, it was demonstrated that data science tools such as chemometric modeling 
can be used in concert with data fusion, or the combination of data from multiple sensors, 
to build highly accurate and precise models for quantification of uranium and plutonium. 
In general, observed trends suggest models built from fused data can exhibit lower 
uncertainties than models built from data collected on a single sensor modality. This was 
demonstrated on uranyl and Pu(IV), where a series of samples were measured on 
Raman, UV-is, and gamma spectroscopy. In the uranyl system the fused model 
outperformed the UV-vis and gamma models in terms of lower uncertainties. Interestingly, 
the Raman model did display a lower uncertainty than the fused model, but this is likely 
due to the very strong Raman fingerprint displayed by uranyl. Similarly, for the Pu(IV) 
system, UV-vis and fused models showed relatively similar uncertainties. It should be 
noted this same performance may not be observed for other chemical targets or continue 
to persist in more complex mixed systems. In addition to potentially reducing error in 
quantification, the data fusion approach also provides the opportunity for multiple systems 
or analytes to be analyzed simultaneously, also allowing for a more complete picture of 
the MSR behavior and accounting.  

Each analytical technique modeled in this work provides benefits for MC&A of MSR 
systems. It should be noted that the applicability of chemometric modeling is not limited 
to only these techniques. There is potential to incorporate other techniques – such as 
electrochemistry or other spectroscopies – into fused models to further inform the MC&A 
of MSRs and other systems while reducing uncertainty of quantification. Additionally, this 
fused model approach to accuratelyaccount for the species in these aqueous samples 
using multiple analytical techniques sets the groundwork for integrating into more 
complex chemical systems, such as the combined data fusion modelling on a molten salt 
sample. 
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