

Tackling the terrain: Custom tracking algorithms in solar PV plants on complex terrain

<u>Javier Lopez-Lorente</u> and William Holmgren (DNV) Jason Alderman (Nevados Engineering)

2024 PVPMC, Salt Lake City, USA 9 May 2024

PV, DNV & SolarFarmer

- Independent engineers; assurance & risk
- Foundation, with Norwegian HQ
- 5% R&D re-investment
- Strategy goals: Decarbonisation & Digitalisation
- 250 PV Engineers & Scientists

- Software for bankable yield estimates
- Industrial & utility scale projects
- 3D: complex terrain & shading
- Easy to use
- Enables scalability

Irregular terrain – the reality of PV plants

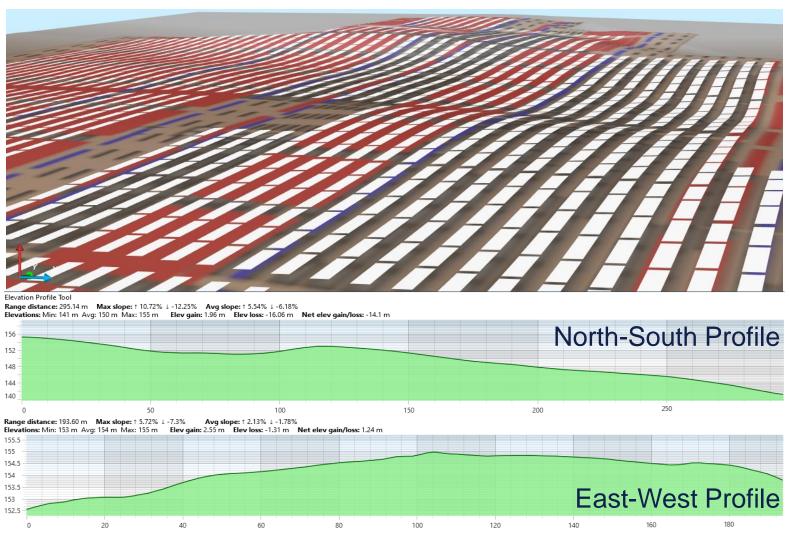
- Flat terrain (without earthworks) is scarce:
 - Environmental cost, community acceptance, permitting.
- Irregular terrain causes electrical mismatch losses due to row-to-row (mutual) shading.
- Several manufacturers have developed terrain-following trackers and new tracking algorithms:
 - Faster construction times and reduce project costs.

Aim of this work

- Investigate how terrain affects energy yield assessments.
- Illustrate how custom rotation schedules can be used to compensate terrain losses.
- Present results and learnings from PV projects on complex terrain:
 - Industry collaboration between DNV (independent engineer) and Nevados (tracker manufacturer)
 - 2 case studies (1 commercial & 1 fictitious project)

Case study A

Commercial project in New York


7.2 MWp

Overall (average) terrain

Axis tilt: 2.9 deg

Side slope: 0.3 deg

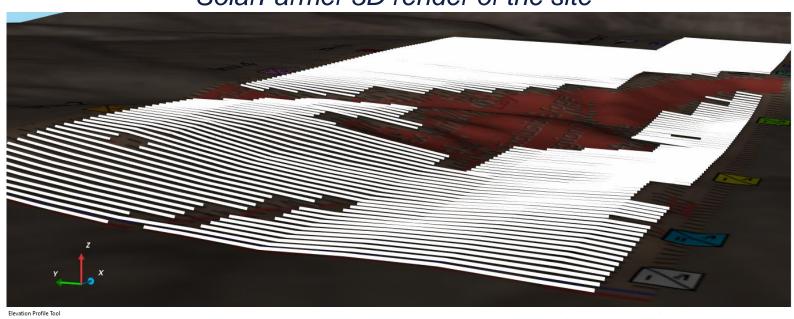
SolarFarmer 3D render of the site

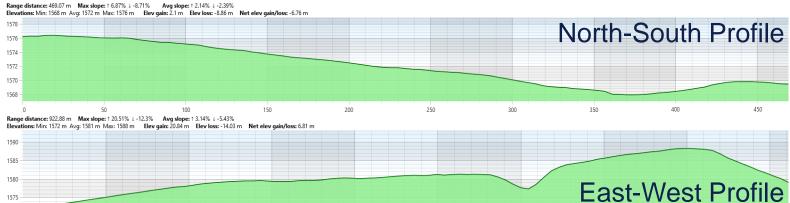
Case study B

Fictitious project in Nevada

14.6 MWp (DC/AC ratio 1.17)

10 inverters

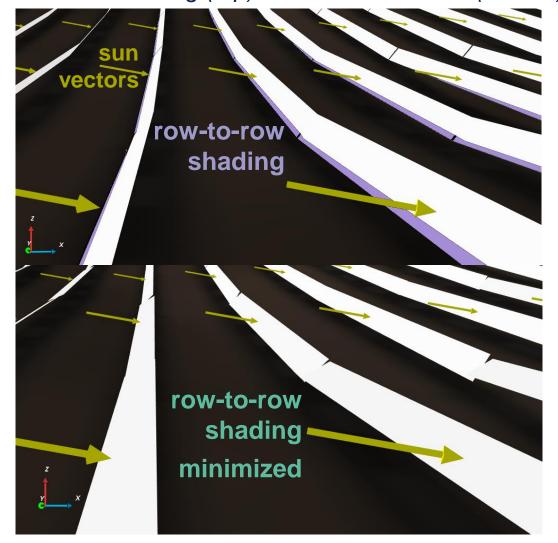

823 trackers (1 & 2 string length)


Overall (average) terrain

Axis tilt: 2.7 deg

Side slope: 0.1 deg

SolarFarmer 3D render of the site



Methodology – SolarFarmer 3D modeling

- SolarFarmer's 3D hemicube model
- 5-minute timeseries for 1 year
- Comparison of several energy assessments:

Terrain	Tracking algorithm		
2D Horizontal			
2D average slope	Standard backtracking		
High-resolution 3D terrain	Standard backtracking		
	Planar slope-aware backtracking ¹		
	Custom rotation schedules (Nevados TRACE²)		

¹K. Anderson and M. Mikofski (2020), NREL/TP-5K00-76626 ²TRACE: Tracker Rotation Angle Calculation Engine SolarFarmer 3D view of row-to-row shading: standard backtracking (top) vs custom rotations (bottom)

Effects in yield and modeling losses (case study A)

Model	2D horizontal	2D average slope	3D high-resolution terrain		
Backtracking	Standard	Standard with N/S slope	Standard	Planar N/S+E/W slope	Nevados TRACE
Plane of array (POA) gain [%]	23.1	25.5	25.4	25.4	23.6
Near shading effect [%]	-2.9	-2.6	-2.6	-2.6	-2.1
Electrical mismatch effect [%]	0	0	-2.7	-2.7	-0.1
Energy assessment summary					
Year 1 - Yield Factor [kWh/kWp]	1424.6	1446.6	1408.6	1408.7	1429.1
Year 1 - Normalized Generation (reference 2D horizontal)	-	+1.54	-1.13	-1.12	+0.31

3D modeling illustrates the electrical mismatch due to the terrain

Custom rotation schedules can reduce electrical mismatch losses to levels of flat sites, leading to higher energy yield

Effects in yield and modeling losses (case study B)

Model	2D horizontal	2D average slope	3D high-resolution terrain		
Backtracking	Standard	Standard with N/S slope	Standard	Planar N/S+E/W slope	Nevados TRACE
POA gain [%]	41.6	43.8	43.7	43.7	42.2
Near shading effect [%]	-1.6	-1.5	-1.7	-1.7	-1.1
Electrical mismatch effect [%]	0	0	-3.0	-3.0	-0.5
Energy assessment summary					
Year 1 - Yield Factor [kWh/kWp]	2168.4	2201.6	2129.4	2129.2	2175.2
Year 1 - Normalized Generation (reference 2D horizontal)	-	+1.53	-1.08	-1.09	+0.73

Near-shading losses can also be reduced with more conservative backtracking (larger unobstructed sky view)

Custom rotation schedules leading to 0.7% gain in generation

Conclusions

- 3D energy calculations capture terrain losses
 - → A way to move away from constant loss factors
- Custom tracking rotations can improve energy yield significantly
 - → Modeling examples with SolarFarmer 3D using Nevados TRACE rotations
 - → Losses are recovered from the terrain:
 - near-shading and electrical mismatch losses can be minimized.
 - higher yield factors and generation compared to flat equivalent sites.
 - additional energy gains by changing tracker algorithm software.

Future work

- More validation ... continuously
 - Collaborations?

 More compute optimizations (faster and scalable calculations)

See more at ...

DNV SolarFarmer's table during the Industry Modeling Software Office Hours (Parallel Session C)

Today @ 13:25h

DNV SolarFarmer public training May 30th and 31st (8-11AM US Pacific) https://store.veracity.com/solarfarmer-training

More on trackers on terrain in SolarFarmer at IEEE PVSC Seattle, June 9-14

→ Energy yield modeling of single-axis tracking PV systems on irregular terrain

Thank you!

solarfarmer@dnv.com

info@nevados.solar

www.dnv.com www.nevados.solar

