
ARCADE
Analysis Methods
& Validation Pathway

Prepared for
US Department of Energy

Andrew S. Hahn, Adam Beauchaine, Titus Gray,
Noel Belcourt, Fraser Dougall
Sandia National Laboratories

September 2025
SAND2025-12807R

DISCLAIMER
This information was prepared as an account of work sponsored by
an agency of the U.S. Government. Neither the U.S. Government nor
any agency thereof, nor any of their employees, makes any warranty,
expressed or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness, of any information,
apparatus, product, or process disclosed, or represents that its
use would not infringe privately owned rights. References herein
to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by
the U.S. Government or any agency thereof. The Views and opinions
of authors expressed herein do not necessarily state or reflect those
of the U.S. Government or any agency thereof.

Prepared by Sandia National Laboratories, Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology &

Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department

of energy’s National Nuclear Security Administration under contract DE-NA0003525.

2

ABSTRACT
The Advanced Reactor Cyber Analysis and Development Environment (ARCADE) provides an
automated analysis system which supports risk-informed performance based (RIPB) evaluations of
nuclear control systems. Every possible cyber threat which could lead to consequence is identified
by simulating the unsafe control action sequences which transform digital harm into physical
harm. Eliminating the simulation of complex digital cyber attack chains cuts out unnecessary
computational overhead and focuses directly on the physics of cyber-physical attacks. This focus
enables designers to make informed decisions which can entirely eliminate categories of cyber
threats against advanced reactors through the physical nature of the plant design.
This narrowing of cyber threat against nuclear power plants through the physics of the system
is intended to make any remaining threat management and cost efficient. This is the goal of
the Tiered Cyber Analysis (TCA) outlined in NRC Draft Regulation Guide (RG) 5.96, which
provides a RIPB cybersecurity approach for new reactors. ARCADE has been custom developed
to meet the demands of the rigorous analysis required in Tier 1 of the TCA, which forms the
foundation of the TCA process. Currently, ARCADE is still under development, but has made
significant leaps in capability. A pilot analysis on the opensource Asherah simulator was performed
which demonstrated key functionality goals. The next stage of ARCADE development involves
improvements to the applications which support the analysis system, and enabling the analysis
system to utilize the full suite of unsafe control action simulations. Since the analysis method’s
core functions are complete, validation of the analysis method will be started concurrent to the next
development stages.
The automated analysis ARCADE will provide can radically change the cybersecurity design
process for advanced reactors, reducing the cost of security implementation while enhancing cyber
resilience. The pathway for ARCADE’s development to this goal has become much clearer. The
majority of technical hurdles have been cleared, and the remaining development needs have been
solidified. ARCADE is now capable of assisting the advanced reactor design process and directly
support advanced reactor industry RIPB practices.

3

This page intentionally left blank.

4

ACKNOWLEDGEMENT

The authors would like to acknowledge the DOE Office of Nuclear Energy Advanced Reactor
Safeguards and Security (ARSS) program for funding this critical work providing the nuclear
industry secure-by-design tools.

5

This page intentionally left blank.

6

CONTENTS

Acknowledgement . 5

Acronyms & Definitions . 13

1. Introduction . 15
1.1. ARCADE Pilot Analysis . 16

2. Analysis Method . 21
2.1. Analysis Concept . 21
2.2. Technical Implementation . 22
2.3. Initial Asherah Evaluation . 25

3. Validation Pathway . 27
3.1. Problem Formalization . 27
3.2. Heuristic Search Approach . 28
3.3. Completeness Evaluation . 30

4. Development Pathway . 33
4.1. Cyber-Physical Analysis . 33

4.1.1. Simulation Management . 34
4.1.2. Cyber-Attack Simulator . 35
4.1.3. Engineering Simulator Plugins . 36

4.2. Equipment Test Environment, TANGO, & PROMISE . 37

5. Conclusion . 41

References . 43

Appendices . 44

A. ARCADE Technical Information . 45
A.1. ARCADE Input File . 45
A.2. Accident Conditions . 46
A.3. Control Surfaces . 47
A.4. IO Broker . 47
A.5. Data Analyzer . 47

7

This page intentionally left blank.

8

LIST OF FIGURES

Figure 1-1. ARCADE Overview . 15
Figure 1-2. ARCADE Asherah analysis results, all failure modes. 17
Figure 1-3. ARCADE Asherah analysis results, reactor failure modes only. 18
Figure 1-4. ARCADE Asherah analysis results, condenser failure modes only. 19

Figure 2-1. Flowchart of the ARCADE Analysis Process . 22

Figure 3-1. Search vectors with respect to the output observations in ARCADE 28
Figure 3-2. Identified vulnerable input registers after UCA actuation with respect to the

simulated turbine component, color coded by impact severity. 31

Figure 4-1. ARCADE system layers . 33
Figure 4-2. A high level overview of UCA simulation within ARCADE 35
Figure 4-3. High level diagram of the Sandia Equipment Test Environment (ETE). 38
Figure 4-4. PROMISE student environment with 1st attack example. 39

9

This page intentionally left blank.

10

LIST OF TABLES

Table 2-1. Asherah UCA Evaluations . 25

Table A-1. Description of Accident Condition Variables . 47

11

This page intentionally left blank.

12

ACRONYMS & DEFINITIONS

AR Advanced Reactor

ARCADE Advanced Reactor Cyber Analysis and Development Environment

CDA Critical Digital Asset

DCS Distributed Control System

DCSA Defensive Cyber Security Architecture

ETE Equipment Test Environment

HiL Hardware in the Loop

ICS Industrial Control System

I/O Input/Output

JSON JavaScript Object Notation

NPP Nuclear Power Plant

NRC Nuclear Regulatory Commission

OT Operational Technology

PLC Programmable Logic Controller

PROMISE Power Reactors on Minimega In Service of Education

RG Regulation Guide

RIPB Risk-Informed Performance Based

SeBD Secure By Design

SLDA System-Level Design Analysis

STAMP System-Theoretic Accident Model and Processes

STPA Systems Theoretic Process Analysis

TANGO Twinned Analysis of Nuclear Reactor and Grid Operations

TCA Tiered Cyber Analysis

UCA Unsafe Control Action

13

This page intentionally left blank.

14

1. INTRODUCTION

As cybersecurity threats against critical infrastructure increase, it is imperative that nuclear power
plants are designed to be inherently resilient to cyber attacks. This robustness cannot come at the
expense of greater construction or operation costs as this risks the economic feasibility of nuclear
power. Ideally, designing in this cyber resilience would not create additional engineering costs.
Through conventional cybersecurity design methods these requirements are impossible. Utilizing
the Advanced Reactor Cyber Analysis and Development Environment (ARCADE) to perform a
Tiered Cyber Analysis (TCA) can produce risk-informed, performance-based (RIPB) cyber secure
designs that are economically sound. The previous publication on ARCADE, [4] details how
ARCADE can be used to dramatically increase cyber resilience while reducing cybersecurity
implementation costs in construction and for the lifetime of a nuclear power plant via the TCA
method.

Figure 1-1. ARCADE Overview

ARCADE is still being developed, but has recently made significant progress towards enabling a
full TCA Tier 1 analysis, which has been out of reach with conventional analysis tools. Utilizing
the Asherah nuclear power plant (NPP) simulator as an test subject [7], a limited Tier 1 analysis was
performed which will be discussed in section 1.1. This represents a significant leap in ARCADE’s
capabilities and opens the door to begin limited fault analysis on real control system designs. To

15

complete a full Tier 1 analysis ARCADE still needs to complete some development steps and
validate its analysis method. This report will detail how ARCADE is to perform its analysis,
the pathway to validate the analysis method, and finally what components in ARCADE must be
developed to become production ready.

1.1. ARCADE Pilot Analysis

Asherah was selected as a test subject because its data is non-sensitive and can be readily published.
Through it is a PWR simulation, it is representative of the same simulators used in the industry
to design advanced reactor control systems. The analysis presented can be done on any advanced
reactor engineering simulator, but for demonstration purposes this opensource simulation was
necessary.

First, Asherah NPP simulator was integrated with the Data Broker and encapsulated in a virtual
machine which could be managed by the simulation management system and interfaced with by
the cyber attack simulator (Figure 1-1). An analysis system configuration file was developed which
defined the mechanical limits of each actuator and the safety boundaries of the NPP. A small 32 core
server performed simulations for approximately 48 hours to process all the 2 UCA combinations
for the "Provided Not Needed" U1 category. A snippet of the raw results out of ARCADE are
shown below.

1 combined attacks (46, 69) SG2_Press value 14456702.180489(Pa) >= safe upper
limit 8974000.0(Pa) occurred at 768.0(s) (CE_Pump1OnOffCmd U1-U) (
TB_BypassValveCmd U1-U)

2 combined attacks (46, 69) CD_Press value 7768.263704(Pa) >= safe upper limit
6760.0(Pa) occurred at 720.3(s) (CE_Pump1OnOffCmd U1-U) (TB_BypassValveCmd
U1-U)

3 combined attacks (46, 69) SG1_Level value 8.198232(m) <= safe lower limit
12.0(m) occurred at 823.6(s) (CE_Pump1OnOffCmd U1-U) (TB_BypassValveCmd U1
-U)

4 combined attacks (46, 69) RX_Tavg value 680.2422730000001(K) >= safe upper
limit 580.0(K) occurred at 717.0(s) (CE_Pump1OnOffCmd U1-U) (
TB_BypassValveCmd U1-U)

5 combined attacks (46, 70) CD_Level value 1.606579(m) >= safe upper limit 1.5(m
) occurred at 765.7(s) (CE_Pump1OnOffCmd U1-U) (INT_RXPowerSetpoint U1-U)

6 combined attacks (46, 70) RX_DT value 76.91692(K) >= safe upper limit 40.0(K)
occurred at 709.2(s) (CE_Pump1OnOffCmd U1-U) (INT_RXPowerSetpoint U1-U)

Listing 1.1 ARCADE Raw Output

These results can be graphically represented by tallying how many times a control surface was
part of a UCA sequence which resulted in a consequence. Figure 1-2 shows a heat map of all
the control surfaces in Asherah, with the coincidence of each included in a UCA sequence with
consequences. It becomes apparent which sections of the plant are most significant from a safety
perspective. These are the components which an adversary is most likely to attack and thus are the
most important to consider for cybersecurity. Now an engineer has a new data perspective to make
decisions about their design. They could for example, investigate the Turbine Speed Control Valve
(TB-SpeedCtrlValveCmd) and redesign it to make it impossible for the adversary to use it in an

16

attack. Hypothetically if the valve was always closed in an attack sequence to cause a high pressure
event, a pressure relief mechanism would prevent that attack pathway entirely.

Figure 1-2. ARCADE Asherah analysis results, all failure modes.

This is only the surface level information that can be gleaned from the ARCADE analysis, as
Figure 1-2 is counting all the potential failures in the plant. A regulator might only care about fuel
failures, and this information can be extracted from the ARCADE data. Figure 1-3 shows only the
reactor failures, corresponding to fuel temperature exceeding safe limits. Now the Turbine Speed
Control Valve no longer seems as significant to Asherah’s safety design, and it becomes clear which
components are most important to this PWR’s safety. Rather expectedly, the reactor coolant pumps
and the pressurizer are the most critical to the safety of this PWR. Perhaps more important is what
is shown to be not critical to safety, pressurizer heaters don’t seem to affect plant safety all that
much. Effectively nothing on the tertiary side like the condensers has any effect, and the secondary
side has very limited effect to the primary side safety.

Understanding what doesn’t contribute to cyber risk is just as important as understanding what
does. Those areas of the graph which do not significantly contribute to risk do not require the
same degree of cybersecurity focus. This is the key cost saving proposal of ARCADE. If it can be
definitively determined that a given component has no links to severe safety threats, it’s security
level or profile can be reduced or eliminated. This risk grading can accurately focus cybersecurity
efforts to only those areas of the control system which have consequence and save costs on areas
which do not.

ARCADE’s impact does not end at quantifying the risk from a regulatory perspective, asset owners
may also be concerned about continuity of operations. The flexibility allows ARCADE to investigate
threats which could endanger the plant economically. A condenser system failure may not pose a
significant radiological threat, but it could stop a plant from producing power for a significant time

17

Figure 1-3. ARCADE Asherah analysis results, reactor failure modes only.

depending on the damage caused. The analysis mode in Figure 1-4 has been switched to focus
on only condenser failures. This risk analysis highlights areas of concern which are unique to the
condenser and can be addressed at the discretion of the asset owner. This new visibility into the
cyber threat profile of the NPP gives designers and owners more decision making power managing
cyber risk.

These figures display only one dimension of the information produced by ARCADE, there is a
wealth of information which automated data processing pipelines are being built. The severity of
the consequence for each UCA sequence has not been processed into graphical representations,
nor has the time between initiation and consequence. The reaction time plant staff would have
to mitigate a severe UCA sequence consequence is a critical risk dimension which ARCADE can
determine. As ARCADE advances, the quantification of these risk dimensions will become easier
to visualize and assist the designers of advanced reactors build in inherent cyber resilience.

18

Figure 1-4. ARCADE Asherah analysis results, condenser failure modes only.

19

This page intentionally left blank.

20

2. ANALYSIS METHOD

The ARCADE analysis method required the removal of the human element of conventional fault
analysis to automate the entire process. This limits human bias to the input values which define
the analysis parameters and eliminates the thousands of engineer hours required to develop a fault
analysis. When considering sequences of UCAs, the automated approach can reach combination
depths which are economically unfeasible with conventional methods. This section documents
the analysis concept and the technical method utilized to analyze the control system designs of
advanced reactors and produce a report of all the sequences of UCAs which cause consequence.

2.1. Analysis Concept

Figure 2-1 provides an overview of the main loop of the analysis engine. The analysis system
sweeps through all the categories of UCAs beginning with the U1 category which provides the
initial transient conditions necessary to evaluate the rest of the UCA categories listed below.

• [U1] Command provided but not needed

• [U2] Command needed but not provided

• [U3] Command provided too early, too late, out of order

• [U4] Command stopped too soon, applied too long

The analysis runs adds these initial simulations to the processing queue, /𝑚𝑎𝑡ℎ𝑐𝑎𝑙𝑄, which are
processed when computation availability opens. The UCA scenarios are simulated, represented
by the transform Pop(𝑠, 𝑝𝑖). The data from the simulations is evaluated to determine if they have
exceeded any accident conditions which were set by the user. If the UCA scenario results in an
accident condition, its information is recorded and it is dropped as a seed for subsequent scenarios.
If a scenario results in accident conditions, it is not worth the computation to continue to add UCAs
to a scenario that already results in a consequence.

If we consider the first round of U1 UCAs to be round 0, then round 1 would be the first opportunity
to evaluate U2-U4 UCAs which required that initial transient. The system will be selective for
which U2-U4 UCAs it will test, it will only evaluate these on actuators which change their position
based on the previous transient. If the position of the actuator or control surface did not change,
then a UCA like "Needed Not Provided" doesn’t have an opportunity to effect the process. Any
identified potential combinations of merit will be added to the simulation queue.

Following the first complete sweep of all the categories of UCAs, the system will start alternating
between building combinations based on predictions and combinations of U2-U4 UCAs based on
control surface movement. This allows complex UCA sequences to be rapidly evaluated, while

21

Start: 𝑠0, set 𝜏, 𝐿
Init Q = { (𝑠0, ⟨⟩) }

Q = ∅?

Pop (𝑠, 𝜋)

Verify impacts: evaluate ℎ (𝑠′)
record accidents; drop if ℎ < 𝜏

Round ≡ 1 (mod 2)Build U2-U4 combinations Build prediction combinations

Add candidates to queue

Search Complete

no

yes

yes no

Figure 2-1. Flowchart of the ARCADE Analysis Process

also ensuring that any new actuator perturbations are maximally exploited. This will ensure that
the analysis can attain reasonable completeness. This process continues until the user requested
search depth is reached.

2.2. Technical Implementation

Implementation of the analysis concept is limited to the use of the U1 category, but the core structure
for achieving the complete analysis can be still be constructed and exercised. When the other UCA
category simulations are complete, this implementation will accommodate inclusion of these new
threat search vectors. This section details the technical implementation of the analysis concept.

The ARCADE data analysis methodology can be partitioned into four main steps, 0) generate and
run initial UCAs, 1) analyze existing UCA simulation results to check for consequences, 2) generate
new UCA combinations for the next search depth, and 3) predict whether new UCA combinations
will result in consequence for the next search depth. The input deck has a description of both
the control surfaces and accident conditions which defines the safe operational envelop and the
dimensions of the control space to be searched.

The number of initial generated UCAs to run is calculated from the input file as follows:
1 num_attacks = num_control_surfaces * 2 + 1
2 attack_ids = list from [0, num_attacks)

Listing 2.1 ARCADE inital UCAs

22

Two UCA simulations are generated for each control surface, one for U1-L and one for U1-U. The
additional simulation is for the nominal base case. For brevity in the code, these UCA sequences
are refereed to as attacks, since they are simulations of the physical effects of cyber attacks.

Its assumed that the data to be analyzed is stored in a rank 3 array in C memory layout dimensioned
by num_accident_conditions, num_attacks, num_timesteps. The rank 3 data array is as follows:

1 data[num_accident_conditions , num_attacks , num_timesteps]

Listing 2.2 ARCADE Data Array

The results are loaded into this data array when the runs have all completed. The first step in the
ARCADE analysis is to analyze the existing results. The pseudo code in Listing 2.3 describes the
operation of this analysis. Each user defined accident condition is loaded and the time series for
each run are compared to the conditions defined. If the conditions are met, the system marks that
run as having exceeded an accident condition and the simulation time and value of the data point
are recorded.

1 for each accident condition:
2 op := get comparison operator for this accident condition
3 safe_limit := get the limiting value for this accident condition
4 for each attack:
5 if op is ’<=’:
6 # find minimum value over all time steps
7 val := minval(data[accident_condition ,attack ,:])
8 if val <= safe_limit:
9 this attack caused an accident for this accident condition

10 timestep := get time step where minimum value occurred
11 append attack number to list of unsafe attacks
12 else if op is ’>=’:
13 # find maximum value over all time steps
14 val := maxval(data[accident_condition ,attack ,:])
15 if safe_limit <= val:
16 this attack caused an accident for this accident condition
17 timestep := get time step where maximum value occurred
18 append attack number to list of unsafe attacks

Listing 2.3 ARCADE Analyze Results

When the list of unsafe attacks is generated, there can be duplicates in the list since a single attack
could fail for multiple accident conditions. These duplicates are recorded for reporting to the user,
but processing the next generation of attacks requires the list to be sorted and duplicates pruned.
The code below shows a standard Python idiom for achieving this cleanup. A set is a unique
associative container whose key and value are the same. A sorted list is then created from the
results.

1 unsafe_attacks = sorted(list(set(unsafe_attacks)))

Listing 2.4 Remove Duplicate Attacks

Next the unsafe attacks are removed from the list of all attacks. The remaining list of safe attacks
is used to generate new combinations of attacks to test in the next search.

23

1 num_attacks -= num_unsafe_attacks
2 for each unsafe_attack:
3 remove unsafe attack from list of attacks

Listing 2.5 Remove Unsafe Attacks

Next the new attack combinations from the remaining valid attacks in the current search depth
are generated. For creating the second round of simulations, a simple quadratic algorithm is used
to create the attacks. The function same_control_surface reports true if i and j refer to the same
control surface.

1 new_combinations = []
2 for each i in range(num_attacks):
3 for each j in range(i+1, num_attacks):
4 if not same_control_surface(i, j):
5 tuple = (i,) + (j,)
6 new_combinations.append(tuple)

Listing 2.6 Generating New Attacks

The new combinations array is a list of pairs of attack ids. This list is a complete set of new
combinations meaning no attack pairs are skipped unless one of the attacks in the pair caused an
accident. This generates all possible pairs except those that caused accidents.

The prediction algorithm for generating new attack scenarios uses the results for each individual
attack generated in search depth 1. The analysis system computes the perturbation from nominal
for each attack in each combination, sums the perturbations and nominal values, then, as above,
computes the min or max and checks if the new attack combination could potentially result in
accident conditions.

1 for each accident condition:
2 # get nominal (basecase) data for all timesteps
3 nominal := data[accident_condition , 0, :]
4 op := get comparison operator for this accident condition
5 safe_limit := get the limiting value for this accident condition
6 for each pair in new_combinations:
7 perturbations = []
8 # compute perturbation from nominal over all timesteps and sum
9 for each attack in pair:

10 perturbations += data[accident_condition ,attack ,:] - nominal
11 # compute resulting total perturbation
12 result := perturbations + nominal
13 if op is ’<=’:
14 # get minimum value from perturbation result
15 val := minval(result)
16 if val <= safe_limit:
17 this attack predicted to cause an accident for this accident condition
18 timestep := get time step where minimum perturbation occurred
19 diagnostic indicating we predict this attack pair may fail when run
20 else if op is ’>=’:
21 # get maximum value from perturbation result
22 val := maxval(result)
23 if safe_limit <= val:

24

24 this attack predicted to cause an accident for this accident condition
25 timestep := get time step where maximum perturbation occurred
26 diagnostic indicating we predict this attack pair may fail when run

Listing 2.7 Pertubation Generation

The attack combinations which result in potential accident conditions are selected to be simulated to
confirm their consequence. This process repeats until the search depth is reached. For the current
implementation which can only evaluate U1 UCAs, there is no alternation to U2-U3 category
searches for every other round of UCA combination builds.

2.3. Initial Asherah Evaluation

Utilizing the limited U1 analysis system, ARCADE evaluated Asherah to a search depth of 2
seeking out UCA combinations on the PWR simulator. Asherah has 35 control surfaces which
were evaluated, which results in a round 1 search of 70 U1 UCA’s consisting of lower and upper
bound U1 evaluations. 17 of these UCAs resulted in consequence which would indicate they
would be of the highest concern. The second generation of resulted in 1358 possible 2 U1 UCA
combinations, when evaluated 493 were found to cause consequence. This second round also
informs the division of the control system network, as separating the components in these 493 UCA
combinations would passively inhibit threats.

Table 2-1. Asherah UCA Evaluations

UCAs Searched Consequential UCAs

Round 1 70 17

Round 2 1,358 493

A total of 510 UCAs and UCA combinations out of a total of 1428 were identified out of in these 2
rounds of the search. This reduced the threat scenarios worth considering by nearly 1/3 which can
still be considered an excessive number of consequential UCA scenarios. Asherah being an older
conventional PWR makes it far less resilient, and the reduced complexity of the model implies
that the majority of modeled control surfaces will be essential to operating the plant safely. These
factors contribute to the model having a high ratio of consequential to unremarkable UCAs.

An advanced reactor would be expected to have a smaller ratio of consequential UCAs as they
designed with more inherently and passively safe features. For example, if the reactor coolant
pump in Asherah is shut down completely at full reactor power, this results in a significant fuel
temperature rise and fuel damage risk. If an HTGR with TRISO fuel has its Helium blower
shutdown at full power operation, its reasonable to assume that the negative temperature reactivity
coefficient will shut down the reactor well before the fuel integrity is compromised. For these
inherently safer advanced reactors, it is expected that the analysis will identify less numerous
consequential UCAs, but produce the evidence necessary to reduce cybersecurity requirements for
systems which do not impact safety.

25

This page intentionally left blank.

26

3. VALIDATION PATHWAY

This section details the formal modeling of ARCADE as a discrete-time simulation system, and
discusses the simulation approach with respect to existing system models. It details the heuristic
search technique employed by ARCADE and contrasts the approach with existing work in the
control systems analysis space. Finally, it provides a measure of bounded correctness for the
analysis approach with respect to a NPP system.

3.1. Problem Formalization

ARCADE formalizes the simulation environment as a synchronous, discrete-time system achieved
through the simulation of all physical plant components. Given the challenges of performing
analysis on real-time systems that include non-trivial physical simulations, ARCADE simplifies
the problem search space by overlaying discrete time elements on a plant simulation environment.
When interfacing with physical simulation engines, which model continuous time in most cases,
ARCADE discretizes continuous time 𝑡 ∈ R≥0 into timesteps of length △𝑡, on which all observation
and actuation events occur. In some cases, the simulation engine may already operate on a similar
discrete time model. In such cases, ARCADE may define △𝑡 as the time unit leveraged by the
simulation engine. In all cases, ARCADE interfaces with the physical simulation via simulated
logic controller data. Any physical simulation elements are fully abstracted from the view of the
simulation controller.

Within this model, ARCADE may interface with a system using the standard view of Lee et al.
[5]. In this model, a system Σ is a mapping from a starting state 𝑋0 and input signals 𝑈 ∈ 𝑈𝑇 to
and output signal 𝑌𝑇 . The input of the system analyzed by ARCADE is equivalent to the set of
all control registers corresponding to plant actuation elements. This input may be selected to be
a maximally inclusive as possible or streamlined depending on analysis goals. For each register
r1, ..., r𝑛, the system must define a finite input domain D. At each timestep, the system issues an
actuation vector 𝑎 ∈ A := D1...D𝑛 corresponding to each control register. The attack simulations
in ARCADE are based on the perturbation of this actuation vector, and the subsequent impact
surface on the observable output signal 𝑌𝑇 . In a similar manner to the input domain, ARCADE
defines this output domain as the set of all observable sensor values after a given input timestep
𝑜 ∈ O := D1...D𝑛.

All simulation runs of ARCADE are conducted over a set time interval 𝑁 , which may be customized
based on the needs of the system under test. In the case of systems that may not show the impacts
of a perturbation immediately, 𝑁 may be increased to allow for the results of a perturbation
to be recorded successfully. Regardless of simulation duration, ARCADE output is defined as
the distance of the run to the system accident space. The accident space is defined as a subset

27

𝐴 ∈ R𝑜, whereR𝑜 is the output space produced by the simulator. The accident space 𝐴 is of the same
dimensionality of the output vector, and encodes all observation patterns corresponding to accidents
(e.g. under/overpressure hazards, actuation failure hazards, temperature-based hazards.)

The formal structure and accident space of ARCADE simulations allow for detailed understanding
of perturbation impacts and serve as the grounding for the spacial exploration strategy leveraged
by ARCADE. This strategy is subsequently detailed in section 3.2.

3.2. Heuristic Search Approach

To search for accident conditions, ARCADE leverages a greedy heuristic-based search algorithm,
that combines the mechanics of STPA and UCA categories to search a system for common hazards.
Through an informed trajectory search of the system, ARCADE is capable of discovering novel
accident sequences significantly faster than existing techniques such as Monte Carlo and Ant Colony
Optimization.

Prior work in this vein has sought to perform trajectory analysis leveraging similar statistical
methods. Liu et al. [1] deploy stochastic optimization techniques across MATLAB® simulations to
discover minimal robustness paths across a system. Donzé et al. [3] perform investigation of large
continuous space trajectory data using differential equation modeling for parameter optimization.
ARCADE differs in both the scale and techniques leveraged in prior work. It expands the scale
of simulation data to a significantly higher amount than previous work, as well as incorporates
STPA concepts such as UCAs into the search algorithm. A simplified example of this approach is
viewable below in figure 4-2

Figure 3-1. Search vectors with respect to the output observations in ARCADE

ARCADE conducts a search across several rounds of simulation on a given system. A single round
consists of minimum 𝑈 runs of simulations, where 𝑈 is the number of the input domain, or the

28

number of editable registers associated with an environment. Each round establishes a heuristic
value associated with a run, which ARCADE defines as the magnitude of perturbation measured
with respect towards the accident space. Subsequent runs are constructed based on the observed
heuristic values of the previous runs. While this technique bears similarities to classical heuristic
search algorithms, ARCADE leverages UCA categorization to conduct a more efficient search
procedure than classical approaches.

Algorithm 1 Round-based UCA search with a simple threshold
Input: Simulator step 𝛿(𝑠, 𝑖) (enabled if guard 𝐺 holds),
accident check Accident(𝑠) over observations,
impact score ℎ(𝑠) (larger = more disturbed),
threshold 𝜏, max depth 𝐿

Output: Accident traces found
Initialize queue Q ← {(𝑠0, ⟨⟩)}; Round← 1.
while Q ≠ ∅ do

Pop (𝑠, 𝜋) from Q (by depth / FIFO). if | 𝜋 | ≥ 𝐿 then
continue

if Accident(𝑠) then
record 𝜋 and continue

if Round = 1 then
// Round 1: singleton U1 sweep over each input tag
Build candidates I by “provide” (U1)
on one coordinate at a time (all tags once).

else
// Round 2+: combine & refine, guided by prior impacts
Build candidates I that combine actions (U2 withhold, U3 ordering, U4 duration).
Construct candidates based on the impact of prior perturbation.
Prioritize combinatorics of high-impact singleton UCAs, then temporal modification of
existing combinatorics, then value modification of existing UCAs.

foreach 𝑖 ∈ I do
if 𝐺 (𝑠, 𝑖) then

𝑠′← 𝛿(𝑠, 𝑖); 𝑚 ← ℎ(𝑠′). if 𝑚 ≥ 𝜏 then
push (𝑠′, 𝜋∥𝑖) into Q

if Round = 1 and all tags swept then
Round← 2

if Round ≥ 2 and no new pushes this iteration then
break

Within STPA, the identification of UCAs with respect to a given system is critical to understanding
accident trajectories. ARCADE exploits this developed formalism for systems design in its algo-
rithmic approach. STPA defines 4 categories of UCAs, which are re-iterated here and subsequently
referred to as U(1-4) in this section.

29

• [U1] Command provided but not needed

• [U2] Command needed but not provided

• [U3] Command provided too early, too late, out of order

• [U4] Command stopped too soon, applied too long

ARCADE begins with a round comprising of the “singleton” UCAs, U1 and U2. These UCAs are
grouped into a single round, as they represent the same underlying atomic action with respect to
value modification, simply in opposite directions. Time is not a considered dimension with respect
to these UCAs, so obtaining results for all associated U1 and U2 UCAs is possible in a single round
of evaluation. The associated results of the first round are leveraged significantly in the subsequent
round. All subsequent rounds are conducted based on the heuristics gathered from the previous
round. After round 1, ARCADE switches to the combinatorics-based UCAs (U3 and U4). Time
values are subsequently adjusted based on impacts of perturbation in rounds after 1, and attack
values after the search reaches diminishing returns. The search concludes after no paths remain
to be explored that exceed a heuristic impact threshold. This approach is detailed in Algorithm
1. While combinations of UCA categories could be explored in the future, ARCADE currently
leverages single categories per simulation run.

3.3. Completeness Evaluation

In the future, ARCADE will conduct rigorous validation of the completeness of generated solu-
tions in comparison with alternative approaches. While time-to-trajectory measurements are key
in establishing the efficiency of ARCADE in comparison with traditional approaches, ARCADE
will be subject to several bounded experiments to prove completeness on finite horizon problems.
Further, ARCADE provides a platform for deeper exploration into algorithmic methods for deter-
mining accident scenarios. To provide initial success in these areas, ARCADE has conducted a
robust analysis of the simplified IAEA Asherah NPP simulation engine, and uncovered all accident
pathways in a reasonable amount of search time.

ARCADE leverages perturbation impact as a search heuristic in a similar vein to robustness methods
such as the work of Annpureddy et al. [1]. While the approach of ARCADE is comparatively
simpler than existing robustness formulas, results indicate such an approach is performant for the
class of problems ARCADE is deployed for. The combination and subsequent exploration of
high impact UCAs often leads to further accident scenarios. Due to the time bound imposed on
problems, heuristic search techniques are guaranteed to explore all possible scenarios with respect
to UCA combinations. While greater combinations of UCAs could expand this search space, such
combinations are further bound by included plant hardware.

Even when analyzing results at a shallow search depth, U1 and U2 UCAs may provide immediately
actionable feedback for system designers. As part of an initial exploration of completeness,
ARCADE conducted an analysis of the Asherah simulator. Due to the simplified component
structure of Asherah, ARCADE quickly identified all UCA sequences leading to accident conditions
within the given time frame. A complete analysis was conducted in only two rounds of running, and

30

results were encoded to demonstrate input registers associated with system component accident
conditions. A display of such registers is color coded below in figure 3-2 in reference to the
turbine system component. Due to the simplified system architecture, ARCADE is able to provide
a complete list of accident scenarios within the Asherah system with respect to a given time
domain.

Figure 3-2. Identified vulnerable input registers after UCA actuation with respect to the simulated
turbine component, color coded by impact severity.

Even in scenarios in which the time or space search domains may be significantly larger than
Asherah, the search conducted by ARCADE is probabilistically complete with respect to system
accident space. In all cases, searching beyond the initial structured sweep of U1 actions, every
subsequent round retains a non-zero probability of sampling perturbations uniformly across the
enabled input and timing space. This ensures that no region of the accident space is permanently
excluded by the heuristic filter: given unbounded iterations, every neighborhood of a hazard-
inducing sequence will eventually be explored with probability one. In practice, the heuristic impact
score directs most expansions toward high-disturbance areas for efficiency, while the persistent
heuristic horizon exploration guarantees that the probability of missing a reachable accident decays
to zero as the number of samples grows.

This leads to the question of how coarse the search can be and still reach the most of the critical
threat sequences. To validate the assumptions regarding the completeness of the ARCADE search
method and the effects of search granularity on completeness, experiments utilizing multiple types
of advanced reactor will complete an exhaustive search of all UCA combinations to a given depth.
The ARCADE analysis will be compared to this exhaustive search to confirm that all possible threats
were identified. The analysis system search granularity will also be tuned to ensure completeness
with the greatest computational efficiency. Since no other system exists to execute and manage
vast amounts of UCA simulations, ARCADE will have to be modified to undertake the exhaustive

31

search. This will require significant computational resources and the development of ARCADE’s
clustering capabilities. Building the technical capability to perform such a large scale validation
effort is part of the critical development path for ARCADE.

32

4. DEVELOPMENT PATHWAY

ARCADE supports numerous OT cybersecurity research and development areas which fall into
the cyber-physical domain. There are three major areas where ARCADE is utilized which drive
development: cyber-physical analysis, the equipment test environment, and training and education
support. Figure 4-1 illustrates the underlying components of ARCADE which support these
applications. Layer 0 constitutes the lowest level communication and operating system dependencies
ARCADE relies on. The core utilities of Layer 1 provide the essential functionality of ARCADE’s
virtual environment and simulation interfaces. Layer 2 is comprised of the applications which
directly support functionality for users and automated systems. Between Layers 1 and 2 are the
Application Programming Interfaces (APIs) which enable the applications of Layer 2 to interface
and control the lower level systems in Layer 1. At the top is a the management layer, which combine
the applications to enable specific R&D and educational activities.

Figure 4-1. ARCADE system layers

The majority of ARCADE’s development is focused in the top two layers and centered around the
needs of each use case. Layers 0 and 1 development is complete, with the exception of co-simulation
management which is expected in the next major open source release. Discussing the development
pathway of ARCADE is best discussed in the context of each management layer use case.

4.1. Cyber-Physical Analysis

The cyber-physical analysis system is the core ARCADE use case, which fulfills the requirements of
the TCA Tier 1 analysis. The current cyber-physical analysis system has enabled a proof of concept

33

automated analysis of the notional Asherah system. This is a significant leap from the previous year
which demonstrated manually driven analysis of a small number of scenarios. The analysis system
will be a major focus of the next development stages, it must be developed into a production quality
system. Improved system automation, better analysis methods, and user interface development will
be critical next steps in its progress. To rapidly deliver on the goals of a complete and automated
Tier 1 analysis, the underlying applications and the analysis system itself must be completed.

Three applications are relied upon for the operation of the analysis system: the simulation man-
agement, cyber-attack simulator, and engineering simulator applications. The analysis system uses
the simulation management application to spawn many virtual environments which will run engi-
neering simulators that are interfaced with the cyber-attack simulator. The analysis system itself
is responsible for decision making regarding UCA combinations to evaluate and analysis com-
pleteness, as well as processing and organizing data. Figure 1-1 depicts the general relationship
between these components. The development pathway for each of these components is detailed in
this section.

4.1.1. Simulation Management

Minimega is controlled with the simulation management application in order to spawn many virtual
environments which will host UCA simulations. This application also manages the injection of
UCA simulation configurations, listens for completion of the simulation (or kills the simulation
if it runs too long), and captures the raw data from the UCA simulation once complete. If
ARCADE is intended to be run on many servers, the simulation management system distributes the
computational load to each server. Initially Minimega meshing was investigated to manage multi-
server applications, but this proved to have stability issues under the particular VM management
needs of ARCADE.

The current simulation management system is sufficient to prove out the analysis concepts, however
for production it must develop or improve the following:

• Simulation Status Signaling: Simulations may range in solution time, especially when
computing complex threat sequences. It is unknown exactly how long each simulation
will take, and therefore there must be some manner for the Data Broker within the virtual
environment to signal to the simulation manager that it has completed, or failed the simulation.
If a simulation failed, the simulation manager must capture data logs which can diagnose the
cause of the failure. This seemly simple communication problem is made extraordinarily
complex due to the isolated nature of Minimega virtual environments.

• Clustering Capabilities: To further reduce the computational time of the analysis, more
parallel computational power is needed. The simulation manager must be made capable of
orchestrating many servers in parallel while reporting data back to a central server. This must
be scalable to thousands of compute nodes, especially for the validation efforts of full brute
force analysis is to be feasible. When considering that each simulation may produce more
than 1Gb of data, managing data on a large cluster with hundreds of thousands of simulations
becomes non-trivial, and may invoke the need for distributed data pre-processing.

34

The expected development path is that simulation status signaling will be completed first. Clustering
capabilities will scale as needed for validation efforts.

4.1.2. Cyber-Attack Simulator

Simulating cyber attacks is done with a modified Data Broker Endpoint which injects Unsafe
Control Actions (UCAs) into the physics simulator (Figure 4-2). Control surface commands are
rerouted automatically from the simulators internal controls, and unsafe control surface commands
are injected in their place. Currently only 2 categories of UCAs are implemented in the simulator,
being U1 and U2. Of those categories, each only has two UCAs developed. U1 can inject low and
high values for the control surface, and U2 can inject static overwrites and replay normal control
surface actuation data. For future development, not only do U3 and U4 UCAs need to be developed,
but U1 and U2 should have improvements made to cover a greater variety of UCAs.

Figure 4-2. A high level overview of UCA simulation within ARCADE

For binary control surface signals, all the UCA categories are simple to simulate, but most of
the critical control signal in a plant are analog. For example: the position of a control rod is a
continuous range from full insertion to full extraction. This makes UCA simulation much more
difficult, as the concept of a UCA, such as ’needed not provided,’ might imply a 55% insertion
rate versus a 47% insertion rate at 575 seconds of operation. To accommodate the simulation of
analog and temporal UCAs requires specific advancements to fully cover the spectrum of possible
scenarios. These advancements are detailed as they relate to each UCA below.

• U1 - Provided Not Needed: The baseline functionality for U1 is complete, but waveform
injection or oscillation injections can enable system harmonics investigation. Technically
U1 can inject any value into the control surface, but it is the cyber-physical analysis system
which is limited to the maximum and minimum travels of the control surface. Updating the
analysis system to accommodate sweeps of the control surface space may illuminate more
potential threats, but intuitively it seems unlikely. Further investigation, potentially after
2026, is warranted to determine whether such functionality would be worth the exponential
increase in computation.

35

• U2 - Needed Not Provided: This UCA category has been developed, but its functionality
has not been introduced into the analysis engine yet. While the basic functionality exists,
there are still questions surrounding complex scenario use of this capability which arise
when replaying normal control surface data. If the scenario U2 is deployed in already has
2 previous UCA’s activated, which control surface data is correct to replay? Should the
baseline data with no UCAs be replayed, or is it the data from the 1st UCA? Also, if the
sequence of UCAs is long enough, there may not be enough data to replay from. The system
should then signal this to the analysis system and new longer baseline be run. These features
must still be developed in the analysis system for U2 to fully be utilized.

• U3 - Provided Too Early/Late/Out of Order: The first of the temporal UCA categories,
U3 requires the replay of actuation data which is time shifted. This is rather simple if the
signal is to be simulated as "Too Early" as the time series of replay data is just shift to the
left of T0. The "Too Late" UCA is rather more difficult as it requires shifting this time series
to the right of T0 leaving a gap of data which does not exist. If it can be assumed that the
beginning of the simulation is at steady state, then it should be simple to just replay static data
at the beginning of a simulation. However, it has been observed that simulations undergo
perturbations when restarted from a paused steady state with some simulators. This creates
an issue of when exactly to fill in data for the delay without altering initial conditions. These
issues must be solved before the U3 UCA category can be completely simulated.

• U4 - Stopped Too Soon/Applied Too Long: Conceptually this is a simple UCA category
to simulate, however, like U3 UCAs this category requires time compression and expansion.
Additionally, the concept of stopped and applied also requires interpretation for analog
signals. If a signal can be considered to be "applied" when above 60% but over the course
of being applied the signal drifts, simulating a "stopped too soon" may require interpolation
to bridge differences between the beginning and end of the truncated signal. Alternatively,
the PID variables within the simulations control algorithm could be altered to cause U4
scenarios, but the varied nature of the simulation software and PID structures could make
it difficult to manage and produce undesirable artifacts. These problems relate mainly to
"stopped too soon", as "applied too long" simply requires slowing signal replay time on the
rising edge of signal application.

The problems and advancements needed in the UCA simulator are not intractable and solutions
are already being devised. These are primarily engineering problems which are seeking the most
computationally efficient pathway. It is expected that U1-U3 core functionality will be completed
in 2026, with U4 and advanced UCA simulations (such as waveform injection) will be follow on
work.

4.1.3. Engineering Simulator Plugins

The engineering simulator is not a part of ARCADE, it is provided by the reactor designer who is
utilizing ARCADE for tier 1 analysis. Advanced reactor designers have incorporated simulation
tools to assist the development and qualification of their designs. It is standard practice now to
create what is essentially a digital twin of the AR control system to properly design control system

36

logic and develop control system specifications. These are high fidelity physics models of the
plant and its control system, often they also operate in real-time. Perfect for ARCADE to leverage
for analysis without incurring any extra labor on behalf of the designer. The catch is that these
simulators run on a variety of simulation platforms which have a variety of code bases, API’s,
and integration pathways. This makes integrating with each require up front development labor on
ARCADE’s behalf.

Flownex® and MATLAB® Simulink® are currently the two simulators which have been integrated
with ARCADE to provide nearly plug-and-play support. Developers only need to copy and paste
the Data Broker connection code into their simulation and connect the I/O that ARCADE will use
for the analysis. The intention is to allow this plug-and-play support for all the major Engineering
simulators in use across the U.S. domestic nuclear industry. This requires significant development
effort and will be prioritized with industry interest in ARCADE.

4.2. Equipment Test Environment, TANGO, & PROMISE

The other applications for ARCADE are supporting system of systems simulation, hardware in the
loop, and training and education. These have potential applications for the nuclear industry, but are
not directly supported by the main ARCADE project. Each of these applications and their influence
on the development of ARCADE is described in this section.

Equipment Test Environment or (ETE) is an infrastructure as a service project. The ETE allows
users to check out OT hardware such as Programmable Logic Controllers (PLCs) and connect
these to large scale network and physics simulations to perform research across the cyber-physical
space. The ETE was born out of the need to perform experiments with OT systems that could not
be emulated, such as FPGA based systems. A high-speed, high-fidelity analog signal regeneration
and capture system was developed to integrate these OT systems in such a way as allow the OT
devices to be operated in a manner indistinguishable from the real plant. This has been identified
as having industry use in the development and testing of hardware and logic of the control system.
The ETE was developed to serve remote users, another significant advantage for a much more
remote engineering workforce in the industry.

At the heart of the hardware in the loop capabilities of the ETE is ARCADE, which provides
a link from physics simulations, out of large scale virtual networks, and directly into PLCs and
analog signal regeneration and capture devices. The Data Broker and Endpoints were originally
developed to interface with hardware in the loop and emulated PLCs. The Data Broker provides the
deep connection with the physics model’s control surfaces, and an Endpoint outside of the virtual
network is able reach out to external PLCs and the signal regeneration and capture equipment. This
application has lead ARCADE to support Modbus, OPCUA, and ZMQ communication protocols
and support for direct analog I/O writing and reading. These hardware capabilities will likely
expand as more R&D project move to ETE.

TANGO or Twinned Analysis of Nuclear reactor and Grid Operations is a project which seeks to
develop a system of systems model of nuclear reactors attached to the grid. It seeks to emulate the
networks of these systems to research various cybersecurity questions and as a development space

37

Figure 4-3. High level diagram of the Sandia Equipment Test Environment (ETE).

and testbed for advanced OT cyber network analysis systems. The physics of the grid and nuclear
plants are modeled to determine cyber threat consequence and coupled system risks.

ARCADE supports the nuclear portion of the TANGO system, and has been modified to integrate
with multiple other physics simulations. This has spurred the development of the ARCADE co-
simulation application which allows ARCADE to connect with any other simulator and exchange
physics data. A co-simulation time control mechanism was created to allow ARCADE to become
the central simulation time keeper or for it to allow another system to control time steps for
ARCADE. This capability allows large scale holistic simulations to be evaluated with ARCADE’s
tier 1 analysis system. The co-simulation system is expected to continue to be refined as needed by
the TANGO project, but presents interesting opportunities for studying the risks around large scale
problems like load flowing for advanced reactors.

PROMISE stands for Power Reactors on Minimega In Service of Education which is the educational
environment that is supported by ARCADE components. PROMISE is an emulated control system
and network for the Asherah NPP simulation which is often referred to as ARCADE lite. It allows
students to interact with a representative nuclear control system, design PLC logic and SCADA
control panels, then attack the network to observe the consequences. Using educational hacking
tools, the students become the hacker to understand at a deep level, how to protect control systems
inherently from the principals of the TCA. Students also become familiar with ARCADE as a tool
for cyber analysis, making it a key bridge for training future ARCADE users.

PROMISE has been deployed for various training and education missions over the last four years
of its existence. It was central to an international OT cybersecurity course and a semester long
university course has been developed around it. Direct support for PROMISE ended this year,
however its development support is continued by the universities which have adopted it. The

38

Figure 4-4. PROMISE student environment with 1st attack example.

development for PROMISE as ARCADE lite is expected to be restarted once ARCADE reaches a
point where greater education is needed.

39

This page intentionally left blank.

40

5. CONCLUSION

ARCADE has made significant progress in its ability to automatically search through UCA se-
quences and provide valuable cyber risk information on nuclear power plants. Even with only
the capability to simulate "Provided Not Needed" UCAs the ARCADE system can significantly
reduce the effort needed to perform fault tree analysis. As ARCADE’s capabilities mature, it will
enable risk analysis which is not possible with conventional human driven processes. The example
analysis of the Asherah simulator demonstrates that the technical pathway for ARCADE’s analysis
is feasible. There still remains a long development pathway to bring ARCADE to a production
level, but direct impact to the nuclear industry is achievable within the next year.

Providing the foundation of an analysis using the TCA as outlined in NRC RG 5.96 [8] is within
reach for ARCADE. If this is achieved, the cost of implementing defense-in-depth cybersecurity
for advanced reactors will be significantly reduced [6]. As ARCADE becomes capable of this
analysis, the final major hurdle will be validation of its methods. As described in this report, this
validation pathway is not insurmountable and is already being planned for to expedite the process.
Once ARCADE’s analysis is validated, it should be a suitable tool for the advanced reactor industry
to generate cyber risk data which is presentable to regulators.

41

This page intentionally left blank.

42

REFERENCES

[1] Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and Sriram Sankaranarayanan. S-taliro:
A tool for temporal logic falsification for hybrid systems. In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pages 254–257. Springer, 2011.

[2] Abhishek Chaudhary, Junseo Han, Seongah Kim, Aram Kim, and Sunoh Choi. Anomaly
detection and analysis in nuclear power plants. Electronics, 13(22), 2024.

[3] Alexandre Donzé. Breach, a toolbox for verification and parameter synthesis of hybrid systems.
In International Conference on Computer Aided Verification, pages 167–170. Springer, 2010.

[4] Andrew S. Hahn, Lee T. Maccarone, Titus Gray, Adam J. Beauchaine, Michael T. Rowland,
Fraser Dougall, and John Connor Grady. ARCADE Technical Pathway and Industry Impact,
February 2025. SAND2025-02425R.

[5] Edward A Lee and Pravin Varaiya. Signals and systems, 2003.

[6] Lee T. Maccarone and Michael T. Rowland. The Sliding Scale of Cybersecurity Applied to
the Cybersecurity Analysis of Advanced Reactors. In American Nuclear Society 13th Nuclear
Plant Instrumentation, Control, and Human-Machine Interface Technologies, pages 215–223,
Knoxville, TN, 2023.

[7] RABE Silva, Koroush Shirvan, José Roberto Castilho Piqueira, Ricardo Paulino Marques, et al.
Development of the asherah nuclear power plant simulator for cyber security assessment. In
Proceedings of the international conference on nuclear security, vienna, austria, pages 10–14,
2020.

[8] U.S. Nuclear Regulatory Commission. NRC Draft Regulatory Guide DG-5075: Establishing
Cybersecurity Programs for Commercial Nuclear Plants Licensed Under 10 CFR Part 53, June
2024. Available online.

43

This page intentionally left blank.

44

APPENDIX A. ARCADE Technical Information

A.1. ARCADE Input File

ARCADE uses standard JSON input file syntax which is block structured with lines composed of
key value pairs. A block begins with the ’’ character, ends with a ’’ character, and all lines in the
block are terminated with a comma. Each line has one or more keys, which is typically a string,
and is separated from the value by a colon. If there’s multiple inputs on a line, each key value pair
is separated by a comma before the next key value pair.

1 {
2 "attack_time" : 605,
3 "max_active_simulations" : 32,
4 "comment_minimega_home" : "/opt/minimega",
5 "port" : 9136,
6 "search_depth" : 2,
7 "simulation_runtime" : 900,
8 "wallclock_timeout" : 900
9 }

Listing A.1 ARCADE Input File

Each physics code system is defined uniquely in the physics input file. Each physics has a unique
set of accident conditions and control surfaces that are required inputs (the accident conditions are
required to perform data analysis), the control surfaces are required to run the physics, when not
analyzing existing results. The Attack Directory is the top-level output directory where ARCADE
writes the search depth analysis results, the attack JSON and YAML files, and other information.
Specifying the attack directory runs the Asherah physics with the specified control surfaces, and
uses the specified accident conditions during analysis. In order to analyze existing results, comment
out the Attack Directory and enable the Job Results by setting the job results to the file for a search
depth attack_uids.txt file.

1 "asherah" : [
2 { "commentjobresults" : "</path/to/attack_uids.txt>" },
3 { "attackdirectory" : "</path/to/attack/directory >" },
4 { "accidentcondition" : "CDLevel", "operator" : ">=", "value" : 1.5, "unit

" : "m" },
5 { "accidentcondition" : "CDPress", "operator" : ">=", "value" : 6760, "

unit" : "Pa" },
6 { "accidentcondition" : "RXDT", "operator" : ">=", "value" : 40, "unit" :

"K" },
7 { "accidentcondition" : "RXTavg", "operator" : ">=", "value" : 580, "unit"

: "K" },
8 { "accidentcondition" : "SG1Level", "operator" : "<=", "value" : 12, "unit

" : "m" },

45

9 { "accidentcondition" : "SG1Press", "operator" : ">=", "value" : 8974000,
"unit" : "Pa" },

10 { "accidentcondition" : "SG2Level", "operator" : "<=", "value" : 12, "unit
" : "m" },

11 { "accidentcondition" : "SG2Press", "operator" : ">=", "value" : 8974000,
"unit" : "Pa" },

12 { "controlsurface" : "TBIsoValveCmd", "min" : 0.0, "max" : 1.0, "value" :
"Value1" },

13 { "controlsurface" : "TBSpeedCtrlValveCmd", "min" : 0.0, "max" : 100.0, "
value" : "Value2" },

14 { "controlsurface" : "PZMainHeaterPowCmd", "min" : 0.0, "max" : 100.0, "
value" : "Value25" },

15 { "controlsurface" : "PZBackupHeaterPowCmd", "min" : 0.0, "max" : 1.0, "
value" : "Value26" },

16 { "controlsurface" : "PZCL1SprayValveCmd", "min" : 0.0, "max" : 100.0, "
value" : "Value27" },

17

18]

Listing A.2 ARCADE Physics Input File

A.2. Accident Conditions

Accident conditions describe under what scenario the physics results are considered to have caused
an accident. There can be multiple accident conditions, up to as many as there are output variables.
Note that some accident conditions are not present in the output file, for example, RX_DT and
RX_Tavg. These two quantities are computed from other output variables. RX_DT is computed
as the absolute difference between the outlet and inlet coolant temperatures while RX_Tavg is the
average coolant temperature in the reactor.

𝑅𝑋𝐷𝑇 = |𝑜𝑢𝑡_𝑐𝑜𝑜𝑙_𝑡 − 𝑖𝑛_𝑐𝑜𝑜𝑙_𝑡 | (A.1)

𝑅𝑋𝑇𝑎𝑣𝑔 =
𝑖𝑛_𝑐𝑜𝑜𝑙_𝑡 + 𝑜𝑢𝑡_𝑐𝑜𝑜𝑙_𝑡

2
(A.2)

All accident conditions should provide a constraint operator, a value, and unit so that it is known
under what conditions an output is considered to have caused an accident. The current Asherah
model has 8 accident conditions (6 output variables and 2 computed from outputs).

Our Asherah accident conditions come from Table 1 of the Chaudhary et. al. [2]. A brief
description of the accident condition variables is in Table A-1.

46

Variable Description
CD_Level Hotwell level, which automatically transfers the condensate

to or from the storage system.
CD_Press Pressure of the condenser, which is monitored to verify

condenser operation.
RX_DT Reactor temperature difference across the simulation

timestep.
RX_Tavg Average reactor temperature of the inlet and outlet coolant

operating temperatures.
SG1_Level Water level in steam generator 1.
SG2_Level Water level in steam generator 2.
SG1_Press Pressure inside steam generator 1.
SG2_Press Pressure inside steam generator 2.

Table A-1. Description of Accident Condition Variables

A.3. Control Surfaces

Each control surface describes an input to the physics model along with the valid range of values
for that input. The value tag is an internal identifier that will be removed in a future version of the
code. Each control surface has a name, a minimum value (or lower bound) and a maximum value
(or upper bound). Our current Asherah model has 35 control surface inputs.

A.4. IO Broker

The IO Broker component is designed to orchestrate both IO processing (i.e. reading the JSON input
file), generating the initial set of attacks based on the input, submitting the jobs to the ARCADE
Server to be run, waiting for the server response to confirm that the job(s) have completed, and
launching the data analysis once all the attacks in the current search depth have completed. If the
search depth is greater than one, the IO Broker will take the results of the first analysis and use that
to generate, run, and analyse another set of attacks.

A.5. Data Analyzer

The data analysis component is responsible for determining if any accidents occurred in the current
search depth results. Because the physics output can be large, typically a run is performed with a
0.1s time step for an hour, resulting in 36000 data points per output variable. There are typically
dozens or more output variables than there are accident conditions so the output files can be quite
large to copy, load into memory, and analyze. For this reason, multi-threaded data analysis is
leveraged to utilize each available core during analysis. This should help the analysis to scale up as
runs consist of larger problems with more attacks.

47

Data is extracted from the pub_data.csv file generated by the data collector when the physics
terminates. The data is in the form of a CSV (Comma Separated Values) file with each line of
output consisting of the output variable name, the variable value, and the time step. Because
the physics runs with a fixed time step of 0.1s, an hour long run produces 36000 output lines for
each output variable. Since the pub_data.csv output file can be quite large, and to avoid problems
copying the file from the VM back to the host, the file is compressed with gzip. Compression
reduces the file size by roughly an order of magnitude, and the output file is then transferred back
to the host in compressed format.

When ARCADE notifies the IO Broker that all physics have completed, the compressed output
files from /tmp/minimega are moved into the local search depth directory. This is done so that the
physics output from each search depth pass can be separately tracked. Once the files are copied
out of /tmp/minimega, and the file that provides a mapping from the UID (Universal Identifier) to
the attack number (attack_uids.txt) is retrieved, the pub_data.csv files are decompressed. Python is
much faster reading the uncompressed files than using the Python compression library to read the
files. With the output files uncompressed, the data is loaded into a large rank 3 array dimensioned
by accident condition, attack id, and time step output values. For the default analysis presented
(in search depth 1), the array is dimensioned [8, 71, 36000] where 8 is the number of accident
conditions, 71 = 2 * 35 + 1, 35 is the number of input variables (i.e. control surfaces), 2 is U1-L and
U1-U for each control surface, and the additional 1 is for the base case which runs with nominal
values. For later searches, the array size grows significantly as the number of attacks increases.
Note that sometimes Asherah runs faster or slower for some attacks so we retain only the maximum
number of timesteps present for each output variable. Once the data has been loaded into the array
by the IO Broker, the IO Broker calls the Data Analyzer to perform the analysis.

The basic steps in the data analysis are to 1) partition the analysis across the number of available
cores running one thread per core 2) set the thread processor affinity so that threads aren’t swapped
to different cores during the analysis for enhanced performance 3) retrieve accident condition data
(name, safe_limit, operator, and unit) and attack data by accident condition. Each thread analyzes
one accident condition so a thread team (group of threads) partition all the attacks for a single
accident condition across multiple threads. In this way, the threads are partitioned along two axes,
one is a thread group for each accident condition, the other axis partitions the attacks in a single
accident condition across multiple threads.

In order to determine if an accident has occurred, each attack accident condition is checked against
the safe limit that was in the JSON input file. There are currently two possible accident conditions,
one where a value is less than or equal to a lower limit, and one where the value is greater than or
equal to an upper limit. If the CD_Level accident condition stipulates that any value greater than
or equal to 1.5 meters is an accident, then each output variable for each attack is compared, to see
if any output value is greater than or equal to 1.5 meters. If a CD_Level value is found that exceeds
the safe operational envelope, then an error diagnostic is reported, this attack causes an accident,
and this attack is removed from future search depths when new attacks are generated.

The following output can be found in the attack_directory analysis_results.txt file. The output
details: the label of the attack as the name of the JSON input file (attack_13.json), the accident
condition variable (SG1_Level), the failed condition (minimum value of SG1_Level <= 12m),

48

when the accident condition occurred (663.3s), and the input variable(s) and UCA(s) that caused
this accident.

1 attack (13) SG1_Level min value 11.723754(m) <= safe lower limit 12.0(m)
occurred at 663.3(s) (FW_Pump1SpeedCmd U1-U)

Listing A.3 Example Single Attack Output

In later search depths, the attacks are grouped as tuples (pairs, etc..) so there’s a bit more complexity
in the accident condition output. For example, here attack_22.json combines two original atta‘cks,
2 and 6, and it lists the two input variables that were combined in this accident attack. Note that
attack 22 could cause accidents due to multiple accident conditions. Here attack 22 fails because
the SG1_Level value causes an accident, but there’s 7 other possible accident conditions that could
also cause this attack to fail.

1 attack (22) combines (2, 6) SG1_Level min value 9.23(m) <= safe lower limit
12.0(m) occurred at 615.3(s) (TB_SpeedCtrlValveCmd U1-L, RC2\
_PumpSpeedCmd U1-L)

Listing A.4 Example Search Depth 2 (Two Attack) Output

The original (search depth 1) attack ids are listed in parentheses following the word "combines" in
order to link them to the attacks that are being combined from the initial sweep. The attack id is
the name of the JSON attack file in the search_depth_2 directory. Because of how the attacks are
combined, each search depth yields attacks with that number of attacks. For example, search depth
2 will always combine pairs of original attacks, search depth 3 will always have combine original
attacks into triplets, and so forth.

49

DISTRIBUTION

Email—Internal

Name Org. Sandia Email Address

Andrew S. Hahn 8851 ashahn@sandia.gov

Technical Library 1911 sanddocs@sandia.gov

50

