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Module Learning Goals 

 Understand why you might want to perform uncertainty 
quantification (UQ) 
 

 Understand prerequisites and have a practical process for UQ 
at your disposal 
 

 Be able to formulate your problem, present it to Dakota, and 
run and understand studies 
 

 Be able to select an appropriate Dakota UQ method 
 

 Know how to use Dakota UQ results 
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Module Outline 

 Introduction: application examples to define UQ, illustrate the UQ 
process, and explain why you might care 

 UQ terminology: characterizing and expressing your problem to Dakota 
 

 Monte Carlo sampling for UQ  
 Exercise: Dakota input and output for Monte Carlo sampling 

 
 Selecting an uncertainty quantification method; reliability and polynomial 

chaos 
 Exercise: Comparing UQ methods and problem assumptions 

 
 Beyond Dakota: follow-on activities using UQ results 
 Summary of advanced  topics and references 



 What? Determine variability, distributions, statistics of code outputs, 
given uncertainty in input factors; put error bars on simulation output 

 Why? Tactically, assess likelihood of typical or extreme outcomes.  Given 
input uncertainty… 
 Determine mean or median performance of a system 
 Assess variability or robustness of model response 
 Find probability of reaching failure/success criteria (reliability metrics) 
 Assess range/intervals of possible outcomes 

 Ultimately, use simulations for risk-informed decision making, e.g., assess 
how close uncertainty-endowed code predictions are to 
 Experimental data  

(validation, is model sufficient  
for the intended application?) 

 Performance expectations or limits  
(quantification of margins and  
uncertainties; QMU) 

Why Uncertainty Quantification? 
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Example: 
Thermal Uncertainty Quantification 

 Device subject to heating (experiment or 
corresponding computational simulation) 

 Uncertainty in composition/ environment 
(thermal conductivity, density, boundary), 
parameterized by u1, …, uN 

 Response temperature f(u)=T(u1, …, uN)  
calculated by heat transfer code 

Given distributions of u1,…,uN, UQ 
methods calculate statistical info on 
outputs: 
• Mean(T), standard deviation(T),  
Probability(T ≥ Tcritical) 
• Probability distribution of 
temperatures 
•Bounds on temperature (min/max) 
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Example: 
MEMS Manufacturing Uncertainty 
 Micro-electromechanical system (MEMS): typically made  

from silicon, polymers, or metals; used as micro-scale sensors,  
actuators, switches, and machines 

 MEMS designs: subject to substantial variability, lack historical knowledge base; 
uncertainty from materials, micromachining, photo lithography, etching process 

 Resulting part yields can be low or have poor cycle durability 
 Goal: UQ with finite element model of bi-stable switch to… 

 Assess reliability in predicted actuation force and variability in min/max force 
 Minimize sensitivity to uncertainties (robustness) 

bistable  
MEMS  
switch 

uncertain parameters: 
edge bias and residual stress 



Example: Uncertainty in Boiling Rate in  
Nuclear Reactor Core (DOE CASL) 

Method 

ME_nnz ME_meannz ME_max 
Mean Std 

Dev 
Mean Std 

Dev 
Mean Std 

Dev 
LHS (40) 651.225 297.039 127.836 27.723 361.204 55.862 
LHS (400) 647.33 286.146 127.796 25.779 361.581 51.874 
LHS (4000) 688.261 292.687 129.175 25.450 364.317 50.884 
PCE (Θ(2)) 687.875 288.140 129.151 25.7015 364.366 50.315 
PCE (Θ (3)) 688.083 292.974 129.231 25.3989 364.310 50.869 
PCE (Θ (4)) 688.099 292.808 129.213 25.4491 364.313 50.872 

anisotropic uncertainty 
distribution in boiling rate 

throughout  quarter core model 
(side view) 

normally distributed inputs need not give 
rise to normally distributed outputs… 

mean and standard deviation of key metrics 

 Use nuclear reactor thermal-hydraulics model to assess uncertainty in 
localized boiling due to variable operating conditions 

 Compare Dakota UQ approaches and modelling assumptions 



Discussion:  
Uncertainties in Your Domain 

 
 What are the key uncertainties that affect your experiments, 

analysis, and work products? 
 

 How do you account for them when using science and 
engineering computational models? 
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A Practical Process for UQ 
1. Determine your UQ analysis goal 

 What are the key model responses (quantities of interest) 
 What kinds of statistics or metrics do you want on them? 

2. Identify potentially influential uncertain input parameters 
 Includes parameters that influence trend in response as well as those that influence 

variability in response 

3. Characterize input uncertainties and map them into Dakota variable 
specifications 

4. What are the model characteristics/behaviors?  Recall: 
 Simulation cost, model robustness, input/output properties such as kinks, 

discontinuities, multi-modal, noise, disparate regimes 

5. Select a method appropriate to variables, goal, and problem 
6. Set up Dakota input file and interface to simulation 
7. Run study and interpret the results 
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covered in 
other modules 

Up next: Discuss 1, 2 and 3, relate to Dakota, and see a simple example of 6, 7 



Familiarize Yourself with Key Statistics Ideas: 
Moments of Random Variables 

Understanding the following basic concepts will help with Dakota UQ 
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 Concept of a random variable X 
 

 Mean (m, μ): expected or average 
value of X, e.g., mean of sample of 
size N: 
 

 Standard deviation (s, σ): measure 
of dispersion / variability of X: 

realizations of random variables 
with mean μ=100, standard 

deviation σ=10, σ=50 

∑
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In the earlier MEMS application, the 
manufactured edge has a  
mean bias of -0.2 μm, with  
standard deviation 0.08 μm: 

μ 
-0.2 -0.04 -0.12 -0.28 -0.36 

σ σ edge bias  



Familiarize Yourself with Key Statistics Ideas: 
PDFs, CDFs, Intervals 

Understanding the following basic concepts will help with Dakota UQ 
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 Probability density / probability 
mass function: relative likelihood 
of a given value of X 
 

 Cumulative distribution function: 
probability that X will take on a 
value less than or equal to x: 
P(X≤x) 
 

 Interval-valued uncertainty: X can 
take on any value in the interval 
[a,b], but no probability or 
likelihood of one value vs. another 

probability density  
functions 

cumulative  
distribution 
 functions 

probability  
mass function 

For the earlier thermal application, 
a PDF or CDF can answer questions 
about the probability of exceeding a 

critical temperature. 



Dakota Uncertainty Quantification 

 Dakota UQ methods primarily focus on forward propagation of parametric 
uncertainties through a model: determine uncertainty in model output, 
given uncertainty in input parameters 
 
 
 
 
 
 

 Example uncertain inputs: physics parameters, material properties 
boundary/initial conditions, operating conditions, model choice, geometry 
 

 Can also perform “inverse UQ” to determine uncertainties in parameters 
consistent with data (not covered in this module) 
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Computational 
Model 

Uncertainty  
in output f(u) 

variability, 
probabilities, 

intervals (ranges), 
belief/plausibility, 

etc. 

Uncertainty in input variables u 
 

[                    ] 
[                    ] 

[                    ] 
intervals 

probability densities 



[                            ] 
[                            ] 

[                            ] 
[                            ] 

Categories of Uncertainty 

This distinction can help in selecting Dakota variable types and method 
 Aleatory (think probability density function, frequency; sufficient data) 

 Inherent variability (e.g., in a population), type-A, stochastic 
 Irreducible: further knowledge won’t help 
 Ideally simulation would incorporate this variability 

 
 Epistemic (e.g., bounded intervals, distribution with uncertain parameters) 

 Subjective, type-B, state of knowledge uncertainty 
 Reducible:  more data or information, would  

make uncertainty estimation more precise 
 Fixed value in simulation, e.g., elastic 

modulus, but not well known for this material 
 

See separate course on motivation for aleatory vs. epistemic uncertainty 
 



Characterizing Uncertainties to Dakota 

 Must characterize each variable’s uncertainty and (optionally) any 
correlation between pairs of variables.  Need not be normal (or uniform)!  

 May require processing data with math/stats tool to fit distributions, 
performing literature searches, or querying experts 
 
 
 
 

Dakota uncertain variable types: 
 Aleatory continuous: normal, lognormal, uniform, loguniform, triangular, 

exponential, beta, gamma, Gumbel, Frechet, Weibull, histogram 
 Aleatory discrete: Poisson, binomial, negative binomial, hypergeometric, 

histogram point (integer, real, string) 
 Epistemic: continuous interval, discrete interval, discrete set 
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normal lognormal Poisson histogram 



Specifying Dakota Uncertain Variables 

 UQ problems are specified to 
Dakota using uncertain variables 
(keywords *_uncertain) 

 Typically generic response 
functions are used 
 

 Thermal UQ example: here is a 
possible Dakota input file fragment 
for the uncertain variable types 
shown on the previous slide 
 

 See the Reference Manual 
variables section for all variable 
types and their parameters 

variables 
  normal_uncertain 1 
    descriptors     'density' 
    means           8.1 
    std_deviations  1.7 
  lognormal_uncertain 1 
    descriptors    'specific_heat' 
    means          2.7 
    error_factors  1.1 
  poisson_uncertain 
    descriptors  'fire_strength' 
    lambdas      1.5 
  histogram_bin_uncertain 1 
    descriptors  'foam_thickness' 
    num_pairs    4 
      abscissas  2.5 3.0 3.5 4.0 
      counts     15  11  20  0 
 
responses 
  response_functions 2 
  descriptors 'pressure' 'temperature' 
  ... 
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https://dakota.sandia.gov/sites/default/files/docs/6.3/html-ref/variables.html
https://dakota.sandia.gov/sites/default/files/docs/6.3/html-ref/variables.html


Workhorse UQ Method: 
Monte Carlo Sampling 
 Sampling methods draw (pseudo-random) realizations from the specified 

input distributions, run the simulation, and calculate sample statistics: 
 Sample moments, min/max, empirical PDF/CDF, based on ensemble of calculations 

 
 
 
 
 
 
 

 Robust even for complex, poorly-behaved simulations  
 Slow, though reliable convergence: O(N-1/2), (in theory) independent of dimension 
 Parallelism: all samples are known at onset and can be evaluated concurrently 

 
 

Ensemble  
of Outputs  

response 1 

response 2 

Model 

Ensemble 
of Inputs 

u1 

u2 

u3 

Monte Carlo sample 
of two input variables 



Latin Hypercube Sampling (LHS) 

 Dakota has sample_type options random and lhs  
 LHS is recommended when possible 

 Better convergence rate and stability across replicates 
 Any follow-on studies must double the sample size 

 LHS (McKay and Conover): stratified random 
sampling among equal probability bins for all 1-D 
projections of an n-dimensional set of samples 
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A two-dimensional LHS of size 5 Uniform LHS designs of sizes 5 and 10 



Exercise: LHS Sampling 
Your boss announces that she can get a great 
deal on coat hooks from a local machine shop 
that happens to be owned by her brother-in-
law. He unfortunately is not a very good 
machinist, but insists that the dimensions of 
most of the parts he makes are within 10% of 
what was requested. 
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Based on a design you developed earlier to 
support a 350 lb. horizontal load (X) and 
500 lb. vertical load (Y), your boss proposes 
that the hooks be 5 in. long (L), 2 in. wide 
(w), and 2 in. thick (t). 

Image sources: http://resourcelibrary.clemetzoo.com/photos/82; https://commons.wikimedia.org/wiki/File:Eastern_riveted_armor.JPG 
 



Exercise: LHS Sampling 

Putting aside for the moment the ethical concerns raised by your boss’s 
obvious conflict of interest, create a sampling study in Dakota to address these 
questions using Cantilever Physics: 
 Determine the variability in stress and displacement that 10% error in the 

dimensions (L, w, and t) can be expected to produce. 
 Hint 1: Produce plots of these responses vs. probability levels, i.e. cumulative distribution 

functions (CDFs).  
 Hint 2: Assume hook dimensions are normally distributed. Use the specified dimensions as 

the means and 10% of the specified dimensions as standard deviations. 

 Your boss previously stipulated that the stress and displacement under 
load be no greater than 100,000 psi and 0.001 in., respectively. What 
fraction of the coat hooks produced by her brother-in-law can be expected 
to violate these constraints? 
 Hint: These can be read off of the CDFs, but Dakota can also estimate them for you. 

 
Assume that Young’s modulus (E) is 2.9e7 psi and density (p) is 500 lb/ft3. 
 
Exercise materials located in ~/exercises/uncertainty_analysis/1 
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Exercise Questions 

 Where do you find the relevant Dakota output? 
 What statistical quantities do you find in the output? 

 
 Group A: What happens if you increase/decrease the number 

of samples? 
 Group B: What happens if you change the uncertainty 

characterization of one or more variables? 
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Observations 
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My variables are 
normally distributed. 
Doesn’t that mean that 
my responses will be, 
too? ” 

Probability plots created in Minitab 
show how well the Dakota-generated 
sample data follow an assumed 
distribution (in this case normal) 

“ 



A Practical Process for UQ 
1. Determine your UQ analysis goal 

 What are the key model responses (quantities of interest) 
 What kinds of statistics or metrics do you want on them? 

2. Identify potentially influential uncertain input parameters 
 Includes parameters that influence trend in response as well as those that influence 

variability in response 

3. Characterize input uncertainties and map them into Dakota variable 
specifications 

4. What are the model characteristics/behaviors?  Recall: 
 Simulation cost, model robustness, input/output properties such as kinks, 

discontinuities, multi-modal, noise, disparate regimes 

5. Select a method appropriate to variables, goal, and problem 
6. Set up Dakota input file and interface to simulation 
7. Run study and interpret the results 
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covered in 
other modules 

Based on variables, analysis goals, and properties, select an appropriate method… 



Selecting a UQ Method 

Sampling (Monte Carlo, LHS) 
 Robust, understandable, and 

applicable to most any model 
 Slow to converge 
 Moments, PDF/CDF, correlations, 

min/max 

Reliability 
 Goal-oriented; target particular 

response or probability levels 
 Efficient local (require derivatives) / 

global variants 
 Moments, PDF/CDF, importance 

factors 
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Stochastic Expansions 
 Surrogate models tailored to UQ for 

continuous variables 
 Highly efficient for smooth model 

responses 
 Moments, PDF/CDF, Sobol indices 

Epistemic 
 Non-probabilistic methods 
 Generally applicable, can be costly 

when no surrogate 
 Belief/plausibility, intervals, 

probability of frequency 

Consider variable characterizations, model properties, ultimate 
UQ goal to choose a method 



Reliability Methods: 
What Are They? 

 Goal-oriented methods that focus on regions of probability or response 
space of interest, for example: 
 What temperature is achieved with 99% probability? 
 What is the probability of exceeding Tcritical? 

 Naïve sampling can be ineffective / under-resolved 
 Run 10,000 samples, only 5 are in relevant region 

 Need to specify to Dakota 
 Probability or response threshold(s) of interest using  

probability_levels, response_levels 
 Method choice 

 Mean-value: best for linear problems, normally distributed parameters, efficient derivatives; 
specify local_reliability (with no mpp_search) 

 MPP: computes most probable point of failure when failure boundary is near linear or 
quadratic; specify local_reliability (with an mpp_search option) 

 Adaptive: computes probability of failure for complicated failure boundaries; specify 
global_reliability 
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T Tcritical 



Mean-value: uses derivatives; make a 
linearity (and possibly normality) 
assumption and project 
 
 
 
 
 
MPP: solve an optimization problem to 
directly determine input values giving 
rise to most probable point of failure 
 
 
 
 
Adaptive: iteratively refine 
understanding of failure region 
 

Reliability Methods: 
How Do They Work? 

 Reliability methods try to directly 
calculate statistics of interest: 
 Make simplifying approximations and/or 
 Recast the UQ as an iterative procedure, such 

as iteratively refined sampling or as a 
nonlinearly constrained optimization problem 

critical
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Stochastic Expansions: 
What Are They? 

 General-purpose UQ methods that build UQ-tailored 
polynomial approximations of the output responses 

 Perform particularly well for smooth model responses 
 Resulting convergence of statistics can be  

considerably faster than sampling methods 
 

 Need to specify the Dakota method: 
 Polynomial Chaos (polynomial_chaos): specify the type of 

orthogonal polynomials and coefficient estimation scheme, 
e.g., sparse grid or linear regression. 

 Stochastic Collocation (stoch_collocation): specify the type of 
polynomial basis and the points at which the response will be 
interpolated; supports piecewise local basis 
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~LHS 

sparse grid 

tensor  
product 
quadrature 



Polynomial Chaos: 
How Does It Work? 

 Uses an orthogonal polynomial basis           , e.g., 
Wiener-Askey basis, with Hermite polynomials 
orthogonal w.r.t. normal density, Legendre 
polynomials orthogonal w.r.t. uniform density 

 Evaluates the model in a strategic way 
(sampling, quadrature, sparse grids, cubature)…  

 …to  efficiently approximate the coefficients of 
an orthogonal polynomial approximation of the 
response 
 
 

 And analytically calculates statistics from the 
approximation instead of approximating the 
statistics with MC samples 
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𝑓𝑓 𝑢𝑢 ≈ 𝑝𝑝 𝑢𝑢 = �𝑐𝑐𝑖𝑖𝜑𝜑𝑖𝑖(𝑢𝑢)
𝑖𝑖

 

𝜑𝜑𝑖𝑖(𝑢𝑢) 

Sparse Grid 

Hermite Polynomials 



Selecting a UQ Method 

A reasoning process: To select a Dakota method, ask yourself 
 What kinds of statistics do you require on the responses? 
 What kinds of variables do you have an how are they characterized? 
 What are the problem characteristics, including cost, robustness? 
 Get help from the Dakota team if you can’t figure it out! 
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Scenario 1 
 Calculate probability of specific 

response level 
 Smooth, unimodal response 
 Continuous variables 
 Reliable gradients 

Local Reliability 

Scenario 2 
 Calculate mean, standard 

deviation 
 Smooth, multimodal response 
 Continuous variables 
 Value-only data from previous 

study 
Regression PCE 



Dakota UQ Methods Summary 

character method class problem character variants 
aleatory probabilistic sampling nonsmooth, multimodal, 

modest cost, # variables 
Monte Carlo, LHS, 
importance 

local reliability smooth, unimodal, more 
variables, failure modes 

mean value and MPP, 
FORM/SORM,  

global reliability nonsmooth, multimodal, 
low dimensional 

EGRA 

stochastic expansions nonsmooth, multimodal, 
low dimension 

polynomial chaos, 
stochastic collocation 

epistemic interval estimation simple intervals global/local optim, sampling 
evidence theory belief structures global/local evidence 

both nested UQ mixed aleatory / epistemic nested 

Also see Usage Guidelines in User’s Manual 



Exercise: Choose a method 

The quasi-sine function is a multimodal function of two 
variables, x1 and x2. 
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Generated in Matlab 



Exercise: Choose a method 

Using some of the methods presented in this module, estimate the probability that 
the quasi-sine function is (1) less than 0.11 and (2) less than 0.30 for two cases: 
a) x1 and x2 are uniformly distributed with lower bounds [-0.8, -0.8] and upper 

bounds [0.8, 0.8]. 
b) x1 and x2 obey a triangular distribution with lower bounds [-0.8, -0.8], upper 

bounds [0.8, 0.8], and modes [0.0, 0.0]. 
Before diving in, take a moment to consider which methods you expect to perform 
well. (Feel free to experiment with methods that you expect to perform poorly!) 
Be prepared to discuss your findings. Potential observations: 
 Did the distributions of the variables affect your results? 
 How many function evaluations were required by the methods you chose? 
 Did increasing the number of evaluations (or approximation quality, basis size, 

etc.) change the results? 
 Did changing the initial points (for local_reliability) have any effect? 

 
A partial input file is located in ~/exercises/uncertainty_analysis/2 
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A Practical Process for UQ 
1. Determine your UQ analysis goal 

 What are the key model responses (quantities of interest) 
 What kinds of statistics or metrics do you want on them? 

2. Identify potentially influential uncertain input parameters 
 Includes parameters that influence trend in response as well as those that influence 

variability in response 

3. Characterize input uncertainties and map them into Dakota variable 
specifications 

4. What are the model characteristics/behaviors?  Recall: 
 Simulation cost, model robustness, input/output properties such as kinks, 

discontinuities, multi-modal, noise, disparate regimes 

5. Select a method appropriate to variables, goal, and problem 
6. Set up Dakota input file and interface to simulation 
7. Run study and interpret the results 
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covered in 
other modules 

What else can be done with the results? 



Using Dakota-generated Data 

 Users commonly work with the Dakota tabular data file  
(dakota_tabular.dat by default) 

 Import tabular data into Excel, Minitab, Matlab, R, SPlus, JMP, Python to  
 Generate histogram or other probability plots 
 Generate scatterplots to assess variability or see outliers / extreme behavior 
 Fit distributions to generated model outputs 
 Post-process samples to generate other statistics, e.g., probability of failure, 

ANOVA, variance-based decomposition, Sobol indices, safety factors 
 Use Dakota results to refine characterization of variables and repeat study 

 
 Decision making considerations 

 Consider what form your customers needs the information in to have impact 
 Consider engaging a Dakota team member in conversation with analyst and 

decision maker 
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Common Question: UQ versus SA 

What distinguishes sensitivity analysis from uncertainty analysis? 
 With SA you primarily gain information about variables 

 Rank importance of parameters and characterize in what way they influence 
responses 

 Sometimes called inverse UQ 
 Secondarily, characterize model properties 

 With UQ you primarily gain information about responses 
 Statistical properties of output responses 
 Intervals indicating bounds on response 
 Likelihood (probability of failure) 

 
 Some methods can be used for both, e.g., 

 LHS is often used for SA (correlations) and UQ (moments, PDFs, CDFs) 
 Polynomial chaos expansions (PCE) thought of as a UQ method, but also efficiently 

produce Sobol indices for ranking parameter influence 
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Advanced Topics Teasers 

Some topics we can discuss during office hours or advanced topics modules: 
 Mixed Aleatory/Epistemic UQ 
 Interval analysis: sampling and optimization-based 
 Probabilistic design under uncertainty 
 Model form / multi-fidelity UQ 
 Details on surrogates for UQ 

 
 Treating other high-level sources of computational model uncertainty 

(may not be able to easily parameterize for Dakota): 
 Code implementation / software quality 
 Modelling assumptions and limitations 
 Numerical errors from discretization or other approximations 
 Data and expert judgment used to build models and inform parameter values 
 Person performing the analysis 
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UQ References 

• SAND report 2009-3055.  “Conceptual and Computational Basis for the Quantification of 
Margins and Uncertainty” J. Helton. 

 Helton, JC, JD Johnson, CJ Sallaberry, and CB Storlie.  “Survey of Sampling-Based Methods for 
Uncertainty and Sensitivity Analysis”,  Reliability Engineering and System Safety 91 (2006) pp. 
1175-1209  

 Helton JC, Davis FJ. Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses 
of Complex Systems. Reliability Engineering and System Safety 2003;81(1):23-69. 

 Haldar, A. and S. Mahadevan.  Probability, Reliability, and Statistical Methods in Engineering 
Design (Chapters 7-8).  Wiley, 2000. 

• Eldred, M.S., "Recent Advances in Non-Intrusive Polynomial Chaos and Stochastic Collocation 
Methods for Uncertainty Analysis and Design," paper AIAA-2009-2274 in Proceedings of the 
11th AIAA Non-Deterministic Approaches Conference, Palm Springs, CA, May 4-7, 2009. 
 

 Dakota User’s Manual: Uncertainty Quantification Capabilities 
 Dakota Theory Manual 
 Corresponding Reference Manual sections 



Module Learning Goals 
Did We Meet Them? 

 Understand why you might want to perform uncertainty 
quantification (UQ) 
 

 Understand prerequisites and have a practical process for UQ 
at your disposal 
 

 Be able to formulate your problem, present it to Dakota, and 
run and understand studies 
 

 Be able to select an appropriate Dakota UQ method 
 

 Know how to use Dakota UQ results 
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BACKUP SLIDES 

38 



Quasi-sine Level Curves 
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Generated with Matlab 



Context for 
Uncertainty Quantification 

 Customers increasingly want to use simulation-based analysis for risk-
informed decision making: 
 Is the simulation sufficiently representative of the real-world problem and any data? 
 How likely is my system to perform as needed?  How much margin do I have? 

 Ultimately, would like simulations endowed with error bars on their 
output; best estimate plus associated uncertainty 
 

 Representative high-level sources of computational model uncertainty: 
 Code implementation / software quality 
 Modelling assumptions and limitations 
 Numerical errors from discretization or other approximations 
 Data and expert judgment used to build models and inform parameter values 
 Person performing the analysis 
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BACKUP SLIDES 
Method-oriented 



Sampling (nongradient-based) 
• Strengths: Simple and reliable, convergence rate is dimension-independent 
• Weaknesses: 1/sqrt(N) convergence  expensive for accurate tail statistics 
Local reliability (gradient-based) 
• Strengths: computationally efficient, widely used, scales to large n (w/ efficient derivs.) 
• Weaknesses: algorithmic failures for limit states with following features 

• Nonsmooth: fail to converge to an MPP 
• Multimodal: only locate one of several MPPs 
• Highly nonlinear: low order limit state approxs. insufficient to resolve probability at MPP 

Global reliability (nongradient-based) 
• Strengths: handles nonsmooth, multimodal, highly nonlinear limit states 
• Weaknesses: global surrogate  scaling to large n (Research: probability bias, adjoints) 
Stochastic expansions (typically nongradient-based) 
Strengths: functional representation, exponential convergence rates 
Issues: 
• Discontinuity  Gibbs phen., slow conv. 
• Singularity  divergence in moments 
• Scaling to large n  exponential growth 

in terms & simulation reqmts. 

Algorithmic Strengths,  
Weaknesses, R&D Needs 

Research: 
• Pade approximation 
• Basis enrichment / discretization  

( local basis functions) 
• p-/h-/hp-adaptive methods 
• adjoint gradient-enhancement 
 



Analytic Reliability: MPP Search 
Perform optimization in uncertain variable space to determine Most Probable 
Point (of response or failure occurring) for G(u) = T(u). 

Reliability Index Approach (RIA) 

G(u) 

Region of u 
values where  
T ≥ Tcritical 

map Tcritical to a 
probability 

All the usual nonlinear optimization 
tricks apply…  



Efficient Global Reliability Analysis 
Using Gaussian Process Surrogate + MMAIS 
 Efficient global optimization (EGO)-like approach to solve optimization problem 
 Expected feasibility function: balance exploration with local search near failure 

boundary to refine the GP 
 Cost competitive with best local MPP search methods, yet better probability of 

failure estimates; addresses nonlinear and multimodal challenges 

Gaussian process model  (level curves) of reliability limit state with 
  10 samples       28 samples 

explore 

exploit 

failure  
region 

safe  
region 



 Intrusive or non-intrusive 
 Wiener-Askey Generalized PCE: optimal basis selection leads to exponential 

convergence of statistics 
 
 
 
 
 
 

 Can also numerically generate basis orthogonal to empirical data (PDF/histogram) 
 

Approximate response with Galerkin projection using multivariate orthogonal 
polynomial basis functions defined over standard 
random variables 

 

Generalized Polynomial  
Chaos Expansions (PCE) 

R(ξ) ≈ f(u) 



Sample Designs to Form Polynomial Chaos or 
Stochastic Collocation Expansions  

Random sampling: PCE Tensor-product quadrature: PCE/SC 

Smolyak Sparse Grid: PCE/SC Cubature: PCE 
Stroud and extensions (Xiu, Cools): 
optimal multidimensional  
integration rules 

Expectation (sampling): 
– Sample w/i distribution of x  
– Compute expected value of 

product of R and each Yj 
Linear regression  
(“point collocation”): 

TP
Q

 

S
S

G
 

Tensor product of 1-D integration rules, e.g., 
Gaussian quadrature 



Adaptive PCE/SC: 
Emphasize Key Dimensions 
 Judicious choice of new simulation runs 
 Uniform p-refinement 

 Stabilize 2-norm of covariance 
 Adaptive p-refinement 

 Estimate main effects/VBD to guide 
 h-adaptive: identify important regions 

and address discontinuities 
 h/p-adaptive: p for performance; 

h for robustness 
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Anisotropic index sets Anisotropic Gauss-Hermite  

~LHS 

SSG TPQ 



Epistemic UQ: 
Dempster-Shafer Theory 
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Intervals on the inputs are  
propagated to calculate  
 
 

 Belief:  a lower bound on a probability value that is consistent with the 
evidence 

 Plausibility: an upper bound on a probability value that is consistent with the 
evidence. 



Aleatory/Epistemic UQ:  
Nested (“Second-order” )Approaches 
 Propagate over epistemic and aleatory uncertainty, e.g.,  

UQ with bounds on the mean of a normal distribution (hyper-parameters) 
 Typical in regulatory analyses (e.g., NRC, WIPP) 
 Outer loop: epistemic (interval) variables, inner loop UQ over aleatory (probability) 

variables; potentially costly, not conservative 
 If treating epistemic as uniform, do not analyze probabilistically! 
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response metric 

“Envelope” of CDF traces represents response epistemic uncertainty  

epistemic 
sampling 

aleatory 
UQ 

simulation 

50 outer loop samples: 
 50 aleatory CDF traces 

 

bound probability 
or bound response 
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Dakota Mixed UQ with Nested Model 
method 
  id_method = 'EPISTEMIC' 
  model_pointer = 'EPIST_M' 
  sampling sample_type lhs   
  samples = 5 seed = 12347 
  
model, 
  id_model = 'EPIST_M' 
  nested  
  variables_pointer  = 'EPIST_V' 
  sub_method_pointer = 'ALEATORY' 
  responses_pointer  = 'EPIST_R' 
  primary_variable_mapping   = 'X'    'Y' 
  secondary_variable_mapping = 'mean' 'mean' 
  primary_response_mapping   = 1. 0. 0. 0. 0. 0. 0. 0. 0. 
                               0. 0. 0. 0. 1. 0. 0. 0. 0. 
                               0. 0. 0. 0. 0. 0. 0. 0. 1. 
  
variables, 
  id_variables = 'EPIST_V' 
  interval_uncertain = 2  
  num_intervals = 1 1  
  interval_probabilities = 1.0 1.0  
  upper_bounds = 600.  1200. 
  lower_bounds = 400.  800. 
  
responses,  
  id_responses = 'EPIST_R' 
  response_functions = 3 
  descriptors ='mean_mass' '95th_perc_stress''95th_perc_disp' 
  no_gradients no_hessians 
  

epistemic 
sampling 

aleatory 
sampling 

simulation 

• Two models, each with a 
different set of variables 

• Outer method operates 
on nested model 

• Inner method operates 
on simulation model 



Example Output: Intervals on Statistics 

PCE Input (examples/methods/dakota_uq_cantilever_2nd_order.in) 

 
<<<<< Iterator nond_sampling completed. 
<<<<< Function evaluation summary (ALEAT_I): 971 total (971 
new, 0 duplicate) 
 
Statistics based on 50 samples: 
 
Min and Max values for each response function: 
mean_wt:  Min = 9.5209117200e+00  Max = 9.5209117200e+00 
ccdf_beta_s:  Min = 1.8001336086e+00  Max = 4.0744019409e+00 
ccdf_beta_d:  Min = 1.9403177486e+00  Max = 3.7628144053e+00 
 
Simple Correlation Matrix between input and output: 
                  mean_wt  ccdf_beta_s  ccdf_beta_d 
      X_mean  9.40220e-16 -6.38145e-01 -9.14016e-01 
      Y_mean  1.38778e-15 -7.93481e-01 -4.39133e-01 
       …. 
 

epistemic 
sampling 

aleatory 
UQ 

simulation 



Interval Estimation Approach 
(Probability Bounds Analysis) 

 Propagate intervals through simulation code 
 Outer loop:  determine interval on statistics, e.g., mean, 

variance 
 global optimization problem:  find max/min of statistic 

of interest, given bound constrained interval variables 
 use EGO to solve 2 optimization problems with 

essentially one Gaussian process surrogate 
 Inner loop:  Use sampling, PCE, etc., to determine the CDFs 

or moments with respect to the aleatory variables 
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local or global  
optimization 

aleatory 
UQ 

simulation 



Interval Analysis can be 
Tractable for Large-Scale Apps 
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Multiple cells  
within DSTE 

Converge to more conservative bounds with 10—100x less evaluations 



Potential flow Vortex lattice 

Smagorinsky-LES Germano-LES 

DNS 

SA-RANS KE-RANS-NBC KE-RANS-DBC 

 

Model Form UQ in  
Fluid/Structure Interactions 

Discrete model choices for same physics: 
 A clear hierarchy of fidelity (low to high) 
 An ensemble of models that are all credible  

(lacking a clear preference structure) 
 With data: Bayesian model selection 
 Without data: epistemic model form  

uncertainty propagation 
 
 

 Combination: 
 
 
 

SA-RANS KE-RANS-NBC KE-RANS-DBC 

Low 

Med 

High 

Horizontal Axis 
Wind Turbine

Vertical Axis 
Wind Turbine

wind turbine applications 



Multifidelity UQ using Stochastic Expansions 
• High-fidelity simulations (e.g., RANS, LES) can be prohibitive for use in UQ 
• Low fidelity “design” codes often exist that are predictive of basic trends 
• Can we leverage LF codes w/i HF UQ in a rigorous manner?  global approxs. of 

model discrepancy 
 Nlo >> Nhi 

discrepancy 

CACTUS: Code for Axial and 
Crossflow TUrbine Simulation 

Low fidelity 
High fidelity: DG formulation for LES  
Full Computational Fluid Dynamics/ 
Fluid-Structure Interaction 



Uncertainty Quantification  
not Addressed Here 

 Efficient epistemic UQ [Dakota] 
 Fuzzy sets (Zadeh) 
 Imprecise Probability (Walley) 
 Dempster-Shafer Theory of Evidence (Klir, Oberkampf, Ferson) [Dakota] 
 Possibility theory (Joslyn) 
 Probability bounds analysis (p-boxes) 
 Info-gap analysis (Ben-Haim) 

 
 Bayesian model calibration / inference via MCMC [Dakota] 
 Other Bayesian approaches:  Bayesian belief networks, Bayesian updating, 

Robust Bayes, etc. 
 Scenario evaluation 
 
(Some available in [Dakota]) 



BACKUP SLIDES 
Application-oriented 

57 



Nondeterministic Design: 
Shape Optimization of Compliant MEMS  
 Micro-electromechanical system (MEMS): typically made from silicon, polymers, 

or metals; used as micro-scale sensors, actuators, switches, and machines 
 MEMS designs: subject to substantial variability, lack historical knowledge base; 

uncertainty from materials, micromachining, photo lithography, etching process 
 Resulting part yields can be low or have poor cycle durability 
 Goal: shape optimize finite element model of bistable switch to… 

 Achieve prescribed reliability in actuation force 
 Minimize sensitivity to uncertainties (robustness) 

bistable  
MEMS  
switch 

uncertainties to be considered 
(edge bias and residual stress) 



13 design vars d: 
 Wi, Li, θi 

σ 
σ 

key relationship: force 
vs. displacement via  

finite element analysis 

new tapered beam design 

Typical design specifications: 
• actuation force Fmin reliably 5 μN 
• bistable (Fmax > 0, Fmin < 0) 
• maximum force: 50 < Fmax < 150 
• equilibrium E2 < 8 μm 
• maximum stress < 1200 MPa  

MEMS Switch Design: 
Geometry Optimization 



Optimization Under Uncertainty 

Opt 

UQ 

Sim 

{d} {Su}

{u} {Ru}

min 
s.t. 

(nested paradigm) 

Rather than design and then post-process to evaluate uncertainty… 
actively design optimize while accounting for uncertainty/reliability metrics su(d), 
e.g., mean, variance, reliability, probability: 

13 design vars d:  Wi, Li, qi 
2 random variables x: ΔW, Sr 

σ σ 
-5.0 

simultaneously reliable and robust designs 

Bistable switch problem formulation (Reliability-Based Design Optimization): 

min 
s.t. 



Reliability-based Design Optimization 
Finds Optimal & Robust Design 

Close-coupled results: DIRECT / CONMIN + reliability method yield optimal and 
reliable/robust design: 
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