

Offshore Field Measurement Campaign Planning Summary of PIRT Workshops and Initial Experiment Conceptualization

David Maniaci – Sandia National Laboratories
Jonathan Naughton – University of Wyoming
Sue Haupt – NCAR
Matt Churchfield – NREL
Amy Robertson – NREL
Jason Jonkman – NREL

April 2023

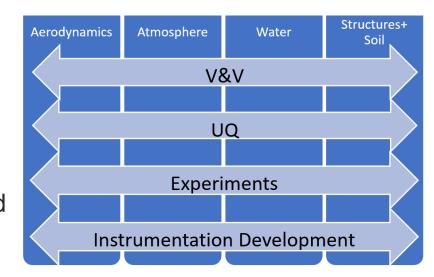
Table of Contents

Section	Slide Number Range							
Introduction	3-8							
Organization of PIRTs	9							
1a: Mesoscale Air	10-20							
1b: Microscale Air	21-35							
2: Water	36-42							
3a: Structures	43-50							
3b: Soil	51-55							
Offshore PIRT – PIRT Overlaps	56							
Summary Takeaways, Gaps, Experiments and Instruments	57-60							
Conclusions and Next Steps	61-63							
Appendix: Detailed PIRTs	64-85							

Multi-lab Team and Organization

- David Maniaci Sandia National Laboratories Project Lead and Coordinator
- Jonathan Naughton University of Wyoming Validation Experiment Coordinator
- Sue Haupt NCAR Air-Mesoscale lead (ABL, Farm-Farm interaction)
- Matt Churchfield NREL Air-Microscale lead (ABL, Turbine aero., Turbine-Farm interaction)
- Amy Robertson NREL Water lead (Waves, Current, Tides)
- Jason Jonkman NREL Structures + Soiling lead
- Staff at SNL, NREL, PNNL, and NCAR supporting this work directly
- Broader lab, research community, and industry input
 - The A2e PIRT activities last year included input from staff at SNL, NREL, PNNL, LLNL, ANL, and NCAR.

Phenomena Categories	Group #	Area Lead
Air Mesoscale: ABL, Farm-Farm Interaction	1a	Sue Haupt
Air Microscale: ABL, Turbine Aero, Turbine-Farm Interaction	1b	Matt Churchfield
Water: Waves, Current, Tides	2	Amy Robertson
Structures, Soil	3a, 3b	Jason Jonkman

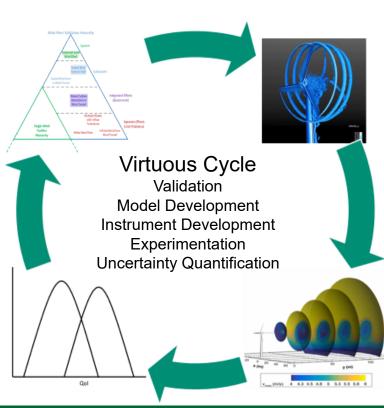

Interfaces: Water-Structure, Air-Structure, Soil-Structure, Air-Sea, Water-Soil, Water-Soil-Structure, Air-Air, Air-Structure-Control, Water-Structure-Control

Overview

Goal: Roadmap for validation of offshore wind design and analysis modeling capabilities

Overall Approach:

- PIRT Identify outstanding critical phenomena areas where we don't understand physics well or are unsure of the accuracy of our tools
- Develop an organizational structure of the validation needs
 - Define a hierarchy of priorities and dependencies
- Define an approach to address the prioritized needs
 - Identify available datasets
 - Define needed experiments and required instrumentation and logistics
- Develop a roadmap that defines approach for organizations to address offshore validation needs
 - Enable structure for international collaboration in tackling needs

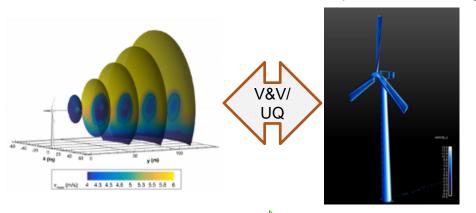


The validation roadmap developed in this effort will give:

- Priorities for model validation campaigns specific to offshore wind energy,
- Hierarchy of prioritized experiments to meet validation goals,
- Instrumentation development that will be needed for unique offshore validation needs,
- Framework for international and cross-institution coordination.

V&V Coordination Bonds Validation Efforts

- Directly builds off aspects of the A2e V&V/UQ project and Instrumentation Development Roadmap from AWAKEN
 - Coordination activities targeting needs for Offshore Wind.
- Acts as the 'glue' between all offshore validation related projects
 - Depends on multi-year projects and external organizations to cover the time for the contributions of experts.
- Enables coordination of future offshore wind field experiments and the modeling efforts that will rely on the resultant data for training, calibration, and validation.
 - Modeling efforts across the program (atmospheric, HFM turbine/plant, systems)
 - Targeted validation experiments
 - Instrumentation development
 - Machine learning and data analysis
 - Uncertainty quantification
- A focused validation coordination effort has several benefits in preparation for future experimental campaigns:
 - Synergy between validation focused experimental campaigns.
 - Maximum use of limited funds through careful, integrated planning.
 - Experience gained and instrumentation developed in early campaigns will feed into later campaigns.

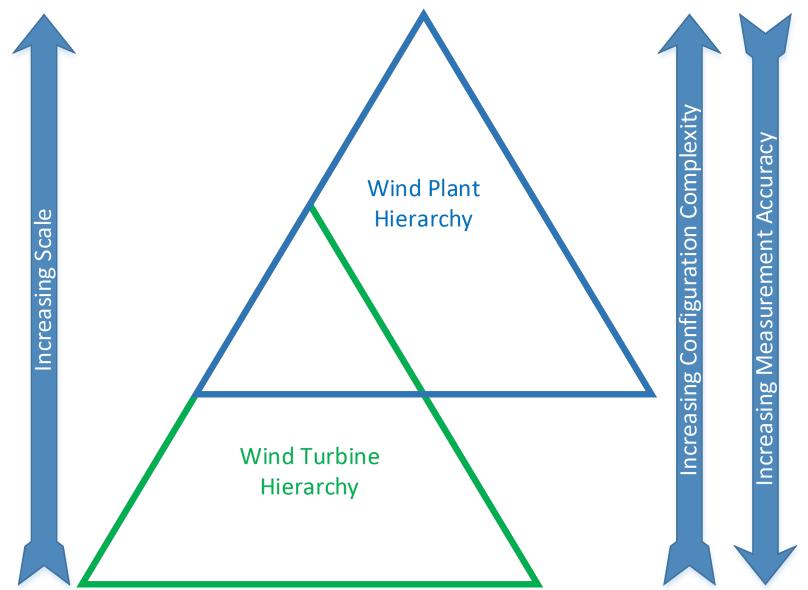

Integrated Verification and Validation (V&V) Methodology

Define Application: Identify scenarios and response Integrated Program Planning
Typically done once (unless program priorities or phenomena ranking change). quantities to be predicted by models Phenomena Identification: Physics, model adequacy, and V&V status necessary for accurate model application Validation Hierarchy: Rank phenomena for testing, the scale and hierarchy of experiments, and conceptualize the tests. Prioritization: Rank V&V needs and outline plan based on program priorities and resources **Experimentation:** Plan and execute experimental campaigns and Model Planning **V&V**: Quantitively understand model applicability and accuracy; improve models as needed Advance Technology: Apply models to advance technology

Outcome of the Planning Process:

- Prioritized phenomena
- Identification of gaps in existing V&V data and activities
- Hierarchy of prioritized
 validation experiments and
 analysis
 Validation Focused

Validation Experiment Program Computational Modeling


Prediction innovation

Backbone of V&V Planning: Phenomenon Identification Ranking Table (PIRT)

Phenomenon	Importance	IV	lodel Adequacy			
	at Application Level	Physics / Code Functionality	Code / Verification	Code / Validation		
A	н	M	L	L		
В	Н	M	L	L		
С	M	M	M	L		
D	Н	L	L	L		
E	Unknown	M	L	L		
F	Н	L	L	L		
G	L	M	L	L		
Н	Н	M	L	L		
I	Н	L	L	L		
J	Н	L	L	L		
K	Н	L	L	L		
L	M	L	L	L		
M	Н	M	L	L		
N	L	L	L	L		

- Specific to application and model
- Provides gap analysis regarding ability to model phenomena:
 - Physics / code functionality gaps
 - Numerical gaps
 - Verification gaps
 - Data gaps
 - Validation gaps
- Consensus based
- Used to prioritize planning, including experimentation needs
- Requires reassessment over time as models improve and V&V activities progress

Validation Hierarchy

- PIRT Leads to the Validation
 Hierarchy
- A range of levels of experiments, increasing in scale and complexity:
 - Simple, laboratory-type experiments at the base
 - Full complex system at the peak

Phenomena Categories for Application to Offshore Wind

Phenomena Categories	Group #
Air Mesoscale: ABL, Farm-Farm Interaction	1a
Air Microscale: ABL, Turbine Aero, Turbine- Farm Interaction	1b
Water: Waves, Current, Tides	2
Structures, Soil	3a, 3b
Electrical, Grid	4
Interfaces:	
Water-Structure	2, 3a
Air-Structure	1b, 3a
Soil-Structure	3a, 3b
Air-Sea	1a, 1b, 2
Water-Soil	2, 3b
Water-Soil-Structure	2, 3a, 3b
Air-Air (Terra Incognita)	1a, 1b
Air-Structure-Control	1b, 3a, 4
Water-Structure-Control	2, 3a, 4

- Fixed and floating
- Performance and loads applications
- Engineering and high fidelity
- Grid (area 4) not addressed at this stage
- Phenomena of high importance shown next

Mesoscale
Cross-scale Effects
Air-Air, Terra Incognita
ABL
Wind Plant Aero., Wakes (farm-farm)
Air-Sea

Group 1a - Mesoscale Air - Prioritized Phenomena

Highest Priority for Experiments:

- Representation of winds and turbulence through the atmospheric boundary layer (ABL) to the top of the rotor – requires profiles of temperature and humidity as well as 3D wind speed and direction. Include cloud impact on ABL
- Wind plant representation (drag effect of turbines) include impact of ocean upwelling on stability.

Other very high priority

- Ramp events due to mesoscale weather phenomena such as fronts, thunderstorms, ...
- Low level jets
- Extreme wind events tropical cyclones, extratropical cyclones, etc. See ANL PIRT.
- Bridging gap from mesoscale turbulence to microscale turbulence.

Group 1a - Mesoscale Air - Prioritized Phenomena

Other very high priority

- Stability impacts on the ABL structure.
 - Rolls and cells in convection surface to above ABL
 - Impact of ABL height on ABL structure hard to measure when stable.
- Plant wake emphasis on the effect of the wind farm on cross-stream downstream regions.
- Deep array turbulence within the farm.
- Lightning important to structures
- Precipitation and leading edge erosion include raindrop size distribution and impact on ocean surface cooling. Important to structures
- Sea surface conditions waves, impact of breaking waves. Include upwelling and wind-wave misalignment.
- Sea surface conditions temperature (SST) and its gradients at wind plant scales.

Group 1a: Mesoscale Air, ABL, Farm-Farm Interaction

	Importance at	Relative		Model Adequacy	
Phenomenon	Application Level	Importance for experiments	Physics	Code	Validation Capability
Mesoscale phenomena					
Representation of winds and turbulence through the atmos. boundary layer and/or top of rotor	Н	***	М	М	L
Wind plant repesentation (i.e., drag effect of turbines)	Н	***	М	М	L
Large, persistent high-pressure domes with low wind speeds	н		М	М	L
Terrain influences and Island effects	Н		M	M	L
Baroclinicity	Н		M	L	L
Cold air outbreaks	н		М	М	L
Cross-scale effects					
Low-level jets	Н	*	М	М	L
West coast synoptically induced high winds	Н		Н	Н	L
Terrain influences and Island effects	Н		М	М	L
Gulf stream effects on ABL/mesoscale	Н		M	M	L
Air-Air, Terra Incognita					
Mesoscale turb. to LES turb. models	Н	*	L	M	L
Mesoscale to plant inflow	Н		M	M	L
Plant wake to mesoscale	Н	*	M	M	L

Group 1a: Mesoscale Air, ABL, Farm-Farm Interaction

	Importance at	Relative		Model Adequacy	
Phenomenon	Application Level	Importance for experiments	Physics	Code	Validation Capability
ABL					
Turbine wake interaction within a farm, which is a function of ABL turbulence-(Stability)	Н	*	М	М	L
Internal boundary layers due to differential advection	Н		M	М	L
Low-level jet	Н		M	М	L
Impact of clouds on ABL structure	Н		М	L	L
Stability impacts on ABL structure	Н	*	Н	M	L
Impact of ABL height on ABL structure	Н	*	M	М	L
Wind Plant Aero., Wakes (farm-farm)					
Plant wake	Н	*	М	М	L
Heat, moisture and momentum exchange within plant	Н		L	L	L
Deep array turbulence	Н	*	L	М	М
Lightning	Н	Sturctures	L	М	M
Precipitation and impact on leading edge erosion	Н	Structures	M	М	L
Air-Sea					
Surface conditions - waves, including impact of breaking	Н	*	M	L	L
Swell - larger wave age	Н	*	M	L	L

Group 1a - Mesoscale-Microscale Air Crossovers

- Having correct profiles of thermodynamic variables as well as wind data.
- Offshore specific items critical, such as
 - Land / sea interface
 - SST gradients
 - Hurricanes
- Wakes of these large offshore wind turbines and wind farms cannot be scaled up from the land-based farms.
- Large wind farm clusters impact the mesoscale.
- Understanding and modeling deep array turbulence within the farm requires accurate coupling with the mesoscale.
- Stability matters for turbulence at both micro and mesoscale.

Group 1a – Mesoscale-Turbine Crossovers

- The description of the ABL is becoming more critical for the large offshore turbines to operate efficiently.
- Timescales for forecasting are rapidly decreasing need accurate forecasts for control.
- Lightning is a critical phenomena where it is difficult to conduct an experiment.
- Precipitation can cause leading edge erosion. To accurately predict that requires drop size distributions.

Main takeaways

- Need to better understand and measure the impact of ABL structure on wind energy harvest.
- Need to couple from mesoscale to microscale to get correct modeling.
- Need to include impacts of atmospheric stability, including thermodynamic structure as well as 3D wind profiles, which impact convective cells and rolls, and low level jets.
- Need to better understand impact of turbines on generating turbulence both within the farm and between farms, both of which impact harvest.

Gaps remaining

- Impact of ABL stability on wind farm efficiency and maintenance
- Understand impact of precipitation on
 - Leading edge erosion
 - Changes in ocean temperature

Conceptual Experiments

- The team conceived of a large multi-national experiment that would measure many atmospheric properties (wind and thermodynamic properties) and multiple levels and multiple sites. Focus would be both within farms and between farms. If it is to be within the next 5 years, it would have to be off Europe where multiple closely spaced wind farms already exist. We need to understand wake interactions over multiple stability cases particularly for stable conditions, which are likely a worst-case scenario. Could be less than a year but would need to cover several seasons.
- Long-term measurements (2-5 years) from a tower or instruments in wind farms to obtain multi-year data that could be used to see extreme events and to train machine-learning models of the future.

Instrumentation needs

- Multiple lidars to see across wakes and between farms.
- Doppler radar perhaps see to longer ranges
- Synthetic aperture radar from satellite to get SST
- Radiometer or something that can be deployed offshore to measure temperature profiles
- Potentially a microwave radiometer on turbine spinners (like forward-looking lidars)
- Sonics that are easier to maintain in the offshore environment
- Better measurement of ocean skin temperature and fluxes

Group 1b - Microscale Air

Microscale Atmosphere
Offshore-Specific Microscale Atmosphere
Air-Sea Interface
Air-Air Gray Zone (Terra Incognita)
Wind Plant Aerodynamics/Wakes
Turbine Aerodynamics – Rotor, Blade
Turbine Aerodynamics – Airfoil

Scoring System:

- Phenomenon importance at application level is ranked values of H, M, L
 - H/M/L = high/medium/low importance
- Physical understanding is ranked values of H, M, L
 - H/M/L = high/medium/low-level of physical understanding
- Code implementation/verification
 - H/M/L = well/adequately/poorly implemented/verified code
- Code/Physics validation
 - H/M/L = well/adequately/poorly validated code/physics

Overall Priority:

- We then look for disparity between phenomenon importance compared with physical understanding, code implementation/verification, validation.
 - If the disparity is high, there is a high priority.
 - Example, high phenomena importance but poor physics understanding/code/validation means that there should be high priority to do research/model development on this topic
- These scores are converted to numeric values
 - H = 2. M = 1. L = 0
- Assign a numerical priority score:
 - score = $\frac{\text{phenomena importance} mean(\text{physics, code, validation}) + 2}{\text{phenomena importance} mean(\text{physics, code, validation})}$
 - The +2 and /2 simply ensure the score is on a range of 0 to 2.
 - Priority level: 2 = high, 1 = medium, 0 = low

Prioritized phenomena

	Planning Priority								
Phenomenon	High Fidelity	Engineering Tools	Overall						
General Microscale Atmospheric Phenomena	1.40	1.68	1.54						
Offshore-Specific Microscale Atmospheric Phenomena	1.55	1.67	1.61						
Air-Sea Interface Phenomena	1.65	1.73	1.69						
Air-Air Gray Zone (<i>Terra Incognita</i>)	0.83	1.00	0.92						
Wind Plant Aerodynamics / Wakes	1.30	1.63	1.46						
Turbine Aerorodynamics Rotor, Blade	1.44	1.58	1.51						
Turbine Aerodynamics Airfoil	1.57	1.51	1.54						

- Highest priority rankings naturally had to do with offshore but were atmospheric focused.
 - #1 Air-Sea Interface 1.69
 - #2 Offshore specific atmospheric flow 1.61
 - #3 General atmospheric flow 1.54
- Next batch of priority comes from wind turbine and blade aerodynamics
 - #4 Turbine Aerodynamics Airfoil 1.54
 - #5 Turbine Aerodynamics Rotor 1.51
- Wind Plant/Wakes close follower
 - #6 Wind Plant and Wake Flow 1.46
- Gray Zone (Terra Incognita) much lower
 - #7 Gray Zone 0.92

- Rankings reflect the fact that the offshore atmospheric environment is less studied/modeled and that validation data is harder to obtain
 - However, we must remember that work has been done
 - Peter Sullivan et al. and high-fidelity wind/wave LES
 - MMC group began offshore work before task ended
 - ORACLE and TREXO projects are offshore focused
 - Significant data: FINO 1, ASIT, California buoys
 - Can we draw from oil and gas industry?
- Microscale flow continues to be a difficult problem
 - We have made huge advances in canonical ABL microscale modeling at high-fidelity since the 1970s, so that is great progress
 - However, the range of atmospheric conditions, situations, surface effect is nearly infinite
 - Interaction with mesoscale and surface is complex

Rotor and Airfoil flows rose above plant/wake flow

- This is likely explained because offshore rotors are different than current land-based technology with which we have more experience
- Higher Reynolds number and Mach number, thick airfoils, possible active control devices make this relatively new and higher priority
- Also, we devoted a lot of work over the last decade to plant/wake flows, so we understand those flows better than before

Gray Zone ranks low

- Gray zone (terra incognita) refers to the range of scales between mesoscale and microscale
- The low priority is likely because most mesoscale-microscale coupling methods simply jump directly from mesoscale to microscale without explicitly modeling the gray zone

	Is it different	Offshore			Model Adequ	uacy (High Fidelity)		M	Model Adequacy (Er	ngineering Tools)			Planning Priorit	У
Phenomenon	offshore	Floating,	Application Level	Physics Model	Code + Verification	Do We Have Validation Data?	Have We Validated?	Physics Model	Code + Verification	Do We Have Validation Data?	Have We Validated?	High Fidelity	Engineering Tools	Overall
General Microscale Atmospheric Phenomena				/		/		/				1.40	0 1.68	8 1.54
Mean vertical profile (shear/veer/asymmetry)		***************************************	Н	н	М	М	М	М	М	М	L	1.33	1.67	1.50
Mean vertical profile, not of just wind, but also temperature and moisture			Н	М	L	L	М	L	L	L	L	1.67	2.00	1.83
Turbulence Spectrum	Yes	both	Н	н	М	L	М	М	М	L	М	1.33	1.50	1.42
Turbulence Coherence/Correlation	163	DOTT	Н	Н	М	L	L	М	М	L	L	1.50	1.67	1.58
Turbulence Structure (space-time structure)	1	,	Н	Н	L	L	L	Н	L	L	L	1.67	1.67	1.67
Boundary Layer Height			Н	н	М	M	L	L	L	М	L	1.50	2.00	1.75
Surface conditions (roughness, canopy, waves, surface heat flux, topography)			Н	М	L	М	L	L	М	М	L	1.83	1.83	1.83

			1	Model Adequacy (High Fidelity) Model Adequacy (Engineering Tools)								-1 -1 -1 -1								
	Is it different	Offshore			Model Adequ	acy (High Fidelity)		M	lodel Adequacy (E	ngineering Tools)			Planning Priorit	y						
Phenomenon	offshore vs. onshore?	Application: Floating, Fixed, or Both	Importance at Application Level	Physics Model	Code + Verification	Do We Have Validation Data?	Have We Validated?	Physics Model	Code + Verification	Do We Have Validation Data?	Have We Validated?	High Fidelity	Engineering Tools	Overall						
Offshore-Specific Microscale Atmospheric Phenomena												1.55	1.67	1.61						
Horizontal Heterogeneity			Н	L	L	М	L	L	L	М	L	2.00	2.00	2.00						
Coastal Low-Level Jet			Н	М	М	М	М	L	L	М	L	1.50	2.00	1.75						
Transitional Nature of ABL at Land-Sea Interface, and SST Gradients			Н	М	М	L	L	L	L	L	L	1.67	2.00	1.83						
Site-Specific-ness (not really a phenomenon)	Yes	both	Н	М	М	M	М	М	М	M	L	1.50	1.67	1.58						
ABL within Tropical / ExtraTropical Cyclones		Yes	Yes	Yes	Yes	Yes	Yes	Yes		Н	L	L	L	L	L	L	L	L	2.00	2.00
Design Standard Gust Cases Specific for Offshore and Floating Turbines (not really a phenomenon)		fixed (same as land) / floating (new)	н	L	L	L	L	М	М	L	L	2.00	1.67	1.83						
Air-Sea Interface Phenomena												1.65	1.73	1.69						
Wave-Driven Mechanical Turbulence			Н	L	L	L	L	L	L	L	L	2.00	2.00	2.00						
Wave-Driven Modification of Mean Profile			Н	L	L	L	L	L	L	L	L	2.00	2.00	2.00						
Current	Yes	both	Н	М	L	М	L	L	L	M	L		2.00	1.92						
Flow Modification Due to Thermodynamic Effects			Н	L	L	М	L	L	L	М	L	2.00	2.00	2.00						
Air-Air Gray Zone (<i>Terra Incognita</i>)												0.83	1.00	0.92						
	-	-	•						•			_								

ent	Offshore			Model Adequ	acy (High Fidelity)		M	odel Adequacy (Ei	ngineering Tools)			Planning Priorit	у																														
ore		7.7	Physics Model	Code + Verification	Do We Have Validation Data?	Have We Validated?	Physics Model	Code + Verification	Do We Have Validation Data?	Have We Validated?	High Fidelity	Engineering Tools	Overall																														
											1.30	1.63	1.46																														
		Н	н	н	L	L	М	М	L	L	1.33	1.67	1.50																														
		Н	Н	Н	М	М	М	M	М	L	1.17	1.67	1.42																														
		Н	Н	Н	М	L	L	L	М	L	1.33	2.00	1.67																														
oly,	both	Н	М	М	М	М	М	М	М	L	1.50	1.67	1.58																														
ites		Н	Н	Н	L	L	М	M	L	L	1.33	1.67	1.50																														
																																Н	М	M	М	L	М	М	М	L	1.67	1.67	1.67
			Н	М	М	L	L	L	L	L	L	1.67	2.00	1.83																													
		Н	М	M	L	L	L	L	L	L	1.67	2.00	1.83																														
		Н	М	M	М	L	L	L	М	L	1.67	2.00	1.83																														
	re?	re? Floating, Fixed, or Both	Floating, Fixed, or Both Philipped P	Physics Model Floating, Fixed, or Both H H H H H H H H H H H H H H H H H H	Floating, Fixed, or Both H H H H H H H H H H H H H H H H H H	Floating, Fixed, or Both Fixed, or B	Floating, Fixed, or Both Floating, Fixed, or B	Floating, Fixed, or Both Fixed, or B	Floating, Fixed, or Both Fixed, or B	Floating, Fixed, or Both Physics Model Physics Model Code + Verification Data? Physics Model Phys	Floating, Fixed, or Both Fixed, or B	Floating, Fixed, or Both Physics Model P	Floating, Floa																														

	Is it different	Offshore			Model Adequ	acy (High Fidelity)		М	odel Adequacy (E	ngineering Tools)			Planning Priorit	y
Phenomenon	offshore vs. onshore?	Application: Floating, Fixed, or Both	Importance at Application Level	Physics Model	Code + Verification	Do We Have Validation Data?	Have We Validated?	Physics Model	Code + Verification	Do We Have Validation Data?	Have We Validated?	High Fidelity	Engineering Tools	Overall
Turbine Aerodynamics Rotor, Blade												1.44	1.58	1.51
Blade Load Distribution Effects and Rotor Thrust			Н	M	М	М	M	L	L	M	L	1.50	2.00	1.75
Tip and Root Vortex Development, Evolution and Merging			Н	M	М	L	L	М	M	L	L	1.67	1.67	1.67
Vortex Sheet and Rollup (in addition to tip/root vortex)			Н	M	М	L	L	М	M	L	L	1.67	1.67	1.67
Distributed Active Aerodynamic Flow Control	Possibly,	both	Н	M	М	L	L	М	M	L	L	1.67	1.67	1.67
Vortex-Generator Flow	see notes.	Both	Н	M	М	М	M	М	M	M	L	1.50	1.67	1.58
Unsteady Inflow Effect (veer, shear, yaw, gusts, atmospheric stability, turbulence intensity, spectra, coherence)			Н	М	М	L	L	М	М	L	L	1.67	1.67	1.67
Hydrometeor Erosion/Damage			Н	L	L	L	L	L	L	L	L	2.00	2.00	2.00
Turbine Aerodynamics Airfoil												1.57	1.51	1.54
High Reynolds Number Aerodynamics			Н	М	М	М	L	М	М	М	М	1.67	1.50	1.58
Blade Surface Effects (roughness, soiling, bugs, erosion)			Н	L	L	М	L	М	M	M	M	2.00	1.50	1.75
Boundary Layer Development (transition, separation)	Possibly, see notes.	both	Н	М	М	М	М	М	М	М	М	1.50	1.50	1.50
Dynamic Stall			н	М	М	М	L	М	М	М	М	1.67	1.50	1.58
Icing - effect on boundary layer			Н	L	L	L	L	L	L	L	L	2.00	2.00	2.00
Unsteady inflow effect (turbulence intensity, spectra, coherence)			Н	М	М	L	L	L	L	L	L	1.67	2.00	1.83

Group 1b: Microscale Air - Takeaways

Main Takeaways

- Turbines are getting bigger; offshore ABL often shallower. Ratio of turbine scale to ABL scale shrinks
- Need for atmospheric measurement with detailed profiles to at least top of ABL
- Turbulence structure is very important need to take advantage of measurement devices that capture structure (X-Band radar, etc.)
- We should not assume that phenomena like wake meandering will simply scale up, nor that it should be constant from top to bottom
- Land-sea interaction needs to be better quantified, but translated to simpler models (like those for land) for surface momentum/heat/moisture exchanges
- ABL state is site specific: ex. U.S. Atlantic coast very different than U.S. Pacific
- Should our models include moisture? If yes, we need to measure this.
- Research had shifted from turbine to plant, but renewed interest in turbine because of
 - Higher Re/MA airfoil effects
 - Thicker airfoils
 - More structural flexibility
 - Floating substructures
- "Wind plant blockage" is sort of a catch-all phrase that is likely caused by various phenomena in combination. Need to better understand this.
- Working together with Europeans is key.
- Distinct differences in model adequacy between high-fidelity and engineering tools. More effort is necessary to create symbiosis between the two classes of models.

Group 1b: Microscale Air - Takeaways

Gaps Remaining

- Need more understanding of air-sea interface.
- Need more understanding of marine-specific ABL.
- Land-sea "history"/"memory" effects (i.e., internal boundary layer, transitional boundary layer state) likely important given that wind farms are relatively close to shore. Many of the conditions of interest require mesoscale-microscale coupling in simulations; does that mean we need mesoscale measurements, too?
- Wake behavior at long distances within very large wind farms.
- Wind plant wake behavior. We do not understand what all causes "wind-plant blockage".
- Effect of floater motion on wind farm waking.
- Better understanding of higher Re/Ma airfoil behavior on more flexible structures

Cloud streets indicating transitional boundary layer at land-sea interface along U.S. Atlantic coast. This caused by air over cold land (stable stratification) transitioning to warm sea (unstable stratification).

Group 1b: Microscale Air - Conceptual Experiments and Instruments

Conceptual Experiments

- A few "unit" level experiments to test subsets of phenomena (ex. turbine, airfoil)
 - Many would not require measurements in wind farm
 - Data may partially exist
- One "system level" experiment in an existing wind farm
 - The offshore version of AWAKEN
 - However, we should leverage existing offshore wind farm data
 - Alpha Ventus, Egmond aan Zee (OWEZ), Lillgrund, Dudgeon, Hywind Scotland

Group 1b: Microscale Air - Conceptual Experiments and Instruments

Instrumentation Needs:

- Measurement devices that measure wind, temperature, moisture through entire ABL, but with detail near surface where gradients are steepest
- Mesoscale measurements (existing daily soundings, meso-net)
- How to measure wind plant wakes?
- Can we make more use of scanning radar (e.g., TTU X-Band radar) to quantify ABL turbulence structure for validation of LES and informing synthetic turbulence methods?
- Can we make use of existing and emerging satellite data? Collaborate with NASA.
- Critically need measurements of wind-farm-induced atmospheric gravity waves? Do they exist or not?
- How to measure wind plant blockage when its effect is relatively small?
- Measurement on buoys have to be measurement compensated and have to deal with marine environment.
- How do we test airfoils at higher Re or Ma?
- What can be measured without a plant/what needs a plant?
- Can we make use of drones with measurement devices?

Group 2 - Water

Mesoscale Water
Microscale Water
Water-Structure
Water-Structure-Control
Air-Sea

Group 2 – Water - Prioritized Phenomena

- No Mesoscale Water phenomena were prioritized as High
- For Microscale Water (defined as the farm level), these were of High planning priority:

	Application: Floating,		Model	Adequacy/Co		
Phenomena	Fixed, or Both	Importance	Physics	Code/Verif	Code/Valid	Planning Priority
Freak/rogue wave	Both	Н	M	M	L	Н
Steep/breaking waves	Both	Н	M	M	L	Н
Wave nonlinearity	Both	Н	M	M	M	Н
Waves + current	Both	Н	M	L	L	Н

Notes from discussion:

- Steep/breaking waves Henrik Bredmose (DTU) has done a lot of work in this area, but not well characterized in many tools; many experiments at model scale
- Wave nonlinearity Need better ways of capturing combined irregularity / nonlinearity of waves
- Wave plus current the important focus is wave kinematics in the presence of nonuniform current: dispersion relationship

Group 2 – Water-Structure Prioritized Phenomena

	Application:		Model A	dequacy/	Confidence	Planning	
Phenomena	Floating, Fixed, or Both	Importance	Physics	Code/ Verif	Code/ Valid	Priority	Comments
Viscous loading - Member in isolation, current vs wave	Both	Н	М	M	M	Н	How to scale up viscous loads from experiment? Not easy
Viscous loading - Shadowing effects	Both	Н	M	П	М	Н	Results are likely case specific; not predictive to new concepts
Viscous loading - frequency dependency	Floating	Н	M	L	М	Н	How to model viscous loads when motion/wave at multiple freqs?
VIM - substructure	Floating	Н	M	M	L	Н	Low validation on floating wind; important for tow-out; important at low frequencies
VIV - stationkeeping	Floating	Н	M	М	L	Н	Important for fatigue in some cases. Not in our models.
Floater flexibility	Floating	Н	M	М	L	Н	
Multi-body support structures	Floating	Н	M	М	L	Н	Designs like Tetraspar where two bodies may move independently.
Wave/current-body interaction	Both	Н	M	L	L	Н	
Breaking/steep/slam wave loads	Both	Н	M	M	L	Н	Decent for fixed monopiles, much less for floating substructures
Water-Heave Plate interaction	Floating	Н	M	М	L	Н	Lower confidence in our models for shallow drafts
Marine Growth and Surface roughness	Both	Н	M	М	L	Н	Important for mooring/cabling loads; limited data - likely overconservative
Corrosion	Both	Н	M	М	L	Н	Modeling capability low, but an existing solution that negates the issue of corrosion.

Group 2 - Water - Gaps Remaining / Takeaways

Gaps Remaining:

- Better understanding of joint probability across metocean parameters
- Does the power cable influence the motion of the platform, thus requiring coupled analysis?
- How to most effectively use multiple fidelities of tools
- How to tune hydro coefficients for mid-fidelity tools
- What does model-scale validation imply for full-scale simulations?
- Need guidelines on offshore wind testing and validation
- Need to streamline design process
- Cannot predict damping well in offshore wind systems

Takeaways:

- Many of the topics may not adequately address specific needs for towing, installation, and maintenance
- Evaluate the suitability of our existing modeling tools for digital-twins application
- Did we adequately address damage cases (e.g., mooring line loss?)

Group 2 – Water – Experiments

Highest Priorities

- Public full-scale validation dataset (floating) (5 yr)
 - Scaled validation lacks complexity of real metocean conditions
 - How to focus on specific phenomena?
 - Significant uncertainty in full-scale datasets
 - Difficulty to achieve under-water measurements
- Measurement of full set of metocean parameters (2 yr)
 - East Coast, West Coast, Gulf of Mexico, Great Lakes
- Viscous loading at full scale (2 yr)

Additional Considerations:

- Measurements of hurricane conditions (including waves)
- Need focus on moorings / cabling
- Consideration of different floating platform design types

Existing Datasets:

- Model-scale measurements available from other organizations, but data quality (and uncertainty) may be difficult to assess
- Roadmap can enhance the clarity of out data request to industry, thereby increasing the likelihood of successful outcomes and better identification of industry value

Group 2 – Water – Instruments

- Model Scale (outstanding needs)
 - Distributed pressure on the substructure
 - Internal loads in the substructure

Full Scale

- High-resolution time measurements of wind and waves concurrently, including wind/wave misalignment
- (Wind) how do we get good offshore measurements of shear, turbulence, veer, and coherence?
- Difficult to get below the waterline measurements
 - Problems with installation damaging
 - Difficult to deploy below the waterline after installation
 - Difficult to keep measurements calibrated in offshore environment

Group 2 - Water - Data Availability

Model-scale dataset

- Breaking waves Sintef
- Member-level flexibility: Experiments at DHI on two columns with heave plates. The columns are bridged together at the top by a beam with a flexible joint in the middle.
- Controls and member-level loads in the platform from the FOCAL project
- Component-level offshore wind/structure measurements, including distributed pressure load (NREL)
- Spar / semi-sub from the EU/H2020 COREWIND project will become available. The experiment was performed by IHCantabria.

Testing facility opportunities

Plymouth Univ. has a wave tank which might be used to perform experiments. Recently installed fans.

Full-scale datasets

- HUTT have worked with Ideal on their design prototype in the FloatGen project and had good data from turbine.
 - Only had one wave buoy of data that was 1km away, so no way to correlate time series of waves at platform.

Group 3a - Structures

Rotors,
Sensors and Actuators,
Nacelle and Drivetrain,
Tower and Substructure,
Stationkeeping and Dynamic Power Cable Systems,
Air-Structure

Group 3a - Structures: Prioritized Structural Phenomena

Rotors

- Structural damping Lack of data; difficulty going from coupon to full scale; models not predictive
- Fracture mechanics, crack growth, and damage propagation of composite materials – Low cycle fatigue; sequence effects beyond Miner's sum; lack of predictive capability; holy grail of material science
- Blade shear and torsion Getting from 3D FEA to beams and back
- Interface between spar and skin/shell and LE/TE Adhesives
- Lightning protection Especially for carbon blades

Sensors and Actuators

- Effect of sensor integration within the structure Strain; load cells; pressure taps; cable bundle
- Effect of actuator integration within the structure Reliability

Group 3a - Structures: Prioritized Structural Phenomena

Tower and Substructure

- Joint performance, flexibility and stress concentrations, load transfer, bolted connections – Impact of welding; steel-concrete connections; bolts; grouted connections; slip joints
- Member-level loads in multi-member structures
- Damage stability load cases
- Structural damping Lack of data; models not predictive

Stationkeeping and Dynamic Power Cable Systems

- Hysteresis of synthetic lines
- Bending of dynamic power cable
- Mooring line loss
- Creep of tendons
- Structural loading of chains

Group 3a - Structures: Prioritized Air-Structure Phenomena

Air-Structure

- Aeroelasticity/loads Ability to predict lifetime ultimate loads and fatigue loads; less data for large slender rotors and floating systems
- Aeroelasticity/stability during operation
- Vortex-induced vibration (VIV) Stall induced vibration when idling in high winds
- Passive load reduction Bend-twist coupling
- Wind farm control -- Wake steering; induction; wake mixing
- Individual turbine control response to waked inflow
- Aerodynamics under large floater motion Rotor effects; wake effects; near-to-far wake transition
- Extreme events Tropical cyclones; thunderstorm downburst; ride through
- Flutter
- Soiling Impact of droplets and salt
- Idling case with fault Edgewise instability
- Impacts of large inflow nonheterogeneity Unique large rotor effects

Group 3a - Structures: Prioritized Structural PIRT

21	Offshore Application:	Importance at	Model Ade	quacy - Focuse	d on beam-type	Planning Priority	Issue/Comments
Phenomenon	Floating, Fixed, or Both	Application Level	Physics Code Va		Val - Industry		
Rotor - Long, flexible blades	Both	H/M/L	H/M/L	H/M/L	H/M/L	H/M/L	
Structural damping		Н	M	M	L	Н	Big issue is lack of data to set inputs; can you extend from coupon or small scale level to full scale?
Fracture mechanics, crack growth, damage propagation		Н	L	L	L	Н	Low-cycle fatigue, fatigue damage of composite materials; sequence effects beyond Miner's sum
Shear and torsion		Н	M	М	L	Н	Getting from 3D FEA to beams and back
Interfaces between spar and skin/shell and LE/TE		Н	L	L	L	Н	Adhesives
Lightning protection		Н	L	L	L	Н	Need other experts to comment; don't really test lightning protection; bigger problem in carbon blades
Sensors and Actuators	Both						
Effect of the sensors integration within the structure		Н	M	L	L	Н	Strain, load, acceleration, load cells, pressure taps; important in the valiation application; cable bundle
Effect of the actuators integration within the structure		Н	M	L	L	Н	Reliability
Tower and Substructure	Both						
Joint performance: flexibility and stress concentrations and load transfer; bolted connections		Н	М	L	L	Н	Impact of welding; steel-concrete connections, bolts, grouted connections, slip joints
Member-level loads	Floating	Н	M	М	L	Н	
Damage stability	Floating	Н	M	M	L	Н	Damage stability load cases
Structural damping		Н	M	М	L	Н	Very little data for floating substructures
Stationkeeping and Dynamic Power Cable Systems	Floating						
Hysteresis of synthetic lines		Н	M	М	L	Н	
Bending of dynamic power cable		Н	M	М	L	Н	
Mooring line loss		Н	M	L	L	Н	
Creep		Н	L	L	L	Н	Important for tendons
Structural loading of chains		Н	M	L	L	Н	Industry likely has much more data than DOE WETO

Group 3a – Structures: Prioritized Air-Structure PIRT

Dhanaman	Offshore Application:	Importance at	Model Adeq	uacy - Focuse	d on beam-type	Planning Priority	Issue/Comments
Phenomenon	Floating, Fixed, or Both	Application Level	Physics	Code	Val - Industry		
Air-Structure	Both						
Aeroelasticity - Loads	Floating	Н	М	М	L	Н	Ultimate; fatigue loads prediction; good data for smaller, fixed systems; less data for very large, slender rotors and for floating systems; load cases
Aeroelasticity - Stability - Operation		Н	M	M	L	Н	
VIV - Stall induced vibration		Н	L	L	L	Н	Idling situation in high winds
Passive load reduction		Н	M	M	L	Н	Bend-twist coupling
Wind farm control (wake steering, induction, wake mixing)		Н	M	М	L	Н	
Individual turbine control response to waked inflow		Н	M	M	L	Н	
Aerodynamics under large motion	Floating	Н	M	М	L	Н	Aerodynamic loads, near-to-far wake; perrhaps split out betwewen local/rotor effects and wake effects
Extreme events		Н	M	M	L	Н	Tropical cyclones, thunderstorm downbursts; ride through
Flutter		Н	M	M	L	Н	
Soiling		Н	M	M	L	Н	Salt
Idling case with fault		Н	M	M	L	Н	Edgewise instability
Impacts of large inflow nonheterogeniety		Н	M	M	L	Н	Unique large wind turbine rotor effects

Group 3a - Structures: Takeaways

Main takeaways

- Structures not covered in prior DOE WETO PIRTs, but there are many important phenomena, both structures in isolation and structure-air/water/soil interaction
- Main overall challenge is ability to predict lifetime ultimate and fatigue loads for all components, which depends on combined effect of all phenomena
- Large scale offshore = large cost for experiments
 - Likely need for international collaboration
 - Importance of intermediate scale structural tests
 - Necessity of building block approach for structures from coupon to subsection to full component

Gaps remaining

- Structural experimental planning more high level so far
- Little discussion of structural instrumentation needs so far
- Related topics mentioned, but not covered in detail so far: installation scenarios, O&M, digital twins

Group 3a - Structures: Conceptual Experiments and Instruments

Conceptual Experiments

- Clear need for offshore-specific RAAW and AWAKEN experiments
 - Need for component-level tests in coordination with large field experiments
 NOTE: OEMs don't own turbines; need to coordinate with owners/operators as well
- Value of intermediate scale due to large costs of, and lack of test facilities at, full scale
- Necessity of building block approach for structures from coupon to subsection to full component
- Structural damping measurements require use of vacuum chamber
- Lightning protection experiments should be solvable at lab scale

NOTE: Industry likely has more data than labs/academia – Sharing data incurs cost to industry, so, need to show clear benefits of data sharing

Instrumentation needs

- Can we instrument turbines while being built in anticipation of data needs?
 - Important to identify sensors and install at design/development stage
- Tip vortex measurement
- Pressure distribution measurement on blades and support structure

Group 3b - Soil

Soil,
Soil-Structure,
Water-Soil-Structure

Group 3b – Soil: Prioritized Soil Phenomena

Soil

- Geotechnical characterization Fundamental challenge do to importance, but with high costs and risks and limited reliability involved
- Integrated geophysical/geotechnical characterization Link between geophysical data and geotechnical characterization; need for reduced uncertainty
- Glauconite sand U.S.-specific issue for pile driving

Soil-Structure

- Soil damping High uncertainty; industry too conservative
- Lateral monopile-soil interaction Models good for small diameter and deep penetration, but lacking for large diameter and shallow penetration
- Soil static and dynamic stiffness, including hysteresis, strain hardening/softening Especially changes in properties over time
- Pile/suction anchor pull-out capacity
- Buried power cable from wind farm to substation Block Island failure example; importance of temperature effects

Group 3b - Soil: Prioritized Soil Phenomena

Water-Soil-Structure

- Scouring How good are scour protection systems?
- Sand wave migration Impact on boundary conditions for cables and burial depth
- Liquification Soil strength/stiffness reduced by seismic or wave loading;
 concern for U.S. West coast

Group 3b – Soil : Prioritized PIRT

	Offshore Application:	Importance at	Model Adeo	juacy - Focuse	d on beam-type	Planning Priority	Issue/Comments
Phenomenon	Floating, Fixed, or Both	Application Level	Physics	Code	Val - Industry		
Soil	Both				-		
Geotechnical characteristization	Both	Н	М	M	М	Н	High planning priority because it is the key fundamental problem; including multi-layered soil profiles; industry knows how to do it, but requires time and money, risk and reliability; statistical map across site; link geophysical data to geotech
Integrated geophysical/geotechnical characterization	Both	Н	М	L	L	Н	Focus on statistical links between datapoints; synthetic soil profiles; reducing uncertainty
Glauconite Sand	Both	Н	L	L	L		US-specific issue; issue with pile driving; frictional resistance; features of behaviour challenging to capture in engineering numerical models
Soil-Structure	Both						
Soil damping	Fixed	Н	M	M	L	Н	Lots of uncertainty; industry is usually too conservative, e.g. 5% damping is applied universally; could also be applied through hysteretic behavior of plastic soils
Lateral monopile pile-soil interaction	Fixed	Н	М	М	L	Ц	Good physical models, limited validation data, diameters keep increasing; probably most crucial aspect of monopile performance; more validation needed for realistically inhomogeneous soil profiles
Soil static and dynamic stiffness, including hysteresis, strain hardening/softening	Fixed	Н	М	М	L	Н	Limitations of p-y and t-z curves; change in soil-structure properties over time; difficulties in quantifying energy dissipation properties from sight investigation data
Pile/suction anchors - pull out capacity	Floating	Н	М	L	L		Could perhaps be combined with axial pile-soil interaction; need to look at drainage and time scale of cyclic loading; rely on partial suction for semi-taut and catenary moorings
Burried power cable from wind farm to substation	Both	Н	М	L	L	Н	Critical zone of uncertainty; example Block Island failure; temperature effects in soil response
Water-Soil-Structure	Both				THE CONTRACT OF THE CONTRACT O		
Scouring	Fixed	Н	M	L	L		See UWA recent research; physics much better understood; how good are scour protection systems? They work but can damage cables as seen from Orsted EU projects
Sand wave migration	Both	Н	М	L	L	Н	Impact on boundary conditions for cables and burial depth considerations
Liquification	Both	н	М	L	L	Н	Phenomenon in which the strength/stiffness of soil is reduced by earthquake or wave loading; affects foundation capacity, displacements, and cable burial - may become very relevant for West Coast projects

Group 3b - Soil: Takeaways

Main takeaways

- Soil not covered in prior DOE WETO PIRTs, but there are many important phenomena, both soil in isolation and structure/water/soil interaction
- Soil was originally a subset of structures, but separated out due to distinction of soil SMEs and high number of important phenomena

Gaps remaining

- Soils group only formed recently; has not yet discussed experimental planning or instrumentation
- May not have strong national lab soil SMEs

Offshore PIRT - PIRT Overlaps

In many cases, phenomena may occur in one or more area

Air Meso - Air Micro Overlap

- Icing
 - Air Meso
 - Under what conditions do icing conditions occur?
 - Air Micro
 - What is the impact of icing on wind turbine aerodynamics?

Air Micro - Structure Overlap

- Aeroelastics
 - Air Micro
 - What is the impact of fluid/structure coupling on aerodynamics loads?
 - Structure
 - What is the impact of unsteady aerodynamic loading on structure lifetime?

Area Specific Takeaways

Group 1a – Mesoscale Air

- Need to better understand and measure the impact of ABL structure on wind energy harvest.
- Need to couple from mesoscale to microscale to get correct modeling.
- Need to include impacts of atmospheric stability, including thermodynamic structure as well as 3D wind profiles, which impact convective cells and rolls, low level jets, and
- Need to better understand impact of turbines on generating turbulence both within the farm and between farms, both of which impact harvest.

Group 1b – Microscale Air

- Turbines are getting bigger; offshore ABL often shallower. Ratio of turbine scale to ABL scale shrinks
- Need for atmospheric measurement with detailed profiles to at least top of ABL
- Turbulence structure is very important need to take advantage of measurement devices that capture structure (X-Band radar, etc.)
- We should not assume that phenomena like wake meandering will simply scale up, nor that it should be constant from top to bottom
- Land-sea interaction needs to be better quantified, but translated to simpler models (like those for land) for surface momentum/heat/moisture exchanges
- ABL state is site specific: ex. U.S. Atlantic coast very different than U.S. Pacific
- Should our models include moisture? If yes, we need to measure this.
- Research had shifted from turbine to plant, but renewed interest in turbine because of: Higher Re/MA airfoil effects, Thicker airfoils, More structural flexibility, and Floating substructures.
- "Wind plant blockage" is sort of a catch-all phrase that is likely caused by various phenomena in combination. Need to better understand this.
- Distinct differences in model adequacy between high-fidelity and engineering tools. More effort is necessary to create symbiosis between the two classes of models.

Group 2 – Water

- Many of the topics may not adequately address specific needs for towing, installation, and maintenance
- Evaluate the suitability of our existing modeling tools for digital-twins application
- Did we adequately address damage cases (e.g., mooring line loss?)

Group 3a – Structures

- Structures not covered in prior DOE WETO PIRTs, but there are many important phenomena, both structures in isolation and structure-air/water/soil interaction
- Main overall challenge is ability to predict lifetime ultimate and fatigue loads for all components, which depends on combined effect of all phenomena
- Large scale offshore = large cost for experiments

Group 3b – Soil

- Soil not covered in prior DOE WETO PIRTs, but there are many important phenomena, both soil in isolation and structure/water/soil interaction
- Soil was originally a subset of structures, but separated out due to distinction of soil SMEs and high number of important phenomena

Area Specific Gaps

Group 1a – Mesoscale Air

- Impact of ABL stability on wind farm efficiency and maintenance
- Understand impact of precipitation on leading edge erosion and changes in ocean temperature

Group 1b – Microscale Air

- Need more understanding of air-sea interface.
- Need more understanding of marine-specific ABL.
- Land-sea "history"/"memory" effects (i.e., internal boundary layer, transitional boundary layer state) likely important given that wind farms are relatively close to shore. Many of
 the conditions of interest require mesoscale-microscale coupling in simulations; does that mean we need mesoscale measurements, too?
- Wake behavior at long distances within very large wind farms.
- Wind plant wake behavior. We do not understand what all causes "wind-plant blockage".
- Effect of floater motion on wind farm waking.
- Better understanding of higher Re/Ma airfoil behavior on more flexible structures

Group 2 – Water

- Better understanding of joint probability across metocean parameters
- Does the power cable influence the motion of the platform, thus requiring coupled analysis?
- How to most effectively use multiple fidelities of tools
- How to tune hydro coefficients for mid-fidelity tools
- What does model-scale validation imply for full-scale simulations?
- Need guidelines on offshore wind testing and validation
- Need to streamline design process
- Cannot predict damping well in offshore wind systems

Group 3a – Structures

- Structural experimental planning more high level so far
- Little discussion of structural instrumentation needs so far
- Related topics mentioned, but not covered in detail so far: installation scenarios, O&M, digital twins

Group 3b – Soil

- Soils group only formed recently; has not yet discussed experimental planning or instrumentation
- May not have strong national lab soil SMEs

Area Specific Conceptual Experiments

Group 1a – Mesoscale Air

- The team conceived of a large multi-national experiment that would measure many atmospheric properties (wind and thermodynamic properties) and multiple levels and multiple sites. Focus would be both within farms and between farms. If it is to be within the next 5 years, it would have to be off Europe where multiple closely spaced wind farms already exist. We need to understand wake interactions over multiple stability cases particularly for stable conditions, which are likely a worst-case scenario.
- Long-term measurements from a tower or instruments in wind farms to obtain multi-year data that could be used to see extreme events and to train machine-learning models of the future.

Group 1b – Microscale Air

- A few "unit" level experiments to test subsets of phenomena
 - · Many would not require measurements in wind farm
 - · Data may partially exist
- One "system level" experiment in an existing wind farm
 - The offshore version of AWAKEN.
 - · However, we should leverage existing offshore wind farm data
 - Alpha Ventus, Egmond aan Zee (OWEZ), Lillgrund, Dudgeon, Hywind Scotland

Group 2 – Water

- Public full-scale validation dataset (floating). Scaled validation lacks complexity of real metocean conditions
- Significant uncertainty in full-scale datasets, and difficulty to achieve under-water measurements
- Measurement of full set of metocean parameters (East Coast, West Coast, Gulf of Mexico, Great Lakes)
- Viscous loading at full scale
- Measurements of hurricane conditions (including waves)
- Need focus on moorings / cabling
- Consideration of different floating platform design types

Group 3a – Structures

- Clear need for offshore-specific RAAW and AWAKEN experiments
- Need for component-level tests in coordination with large field experiments
- Value of intermediate scale due to large costs of, and lack of test facilities at, full scale
- Necessity of building block approach for structures from coupon to subsection to full component
- Structural damping measurements require use of vacuum chamber

*Note: Group 3b - Soil has not addressed experiments yet.

Area Specific Conceptual Instrumentation Needs

Group 1a – Mesoscale Air

- Multiple lidars to see across wakes and between farms.
- Doppler radar perhaps see to longer ranges
- Synthetic aperture radar from satellite to get SST
- Radiometer or something that can be deployed offshore to measure temperature profiles
- Potentially a microwave radiometer on turbine spinners (like forward-looking lidars)
- Sonics that are easier to maintain in the offshore environment
- Better measurement of ocean skin temperature and fluxes

Group 1b - Microscale Air

- Measurement devices that measure wind, temperature, moisture through entire ABL, but with detail near surface where gradients are steepest
- Mesoscale measurements (existing daily soundings, meso-net)
- How to measure wind plant wakes?
- Can we make more use of scanning radar (e.g., TTU X-Band radar) to quantify ABL turbulence structure for validation of LES and informing synthetic turbulence methods?
- Can we make use of existing and emerging satellite data? Collaborate with NASA.
- Critically need measurements of wind-farm-induced atmospheric gravity waves? Do they exist or not?
- How to measure wind plant blockage when its effect is relatively small?
- Measurement on buoys have to be measurement compensated and have to deal with marine environment.
- How do we test airfoils at higher Re or Ma?
- What can be measured without a plant/what needs a plant?
- Can we make use of drones with measurement devices?

Group 2 – Water

- Distributed pressure on the substructure
- Internal loads in the substructure
- High-resolution time measurements of wind and waves concurrently, including wind/wave misalignment
- (Wind) how do we get good offshore measurements of shear, turbulence, veer, and coherence?
- Difficult to get below the waterline measurements

Group 3a – Structures

- Can we instrument turbines while being built in anticipation of data needs?
- Important to identify sensors and install at design/development stage
- Tip vortex measurement
- Pressure distribution measurement on blades and support structure

*Note: Group 3b - Soil has not addressed instruments yet.

Conclusions: Common Takeaways and Themes

- Offshore wind energy validation planning is more complex than onshore due to additional physics, the coupling between physics, and more unknowns
- Industry likely has more data than labs/academia Sharing data incurs cost to industry, so, need to show clear benefits of data sharing
 - OEMs don't own turbines; need to coordinate with owners/operators as well
- Necessity of building block approach
 - Some phenomena and coupling must be tested at scale for complete system complexity, but uncertainty of full-scale experiments is too high to be useful for validation (ex. LLJ shear across rotor diameter).
 - Some phenomena can be tested scaled, some cannot, some we are not sure of > requires testing at a range of scales (ex. nonlinear wave-structure interaction).
 - Some phenomena cannot be adequately measured at full scale for validation (ex. some atmos. phenomena that impact the turbines).
- **Need for international collaboration**
 - Some atmospheric phenomena are site specific but can be measured without a farm in place
 - Some phenomena are not site specific, but require a farm or farms offshore (wind plant wakes)
 - Large scale offshore = large cost for experiments
- Joint-probability distributions and high-frequency synchronized time measurements required for many areas
 - Metocean parameters and ABL profiles at actual locations/coasts
 - Time-accurate microscale ABL joint with turbine aerodynamics, loads, and wakes
 - Micro- and Mesoscale ABL measurements joint with turbine and wind-plant wakes

Expected Outcomes and Impact

- The validation roadmap developed in this effort will give:
 - Priorities for model validation campaigns specific to offshore wind energy,
 - Hierarchy of prioritized experiments to meet validation goals,
 - Instrumentation development that will be needed for unique offshore validation needs,
 - Framework for international and cross-institution coordination.
- A focused validation coordination effort has several benefits in preparation for future experimental campaigns:
 - Synergy between validation focused experimental campaigns.
 - Maximum use of limited funds through careful, integrated planning.

Outcome of the Planning Process:

- Prioritized phenomena
- Identification of gaps in existing V&V data and activities
- Hierarchy of prioritized

validation experiments and analysis Virtuous Cycle Validation Model Development Instrument Development Experimentation **Uncertainty Quantification**

Next Steps

- Continue to develop conceptual experiments and instrumentation requirements
- Present work to WETO and collaborate on program prioritization
- This work will help inform the Instrumentation Development TEM that will occur later this year
- Develop framework for and begin work on draft report, including crossphenomena
- Develop the validation roadmap, laying out conceptual experiments
- Obtain feedback on the final report
- Release final report

	luan auton aa at			Model Adequacy						
Phenomenon	Importance at Application Level	Relative Importance for experiments	Physics	Code	Validation Capability	Issues/Comments				
Mesoscale phenomena						Mesoscale codes				
Representation of winds and turbulence through the atmos. boundary layer and/or top of rotor	Н	***	М	М	L	Include profiles of other relevant variables, such as temperature, humidity,Include cloud and impact on BL				
Wind plant repesentation (i.e., drag effect of turbines)	Н	***	М	M	L	Impact on ocean upwelling and stability, some datasets out there, not all are accessible commonly.mpact on upwelling				
Ramp events (due to mesoscale weather phenomena such as fronts, thunderstorms)	Н	*	Н	Н	M	Satellite data available, holes in thermodynamics. Include veer.				
Large, persistent high-pressure domes with low wind spe	Н		M	M	L	Stilling - well characteried for resouce assessment, but less so for forecasting more important in changing climate. Some ridges get more persisent.				
High-altiture wind resource for airborne wind energy	L		M	M	L	up to 300-600 m				
Cloud and rain macro-physical properties like coverage, type (e.g. liquid, or ice), and condensate loading	M		М	М	M					
Coastal influences such as land-sea breezes	M		Н	M	L	In certain places this is more important, add example areas that would be a 3. extent of breeze not modeled as well. Buoy data, satellite data coarse but can see structure				
Terrain influences and Island effects	Н		M	M	L	Santa Ana winds, Coastal jet, Coastally trapped flow reversersals				
Large scale advection of air masses	М		Н	Н	Н					
Baroclinicity	Н		М	L	L	Impact on ABL structure that can lead to LU and veer				
Cold air outbreaks	Н		М	М	L	Large scale intrusion of cold polar air toward mid latitudes resulting in development of mesoscale convective structures, convective rolls and associated cloud streets and eventually convective cells.				

	Importance at			Model Adequacy		
Phenomenon	Application Level	Relative Importance for experiments	Physics	Code	Validation Capability	Issues/Comments
Cross-scale effects						
Turbine scale icing	М		М	L	L	In some places very important, but not important at all in other locations; however, there is some unceratinty as to where this transition happens.
Low-level jets	Н	*	М	М	L	Lidar data captures this, but there is a sparsity of data; turbulence information would be helpful in improving understanding and modeling.
Atmos. waves (gravity)	М		Н	М	L	
Extreme wind events (details in ANL PIRT, including TCs, ETCs, nor'easters, etc)	Н	*	М	М	М	Discuss interfaces, but there will be a project focused on developing an extreme weather/hurricane PIRT next year. Adequacy depends on scale of models
Precipitation and impact on leading edge erosion	М		М	L	L	Precipitation is very important for leading edge erosion potential, highly variable region to region
Convective structures	М		Н	M	L	
West coast synoptically induced high winds	Н		Н	Н	L	Can get hurrican force winds on west coast, considered extreme wind events
Impact of coastal or island urban heat islands	М		Н	M	L	
Terrain influences and Island effects	Н		М	М	L	Santa Ana winds, Coastal jet, Coastally trapped flow reversersals, von Karman vortices
Gulf stream effects on ABL/mesoscale	Н		M	M	L	Include coastal wind gradient
Land use change due to Climate Change, and its representation in products	М		L	L	L	

	Importance at			Model Adequacy					
Phenomenon	Application Level	Relative Importance for experiments	Physics	Code	Validation Capability	Issues/Comments			
Air-Air, Terra Incognita						Mesoscale/plant scale			
Mesoscale turb. to LES turb. models	н	*	L	M	L	Terra incognita and turbulence generation			
Mesoscale to plant inflow	Н		M	М	L	Don't understand fetch well enough yet. both turbulence and mean.			
Plant wake to mesoscale	Н	*	M	М	L				
Full plant-scale vertical energy transfer (plant/atmos.). vertical momentum flux	M		М	M	L				
Waterspouts	L		L	L	L	Seen more frequently than expected.			
ABL									
Turbine wake interaction within a farm, which is a function of ABL turbulence-(Stability)	н	*	М	M	L				
Internal boundary layers due to differential advection	Н		M	M	L	Critical in some areas. integrated with stability impacts.			
Thermodynamically decoupled boundary layers	M		M	L	L	Stand-alone microscale models don't handle clouds well. WRF does.			
Impact of clouds on ABL structure	н		М	L	L	Destabilization from above due to cloud top cooling. depends on location - critically important some places, but not all. microscale codes don't handle this yet.			
Stability impacts on ABL structure	Н	*	Н	M	L				
Rolls and cells - convections	н	*	M	М	М	part of stability - surface to above ABL			
Impact of ABL height on ABL structure	Н	*	M	М	L	part of stability - hard to measure when stable. Adequacy depends on meso, vs micro			
Subsidence, enhanced entrainment	M		L	L	L	part of stability			

	Importance at			Model Adequacy		
Phenomenon	Importance at Application Level	Relative Importance for experiments	Physics	Code	Validation Capability	Issues/Comments
Wind Plant Aero., Wakes (farm-farm)						All physics dependent on plant scale and operating conditions
Wind plant blockage effects and wind plant boundary layer growth (above plant)	М		L	L	L	
Plant wake	Н	*	M	М	L	Emphasis on the effect of the wind farm on cross-stream downstream regions. Wind theft.
Acoustic propagation	L		L	L	L	Noise generation and propagation through a wind plant.
Heat, moisture and momentum exchange around plant	М		L	L	L	Could become a legal issue impacting downwind plants.
Heat, moisture and momentum exchange within plant	Н		L	L	L	
Upscaling effect of wind farm control	М		L	L	L	Including wake steering
Deep array turbulence	Н	*	L	M	М	Models haven't been verified
Lightning	Н	Sturctures	L	М	М	Global lightning detection system helpful. Individual hits hard to predict
Precipitation and impact on leading edge erosion	Н	Structures	M	M	L	Include Raindrop size distribution, and impact on ocean surface cooling
Fog	L		L	L		Impacts when can do maintenance
Air-Sea						(How are waves impacting the air)
Surface conditions - waves, including impact of breaking	Н	*	M	L	L	include upwelling. Ecosystem impacts. Wind-wave misalignment
Surface Conditions - Sea Surface Temperature and their gradients at wind plant scales (SST)	Н	*	М	М	M	
Swell - larger wave age	Н	*	M	L	L	Not in WRF
Currents	М		M	L	L	Important but second order to top 3
Ocean mixed layer depth	М		M	L	L	Important for tropical cyclones - that will be in TC PIRT
Depth of ocean and impact on wind	М		M	L	L	need to parameterize more than depth itself. don't know impact on wind resource.
Sea Spray - salt erosion	М		L	L	L	Potential impact on stability
Freezing seaspray	М		L	L	L	Operation & Maintenance
Sea-ice impact	L		1	L		surface roughness. Depends on location - great lakes

1b complete PIRT available at: https://docs.google.com/spreadsheets/d/1zL-Tn2JTgEUVm_u6RgjGhgk7k7L2oAU1bQ3yyeQcxCE/edit#gid=1293763345

	Is it different	Offshore Application:			Model Adequ	acy (High Fidelity)		M		Planning Priority				
Phenomenon	offshore vs. onshore?		Importance at Application Level	Physics Model	Code + Verification	Do We Have Validation Data?	Have We Validated?	Physics Model	Code + Verification	Do We Have Validation Data?	Have We Validated?	High Fidelity	Engineering Tools	Overall
General Microscale Atmospheric Phenomena												1.40	1.68	1.54
Mean vertical profile (shear/veer/asymmetry)			Н	Н	М	М	М	М	М	М	L	1.33	1.67	1.50
Mean vertical profile, not of just wind, but also temperature and moisture			Н	М	L	L	М	L	L	L	L	1.67	2.00	1.83
Turbulence Intensity			Н	Н	М	М	M	М	М	М	М	1.33	1.50	1.42
Turbulence Spectrum			Н	Н	М	L	М	M	M	L	М	1.33	1.50	1.42
Turbulence Coherence/Correlation	Yes	both	Н	Н	М	L	L	М	M	L	L	1.50	1.67	1.58
Turbulence Structure (space-time structure)			Н	Н	L	L	L	Н	L	L	L	1.67	1.67	1.67
Evolution of Turbulence vs. Frozen Turbulence			M	Н	Н	L	L	L	L	L	L	0.83	1.50	1.17
Boundary Layer Height			Н	н	М	М	L	L	L	M	L	1.50	2.00	1.75
Inversion Strength			М	Н	М	L	L	L	L	L	L	1.00	1.50	1.25
Surface conditions (roughness, canopy, waves, surface heat flux, topography)			Н	М	L	М	L	L	М	М	L	1.83	1.83	1.83

	Is it	Offshore			Model Adequ	uacy (High Fidelity)		М	odel Adequacy (E	ngineering Tools)		Planning Priority			
Phenomenon	different offshore vs. onshore?	Application: Floating, Fixed, or Both	Application Level	Physics Model	Code + Verification	Do We Have Validation Data?	Have We Validated?	Physics Model	Code + Verification	Do We Have Validation Data?	Have We Validated?	High Fidelity	Engineering Tools	Overall	
Offshore-Specific Microscale Atmospheric Phenomena												1.55	1.67	1.61	
Horizontal Heterogeneity			Н	L	L	М	L	L	L	М	L		2.00	2.00	
Coastal Low-Level Jet			Н	М	М	М	М	L	L	М	L	1.50	2.00	1.75	
Land-Sea Breeze			М	L	L	L	L	L	L	L	L	1.50	1.50	1.50	
Transitional Nature of ABL at Land-Sea Interface, and SST Gradients			Н	М	М	L	L	L	L	L	L	1.67	2.00	1.83	
Absense of Strong Diurnal Cycle/Persistent Conditions			М	н	Н	М	М	н	н	М	L	0.67	0.83	0.75	
Persistent Cloud-Topped ABL			M	L	L	М	L	L	L	М	L	1.50	1.50	1.50	
Shallow, Very Stable Layers		fixed (same as land) / floating (new)	M	М	М	L	L	L	L	L	L	1.17	1.50	1.33	
Site-Specific-ness (not really a phenomenon)	Yes		Н	М	М	М	М	М	М	М	L	1.50	1.67	1.58	
ABL within Tropical / ExtraTropical Cyclones				Н	L	L	L	L	L	L	L	L	2.00	2.00	2.00
Design Standard Gust Cases Specific for Offshore and Floating Turbines (not really a phenomenon)			Н	L	L	L	L	M	М	L	L	2.00	1.67	1.83	

	Is it different	Offshore			Model Adequ	acy (High Fidelity)		Model Adequacy (Engineering Tools)				Planning Priority						
Phenomenon	offshore vs. onshore?	Application: Floating, Fixed, or Both	Application Level	Physics Model	Code + Verification	Do We Have Validation Data?	Have We Validated?	Physics Model	Code + Verification	Do We Have Validation Data?	Have We Validated?	High Fidelity	Engineering Tools	Overall				
Air-Sea Interface Phenomena												1.65	1.73	1.69				
Wave-Driven Mechanical Turbulence			Н	L	L	L	L	L	L	L	L	2.00	2.00	2.00				
Wave-Driven Modification of Mean Profile			Н	L	L	L	L	L	L	L	L	2.00	2.00	2.00				
Water Depth/Fetch			M	M	М	Н	L	L	L	Н	М	1.17	1.33	1.25				
Current			Н	M	L	М	L	L	L	M	L	1.83	2.00	1.92				
Microscale-variability of sea-surface temperature			M	M	М	М	L	L	L	М	L	1.17	1.50	1.33				
Flow Modification Due to Thermodynamic Effects	Yes	both	Н	L	L	М	L	L	L	M	L	2.00	2.00	2.00				
Salt-Water Spray							М	L	L	L	L	L	L	L	L	1.50	1.50	1.50
Blade/Structure Icing			М	L	L	L	L	L	L	L	L	1.50	1.50	1.50				
Air-Air Gray Zone (<i>Terra Incognita</i>)												0.83	1.00	0.92				
Gray Zone	No	both	L	L	L	М	М	L	L	М	L	0.83	1.00	0.92				

	Is it different offshore vs. onshore?	Offshore Application: Floating, Fixed, or Both		Model Adequacy (High Fidelity)				Model Adequacy (Engineering Tools)				Planning Priority		
Phenomenon			Importance at Application Level	Physics Model	Code + Verification	Do We Have Validation Data?	Have We Validated?	Physics Model	Code + Verification	Do We Have Validation Data?	Have We Validated?	High Fidelity	Engineering Tools	Overall
Wind Plant Aerodynamics / Wakes												1.30	1.63	1.46
Momentum Transport (horizontal and vertical fluxes)		both	Н	Н	Н	L	L	М	М	L	L	1.33	1.67	1.50
Skew and Meander of Aggregate Wake	The second secon		Н	Н	Н	М	М	М	M	М	L	1.17	1.67	1.42
Swirl Instability			L	М	М	L	L	L	L	L	L	0.67	1.00	0.83
Vortex Merging			Н	Н	Н	М	L	L	L	М	L	1.33	2.00	1.67
Wake Vorticity Diffusion and Dissipation			Н	Н	Н	М	М	М	М	М	M	1.17	1.50	1.33
Asymmetry Effects (ground plane, yaw, tilt, cone-angle)			Н	М	М	М	М	М	М	М	L	1.50	1.67	1.58
Inflow Effect (shear, veer, yaw, turb. intensity, turb. spectrum, coherence, gusts, atmos. stab.)			Н	Н	Н	М	М	М	М	М	М	1.17	1.50	1.33
Wake Interaction, Merging, Meander, Evolution, Recovery	Possibly, see notes		Н	Н	н	М	М	М	М	M	М	1.17	1.50	1.33
Plant Flow Control for Optimal Performance			Н	Н	Н	М	М	М	М	М	M	1.17	1.50	1.33
Wake Steering (yaw & tilt effects)			Н	Н	Н	М	М	М	М	М	M	1.17	1.50	1.33
Wake Dissipation			Н	Н	Н	М	M	М	М	М	М	1.17	1.50	1.33
Wake Impingement (full, half, etc.)			н	Н	Н	L	L	М	М	L	L	1.33	1.67	1.50
Impact of Smaller Air Gap			М	Н	Н	L	L	L	L	L	L	0.83	1.50	1.17
Floater Motion And Impact on Other Phenomena			н	М	М	М	L	М	М	М	L	1.67	1.67	1.67
Gravity Waves And Wind Plant Blockage			Н	М	М	L	L	L	L	L	L	1.67	2.00	1.83
Deep Array Effects (change in turbulence, etc.)			Н	М	М	L	L	L	L	L	L	1.67	2.00	1.83
Wind Plant Wake (Interarray waking)			Н	М	М	М	L	L	L	М	L	1.67	2.00	1.83
Localized Flow withing Wind Farm			M	L	L	L	L	L	L	L	L	1.50	1.50	1.50

Phenomenon	offshore F	Offshore		Model Adequacy (High Fidelity)				Model Adequacy (Engineering Tools)				Planning Priority		
		Application: Floating, Fixed, or Both	Importance at Application Level	Physics Model	Code + Verification	Do We Have Validation Data?	Have We Validated?	Physics Model	Code + Verification	Do We Have Validation Data?	Have We Validated?	High Fidelity	Engineering Tools	Overall
Turbine Aerodynamics Rotor, Blade												1.44	1.58	1.51
Blade Load Distribution Effects and Rotor Thrust	Possibly, b	both	Н	М	М	M	М	L	L	М	L	1.50	2.00	1.75
Tip and Root Vortex Development, Evolution and Merging			Н	M	M	L	L	М	М	L	L	1.67	1.67	1.67
Vortex Sheet and Rollup (in addition to tip/root vortex)			Н	M	M	L	L	М	М	L	L	1.67	1.67	1.67
Blade-Generated Turbulence (energetic scales at trailing edge)			М	М	М	L	L	L	L	L	L	1.17	1.50	1.33
Root Rlow Acceleration Effect ('hub jet')			М	Н	Н	L	L	L	L	L	L	0.83	1.50	1.17
Flow Acceleration Under Rotor			М	Н	Н	L	L	L	L	L	L	0.83	1.50	1.17
Boundary Layer Development (transition, separation)			Н	М	М	М	М	M	М	М	М	1.50	1.50	1.50
Boundary Layer Details Near Leading and Trailing Edge			Н	М	М	М	L	М	М	М	M	1.67	1.50	1.58
Rotational Augmentation			Н	М	М	М	М	М	М	М	М	1.50	1.50	1.50
Dynamic Stall			Н	M	M	М	M	М	М	М	M	1.50	1.50	1.50
Distributed Active Aerodynamic Flow Control			н	М	М	L	L	М	М	L	L	1.67	1.67	1.67
Vortex-Generator Flow			Н	М	М	М	М	М	М	М	L	1.50	1.67	1.58
Unsteady Inflow Effect (veer, shear, yaw, gusts, atmospheric stability, turbulence intensity, spectra, coherence)			Н	М	М	L	L	М	М	L	L	1.67	1.67	1.67
Blade Flow Control			M	M	M	L	L	L	L	L	L	1.17	1.50	1.33
Icing			М	L	L	М	L	L	L	М	L	1.50	1.50	1.50
Hydrometeor Erosion/Damage			Н	L	L	L	L	L	L	L	L	2.00	2.00	2.00
Tower/Rotor/Nacelle Wake Interactions			M	М	М	L	L	М	М	L	L	1.17	1.17	1.17
Mooring Lines Piercing Water Surface			М	L	L	L	L	L	L	L	L	1.50	1.50	1.50

Group 1b: Microscale Air - Prioritized PIRT

	Is it different	Offshore			Model Adequ	acy (High Fidelity)		M	lodel Adequacy (E	ngineering Tools)		Planning Priority			
Phenomenon	offshore vs. onshore?	Application: Floating, Fixed, or Both	Importance at Application Level	Physics Model	Code + Verification	Do We Have Validation Data?	Have We Validated?	Physics Model	Code + Verification	Do We Have Validation Data?	Have We Validated?	High Fidelity	Engineering Tools	Overall	
Turbine Aerodynamics Airfoil												1.57	1.51	1.54	
High Reynolds Number Aerodynamics			Н	М	М	М	L	М	М	М	М	1.67	1.50	1.58	
Higher Mach Number Aerodynamics			М	М	М	L	L	М	М	L	L	1.17	1.17	1.17	
Thick Airfoils			Н	М	М	М	М	М	М	М	M	1.50	1.50	1.50	
Aeroacoustics	Possibly, see notes.	both	М	L	L	М	L	M	М	M	М	1.50	1.00	1.25	
Blade Surface Effects (roughness, soiling, bugs, erosion)	see notes.		Н	L	L	М	L	М	М	М	М	2.00	1.50	1.75	
Boundary Layer Development (transition, separation)			н	М	М	М	М	М	М	М	М	1.50	1.50	1.50	
Boundary Layer Details Near Leading and Trailing Edge			Н	М	M	М	М	М	M	М	М	1.50	1.50	1.50	
Dynamic Stall			Н	М	М	М	L	М	М	М	М	1.67	1.50	1.58	
Vortex-Generator Flow				Н	М	М	М	М	М	М	М	М	1.50	1.50	1.50
Blade Flow Control			M	M	М	L	L	L	L	L	L	1.17	1.50	1.33	
Icing - effect on boundary layer			Н	L	L	L	L	L	L	L	L	2.00	2.00	2.00	
Unsteady inflow effect (turbulence intensity, spectra, coherence)			Н	М	М	L	L	L	L	L	L	1.67	2.00	1.83	

Group 2 – Full Water PIRT

Phenomena Mesoscale Water	Application : Floating, Fixed, or Both			l Adequ nfidenc Code/ Verif	e Code/	Planning Priority	Issue/Comments
Tides	Both	М	М	Н	Н	L	
Ocean circulation / currents	Both	М	Н	L	L	L	If trying to redo standards and replace measurements
Sea surface temperature	Both	Н	Н	М	М	L	Important for formation of tropical cyclones; determines the atmospheric stability
Seabed bathymetry	Both	L	L	L	L	L	
Coastal effects	Both	М	М	М	M	М	Coastal gradients; likely covered by air-mesoscale PIRT
Salinity	Both	L	Н	L	L	L	
Microscale Water							
Freak/rogue wave	Both	Н	M	M	L	Н	Focused wave
Steep/breaking waves	Both	Н	М	М	L	Н	Including intermittent; Henrik Bredmose has done a lot of work in this area; not well characterized in many tools; many experiments at model scale
Wave nonlinearity	Both	Н	M	M	M	Н	Higher-order wave theory
Waves + current	Both	Н	M	L	L	Н	Wave kinematics in the presence of nonuniform current; dispersion relationship
Bi-modal	Both	М	М	М	L	М	Including bi-directionality, At mid-fidelity, can easily model, but not sure at high-fidelity
Wave propagation through farm	Both	Н	M	M	L	М	Important for shared moorings
Short-crested / wave directionality	Both	Н	M	М	L	М	Straightforward when linear; much more difficult with nonlinearity
Non-stationary waves (non-equilibrium) - not same over hour	Both	L	М	L	L	L	Industry cares about statics; relevant to controls? Perhaps is issue for installation and O&M? Solved by short-term forecasting.
Salinity	Both	L	L	М	M	L	
Tsunami	Both	М	Н	L	L	L	Only important in small number of areas
Seabed bathymetry	Both	М	Н	L	L	L	Most analyses consider flat seabed; more important in shallow water
Spectral properties	Both	М	М	М	L	L	Typically use standard spectrum, might be regions where other spectrum are needed.
Shallow-water turbulence	Fixed	L	L	L	L	L	
Surface tension	Both	L	L	L	L	L	

Group 2 - Full Water-Structure PIRT - Part 1

Phenomena	Application Floating, Fixed, or Both	Application			Code/	idence Code/ Valid	Planning Priority	Issue/Comments
Water-Structure	<u>:</u>	. :		:	:	:		
Viscous loading - Member in isolation, current vs wave	Both	Low data/conf at scale	Н	М	М	М	Н	How to scale up viscous loads from exp? Not easy
Viscous loading - Shadowing effects	Both		Н	M	L	M	Н	Results are likely case specific; results are not predictive to new concepts
Viscous loading - frequency dependency	Floating		Н	M M	L	М	Н	How to model viscous loads when motion/wave at multiple frequencies (multiple KC number) coexist?
VIM - substructure	Floating	OW – low conf.	Н	М	М	L	Н	Low validation on floating wind; importance depends on the substructure; important for tow-out; important at low frequencies
VIV - stationkeeping	Floating		Н	M	М	L	Н	Important for fatigue in some cases. Not currently in our models.
Floater flexibility	Floating		Н	M	M	L	Н	
Multi-body support structures	Floating		Н	M	М	L	Н	Designs like Tetraspar where two bodies may move independently.
Wave/current-body interaction	Both		Н	М	L	L	Н	
Slap / Slam loads	Both		Н	М	M	L	Н	Understand what the load is and what the effect is on the structure; merge with breaking/steep wave loads
Breaking/steep wave loads	Both		Н	M	M	L	Н	Decent for fixed monopiles, much less for floating substructures
Water-Heave Plate interaction	Floating		Н	M	M	L	Н	Lower confidence in our models for shallow drafts
Marine Growth and Surface roughness	Both		Н	M	M	L	Н	Marine growth important for mooring/cabling loads; limited data we have is likely overconservative
Corrosion	Both		Н	M	M	L	Н	Modeling capability is low, but there is an existing solution that negates the issue of corrosion.
Pressure mapping	Floating		Н	M	M	L	M/H	
Vessel impact	Both		Н	M	M	L	M/H	More of an industry problem; customized tools for this application
VIV - substructure	Fixed	Low conf for OW	М	М	М	М	М	Low validation on floating wind; importance depends on the substructure; important for tow-out; important at low frequencies
Hydrodynamic forcing on station keeping and power system	Floating		М	М	М	L	М	Mooring lines and power cables; Important for loads especially on cables in shallow water or high currents; perhaps split into stationkeeping and dynamic power cable separately
Acoustic waves from piling	Fixed	High imp for wildlife	Н	М	М	М	М	Maybe not the focus of the tools we're addressing in this PIRT
Wave Run-up	Both		Н	M	М	M	М	Wave stretching - applicability across different sizes and motion
Nonlinear excitation – diff/sum/mean	Both		Н	М	M	M	M	Drift loads important for moorings. We don't currently have good low-fidelity models for it.
Springing - higher-order wave loading response	Floating	TLPs only	Н	М	М	М	М	
Floating ice - salt water	Both		Н	M	M	M	M	Region specific: Maine for floating sea ice.
Floating ice - fresh water	Both	Great Lakes only?	Н	L	L	L	М	Region specific: Great Lakes for fresh-water ice
Hydrostatics	Floating	Low confidence for some designs	Н	Н	М	М	М	including nonlinearities; especially for unique substructures
Water egress for damping	Fixed	J	Н	M	М	M	M	Monopiles; passive damping

Group 2 – Full Water-Structure PIRT – Part 2

Phenomena	Application: Floating, Fixed, or Both	Application Area of Highest Imp	Importance	Model Ac	lequacy/C Code/ Verif	Confidence Code/ Valid	Planning Priority	Issue/Comments
Water-Structure		ingliest imp		: :	• ciii			
Hybrid platforms	Both		L	M	L	L	L	
Lifting from hydrofoil	Both		L	М	M	L	L	
Magnus effect	Floating	Only rotating spars	L	М	L	L	L	
Wave variation in farm from structure interaction	Both		L	L	L	L	L	Wave radiation and diffraction
Diffraction loads	Both		Н	Н	Н	Н	L	Structure induced wave nonlinearity / breaking
Radiation damping	Floating		Н	Н	Н	Н	L	
Added Mass	Floating		Н	Н	Н	M	L	Modification by viscous effects
OWT + vessel hydrodynamic interactions	Both		M	M	M	M	M	
Water-Strake interaction	Floating	Few designs	L	M	L	L	L	
Sloshing	Floating		L	M	L	L	L	
Hydrodynamic loading on appurtenances	Both		L	L	L	L	L	Appurtenances = secondary structures = j-tubes/ladders
Ringing - impulsive loading response	Both		M	M	M	L	L	
Green water	Both		M	M	M	M	L	
Fast ice	Fixed	Great Lakes only?	L	M	L	L	L	Ice stuck to structure
Moonpool	Floating		M	M	M	L	L	
Cavitation	Floating		L	M	L	L	L	
Water-Structure-Control								
Active ballast system	Floating	Some uniqu techn	Н	M	M	M	M	
Thrusters	Floating	Roaming turbines	L	M	L	L	L	
Air-Sea (how wind impacts waves)						1		
Swells	Both	How do you do it?	Н	M	M	L	Н	
Tropical cyclones	Both		Н	L	L	. L	Н	Both temparatue and air aspects
Air/sea temperature effects	Both	Mesoscale processes	Н	M	L	L	Н	
Surface roughess	Both		Н	Н	Н	M	Н	
Storm surge	Fixed		Н	M	M	L	Н	
Wind-driven waves	Both		Н	M	L	M	M	Non-swells - more localized
Joint probability across metocean paramete		Big meas campaign	Н	M	L	L	M	
Wind/wave misalignment	Both		Н	L	L	L	L	
Air entrainment from breaking waves	Both		L	M	L	L	L	
Air-induced currents (surface currents)	Both		L	M :	L	L	L	

Group 3a – Structures: Full Rotor PIRT

	Offshore Application:	Importance at	Model Aded	quacy - Focuse	d on beam-type	Planning Priority	Issue/Comments
Phenomenon	Floating, Fixed, or Both	Application Level	Physics	Code	Val - Industry		
Rotor - Long, flexible blades	Both	H/M/L	H/M/L	H/M/L	H/M/L	H/M/L	
Elasticity and stress recovery of composite materials		Н	Н	M	M	М	
Loads and displacements		Н	M	М	М	М	Representing blades as beams/solids; issue with loads is aerodynamic related, not structural
Structural damping		Н	M	М	L	1 H	Big issue is lack of data to set inputs; can you extend from coupon or small scale level to full scale?
Buckling		Н	Н	M	M	М	
Sectional warping		М	M	M	L	М	
Geometric nonlinearities in displacement		Н	Н	Н	M	М	
Fracture mechanics, crack growth, damage propagation		Н	L	L	L	Н	Low-cycle fatigue, fatigue damage of composite materials; sequence effects beyond Miner's sum
Bending		Н	Н	Н	M	М	
Shear and torsion		Н	M	M	L	Н	Getting from 3D FEA to beams and back
Natural frequencies and mode shapes		Н	Н	M	L	М	The effects of aerodynamics are not well validated, coupled effects
Resonance		Н	Н	M	M	М	
Interfaces between spar and skin/shell and LE/TE		Н	L	L	L	Н	Adhesives
Root joint to hub - composite/bolt connection		M	M	M	М	L	
Joints / segmented / hinged components		L	L	L	L	L	Probably not relevant for offshore wind turbines, at least now
Reponse flatback airfoils		М	M	M	L	М	Prediction of failure modes
Material characterization		M	М	Н	L	M	Especially for new materials that are recyclable or using advanced manufacturing / 3D printing; only the inputs is needed in HFM and OpenFAST
Material properties impact on structural response		Н	M	M	M	М	Limited testing of actual blade failures
Lightning protection		Н	L	L	L	H H	Need other experts to comment; don't really test lightning protection; bigger problem in carbon blades
VAWT phenomena		M	M	M	L	L	May be important in the future
Multi-rotor phenomena	Floating	M	L	L	L	М	Up and coming technology

Group 3a – Structures: Full Sensors and Actuators PIRT

Dlamamamam	Offshore Application:	Importance at	Model Adequacy - Focused on beam			Planning Priority	Issue/Comments
Phenomenon	Floating, Fixed, or Both	Application Level	Physics	Code	Val - Industry		
Sensors and Actuators	Both						
Tuned mass dampers (TMDs)		Н	M	М	М	М	Floating is where the gap is; industry has good data for land-based systems
Tuned liquid column dampers (TLCDs)		М	M	L	L	М	
Bearings in pitch and yaw drivers		М	M	M	M	L	
Active cable tensioners		М	M	М	L	L	Substructure, blades, tendons
Airfoil flow control		М	M	М	L	М	TE actuation, e.g., plasma, developing technology
Actuator limits		Н	M	М	L	М	E.g., max pitch or yaw rates; industry has more experience than DOE WETO
Hybrid model testing representations		М	M	M	M	L	
Ailerons		L	L	L	L	L	Mechanical devices
Other actuators		L	L	L	L	L	Power screw; rack and pinion
Faults / Failures		Н	M	М	М	M	E.g., pitch actuator, loss of grid; modeling of aerodynamics during start-up/shutdown could be improved; industry has data that R&D may not have
Impact of feed-forward control on system response		М	Н	Н	M	L	E.g., LiDAR: Enabling technology for floating
Effect of the sensors integration within the structure		Н	M	L	L	Н	Strain, load, acceleration, load cells, pressure taps; important in the valiation application; cable bundle
Effect of the actuators integration within the structure		Н	M	L	L	Н	Reliability
Impact of feedback control on system response		Н	M	М	М	М	Operators disable controllers because they have issues; likely more of an issue for floater feedback control
Impact of feedback control on system response Floater feedback control	Floating	Н	M	М	M	М	Floater feedback control; industry has likely done great work with full-scale data that is not publicly available
Partial span pitch		L	L	L	L	L	

Group 3a – Structures: Full Nacelle and Drivetrain PIRT

D)	Offshore Application:	Importance at	Model Adec	uacy - Focuse	d on beam-type	Planning Priority	Issue/Comments
Phenomenon	Floating, Fixed, or Both	Application Level	Physics	Code	Val - Industry		
Nacelle and Drivetrain	Both						
Bearings (dynamics)		M	L	L	M	М	DOE WETO codes are limited, industry codes (SIMPACK) are better
Gears		M	L	L	М	М	DOE WETO codes are limited, industry codes (SIMPACK) are better; Direct drive becoming more common offshore, negating importance of gears.
Bedplate flexibility		Н	M	М	M	М	DOE WETO codes are limited, industry codes (SIMPACK) are better
Permenant magnet direct drive		М	М	M	L	М	Industry has more data than DOE WETO
Hydrualic drives		М	L	L	L	M	
Fracture mechanics		М	L	L	L	М	white etching / cracks, stray currents from generator
Lubrication		М	L	L	M	М	
Superconducting generators		М	L	L	L	M	Proof of concept and reliability
Resonance of the drive system		М	L	L	L	М	Amplification with the tower
Whirling of the shaft (boundary condition of the rotor/drivetain)		Н	M	М	М	М	
Effect of non torque loading of the gearbox		М	L	L	M	М	Impact of stochastic excitation to the drivetrain
Impact of floater motion on mechanical components	Floating	Н	M	M	L	М	

Group 3a – Structures: Full Tower and Substructure PIRT

Di	Offshore Application:	Importance at	Model Aded	quacy - Focuse	d on beam-type	Planning Priority	Issue/Comments
Phenomenon	Floating, Fixed, or Both	Application Level	Physics	Code	Val - Industry		
Tower and Substructure	Both						
Elasticity and stress recovery of composite and concrete materials		Н	Н	М	M	М	
Joint performance: flexibility and stress concentrations and load transfer; bolted connections		Н	М	L	L	Н	Impact of welding; steel-concrete connections, bolts, grouted connections, slip joints
Member-level loads	Floating	Н	M	M	L	Н	
Lattice tower effects		M	M	М	L	L	
Impact of marine growth on structural response		М	M	М	L	М	
Response of unique structure types		M	M	М	L	L	Lattice towers, compliant towers
Impact of pile driving on fatigue life of pile	Fixed	Н	M	M	M	М	Also noise mitigation
Loading of secondary structures		L	M	М	L	L	
Damage stability	Floating	Н	M	M	L	Н	Damage stability load cases
Fatigue demand capacity and utilization		Н	M	М	M	М	Especially important for components of high thickness
Buckling		Н	Н	M	M	М	
Buoyancy cans	Floating	М	M	М	L	L	Move to water PIRT?
Prestressed cable influence on response and loading		Н	Н	Н	L	М	
Structural damping		Н	M	M	L	Н	Very little data for floating substructures
Loading of scantling from global structural response		М	L	L	L	М	
Geometric nonlinearities		Н	Н	Н	M	М	E.g., p-delta effect

Group 3a – Structures: Full Stationkeeping and Dynamic Power Cable Systems PIRT

Dhanamanan	Offshore Application:	Importance at	Model Ade	quacy - Focuse	d on beam-type	Planning Priority	Issue/Comments
Phenomenon	Floating, Fixed, or Both	Application Level	Physics	Code	Val - Industry		
Stationkeeping and Dynamic Power Cable Systems	Floating						
Hysteresis of synthetic lines		Н	M	M	L	Н	
Bending of dynamic power cable		Н	M	M	L	Н	
Mooring line loss		Н	M	L	L	Н	
Tension-torsion coupling		M	L	L	L	M	More important in very deep water
Wear and fatigue of mooring components		M	L	L	L	M	Important for chain
Clashing		M	L	L	L	M	line-line impact
Above-water station-keeping systems		M	M	M	L	L	
Structural damping		M	M	M	L	M	Most important for tendons
Creep		Н	L	L	L	Н	Important for tendons
Slack events (onset and dynamic response)		Н	M	M	M	M	Important for tendons
Geometric nonlinearities		Н	Н	Н	Н	L	
Response of floats and clump weights		M	M	M	L	M	
Loading of shackles and linkages		M	L	L	L	M	
Buoyancy modules for dynamic power cables		M	M	M	L	M	
Bend stiffners and bend restrictors of dynamic power cables		M	L	L	L	M	
Shared mooring effects		M	M	M	L	M	
Structural loading of chains		Н	M	L	L	Н	Industry likely has much more data than DOE WETO

Group 3a – Structures: Full Air-Structure PIRT

	Offshore Application:	Importance at	Model Ade	quacy - Focuse	d on beam-type	Planning Priority	Issue/Comments
Phenomenon	Floating, Fixed, or Both	Application Level	Physics	Code	Val - Industry		
Air-Structure	Both	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
Aeroelasticity - Loads	Floating	Н	M	М	L		Ultimate; fatigue loads prediction; good data for smaller, fixed systems; less data for very large, slender rotors and for floating systems; load cases
Aeroelasticity - Stability - Operation		Н	M	М	L	Н	
VIV - Stall induced vibration		Н	L	L	L	Н	Idling situation in high winds
Passive load reduction		Н	M	M	L	Н	Bend-twist coupling
Wind farm control (wake steering, induction, wake mixing)		Н	М	M	L	Н	
Individual turbine control response to waked inflow		Н	M	М	L	Н	
Wake impacts on downstream rotors		Н	M	M	M	М	Important for larger turbines, floating, and deep into the array
Aerodynamics under large motion	Floating	Н	М	M	L	Н	Aerodynamic loads, near-to-far wake; perrhaps split out betwewen local/rotor effects and wake effects
Downwind rotor effects (rotors downwind of the tower)		М	М	М	L	L	
Water egress in composites		М	L	L	L	М	
Extreme events		Н	M	M	L	Н	Tropical cyclones, thunderstorm downbursts; ride through
Climatological changes		М	L	L	L	М	Should be covered by Air group
Pressure mapping		М	L	L	L	М	Getting from an actuator line to a shell or solid; a modeling issue, but not a phenomena
Icing		М	M	М	L	М	
Flutter		Н	M	M	L	Н	
Soiling		Н	M	M	L	Н	Salt
Aeroacoustics		М	M	М	М	L	Less of an issue offshore
Idling case with fault		Н	M	M	L	Н	Edgewise instability
Erosion		Н	M	M	M	М	Industry is addressing this; less need for DOE WETO to address
Add-ons		Н	M	М	М	М	Wind tunnel validation, but not at scale
Drag on nacelle and support structure		Н	М	М	М	М	Important for parked/idling conditions; industry has a lead over R&D
Impacts of large inflow nonheterogeniety		Н	M	М	L	Н	Unique large wind turbine rotor effects

Group 3b – Soil: Full Soil PIRT

	Offshore Application:	Importance at	Model Adeq	uacy - Focuse	d on beam-type	Planning Priority	Issue/Comments
Phenomenon	Floating, Fixed, or Both	•	Physics	Code	Val - Industry		
Soil	Both						
Geotechnical characteristization	Both	Н	М	M	М	Н	High planning priority because it is the key fundamental problem; including multi-layered soil profiles; industry knows how to do it, but requires time and money, risk and reliability; statistical map across site; link geophysical data to geotech
Innovation in sight investigation testing procedures	Both	M	М	L	M	L	Explore/remedy possible lack of sight investigation procedures for offshore wind (e.g., obtaining from in-situ data reliable soil damping values for fatigue analyses)
Integrated geophysical/geotechnical characterization	Both	Н	M	L	L	Н	Focus on statistical links between datapoints; synthetic soil profiles; reducing uncertainty
Soil characterization from samples to full scale	Both	Н	M	M	M	M	
Constitutive soil modeling	Both	М	М	M	L	М	Gap is between the soil characterization and (advanced) constitutive models, particularly with regard to parameter calibration - stronger link to typical sight investigation data needed
Geohazards	Both	Н	н	M	M	М	Regional seismicity, landslands (West coast), setiment mobility/scour (regional), boulders, glacial soil conditions, carbonates (East coast/South atlantic)
Soft soils	Both	M	Н	Н	М	М	Issue for concrete gravity base for sliding along weak layers or settlement over thicker layers
Glauconite Sand	Both	Н	L	L	L	Н	US-specific issue; issue with pile driving; frictional resistance; features of behaviour challenging to capture in engineering numerical models
Boulders	Both	M	М	L	L	М	Relevance is pile diameter/thickness specific; can move or drive through in many cases; boulders typically close to shore in US
Micas	Both	L	М	L	L	L	Probably not issue for US east coast since mica length to sand diameter ratios are too small to create high void ratio
Carbonates	Both	L	М	L	L	L	limited to Sout Atlantic regions, increasing carbonate content with reducing latitude (rock in S FL and islands)
Lithification	Both	L	M	L	L	L	Process where freshly deposited loose grains of sediments are converted into rock; long time scale

Group 3b – Soil: Full Soil-Structure PIRT

Phenomenon	Offshore Application:	Importance at		1	l on beam-type	Planning Priority	lssue/Comments		
	Floating, Fixed, or Both	Application Level	Physics	Code	Val - Industry				
Soil-Structure	Both								
Seabed friction – mooring	Floating	М	М	М	L	M	Need to understand axial response of different mooring line materials (chain, rope, fiber)		
Soil damping	Fixed	Н	М	М	L	н	Lots of uncertainty; industry is usually too conservative, e.g. 5% damping is applied universally; could also be applied through hysteretic behavior of plastic soils		
Lateral jacket pile-soil interaction	Fixed	M	М	М	М	L	Physical models historic, based on small D piles, limited soil conditions; usually not governing for jackets		
Lateral monopile pile-soil interaction	Fixed	Н	М	М	L	Н	Good physical models, limited validation data, diameters keep increasing; probably most crucial aspect of monopile performance; more validation needed for realistically inhomogeneous soil profiles		
Axial pile-soil interaction	Fixed	Н	Н	М	М	М	Focus on cyclic axial response of jackets		
Soil static and dynamic stiffness, including hysteresis, strain hardening/softening	Fixed	Н	М	M	L	Н	Limitations of p-y and t-z curves; change in soil-structure properties over time; difficulties in quantifying energy dissipation properties from sight investigation data		
Shared anchor effects	Floating	М	М	М	L	М	Can help or hinder		
Drag-embeddment anchors	Floating	М	M	M	L	L	Limited to specific soil conditions, e.g. deep clay deposits; industry moving away from these		
Pile/suction anchors - pull out capacity	Floating	Н	М	L	L	Н	Could perhaps be combined with axial pile-soil interaction; need to look at drainage and time scale of cyclic loading; rely on partial suction for semi-taut and catenary moorings		
Directional anchor capacity	Floating	М	L	L	L	М	Could perhaps be combined with shared anchor effects; problem arising from anchor sharing and multiple directions of loading		
Reverse catenary	Floating	M	L	L	L	М	Often ignored; trenching effects		
Dynamic power cable-soil interaction	Floating	M	М	L	L	M	Cables are flexible so more resiliant than rigid pipelines e.g unknown extent of interaction with soil		
Burried power cable from wind farm to substation	Both	Н	М	L	L	Н	Critical zone of uncertainty; example Block Island failure; temperature effects in soil response		
Foundations and anchors in rock	Both	М	М	L	L	М	Mostly relevant to highly cemented carbonates in FL and surface bedrock in ME - very little amount of available data for validation of advanced and simplified calculation models		
Export cable-soil interaction	Both	M	М	L	L	M	Could perhaps combine with dynamic power cable-soil interaction; temperature plays a role		
Trenching of mooring lines in soil	Floating	М	L	L	L	М	Big holes can develop but only under specific metocean and soil conditions; analysis shows a 25% capacity reduction at most		
Gap between structure and soil	Fixed	М	L	L	L	М	Impact loads; is this for assessing potential for gap to occur or effect of gap on foundation capacity?		

Group 3b – Soil: Full Water-Soil-Structure PIRT

Phenomenon	Offshore Application: Floating, Fixed, or Both	Importance at Application Level	Physics	Model Adequ Code Verification	acy Val	Planning Priority	Issue/Comments
Water-Soil-Structure	Both						
Scouring	Fixed	Н	M	L	L	Н	See UWA recent research; physics much better understood; how good are scour protection systems? They work but can damage cables as seen from Orsted EU projects
Sand wave migration	Both	Н	M	L	L	Н	Impact on boundary conditions for cables and burial depth considerations
Backfilling	Both	М	M	М	L	· I\/I	Monitoring can be employed, but uncertainty in temporal conditions due to sediment mobility; need to protect cables
Liquification	Both	Н	М	L	L	H	Phenomenon in which the strength/stiffness of soil is reduced by earthquake or wave loading; affects foundation capacity, displacements, and cable burial - may become very relevant for West Coast projects
Submarine landslides	Both	M	М	L	L	М	Part of "Geohazard", requires understanding of soil-water-structure interaction; potentially harmful to export cable routes or WTG foundations/anchors within run-out distances from landslide triggering area