

Inverter-dominated Transmission Systems – Protection and Stability

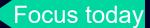
Ulrich Muenz, Patrick Eisen, Siddharth Bhela, Abhishek Banerjee, Suat Gumussoy Siemens Technology Evangelos Farantatos, Aboutaleb Haddadi, Deepak Ramasubramanian, Tapas Barik, Shuvangkar Das EPRI Matthew Reno, Daniel Kelly Sandia National Laboratories In collaboration with Hawaiian Electric, Manitoba Hydro International, OPAL-RT, Electranix

The information, data, or work presented herein was funded in part by the **Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy**, under Award Number DE-AR0001570. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2025-10178C

Operator challenges with high renewable integration

Power Balance

Generation meets load


Power Transfer

Generation far from load

Power System Stability

N-1 security

Protection schemes

Protection of IBR-dominated transmission systems is a widely open R&D space Gap analysis has been published by Siemens Technology, Sandia National Lab, and EPRI

https://energy.sandia.gov/wordpress/../wp-content/uploads/2024/05/SandReport-CP-gap-analysis-for-IBRs-and-protection-devices.pdf

20+ Expert interviews

- Utilities
- Consultants
- Vendors
- National labs
- Academia

Available Literature

- FRT for GFL IBR
- FRT for single GFM
 IBR

Challenges

- Non-sinusoidal fault currents
- Oscillations after fault clearance
- Vendor proprietary FRT functions
- No system-level protection analysis
- Standards focus on GFL
- White spot in the community

PICO: Protection-Inverter Co-Design Protection-Inverter Co-Design Tools **Grid Assets Fault-Ride Through Optimization** for GFM inverters S PSS®CAPE **Protection Analysis** functions for relays **PSCAD Validation & Demonstration Simulation** Hardware (HW) **Protection HI** testbed (PHIL) testbed SIPROTEC

IBR: Inverter-based Resource; FRT: Fault-Ride Through; GFM: Grid-ForMing; GFL: Grid-FoLlowing; HIL: Hardware-in-the-Loop; C&P: Control and Protection

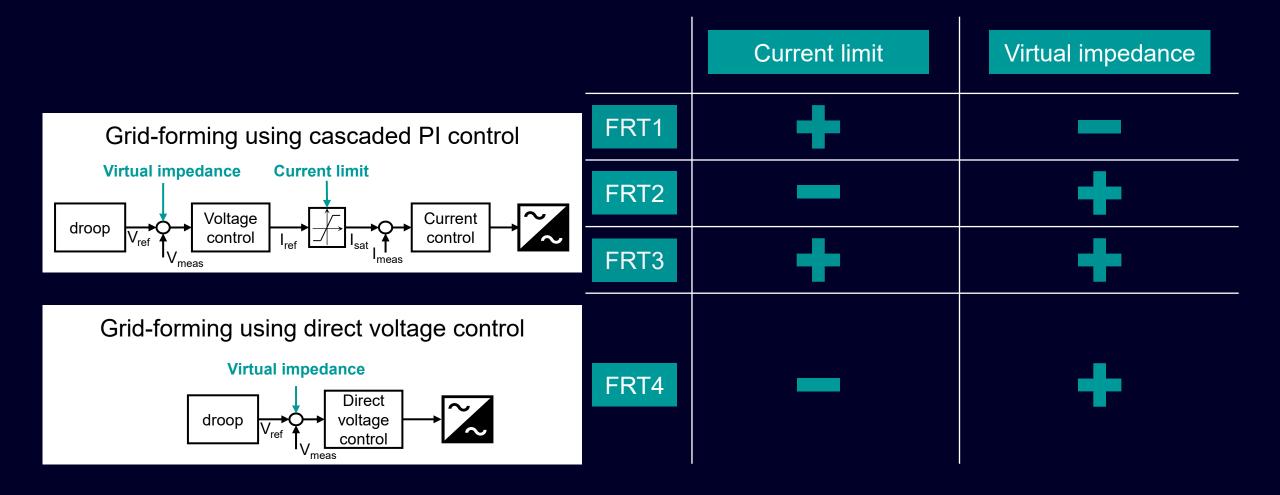
We are evaluating candidate FRT and PF functions in testbeds of increasing complexity

Focus today

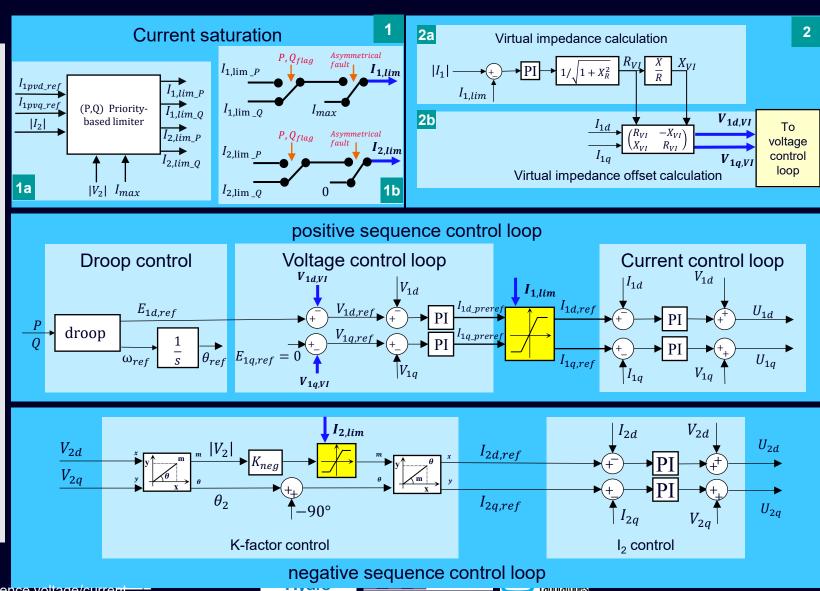
- Analysis in Simulation
 - PSCAD
 - Generic IBR models

- Analysis in HW testbed
 - 10x 5kW, 400V IBR
 - 6x Siprotec relays

- Analysis in PHIL testbed
 - OPAL-RT
 - Siprotec



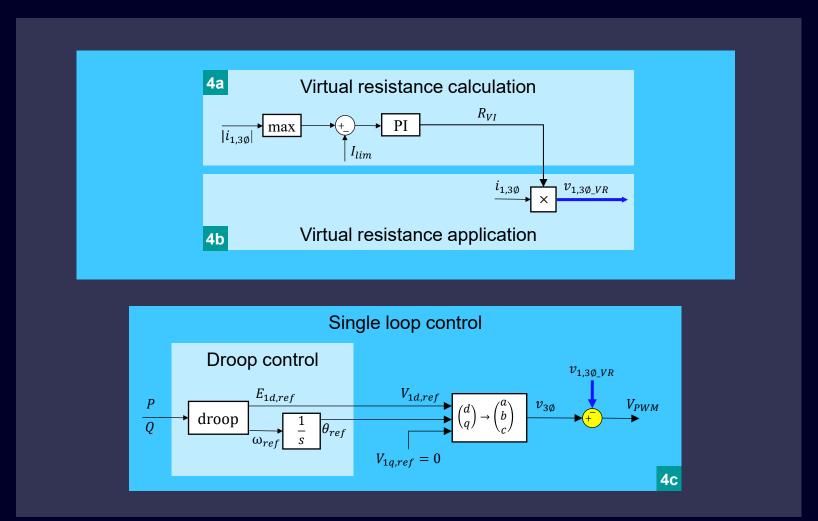
We evaluate different Fault-Ride Through (FRT) functions for Grid-forming (GFM) Inverters


Fault-Ride Through 1-3 reduce fault currents in cascaded PI Grid-forming controllers using current limiter, virtual impedance, and a combination of both

1 Current saturation (FRT1)

- Prioritizes active or reactive currents via P,Q priorities
- 1b For asymmetrical faults, $I_{1,lim} = I_{max}$ and $I_{2,lim} = 0$
- 2 Virtual impedance (FRT2)
 - 2a Increase virtual impedance until current below limit
 - 2b Calculate voltage offset due to virtual impedance
- 3 Hybrid (FRT3)
 - Combines FRT1 and FRT2

Negative sequence FRT

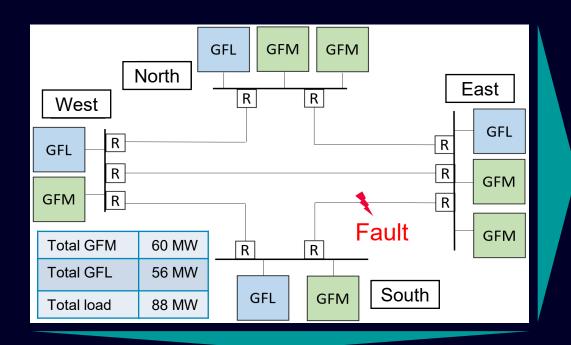

- K-factor control
- Always active for negative sequence

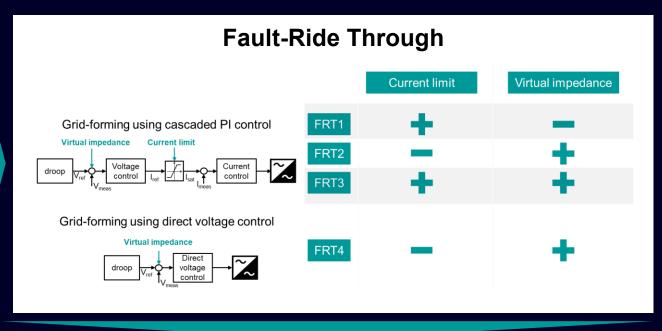
V₁,I₁: positive sequence voltage/current, V₂,I₂ negative sequence voltage/current GFM: Grid-forming; PI: Proportional Integral; FRT: Fault-Ride Through

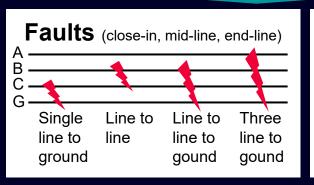
Fault-Ride Through 4 reduces fault currents in direct voltage GFM controllers using a single loop virtual resistor

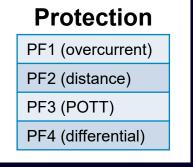
- 4 Single Loop Virtual Resistor (FRT 4)
 - 4a Calculate virtual resistance
 - due to virtual resistance
 - 4c Apply voltage at PWM stage

V₁ I₁: positive sequence voltage/current, V₂,I₂ negative sequence voltage/current; GFM: Grid-forming; FRT: Fault-Ride Through; PWM: Pulse-Width Modulation







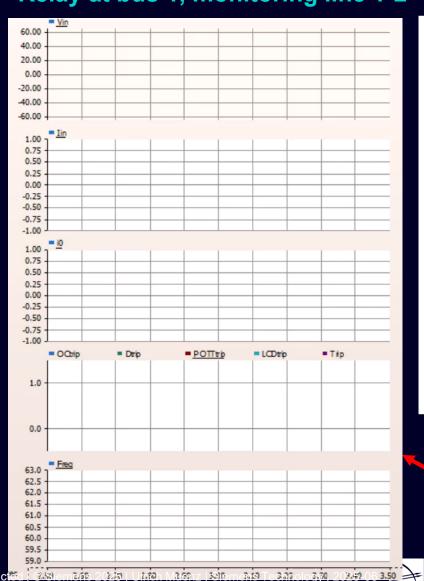


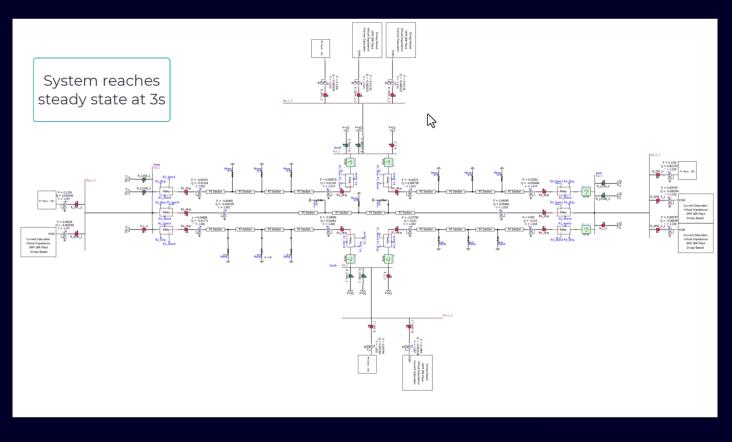
We are evaluating 4 different FRT and 4 protection relay functions in a PSCAD model with 60 different faults & 17 non-fault cases totaling 1,232 simulations

	FRT1	FRT2	FRT3	FRT4
PF1 (overcurrent)				
PF2 (distance)				
PF3 (POTT)				
PF4 (differential)				

Exemplary A-G Midline Fault simulation on South-West Line shows successful fault clearance

Relay at bus 1, monitoring line 1-2


Phase Voltage

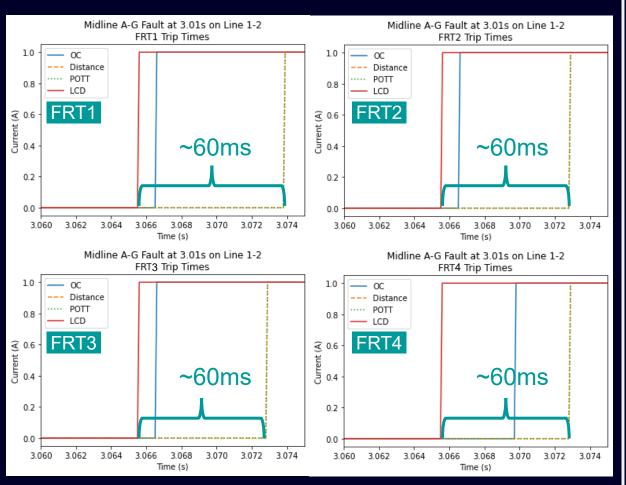

Phase Current

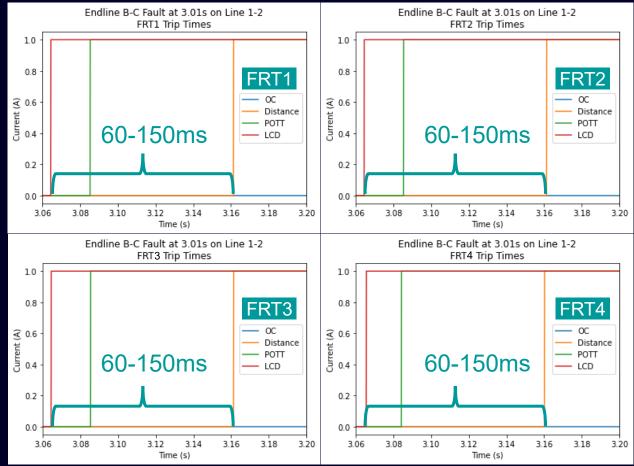
Zero Sequence Current

Trip per Relay Mode

Frequency

Zoom waveforms around fault





Observation: Fault clearing times of different protection relay functions are homogeneous for midline faults (left) and heterogenous for endline faults (right) irrespective of FRTs

Relay 1-2 trip signals for A-to-G midline fault at 3.01s

Relay 1-2 trip signals for B-C endline fault at 3.01s

We have defined KPIs for protection evaluation based on IEEE standards and guidelines from Power System Relaying committees to analyze ~1200 simulations

	KPIs	Target value
Dep	endability	raiget value
	% of Faults cleared	100%
Sec	urity	
2	% of Faults with mis-operations (incorrect relay)	20% misops
3	% of Faults with mis-operations (incorrect element)	20% misops
4	% of False trips (non-fault scenarios)	10%
Sele	ectivity	
5	% of Faults cleared by the correct relay ¹	80%
Fast	fault clearance	
6	Average Fault Clearing Time	5 cycles (83.3 ms)
7	# of breaker operations after 5 cycles	20%
Syst	tem stability	
8	Time for voltage/active power recovery after fault is cleared	1s after fault
9	Frequency Range (only for non-fault events)	57.8 - 61.5 Hz
10	ROCOF	less than 5Hz/s

KPI evaluation based on

- 960 fault simulations
- 272 non-fault simulations (load and generator steps)

Metrics	FRT 1 Current Limiter + Distance Protection			
Average Fault Clearing Time	92 ms			
% of Faults with mis-operations	2%			
# of operations after 5 cycles	39			

Take away #1: High protection dependability, security, selectivity, and fast fault clearance for all FRTs and protection functions except OC

Dependability + security + selectivity + fast fault clearance

- Permissive Over-reaching Transfer Trip (POTT)
 - Distance protection
 - Slow clearing for end-line faults
 - Over-current protection

		Average Op. Time (ms)		cycles (83ms)	% Cases with Misoperation ¹		Clearance	cleared
	FRT1	101		27	Incorrect Relay 12 Failed Op 45		43	55
	FRT2	99		30	Incorrect Relay Failed Op	15 45	40	55
OC -	FRT4	102		27	Incorrect Relay Failed Op	12 45	43	55
	FRT3	99		27	Incorrect Relay	12	43	55
					Failed Op	45		
		Overall	92		Incorrect Relay	0		
	FRT1	Mid	67	57	Failed Op	0	100	100
	TIXIT	Close/End	104	37	Incorrect Zone	10	100	100
-		Overall	92		Incorrect Relay	0		
	FRT2	Mid	67	60	Failed Op	0	100	100
	FRIZ	Close/End	104	60	Incorrect Zone	7	100	100
Distance								
Distance		Overall Mid	89 67		Incorrect Relay Failed Op	0	100	100
	FRT4			57				
L		Close/End	106		Incorrect Zone	10		
		Overall	88		Incorrect Relay	0	100	100
	FRT3	Mid	67	47	Failed Op	0		
١,		Close/End	98		Incorrect Zone	7		
	FRT1				Incorrect Relay	0	100	100
		70	5	Failed Op	0			
					Incorrect Zone	5		
	FRT2	69		0	Incorrect Relay	0	100	100
					Failed Op	0		
РОТТ					Incorrect Zone	0		
		68		2	Incorrect Relay	0		
	FRT4				Failed Op	0	100	100
					Incorrect Zone	2		
	EDTO	69			Incorrect Relay	0	100	100
	FRT3			2	Failed Op Incorrect Zone	0 2		
					incorrect Zone			
	FRT1				Incorrect Relay	0		
		54		0	Failed Op	0	100	100
LCD	FRT2	54		0	Incorrect Relay	0		
					Failed Op	0	100	100
	FRT4	55		0	Incorrect Relay	0	100	100
					Failed Op	0	100	
	FRT3	54	54		Incorrect Relay	0	100	100
	FR13 54		0	Failed Op	0	100	100	

OC: Over-Current; POTT: Permissive Over-Reaching Transfer Trip; LCD: Line Current Differential

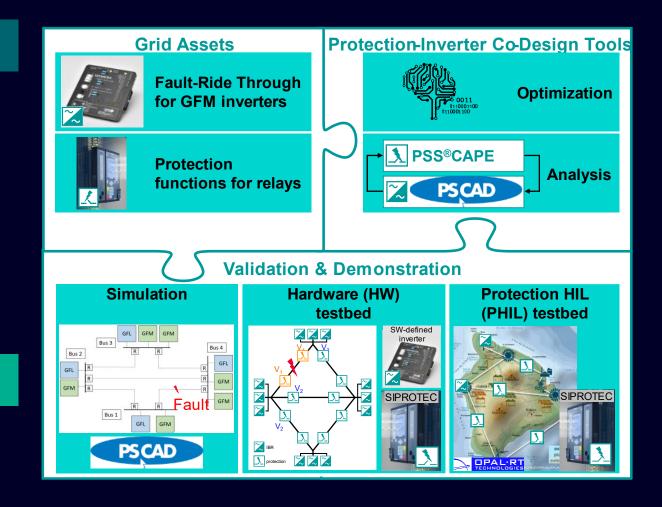
Take away #2: Post-clearance system stability and system stability in non-fault cases is achieved for all FRTs and protection functions except OC

Post-fault clearance metrics show good response for Distance, POTT, and LCD

Protection	rotection Fault Ride Volta Through Rec 5%		Avg. Voltage Recovery Time (ms)	% Cases where Active Power does not recover within 5% of pre-fault	Avg. Power Recovery Time			
	FRT1	37	216	33	179			
ОС	FRT2	37	151	42	172			
UC	FRT4	43	172	42	232			
	FRT3	32	219	35	200			
	FRT1	0	238	0	119			
Distance	FRT2	0	196	0	141			
Distance	FRT4	17	348	0	150			
	FRT3	3	234	3	142			
	FRT1	0	192	0	110			
DOTT	FRT2	0	162	0	129			
POTT	FRT4	5	294	2	139			
	FRT3	3	202	3	135			
LCD	FRT1	0	169	0	103			
	FRT2	0	144	0	115			
	FRT4	3	247	0	119			
	FRT3	0	186	0	123			

Non-fault analysis shows good dynamic response except for ROCOF violations after very high load/generation steps

Protection	Fault Ride Through	% Cases with Misop	% Cases with Nadir Violations	Nadir Avg. (Hz)	% Cases with ROCOF Violations	Max ROCOF Avg. (Hz/s)	% Cases with Max Freq. Violations	Max Freq Avg (Hz)			
	FRT1	0	6	59.44	29	7.09	6	60.06			
ос	FRT2	0	6	58.09	29	21.08	6	60.06			
UC	FRT4	0	6	59.12	47	8.57	6	60.06			
	FRT3	0	6	59.47	29	6.16	0	60.06			
	FRT1	6	6	59.39	29	8.60	6	60.06			
Distance	FRT2	0	6	58.09	29	21.08	6	60.06			
Distance	FRT4	6	6	59.05	47	14.44	12	60.06			
	FRT3	0	6	59.47	29	6.16	0	60.06			
	FRT1	6	6	59.39	29	8.60	6	60.06			
POTT	FRT2	0	6	58.09	29	21.08	6	60.06			
FOIT	FRT4	6	6	59.05	47	14.44	12	60.06			
	FRT3	0	6	59.47	29	6.16	0	60.06			
	FRT1	0	6	59.44	29	7.09	6	60.06			
LCD	FRT2	0	6	58.09	29	21.08	6	60.06			
LCD	FRT4	0	6	59.12	47	8.57	6	60.06			
	FRT3	0	6	59.47	29	6.16	0	60.06			


PI-Co Design: Protection-Inverter Co-Design for power system with 100% IBR

Take home messages

- Protection of IBR-dominated transmission systems is a white spot in the R&D landscape
- 1,200+ Simulation results indicated that
 Distance, POTT, and LCD show high protection
 dependability & security in IBR-dominated
 systems and good system stability after fault
 clearance and during non-fault events with
 appropriate FRT functions

Outlook

 Validation in HW and PHIL testbeds to harden our simulation results

IBR: Inverter-based Resource; FRT: Fault-Ride Through; Distance Protection; LCD: Line Current Differential POTT: Permissive Over-reaching Transfer Trip; PHIL: Protection Hardware in the Loop;

Contact

Ulrich Muenz, Siemens Technology

E-mail <u>Ulrich.Muenz@Siemens.com</u>

Matthew Reno, Sandia National Laboratories

Email mjreno@sandia.gov

