
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Dakota Software Training

Optimization

http://dakota.sandia.gov

SAND2016-0894PE

Module Learning Goals

 Understand why you might want to perform optimization

 Have terminology and a practical process for design
optimization at your disposal

 Be able to formulate your problem and present it to Dakota

 Know how to select a Dakota optimization method

 Be able to formulate, run, and interpret initial Dakota
optimization studies

2

Module Outline

 Examples to illustrate why you might use optimization
 Optimization process, goals, and terminology
 Posing basic problem information to Dakota

 Exercise: basic optimization with various methods

 Selecting an optimization method
 Basic solution approaches (methods)
 Presenting constrained optimization problems to Dakota

 Exercise: constrained optimization
 Exercise: global optimization competition

Why Use Optimization?

What: Determine parameter values that yield extreme values (max/min) of
objectives, while satisfying constraints.
Why?
 Identify system designs with maximal performance

 E.g., case geometry that minimizes drag and weight, yet is sufficiently strong and safe

 Determine operational settings that maximize system performance
 E.g., fuel re-loading pattern yielding a sufficiently smooth nuclear reactor power

distribution while maximizing power output

 Identify minimum-cost system designs/operational settings
 E.g., delivery network that minimizes cost while meeting environmental limits

 Identify best/worst case scenarios
 E.g., impact conditions that incur the most damage

 Calibration (specialized subset of optimization): adjust parameters to maximize
agreement between model and data, another model, or a desired target.
Addressed in separate module

Example: SNL/Lockheed Martin
Optimization of F-35 External Fuel Tank

Objective Function: quantity for which
we are trying to find the extreme
value over parameter ranges
Parameters: quantities to be varied
Constraints: conditions that cannot be
violated

Optimization Problem
 Goal: Minimize DRAG and YAW over possible

values of shape parameters
 Shape parameters must be bounded to fit

within prescribed area
 Design must be sufficiently safe and strong

F-35: stealth and supersonic cruise
~ $20 billion cost
~ 2600 aircraft (USN, USAF, USMC,
UK & other foreign buyers)

Simulate with LM CFD code
• Expensive (at the time):

8 hrs/job on 16 processors
• Fluid flow around tank highly

sensitive to shape changes fuel tanks

Example: MEMS Shape Optimization

 Micro-electromechanical systems: typically made from silicon, polymers,
or metals; used as micro-scale sensors, actuators, switches, and machines

 Manufactured MEMS are highly variable in performance/reliability due to
materials and micromachining, photo lithography, etching processes

 Goal: shape optimize a bistable MEMS switch to…
 Achieve prescribed reliability in actuation force, while meeting stress, max force limits
 Minimize sensitivity to uncertainties (robustness); maintain bi-stability

6

shape
parameters for each candidate design, finite

element analysis predicts
force/displacement relationship

Practical Process for Optimization

1. What are your optimization goals and restrictions? Consider:
 Design problem or other (function/simulator output)?
 What / how much improvement defines success?

2. Identify design variables; specific objectives and constraints
3. What are the model characteristics/behaviors? Recall:
 Simulation cost, model robustness, input/output properties such

as kinks, discontinuities, multi-modal, noise, disparate regimes
4. Use sensitivity analysis to screen parameters and down-select

to those influencing trends in objective and constraints
5. Select a method appropriate to variables, goal, and problem
6. Set up Dakota input file and interface to simulation
7. Run study and interpret results; refine as needed

7

covered in
other modules

covered in
other modules

later in this
module

Up next: Discuss 1 and 2, relate to Dakota, and see a simple example of 6, 7

Optimization Goals Come
in Multiple Forms

May want tradeoffs between
multiple objectives, e.g., cost vs. risk
(advanced topic)

• Some applications: local
improvement suffices, e.g., 5%
performance improvement

• Others: must find global minimum at
any cost

x1

f(x1)

min

max

local
extrema

global
extrema

Specified in Dakota input file

Computed by simulation and reported to Dakota

objective function(s)

nonlinear inequality constraints
nonlinear equality constraints

linear inequality constraints
linear equality constraints

bound constraints

Anatomy of an Optimization Problem:
Mapping to Dakota vs. Simulation

minimize: f(x1,...,xN)

subject to: gLB ≤ g(x) ≤ gUB

 h(x) = hE

 AIx ≤ bI

 AEx = bE

 xLB ≤ x ≤ xUB

Constraints will be addressed later. For now, we’ll focus on continuous
variables x and one objective function f(x).

interface,
responses

objective function(s)

nonlinear inequality constraints
nonlinear equality constraints

linear inequality constraints
linear equality constraints

bound constraints

Anatomy of an Optimization Problem:
Mapping to Dakota Input File Blocks

minimize: f(x1,...,xN)

subject to: gLB ≤ g(x) ≤ gUB

 h(x) = hE

 AIx ≤ bI

 AEx = bE

 xLB ≤ x ≤ xUB

method

(design)
variables

Computed by simulation and reported to Dakota

Dakota Example:
Optimization for the Fuel Tank Problem

A possible simple statement of the fuel tank
optimization problem, with Dakota input:

Find the fuel tank shape, parameterized by
design variables s1, s2, that minimizes drag.
Hold the tank angle fixed at 85.0 degrees.

Mathematically:
 minimize (over s1, s2)
 drag(s1, s2)
 such that
 4.5 < s1 < 6.7
 0.1 < s2 < 2.3

method
 optpp_q_newton

variables
 continuous_design = 2
 descriptors 's1' 's2'
 upper_bounds 6.7 2.3
 lower_bounds 4.5 0.1

 continuous_state = 1
 descriptors 'angle'
 initial_state = 85.0

responses
 descriptors 'drag'
 objective_functions = 1
 numerical_gradients
 no_hessians

11

Brief Group Discussion:
Optimization Practice

 Give an example of a simple optimization problem you might care
about in your personal life.

 What types of system design, performance, and cost questions do
you ask in your work domain?

 What metrics do you use to assess design quality, performance level,
and costs?

 How do you answer your questions currently?
 What are the key challenges you face?

 What challenges do you foresee with automated design optimization

with Dakota?

Discussion: Optimize Cantilever Beam

13

Parameters:
L: length (in)
w: width (in)
t: thickness (in.)
ρ: density (lb/ft3)
E: Young’s modulus (lb/in2)
X: horizontal load (lb)
Y: vertical load (lb)

Responses:
M: mass (lb)
S: stress (lb/in2)
D: displacement (in)

L
w

t

Y
X

 What might be some optimal design
objectives (goals) of interest?

 What might you have control over (variables)
to meet those goals?

 What model characteristics do you recall
from previous module?

 What might you expect the results of
optimizing a design to be?

Exercise 1: First Optimization Studies

Explore:
 The directory exercises/optimization/1 contains three Dakota input files

that perform simple bound-constrained optimization on the cantilever
beam problem

 Run each study and examine the final results near the end of the console
output: best parameters, objective values, number of function evaluations

Discuss with your neighbor:
 Which are the design variables? Fixed parameters? What is being

minimized?
 What is different between the various input files?
 What differs in the runtime behavior and final results summary?

14

Module Outline

 Examples to illustrate why you might use optimization
 Optimization process, goals, and terminology
 Posing basic problem information to Dakota

 Exercise: basic optimization with various methods

Coming Next:
 Selecting an optimization method
 Basic solution approaches (methods)
 Presenting constrained optimization problems to Dakota

 Exercise: constrained optimization
 Exercise: global optimization competition

Practical Process for Optimization

1. What are your optimization goals and restrictions? Consider:
 Design problem or other (function/simulator output)?
 What / how much improvement defines success?

2. Identify design variables; specific objectives and constraints
3. What are the model characteristics/behaviors? Recall:
 Simulation cost, model robustness, input/output properties such

as kinks, discontinuities, multi-modal, noise, disparate regimes
4. Use sensitivity analysis to screen parameters and down-select

to those influencing trends in objective and constraints
5. Select a method appropriate to variables, goal, and problem
6. Set up Dakota input file and interface to simulation
7. Run study and interpret results; refine as needed

16

covered in
other modules

covered in
other modules

Based on variables, objectives, constraints, and properties, select an
appropriate method…

Basic Classes of Optimization Approaches
(the “method” block)

Gradient Descent
• Looks for improvement based

on derivative
• Requires analytic or numerical

derivatives (more soon)
• Efficient/scalable for smooth

problems
• Converges to local extreme

Derivative-Free Local
• Sampling with bias/rules

toward improvement
• Requires only function values
• Good for noisy, unreliable or

expensive derivatives
• Converges to local extreme

Derivative-Free Global
• Broad exploration with

selective exploitation
• Requires only function values
• Typically computationally

intensive
• Converges to global extreme

First-order Forward Difference Second-order Central Difference

 responses
 numerical_gradients
 forward
 fd_step_size 1.0e-3

 responses
 numerical_gradients
 central
 fd_step_size 1.0e-3

Gradients for Derivative-based Methods
 Akin to Newton’s method for root-finding,

minimize the objective by going “downhill”
based on the gradient of the objective
function:

 Most simulations don’t calculate derivatives
 Dakota approximates gradients (and

Hessians if needed) by running the
simulation at x±∆x as needed

18

x
xfxxf

x
f

∆
−∆+

≈
∂
∂)()(

∂

∂
∂

∂
=∇

N
x x

xf
x
xfxf)(,...,)()(
1

x
xxfxfxxf

x
f

∆
∆++−∆+

≈
∂
∂

2
)()(2)(

first-order derivative
approximations

central forward

backward
exact

f(x)

x

Selecting a Method

A reasoning process: To select a Dakota method, ask yourself
 What is the improvement goal and (single- or multi-) objective ?
 Are there bound, linear, and/or nonlinear constraints? (discussed later)
 Are there discrete variables, or only continuous?
 What are the problem characteristics, including cost, robustness?
 Get help from the Dakota team if you can’t figure it out!

19

Scenario 1
 Local optimization
 Unconstrained
 Can afford 10s to 100s of runs
 Unreliable gradients

Pattern Search

Scenario 2
 Global optimization
 Nonlinearly constrained
 Regions with different behavior
 Discrete variables

Genetic Algorithm

Guide to Optimization Methods
See Usage Guidelines in User’s Manual

Category Dakota method names C
on

tin
uo

us

Va
ria

bl
es

C
at

eg
or

ic
al

/
D

is
cr

et
e

Va
ria

bl
es

B
ou

nd

C
on

st
ra

in
ts

G
en

er
al

C

on
st

ra
in

ts

Gradient-Based
Local (smooth)

optpp_cg x
dot_bfgs, dot_frcg, conmin_frcg x x
npsol_sqp, nlpql_sqp, dot_mmfd, dot_slp, dot_sqp,
conmin_mfd, optpp_newton, optpp_q_newton,
optpp_fd_newton

x x x

Gradient-Based
Global (smooth)

hybrid, multi_start x x x

Derivative-Free
Local
(nonsmooth)

optpp_pds x x
coliny_cobyla, coliny_pattern_search,
coliny_solis_wets, surrogate_based_local x x x

asynch_pattern_search, mesh_adaptive_search x x x x

Derivative-Free
Global
(nonsmooth)

ncsu_direct, genie_direct, genie_opt_darts x x
coliny_direct, efficient_global,
surrogate_based_global x x x

coliny_ea, soga, moga (multiobjective) x x x x

For multi-objective problems: use weighted sum with any method, pareto_set, or moga.

CONSTRAINED OPTIMIZATION

21

Group Discussion:
Constrained Optimization

 Give an example of a simple constrained optimization
problem you might care about in your personal life.

 What kinds of constraints do you face in designing things for
your work?

 For each, describe your example using Dakota optimization
terminology.

22

interface,
responses

objective function(s)

nonlinear inequality constraints
nonlinear equality constraints

linear inequality constraints
linear equality constraints

bound constraints

Anatomy of an Optimization Problem:
Mapping to Dakota Input File Blocks

minimize: f(x1,...,xN)

subject to: gLB ≤ g(x) ≤ gUB

 h(x) = hE

 AIx ≤ bI

 AEx = bE

 xLB ≤ x ≤ xUB

method

(design)
variables

Computed by simulation and reported to Dakota

method
 optpp_q_newton

variables
 continuous_design 2
 descriptors 's1' 's2'
 upper_bounds 6.7 2.3
 lower_bounds 4.5 0.1

responses # returned by simulation
 descriptors 'drag'
 objective_functions 1

 numerical_gradients
 no_hessians

Example: Adding Constraints to Dakota
Input for the Fuel Tank Problem

Minimize drag, given
bounds on the shape
parameters:

Mathematically:
 minimize
 drag(s)
 such that
 4.5 < s1 < 6.7
 0.1 < s2 < 2.3

24

method
 optpp_q_newton
 linear_inequality_constraint_matrix
 22.0 99.0
 linear_inequality_upper_bounds
 199.0

variables
 continuous_design 2
 descriptors 's1' 's2'
 upper_bounds 6.7 2.3
 lower_bounds 4.5 0.1

responses # returned by simulation
 descriptors 'drag'
 objective_functions 1

 numerical_gradients
 no_hessians

Minimize drag, given
bounds on the shape
parameters, bounding the
total cost of horizontal (s1)
vs. vertical (s2) struts:

Mathematically:
minimize
 drag(s)
such that
 4.5 < s1 < 6.7
 0.1 < s2 < 2.3
 22.0*s1 + 99.0*s2 < 199.0

Example: Adding Constraints to Dakota
Input for the Fuel Tank Problem

25

Example: Adding Constraints to Dakota
Input for the Fuel Tank Problem

Minimize drag, …, and
requiring sufficient
strength

Mathematically:
minimize
 drag(s)
such that
 4.5 < s1 < 6.7
 0.1 < s2 < 2.3
 22.0*s1 + 99.0*s2 < 199.0
 strength(s) > 5600.0

method
 optpp_q_newton
 linear_inequality_constraint_matrix
 22.0 99.0
 linear_inequality_upper_bounds
 199.0

variables
 continuous_design 2
 descriptors 's1' 's2'
 upper_bounds 6.7 2.3
 lower_bounds 4.5 0.1

responses # returned by simulation
 descriptors 'drag' 'strength'
 objective_functions 1
 nonlinear_inequality_constraints 1
 nonlinear_inequality_lower_bounds 5600.0
 numerical_gradients
 no_hessians

26

Practical Process for Optimization

1. What are your optimization goals and restrictions? Consider:
 Design problem or other (function/simulator output)?
 What / how much improvement defines success?

2. Identify design variables; specific objectives and constraints
3. What are the model characteristics/behaviors? Recall:
 Simulation cost, model robustness, input/output properties such

as kinks, discontinuities, multi-modal, noise, disparate regimes
4. Use sensitivity analysis to screen parameters and down-select

to those influencing trends in objective and constraints
5. Select a method appropriate to variables, goal, and problem
6. Set up Dakota input file and interface to simulation
7. Run study and interpret results; refine as needed

27

covered in
other modules

covered in
other modules

Let’s put it all together with an exercise…

Discussion: Optimize Cantilever Beam
with Constraints

28

Parameters:
L: length (in)
w: width (in)
t: thickness (in.)
ρ: density (lb/ft3)
E: Young’s modulus (lb/in2)
X: horizontal load (lb)
Y: vertical load (lb)

Responses:
M: mass (lb)
S: stress (lb/in2)
D: displacement (in)

L
w

t

Y
X

 What might be some optimal design
objectives of interest?

 What are some design constraints that could
come into play?

 What might you expect the results of
optimizing a design to be?

 What methods are appropriate for your
proposed constrained problem?

Exercise 2: Constrained Optimization of
Cantilever Beams

Scenario: Your boss is concerned about the cost of the coat hooks you are
proposing. She further insists that she can hang her chainmail coat on them
and that the local wildlife can lean against them.

Use Dakota with the cantilever beam simulator to minimize the mass of the
coat hooks, while ensuring that the displacement is not too great under
loading and the stress is manageable.

29

https://commons.wikimedia.org/wiki/File:
Eastern_riveted_armor.JPG

http://resourcelibrary.clemetzoo.com/photos/82

Exercise 2: Constrained Optimization of
Cantilever Beams
Exercise: Minimize the cantilever beam mass, while ensuring that the
displacement is not too great and the stress is manageable. Specifically:

Modify exercises/optimization/2/dakota_opt_cantilever.in to:
 Design the cross section (w, t) of a 5 in long coat hook to minimize mass.
 Width and thickness must each be between 0.5 and 4.0 inches.
 Use state variables to enforce the operating constraints and materials:

 Vertically support a 500 lb. chainmail coat
 Support your office’s resident 350 lb. female grizzly bear horizontally leaning on it
 Made from steel with density ρ=500.0, Young’s modulus E=2.9e+7

 The beam must displace no more than 0.001 in, with stress < 1.0e+5 lb/in2.
 Choose a Dakota method appropriate to this problem

(see method selection guide).
 Then compare to other methods or try different method controls.
 Compare your results to your neighbor.

30

Brief Group Discussion:
Optimization Exercises

 Are the results what you expected? As good as your
neighbor’s? Why or why not?

 What do you see as the limitations of the methods used?
 What alternative methods might you try?

 What questions arose?

Discussion:
Model Characteristics and Method Choice

 What challenges might you face in local optimization of each
of these functions? Global?

 What methods might be applicable?

32

Exercise 3:
Global Optimization Competition

 See exercises/optimization/3/dakota_opt_quasisine.in
 Try to find the global minimum of the smooth, but multi-

modal, quasi-sine function over the bounded domain
[-1,1] x [-1,1]

 Choose one method to get the optimization working, then try
as many as you like.

 For each method you try, keep track of the best point found
and number of function evaluations required to get there.

 Compare your answers to a neighbor’s.
 The best answer in the class wins a prize!

33

Advanced Optimization Topics

Not covered in this module, but can be discussed in office hours
or advanced topics:
 Advanced methods, e.g., local and global surrogate-based

optimization, meta-methods, details on specific methods
 Multi-objective optimization: analyzing tradeoff spaces
 Treating discrete or mixed continuous/discrete variables
 Optimization under uncertainty, robust design

34

Summary of Dakota Methods

Q: I’ve been using method X; is it available in Dakota?
A: Dakota has:
 Newton variants: MFP, NIP, SLP/SQP, FRCG/CG, Quasi for smooth, local
 Pattern/mesh search, Solis-Wets, COBYLA for noisy local without

derivatives
 Genetic algorithms, OptDarts, DiRECT for global optimization
 Surrogate-based: efficient global (EGO), trust region local, global for costly

simulations
 Branch and bound for mixed-integer
 Advanced Meta-methods: hybrid, multi-start, Pareto

35

Optimization References

 J. Nocedal and S. J. Wright, “Numerical Optimization”, Second Edition,
Springer Science and Business Media, LLC, New York, New York, 2006.

 S. S. Rao, “Engineering Optimization: Theory and Practice”, Fourth Edition,
John Wiley and Sons, Inc., Hoboken, New Jersey, 2009.

 Dakota User’s Manual
 Optimization Capabilities
 Surrogate-Based Minimization
 Advanced Strategies
 Advanced Model Recursions: Optimization Under Uncertainty

 Dakota Reference Manual

Practical Process for Optimization

1. What are your optimization goals and restrictions? Consider:
 Design problem or other (function/simulator output)?
 What / how much improvement defines success?

2. Identify design variables; specific objectives and constraints
3. What are the model characteristics/behaviors? Recall:
 Simulation cost, model robustness, input/output properties such

as kinks, discontinuities, multi-modal, noise, disparate regimes
4. Use sensitivity analysis to screen parameters and down-select

to those influencing trends in objective and constraints
5. Select a method appropriate to variables, goal, and problem
6. Set up Dakota input file and interface to simulation
7. Run study and interpret results; refine as needed

37

covered in
other modules

covered in
other modules

Ask Dakota team or dakota-users list for help!

Module Learning Goals Revisited
Did We Meet Them?

 Understand why you might want to perform optimization

 Have terminology and a practical process for design
optimization at your disposal

 Be able to formulate your problem and present it to Dakota

 Know how to select a Dakota optimization method

 Be able to formulate, run, and interpret initial Dakota
optimization studies

38

BACKUP SLIDES
Method-related

All following slides are strict subset of SAND2012-7265P

Variations on
Gradient-Based Optimizers

 Go downhill
 e.g., steepest descent, conjugate gradient, Newton and

variants
 second derivatives differentiate minima from maxima,

inflection points; Hessian approximations often used in
practice (quasi-Newton)

 Require reliable derivatives of objectives and
nonlinear constraints w.r.t. decision variables:
 analytic evaluation: code them into the simulation
 finite differences: no code modification and provided by

most optimizers
 automatic differentiation: source transformation,

operator overloading
x

xfxxf
x
f

∆
−∆+

≈
∂
∂)()(

)(
)(

''

'

1
k

k
kk xf

xfxx −=+

• Strategies for managing convergence:
– line search: find a step in the Newton direction to ensure sufficient decrease
– trust region: use quadratic model in an expanding/contracting trust region

• Handling nonlinear constraints
– reduced gradient
– sequential linear or quadratic programming (SLP/SQP)
– augmented Lagrangian or exact penalty methods
– interior point / barrier, filter methods

x1

f’(x1)

root

Forward difference

Variations on
Derivative-Free Optimizers

f(x(2))

reflect

expand

contract

contract

f(x1))

f(x(3)) worst

Pattern Search methods search using a
stencil, often that defines some basis, that
is iteratively re-centered and resized.

Nelder Mead searches using a
simplex that is iteratively reflected
through a centroid and resized.

Variations on
Global Optimizers

Multi-Start Local Optimization involves initiating a
local optimization method at multiple points, with
the goal of identifying multiple local minimizers
from which the lowest can be chosen.

Evolutionary/Genetic Algorithms
evolve an initial random sample
over generations, according a
“fitness” function, until the
minimum is found.

Division of RECTangles (DiRECT) iteratively
subdivides the search domain based on size
and rank of each existing subdivision.

Optional Examples: Advanced
Optimization Problems and Methods

 Constrained
 Exercise: Minimize an objective given constraints

 Multi-start local
 Exercise: Provide multiple starting points to a local optimizer to find

multiple local minima
 Global

 Exercise: Find the global extreme value
 Multi-objective

 Exercise: Optimize across multiple competing objectives
 Surrogate-based/multifidelity

 Exercise: Reduce the computational cost (i.e., number of function
evaluations) of optimization

 Hybrid
 Exercise: Use multiple optimization methods to solve a single problem

Modify Newton’s root-finding method for solving f(x) = 0.

For optimization: find zeros of f’(x) = 0 (local extrema), go downhill;

loosely

Gradient-based Optimization:
Go Downhill

)(
)(

'1
k

k
kk xf

xfxx −=+

)(
)(

''

'

1
k

k
kk xf

xfxx −=+

x1

f(x1)

x1

f(x1)

root

min

max

local
extrema

global
extrema

These derivatives extend to gradients
and Hessians in the multivariate case:

)(),(2 xfxf xx ∇∇

Constraint Progression
Listed in order of (typically) increasing algorithm complexity and computational

cost needed to solve.

 Unconstrained problem: neither bound constraints nor linear/ nonlinear
constraints

 Bound-constrained problem: bound (variable space x) constraints only (no
linear/nonlinear constraints)

 Linearly-constrained problem: constraints are linear with respect to the x-
variables (may also have bound constraints)

 Nonlinearly-constrained problem: the g(x) and h(x) constraints, nonlinear
w.r.t. the x variables, are present (may also have bound constraints)
perhaps most typical in engineering and science applications

Typically, it is important to specify constraints as specifically as possible, e.g.,
don’t specify a linear constraint as nonlinear if the solver supports linear
constraints.

Coordinate-basis
Pattern Search
 Evaluate model at a stencil of points;

recenter at point with best function value
 If no improvement, contract stencil (to

achieve local convergence)
 Stencils typically are simplexes or align

with coordinate directions

46

Nelder-Mead

 Simplex stencil of d+1 points,
with centroid of d best

 Adapt the simplex iteratively to go downhill:
 Reflect through centroid and if better value,

replace worst
 If improved, attempt to expand further in

that direction
 If no improvement, attempt contraction of

the simplex to find a better point
 If fails, shrink simplex

47

f(x(2))

reflect

expand

contract

contract

f(x1))

f(x(3)) worst

Global (derivative-free)
Algorithms
 Global solvers attempt broad exploration of the design space with a strategy for

selective exploitation of promising regions
 Can be extremely costly, but will deliver good results when you have a large

computational budget
 A few approaches:

 Random (Monte Carlo) sampling
 Multi-start local search
 Box decomposition, e.g., DIRECT and other Lipschitzian approaches
 Population search, e.g., genetic/evolutionary algorithms
 Global surrogate-based algorithms
 For more see Cindy’s talk on Friday, including meta-heuristics, e.g., simulated

annealing, tabu search, ant colony optimization

48

Random and Multi-start

 Random sampling (Monte Carlo or more optimal space-filling designs) offers broad
exploration;
then just take the best point

 Can combine with local optimization by refining each of the set of promising
optima using a local optimizer:

49

Division of RECTangles (DiRECT)

 Subdivide the search domain into non-overlapping ‘boxes’
 Boxes are ranked with estimates of their best value
 Boxes are selected for subdivision based on their rank and box size
 Successive refinement ensures that a near-optimal point will be found in finite

time

50

Evolutionary/Genetic Algorithms

 Based on Darwin’s theory of survival of the fittest
 Random initial population of design points
 Design parameters values are a unique “genetic string,” analogous to DNA
 Sequence of generations, where most “fit” survive and reproduce
 Simulates natural selection, breeding, and mutation
 Ultimately identifies a design point (or family of points) satisfying

optimization problem

51

Advanced Considerations

 Mixed-integer nonlinear programming (MINLP): not discussed here, but see
Cindy’s talk Friday
 Use branch and bound over integer variables
 For each discrete scenario, apply any of the nonlinear optimization techniques

discussed here
 Multi-objective (trade-off) optimization

 Few solvers treat directly (however some GAs and other heuristics can map
out the necessary Pareto frontier)

 Explicit weighting of objectives: limits intuition, but allows use of any solver:

 Surrogate-based optimization (local and global)
 Uncertainty: optimization under uncertainty and robustness (uncertainty of

optima)

52

)()(xfxf
k

kk∑= ω

Efficient Global Optimization

 Technique due to Jones, Schonlau, Welch
 Build global Gaussian process

approximation to initial sample
 Balance global exploration (add points

with high predicted variance) with local
optimality (promising minima) via an
“expected improvement function”

True fn

GP surrogate

Expected
Improvemen
t

From Jones, Schonlau, Welch, 1998

Surrogate-based Minimization
(Calibration and Optimization)
 Surrogate-based techniques replace or augment costly model

evaluations with a less expensive stand-in; a key approach to make
hard optimization problems tractable

 Response surface or meta-models are most common: use design of
experiments to sample variable space and then build an
approximation

 Multi-fidelity approaches useful when you have a physics-based
surrogate, empirical approximation, or low-fidelity model option

54

responses
variables/parameters • functions: objectives,

constraints, LSQ
residuals

• gradients
• Hessians

user application
(simulation)

system, fork, direct, grid

optional approximation (surrogate)
• global (polynomial 1/2/3, neural net,
 kriging/Gaussian proc., MARS, RBF)
• local (Taylor); multipoint (TANA/3)
• hierarchical, multi-fidelity

• design: continuous,
discrete, categorical

Trust Region
Surrogate-based Minimization

Data fit surrogates
• Global: polynomials, splines,

neural network, Kriging, RBFs
• Local: 1st/2nd-order Taylor

Data fits in SBO
• Smoothing: extract global trend
• DACE: limited # design vars
• Must balance local consistency

with global accuracy

Multifidelity surrogates:
• Coarser discretizations,

looser conv. tols., reduced
element order

• Omitted physics: e.g., Euler
CFD, panel methods

Multifidelity SBO
• HF scale better w/ des. vars.
• Requires smooth LF model
• May require design mapping
• Correction quality is crucial

Multi-fidelity

ROM surrogates:
• Spectral decomposition
• POD/PCA w/ SVD
• KL/PCE (random fields,

stochastic processes)

ROMs in SBO
• Key issue: parametrize

(extended or spanning ROM)
• Otherwise like data fit case

emerging
area

ROM Data Fit

Optimization Under Uncertainty

Opt

UQ

Sim

{d} {Su}

{u} {Ru}

min
s.t.

(nested paradigm)

Rather than design and then post-process to evaluate uncertainty…
actively design optimize while accounting for uncertainty/reliability metrics
su(d), e.g., mean, variance, reliability, probability:

13 design vars d: Wi, Li, qi
2 random variables x: ΔW, Sr

σ σ
-5.0

simultaneously reliable and robust designs

Bistable switch problem formulation (Reliability-Based Design Optimization):

min
s.t.

BACKUP SLIDES
Application Examples

r

Z

Capsule

(1) Wire initiation
creates a “high Z”
dense plasma

3D ALEGRA MHD

(2) Encapsulant converts the plasma
radiation to a “drive” i.e., pressure on the
capsule.

1D, 2D, 3D ALEGRA, rad-MHD

(3) Drive and implosion of capsule.

 1D, 2D ALEGRA rad-hydro

Sample Hohlraum
Configuration

Encapsulant

Metal wires

Uncertainties in plasma, drive, and capsule characteristics

Robust Hohlraum Design
for Inertial Confinement Fusion

Ablator Outer Radius (cm)

St
d.

D
ev

.I
m

pl
os

io
n

V
el

oc
ity

(c
m

/s
)

0.10 0.11 0.12 0.13 0.14
0.0E+00
1.0E+06
2.0E+06
3.0E+06
4.0E+06
5.0E+06
6.0E+06
7.0E+06

Infeasible
Feasible

Ablator Outer Radius (cm)M
ax

im
um

Im
pl

os
io

n
V

el
oc

ity
(c

m
/s

)

0.10 0.11 0.12 0.13 0.14
-3.0E+07

-2.5E+07

-2.0E+07

-1.5E+07

-1.0E+07

-5.0E+06

0.0E+00

Global min, non-robust

Local robust min

Design goal: maximize the
implosion velocity w.r.t. ablator
radius r and fuel density ρ, but
remain robust w.r.t. manufacturing
variability

Fuel
(ρ)

Ablator

Outward
radial

direction

design variable r

rfuel = 0.100 cm

Minimize V(r, ρ)
Subject to σV(r, ρ) ≤ target value
uniform: +/- 2.5% range in r, ρ

ICF Capsule Robust Design

Shape Optimization
of Compliant MEMS
 Micro-electromechanical system (MEMS): typically made from silicon, polymers, or

metals; used as micro-scale sensors, actuators, switches, and machines
 MEMS designs are subject to substantial variability and lack historical knowledge base.

Materials and micromachining, photo lithography, etching processes all yield
uncertainty.

 Resulting part yields can be low or have poor cycle durability
 Goal: shape optimize finite element model of bistable switch to…

 Achieve prescribed reliability in actuation force
 Minimize sensitivity to uncertainties (robustness)

bistable
MEMS
switch

uncertainties to be considered
(edge bias and residual stress)

13 design vars
d:

 Wi, Li, θi

σ
σ

key relationship: force
vs. displacement via

finite element analysis

new tapered beam design

Typical design specifications:
• actuation force Fmin reliably 5 μN
• bistable (Fmax > 0, Fmin < 0)
• maximum force: 50 < Fmax < 150
• equilibrium E2 < 8 μm
• maximum stress < 1200 MPa

MEMS Switch Design:
Geometry Optimization

Drug Docking
(Courtesy Bill Hart)
 Problem: find the optimal binding for a small ligand in a binding site

 Application: lead compound development
 Impact: limit lab experimentation required to develop new drugs
 Approach: heuristic global optimization of flexible docking empirical potential

functions

	Dakota Software Training
	Module Learning Goals
	Module Outline
	Why Use Optimization?
	Example: SNL/Lockheed Martin�Optimization of F-35 External Fuel Tank
	Example: MEMS Shape Optimization
	Practical Process for Optimization
	Optimization Goals Come�in Multiple Forms
	Anatomy of an Optimization Problem:�Mapping to Dakota vs. Simulation
	Anatomy of an Optimization Problem:�Mapping to Dakota Input File Blocks
	Dakota Example:�Optimization for the Fuel Tank Problem
	Brief Group Discussion: �Optimization Practice
	Discussion: Optimize Cantilever Beam
	Exercise 1: First Optimization Studies
	Module Outline
	Practical Process for Optimization
	Basic Classes of Optimization Approaches�(the “method” block)
	Gradients for Derivative-based Methods
	Selecting a Method
	Guide to Optimization Methods�See Usage Guidelines in User’s Manual
	Constrained Optimization
	Group Discussion: �Constrained Optimization
	Anatomy of an Optimization Problem:�Mapping to Dakota Input File Blocks
	Example: Adding Constraints to Dakota �Input for the Fuel Tank Problem
	Example: Adding Constraints to Dakota �Input for the Fuel Tank Problem
	Example: Adding Constraints to Dakota �Input for the Fuel Tank Problem
	Practical Process for Optimization
	Discussion: Optimize Cantilever Beam�with Constraints
	Exercise 2: Constrained Optimization of �Cantilever Beams
	Exercise 2: Constrained Optimization of �Cantilever Beams
	Brief Group Discussion:�Optimization Exercises
	Discussion: �Model Characteristics and Method Choice
	Exercise 3: �Global Optimization Competition
	Advanced Optimization Topics
	Summary of Dakota Methods
	Optimization References
	Practical Process for Optimization
	Module Learning Goals Revisited�Did We Meet Them?
	Backup Slides
	Variations on�Gradient-Based Optimizers
	Variations on�Derivative-Free Optimizers
	Variations on �Global Optimizers
	Optional Examples: Advanced�Optimization Problems and Methods
	Gradient-based Optimization:�Go Downhill
	Constraint Progression
	Coordinate-basis�Pattern Search
	Nelder-Mead
	Global (derivative-free) �Algorithms
	Random and Multi-start
	Division of RECTangles (DiRECT)
	Evolutionary/Genetic Algorithms
	Advanced Considerations
	Efficient Global Optimization
	Surrogate-based Minimization�(Calibration and Optimization)
	Trust Region �Surrogate-based Minimization
	Optimization Under Uncertainty
	Backup Slides
	Robust Hohlraum Design�for Inertial Confinement Fusion
	ICF Capsule Robust Design
	Shape Optimization �of Compliant MEMS
	MEMS Switch Design:�Geometry Optimization
	Drug Docking�(Courtesy Bill Hart)

