
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Dakota Software Training

Surrogate Models

http://dakota.sandia.gov

SAND2015-6866 TR

Module Learning Goals

 Define a surrogate model
 Identify situations where it may be appropriate to use a

surrogate model
 Learn how to specify a surrogate model in Dakota
 Run a surrogate model in Dakota and examine outputs based

on the surrogate model
 Identify some common diagnostics for surrogates
 Understand different ways surrogates are used in Dakota

2

Module Learning Goals

 Define a surrogate model
 Identify situations where it may be appropriate to use a

surrogate model
 Learn how to specify a surrogate model in Dakota
 Run a surrogate model in Dakota and examine outputs based

on the surrogate model
 Identify some common diagnostics for surrogates
 Understand different ways surrogates are used in Dakota

3

Surrogate Models
Surrogate model: an inexpensive parameter to response
mapping (meta-model) that replaces a simulation code run

Motivation:
 Often can only afford limited code runs: dozens to 100s
 Constructed to provide a fast, cheap function evaluation for purposes of

uncertainty quantification, sensitivity analysis, and optimization.
 Can smooth a noisy response

Broad classes of surrogates:
 Data-fit: response surface model or emulator constructed to fit a small number of

code runs
 Multi-fidelity, e.g., low-fidelity physics approximating a high-fidelity model
 Reduced-order model (ROM, snapshot POD, PCA)

Simpson, T. W., V. Toropov, V. Balabanov, and F.A.C. Viana. Design and analysis of computer experiments in multidisciplinary
design optimization: A review of how far we have come or not. In Proceedings of the 12th AIAA/ISSMO Multidisciplinary Analysis
and Optimization Conference), Victoria, British Columbia, Canada, September 2008. AIAA Paper 2008-5802.

4

Data-Fit Surrogate Models

 Also called response surface model, or emulator
 Typically constructed over a small number of simulation model runs,

generated using a design of computer experiments
 The code runs provide the training data (samples of input parameters and

corresponding response values)

Example: Polynomial surrogate model
 Regression fit to training data
 Accurate in small regions
 Good at smoothing noisy data

5

Linear:

Quadratic:

Gaussian Process Models
 Also known as Kriging models, they typically interpolate data
 Popular surrogates of computer models in last 15 years
 Allow modeling of fairly complicated functional forms
 Offer both a prediction at a new point and an estimate of the uncertainty

in that prediction

6
Note: reduction in variance closer to

training data points

Other Dakota Data-fit Models

 Taylor series approximations
 Provides local trends in the vicinity of a single point

 Multivariate Adaptive Regression Splines (MARS)

 Splines can represent complex multi-modal surfaces and smooth noisy
data.

 Artificial neural networks (ANN)
 Moving least squares (MLS)
 Radial basis functions (RBF)
 Emerging capability: piecewise-local versions of the above

7

basis functions

Other Dakota Surrogate Models

 Polynomial chaos expansions (PCE)
 PCEs have also become popular surrogates of computer models over

the last 15 years
 Response approximation based on multidimensional orthogonal

polynomials, tailored to the uncertain input distributions
 See uncertainty quantification module…

 Multi-fidelity models
 Typically assume high fidelity equals low fidelity plus a correction

 Dakota will coordinate execution of
the low and high fidelity models to
meet an optimization or UQ goal

8

Low-fi
Simulation

High-fi
Simulation

Multi-fidelity Model

Module Learning Goals

 Define a surrogate model
 Identify situations where it may be appropriate to use a

surrogate model
 Learn how to specify a surrogate model in Dakota
 Run a surrogate model in Dakota and examine outputs based

on the surrogate model
 Identify some common diagnostics for surrogates
 Understand different ways surrogates are used in Dakota

9

Example: Sampling on a Surrogate

A single Dakota study can:
 Perform design of experiments on the truth model
 Construct a surrogate model
 Perform sampling-based UQ on the surrogate model

10

Top Method
Optimization or

UQ

DACE Method
generating

training points

Simulation
Interface

Surrogate
Model

DACE Method
Training Data

params responses

params responses

Surrogate Input File
environment,
 tabular_graphics_data
 method_pointer = 'METHOD_ON_SURR'

method,
 id_method = 'METHOD_ON_SURR'
 sampling
 sample_type lhs
 samples = 100
 seed = 3487
 model_pointer = 'SURR_MODEL'
 output verbose

model,
 id_model = 'SURR_MODEL'
 surrogate global
 dace_method_pointer = 'DACE'
 polynomial linear

method,
 id_method = 'DACE'
 model_pointer = 'DACE_M'
 sampling
 samples = 20
 seed = 3492

Perform 100 samples on the
surrogate, for demonstration
purposes

Linear surrogate (β0+ β1x1+β2x2)

DACE method can run the
simulation code (truth model) to
obtain the training points

Surrogate Input File
model,
 id_model = 'DACE_M'
 single
 interface_pointer = 'I1'
 variables_pointer = 'V1'
 responses_pointer = 'R1'

variables,
 id_variables = 'V1'
 uniform_uncertain = 2
 lower_bounds = 0. 0.
 upper_bounds = 1. 1.

interface,
 id_interface = 'I1'
 direct
 analysis_driver = 'text_book'

responses,
 id_responses = 'R1'
 num_response_functions = 3
 no_gradients
 no_hessians

The DACE model is the actual
simulation model; typically
points to variables, responses,
and the interface to the actual
simulation.

Note that a separate surrogate
is constructed for each
response specified. This may
become expensive if you have
many responses.

Surrogate Input File: Notes

model,
 id_model = 'SURR_MODEL'
 surrogate global
 dace_method_pointer = 'DACE'
 polynomial quadratic
 samples_file = 'training_data.dat' annotated
 # total_points INTEGER| minimum_points |
 recommended_points

method,
 id_method = 'DACE'
 model_pointer = 'DACE_M'
 sampling
 samples = 0
 seed = 3492

If you specify samples_file with
the training points, specify
samples = 0 in the DACE method

You can specify the number of
training points desired.

Example: Multi-fidelity Surrogate
model,
 id_model = 'SURROGATE'
 surrogate hierarchical
 low_fidelity_model = 'LOFI'
 high_fidelity_model = 'HIFI'
 correction additive zeroth_order

model,
 id_model = 'LOFI'
 single
 interface_pointer = 'LOFI_FN'

interface,
 id_interface = 'LOFI_FN'
 direct
 analysis_driver = 'lf_rosenbrock'
 deactivate restart_file

model,
 id_model = 'HIFI'
 single
 interface_pointer = 'HIFI_FN'

interface,
 id_interface = 'HIFI_FN'
 direct
 analysis_driver = 'rosenbrock'
 deactivate restart_file

This shows an example of a
low-fidelity and high-fidelity
model.

Correction terms can be applied to
surrogates for improved accuracy.

additive

multiplicative

convex combination

Class Exercise

 Run dakota_cantilever_surrogate.in in the
exercises/surrogate directory.

 How many samples are used to construct the surrogate?
 What method is used on the surrogate?
 How many times is the surrogate evaluated?
 Where are the surrogate responses?
 Run with “output verbose” in the outer method. Do you see

the functional form of the surrogate? Can you identify some
diagnostics?

Module Learning Goals

 Define a surrogate model
 Identify situations where it may be appropriate to use a

surrogate model
 Learn how to specify a surrogate model in Dakota
 Run a surrogate model in Dakota and examine outputs based

on the surrogate model
 Identify some common diagnostics for surrogates
 Understand different ways surrogates are used in Dakota

16

Surrogate Diagnostics
 Surrogate diagnostic metrics measure goodness-of-fit
 For each training point i, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑆𝑆𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝑅𝑅𝑖𝑖
 Dakota prints the first three by default; has others as well:

 root_mean_squared: square root of the mean of the squared residuals
 mean_abs: mean of the absolute value of the residuals
 Rsquared: the proportion of the variability in the response that can be

accounted for by the surrogate model (applicable for polynomials)
 sum_squared: sum of the squared residuals
 mean_squared: mean of the squared residuals
 sum_abs: sum of the absolute value of the residuals
 max_abs: max of the absolute value of the residuals

 Optimal Values of diagnostics
 R-squared should be as close to 1 as possible. R-squared over 0.9 is considered good.
 The other diagnostics should be as close to zero as possible (values will depend on the

response function magnitude).

17

Predictive Quality of Surrogates
 Problem: diagnostics measure goodness of fit with respect to

the training data, not a new set of data
 A cross-validation procedure can help assess the robustness of

the surrogate in predicting data not in the training set
 For example, build the surrogate based on 80% of the data,

predict on the remaining 20%, and repeat the process with a
different 80% of the data (a different “fold”).

 Two options in Dakota
 press (prediction residual error sum of squares): leave-one-out
 cross_validation (folds or percent): k-fold cross validation,

divide the training set into k subsets and leave out one.

18

Example: Surrogate Diagnostics

 Input:
model,

 id_model = 'UQ_M'

 surrogate global

 dace_method_pointer = 'DACE'

 polynomial quadratic

 metrics 'mean_abs'

 cross_validation folds = 5

 Output:
Constructing global approximations with no anchor, 20 DACE samples, and 0
reused points.

--- User-requested surrogate metrics; function 1

mean_abs goodness of fit: 1.6451047024e-05

--- Cross validation (5 folds) of user-requested surrogate metrics;
function 1

mean_abs goodness of fit: 3.4088478529e-05

19

Module Learning Goals

 Define a surrogate model
 Identify situations where it may be appropriate to use a

surrogate model
 Learn how to specify a surrogate model in Dakota
 Run a surrogate model in Dakota and examine outputs based

on the surrogate model
 Identify some common diagnostics for surrogates
 Understand different ways surrogates are used in Dakota

20

Surrogate Use in Dakota

 Simplest case: method points to user-specified data-fit surrogate
 Input file specifies a surrogate model type and training data or DACE method
 Built once, then used with any method

 Methods with embedded surrogates that the user can specify
 Bayesian methods can choose GP, PCE, SC (or no emulator)
 Uses the emulator keyword (no need for a separate model block)

 General adaptive methods with user-specified surrogates
 Trust region surrogate-based optimization with data fit or multi-fidelity
 Iteratively builds/validates the surrogate in each trust region

 Adaptive methods, typically using Gaussian processes (no user control)
 Efficient global optimization (EGO), efficient global reliability analysis, EGO

interval estimation, EGO evidence theory, importance sampling (GPAIS)
 Stochastic expansions: these are not classified as a surrogate but serve as

one for UQ methods, where the expansion settings determine the
surrogate type and training points

21

Surrogate-Based Optimization

Purpose:
 Reduce the number of expensive, high-fidelity simulations by

using a succession of approximate (surrogate) models
 Approximations generally have a limited range of validity
 Trust regions adaptively manage this range based on efficacy during

optimization
 With trust region globalization and local 1st-order consistency,

SBO algorithms can be provably-convergent

Surrogate models of interest:
 Data fits (local, multipoint, global)
 Multifidelity (special case: multigrid optimization)
 Reduced-order models

Trust Region Surrogate-Based Optimization (SBO)

Sequence of trust regions

f

x1
x2

Structure of Surrogate-based Optimization
Establish initial conditions
• Parameter set
• Function, derivative

values
• Search scope

Determine where to go next
• Direction
• Distance

Convergence
or stopping
criteria met? Done

Relocate and Adjust
search scope

yes no

Sanity check of surrogate against
simulation occurs here.

This loop constitutes the
“outer loop” method that
solves the optimization
problem.

This step contains an
“inner loop” method
that solves a sub-
problem. Most
simulations are done
here, so replace with
less computationally
intensive surrogate.

Efficient Global Optimization

 Technique due to Jones, Schonlau, Welch
 Build global Gaussian process

approximation to initial sample
 Balance global exploration (add points

with high predicted variance) with local
optimality (promising minima) via an
“expected improvement function”

 Derivative-free, very efficient for low-
dim.

True fn

GP surrogate

Expected
Improvement

From Jones, Schonlau, Welch, 1998

Efficient Global Reliability Analysis (EGRA)

 Construct initial Gaussian process
(GP) over small set of simulation
samples

 Iteratively refine GP by balances
exploration of unknown space
with refinement around failure
boundary

 Perform importance sampling on
final GP to get probability of
failure

26

Gaussian process model

Variance profile Feasibility profile

New parameter set

Bichon, B.J., Eldred, M.S., Swiler, L.P., Mahadevan, S., and
McFarland, J.M., "Efficient Global Reliability Analysis for
Nonlinear Implicit Performance Functions," AIAA Journal,
Vol. 46, No. 10, October 2008, pp. 2459-2468.

User
Simulation

Efficient Global Reliability Analysis

 Gaussian process model of reliability limit state with
10 samples 28 samples

explore

exploit

Backup

28

DAKOTA example:
dakota_uq_textbook_lhs_approx.in, test 0
method,
 id_method = 'UQ'
 model_pointer = 'UQ_M'
 sampling
 samples = 5000 seed = 5
 sample_type lhs
 response_levels = 2.e-5 3.e-5 4.e-5

model,
 id_model = 'UQ_M'
 surrogate global
 dace_method_pointer = 'DACE'
 polynomial quadratic

method,
 id_method = 'DACE'
 model_pointer = 'DACE_M'
 sampling
 samples = 2
 seed = 50
 sample_type lhs

model,
 id_model = 'DACE_M'
 single
 interface_pointer = 'I1'

DAKOTA example:
dakota_uq_textbook_lhs_approx.in, test 0

>>>>> Executing environment.

>>>>> Running random_sampling iterator.

NonD lhs Samples = 5000 Seed (user-specified) = 5

>>>>> Building global_polynomial approximations.

NonD lhs Samples = 6 Seed (user-specified) = 50

Begin I1 Evaluation 1

Parameters for evaluation 1:
 1.0898530162e+00 TF1ln
 9.8321746393e-01 TF1ln

(Asynchronous job 1 added to I1 queue)

Begin I1 Evaluation 2

Parameters for evaluation 2:
 9.4844682596e-01 TF1ln
 1.1492565898e+00 TF1ln

(Asynchronous job 2 added to I1 queue)

This is the inner loop sampling
on the simulation to generate
the training points for the
surrogate.

This is the outer loop sampling
on the surrogate.

DAKOTA example:
dakota_uq_textbook_lhs_approx.in, test 0

Active response data for I1 evaluation 6:
Active set vector = { 1 }
 5.2588873552e-05 response_fn_1

Constructing global approximations with no anchor, 6 DACE samples, and 0 reused points.

Surfpack polynomial model
f(x) = sum_k{c_k * prod_k[x(i) ^ p(k,i)]}; where

inputs = 2
bases = 6

c (1 x bases) =
-4.8000038070265726e-02 3.7860149255203986e-02 9.9076783886974992e-03
-5.9599998476198845e-02 6.0935469676657854e-02 -1.0473904755832735e-03

p (bases x inputs) =
 0 0
 1 0
 2 0
 1 1
 0 1
 0 2
--- Default surrogate metrics; function 1
root_mean_squared goodness of fit: 2.0495082841e-17
mean_abs goodness of fit: 1.9446500040e-17
rsquared goodness of fit: 1.0000000000e+00
<<<<< global_polynomial approximation builds completed.

The last function
evaluation completes.

Surrogate construction.
If you specify “output
debug” in the outer
method, the surrogate
details are printed.

Coefficients of
regression model

Diagnostics to assess
surrogate goodness-of-
fit, based only on the 6
training points.

DAKOTA example:
dakota_uq_textbook_lhs_approx.in, test 0

Begin Approximate Fn Evaluation 1

Parameters for approximate fn evaluation 1:
 1.0489504413e+00 TF1ln
 1.0544994326e+00 TF1ln

Active response data for approximate fn evaluation 1:
Active set vector = { 1 }
 -2.1808627603e-04 response_fn_1

<<<<< Function evaluation summary (APPROX_INTERFACE): 5000 total (5000 new, 0 duplicate)
 response_fn_1: 5000 val (5000 n, 0 d), 0 grad (0 n, 0 d), 0 Hess (0 n, 0 d)
<<<<< Function evaluation summary (I1): 6 total (6 new, 0 duplicate)
 response_fn_1: 6 val (6 n, 0 d), 0 grad (0 n, 0 d), 0 Hess (0 n, 0 d)

Statistics based on 5000 samples:

Moment-based statistics for each response function:
 Mean Std Dev Skewness Kurtosis
 response_fn_1 8.5672865092e-05 2.3321707752e-04 5.0540242996e-02 4.8865690512e+00

95% confidence intervals for each response function:
 LowerCI_Mean UpperCI_Mean LowerCI_StdDev UpperCI_StdDev
 response_fn_1 7.9206970775e-05 9.2138759410e-05 2.2873426833e-04 2.3788038944e-04

ETC.

This is the first of the
5000 samples on the
surrogate.

Statistics based on
sampling the surrogate

* Note the dakota_tabular.dat file will have results based on the surrogate *

Gaussian Processes

 Why are GPs popular emulators of computer models?
 They allow modeling of fairly complicated functional forms
 They do not just offer a prediction at a new point but an estimate of

the uncertainty in that prediction

 Classic references:
 Sacks, J., W.J. Welch, T.J. Mitchell, and H.P. Wynn. Design and analysis

of computer experiments. Statistical Science, 4(4):409–435, 1989.
 Santner, T., B. Williams, and W. Notz. The Design and Analysis of

Computer Experiments. New York, NY: Springer, 2003.
 Rasmussen, C.E. and C.K.I. Williams. Gaussian Processes for Machine

Learning. MIT Press, 2006. e-book:
 http://www.gaussianprocess.org/gpml/chapters/

33

Gaussian Process

 A stochastic process is a collection of random variables
{y(x) | x∈X} indexed by a set X in ℜd, where d is the
number of inputs.

 A Gaussian process is a stochastic process for which any
finite set of y-variables has a joint multivariate Gaussian
distribution. That is, the joint probability distribution for
every finite subset of variables y(x1), ..y(xk) is multi-variate
normal.

 A GP is fully specified by its mean function µ(x) = E[y(x)]
and its covariance function C(x, x′).

What does this mean?

 Start with a set of runs of a computer code: at each sample xi
we have output yi(xi).

 The output at a new input value, xnew, is uncertain.
 This is what a GP will predict.
 Related to regression.
 Related to random functions. From our set of samples, we

have a “deterministic” function that is a set of points {x, y(x)}
or {x, f(x)}. Instead of f(x), if we use the outcome of a random
draw from some joint distribution of random variables {Z(x1),
… Z(xn)}, we get a realization of a random function.

 This is a stochastic process (e.g. generate many draws and get
many functions).

How do we simulate realizations
of a random function?
 Start with {Z(x1), … Z(xn)} from a multivariate normal distribution

with mean 0 and covariance matrix C=Cov[Z(xi), Z(xj)].
 To simulate a random draw:
 Generate n standard normal(0,1) random variables, S.
 Perform a Cholesky decomposition C= LLt.
 Define Z = LS.
 Plot the points {xi, Zi = Z(xi)}
 Connect the dots

Example covariance function in 1-D

 Cov[Z(xi), Z(xj)] = exp(-θ|xi - xj|2)

Gaussian Process
 We have the capability to generate random functions
 We can add a mean function (typically a constant or a simple

polynomial regression)
 We can multiply the covariance by a constant to scale the

vertical axis.
 Now, we can vary θ to get a certain amount of “wiggle” in the

random function (smaller θ leads to less wiggle).
 NOW: we want to constrain these random functions to be

consistent with the data points we have
 We can either take a Bayesian approach or a maximum

likelihood (MLE) approach to estimate the parameters
governing the Gaussian process

 Start with a MLE approach

Gaussian Process
 Typical formulation: a Gaussian process is defined by its mean

and covariance function. We assume:

E 𝑦𝑦 𝒙𝒙 = 𝑓𝑓 𝒙𝒙 𝑇𝑇𝜷𝜷 Mean
Cov 𝑦𝑦 𝒙𝒙 ,𝑦𝑦 𝒙𝒙′ = σ2𝑆𝑆(𝒙𝒙,𝒙𝒙′) Covariance
𝒀𝒀~𝑁𝑁(𝑓𝑓 𝑿𝑿 𝑇𝑇𝜷𝜷, σ2𝑹𝑹) Multivariate Normal

 A few notes:
 𝒙𝒙 is one set of inputs of dimension d. We have N samples, 𝒙𝒙i, for

i=1…N. Each 𝒙𝒙i = {𝑥𝑥i1 , 𝑥𝑥i2, …. ,𝑥𝑥id}. X denotes the (d*N) set of all
samples, and 𝜷𝜷 is the d*1 vector of regression coefficients. It may just
be a constant 𝛽𝛽.

 It is more typical to write the covariance as the product of a scaling
factor σ2 times the correlation 𝑆𝑆 𝒙𝒙,𝒙𝒙′ .

 The full N ∗ N correlation matrix between all points is 𝑹𝑹
 𝒀𝒀 is the (N*1) vector of response values.

Gaussian Process
 NOW: what is the prediction for a new point?

E 𝑦𝑦 𝒙𝒙∗ |𝒀𝒀 = 𝑓𝑓 𝒙𝒙∗ 𝑇𝑇𝜷𝜷 + 𝑆𝑆 𝒙𝒙∗ 𝑇𝑇𝐑𝐑−1[𝐘𝐘 − 𝐅𝐅𝜷𝜷]
Var[𝑦𝑦 𝒙𝒙∗ 𝒀𝒀 = σ2(1 − 𝑆𝑆 𝒙𝒙∗ 𝑇𝑇𝐑𝐑−1𝑆𝑆 𝒙𝒙∗)

 The correlation matrix for the training points is 𝑹𝑹.
 𝑆𝑆 𝒙𝒙∗ is the vector of correlations between the new point 𝒙𝒙∗

and the existing N points. It is of size N*1.
 F is the set of basis functions for the original full data set X.
 These are the conditional predictions (conditional on the

data).

What does this look like?

41

staffwww.dcs.shef.ac.uk

Note the reduction in variance as you have more data

http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/gp/

What does this look like?

42
https://pythonhosted.org/infpy/gps.html

This plot
shows mean
and variance
plus random
realizations

Properties of the GP approximation
 The mean prediction interpolates the data.

E 𝑦𝑦 𝒙𝒙∗ |𝒀𝒀 = 𝑓𝑓 𝒙𝒙∗ 𝑇𝑇𝜷𝜷 + 𝑆𝑆 𝒙𝒙∗ 𝑇𝑇𝐑𝐑−1[𝐘𝐘 − 𝐅𝐅𝜷𝜷]

 The mean prediction is a linear combination of basis
functions

 The predicted variance increases the further away the
new point is from existing points.

Var[𝑦𝑦 𝒙𝒙∗ 𝒀𝒀 = σ2(1 − 𝑆𝑆 𝒙𝒙∗ 𝑇𝑇𝐑𝐑−1𝑆𝑆 𝒙𝒙∗)

Correlation Function
 Want to capture the idea that nearby inputs have highly correlated

outputs.
 The correlation in some dimensions may be more important than

others…different “length-scales” in each dimension
 Common correlation functions include
Power-exponential (or squared exponential):
 Typically the exponent pj is 2, which gives smooth realizations. If pj is

1, you get much rougher realizations.
 Larger values of θj mean smaller correlation in the xj direction.

))'(})'({)(∏∑
==

−=−−=
d

j

p
jjj

d

j

p
jjj

jj xxxxR
11

exp(-exp θθx'x,

Correlation Function
Matern

 Is equal to the exponential covariance function when ν = ½.

 Is equal to the squared exponential when ν  ∞

 Typically, ν = ½, 3/2, or 5/2, going a process that looks rough to a

process that is fairly smooth.

 Other covariances are possible: Cauchy, polynomial functions, etc.

)'()')(
ν

ν

νν

θθ
ν jjj

d

j
jjj xxxxR −−−

Γ
=∏

=

Κ
1

-1

(-
)(

2x'x,

Putting it all together
 Start with N runs of a computer code, with points {xi, yi}.

Ideally, the N points will be a well-spaced design such as Latin
Hypercube.

 Define the mean function for the Gaussian process.
 Often, zero mean or constant mean is used.

 Define the covariance function for the Gaussian process.
 Typically, the power-exponential function is used.

 Estimate the parameters governing the Gaussian process,
including β, σ, and any parameters of the correlation
function R such as θj.
 Can use maximum likelihood or Bayesian methods

 Substitute the parameters in the prediction equations and
obtain mean and variance estimates for new points x*

Parameter Estimation (MLE)
 The observed training values represent a realization of a multivariate

normal distribution.

𝑓𝑓 𝒀𝒀 = (2𝜋𝜋)−
𝑁𝑁
2 |Σ|−

1
2𝑅𝑅𝑥𝑥𝑅𝑅 −

1
2

(𝒀𝒀 − µ)𝑇𝑇Σ−1(𝒀𝒀 − µ)

 The basic idea of MLE is to find the particular mean vector and
covariance matrix that define the most likely multivariate normal
distribution to result in the observed data.

 Take the Log Likelihood and maximize it:

 log(𝑓𝑓 𝒀𝒀) = −𝑁𝑁
2

log 2𝜋𝜋 − 1
2

(𝜎𝜎2𝑁𝑁|𝑹𝑹|) − 1
2𝜎𝜎2

(𝒀𝒀 − F𝛃𝛃)𝑇𝑇 𝑹𝑹−1(𝒀𝒀 − F𝛃𝛃)
 Drop the -1/2 term, and the first constant term and minimize the

negative log-likelihood:

 𝑁𝑁𝑁𝑁𝑁𝑁 = Nlog 𝜎𝜎2 + log 𝑅𝑅 + 1
𝜎𝜎2

(𝒀𝒀 − F𝛃𝛃)𝑇𝑇 𝑹𝑹−1(𝒀𝒀 − F𝛃𝛃)

Parameter Estimation (MLE)
 Use global optimization methods to optimize the NLL
 OR
 Use gradient-based optimization to optimize the NLL. The derivations have

been worked out with respect to β, σ, and correlation parameters of R.
 Conditional on fixed values of the correlation parameters, the optimal

values for β and σ are given by the generalized least squares formulation:
𝜷𝜷� = (𝑭𝑭𝑻𝑻𝑹𝑹−𝟏𝟏𝑭𝑭)−𝟏𝟏(𝑭𝑭𝑻𝑻𝑹𝑹−𝟏𝟏𝒀𝒀)

𝜎𝜎2� =
1
𝑁𝑁

(𝒀𝒀 − F𝛃𝛃)𝑇𝑇 𝑹𝑹−1(𝒀𝒀 − F𝛃𝛃)

 One can use an iterative method, and obtain optimal correlation
parameters θ, then calculate R and substitute it into above expressions
above for β and σ.

 This optimization has been studied fairly thoroughly. A good reference is:
Jay Martin. “Computational Improvements to Estimating Kriging Metamodel
Parameters.” Journal of Mechanical Design. Aug. 2009, Vol. 131, p. 084501:1-7.

	Dakota Software Training
	Module Learning Goals
	Module Learning Goals
	Surrogate Models
	Data-Fit Surrogate Models
	Gaussian Process Models
	Other Dakota Data-fit Models
	Other Dakota Surrogate Models
	Module Learning Goals
	Example: Sampling on a Surrogate
	Surrogate Input File
	Surrogate Input File
	Surrogate Input File: Notes
	Example: Multi-fidelity Surrogate
	Class Exercise
	Module Learning Goals
	Surrogate Diagnostics
	Predictive Quality of Surrogates
	Example: Surrogate Diagnostics
	Module Learning Goals
	Surrogate Use in Dakota
	Surrogate-Based Optimization
	Trust Region Surrogate-Based Optimization (SBO)
	Structure of Surrogate-based Optimization
	Efficient Global Optimization
	Efficient Global Reliability Analysis (EGRA)
	Efficient Global Reliability Analysis
	Backup
	DAKOTA example: �dakota_uq_textbook_lhs_approx.in, test 0
	DAKOTA example: �dakota_uq_textbook_lhs_approx.in, test 0
	DAKOTA example: �dakota_uq_textbook_lhs_approx.in, test 0
	DAKOTA example: �dakota_uq_textbook_lhs_approx.in, test 0
	Gaussian Processes
	Gaussian Process
	What does this mean?
	How do we simulate realizations �of a random function?
	Example covariance function in 1-D
	Gaussian Process
	Gaussian Process
	Gaussian Process
	What does this look like?
	What does this look like?
	Properties of the GP approximation
	Correlation Function
	Correlation Function
	Putting it all together
	Parameter Estimation (MLE)
	Parameter Estimation (MLE)

