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Module Learning Goals 

 Understand why you might want to perform optimization 
 

 Have terminology and a practical process for design 
optimization at your disposal 
 

 Be able to formulate your problem and present it to Dakota 
 

 Know how to select a Dakota optimization method 
 

 Be able to formulate, run, and interpret initial Dakota 
optimization studies 
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Module Outline 

 Examples to illustrate why you might use optimization 
 Optimization process, goals, and terminology 
 Posing basic problem information to Dakota 

 
 Exercise: basic optimization with various methods 

 
 Selecting an optimization method 
 Basic solution approaches (methods) 
 Presenting constrained optimization problems to Dakota 

 
 Exercise: constrained optimization 
 Exercise: global optimization competition 

 



Why Use Optimization? 

What: Determine parameter values that yield extreme values (max/min) of 
objectives, while satisfying constraints. 
Why? 
 Identify system designs with maximal performance 

 E.g., case geometry that minimizes drag and weight, yet is sufficiently strong and safe 

 Determine operational settings that maximize system performance 
 E.g., fuel re-loading pattern yielding a sufficiently smooth nuclear reactor power 

distribution while maximizing power output 

 Identify minimum-cost system designs/operational settings 
 E.g., delivery network that minimizes cost while meeting environmental limits 

 Identify best/worst case scenarios 
 E.g., impact conditions that incur the most damage 

 

 Calibration (specialized subset of optimization): adjust parameters to maximize 
agreement between model and data, another model, or a desired target. 
Addressed in separate module 



Example: SNL/Lockheed Martin 
Optimization of F-35 External Fuel Tank 

Objective Function: quantity for which 
we are trying to find the extreme 
value over parameter ranges 
Parameters: quantities to be varied 
Constraints: conditions that cannot be 
violated 

Optimization Problem 
 Goal: Minimize DRAG and YAW over possible 

values of shape parameters 
 Shape parameters must be bounded to fit 

within prescribed area 
 Design must be sufficiently safe and strong 

F-35: stealth and supersonic cruise 
~ $20 billion cost 
~ 2600 aircraft (USN, USAF, USMC, 
UK & other foreign buyers) 

Simulate with LM CFD code 
• Expensive (at the time): 

8 hrs/job on 16 processors 
• Fluid flow around tank highly 

sensitive to shape changes   fuel tanks 



Example: MEMS Shape Optimization 

 Micro-electromechanical systems: typically made from silicon, polymers, 
or metals; used as micro-scale sensors, actuators, switches, and machines 

 Manufactured MEMS are highly variable in performance/reliability due to 
materials and micromachining, photo lithography, etching processes 

 Goal: shape optimize a bistable MEMS switch to… 
 Achieve prescribed reliability in actuation force, while meeting stress, max force limits 
 Minimize sensitivity to uncertainties (robustness); maintain bi-stability 
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shape 
parameters for each candidate design, finite 

element analysis predicts 
force/displacement relationship 



Practical Process for Optimization 

1. What are your optimization goals and restrictions?  Consider: 
 Design problem or other (function/simulator output)?  
 What / how much improvement defines success?  

2. Identify design variables; specific objectives and constraints 
3. What are the model characteristics/behaviors?  Recall: 
 Simulation cost, model robustness, input/output properties such 

as kinks, discontinuities, multi-modal, noise, disparate regimes 
4. Use sensitivity analysis to screen parameters and down-select 

to those influencing trends in objective and constraints 
5. Select a method appropriate to variables, goal, and problem 
6. Set up Dakota input file and interface to simulation 
7. Run study and interpret results; refine as needed 
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covered in 
other modules 

covered in 
other modules 

later in this 
module 

Up next: Discuss 1 and 2, relate to Dakota, and see a simple example of 6, 7 



Optimization Goals Come 
in Multiple Forms 

May want tradeoffs between 
multiple objectives, e.g., cost vs. risk 
(advanced topic) 

• Some applications: local 
improvement suffices, e.g., 5% 
performance improvement 

• Others: must find global minimum at 
any cost 

x1 

f(x1) 

min 

max 

local 
extrema 

global 
extrema 



Specified in Dakota input file 

Computed by simulation and reported to Dakota 

objective function(s) 
 
nonlinear inequality constraints 
nonlinear equality constraints 
 
linear inequality constraints 
linear equality constraints 
 
bound constraints 

Anatomy of an Optimization Problem: 
Mapping to Dakota vs. Simulation 

minimize:    f(x1,...,xN) 
 
subject to:  gLB ≤ g(x) ≤ gUB 

            h(x) = hE 

 
            AIx ≤ bI 

            AEx = bE 
 
            xLB ≤ x ≤ xUB 
    
 

Constraints will be addressed later.  For now, we’ll focus on continuous 
variables x and one objective function f(x). 



interface, 
responses  

objective function(s) 
 
nonlinear inequality constraints 
nonlinear equality constraints 
 
linear inequality constraints 
linear equality constraints 
 
bound constraints 

Anatomy of an Optimization Problem: 
Mapping to Dakota Input File Blocks 

minimize:    f(x1,...,xN) 
 
subject to:  gLB ≤ g(x) ≤ gUB 

            h(x) = hE 

 
            AIx ≤ bI 

            AEx = bE 
 
            xLB ≤ x ≤ xUB 
    
 

method 

(design) 
variables 

Computed by simulation and reported to Dakota 



Dakota Example: 
Optimization for the Fuel Tank Problem 

A possible simple statement of the fuel tank 
optimization problem, with Dakota input: 
 
Find the fuel tank shape, parameterized by 
design variables s1, s2, that minimizes drag.  
Hold the tank angle fixed at 85.0 degrees. 
 
Mathematically: 
 minimize (over s1, s2)  
   drag(s1, s2) 
 such that   
   4.5 < s1 < 6.7  
   0.1 < s2 < 2.3 
 
  
 
 

method 
  optpp_q_newton 
 
variables 
  continuous_design = 2 
    descriptors   's1'  's2' 
    upper_bounds  6.7   2.3 
    lower_bounds  4.5   0.1 
 
  continuous_state = 1 
    descriptors 'angle' 
    initial_state = 85.0 
 
responses  
  descriptors  'drag' 
    objective_functions = 1 
  numerical_gradients 
  no_hessians 
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Brief Group Discussion:  
Optimization Practice 

 Give an example of a simple optimization problem you might care 
about in your personal life. 
 

 What types of system design, performance, and cost questions do 
you ask in your work domain? 

 What metrics do you use to assess design quality, performance level, 
and costs? 
 

 How do you answer your questions currently? 
 What are the key challenges you face? 

 
 What challenges do you foresee with automated design optimization 

with Dakota? 



Discussion: Optimize Cantilever Beam 
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Parameters: 
L: length (in) 
w: width (in) 
t: thickness (in.) 
ρ: density (lb/ft3) 
E: Young’s modulus (lb/in2) 
X: horizontal load (lb) 
Y: vertical load (lb) 

Responses: 
M: mass (lb) 
S: stress (lb/in2) 
D: displacement (in) 

L 
w 

t 

Y 
X 

 What might be some optimal design 
objectives (goals) of interest? 

 What might you have control over (variables) 
to meet those goals? 

 What model characteristics do you recall 
from previous module? 

 What might you expect the results of 
optimizing a design to be? 



Exercise 1: First Optimization Studies 

Explore: 
 The directory exercises/optimization/1 contains three Dakota input files 

that perform simple bound-constrained optimization on the cantilever 
beam problem 

 Run each study and examine the final results near the end of the console 
output: best parameters, objective values, number of function evaluations 

 
Discuss with your neighbor: 
 Which are the design variables?  Fixed parameters? What is being 

minimized? 
 What is different between the various input files?   
 What differs in the runtime behavior and final results summary? 
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Module Outline 

 Examples to illustrate why you might use optimization 
 Optimization process, goals, and terminology 
 Posing basic problem information to Dakota 

 
 Exercise: basic optimization with various methods 
 
Coming Next: 
 Selecting an optimization method 
 Basic solution approaches (methods) 
 Presenting constrained optimization problems to Dakota 

 
 Exercise: constrained optimization 
 Exercise: global optimization competition 

 



Practical Process for Optimization 

1. What are your optimization goals and restrictions?  Consider: 
 Design problem or other (function/simulator output)?  
 What / how much improvement defines success?  

2. Identify design variables; specific objectives and constraints 
3. What are the model characteristics/behaviors?  Recall: 
 Simulation cost, model robustness, input/output properties such 

as kinks, discontinuities, multi-modal, noise, disparate regimes 
4. Use sensitivity analysis to screen parameters and down-select 

to those influencing trends in objective and constraints 
5. Select a method appropriate to variables, goal, and problem 
6. Set up Dakota input file and interface to simulation 
7. Run study and interpret results; refine as needed 
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covered in 
other modules 

covered in 
other modules 

Based on variables, objectives, constraints, and properties, select an 
appropriate method… 



Basic Classes of Optimization Approaches 
(the “method” block) 

Gradient Descent 
• Looks for improvement based 

on derivative 
• Requires analytic or numerical 

derivatives (more soon) 
• Efficient/scalable for smooth 

problems 
• Converges to local extreme 

Derivative-Free Local  
• Sampling with bias/rules 

toward improvement 
• Requires only function values 
• Good for noisy, unreliable or 

expensive derivatives 
• Converges to local extreme 

Derivative-Free Global 
• Broad exploration with 

selective exploitation 
• Requires only function values 
• Typically computationally 

intensive 
• Converges to global extreme 



First-order Forward Difference Second-order Central Difference 

  responses 
    numerical_gradients 
      forward 
      fd_step_size 1.0e-3 

    responses 
      numerical_gradients 
        central 
        fd_step_size 1.0e-3 

Gradients for Derivative-based Methods 
 Akin to Newton’s method for root-finding, 

minimize the objective by going “downhill” 
based on the gradient of the objective 
function: 
 

 Most simulations don’t calculate derivatives 
 Dakota approximates gradients (and 

Hessians if needed) by running the 
simulation at x±∆x as needed 
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Selecting a Method 

A reasoning process: To select a Dakota method, ask yourself 
 What is the improvement goal and (single- or multi-) objective ? 
 Are there bound, linear, and/or nonlinear constraints? (discussed later) 
 Are there discrete variables, or only continuous? 
 What are the problem characteristics, including cost, robustness? 
 Get help from the Dakota team if you can’t figure it out! 
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Scenario 1 
 Local optimization 
 Unconstrained 
 Can afford 10s to 100s of runs 
 Unreliable gradients 

Pattern Search 

Scenario 2 
 Global optimization 
 Nonlinearly constrained 
 Regions with different behavior 
 Discrete variables 

Genetic Algorithm 



Guide to Optimization Methods 
See Usage Guidelines in User’s Manual 

Category Dakota method names C
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Gradient-Based 
Local (smooth) 

optpp_cg x 
dot_bfgs, dot_frcg, conmin_frcg x x 
npsol_sqp, nlpql_sqp, dot_mmfd, dot_slp, dot_sqp, 
conmin_mfd, optpp_newton, optpp_q_newton, 
optpp_fd_newton 

x x x 

Gradient-Based  
Global (smooth) 

hybrid, multi_start x x x 

Derivative-Free 
Local 
(nonsmooth) 

optpp_pds x x 
coliny_cobyla, coliny_pattern_search, 
coliny_solis_wets, surrogate_based_local x x x 

asynch_pattern_search, mesh_adaptive_search x x x x 

Derivative-Free 
Global 
(nonsmooth) 

ncsu_direct, genie_direct, genie_opt_darts x x 
coliny_direct, efficient_global, 
surrogate_based_global x x x 

coliny_ea, soga, moga (multiobjective) x x x x 

For multi-objective problems: use weighted sum with any method, pareto_set, or moga. 



CONSTRAINED OPTIMIZATION 
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Group Discussion:  
Constrained Optimization 

 Give an example of a simple constrained optimization 
problem you might care about in your personal life. 
 

 What kinds of constraints do you face in designing things for 
your work? 
 

 For each, describe your example using Dakota optimization 
terminology. 
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interface, 
responses  

objective function(s) 
 
nonlinear inequality constraints 
nonlinear equality constraints 
 
linear inequality constraints 
linear equality constraints 
 
bound constraints 

Anatomy of an Optimization Problem: 
Mapping to Dakota Input File Blocks 

minimize:    f(x1,...,xN) 
 
subject to:  gLB ≤ g(x) ≤ gUB 

            h(x) = hE 

 
            AIx ≤ bI 

            AEx = bE 
 
            xLB ≤ x ≤ xUB 
    
 

method 

(design) 
variables 

Computed by simulation and reported to Dakota 



method 
  optpp_q_newton 
   
 
 
 
 
variables 
  continuous_design  2 
    descriptors   's1'  's2' 
    upper_bounds  6.7   2.3 
    lower_bounds  4.5   0.1 
 
responses  # returned by simulation 
  descriptors  'drag' 
  objective_functions  1 
   
 
  numerical_gradients 
  no_hessians 

Example: Adding Constraints to Dakota  
Input for the Fuel Tank Problem 

Minimize drag, given 
bounds on the shape 
parameters: 
 
Mathematically: 
  minimize  
    drag(s) 
  such that   
    4.5 < s1 < 6.7  
    0.1 < s2 < 2.3 
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method 
  optpp_q_newton 
  linear_inequality_constraint_matrix 
    22.0  99.0 
  linear_inequality_upper_bounds 
    199.0 
 
variables 
  continuous_design  2 
    descriptors   's1'  's2' 
    upper_bounds  6.7   2.3 
    lower_bounds  4.5   0.1 
 
responses  # returned by simulation 
  descriptors  'drag' 
  objective_functions  1 
   
 
  numerical_gradients 
  no_hessians 

Minimize drag, given 
bounds on the shape 
parameters, bounding the 
total cost of horizontal (s1) 
vs. vertical (s2) struts: 
 
Mathematically: 
minimize  
  drag(s) 
such that   
  4.5 < s1 < 6.7  
  0.1 < s2 < 2.3 
  22.0*s1 + 99.0*s2 < 199.0 
 
  
 
 

Example: Adding Constraints to Dakota  
Input for the Fuel Tank Problem 
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Example: Adding Constraints to Dakota  
Input for the Fuel Tank Problem 

Minimize drag, …, and 
requiring sufficient 
strength 
 
Mathematically: 
minimize  
  drag(s) 
such that   
  4.5 < s1 < 6.7  
  0.1 < s2 < 2.3 
  22.0*s1 + 99.0*s2 < 199.0 
  strength(s) > 5600.0 
 
  
 
 

method 
  optpp_q_newton 
  linear_inequality_constraint_matrix 
    22.0  99.0 
  linear_inequality_upper_bounds 
    199.0 
 
variables 
  continuous_design  2 
    descriptors   's1'  's2' 
    upper_bounds  6.7   2.3 
    lower_bounds  4.5   0.1 
 
responses  # returned by simulation 
  descriptors  'drag'  'strength' 
  objective_functions  1 
  nonlinear_inequality_constraints  1 
    nonlinear_inequality_lower_bounds  5600.0 
  numerical_gradients 
  no_hessians 
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Practical Process for Optimization 

1. What are your optimization goals and restrictions?  Consider: 
 Design problem or other (function/simulator output)?  
 What / how much improvement defines success?  

2. Identify design variables; specific objectives and constraints 
3. What are the model characteristics/behaviors?  Recall: 
 Simulation cost, model robustness, input/output properties such 

as kinks, discontinuities, multi-modal, noise, disparate regimes 
4. Use sensitivity analysis to screen parameters and down-select 

to those influencing trends in objective and constraints 
5. Select a method appropriate to variables, goal, and problem 
6. Set up Dakota input file and interface to simulation 
7. Run study and interpret results; refine as needed 
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covered in 
other modules 

covered in 
other modules 

Let’s put it all together with an exercise… 



Discussion: Optimize Cantilever Beam 
with Constraints 

28 

Parameters: 
L: length (in) 
w: width (in) 
t: thickness (in.) 
ρ: density (lb/ft3) 
E: Young’s modulus (lb/in2) 
X: horizontal load (lb) 
Y: vertical load (lb) 

Responses: 
M: mass (lb) 
S: stress (lb/in2) 
D: displacement (in) 

L 
w 

t 

Y 
X 

 What might be some optimal design 
objectives of interest? 

 What are some design constraints that could 
come into play? 

 What might you expect the results of 
optimizing a design to be? 

 What methods are appropriate for your 
proposed constrained problem? 
 



Exercise 2: Constrained Optimization of  
Cantilever Beams 

Scenario: Your boss is concerned about the cost of the coat hooks you are 
proposing.  She further insists that she can hang her chainmail coat on them 
and that the local wildlife can lean against them. 
 
 
 
 
 
 
 
 
Use Dakota with the cantilever beam simulator to minimize the mass of the 
coat hooks, while ensuring that the displacement is not too great under 
loading and the stress is manageable. 
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https://commons.wikimedia.org/wiki/File:
Eastern_riveted_armor.JPG 

http://resourcelibrary.clemetzoo.com/photos/82 



Exercise 2: Constrained Optimization of  
Cantilever Beams 
Exercise: Minimize the cantilever beam mass, while ensuring that the 
displacement is not too great and the stress is manageable.  Specifically: 
 
Modify exercises/optimization/2/dakota_opt_cantilever.in  to: 
 Design the cross section (w, t) of a 5 in long coat hook to minimize mass. 
 Width and thickness must each be between 0.5 and 4.0 inches. 
 Use state variables to enforce the operating constraints and materials: 

 Vertically support a 500 lb. chainmail coat 
 Support your office’s resident 350 lb. female grizzly bear horizontally leaning on it 
 Made from steel with density ρ=500.0, Young’s modulus E=2.9e+7 

 The beam must displace no more than 0.001 in, with stress < 1.0e+5 lb/in2. 
 Choose a Dakota method appropriate to this problem  

(see method selection guide). 
 Then compare to other methods or try different method controls. 
 Compare your results to your neighbor. 
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Brief Group Discussion: 
Optimization Exercises 

 Are the results what you expected?  As good as your 
neighbor’s? Why or why not? 

 What do you see as the limitations of the methods used? 
 What alternative methods might you try? 

 
 What questions arose? 



Discussion:  
Model Characteristics and Method Choice  

 What challenges might you face in local optimization of each 
of these functions?  Global? 

 What methods might be applicable? 
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Exercise 3:  
Global Optimization Competition 

 See exercises/optimization/3/dakota_opt_quasisine.in 
 Try to find the global minimum of the smooth, but multi-

modal, quasi-sine function over the bounded domain  
[-1,1] x [-1,1] 

 Choose one method to get the optimization working, then try 
as many as you like. 

 For each method you try, keep track of the best point found 
and number of function evaluations required to get there.  
 

 Compare your answers to a neighbor’s. 
 The best answer in the class wins a prize! 
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Advanced Optimization Topics 

Not covered in this module, but can be discussed in office hours 
or advanced topics: 
 Advanced methods, e.g., local and global surrogate-based 

optimization, meta-methods, details on specific methods 
 Multi-objective optimization: analyzing tradeoff spaces 
 Treating discrete or mixed continuous/discrete variables 
 Optimization under uncertainty, robust design 
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Summary of Dakota Methods 

Q: I’ve been using method X; is it available in Dakota?   
A: Dakota has: 
 Newton variants: MFP, NIP, SLP/SQP, FRCG/CG, Quasi for smooth, local 
 Pattern/mesh search, Solis-Wets, COBYLA for noisy local without 

derivatives 
 Genetic algorithms, OptDarts, DiRECT for global optimization 
 Surrogate-based: efficient global (EGO), trust region local, global for costly 

simulations 
 Branch and bound for mixed-integer 
 Advanced Meta-methods: hybrid, multi-start, Pareto 
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Optimization References 

 J. Nocedal and S. J. Wright, “Numerical Optimization”, Second Edition, 
Springer Science and Business Media, LLC, New York, New York, 2006. 
 

 S. S. Rao, “Engineering Optimization: Theory and Practice”, Fourth Edition, 
John Wiley and Sons, Inc., Hoboken, New Jersey, 2009. 
 

 Dakota User’s Manual 
 Optimization Capabilities 
 Surrogate-Based Minimization 
 Advanced Strategies 
 Advanced Model Recursions: Optimization Under Uncertainty 

 Dakota Reference Manual 



Practical Process for Optimization 

1. What are your optimization goals and restrictions?  Consider: 
 Design problem or other (function/simulator output)?  
 What / how much improvement defines success?  

2. Identify design variables; specific objectives and constraints 
3. What are the model characteristics/behaviors?  Recall: 
 Simulation cost, model robustness, input/output properties such 

as kinks, discontinuities, multi-modal, noise, disparate regimes 
4. Use sensitivity analysis to screen parameters and down-select 

to those influencing trends in objective and constraints 
5. Select a method appropriate to variables, goal, and problem 
6. Set up Dakota input file and interface to simulation 
7. Run study and interpret results; refine as needed 
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covered in 
other modules 

covered in 
other modules 

Ask Dakota team or dakota-users list for help! 



Module Learning Goals Revisited 
Did We Meet Them? 

 Understand why you might want to perform optimization 
 

 Have terminology and a practical process for design 
optimization at your disposal 
 

 Be able to formulate your problem and present it to Dakota 
 

 Know how to select a Dakota optimization method 
 

 Be able to formulate, run, and interpret initial Dakota 
optimization studies 
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BACKUP SLIDES 
Method-related 

All following slides are strict subset of SAND2012-7265P 



Variations on 
Gradient-Based Optimizers 

 Go downhill 
 e.g., steepest descent, conjugate gradient, Newton and 

variants 
 second derivatives differentiate minima from maxima, 

inflection points; Hessian approximations often used in 
practice (quasi-Newton) 

 Require reliable derivatives of objectives and  
nonlinear constraints w.r.t. decision variables: 
 analytic evaluation: code them into the simulation 
 finite differences: no code modification and provided by 

most optimizers 
 automatic differentiation: source transformation, 

operator overloading 
x
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• Strategies for managing convergence: 
– line search: find a step in the Newton direction to ensure sufficient decrease 
– trust region: use quadratic model in an expanding/contracting trust region 

• Handling nonlinear constraints 
– reduced gradient 
– sequential linear or quadratic programming (SLP/SQP) 
– augmented Lagrangian or exact penalty methods 
– interior point / barrier, filter methods 
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f’(x1) 

root 

Forward difference 



Variations on 
Derivative-Free Optimizers 

f(x(2)) 

reflect 

expand 

contract 

contract 

f(x1)) 

f(x(3)) worst 

Pattern Search methods search using a 
stencil, often that defines some basis, that 
is iteratively re-centered and resized. 

Nelder Mead searches using a 
simplex that is iteratively reflected 
through a centroid and resized. 



Variations on  
Global Optimizers 

Multi-Start Local Optimization involves initiating a 
local optimization method at multiple points, with 
the goal of identifying multiple local minimizers 
from which the lowest can be chosen. 

Evolutionary/Genetic Algorithms 
evolve an initial random sample 
over generations, according a 
“fitness” function, until the 
minimum is found. 

Division of RECTangles (DiRECT) iteratively 
subdivides the search domain based on size 
and rank of each existing subdivision. 



Optional Examples: Advanced 
Optimization Problems and Methods 

 Constrained 
 Exercise:  Minimize an objective given constraints 

 Multi-start local 
 Exercise:  Provide multiple starting points to a local optimizer to find 

multiple local minima 
 Global 

 Exercise:  Find the global extreme value 
 Multi-objective 

 Exercise:  Optimize across multiple competing objectives 
 Surrogate-based/multifidelity 

 Exercise:  Reduce the computational cost (i.e., number of function 
evaluations) of optimization 

 Hybrid 
 Exercise:  Use multiple optimization methods to solve a single problem 



Modify Newton’s root-finding method for solving f(x) = 0. 
 
 
 
 
 
 
For optimization: find zeros of f’(x) = 0 (local extrema), go downhill; 

loosely 
 

 

Gradient-based Optimization: 
Go Downhill  
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global 
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These derivatives extend to gradients 
and Hessians in the multivariate case: 
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Constraint Progression 
Listed in order of (typically) increasing algorithm complexity and computational 

cost needed to solve. 
 

 Unconstrained problem: neither bound constraints nor linear/ nonlinear 
constraints 

 Bound-constrained problem: bound (variable space x) constraints only (no 
linear/nonlinear constraints) 

 Linearly-constrained problem: constraints are linear with respect to the x-
variables (may also have bound constraints) 

 Nonlinearly-constrained problem: the g(x) and h(x) constraints, nonlinear 
w.r.t. the x variables, are present (may also have bound constraints) 
perhaps most typical in engineering and science applications 
 

Typically, it is important to specify constraints as specifically as possible, e.g., 
don’t specify a linear constraint as nonlinear if the solver supports linear 
constraints. 



Coordinate-basis 
Pattern Search 
 Evaluate model at a stencil of points; 

recenter at point with best function value 
 If no improvement, contract stencil (to 

achieve local convergence) 
 Stencils typically are simplexes or align 

with coordinate directions 
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Nelder-Mead 

 Simplex stencil of d+1 points,  
with centroid of d best  

 Adapt the simplex iteratively to go downhill: 
 Reflect through centroid and if better value, 

replace worst 
 If improved, attempt to expand further in 

that direction 
 If no improvement, attempt contraction of 

the simplex to find a better point 
 If fails, shrink simplex 
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Global (derivative-free)  
Algorithms 
 Global solvers attempt broad exploration of the design space with a strategy for 

selective exploitation of promising regions 
 Can be extremely costly, but will deliver good results when you have a large 

computational budget 
 A few approaches: 

 Random (Monte Carlo) sampling 
 Multi-start local search 
 Box decomposition, e.g., DIRECT and other Lipschitzian approaches 
 Population search, e.g., genetic/evolutionary algorithms 
 Global surrogate-based algorithms 
 For more see Cindy’s talk on Friday, including meta-heuristics, e.g., simulated 

annealing, tabu search, ant colony optimization 
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Random and Multi-start 

 Random sampling (Monte Carlo or more optimal space-filling designs) offers broad 
exploration;  
then just take the best point 

 Can combine with local optimization by refining each of the set of promising 
optima using a local optimizer: 
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Division of RECTangles (DiRECT) 

 Subdivide the search domain into non-overlapping ‘boxes’ 
 Boxes are ranked with estimates of their best value 
 Boxes are selected for subdivision based on their rank and box size 
 Successive refinement ensures that a near-optimal point will be found in finite 

time 
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Evolutionary/Genetic Algorithms 

 Based on Darwin’s theory of survival of the fittest 
 Random initial population of design points 
 Design parameters values are a unique “genetic string,” analogous to DNA 
 Sequence of generations, where most “fit” survive and reproduce 
 Simulates natural selection, breeding, and mutation 
 Ultimately identifies a design point (or family of points) satisfying 

optimization problem 
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Advanced Considerations 

 Mixed-integer nonlinear programming (MINLP): not discussed here, but see 
Cindy’s talk Friday 
 Use branch and bound over integer variables 
 For each discrete scenario, apply any of the nonlinear optimization techniques 

discussed here 
 Multi-objective (trade-off) optimization 

 Few solvers treat directly (however some GAs and other heuristics can map 
out the necessary Pareto frontier) 

 Explicit weighting of objectives: limits intuition, but allows use of any solver: 
 

 
 Surrogate-based optimization (local and global) 
 Uncertainty: optimization under uncertainty and robustness (uncertainty of 

optima) 
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Efficient Global Optimization 

 Technique due to Jones, Schonlau, Welch 
 Build global Gaussian process 

approximation to initial sample 
 Balance global exploration (add points 

with high predicted variance) with local 
optimality (promising minima) via an 
“expected improvement function” 

True fn 

GP surrogate 

Expected 
Improvemen
t 

From Jones, Schonlau, Welch, 1998 



Surrogate-based Minimization 
(Calibration and Optimization) 
 Surrogate-based techniques replace or augment costly model 

evaluations with a less expensive stand-in; a key approach to make 
hard optimization problems tractable 

 Response surface or meta-models are most common: use design of 
experiments to sample variable space and then build an 
approximation 
 
 
 
 
 
 
 

 Multi-fidelity approaches useful when you have a physics-based 
surrogate, empirical approximation, or low-fidelity model option 
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responses 
variables/parameters • functions: objectives, 

constraints, LSQ 
residuals 

• gradients 
• Hessians 

user application  
(simulation) 

system, fork, direct, grid 

optional approximation (surrogate) 
• global (polynomial 1/2/3, neural net,   
  kriging/Gaussian proc., MARS, RBF) 
• local (Taylor); multipoint (TANA/3) 
• hierarchical, multi-fidelity 

• design: continuous, 
discrete, categorical 



Trust Region  
Surrogate-based Minimization 

Data fit surrogates 
• Global: polynomials, splines, 

neural network, Kriging, RBFs 
• Local: 1st/2nd-order Taylor 

Data fits in SBO 
• Smoothing: extract global trend 
• DACE: limited # design vars 
• Must balance local consistency  

with global accuracy 

Multifidelity surrogates: 
• Coarser discretizations, 

looser conv. tols., reduced 
element order 

• Omitted physics: e.g., Euler 
CFD, panel methods 

Multifidelity SBO 
• HF scale better w/ des. vars. 
• Requires smooth LF model 
• May require design mapping 
• Correction quality is crucial 

Multi-fidelity 

ROM surrogates: 
• Spectral decomposition 
• POD/PCA w/ SVD 
• KL/PCE  (random fields, 

stochastic processes) 

ROMs in SBO 
• Key issue: parametrize  

(extended or spanning ROM) 
• Otherwise like data fit case 

emerging 
area 

ROM Data Fit 



Optimization Under Uncertainty 

Opt 

UQ 

Sim 

{d} {Su}

{u} {Ru}

min 
s.t. 

(nested paradigm) 

Rather than design and then post-process to evaluate uncertainty… 
actively design optimize while accounting for uncertainty/reliability metrics 
su(d), e.g., mean, variance, reliability, probability: 

13 design vars d:  Wi, Li, qi 
2 random variables x: ΔW, Sr 

σ σ 
-5.0 

simultaneously reliable and robust designs 

Bistable switch problem formulation (Reliability-Based Design Optimization): 

min 
s.t. 



BACKUP SLIDES 
Application Examples 



r 

Z 

Capsule 

(1) Wire initiation 
creates a “high Z” 
dense plasma  

3D ALEGRA MHD 

(2) Encapsulant converts the plasma 
radiation to a “drive” i.e., pressure on the 
capsule. 

1D, 2D, 3D ALEGRA, rad-MHD 

(3) Drive and implosion of capsule. 

 1D, 2D ALEGRA rad-hydro 

Sample Hohlraum 
Configuration 

Encapsulant 

Metal wires 

Uncertainties in plasma, drive, and capsule characteristics 

Robust Hohlraum Design 
for Inertial Confinement Fusion 



Ablator Outer Radius (cm)
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Global min, non-robust 

Local robust min 

Design goal: maximize the 
implosion velocity w.r.t. ablator 
radius r and fuel density ρ, but 
remain robust w.r.t. manufacturing 
variability 

Fuel 
(ρ) 

Ablator 

Outward 
radial 

direction 

design variable r 

rfuel = 0.100 cm 

Minimize V(r, ρ) 
Subject to σV(r, ρ) ≤ target value 
uniform: +/- 2.5% range in r, ρ 

ICF Capsule Robust Design 



Shape Optimization  
of Compliant MEMS  
 Micro-electromechanical system (MEMS): typically made from silicon, polymers, or 

metals; used as micro-scale sensors, actuators, switches, and machines 
 MEMS designs are subject to substantial variability and lack historical knowledge base.  

Materials and micromachining, photo lithography, etching processes all yield 
uncertainty. 

 Resulting part yields can be low or have poor cycle durability 
 Goal: shape optimize finite element model of bistable switch to… 

 Achieve prescribed reliability in actuation force 
 Minimize sensitivity to uncertainties (robustness) 

bistable  
MEMS  
switch 

uncertainties to be considered 
(edge bias and residual stress) 



13 design vars 
d: 

 Wi, Li, θi 

σ 
σ 

key relationship: force 
vs. displacement via  

finite element analysis 

new tapered beam design 

Typical design specifications: 
• actuation force Fmin reliably 5 μN 
• bistable (Fmax > 0, Fmin < 0) 
• maximum force: 50 < Fmax < 150 
• equilibrium E2 < 8 μm 
• maximum stress < 1200 MPa  

MEMS Switch Design: 
Geometry Optimization 



Drug Docking 
(Courtesy Bill Hart) 
 Problem: find the optimal binding for a small ligand in a binding site 

 
 
 
 
 
 
 
 
 
 

 Application: lead compound development 
 Impact: limit lab experimentation required to develop new drugs 
 Approach: heuristic global optimization of flexible docking empirical potential 

functions 
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