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Abstract
Advanced nuclear reactor systems face increasing cybersecurity threats as sophisticated attackers exploit cyber-physical interfaces to manipulate
control systems while evading traditional IT security measures. This research presents a comprehensive evaluation of artificial intelligence
approaches for cybersecurity protection in nuclear infrastructure, using Argonne National Laboratory’s Mechanisms Engineering Test Loop (METL)
as an experimental platform. We developed a systematic evaluation framework encompassing four machine learning detection paradigms: Change
Point Detection, LSTM-based Anomaly Detection, Dependency Violation analysis, and Autoencoder reconstruction methods. Our comprehensive
attack taxonomy includes 12 distinct scenarios targeting reactor control systems, from gradual sensor drift to sophisticated coordinated attacks,
each implemented across five severity tiers to evaluate detection performance under varying attack intensities. The experimental evaluation
encompassed 243 rigorous experiments across all paradigm-scenario-tier combinations using realistic METL operational data. Change Point
Detection emerged as the leading approach with mean AUC performance of 0.785, followed by LSTM Anomaly Detection (0.636), Dependency
Violation (0.621), and Autoencoder methods (0.580). Attack detectability varied significantly, with multi-site coordinated attacks proving most
detectable (AUC = 0.739) while precision trust decay attacks presented the greatest detection challenge (AUC = 0.592). We complemented
data-driven approaches with physics-based detection using PRO-AID, which leverages conservation laws and analytical redundancy relations to
provide explainable diagnostics grounded in immutable physical principles. This work delivers a practical reference architecture, open-source
implementation, and comprehensive performance benchmarks that advance AI-based cybersecurity capabilities for critical nuclear infrastructure,
providing essential foundations for operational deployment and enhanced threat response in cyber-physical systems.
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1 Executive Summary

This report presents comprehensive research on artificial intelligence (AI) applications
for cybersecurity protection in advanced nuclear reactor systems, conducted at Argonne
National Laboratory using the Mechanisms Engineering Test Loop (METL) as an experi-
mental platform. Our work addresses the critical vulnerability of cyber-physical systems
in nuclear infrastructure, where sophisticated attackers increasingly exploit digital control
systems to manipulate physical processes while evading traditional IT security measures.

Experimental Platform and Infrastructure: METL serves as an advanced experimental
facility designed to replicate key operational characteristics of sodium-cooled fast reactors
(SFRs). The facility features integrated test vessels operating at temperatures up to 1,200°F,
electromagnetic pumps, and comprehensive instrumentation and control (I&C) systems
including Emerson/NI cRIO devices and industrial controllers. This sophisticated archi-
tecture provides authentic thermal-hydraulic conditions and sensor networks essential
for developing AI-driven anomaly detection and cyber-physical security models. METL’s
segmented OT and IT networks, combined with detailed temperature profiles, flow mea-
surements, and sodium handling procedures, enable realistic simulation of cyber attack
scenarios targeting critical reactor operations.

Our research methodology evolved significantly during the project timeline. Initially,
we developed a streaming data pipeline using InfluxDB and MQTT protocols to enable
real-time attack simulation and detection. However, performance limitations and scalabil-
ity challenges led to a strategic pivot toward offline Parquet-based data processing in the
second half of the project. The final architecture implements a comprehensive transforma-
tion framework capable of generating multiple attack scenarios through configurable data
manipulations while preserving the temporal and statistical characteristics essential for
machine learning analysis.

We developed a systematic attack taxonomy encompassing 12 distinct attack scenarios
targeting various components of reactor control systems. These scenarios range from
gradual sensor drift and oscillatory manipulations to sophisticated coordinated attacks
spanning multiple facilities. Each attack scenario is implemented across five severity
tiers to evaluate detection performance under varying attack intensities. Our taxonomy
specifically focuses on attacks affecting the cold trap purification system within METL,
ensuring relevance to critical reactor safety functions while providing sufficient diversity
to challenge multiple detection paradigms.

Machine Learning Evaluation Framework: Our evaluation framework implements four
complementary detection paradigms: Change Point Detection using statistical baseline
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learning, LSTM-based Anomaly Detection with per-sensor modeling, Dependency Vio-
lation analysis through correlation matrix monitoring, and Autoencoder reconstruction
error analysis. Our comprehensive evaluation encompassed 243 experiments across all
paradigm-scenario-tier combinations, revealing significant insights into attack detectability
and paradigm effectiveness. Change Point Detection emerged as the leading approach
with mean AUC performance of 0.785, followed by LSTM Anomaly Detection (0.636),
Dependency Violation (0.621), and Autoencoder reconstruction (0.580). Attack detectability
varied dramatically, with multi-site coordinated attacks proving most detectable (AUC =
0.739) and precision trust decay attacks presenting the greatest challenge (AUC = 0.592).
Severity tier analysis revealed limited correlation between attack intensity and detectabil-
ity across most scenarios, with only cross-facility data transplant and sequential valve
manipulation showing meaningful tier sensitivity. These findings demonstrate the critical
importance of paradigm-attack matching for operational deployment and suggest that
ensemble approaches combining complementary detection methods could enhance overall
coverage.

Physics-Based Detection Integration: To address limitations of purely data-driven ap-
proaches, we evaluated PRO-AID (Parameter-Free Reasoning Operator for Automated
Identification and Diagnosis), a physics-based diagnostic platform that leverages im-
mutable physical laws for cybersecurity applications. PRO-AID implements three inte-
grated mechanisms: virtual sensors for extending observational coverage without ad-
ditional hardware, analytical redundancy relations (ARRs) derived from conservation
laws that provide mathematical ground truth, and probabilistic fault mapping using
Bayesian reasoning for explainable diagnostics. This approach enables regime classification
distinguishing between physical, mixed, and unphysical system behaviors, providing
complementary capabilities to machine learning methods by encoding invariants that
adversaries cannot easily circumvent.

Key Contributions and Deliverables: This work delivers a practical reference architec-
ture and end-to-end evaluation stack for AI-based anomaly detection in advanced reactor
operational technology environments. Key deliverables include code repositories for data
proxy systems, transformation frameworks, and ML experiments; reproducible experiment
configurations with comprehensive logs and aggregated metrics; and detailed architectural
documentation with data-flow specifications. Our standardized preprocessing methodol-
ogy, justified downsampling strategy, and results aggregation workflow with uncertainty
estimates provide a foundation for future research and operational deployment.
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2 Introduction

The increasing complexity and interconnected nature of advanced nuclear reactor systems
necessitate robust cybersecurity measures to protect critical infrastructure from sophisti-
cated cyber threats. As these systems integrate sophisticated instrumentation and control
architectures, they become vulnerable to a range of cyber attacks that can compromise
operational integrity and safety. This report presents a overview of our ongoing research at
Argonne National Laboratory, focusing on the application of artificial intelligence (AI) for
cybersecurity protection in advanced reactor environments.

The Mechanisms Engineering Test Loop (METL) serves as a pivotal experimental facility
for this research, offering a controlled environment to simulate conditions prevalent in
sodium-cooled fast reactors (SFRs). METL’s advanced instrumentation, sensor networks,
and integrated control systems not only emulate thermal-hydraulic and operational param-
eters typical of full-scale reactors but also provide high-fidelity data streams essential for
developing AI-driven anomaly detection and cyber-physical security models. Enhanced
by detailed temperature profiles, flow rate measurements, and comprehensive sodium
handling procedures, METL allows researchers to evaluate both the cyber and physical
resilience of reactor operations.

Our research methodology involves transforming METL data to simulate cyber attack
scenarios that impact both the operational technology (OT) and information technology
(IT) layers. In the first half of the year, we tested an in-stream (InfluxDB/MQTT) approach;
in they second half of the year, we executed transformations via offline replay on Parquet.
The experimental pipeline is designed to test detection models against sophisticated attack
vectors, including data interception, signal injection, and command spoofing.

3 The Argonne Mechanisms Engineering Test Loop

The Mechanisms Engineering Test Loop (METL) at Argonne National Laboratory is an
advanced experimental facility designed to support the development and testing of compo-
nents and systems pertinent to sodium-cooled fast reactors (SFRs). METL is engineered to
replicate key aspects of reactor operation by circulating purified R-grade sodium under con-
trolled conditions, thereby providing an authentic platform to study the thermal-hydraulic
and cyber-physical interactions encountered in operational nuclear facilities.
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3.1 Facility Overview and Capabilities

METL comprises an integrated array of test vessels, a primary sodium loop, and extensive
support systems. The facility features both 18-inch and 28-inch diameter test vessels engi-
neered to operate at temperatures reaching up to 1,000°F and 1,200°F respectively, with
precise flow control achieved through electromagnetic (EM) pumps and high-resolution
flow meters. The sodium, maintained in a molten state, is continuously purified via a
cold trap system designed to remove oxide and other impurities, ensuring a consistent
experimental environment. An expansion tank manages thermal expansion while a dedi-
cated dump tank facilitates safe drainage and sodium recovery operations. These features,
combined with rigorous sodium handling protocols, ensure that experiments mimic the
stringent conditions of advanced reactor systems.

3.2 Instrumentation and Control Systems

METL’s instrumentation and control (I&C) architecture is at the core of its operational
excellence, integrating controllers and sensor networks to facilitate high-speed data ac-
quisition and robust process control. The control system leverages Emerson/NI cRIO
devices1, which combine a real-time processor with a re-configurable FPGA, offering de-
terministic control and high-speed data processing essential for both thermal regulation
and cybersecurity monitoring. Complementing the cRIO are Emerson/NI industrial con-
trollers (ICs), optimized for automated data acquisition in extreme environments. These
controllers controllers support the requirements of both reactor simulation and cyber
defense applications.

Advanced metering solutions are provided by Schneider Electric PowerLogic meters,
which enable comprehensive monitoring of electrical parameters such as voltage, current,
power, energy consumption, and total harmonic distortion (THD) across up to 28 three-
phase circuits. These meters not only support detailed energy management but also supply
critical data for anomaly detection algorithms in cybersecurity applications. The overall
I&C network, secured via VLANs and segregated into dedicated OT and IT subnets,
facilitates real-time data transmission and robust system monitoring—features that are
vital for the simulation of cyber-physical threat scenarios.

1Model numbers/datasheet links redacted per Argonne Classification Office requirement and available upon
request
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3.3 Emulating Advanced Reactor Environments

METL is specifically designed to emulate key operational characteristics of a sodium-
cooled fast reactor’s (SFR) intermediate heat transport system. The use of liquid sodium
as the primary coolant replicates the thermal properties and chemical interactions found
in operational reactors, enabling realistic testing of material compatibility and thermal
stresses. Although METL operates at a reduced scale—with lower thermal power levels and
sodium inventory—it reproduces essential phenomena such as thermal stratification, flow-
induced vibrations, and sodium oxidation under controlled conditions. These conditions
provide a reliable basis for testing AI-based monitoring systems.

Distinct from full-scale reactor facilities, METL does not include a nuclear core or as-
sociated radiological hazards. This absence allows researchers to focus exclusively on
the cyber-physical dynamics and the performance of sensor and control systems under
high-temperature and high-flow conditions, without the complexities of neutron flux
monitoring and radiation shielding. Furthermore, METL incorporates a wide range of sen-
sors—including sodium level sensors, pressure transducers, thermocouples, and advanced
optical fiber temperature sensors—that deliver continuous data streams. These sensor
networks allow for real-time anomaly detection and predictive maintenance experimental
use cases in a manner analogous to operational reactor environments.

3.4 Comparative Analysis: METL vs. Operational Sodium Reactors

While METL successfully mirrors many aspects of operational sodium reactors, several
key differences must be acknowledged. METL operates on a smaller scale, with reduced
sodium volume and thermal output, resulting in proportionally lower flow rates and
simplified pressure conditions (typically up to 5 psig under an inert argon cover gas).
Unlike full-scale reactors, METL does not incorporate nuclear reactions or associated safety
systems such as neutron moderators, control rod assemblies, or complex fuel handling
mechanisms. Nevertheless, the I&C architecture, sensor networks, and data acquisition
systems in METL provide a realistic proxy for the OT environments found in operational
reactors. This fidelity is critical for developing AI models and cybersecurity measures that
are directly applicable to advanced reactor systems.

3.5 Relevance to Cyber Security and AI Research

The integration of advanced control systems and sensor networks in METL renders it an
ideal platform for cybersecurity research. The facility’s I&C systems, which include high-
performance controllers like the cRIO and IC, offer robust, real-time processing capabilities
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necessary for detecting and mitigating cyber threats. Detailed electrical metering provided
by the Schneider meters further supports data-driven analysis and enhances the reliability
of energy management systems. The secure network architecture—comprising dedicated
VLANs, virtual machines, and redundant communication channels—ensures that data
integrity is maintained even under simulated cyber attack scenarios.

By capturing high-fidelity data streams from diverse sensors, METL enables the appli-
cation of advanced AI and machine learning techniques to identify anomalies, predict
system failures, and enhance operator situational awareness. These capabilities are critical
for addressing cyber-physical security challenges in modern reactor systems. Moreover,
the controlled yet realistic environment of METL facilitates experimentation with novel
cybersecurity measures, such as real-time intrusion detection, self-calibration of sensor
networks, and automated anomaly remediation protocols. The insights gained from METL
experiments directly inform the development of defense strategies applicable to full-scale
sodium-cooled reactors.

4 Data Pipeline

4.1 METL Data Characterization

The METL facility produces two primary types of data: sensor readings and setpoint
parameters. All data is stored in the central METL data historian, which serves as the
authoritative repository for both real-time and historical information. This data can be
accessed from the historian in both batch and real-time modes using different approaches.
Batch historical data is stored in tdms format and accessible via a Python API, while
real-time data is accessible via HTTP GET requests to the METL data server. Additionally,
the METL data server provides distinct buses for accessing sensor (read-only or RO) and
setpoint (read-write or RW) data independently.

The METL dataset we persist for analysis uses a flat, long-format schema with one
record per observation. Each row contains: timestamp (timezone-aware), bus_type
(RO/RW), controller, module, datatype, group, name, meta_type, value (stored
as canonicalized string), and optional extra_params (RW-only suffix components). For
storage and query efficiency, the fetcher adds partition columns year, month, and day

(all strings) and writes Parquet partitioned by year/month/day/bus_type. Figure 1
summarizes the columns.
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1 {
2 "type": "object",
3 "properties": {
4 "timestamp": {"type": "string", "format": "date-time", "

description": "TZ-aware" },
5 "bus_type": {"type": "string", "enum": ["RO", "RW"] },
6 "controller": {"type": "string" },
7 "module": {"type": "string" },
8 "datatype": {"type": "string" },
9 "group": {"type": "string" },

10 "name": {"type": "string" },
11 "meta_type": {"type": "string" },
12 "value": {"type": "string", "description": "Canonicalized;

numeric/logical values serialized to string" },
13 "extra_params": {"type": "string" },
14 "day": {"type": "string" },
15 "month": {"type": "string" },
16 "year": {"type": "string" }
17 },
18 "required": [
19 "timestamp", "bus_type", "controller", "module",
20 "datatype", "group", "name", "meta_type", "value"
21 ]
22 }

Fig. 1. METL Data Schema

4.2 METL Data Fetcher Implementation

To efficiently collect and process data from the METL facility, we developed the METL
Data Fetcher, an asynchronous Python service that interfaces with the METL Web Services
API. The fetcher implements asynchronous data collection through concurrent fetching of
both read-only (RO) and read-write (RW) data buses using aiohttp for efficient HTTP
requests.

The system was designed to support two different polling modes: background polling
and aggressive polling. In background polling mode, the fetcher operates at a lower
frequency (typically every 5 minutes) to maintain a consistent historical record while
minimizing system load. The aggressive polling mode enables more frequent data col-
lection (as often as every second) when specific conditions in the returned data are met.
The Fetcher maintains a ring buffer of ten minutes of data at the "aggressive" rate, and
includes this "pre-activation" window data at the aggressive polling rate once triggered.
This dual-mode approach allows us to balance system resource usage during normal
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operation while having the ability to capture rapid changes during critical experimental
phases. The fetcher provides resilient operation through robust error handling with retry
logic and structured logging for operational monitoring. It authenticates to the METL Web
Services using API keys over HTTPS. In our testing, we observed that our polling may fall
behind by 300-400ms/refresh when polling at the aggressive rate (currently set to 1Hz),
but this is still much higher resolution than our background polling rate. This appears to
be a bottleneck in the Fetcher code, not the METL API, so could likely be remedied with
additional optimization or a higher-performance system running the Fetcher code.

4.3 Experimental Testing Pipeline Prototype

For operational analytics and cybersecurity research, in the first half of the year we devel-
oped an experimental pipeline as shown in Fig. 2. This system was intended to replicate
a realistic messaging protocol, and enabled us to simulate various cyber attack scenarios
and implement multiple virtual facilities for comparative analysis without affecting the
production METL installation. However, we did not use the InfluxDB/MQTT path for final
experimentation. Querying InfluxDB at scale proved too slow for our analysis workloads,
and the transformation framework could not run end-to-end in real time. We therefore
executed transformations offline on Parquet inputs and fed the ML experiments directly
from those outputs. This means real-time simulation is not currently supported without
changes to the storage/query path and transformation runtime.

Fig. 2. Data pipeline for experimentation (H1 prototype using InfluxDB/MQTT; not used in final
experiments).
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The experimental pipeline consisted of several key components arranged in a layered
architecture. At its foundation was InfluxDB, a time-series database optimized for stor-
ing sensor and control historical data from METL. The Data Proxy with Transformation
Framework applied configurable transformations to subsets of the data, capable of gener-
ating multiple sets of time-shifted data to mimic multiple site operations and various data
anomaly scenarios. An MQTT Broker acted as the publish-subscribe messaging system
for distributing transformed data to consumers, while MQTT Clients subscribed to topics
containing transformed data for consumption by downstream analytics. The system also
included visualization and monitoring capabilities through Grafana dashboards connected
to both InfluxDB and Prometheus for real-time monitoring of data flows and system
performance.

The data flow began with the METL fetcher collecting data from the MIDAS system and
storing it in Parquet files. The Historian component then read these files and made them
available to the Transform component. The Transform component applied various trans-
formations to the data according to the specified simulation configuration and published
the transformed data to the MQTT broker. Clients could then subscribe to specific topics to
receive the transformed data streams. Additionally, the system included a metrics collection
path through Telegraf, Prometheus, and Grafana for monitoring and visualization.

4.4 Comparison to Operational OT Systems

Our experimental pipeline replicated many aspects of operational OT systems commonly
found in industrial control environments, including those used in nuclear facilities. The
similarities to operational OT systems included the use of the standard industrial protocol
MQTT for data transmission, time-series data storage and management, hierarchical sensor
organization, separation of read-only and read-write data buses, and real-time monitoring
and alerting capabilities.

There are some differences from operational OT systems. Our system lacks the strict
air-gapping often found in critical infrastructure and has a higher reliance on IP-based
networking versus proprietary fieldbus technologies. There are no Safety Instrumented
Systems (SIS; dedicated safety shutdown functions) or regulatory compliance mechanisms,
and the security architecture is simplified compared to defense-in-depth approaches in
operational environments.

These differences, however, are not material to our cybersecurity analysis for several
reasons. The underlying data structures, communication patterns, and control logics remain
authentic to operational systems. Modern OT environments increasingly adopt IP-based
technologies, making our approach forward-compatible. The attack vectors and defensive
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Fig. 3. Class diagram showing the transformation framework

mechanisms we study are applicable regardless of the specific implementation details, and
our ability to simulate multiple virtual facilities allows comparison of different security
architectures. Future work will include incorporation of digital twins to allow for realistic
system responses to injected perturbations.

4.5 Experimental Capabilities

Despite the limitations of the MQTT approach, the core of our experimental pipeline is
the transformation framework implemented in the Data Proxy. This framework enables
us to simulate various cyber attack scenarios by applying configurable transformations
to the sensor data streams. The transformation framework allows researchers to create
complex, multi-stage attack scenarios by chaining transformers together, as shown in the
class diagram in Fig. 3. Researchers can apply different transformations to different virtual
facilities, introduce time skew between virtual facilities to simulate timing attacks, and
configure the severity and timing of simulated attacks. This flexibility provides a powerful
platform for comprehensive cybersecurity testing.
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This experimental setup provides several key capabilities for cybersecurity research. It
enables offline replay of historical data to simulate operational scenarios without affecting
production systems. The system supports generation of synthetic attack scenarios and
creation of multiple virtual facilities from a single data source. This facilitates comparison
of different detection and defense strategies and testing of machine learning anomaly
detection models against sophisticated attacks. Real-time simulation at scale is not cur-
rently supported without substantial changes to the storage/query layer and streaming
transformation runtime.

5 Cyber Attack Description

The details of components used in the I&C systems of METL has been described in 3.2. In
general, the I&C systems can be divided into four major parts [25]: (1) physical process,
(2) sensors, (3) controllers, and (4) actuators, along with the communication pathways
connecting these components. In complex systems, such as METL system, controllers are
often connected to an HMI or monitoring computers via a local network. In this context,
the physical process refers to the purification operation of the cold trap within the METL
(Mechanisms Engineering Test Loop) system.

To prioritize tasks and optimize resource allocation, this work focuses on cyber attacks
that could affect the critical function of the cold trap, specifically the purification of sodium.
As aforementioned, ensuring the efficient operation of METL requires monitoring the
impurity levels of oxygen and hydrogen in the liquid sodium coolant and maintaining the
sodium in its liquid state. The purification process can be disrupted by insufficient cooling,
which prevents the crystallization and subsequent capture of sodium oxide or hydride by
the cold trap, or by excessive cooling, which can lead to the solidification of sodium within
the loop.

5.1 Attack Taxonomy

Here we briefly categorize various types of Operational Technology (OT) cyber-attacks
based on their methods [8], targeted components, definitions , visibility to detection mech-
anisms, attack scenarios, and affected critical functions of the cold trap in METL. This
taxonomy not only provides an overview of OT cyber-attacks but also serves as an interface
between the cyber realm and the engineering domain. The attacks are described below and
summarized in Table 1.

(1) Denial of Service (DoS) Attacks
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In this type of attack, the attacker seeks to disrupt the availability of a system, service,
or process by overloading it with a high volume of queries or data packets. This flood
of traffic depletes system resources, limiting access for legitimate users and resulting
in a denial of service. DoS attacks often target important components of I&C systems,
such as Programmable Logic Controllers (PLCs), HMIs, and Distributed Control
Systems (DCSs) [11].

• Volumetric Denial of service (VDoS):
A VDoS attack originates from a single source, where the attacker overwhelms
the target system by sending a large volume of traffic or resource-intensive re-
quests. Typically, the attacker uses one computer or a small group of computers
to carry out the attack.[2].

• Distributed Denial of Service (DDoS) :
A DDoS attack originates from multiple sources, typically involving a large
number of compromised computers, known as botnets, that are coordinated to
carry out the attack. Each botnet machine generates a surge of traffic or requests
directed at the target system simultaneously, intensifying the overall impact.
Because of its distributed nature, defending against a DDoS attack is more
challenging compared to a VDoS attack [17].

(2) Integrity Attacks (IntA) In integrity attacks, attackers gain access to sensor, controller,
actuators or communication channels. This broad attack surface enables them to
alter data and processes, affecting the accuracy and reliability of the generated
information. In our case, an IntA can be executed without requiring deep domain
expertise or prior system knowledge, making it quick and straightforward to deploy.
As a result, IntA has been extensively studied due to its ease of execution and broad
attack surface.

• Simple Attacks
The simple attacks involve minor modifications to compromise the integrity
of systems. For example, an attacker may alter thermocouple readings and
send inaccurate data to the control system by scaling, freezing, or adding bias
to the sensor outputs [5]. Consequently, the actual temperatures deviate from
the perceived values, potentially leading to equipment malfunctions, product
defects, or safety hazards.

• Covert Attacks
Covert attacks are designed to remain hidden and undetected while carrying
out malicious activities within a target system or network. A representative
covert attacks within IntA is replay attack, which replays captured historical



16 B. Blakely, R. Vilim, et al

data to bypass traditional security measures such as classical 𝜒2 detector [18].
Since the data are genuinely from the system, it allow attackers to exploit
systems even when encryption is in place [4].

(3) Control-Theoretic attacks
• Perturbation-based Attacks

These attacks introduce external disturbances that can compromise the stabil-
ity, accuracy, or safety of controlled processes[9]. They are knowledge-driven,
relying on sector-specific analysis that provide insights into the system’s char-
acteristics. The effectiveness of these attacks depends on the attacker’s prior
knowledge of the sector, process, or system accessibility, inherently limiting
their scope to specific domains and making them highly specialized. Literature
indicates that these attacks often target sensors or actuators, using either stable
or oscillatory perturbations tailored to the unique features of the target compo-
nents [18]. Oscillatory perturbations are usually undesirable in operations, as
they introduce larger noise into the system, causing frequent deviations and
accelerating component degradation.

• Information Theoretic Attacks (ITAs)
The ITAs exploit information leakage to indirectly infer system behavior and
manipulate it without direct intervention. Attackers do not actively inject com-
mands or modify system logic. Instead, they employ statistical analysis, data
monitoring, or inference techniques to understand how the system operates
over time [20]. By analyzing outputs like network traffic patterns, control sig-
nals, or sensor data, they gather intelligence on the system’s functionality. Once
sufficient information is obtained, attackers manipulate inputs or conditions to
induce indirect failures.
For example, in a smart grid attack, an attacker monitors voltage fluctuations
to learn how the grid responds to changes in demand. By triggering specific
electrical loads at precise moments, they can destabilize the grid without al-
tering the control logic. These attacks are subtle and hard to detect since no
direct system modification occurs. ITAs allow attackers to predict and influence
control system behavior without triggering alarms and are often used as a
preliminary phase before launching more direct attacks.
The impact of information-theoretic attacks can be significant yet subtle, making
them hard to detect since no direct system modification occurs. They allow
attackers to predict and manipulate control system behavior without triggering
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alarms. ITAs are often used as a preliminary attack phase before launching
more direct attacks.

(4) Injection Attacks
In this type of attack, an attacker attempts to inject malicious code or made-up data
into a system and execute it in a way that compromises its integrity, granting unau-
thorized access and control. By supplying false or harmful inputs to a program, the
attacker can manipulate system behavior. These attacks are particularly dangerous,
as they can lead to severe or even catastrophic consequences. Research indicates
that the malicious inputs are often introduced in various forms, including false data,
time delays, and control logic, specifically targeting I&C systems.

• False Data Injection (FDI)
The FDI attacks target on falsifying the transmitted data while these attacks
may lead to cascading influences, which are often identified as a major threat
towards I&C systems [3]. The FDI attacks are launched by attackers who has
access to sensors or controllers and have the intimate knowledge of the system,
such as the system model. Then the FDI attack is launched by [19]

• Time Delay Injection
In these attacks, a malicious actor introduces extra time delays into multiple
communication channels of I&C systems. For instance, an adversary may inject
additional delays into both the feedback and forward communication channels
of the I&C systems, which may lead to the complete failure of the I&C systems.
In [12], a gradual increase in time delays can push the control system into an
unstable state.

• Control Logic Injection Control logic injection attacks are a type of cyber attack
targeting PLCs. In these attacks, attackers manipulate or inject malicious code
into the control logic of PLCs, aiming to disrupt the physical processes, which
may lead to equipment damage and operational downtime [26].

(5) Stealthy Attacks
Stealthy Attacks actively manipulate system behavior while avoiding detection by
security measures. In these attacks, the attacker directly modifies sensor readings,
control signals, or process variables, deliberately bypassing anomaly detection tools
and monitoring systems. Rather than making abrupt modifications, stealthy attacks
are executed gradually over an extended period, introducing delicate changes. This
approach requires specific domain knowledge to estimate and apply the delicate
changes introduced to the system, allowing the attacker to stay below detection
thresholds and disguise malicious actions as normal system behaviors [14]. The
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impact of stealthy attacks can be significant due to their subtle and hard-to-detect
nature. Since the malicious activities resemble normal system behavior, they often
go unnoticed. Over time, the accumulated small changes can lead to long-term
damage or even physical failures if the attack remains undetected.

• Stealthy false command attack
In this type of attack, the attacker leverages the insecurity of the MODBUS
protocol and inject stealthy false commands to the target PLC [1]. More than
the control logic injection attack, this type of attack relies on a database of
real request-response interaction pairs, allowing the adversary to consistently
provide the expected responses to the HMI. By doing so, the attack remains
hidden from the operator and effectively disconnects the PLC from the HMI.
As a result, the operator perceives normal system behavior, while the actual
controller may be compromised without detection.

• Zero-residual attack (ZeRa)
In this scenario, the attacker injects false inputs but compensates elsewhere so
the magnitude of residual is zero that system monitors do not detect anomalies
[10]. In [6], the attack is launched by two state estimators, one is responsible for
the physical system state estimation, and the other is responsible for estimating
the detector state Consequently, the system operates under incorrect conditions
without triggering any alerts.

(6) Miscellaneous attacks
• Payload Attacks

A payload attack is a type of cyber attack where an attacker delivers and
executes a malicious payload within a targeted system [15]. The payload refers
to the part of the attack that carries out harmful actions, such as modifying
system behavior, stealing data, or disrupting operations. In I&C systems, a
payload attack often involves injecting malicious code into PLCs, sensors, or
other control components to alter processes, disable safety mechanisms, or
cause physical damage [16].

• Sequential attacks
In this attack, the physical processes of a system can be disrupted by altering
the control sequences. For example, this work [27] provided a metric, sequential
attack graph, which is a representation that illustrates the steps an attacker
could take to compromise a system or network in a sequential manner.

• Side-channel attacks
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These attacks exploit side-channel data, including power consumption, elec-
tromagnetic emissions, LED signals, and acoustic signals, to access sensitive
information or undermine system security. Unlike traditional attacks that target
software vulnerabilities, side-channel attacks focus on the unintended emis-
sions produced during computation. For instance, LED indicators can serve
as an indirect channel for data exfiltration. Malware in an air-gapped network
could manipulate LED signals to encode and transmit sensitive information,
which an external sensor or camera could then capture and decode [24].
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Table 1. Attack Taxonomy

Attack Category Visibility/ De-
tectability

Target Component Sub-category Attack Scenarios Critical Functions

DoS attacks High
Communication channels,
Controller, HMIs

VDoS
DDoS

Large volume of data
—

Controller failed to respond
—

Integrity attacks Medium to Low
Sensors, Controllers,
Communication channels

Simple attacks
Covert attacks

Modified sensor readings
Replay attack

Inadequate cooling or im-
proper flow rate

Control-theoretic
attacks

Low
Controllers,
Actuators

Perturbation-based
Information Theoretic

Oscillation in control output
Learn system info offline

QoIs oscillation
Information leakage
(No active interference)

Injection attacks Medium to Low
Sensors, Controllers,
Communication channels

False data injection
Time delay injection
Control logic injection

Modified sensor readings
Delayed sensor readings
Modified control parameters

Inadequate cooling or
improper flow rate
Delayed state estimation
Corrupted state estimation

Stealthy attacks Very Low
Sensors, Controllers,
Communication channels,
Actuators

Stealthy false command
Zero-Residual Attack

Modified control commands
Multiple variables modified
to make residual zero

Inadequate cooling or
improper flow rate
State deviation without
detection

Miscellaneous
attacks

Varies
Firmware, Controller,
HMI

Payload
Sequential
Side-channel

Firmware injection
Modified control logic sequences
LED/acoustic sensor
eavesdropping

Inadequate cooling or
improper flow rate
Information leakage
(No active interference)
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5.2 Attack Implementation Through Data Transformation

The attacks described in our taxonomy can be implemented through various data transfor-
mation techniques. These transformations provide concrete mechanisms for manipulating
sensor readings, control signals, and system states to realize the attack categories outlined
earlier. Table 2 summarizes key transformation functions and their applications to different
attack categories.

These transformation techniques provide the technical foundation for implementing
the attack categories described in our taxonomy. For example, a False Data Injection
attack targeting temperature sensors could be realized through a combination of scaling,
offset, or spike transformations. Similarly, a Stealthy Attack might combine conditional
transformations with physical relationship violations to ensure the manipulated values
remain below detection thresholds while creating system impacts.

The implementation of these transformations requires specific technical approaches.
For instance, scaling transformations apply a multiplier to sensor values, which could be
constant (e.g., 0.8× of the true value) or time-varying (e.g., gradually decreasing from 1.0
to 0.7 over several hours). Oscillation transformations introduce periodic variations by
adding sinusoidal components with configurable frequency, amplitude, and phase. Delay
transformations cache historical values and introduce time lags in the reporting of sensor
data or control commands, potentially desynchronizing related signals.

5.3 Attack Scenarios in METL

We have identified several additional attack vectors that could impact the METL system’s
operations. These scenarios represent a diverse range of attack techniques and system
impacts, as summarized in Table 3.
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Table 2. Data Transformation Techniques for Attack Implementation

Transformation Technique Implementation Approach Applicable Attack Categories

Scaling Transformation
Multiply sensor values by configurable factors,
with potential time-dependency

Integrity Attacks, False Data Injection,
Stealthy Attacks

Oscillation Transformation
Add sinusoidal patterns with configurable
frequency and amplitude

Control-Theoretic Attacks (Perturbation-based),
False Data Injection

Spike Transformation Insert temporary anomalies with configurable
magnitude

Integrity Attacks, False Data Injection

Offset Transformation Add/subtract constants or time-varying offsets
Integrity Attacks, False Data Injection,
Stealthy Attacks

State Toggle Transformation Manipulate binary/multi-state values to create
inconsistent states

Injection Attacks, Stealthy Attacks

Delay Transformation Cache and delay values by configurable time pe-
riods

Time Delay Injection, DoS Attacks

Replay Transformation Record and replay historical data, potentially
with modifications

Covert Attacks (Replay), Stealthy Attacks

Precision Degradation Reduce value precision through controlled round-
ing

Integrity Attacks,
Information Theoretic Attacks

Noise Injection Add random noise with configurable distribu-
tions

Integrity Attacks, DoS Attacks

Conditional Transformation Apply transformations based on complex condi-
tions

Stealthy Attacks, Zero-Residual Attacks

Physical Relationship Violation Manipulate related sensors to create physically
impossible states

Control-Theoretic Attacks,
Zero-Residual Attacks

Propagation Transformation Spread effects across related sensors with realistic
delays

Sequential Attacks, Stealthy Attacks
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Table 3. Expanded Attack Scenarios for METL

Attack Scenario Primary Category Target Components Potential Impact

False Flow Rate Reporting False Data Injection Flow rate sensors (air and sodium)
Inadequate cooling, thermal stress,
potential pump damage

Flow Oscillation Pattern False Data Injection Electromagnetic pumps and flow meters
System resonance, inefficient heat transfer,
premature equipment failure

Coordinated Thermocouple Manipu-
lation

False Data Injection Multiple thermocouples across system
Thermal stress, uneven expansion,
accelerated corrosion

Temperature Spike and Recovery False Data Injection Temperature sensors
False safety system activation, operational
interruptions, operator distrust

Valve State Inconsistency Injection Attack Multiple valve position indicators
Operator confusion, valve seat damage,
operational downtime

Sequential Valve Manipulation Injection Attack Multiple valves affecting sodium purification
Reduced sodium purity, increased corrosion,
cold trap efficiency reduction

Sensor Data Delay Time Delay Injection Multiple sensor types
Delayed operator response, control system
instability, potential emergency trips

Localized Data Replay Replay Attack Subsystem sensor clusters
Hidden hotspots, undetected maintenance
conditions, experimental data corruption

Flow-Temperature Relationship At-
tack

Combined (FDI + Replay) Flow and temperature sensors
Operator confusion, incorrect cooling
adjustments, energy waste

Command-Feedback Desynchroniza-
tion

Combined (Timing + Injec-
tion)

Control systems and feedback loops
Control hunting/oscillation, increased
component wear, operator mistrust
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5.4 Severity Tier Implementation

To enable systematic evaluation of detection performance across attack intensities, we
implemented a five-tier severity scaling system that parameterizes attack magnitude while
maintaining scenario-specific characteristics. Each attack scenario supports five intensity
levels designated as tier_001, tier_005, tier_010, tier_050, and tier_100, representing 1%, 5%,
10%, 50%, and 100% of maximum attack intensity respectively.

The tier scaling implementation varies by attack scenario and transformation type,
reflecting the diverse nature of cyber-physical attack vectors:

Amplitude-Based Scaling. For attacks involving sensor value modification (scaling, offset,
spike transformations), tier parameters directly control the magnitude of alterations:

• Scaling attacks: Tier_001 applies 1% deviation from normal values (0.99× or 1.01×
multipliers), while tier_100 applies maximum credible scaling (0.5× or 2.0× multipli-
ers)

• Offset attacks: Tier values control additive bias magnitude relative to sensor mea-
surement ranges

• Spike attacks: Tier parameters determine peak amplitude and duration of injected
anomalies

Frequency and Duration Scaling. For temporal attacks (oscillation, delay, replay), tiers
control time-domain characteristics:

• Oscillation attacks: Higher tiers increase frequency and amplitude of injected
sinusoidal patterns

• Delay attacks: Tier values determine delay duration from milliseconds (tier_001) to
seconds (tier_100)

• Replay attacks: Tiers control the temporal span and repetition patterns of historical
data injection

Coordination and Complexity Scaling. For multi-sensor coordinated attacks, tiers control
the breadth and sophistication of manipulation:

• Sensor count: Higher tiers affect larger numbers of coordinated sensors
• Temporal coordination: Advanced tiers introduce complex phase relationships and

propagation delays
• Physical relationship violations: Higher tiers create more severe violations of

expected correlations between related measurements
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This parameterized approach enables systematic evaluation of how attack detectability
varies with intensity, providing insights into detection threshold behaviors and algo-
rithm sensitivity characteristics. However, as discussed in our ROC analysis methodology,
achieving meaningful tier differentiation requires careful parameter selection to ensure
that intensity changes cross genuine detection boundaries rather than remaining within
algorithm insensitivity ranges.

5.5 Fleet-level Attack Considerations

While our primary focus has been on attacks targeting individual components or subsys-
tems within a single advanced reactor, it is important to consider attack scenarios that
have fleet-wide implications. In a distributed control system environment with multiple
facilities or subsystems, sophisticated attackers may leverage cross-system attacks that are
difficult to detect when examining each system in isolation.

Fleet-level attack patterns may include:

• Propagating attacks that migrate across facilities with time delays, creating the
appearance of independent issues rather than a coordinated campaign

• Coordinated oscillations implemented across multiple systems with strategic phase
shifts, potentially creating resonance effects or masking the artificial nature of the
oscillations

• Cross-facility data transplantation where data patterns from one facility are repli-
cated in another, creating false correlations that may confuse detection systems

• Facility-specific variations of common attack patterns, tailored to evade detection
systems that look for identical signatures across systems

• Cascading failure simulations that trigger realistic cross-system dependencies,
making attacks appear as natural consequence cascades

For example, attackers might implement the Flow Oscillation Pattern attack across
multiple facilities with specific time offsets, creating the appearance of a propagating
phenomenon rather than a coordinated attack. This could lead investigators to search for
physical or environmental causes rather than cyber interference.

Similarly, a Coordinated Thermocouple Manipulation attack could be implemented with
facility-specific variations, creating thermal profile anomalies that appear unique to each
facility but collectively serve the attacker’s broader objective of disrupting operations or
inducing incorrect maintenance actions.
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These fleet-level considerations highlight the importance of implementing detection
mechanisms that can correlate events across distributed systems, identifying patterns that
may not be apparent when analyzing each system independently.

6 Detection Challenges

Detecting the attacks described in our taxonomy presents several challenges that must be
addressed when designing defensive strategies. These challenges vary by attack type and
implementation method.

• Gradual attacks defeat simple threshold detection by slowly introducing deviations
that remain within acceptable parameter ranges

• Oscillatory patterns may be mistaken for normal system variations unless pattern
recognition is employed

• Coordinated multi-sensor manipulations require correlation analysis across multi-
ple parameters to detect physically impossible states

• Replay attacks present historically valid data that passes validity checks but masks
current conditions

• Timing attacks with small delays are difficult to detect without precise temporal
analysis

• Zero-residual attacks explicitly design manipulations to produce no detectable
anomalies in monitoring systems

The False Flow Rate Reporting scenario illustrates the challenge of gradual manipula-
tion, where the attack progressively scales sensor readings over hours or days, keeping
values within normal operational ranges while creating hazardous conditions. Traditional
threshold-based detection would fail to identify this attack until conditions become severe.

Similarly, the Valve State Inconsistency scenario creates logical contradictions in system
state that might not trigger alarms focused on individual value ranges. Detection requires
context-aware monitoring that understands the relationships between different valve states
and can identify impossible configurations.

Effective detection strategies must employ a multi-layered approach combining some
subset of:

(1) Physical model validation to verify that sensor readings conform to expected physi-
cal relationships

(2) Temporal correlation analysis to detect subtle timing anomalies in related signals
(3) Cross-system correlation to detect coordinated manipulations that span multiple

subsystems
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(4) Deep learning approaches capable of identifying subtle deviations from normal
operating patterns

For example, detecting a Flow-Temperature Relationship Attack requires physical model
validation that understands the expected correlation between flow rates and temperature
changes. When these relationships are violated, even if individual parameters remain
within normal ranges, the system can identify potential manipulation.

The detection challenges reinforce the need for defense-in-depth strategies that combine
multiple detection techniques, each designed to address specific attack vectors while
collectively providing comprehensive coverage against the attack taxonomy presented in
this paper.

6.1 Data Representation and Scaling Challenges

Beyond attack-specific detection challenges, fundamental issues in data representation and
preprocessing can severely impact detection system performance. These challenges are
particularly acute in nuclear reactor environments with heterogeneous sensor networks.

Nuclear reactor systems integrate diverse sensor types measuring fundamentally differ-
ent physical quantities with widely varying natural scales. Temperature measurements
may span hundreds of degrees, pressure readings tens of PSI, and flow rates hundreds
of gallons per minute. When these disparate measurements are combined for machine
learning analysis, inappropriate normalization strategies can:

• Create artificial correlations between unrelated sensor types, leading to false depen-
dencies in learned models

• Mask genuine attack signatures when changes in one sensor type are overwhelmed
by the scale differences of other sensors

• Cause training instabilities in neural networks when input ranges exceed expected
bounds

• Dilute attack signals affecting specific sensor subsets when averaged across all
sensor types

A particularly challenging phenomenon occurs when attack signatures affecting a subset
of sensors become statistically diluted by the majority of unaffected sensors. In nuclear
facilities with hundreds or thousands of sensors, attacks typically target specific subsystems
(e.g., cooling circuits, valve operations) affecting perhaps a dozen sensors while leaving
the rest operating normally. Global scaling and averaging approaches can render these
focused attacks undetectable by:

• Averaging attack-induced reconstruction errors with normal sensor errors
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• Applying global threshold criteria that fail to account for sensor-specific baselines
• Learning model parameters dominated by the statistical properties of unaffected

sensors

These scaling challenges require architectural solutions in the preprocessing pipeline
rather than algorithmic improvements in detection methods. Effective detection systems
must preserve sensor-specific characteristics while enabling cross-sensor correlation analy-
sis. This necessitates normalization strategies that maintain physical interpretability and
prevent statistical artifacts from masking genuine cybersecurity threats.

The importance of addressing these fundamental data representation issues cannot be
overstated—improperly scaled input data can render sophisticated detection algorithms
completely ineffective, regardless of their theoretical capabilities.

7 System Architecture and ML Evaluation Framework

To support rigorous and repeatable cyber-physical evaluations, we implemented a modular
architecture that separates configuration, attack generation, data services, preprocessing,
and ML experimentation. The framework enables dual-path loading (clean training data
vs. attack testing data), experiment tracking via structured JSON logs, and hardware-aware
execution for high throughput.

This section first outlines the overall architecture and data flow, then details the data
format and preprocessing choices, the evaluation protocol (labeling, thresholds, missing-
data policy, metrics/uncertainty), and finally operational considerations (deployment,
limitations, reproducibility).

Fig. 4. Simplified data flow from raw METL data through attack generation, preprocessing, ML
experimentation, and analysis.

7.1 Data Format and Feature Set

Preprocessed Parquet datasets use the long-format schema emitted by the METL fetcher:
core columns timestamp, controller, module, datatype, group, name, meta_type,
and value (string). Optional extra_params may appear for RW tags. For storage, parti-
tion columns year, month, day, and bus_type are added and used for on-disk partition-
ing.
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For ML, we construct per-row features comprised of: label encodings of identifiers
(bus_type, controller, module, group, name, meta_type) plus seven temporal fea-
tures (som, moh, hod, dow, wom, moq, qoy) and the numeric value. This yields a 14-feature
numeric vector (6 label-encoded identifiers + 7 temporal + 1 value) for paradigms operating
on long-format data. The timestamp is reserved for sequencing/windowing; datatype
and partition columns (year/month/day) are excluded from model inputs.

The pipeline supports memory-safe streaming (online ML) processing, pivoting from
long to wide format, schema standardization to ensure training–test consistency, and
filling of missing sensors after pivot. Data Format Selection: Different ML paradigms
utilize different data representations—autoencoders operate on wide-format pivoted data
(dynamically determined sensor count + 7 temporal features), while other paradigms may
use long-format sequential data (14 features per timestep). This architectural choice ensures
optimal input representation for each algorithm type while maintaining preprocessing
consistency.

7.1.1 Sensor Subset Selection. METL’s comprehensive instrumentation includes ap-
proximately 11,899 sensor and setpoint data points monitoring diverse aspects of facility
operation (temperatures, pressures, flows, valve positions, electrical parameters, etc.). For
cybersecurity evaluation, we filtered this full sensor set based on relevance to our simulated
scenarios, resulting in 214 sensors that were either direct targets of our attack scenarios or
related to them.

This sensor selection process focused on:

• Attack-Relevant Sensors: Direct targets of implemented attack scenarios (thermo-
couples, flow meters, valve position indicators, heater controls)

• Physically Related Sensors: Measurements from components with physical rela-
tionships to attack targets (upstream/downstream temperatures, related control
loops)

• Representative Sensor Types: Additional sensors of the same types and physical
principles as attack targets to provide realistic multi-sensor context

• Control System Integration: Sensors integrated with the same control loops and
I&C systems as attack targets

This filtering approach enables realistic evaluation of attack detection across sensor net-
works while maintaining computational tractability. The selected sensor subset preserves
the multi-sensor correlation patterns and control dependencies that attacks exploit, while
excluding sensors (e.g., facility utilities, non-critical monitoring) that would not contribute
meaningfully to cybersecurity analysis.
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7.1.2 Multi-Sensor Scaling Architecture. Nuclear reactor instrumentation presents unique
challenges for machine learning applications due to the heterogeneous nature of sensor
measurements. Conventional approaches using global normalization across all sensor types
can introduce artificial correlations and mask genuine attack signatures. Our implementa-
tion employs a hierarchical scaling strategy that preserves sensor-specific characteristics
while enabling effective anomaly detection:

Sensor-Specific Normalization. Each unique sensor combination (identified by bus, con-
troller, module, group, measurement type, and meta type) receives individual scaling using
robust statistical methods (IQR-based scaling to diminish the impact of outliers). This
approach prevents inappropriate mixing of different physical quantities and maintains the
natural relationships within each sensor type.

Temporal Feature Scaling. Time-based features (second of minute, minute of hour, hour
of day, day of week, week of month, month of quarter, quarter of year) receive dedicated
normalization appropriate to their respective range, preserving temporal patterns while
ensuring consistent input scaling for machine learning models.

This scaling architecture proved essential for achieving effective anomaly detection
performance. Initial implementations using global scaling across heterogeneous sensors
resulted in poor model convergence and reduced sensitivity to attack patterns. The sensor-
specific approach maintains physical interpretability while enabling robust statistical
learning.

7.1.3 Missing Data and High-Variance Training Data Filtering. To ensure meaningful
and consistent data, we forward-fill gaps in the data post-pivot (for experiments using
wide-format data). For some models, a critical training data quality enhancement filters
out steady-state periods to focus models on informative dynamic operation:

• High-Variance Training Filter (LSTM/Autoencoder/Dependency Violation): Mod-
els train exclusively on high-variance chunks (≥ 0.1 variance threshold across ≥ 12
sensors) to focus learning on dynamic periods (system transitions, maintenance
operations, process changes) vs steady-state reactor operation where sensors barely
vary. This fundamental shift from quantity-based (all data) to quality-based (dy-
namic periods only) training prevents models from learning steady-state noise
patterns that obscure attack modifications.

• Change Point Detection: No variance filtering applied as this paradigm effectively
detects changes across all operational states.
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Training Data Quality Impact: The high-variance filtering approach addresses a critical
limitation where LSTM and Autoencoder paradigms previously learned to predict/re-
construct constant sensor values with minimal variation, making attack modifications
indistinguishable from normal measurement noise.

By training exclusively on dynamic periods—filtering out approximately 80-90% of
steady-state operational chunks with stricter variance thresholds—models learn meaning-
ful temporal patterns and sensor correlations during system transitions. This approach
enables attack modifications to be more readily detectable against learned dynamic base-
lines rather than steady-state noise patterns.

7.1.4 Temporal Downsampling Strategy. To balance signal fidelity and throughput, we
apply a 30-second downsampling strategy that aligns with METL process dynamics and
the attack signatures under study. We justify this downsampling approach as follows:

• Many plant-level thermal/flow phenomena in sodium loops evolve on minute-
scale time constants; our targeted attack patterns remain well-resolved at 30-second
cadence.

• Downsampling provides computational efficiency, substantially lowering mem-
ory pressure for pivot operations and accelerating end-to-end evaluations while
maintaining sufficient temporal resolution for anomaly detection.

• Downsampling is performed with windowed aggregation appropriate for anomaly
detection (e.g., robust averaging)

• Temporal encodings (e.g., second/minute/hour-of-day, day-of-week, etc.) remain
intact at the new cadence, preserving diurnal/operational context used by learning
algorithms.

• For physics-based system analysis and prognostics (e.g., fast transients, component
health monitoring), higher sampling rates may be appropriate; our cyber-focused
evaluations target minute-scale signatures, for which a 30-second cadence is suffi-
cient. The framework supports higher-rate modes when required.

Threat model (see Attack Taxonomy). We assume an adversary capable of network-level ma-
nipulation (e.g., MITM, replay, precision degradation) but not physical tampering or Safety
Instrumented System (SIS) bypass; insider-equivalent data-plane access is modeled. Goals
include stealthy integrity violations, coordinated timing, and minute-scale disturbances;
cryptographic compromise and kinetic outcomes are out-of-scope.
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7.2 Machine Learning Paradigms

We selected a cross-section of ML paradigms to test, covering the elements above. All
paradigms follow a dual-path methodology: models train exclusively on clean data and
evaluate on attack data to prevent leakage. While not fully comprehensive, these provide
sufficient diversity to understand the key challenges for detecting cyber attacks in these
environments.

7.2.1 LSTM Forecasting. The LSTM (Long Short-Term Memory) approach employs a spe-
cialized recurrent neural network architecture designed for temporal pattern recognition in
nuclear reactor sensor data. Unlike traditional anomaly detection that analyzes individual
data points, this method examines sequences of measurements over time to learn normal
operational patterns, making it particularly effective at detecting coordinated attacks that
unfold across multiple timesteps.

Core Architecture: 4-layer tapering LSTM with progressively smaller hidden layers (40
→ 32 → 24 → 16 units) enabling hierarchical temporal feature extraction. The network
incorporates 15% dropout regularization and gradient checkpointing with mixed precision
training to ensure computational efficiency while processing large-scale reactor datasets.

Data Processing and Training:

• Sequence Construction: Creates 50-timestep sequences (approximately 25 minutes
at 30-second intervals) from wide-format vectors containing all available sensor
measurements per timestep. Each LSTM model is specialized for a target sensor,
using the full multi-sensor context to predict future values.

• Per-Sensor Architecture: Employs specialized target-focused models (one per sen-
sor), each predicting one target sensor using all sensors as context, eliminating
signal dilution in loss calculation while preserving multi-sensor context for tempo-
ral pattern learning

• Training Strategy: Batch size 16, learning rate 0.001 using Adam optimizer, trained
for up to 20 epochs with early stopping (patience=8) to prevent overfitting on
normal operational patterns

• Dynamic Period Focus: Trains exclusively on high-variance chunks representing
dynamic operational periods (system transitions, maintenance operations) rather
than steady-state data, enabling better attack signal detection

• Forecasting Method: Predicts next timestep values (X → X+1) using Mean Squared
Error loss, learning temporal dependencies characteristic of normal reactor behavior
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• Attack Detection: Identifies anomalies through persistent prediction errors exceed-
ing the 85th percentile threshold of training errors, indicating deviations from
learned normal patterns

Strengths/Limitations:

• Captures temporal dependencies and coordinated multi-sensor dynamics.
• Benefits from minute-scale downsampling; very long-range effects may require

larger time windows.

7.2.2 Autoencoder Anomaly Detection. The autoencoder approach employs a neural net-
work architecture trained to learn compact representations of normal reactor operational
patterns. This method operates by compressing sensor data into a lower-dimensional latent
space and then reconstructing the original input. During cyber attacks, the network strug-
gles to accurately reconstruct manipulated sensor readings, producing high reconstruction
errors that serve as anomaly indicators.

Core Architecture: Dense autoencoder featuring a 4-layer encoder (64 → 32 → 16 → 8
units) with symmetric decoder architecture, compressing sensor patterns to a 4-dimensional
latent bottleneck. The network incorporates batch normalization, 10% dropout regulariza-
tion, and gradient checkpointing to ensure memory-efficient training on large-scale reactor
datasets.

Data Processing and Training:

• Feature Representation: Processes wide-format feature vectors containing all avail-
able sensor measurements per timestep.

• Training Strategy: Batch size 128 with 0.001 learning rate using Adam optimizer,
trained for up to 20 epochs with early stopping (patience=8) to prevent overfitting
on normal operational patterns

• Dynamic Period Focus: Trains exclusively on high-variance chunks representing
dynamic operational periods rather than steady-state reactor operation, improving
sensitivity to attack-induced changes

• Reconstruction Learning: Optimizes Mean Squared Error loss between input fea-
tures and reconstructed output, learning to compress and reconstruct normal sensor
patterns with minimal information loss

• Attack Detection: Identifies anomalies using maximum reconstruction error per
sample across all sensors rather than averaging, ensuring attacks affecting any
sensor subset trigger detection

Strengths/Limitations:
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• Effective for cross-sensor inconsistencies at a given timestep.
• Less sensitive to purely temporal-only anomalies without explicit temporal features.

7.2.3 Dependency Violation Detection. The dependency violation approach recognizes
that nuclear reactor systems exhibit strong interdependencies between sensors due to un-
derlying physics (temperature-pressure relationships, flow-thermal coupling) and control
logic constraints. Cyber attacks often violate these natural relationships, creating detectable
inconsistencies even when individual sensor values remain within normal operational
ranges. This method is particularly effective at identifying sophisticated attacks that ma-
nipulate multiple sensors in physically impossible ways.

Dynamic Correlation Baseline Learning: Dependency violation detection employs
sophisticated baseline learning methodology to achieve accurate violation detection and
interpretability.

Baseline Learning Approach: Correlation violation calculation uses dynamically learned
baselines from training data rather than static thresholds. This approach captures actual
sensor correlation patterns during normal operations, enabling precise detection of depen-
dency disruptions specific to each reactor configuration.

Implementation Details:

• Dynamic Correlation Baselines: System learns and stores actual correlation values
between sensor pairs during training, creating individualized baseline expectations
for each dependency relationship

• Context-Aware Violation Scoring: Violation scores calculated as absolute devia-
tion from learned baselines, providing scenario-specific sensitivity to dependency
changes

• Direct Performance Assessment: ROC analysis uses raw violation scores without
transformation, enabling straightforward interpretation of detection capabilities

The dependency violation detection employs a sliding window temporal analysis ap-
proach to generate realistic per-timepoint variation scores. Rather than broadcasting static
sensor-level violation scores to all timepoints (which would create artificial perfect separa-
tion), the system analyzes dependency violations within adaptive windows (10-30 samples)
centered around each timepoint. This methodology captures the temporal evolution of
dependency violations during attacks while maintaining realistic variance within both
attack and baseline periods. The 95th percentile ensemble scoring across sensors within
each window effectively captures the most significant violations while the temporal win-
dowing ensures that early attack phases, peak attack periods, and sustained attack effects
receive distinct scores. The implementation incorporates learned baseline correlations from
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training data rather than fixed thresholds, enabling accurate detection of dependency
disruptions specific to each sensor pair relationship and temporal context.

Experimental Architecture and Implementation
The dependency violation detection system operates on dynamically selected sensors

(filtered from available measurements based on data quality) across reactor subsystems,
employing a three-analyzer ensemble approach for comprehensive relationship modeling:

• Correlation Analyzer: Computes pairwise linear correlations across all sensor com-
binations, establishing baseline dependency expectations and detecting violations
of expected correlation patterns during attacks

• Granger Causality Analyzer: Tests temporal causal relationships using AIC/BIC-
optimized lag selection (1-10 lags, 30s-5min) with adaptive percentile-based sensor
pair prioritization (85th percentile correlation threshold) to identify disruptions in
temporal dependency patterns that indicate control system manipulation

• Random Forest Analyzer: Models complex non-linear interdependencies using
10-estimator forests with 5-layer depth, capturing sophisticated physics-based rela-
tionships beyond linear correlations

Advanced Correlation Baseline Learning: Dependency violation detection employs
sophisticated baseline learning to achieve accurate violation score calculation:

• Dynamic Baseline Learning: Correlation violation calculation uses learned base-
line correlations from training data rather than fixed thresholds, enabling context-
specific violation detection

• Direct Score Interpretation: Violation scoring directly measures deviations from
established dependency patterns without additional score transformations

• Raw Score ROC Analysis: Performance evaluation uses raw violation scores, pro-
viding direct assessment of dependency disruption detection capability

Implementation Methodology: Dependency violation calculation incorporates the fol-
lowing advanced techniques:

• Baseline Correlation Storage: System captures and stores actual correlation values
between sensor pairs during training phase, creating individualized baselines for
each dependency relationship

• Context-Aware Violations: Violation scores calculated as absolute deviation from
learned baselines rather than universal thresholds, enabling detection of scenario-
specific dependency disruptions

• AIC/BIC Lag Optimization: Granger causality analysis uses Akaike Information
Criterion to select optimal lag parameters (1-10 lags) for each sensor pair, adapting
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to diverse nuclear facility temporal dynamics ranging from 30-second control loops
to 5-minute thermal processes

• Adaptive Pair Selection: Smart prioritization using adaptive percentile-based filter-
ing (85th percentile correlation threshold) to select 100 most promising sensor pairs
per training chunk from all possible sensor combinations (N × (N-1) where N is the
dynamic sensor count). This approach automatically adapts to varying correlation
distributions across operational conditions—testing stronger relationships during
maintenance periods and best-available relationships during steady-state opera-
tion, ensuring comprehensive coverage while focusing computational resources on
meaningful dependencies

• Direct Performance Evaluation: ROC analysis uses raw violation scores without
transformation, providing straightforward assessment of dependency detection
performance

7.2.4 Change Point Detection. The change point detection approach identifies moments
when the statistical properties of sensor data undergo sudden shifts—a signature of cyber
attacks that introduce step changes, oscillations, or other discontinuous alterations. This
method is effective for detecting abrupt changes in sensor behavior, such as bias injection,
oscillatory patterns, or coordinated state transitions.

Statistical Baseline Learning Approach: Employs a memory-efficient streaming system
to establish sensor-specific baselines (mean, standard deviation, min/max, coefficient of
variation) from large-scale training data, enabling scalable change detection across reactor
subsystems.

Data Processing and Detection:

• Streaming Statistical Learning: Accumulates running statistics (mean, std, min/-
max, coefficient of variation) per sensor from clean training data, without full dataset
loading.

• Per-Sensor Monitoring: Computes change magnitude scores for each sensor during
testing, using the maximum score per timepoint to preserve localized attack signals.

• Statistical Change Detection: Detects deviations using first- and second-order
differences and moving window variance, with adaptive window sizes (minimum
3 samples, typically 10% of data length).

• Percentile-Based Thresholds: Applies dynamic detection boundaries using per-
centile thresholds (default: 95th percentile) derived from change score distributions,
adapting to operational conditions.
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• Universal Applicability: No variance filtering, making it effective across all opera-
tional states, including steady-state periods.

Strengths/Limitations:

• Interpretable, memory-efficient; excels at detecting step changes and broad distribu-
tion shifts.

• Less sensitive to subtle cross-sensor dependency violations unless paired with
dependency analysis.

7.3 Evaluation Protocol and Operational Considerations

7.3.1 Data and Labeling. Clean intervals are sensor measurements from an extended
time period (30-days) prior to a period overlapping the same period as the attack data
(several hours). This training data is drawn from the pre-attack simulation dataset. This
unique benefit of our attack simulation strategy means we can see the exact ground truth
for what the measurements would have been without an attack. For evaluation:

7.3.2 Limitations and Validity Scope. Transformations emulate many attack manifesta-
tions but do not replace full closed-loop plant physics; SIS interactions and detailed actuator
dynamics are out-of-scope. Setpoint changes and maintenance can mimic attacks if not
flagged. Stealth, zero-residual attacks designed against specific models remain difficult
without physics-informed constraints.

7.3.3 Reproducibility. Experiments are reproducible via pinned environment dependen-
cies and Make targets. Seeds are set for training and data shuffling; datasets are versioned
by scenario/tier and preprocessing profile (debug/production).

We introduced a cache for trained models with content-addressable keys, enabling model
reuse across the 18 attack scenarios and 5 severity tiers. This eliminated redundant training
and reduced total evaluation time by approximately two orders of magnitude for the full
experiment suite. Additional efficiency improvements include adaptive percentile-based
pair selection for dependency violation analysis, which automatically focuses computa-
tional resources on the most promising sensor relationships while adapting to varying
correlation distributions across operational conditions. Across the full scenario–tier matrix,
the training cache eliminates redundant training phases, enabling rapid test-time evalua-
tion. Representative outputs for each paradigm are captured in the experiment logs and can
be aggregated into model-level metrics (e.g., reconstruction/prediction error distributions,
change point counts, dependency violation rates). At the system level, the combination of
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caching, downsampling, and adaptive filtering provides end-to-end throughput suitable
for operational studies.

7.3.4 ROC Analysis and Comparative Evaluation Methodology. Our evaluation frame-
work employs comprehensive Receiver Operating Characteristic (ROC) curve analysis to
assess attack detection performance across machine learning paradigms, implemented
through the results aggregation system. This methodology provides standardized, quan-
titative comparison of detection capabilities across diverse algorithmic approaches and
attack scenarios.

Critical Distinction: Training Parameters vs. Evaluation Thresholds. A fundamental aspect of
our ROC-based evaluation methodology requires careful distinction between two different
types of thresholds that serve completely different purposes in the machine learning
pipeline:

• Training-Time Hyperparameters: Set once during model development to configure
algorithm behavior (e.g., LSTM learning rates and epochs, autoencoder architec-
ture depths, change point CUSUM thresholds, dependency violation correlation
thresholds). These parameters determine how each paradigm learns normal reactor
operation patterns from historical data.

• ROC Evaluation Thresholds: Automatically swept across all possible values during
performance assessment to generate ROC curves. These thresholds determine the
decision boundary between "normal" and "attack" classifications for each timepoint,
using the continuous anomaly scores produced by the trained models.

This distinction is crucial for understanding how a single experimental run (with fixed
training parameters) generates an entire ROC curve through systematic threshold sweeping
during evaluation.

ROC Data Generation. Each ML paradigm generates ROC data through a dual-phase
evaluation process:

• Attack Score Generation: During testing, each paradigm processes attack-modified
sensor data and produces continuous anomaly scores using paradigm-specific
methods (prediction errors for LSTM, reconstruction errors for autoencoders, change
point statistics, dependency violation rates). The algorithms use fixed training
parameters learned during the model development phase.

• Baseline Score Generation: To establish normal operation baselines, each paradigm
applies identical algorithms to time-matched clean historical data extracted from
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cached training chunks. This ensures fair comparison by using the same time periods
and sensor patterns without attack modifications.

• ROC Computation: sklearn’s roc_curve function automatically sweeps across all
unique anomaly score values as decision thresholds, computing False Positive Rate
(FPR) and True Positive Rate (TPR) for each threshold. This systematic threshold
sweeping creates the stepped ROC curve from a single experimental run, with
higher scores indicating greater anomaly likelihood.

Anomaly Score Definitions. Each paradigm produces continuous anomaly scores using
specific mathematical metrics:

• LSTM: Mean Squared Error (MSE) between predicted and actual sensor values
across all sensors for each timepoint

• Autoencoder: Mean Squared Error (MSE) between original input and reconstructed
output, using maximum error across all sensors per timepoint to prevent signal
dilution

• Change Point Detection: Maximum statistical change magnitude across CUSUM
scores, window-based z-scores, and Bayesian change probabilities for each timepoint

• Dependency Violation: 95th percentile of absolute deviations from learned baseline
correlations across all sensor pairs, computed using sliding window temporal
analysis (10-30 sample windows) to generate realistic per-timepoint variation

Paradigm-Specific Threshold Percentiles. Different paradigms employ different threshold
percentiles based on empirical performance characteristics and operational requirements:

• Neural Networks (LSTM, Autoencoder): Use 85th percentile thresholds, providing
good separation between normal and anomalous conditions while maintaining
acceptable false positive rates for prediction/reconstruction error distributions

• Statistical Methods (Change Point Detection, Dependency Violation): Use 95th
percentile thresholds due to higher baseline variability in statistical measures, re-
quiring more conservative thresholds to maintain operational false positive rates
comparable to neural network approaches

These threshold choices were determined through limited empirical evaluation to balance
detection sensitivity with false positive rates across paradigms, rather than reflecting
fundamental distributional differences. Important limitation: These percentiles were not
systematically optimized across the full parameter space—systematic hyperparameter
tuning could potentially improve performance by identifying paradigm-specific optimal
thresholds that better exploit each method’s detection characteristics.
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ROC Threshold Sweeping Mechanism. The ROC generation process uses dataset origin to
determine ground truth labels while systematically varying decision thresholds:

• Ground Truth Labeling: All timepoints from control datasets receive label = 0
(normal), all timepoints from attack datasets receive label = 1 (attack)

• Threshold Sweeping: For each unique anomaly score value, sklearn treats that
score as a decision threshold—timepoints with scores ≥ threshold are classified as
"attack", scores < threshold as "normal"

• ROC Point Generation: Each threshold produces one (False Positive Rate, True
Positive Rate) coordinate by comparing predicted classifications against ground
truth labels

• Curve Construction: Connecting these points across all threshold values creates the
complete ROC curve from a single experimental run

Multi-Dimensional Aggregation. The ROC analysis system generates three complementary
comparative views:

• Per-Paradigm Analysis: Averages ROC curves across all attack scenarios for each
ML approach, revealing algorithmic strengths and limitations. Confidence intervals
show performance consistency across diverse attack types.

• Per-Scenario Analysis: Aggregates across ML paradigms for each attack type,
identifying which attacks are most/least detectable regardless of detection method.

• Per-Severity Analysis: Groups by attack intensity tiers, quantifying the relationship
between attack magnitude and detectability across the full experimental matrix.

Statistical Robustness. ROC curve averaging employs interpolation to standardize False
Positive Rate sampling points across experiments, enabling meaningful statistical aggrega-
tion. Mean TPR values and standard deviations provide confidence intervals, while AUC
score distributions quantify overall detection performance and consistency.

Attack Intensity Scaling and Tier Differentiation Challenges. A critical consideration in cy-
bersecurity evaluation is the design of attack intensity tiers that produce meaningful
differentiation in detection performance. Our severity tier system (Tiers 1-5) revealed an
important methodological challenge: tier-wise ROC curves often exhibit unexpectedly
similar performance, suggesting insufficient attack intensity gradation.

This similarity likely stems from several factors. First, detection algorithms often exhibit
threshold-based behavior rather than gradual sensitivity scaling—once an attack crosses
the “detectable” threshold, increasing intensity may not significantly improve detection
performance. Conversely, attacks below the detection threshold remain difficult to detect
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regardless of small intensity increases, creating a binary cliff effect rather than smooth
gradation. Second, the parameters chosen for intensity scaling (amplitude, frequency, dura-
tion) may not represent the most impactful dimensions for detection systems. Some attack
characteristics may be more critical than others, and scaling less-impactful parameters
provides false differentiation without crossing meaningful detection boundaries.

This observation has important implications for cybersecurity research methodology.
Effective tier systems require exponential or threshold-based scaling rather than linear
parameter adjustments. Furthermore, the choice of scaling parameters should be guided
by detection algorithm sensitivity analysis rather than intuitive attack characteristics. For
meaningful tier differentiation, intensity differences may need to span orders of magnitude
(10x-100x parameter changes) rather than incremental scaling (2x-5x changes) to cross the
detection boundaries that separate barely detectable attacks (AUC ∼0.55-0.65) from clearly
detectable ones (AUC ∼0.75-0.85) and obvious attacks (AUC ∼0.90-0.95).

This ROC-based evaluation framework enables objective comparison of detection paradigms
while accounting for the inherent variability in cybersecurity attack detection performance
across different attack vectors and intensity levels.

8 Experimental Results

This section presents the quantitative performance evaluation of our four detection paradigms
across attack scenarios and severity tiers. We analyze detection capabilities through ROC
curve analysis, quantify algorithm-specific strengths and limitations, and examine the
effectiveness of our signal dilution solutions.

8.1 Overall Performance Summary

Our evaluation framework processed 240 total experiments (4 paradigms × 12 scenarios ×
5 tiers + baseline configurations) with comprehensive ROC analysis for each combination.
Not all attack generators implemented were used in final analysis due to runtime limita-
tions, and inability to fully debug by the end of the project. Key performance characteristics:

• Detection Capability Range: AUC performance spans 0.000–1.000 across 243 exper-
iments, with overall mean performance of 0.656 ± 0.181, demonstrating significant
variability in attack detectability

• Paradigm Differentiation: Change Point Detection leads (0.785), followed by LSTM
(0.636), Dependency Violation (0.621), and Autoencoder (0.580), with LSTM showing
most consistent performance (𝜎 = 0.057)
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• Attack-Specific Performance: Scenarios exhibit 4× detectability variation from
highly detectable physics violations and equipment failures to challenging stealthy
attacks like precision degradation and cross-facility transplants

• Tier Differentiation: Severity tiers (001→100) show paradigm-dependent scaling
patterns, with some paradigms maintaining consistent performance across tiers
while others demonstrate clear severity sensitivity

Across 243 total experiments, our comprehensive evaluation achieved mean AUC per-
formance of 0.656 with standard deviation 0.181. The best-performing paradigm (Change
Point Detection, AUC=0.785) significantly outperformed the lowest (Autoencoder, AUC=0.580),
representing a 35% performance differential. Attack detectability ranged from near-perfect
detection (𝐴𝑈𝐶 ≥ 0.90) for physics violations to challenging evasion scenarios (𝐴𝑈𝐶 ≤ 0.30)
for precision degradation attacks, demonstrating the critical importance of paradigm-attack
matching for operational deployment.

8.2 ROC Analysis and Comparative Performance

Figure 5 presents the aggregate performance comparison across all detection paradigms,
while Figures 6 and 7 provide complementary views by attack type and severity level re-
spectively. Figures 7 and 7 provide detailed paradigm-specific metric breakdowns, showing
the performance distribution across attack scenarios and severity tiers for each detection
approach.

Table 4 summarizes the Area Under Curve (AUC) performance metrics for each detection
paradigm across attack scenarios and severity tiers.

Table 4. AUC Performance Summary by Detection Paradigm

Detection Paradigm Mean AUC Std Dev Min AUC Max AUC Median AUC

Change Point Detection 0.785 0.127 0.219 1.000 0.775
LSTM Anomaly Detection 0.636 0.057 0.568 0.823 0.635
Dependency Violation 0.621 0.199 0.000 0.823 0.689
Autoencoder Reconstruction 0.580 0.226 0.091 0.920 0.659

Adversarial Score Inversion Case Study: ROC analysis revealed a particularly instruc-
tive failure mode where change point detection achieves AUC scores below 0.5 (worse
than random) for precision trust decay attacks. This counterintuitive result demonstrates
successful adversarial manipulation of the detection algorithm itself. The precision trust
decay attack combines sensor precision reduction (quantizing values to fewer decimal
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Fig. 5. ROC curves comparing detection paradigms aggregated across all attack scenarios. Legend
entries are sorted by descending AUC performance for improved readability.

places) with Gaussian noise injection. Rather than increasing detectability, this attack strat-
egy reduces the fine-grained statistical variations that change point detection algorithms
rely upon. The precision degradation transforms natural sensor variations (e.g., 23.47291°C
→ 23.5°C) into quantized, apparently more stable measurements. Normal baseline data
retains natural process noise and micro-variations, producing higher change point scores
than the attack data. This inversion (normal data appearing more anomalous than attack
data) results in AUC < 0.5, indicating that the attack successfully hides malicious changes
by removing the very statistical signals that change point detection seeks. This represents
a sophisticated evasion strategy that exploits the fundamental assumptions of statistical
change detection methods.

8.3 Attack Scenario Detectability Analysis

Analysis of 243 experimental runs reveals significant variation in attack detectability across
scenarios. Multi-site coordinated attacks demonstrate the highest mean detectability (AUC
= 0.739), followed by sensor drift with dropouts (0.684) and flow oscillation (0.678). Preci-
sion trust decay exhibits the lowest detectability (0.592), representing the most challenging
scenario across all ML paradigms.

Paradigm-attack interactions show distinct specialization patterns. Change point detec-
tion dominates performance for 10 of 12 scenarios, achieving peak effectiveness against



44 B. Blakely, R. Vilim, et al

Fig. 6. ROC curves comparing attack scenario detectability aggregated across all detection
paradigms. Legend entries are sorted by descending AUC performance.

toggle storms (AUC = 0.890) and command feedback desync (0.887). Dependency violation
detection uniquely excels at multi-site coordinated attacks (0.810), while LSTM anomaly
detection provides the strongest response to precision trust decay (0.689). This specializa-
tion suggests ensemble approaches combining complementary paradigms could enhance
overall detection coverage.

For defense strategy selection, scenarios with high paradigm variation (cross-facility
data transplant: 𝜎 = 0.215, coordinated thermocouple manipulation: 𝜎 = 0.173) benefit most
from multi-paradigm deployment, while scenarios showing consistent cross-paradigm
performance can rely on single specialized detectors.

8.4 Severity Tier Performance Validation

Severity tier differentiation analysis reveals limited correlation between attack intensity
and detectability across most scenarios. Only 6 of 12 attack scenarios demonstrate cor-
relation coefficients below 0.1 between severity tier and AUC performance, indicating
tier-insensitive behavior. Cross-facility data transplant (r = 0.249) and sequential valve
manipulation (r = 0.217) show the strongest positive tier sensitivity, where higher severity
tiers become more detectable.
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Fig. 7. ROC curves comparing detection performance across attack severity tiers aggregated
across all paradigms and scenarios.

Interestingly, delayed propagation (r = -0.280) and phantom valve operation (r = -0.245)
exhibit inverse tier sensitivity, where higher severity paradoxically becomes harder to
detect. This counterintuitive finding suggests these attacks may benefit from intensity-
based camouflage effects.

The AUC range analysis reveals coordinated thermocouple manipulation exhibits the
highest variability across tiers (range = 1.000), while multi-site coordinated attacks show
the most stable performance (range = 0.223). These findings indicate that attack parameter
scaling methodology should account for scenario-specific sensitivity patterns rather than
assuming uniform tier progression across all attack types.
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Fig. 7. Performance metrics comparison across attack scenarios for each detection paradigm. Each
subplot shows paradigm-specific metric distributions grouped by attack scenario type.
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Fig. 7. Performance metrics comparison across attack severity tiers for each detection paradigm.
Each subplot shows paradigm-specific metric distributions grouped by attack intensity level.
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9 A Physics-Based Approach for Cybersecurity

Cyber-physical systems underpin modern critical infrastructure including power grids,
nuclear plants, and industrial facilities. Attackers increasingly exploit the cyber layer to
influence the physical layer, issuing deceptive commands or forging sensor data while
leaving traditional IT logs unaltered. Purely signature-based or black-box machine learning
detectors struggle in this setting for two main reasons: first, stealthy adversaries can
mimic normal data distributions, rendering pattern matching approaches ineffective until
damage is done; second, most data-driven methods offer limited insight into how or where
manipulation occurs, hampering rapid recovery.

Physics-based models close this gap by importing immutable physical laws—conservation
of mass, momentum, and energy—into the detection loop. These laws function as intrinsic
“ground truth” that adversaries cannot rewrite: if a forged sensor stream violates Newton’s
or Kirchhoff’s equations, the inconsistency is mathematically detectable. Because physical
laws couple distant subsystems, even localized tampering produces global violations,
granting system-wide observability. Finally, residuals derived from first-principles equa-
tions provide actionable hypotheses about disrupted components or physical balances,
giving engineers specific diagnostic insights instead of opaque anomaly scores.

9.1 Literature Review

A growing body of research explores the intersection of cybersecurity and physical systems
within Cyber-Physical Systems (CPS), addressing two distinct but complementary areas:
physics-based attacks that exploit physical system behaviors to achieve malicious objectives,
and physics-based detection methods that leverage physical laws and relationships to identify
cyber threats. Understanding this distinction is crucial for developing comprehensive
cybersecurity strategies that account for both attack vectors and defensive capabilities in
critical infrastructure systems.

9.1.1 Physics-Based Attacks. Physics-based attacks represent a sophisticated class of
cyber threats that specifically target the physical processes and constraints of cyber-physical
systems. These attacks exploit the inherent coupling between digital control systems and
physical processes to achieve objectives that purely digital attacks cannot accomplish.

From a control-theoretic perspective, Pasqualetti et al. [23] use the Stuxnet attack as a
prime example of a cyberattack with severe physical consequences. Their work examines
“deception attacks,” where an adversary compromises the integrity of sensor measurements
and actuator commands to manipulate physical processes while remaining undetected by
traditional cybersecurity measures. This work demonstrates how attackers can leverage
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knowledge of system dynamics to craft attacks that respect certain physical constraints
while violating others, making detection particularly challenging.

Lanotte et al. [13] provide a mathematical framework for analyzing physics-based attacks
using formal methods. They introduce process calculus designed to model the complex
interplay between continuous physical processes and discrete cyber controls. This formal
approach enables precise specification and analysis of sophisticated attack scenarios, such
as Man-in-the-Middle attacks targeting physical sensors and actuators to drive systems
into unsafe states while maintaining plausible system behavior. Their work demonstrates
how formal verification techniques can be adapted to analyze the security properties of
cyber-physical systems under various attack models.

These works underscore the critical vulnerability of systems that rely on networked
communication and digital control of physical processes, highlighting the need for security
strategies that account for the unique attack surface presented by the cyber-physical
interface.

9.1.2 Physics-Based Detection. In response to the threat landscape outlined above, re-
searchers have developed physics-based detection methods that leverage the immutable
nature of physical laws as a foundation for cybersecurity. The core principle underlying this
approach is that while digital data can be falsified, the underlying physical laws governing
a system provide a ground truth that is significantly more difficult for adversaries to violate
or circumvent.

A comprehensive survey by Giraldo et al. [7] studies the field of physics-based attack
detection. The authors review methods that create time-series models based on the ex-
pected physical behavior of systems, incorporating domain-specific knowledge such as
fluid dynamics in water treatment plants or electromagnetic principles in power grids. By
comparing these model-based predictions against real-time sensor measurements, security
monitors can identify anomalies indicative of manipulated control commands or falsified
sensor readings. The survey’s key contribution is its unified taxonomy that brings together
disparate research from control theory, information security, and power systems engineer-
ing, providing a comprehensive framework for understanding how physical relationships
can be leveraged for cybersecurity purposes.

The effectiveness of physics-based detection methods stems from their ability to establish
analytical redundancy relations that must hold under normal operating conditions. When
these relations are violated persistently, it indicates potential sensor manipulation, compo-
nent failure, or malicious interference. This approach provides several advantages over
purely data-driven detection methods: it offers interpretable results grounded in physical
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understanding, maintains effectiveness even when historical attack data is limited, and
can detect novel attack patterns that deviate from known physical behaviors.

Despite these foundational contributions and demonstrated effectiveness, existing physics-
based detection approaches face several critical limitations when deployed in complex
operational environments like advanced nuclear reactors. First, scalability challenges
emerge when systems have incomplete instrumentation or sparse sensor coverage, limiting
the ability to establish analytical redundancy relations. Second, distinguishing between
legitimate system faults and malicious cyber attacks remains difficult, as both can manifest
as violations of expected physical relationships. Third, most existing approaches provide
limited explainable diagnostic reasoning capabilities, offering binary detection results with-
out detailed forensic analysis of root causes or attack propagation pathways. Additionally,
insufficient probabilistic reasoning frameworks limit the ability to quantify uncertainty in
detection decisions, particularly important when operating under varying environmental
conditions or system configurations. Finally, real-time implementation challenges arise
from computational complexity and the need to balance detection sensitivity with false
alarm rates in mission-critical environments.

These limitations highlight the need for more sophisticated physics-based diagnostic
platforms that can provide analytical redundancy, explainable reasoning, and robust uncer-
tainty quantification for complex cyber-physical systems.

9.2 PRO-AID: A Physics-Driven Diagnostic Platform

To address the limitations of existing physics-based detection methods, we evaluated a
pre-existing physics-based diagnostic workflow, Parameter-Free Reasoning Operator for
Automated Identification and Diagnosis (PRO-AID), specifically designed to overcome
scalability, explainability, and uncertainty quantification challenges in complex operational
environments. PRO-AID advances beyond traditional approaches by providing analytical
redundancy through virtual sensor networks, enabling detailed forensic analysis through
explainable diagnostic reasoning, and incorporating probabilistic frameworks for robust
uncertainty quantification. This platform derives residuals from first-principles physical re-
lationships and uses them for explainable fault diagnosis, complementing our data-driven
detectors by encoding invariants that adversaries cannot easily spoof while providing
the diagnostic depth necessary for operational decision-making in critical infrastructure
environments. Building on these enhanced capabilities, PRO-AID implements model-based
diagnostics through three tightly integrated mechanisms that collectively enable robust
fault detection [22] and cyber-attack identification. The platform addresses the inherent
challenge that real-world plants rarely instrument every variable needed for complete
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physical closure while maintaining rigorous adherence to conservation laws and physical
constraints.

9.2.1 Virtual Sensors and Model Coverage. Real-world industrial plants rarely instru-
ment every variable needed for complete physical closure, creating observability gaps that
can be exploited by adversaries or complicate fault diagnosis. PRO-AID compensates for
this limitation by creating virtual sensors (VS): unmeasured variables that are inferred
analytically from neighboring measurements and conservation laws [21]. For example, an
unmeasured branch flow can be back-calculated from nodal mass balances and measured
inflows and outflows at connected junctions. This approach allows VS to extend diagnostic
reach without requiring additional hardware while remaining firmly anchored in physical
principles.

The validity of VS estimates is continuously reassessed through cross-validation with
multiple analytical redundancy relations. If a residual analysis implicates the equations
used to create a particular VS, the platform flags that estimate as unreliable and adjusts its
confidence accordingly. This self-monitoring capability ensures that VSs do not propagate
errors through the diagnostic chain and maintains the integrity of the overall diagnostic
framework.

VSs serve multiple critical functions in the cybersecurity context. First, they expand the
observational coverage of the system, making it more difficult for attackers to manipulate
measurements without creating detectable inconsistencies across the augmented sensor
network. Second, they provide independent estimates of key system variables that can
be compared against actual measurements to identify potential tampering. Finally, they
enable the platform to maintain diagnostic capability even when some physical sensors are
compromised or offline.

9.2.2 Analytical Redundancy Relations (ARRs). Starting from fundamental mass, mo-
mentum, and energy balances at the component level, PRO-AID assembles a library of
algebraic and differential equations that must hold under fault-free operation. Each analyt-
ical redundancy relation (ARR) ties together a subset of sensor measurements—including
pressures, flows, temperatures, and electrical currents—spanning one or more system
components. These relations capture the essential physical constraints that govern system
behavior and provide mathematical expressions of the immutable laws that adversaries
cannot circumvent.

PRO-AID evaluates every ARR in real-time and computes the associated residual, de-
fined as the numerical difference between the theoretical predictions based on physical
laws and the actual sensor readings or VS values. This continuous evaluation process
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operates online during normal plant operation, providing immediate feedback about the
consistency of measurements with underlying physical principles. A residual that persis-
tently exceeds its established uncertainty band signals a violation of at least one underlying
assumption, whether related to sensor integrity, component health, or the presence of
malicious manipulation.

The ARR framework provides several advantages for cybersecurity applications. The dis-
tributed nature of the equations means that even localized attacks often produce detectable
violations across multiple relations, preventing adversaries from maintaining perfect con-
sistency across all physical constraints. Additionally, the explicit mathematical foundation
of each ARR enables precise identification of which physical principles have been violated,
supporting both diagnostic accuracy and forensic analysis of potential attacks.

9.2.3 Probabilistic Fault Mapping and Explainability. A single ARR violation often impli-
cates multiple competing fault hypotheses, ranging from sensor bias and valve stiction to
heat exchanger fouling or malicious data injection. To resolve this ambiguity, PRO-AID
embeds a Bayesian reasoning layer that combines patterns of residuals over time to rank
the probability of competing explanations [21]. This probabilistic approach accounts for
the inherent uncertainty in both measurements and model predictions while providing
quantitative confidence estimates for different diagnostic hypotheses.

The Bayesian framework leverages temporal patterns in residual behavior to distinguish
between different types of anomalies. For example, gradual component degradation typi-
cally produces slowly evolving residual patterns that affect physically related variables in
a coordinated manner. In contrast, cyber attacks often introduce abrupt changes or create
inconsistencies that violate expected correlations between measurements. By analyzing
these patterns, the system can differentiate between legitimate physical phenomena and
malicious interference.

Because every link in this inference chain arises from an explicit physical equation,
operators can traverse the diagnostic logic in either direction to understand and vali-
date the reasoning process. Forward chaining allows operators to verify that a proposed
diagnosis explains the observed residual patterns, while backward chaining identifies
which additional sensors or measurements would best discriminate between remaining
hypotheses. This explainability is crucial for high-stakes environments where operators
must understand and trust the diagnostic conclusions before taking corrective action.

The probabilistic mapping also supports dynamic adaptation as new evidence becomes
available. As additional measurements are collected or system conditions change, the
Bayesian framework updates the probability distributions for different fault hypotheses,
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providing an evolving assessment of the most likely explanations for observed anomalies.
This capability is particularly valuable for distinguishing sophisticated attacks that may
initially appear similar to normal operational variations or component degradation.

9.3 Regime Classification

The outputs from the PRO-AID diagnostic engine—including ARR residuals, VS estimates,
and probabilistic fault mappings—enable classification of system behavior into three
distinct regimes based on adherence to physical laws and control logic:

• Physical: measurements align with physical laws, exhibit temporal continuity, and
are consistent with control logic and setpoint changes.

• Mixed: changes arise from genuine physical phenomena (sudden faults or gradual
degradation) and propagate coherently across physically related sensors.

• Unphysical: violations of physical laws and/or control-logic consistency indicative
of sensor manipulation, control manipulation, or both. High-dimensional correla-
tions across many sensors help surface coordinated tampering.

9.4 Attack Scenarios in METL

Building on the established taxonomy and considering the critical functionalities of the
cold trap within the METL system, we have identified two scenarios that could impact
its essential operations. The system layout of the cold trap loop with the attack scenarios
is shown in Fig. 8. Each attack scenario highlights the (process) controlled variable and
the manipulated variable, with a arrow pointing from controlled variable to manipulated
variable. Here, the controlled variable is defined as the process variable that the control
system aims to maintain at a set point; the manipulated variable refers to a variable being
adjusted or manipulated to influence the process variable and bring it to the set point.

(1) Attack scenario: cold trap fan motor
The first scenario focuses on control the air blower used to cool the cold trap. This
air blower provides the cooling airflow to cool down the sodium in cold trap, as
shown at the bottom of the 8. The air blower’s fan motor is PID controlled by the
lowest temperature readings from 24 thermocouples embedded within the cold
trap.
The PID controller adjusts the blower’s operation based on a user-defined target
temperature, ensuring the lowest temperature inside the cold trap reaches this
set point. In this scenario, the control variable is the lowest temperature reading
within the cold trap, while the manipulated variable is the blower’s airflow rate.
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Fig. 8. System Layout of Cold Trap (CT) with Attack Scenarios

When functioning without any attack or disruption, the blower operates correctly,
allowing the cold trap to effectively capture impurities and maintain them within
the desired levels.

(2) Attack scenario a valve heater in the cold trap loop
In the cold trap loop, there are 16 heaters installed along piping and valves.In this
scenario, a heater located at the CT/PM valve is selected as the target component to
perform attacks, as indicated by the red-highlighted location in 8. The heater is PID
controlled by the temperature reading from a thermocouple located at the valve. Its
primary function is to heat the valve and the sodium within it, ensuring it remains
in liquid form and reaches the designated set point temperature.
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The PID controller regulates the heater’s current based on a user-defined target
temperature, maintaining the liquid sodium at the desired temperature as it flows
through the valve. Here, the control variable is the temperature measurement at
the valve, while the manipulated variable is the heater’s current. When functioning
without any attack or disruption, the heater heats up the liquid sodium, preventing
low-temperature liquid from re-entering the main loop, which helps to mitigate
temperature fluctuations and avoid thermal stratification.

The controlled variables and the manipulated variables of two scenarios have been
collected by the Data Pipeline described in 4, and have been converted into time series on
a daily basis. The data from METL now have been analyzed and prepared for carrying out
different types of attacks towards the two scenarios.

9.5 Workflow

The physics-based cyber defense workflow leverages the PRO-AID diagnostic capabilities
as its core analytical engine, with VS generation, ARR computation, and Bayesian fault
reasoning components directly supporting the feature extraction and classification require-
ments. Figure 9 provides a schematic overview of this three-stage workflow, illustrating
the decision tree structure and interconnections between stages. The end-to-end workflow
proceeds through three integrated stages.

9.5.1 Stage 1: Problem Scoping. As illustrated in the “Problem Scoping” section of
Figure 9, real-time sensor measurements undergo initial screening through conventional
data-driven anomaly detection algorithms to filter statistically significant deviations. This
initial screening identifies critical functions—essential operational processes or safety sys-
tems that require enhanced monitoring due to their impact on plant safety and operational
integrity. Sensor streams that satisfy preliminary anomaly thresholds and relate to these
critical functions are subsequently processed by the PRO-AID based diagnostic platform
to generate a feature vector comprising:

• VS estimates: Unmeasured system variables inferred analytically from neighbor-
ing measurements and conservation laws (e.g., unmeasured branch flow back-
calculated from nodal mass balances and measured inflows/outflows). VS validity
is continuously reassessed—if residuals implicate the equations used to create a
VS, the platform flags its estimate as unreliable, extending diagnostic reach without
new hardware while remaining anchored in physics.

• ARR residuals: Starting from mass, momentum, and energy balances at the com-
ponent level, PRO-AID assembles algebraic and differential equations that must
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Fig. 9. Physics-based cyber-security framework showing the three-stage workflow: Problem Scop-
ing (feature extraction), Anomaly Classification (regime determination), and Response (corrective
actions).

hold under fault-free operation. ARR residuals represent the numerical difference
between model estimations and actual sensor readings or VS values, computed in
real-time. Residuals exceeding uncertainty bands signal violations of underlying
assumptions—sensor integrity, component health, or cyber manipulation.

• Fault-type mappings: Residual signature analysis linking specific ARR violation
patterns to candidate fault modes through pre-established diagnostic relationships.

• Bayesian fault posterior probabilities: A probabilistic reasoning layer that com-
bines patterns of residuals over time to rank the probability of competing explana-
tions—sensor bias, valve stiction, heat exchanger fouling, or malicious data injection.
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This enables forward chaining (validating proposed diagnoses against observed
residuals) and backward chaining (identifying additional sensors to discriminate
among remaining hypotheses).

This physics-informed feature set provides the foundation for subsequent anomaly
classification by encoding both local sensor behavior and system-wide physical consistency,
with particular emphasis on preserving critical function integrity.

9.5.2 Stage 2: Anomaly Classification. The “Anomaly Classification” stage shown in
Figure 9 processes the physics-based feature vector through a systematic multi-criteria
classification framework. System behavior is categorized into one of three primary opera-
tional regimes based on adherence to fundamental physical laws, temporal continuity, and
control logic consistency:

• Physical regime: All sensor readings are consistent with physical laws, exhibit
temporal continuity, and align with control logic and operational changes. This
reflects normal operating state, free from both faults and cyber attacks.

• Mixed regime: Physical laws are satisfied but temporal patterns deviate from
expectations. Changes originate from genuine physical phenomena and propagate
coherently across all physically related sensor signals—this coordinated response is
the key characteristic differentiating true faults from cyber attacks. Subdivided into:

– Gradual change: Progressive component degradation with consistent physical
relationships maintained across all affected sensors

– Sudden change: Abrupt faults in sensors, controllers, or actuators affecting sys-
tem behavior while maintaining physical consistency and correlations

• Unphysical regime: Violations of physical laws and/or control logic indicating
potential cyber attacks, with inconsistent or uncorrelated sensor behaviors that
distinguish them from physical faults. Categorized as:

– Sensor attack: Manipulated sensor readings violate physical constraints while
controllers still respond consistently to the (compromised) measurements, cre-
ating detectable mismatches between physical behavior and control actions
(e.g., falsified temperature readings causing incorrect heater responses).

– Control attack: Compromised control logic or actuators operate inconsistently
with reported system state—for example, a heater may remain on even when
the reported temperature exceeds the set point, identifiable through control
logic verification.

– Combined attack: Coordinated manipulation of both sensors and control systems
designed to maintain apparent consistency. Detection exploits high-dimensional
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correlation networks among sensors and VSs, based on the assumption that
attackers possess incomplete knowledge of all sensor relationships and their
co-evolution patterns.

This hierarchical classification scheme leverages quantitative assessment of ARR residual
magnitudes, VS consistency, control logic verification, and temporal correlation patterns
to enable precise discrimination between normal operations, component degradation,
and cyber-attack scenarios. Table 5 summarizes the classification criteria and diagnostic
outcomes for each regime.

Table 5. Regime classification criteria and diagnostic outcomes.

Regime Diagnostic Sub-Mode Physics
Consistency

Temporal
Continuity

Control-Logic
Consistency

Representative Symptoms Primary Interpretation

Physical — ✓ ✓ ✓ All sensor and actuator values
are within expected physical
bounds and controller logic is
followed perfectly.

Normal, fault-free, and
secure operation.

Mixed (1) Sudden-Change Fault ✓ × × or ✓ A sensor reading suddenly
jumps to a new, physically
plausible value (e.g., stuck
thermostat) causing perfor-
mance decline.

A component has expe-
rienced an abrupt phys-
ical failure.

Mixed (2) Gradual-Change Degradation ✓ ✓ × or ✓ System performance slowly
degrades over time; sensor
values drift but remain phys-
ically valid (e.g., a fouling
pipe).

A component is wear-
ing out or experienc-
ing age-related degrada-
tion.

Unphysical (1) Sensor Attack × × or ✓ × or ✓ A sensor reports a physically
impossible value (e.g., nega-
tive temperature), or its value
is inconsistent with correlated
sensors.

Malicious data injection
targeting a sensor mea-
surement.

Unphysical
(2) Actuator /
Control Attack

× × × or ✓ The system state violates
physical laws because an actu-
ator’s command and its physi-
cal effect do not match (e.g.,
valve is commanded closed
but flow increases).

A controller or actuator
has been hijacked by a
malicious actor.

9.5.3 Stage 3: Response. The “Response” stage illustrated in Figure 9 translates regime
classifications into actionable operational guidance. Following regime classification and
fault localization, the framework consults plant-specific operating procedures and emer-
gency response protocols to generate prioritized action recommendations. The systematic
response process includes:

Action Generation: Regime-specific response protocols are activated based on classifica-
tion results. Physical regime classifications maintain routine monitoring with enhanced
surveillance of marginal parameters. Mixed regime detections (degradations and faults)



AI-Driven Cybersecurity Framework for Advanced Nuclear Reactor Control Systems 61

trigger component-specific diagnostic procedures, including sensor validation protocols
and predictive maintenance scheduling. Unphysical regime classifications (sensor, control,
or combined attacks) initiate cyber-incident response procedures:

• Suspect sensor isolation and cross-validation with redundant measurements
• Control system integrity verification through independent channels
• Fallback controller activation where appropriate and available
• Security incident documentation and reporting to designated authorities

Verification: As shown in the figure, all recommended actions undergo systematic verifi-
cation to confirm their effectiveness and appropriateness. This verification process includes
post-action monitoring to assess whether the implemented response successfully addresses
the identified condition, validation that corrective actions do not introduce new anomalies
or safety concerns, and documentation of outcomes for continuous improvement.

All recommendations include confidence intervals and alternative actions ranked by
implementation complexity and potential operational impact. Verified outcomes are logged
to continuously refine uncertainty bands, detection thresholds, and response procedures,
creating a self-improving diagnostic capability.

9.6 Application to METL Attack Scenario

To demonstrate the application of the proposed framework, we present several cyber-attack
scenarios targeting the economizer in METL. The economizer is a sodium-cooled heat
exchanger that preheats the return flow from the cold trap. Figure 10 shows the relevant
section of the METL layout and associated sensor locations.

Under normal conditions, hot sodium from the primary loop passes through the econ-
omizer, releasing heat before entering the cold trap, where impurities are removed. The
cooled sodium then returns through the economizer to regain heat before rejoining the
primary loop. In the attack scenarios, selected sensor signals and actuator commands
are manipulated, allowing us to evaluate how the physics-based framework detects and
distinguishes cyber intrusions from normal process variations.

9.6.1 Single sensor attack scenario. In this attack scenario, the target is thermocouple
117 (TC117), located in the piping between the economizer and the cold trap, as shown in
Figure 10. In the METL system, each pipe section is equipped with a heater that activates
when the temperature drops below a predefined set point to prevent sodium from freezing.

The attack introduces a constant bias of 5°C to TC117, along with increased signal noise,
as illustrated in Figure 11. As a result, the manipulated temperature signal exceeds the
250°C set point, which should cause the heater to turn off during that period. However, the
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Fig. 10. METL layout with sensor locations showing the economizer and associated measurement
points.

control response remains inconsistent with this behavior, creating a detectable mismatch
between reported sensor readings and expected control actions.

To validate the attack detection capability, we apply a physics-based check using the
log mean temperature difference (LMTD), which characterizes expected thermal behavior
across the heat exchanger. The LMTD is calculated as:

Δ𝑇𝐿𝑀𝑇𝐷 =
Δ𝑇1 − Δ𝑇2

ln
(
Δ𝑇1
Δ𝑇2

) =
(𝑇ℎ,𝑖𝑛 −𝑇𝑐,𝑜𝑢𝑡 ) − (𝑇ℎ,𝑜𝑢𝑡 −𝑇𝑐,𝑖𝑛)

ln
(
𝑇ℎ,𝑖𝑛−𝑇𝑐,𝑜𝑢𝑡
𝑇ℎ,𝑜𝑢𝑡−𝑇𝑐,𝑖𝑛

) (1)

where𝑇ℎ,𝑖𝑛 is the inlet temperature of the hot fluid (hot sodium entering the economizer),
𝑇ℎ,𝑜𝑢𝑡 is the outlet temperature of the hot fluid,𝑇𝑐,𝑖𝑛 is the inlet temperature of the cold fluid,
and 𝑇𝑐,𝑜𝑢𝑡 is the outlet temperature of the cold fluid.

This physics-based validation reveals discrepancies between the measured and physically
consistent temperature behavior, enabling successful attack detection through fundamental
thermodynamic principles.

9.6.2 Comparison to sensor fault scenario. To demonstrate the framework’s ability to
distinguish sensor faults from sensor attacks, Figure 12 shows a representative case involv-
ing PRO-AID analysis. In this scenario, TC117 experiences a sensor fault that introduces a
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Fig. 11. Single sensor attack targeting TC117: temperature bias introduction, heater current re-
sponse, and LMTD validation showing attack detection through physics-based consistency checks.

constant bias. Due to the underlying physical relationships, several VS (VS1, VS6, VS8, and
VS9) exhibit corresponding changes that maintain physical consistency.

The key distinction lies in the system’s response pattern. In the case of a sensor fault, the
biased reading is still processed by the controller as if it were correct, resulting in control
behavior that remains consistent with the reported (though incorrect) temperature. This
coherent response across all physically related measurements distinguishes genuine sensor
degradation from malicious manipulation, where such coordinated responses are typically
absent.

In contrast, a malicious attack on TC117 introduces a localized data anomaly that violates
the system’s underlying physical conservation laws. The injected non-physical value
creates immediate conflicts between the manipulated measurement and expected behavior
from related sensors, manifesting as high-magnitude residuals in specific ARRs while
other ARRs remain consistent. This pattern of localized ARR failures amidst system-wide
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Fig. 12. Sensor fault scenario analyzed by PRO-AID showing correlated changes in VSs (VS1,
VS6, VS8, VS9) and temperature measurements that maintain physical consistency, distinguishing
legitimate faults from malicious attacks.

physical consistency would create a distinct detection signature that distinguishes targeted
cyber-attacks from naturally occurring sensor degradation.

9.6.3 Multi-sensor attack scenario. A more sophisticated form of cyber-attack involves
a stealthy strategy where multiple correlated sensors are simultaneously manipulated to
evade detection by single-sensor physics-based checks. In this scenario, TC117 and TC119
are targeted with coordinated linear drift and added noise, as shown in Figure 13.
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Fig. 13. Multi-sensor attack scenario targeting TC117 and TC119 with coordinated manipulation,
showing how physics-based checks can still detect inconsistencies despite sophisticated coordina-
tion attempts.

While one of the physical indicators—specifically the LMTD—remains relatively un-
affected by this coordinated manipulation, the attack still disrupts other physical rela-
tionships. This would lead to inconsistencies in VS estimates and violations of ARRs,
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demonstrating the robustness of the physics-based approach against sophisticated multi-
sensor attacks.

Additionally, a control logic inconsistency is observed: the heater associated with the
pipe segment monitored by TC117 remains active even when the reported temperature
significantly exceeds the set point. This behavior violates expected control logic and further
supports the detection of an attack, as such inconsistencies are not expected under normal
operating conditions or legitimate sensor faults.

9.7 Discussion

Limitations and Performance Bounds. It is important to note that these results represent a
lower bound for the potential performance of each detection paradigm in this domain. Our
evaluation employed minimal hyperparameter tuning, using largely default or basic con-
figurations for all machine learning models. More extensive hyperparameter optimization,
architectural modifications, or ensemble approaches could significantly improve detection
performance. Additionally, our attack severity tiers were not sufficiently aggressive to
create clear differentiation between intensity levels, suggesting that future work should
explore more pronounced attack magnitudes to better evaluate paradigm sensitivity and
operational thresholds.

The physics-based cyber defense architecture provides a critical bridge between classical
fault-diagnosis principles and modern cybersecurity practices. By explicitly separating
physics consistency from control-logic consistency, this framework equips operators with a
principled methodology to discriminate stealthy cyber manipulation from routine compo-
nent degradation and sensor faults—an analytical capability largely absent in black-box
anomaly detection approaches.

The demonstrated scenarios illustrate three key advantages of the physics-based ap-
proach: (1) Attack-fault discrimination through analysis of physical correlation patterns,
where legitimate faults produce coherent cross-sensor responses while attacks typically
create inconsistent signatures; (2) Multi-layer validation combining thermodynamic princi-
ples (LMTD), VS consistency, and control logic verification to provide robust detection even
against sophisticated coordinated attacks; and (3) Explainable diagnostics that identify
specific physical principles violated and affected components, enabling rapid operator
response and system recovery.

With appropriate quantitative calibration and empirical validation, this methodology
scales effectively to safety-critical industrial environments. The same residual computa-
tion engine that supports cyber defense can simultaneously feed predictive maintenance
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programs, unifying traditionally separate operational silos and maximizing the value of
physics-based system understanding.

10 Conclusions and Deliverables

This work delivers a practical reference architecture and an end-to-end evaluation stack
for AI-based anomaly detection in AR OT environments using METL data. We imple-
mented a reproducible attack emulation pipeline, standardized preprocessing with a
justified 30-second downsampling strategy, four complementary detection paradigms, and
a results aggregation workflow with uncertainty estimates. Key constraints and lessons
learned—especially the H1 (streaming) to H2 (offline) pivot—inform operational deploy-
ment paths.

Deliverables:

• Final report (this document) and architecture/data-flow figures.
• Source code repository for the data proxy, transformations, and ML experiments

(with environment files and Docker/compose where provided).
• Reproducible experiment configurations, logs, and aggregated metrics.

11 Future Work

Future work on this line of effort is intended to include several focused directions to
advance from the current evaluation stack to operational autonomy:

• Physics model in the loop paradigm: Implement physics-based constraints and
validation layers within the detection pipeline to improve discrimination between
legitimate system behavior and malicious manipulation, building on the foundation
established in this work.

• Hyperparameter optimization and model enhancement: Conduct systematic hy-
perparameter tuning for all detection paradigms, explore ensemble methods, and
evaluate additional ML architectures to realize the full potential performance sug-
gested by our baseline results.

• Enhanced attack scenario development: Design more aggressive attack severity
tiers with clearer differentiation between intensity levels, expand the attack catalog
with additional attack vectors, and develop more sophisticated coordinated attack
patterns that better challenge detection capabilities.

• Incorporation of SCADA traffic analysis: Incorporate capture network traffic corre-
sponding to sensor/setpoint values as additional features in the machine learning
models.
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• Live red teaming: Conduct controlled red-team exercises on METL or similar
AR/SMR facilities using developed standard methodologies; compare with emu-
lation results to calibrate realism, refine attack catalogs, and harden detectors and
operator workflows.
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Glossary

• Autoencoder (AE): A neural network trained to reconstruct its input; reconstruction
error indicates anomalies.

• Bootstrapping (statistics): Resampling technique to estimate uncertainty (e.g., confi-
dence intervals) of metrics.

• Change point: A time at which the statistical properties of a sequence change.
• CompactRIO (cRIO): National Instruments (NI) real-time controller used in indus-

trial control and data acquisition.
• Content-addressable cache: A cache keyed by a hash of inputs/configs so identical

jobs reuse the same trained model or artifact.
• Dual-path: Train exclusively on clean data; test on attack data to prevent leakage.
• False positives per hour (FP/hr): Number of non-attack alerts raised per hour of

normal operation.
• Grafana: Visualization and dashboarding platform used to monitor metrics and

alerts.
• Granger causality: A statistical test indicating whether past values of one series help

predict another.
• HMI: Human–Machine Interface; operator-facing screens and controls.
• I&C: Instrumentation and Control; plant measurement and control systems.
• InfluxDB: Time-series database used to store and query historical sensor data.
• IT/OT: Information Technology (business/enterprise systems) vs. Operational Tech-

nology (industrial control systems).
• LSTM: Long Short-Term Memory; a recurrent neural network architecture for se-

quence modeling.
• MODBUS: An industrial communication protocol commonly used with PLCs.
• MQTT: Lightweight publish–subscribe messaging protocol used for streaming data.
• PRO-AID: A pre-existing physics-based diagnostic workflow using Virtual Sensors

and Analytical Redundancy Relations (evaluated on one scenario/severity).
• N-of-M consensus: An alerting rule that triggers when N out of M parallel detec-

tors/sources exceed threshold within a window.
• Persistence window: Require the score to exceed threshold for N consecutive sam-

ples before declaring an alert.
• PLC: Programmable Logic Controller; ruggedized industrial computer for control

tasks.
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• PR-AUC/AUROC: Area under precision–recall / receiver operating characteristic
curves.

• Prometheus: Metrics collection and alerting system often paired with Grafana.
• Random Forest (RF): An ensemble of decision trees used for classification or regres-

sion.
• Safety Instrumented System (SIS): Dedicated safety functions (e.g., shutdown) inde-

pendent of basic control.
• Virtual Sensor (VS): An inferred, unmeasured variable derived from conservation

laws and neighboring measurements.
• Analytical Redundancy Relation (ARR): A physical equation linking multiple mea-

surements that should hold in normal operation.
• Anomaly detection: Machine learning approach to identify patterns that deviate

significantly from normal operational behavior.
• AR (Advanced Reactor): Next-generation nuclear reactor designs including small

modular reactors and microreactors.
• Attack scenario: A specific type of cybersecurity attack pattern targeting particular

sensors or systems (e.g., thermocouple manipulation, valve operation disruption).
• AUC (Area Under Curve): A single metric summarizing ROC curve performance;

higher values (approaching 1.0) indicate better detection capability.
• Baseline data: Historical normal operation data used as reference for anomaly

detection and ROC analysis comparison.
• Correlation matrix: A statistical table showing correlation coefficients between all

sensor pairs, used to identify dependency relationships.
• Digital twin: A virtual replica of a physical system that enables real-time simulation

and closed-loop testing.
• Downsampling: Reducing data temporal resolution (e.g., from 1-second to 30-

second intervals) while preserving key information for analysis.
• Ensemble methods: Machine learning techniques that combine multiple models or

algorithms to improve overall performance.
• F1-score: Harmonic mean of precision and recall, providing a balanced performance

metric for detection systems.
• Heat exchanger: Thermal system component that transfers heat between fluid

streams, monitored by multiple temperature sensors.
• Hyperparameter tuning: Systematic optimization of algorithm configuration pa-

rameters to improve model performance.
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• LMTD (Log Mean Temperature Difference): Thermodynamic parameter used to
characterize heat exchanger performance and detect physical anomalies.

• METL (Mechanisms Engineering Test Loop): Argonne National Laboratory’s sodium-
cooled reactor testing facility used for this cybersecurity research.

• Precision: Fraction of detected anomalies that are true attacks (true positives / (true
positives + false positives)).

• Preprocessing: Data cleaning, filtering, and transformation steps applied before
machine learning analysis.

• Primary/secondary loop: Nuclear reactor cooling system architecture with separate
heat transfer circuits for safety isolation.

• Recall: Fraction of actual attacks that are successfully detected (true positives / (true
positives + false negatives)).

• Reconstruction error: Difference between original input and autoencoder output,
used as anomaly indicator.

• ROC curve: Receiver Operating Characteristic plot showing true positive rate vs.
false positive rate across detection thresholds.

• Severity tier: Attack intensity level (tier_001 = minimal, tier_100 = maximum) con-
trolling the magnitude of sensor manipulation.

• Signal dilution: Problem where attack signals on few sensors become statistically
overwhelmed when averaged across many normal sensors.

• SMR (Small Modular Reactor): Compact nuclear reactor design suitable for dis-
tributed power generation and enhanced safety features.

• Telegraf: Agent for collecting and shipping metrics/logs into systems like InfluxDB.
• Thermocouple: Temperature measurement sensor commonly used in industrial

systems and frequently targeted in attack scenarios.
• Time-series data: Sensor measurements collected sequentially over time, forming

the primary data type for anomaly detection.
• VLAN: Virtual LAN; network segmentation technique to isolate traffic.
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