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Module Learning Goals 

 Define a surrogate model  
 Identify situations where it may be appropriate to use a 

surrogate model 
 Learn how to specify a surrogate model in Dakota 
 Run a surrogate model in Dakota and examine outputs based 

on the surrogate model 
 Identify some common diagnostics for surrogates 
 Understand different ways surrogates are used in Dakota 
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Surrogate Models 
Surrogate model: an inexpensive parameter to response 
mapping (meta-model) that replaces a simulation code run 
 

Motivation: 
 Often can only afford limited code runs: dozens to 100s 
 Constructed to provide a fast, cheap function evaluation for purposes of 

uncertainty quantification, sensitivity analysis, and optimization. 
 Can smooth a noisy response 

 

Broad classes of surrogates: 
 Data-fit: response surface model or emulator constructed to fit a small number of 

code runs 
 Multi-fidelity, e.g., low-fidelity physics approximating a high-fidelity model 
 Reduced-order model (ROM, snapshot POD, PCA) 
 
Simpson, T. W., V. Toropov, V. Balabanov, and F.A.C. Viana. Design and analysis of computer experiments in multidisciplinary 
design optimization: A review of how far we have come or not. In Proceedings of the 12th AIAA/ISSMO Multidisciplinary Analysis 
and Optimization Conference), Victoria, British Columbia, Canada, September 2008. AIAA Paper 2008-5802. 
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Data-Fit Surrogate Models 

 Also called response surface model, or emulator 
 Typically constructed over a small number of simulation model runs, 

generated using a design of computer experiments 
 The code runs provide the training data (samples of input parameters and 

corresponding response values) 
 
Example: Polynomial surrogate model 
 Regression fit to training data 
 Accurate in small regions  
 Good at smoothing noisy data 
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Linear: 

Quadratic: 



Gaussian Process Models 
 Also known as Kriging models, they typically interpolate data 
 Popular surrogates of computer models in last 15 years 
 Allow modeling of fairly complicated functional forms 
 Offer both a prediction at a new point and an estimate of the uncertainty 

in that prediction 
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Note: reduction in variance closer to 

training data points 



Other Dakota Data-fit Models 

 Taylor series approximations 
 Provides local trends in the vicinity of a single point    

 
 Multivariate Adaptive Regression Splines (MARS) 

 Splines can represent complex multi-modal surfaces and smooth noisy 
data. 
 
 

 Artificial neural networks (ANN) 
 Moving least squares (MLS) 
 Radial basis functions (RBF) 
 Emerging capability: piecewise-local versions of the above 
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basis functions 



Other Dakota Surrogate Models 

 Polynomial chaos expansions (PCE) 
 PCEs have also become popular surrogates of computer models over 

the last 15 years 
 Response approximation based on multidimensional orthogonal 

polynomials, tailored to the uncertain input distributions 
 See uncertainty quantification module…  

 

 Multi-fidelity models 
 Typically assume high fidelity equals low fidelity plus a correction 

 
 

 Dakota will coordinate execution of  
the low and high fidelity models to  
meet an optimization or UQ goal 
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High-fi 
Simulation 
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Example: Sampling on a Surrogate  

A single Dakota study can: 
 Perform design of experiments on the truth model 
 Construct a surrogate model 
 Perform sampling-based UQ on the surrogate model 
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Top Method  
Optimization or 

UQ 

DACE Method 
generating 
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Simulation 
Interface 
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DACE Method 
Training Data 

params responses 

params responses 



Surrogate Input File 
environment, 
        tabular_graphics_data 
        method_pointer = 'METHOD_ON_SURR' 
  
method, 
       id_method = 'METHOD_ON_SURR' 
       sampling 
       sample_type lhs 
       samples = 100 
       seed = 3487 
       model_pointer = 'SURR_MODEL' 
       output verbose 
  
model, 
      id_model = 'SURR_MODEL' 
      surrogate global 
      dace_method_pointer = 'DACE' 
      polynomial linear 
 
  
method, 
     id_method = 'DACE' 
     model_pointer = 'DACE_M' 
     sampling 
     samples = 20 
     seed = 3492 
      

Perform 100 samples on the 
surrogate, for demonstration 
purposes 
 
 
 
 
Linear surrogate (β0+ β1x1+β2x2) 
 
 
DACE method can run the 
simulation code (truth model) to 
obtain the training points 



Surrogate Input File 
model, 
        id_model = 'DACE_M' 
        single 
          interface_pointer = 'I1' 
          variables_pointer = 'V1'    
   responses_pointer = 'R1' 
  
variables, 
 id_variables = 'V1' 
        uniform_uncertain = 2  
          lower_bounds = 0. 0.  
          upper_bounds = 1. 1.  
  
interface, 
        id_interface = 'I1' 
         direct 
         analysis_driver = 'text_book' 
  
responses,  
 id_responses = 'R1' 
        num_response_functions = 3 
        no_gradients 
        no_hessians 
      

The DACE model is the actual 
simulation model; typically 
points to variables, responses, 
and the interface to the actual 
simulation.   

Note that a separate surrogate 
is constructed for each 
response specified.  This may 
become expensive if you have 
many responses. 



Surrogate Input File: Notes 
  
model, 
      id_model = 'SURR_MODEL' 
      surrogate global 
      dace_method_pointer = 'DACE' 
      polynomial quadratic  
      samples_file = 'training_data.dat' annotated 
      # total_points INTEGER| minimum_points  |  
 recommended_points  
 
 
 
method, 
     id_method = 'DACE' 
     model_pointer = 'DACE_M' 
     sampling 
     samples = 0 
     seed = 3492 
      

If you specify samples_file with 
the training points, specify 
samples = 0 in the DACE method 

You can specify the number of 
training points desired. 



Example: Multi-fidelity Surrogate 
model, 
        id_model = 'SURROGATE' 
        surrogate hierarchical 
          low_fidelity_model  = 'LOFI' 
          high_fidelity_model = 'HIFI' 
          correction additive zeroth_order 
   
model, 
        id_model = 'LOFI' 
        single 
          interface_pointer = 'LOFI_FN' 
  
interface, 
        id_interface = 'LOFI_FN' 
        direct 
          analysis_driver = 'lf_rosenbrock' 
          deactivate restart_file 
  
model, 
        id_model = 'HIFI' 
        single 
          interface_pointer = 'HIFI_FN' 
  
interface, 
        id_interface = 'HIFI_FN' 
        direct 
          analysis_driver = 'rosenbrock' 
          deactivate restart_file 
      

This shows an example of a 
low-fidelity and high-fidelity 
model.  

Correction terms can be applied to 
surrogates for improved accuracy. 

additive 

multiplicative 

convex combination 



Class Exercise 

 Run dakota_cantilever_surrogate.in in the 
exercises/surrogate directory. 

 How many samples are used to construct the surrogate?  
 What method is used on the surrogate?  
 How many times is the surrogate evaluated?  
 Where are the surrogate responses?  
 Run with “output verbose” in the outer method.   Do you see 

the functional form of the surrogate?  Can you identify some 
diagnostics?  
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Surrogate Diagnostics 
 Surrogate diagnostic metrics measure goodness-of-fit 
 For each training point i, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 −  𝑆𝑆𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝑅𝑅𝑖𝑖 
 Dakota prints the first three by default; has others as well:   

 root_mean_squared:  square root of the mean of the squared residuals  
 mean_abs:  mean of the absolute value of the residuals  
 Rsquared:  the proportion of the variability in the response that can be 

accounted for by the surrogate model (applicable for polynomials) 
 sum_squared:  sum of the squared residuals 
 mean_squared:  mean of the squared residuals  
 sum_abs:  sum of the absolute value of the residuals 
 max_abs: max of the absolute value of the residuals 

 Optimal Values of diagnostics 
 R-squared should be as close to 1 as possible.  R-squared over 0.9 is considered good.  
 The other diagnostics should be as close to zero as possible (values will depend on the 

response function magnitude).  
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Predictive Quality of Surrogates 
 Problem: diagnostics measure goodness of fit with respect to 

the training data, not a new set of data 
 A cross-validation procedure can help assess the robustness of 

the surrogate in predicting data not in the training set 
 For example, build the surrogate based on 80% of the data, 

predict on the remaining 20%, and repeat the process with a 
different 80% of the data (a different “fold”).  
 

 Two options in Dakota 
 press (prediction residual error sum of squares): leave-one-out  
 cross_validation (folds or percent):   k-fold cross validation, 

divide the training set into k subsets and leave out one.   
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Example: Surrogate Diagnostics 

 Input:  
model, 

        id_model = 'UQ_M' 

        surrogate global 

          dace_method_pointer = 'DACE' 

          polynomial quadratic 

          metrics 'mean_abs'  

       cross_validation folds = 5 

 Output:  
Constructing global approximations with no anchor, 20 DACE samples, and 0 
reused points. 

--- User-requested surrogate metrics; function 1 

mean_abs goodness of fit: 1.6451047024e-05 

  

--- Cross validation (5 folds) of user-requested surrogate metrics; 
function 1 

mean_abs goodness of fit: 3.4088478529e-05   
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Surrogate Use in Dakota 

 Simplest case: method points to user-specified data-fit surrogate 
 Input file specifies a surrogate model type and training data or DACE method 
 Built once, then used with any method 

 Methods with embedded surrogates that the user can specify  
 Bayesian methods can choose GP, PCE, SC (or no emulator) 
 Uses the emulator keyword (no need for a separate model block) 

 General adaptive methods with user-specified surrogates 
 Trust region surrogate-based optimization with data fit or multi-fidelity 
 Iteratively builds/validates the surrogate in each trust region 

 Adaptive methods, typically using Gaussian processes (no user control) 
 Efficient global optimization (EGO), efficient global reliability analysis, EGO 

interval estimation, EGO evidence theory, importance sampling (GPAIS) 
 Stochastic expansions:  these are not classified as a surrogate but serve as 

one for UQ methods, where the expansion settings determine the 
surrogate type and training points 
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Surrogate-Based Optimization 

Purpose: 
 Reduce the number of expensive, high-fidelity simulations by  

using a succession of approximate (surrogate) models 
 Approximations generally have a limited range of validity 
 Trust regions adaptively manage this range based on efficacy during 

optimization 
 With trust region globalization and local 1st-order consistency, 

SBO algorithms can be provably-convergent 
 

Surrogate models of interest: 
 Data fits (local, multipoint, global) 
 Multifidelity (special case: multigrid optimization) 
 Reduced-order models 

 



Trust Region Surrogate-Based Optimization (SBO) 

Sequence of trust regions 

f 

x1 
x2 



Structure of Surrogate-based Optimization 
Establish initial conditions 
• Parameter set 
• Function, derivative 

values 
• Search scope 

Determine where to go next 
• Direction 
• Distance 

Convergence 
or stopping 
criteria met? Done 

Relocate and Adjust 
search scope 

yes no 

Sanity check of surrogate against 
simulation occurs here. 

This loop constitutes the 
“outer loop” method that 
solves the optimization 
problem. 

This step contains an 
“inner loop” method 
that solves a sub-
problem.  Most 
simulations are done 
here, so replace with 
less computationally 
intensive surrogate. 



Efficient Global Optimization 

 Technique due to Jones, Schonlau, Welch 
 Build global Gaussian process 

approximation to initial sample 
 Balance global exploration (add points 

with high predicted variance) with local 
optimality (promising minima) via an 
“expected improvement function” 

 Derivative-free, very efficient for low-
dim. 

True fn 

GP surrogate 

Expected 
Improvement 

From Jones, Schonlau, Welch, 1998 



Efficient Global Reliability Analysis (EGRA) 

 Construct initial Gaussian process 
(GP) over small set of simulation 
samples 

 Iteratively refine GP by balances 
exploration of unknown space 
with refinement around failure 
boundary 

 Perform importance sampling on 
final GP to get probability of 
failure 
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Gaussian process model 

Variance profile Feasibility profile 

New parameter set 

Bichon, B.J., Eldred, M.S., Swiler, L.P., Mahadevan, S., and 
McFarland, J.M., "Efficient Global Reliability Analysis for 
Nonlinear Implicit Performance Functions," AIAA Journal, 
Vol. 46, No. 10, October 2008, pp. 2459-2468. 

User 
Simulation  



Efficient Global Reliability Analysis 

         Gaussian process model of reliability limit state with 
10 samples       28 samples 

explore 

exploit 



Backup 
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DAKOTA example:   
dakota_uq_textbook_lhs_approx.in, test 0 
method, 
        id_method = 'UQ' 
        model_pointer = 'UQ_M' 
        sampling 
          samples = 5000 seed = 5 
          sample_type lhs 
          response_levels = 2.e-5 3.e-5 4.e-5 
  
model, 
        id_model = 'UQ_M' 
        surrogate global 
          dace_method_pointer = 'DACE' 
          polynomial quadratic 
   
method, 
        id_method = 'DACE' 
        model_pointer = 'DACE_M' 
        sampling 
          samples = 2 
          seed = 50 
          sample_type lhs 
  
model, 
        id_model = 'DACE_M' 
        single 
          interface_pointer = 'I1' 
  



DAKOTA example:   
dakota_uq_textbook_lhs_approx.in, test 0 
 
>>>>> Executing environment. 
  
>>>>> Running random_sampling iterator. 
  
NonD lhs Samples = 5000 Seed (user-specified) = 5 
 
>>>>> Building global_polynomial approximations. 
  
NonD lhs Samples = 6 Seed (user-specified) = 50 
------------------------------ 
Begin       I1 Evaluation    1 
------------------------------ 
Parameters for evaluation 1: 
                      1.0898530162e+00 TF1ln 
                      9.8321746393e-01 TF1ln 
  
(Asynchronous job 1 added to I1 queue) 
  
------------------------------ 
Begin       I1 Evaluation    2 
------------------------------ 
Parameters for evaluation 2: 
                      9.4844682596e-01 TF1ln 
                      1.1492565898e+00 TF1ln 
  
(Asynchronous job 2 added to I1 queue) 
 
  

This is the inner loop sampling 
on the simulation to generate 
the training points for the 
surrogate. 
  

This is the outer loop sampling 
on the surrogate. 
  



DAKOTA example:   
dakota_uq_textbook_lhs_approx.in, test 0 

 
Active response data for I1 evaluation 6: 
Active set vector = { 1 } 
                      5.2588873552e-05 response_fn_1 
  
Constructing global approximations with no anchor, 6 DACE samples, and 0 reused points. 
  
Surfpack polynomial model 
f(x) = sum_k{c_k * prod_k[x(i) ^ p(k,i)]}; where 
  
inputs = 2 
bases = 6 
  
c (1 x bases) = 
-4.8000038070265726e-02  3.7860149255203986e-02  9.9076783886974992e-03  
-5.9599998476198845e-02  6.0935469676657854e-02 -1.0473904755832735e-03  
  
p (bases x inputs) =  
  0   0  
  1   0  
  2   0  
  1   1  
  0   1  
  0   2  
--- Default surrogate metrics; function 1 
root_mean_squared goodness of fit: 2.0495082841e-17 
mean_abs goodness of fit: 1.9446500040e-17 
rsquared goodness of fit: 1.0000000000e+00 
<<<<< global_polynomial approximation builds completed. 
  

The last function 
evaluation completes.  
  

Surrogate construction.  
If you specify “output 
debug” in the outer 
method, the surrogate 
details are printed.   
  

Coefficients of 
regression model 
  

Diagnostics to assess 
surrogate goodness-of-
fit, based only on the 6 
training points. 
  



DAKOTA example:   
dakota_uq_textbook_lhs_approx.in, test 0 

------------------------------------ 
Begin Approximate Fn Evaluation    1 
------------------------------------ 
Parameters for approximate fn evaluation 1: 
                      1.0489504413e+00 TF1ln 
                      1.0544994326e+00 TF1ln 
  
  
Active response data for approximate fn evaluation 1: 
Active set vector = { 1 } 
                     -2.1808627603e-04 response_fn_1 
 
<<<<< Function evaluation summary (APPROX_INTERFACE): 5000 total (5000 new, 0 duplicate) 
  response_fn_1: 5000 val (5000 n, 0 d), 0 grad (0 n, 0 d), 0 Hess (0 n, 0 d) 
<<<<< Function evaluation summary (I1): 6 total (6 new, 0 duplicate) 
  response_fn_1: 6 val (6 n, 0 d), 0 grad (0 n, 0 d), 0 Hess (0 n, 0 d) 
  
Statistics based on 5000 samples: 
  
Moment-based statistics for each response function: 
                            Mean           Std Dev          Skewness          Kurtosis 
 response_fn_1  8.5672865092e-05  2.3321707752e-04  5.0540242996e-02  4.8865690512e+00 
  
95% confidence intervals for each response function: 
                    LowerCI_Mean      UpperCI_Mean    LowerCI_StdDev    UpperCI_StdDev 
 response_fn_1  7.9206970775e-05  9.2138759410e-05  2.2873426833e-04  2.3788038944e-04 
  
ETC. 

This is the first of the 
5000 samples on the 
surrogate.  

Statistics based on 
sampling the surrogate 
  

* Note the dakota_tabular.dat file will have results based on the surrogate *  
  



Gaussian Processes 

 Why are GPs popular emulators of computer models?  
 They allow modeling of fairly complicated functional forms 
 They do not just offer a prediction at a new point but an estimate of 

the uncertainty in that prediction 
 

 Classic references:  
 Sacks, J., W.J. Welch, T.J. Mitchell, and H.P. Wynn. Design and analysis 

of computer experiments. Statistical Science, 4(4):409–435, 1989. 
 Santner, T., B. Williams, and W. Notz. The Design and Analysis of 

Computer Experiments. New York, NY: Springer, 2003. 
 Rasmussen, C.E. and C.K.I. Williams.  Gaussian Processes for Machine 

Learning.  MIT Press, 2006.  e-book:  
 http://www.gaussianprocess.org/gpml/chapters/ 
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Gaussian Process 

 A stochastic process is a collection of random variables 
{y(x) | x∈X} indexed by a set X in ℜd, where d is the 
number of inputs.  

 A Gaussian process is a stochastic process for which any 
finite set of y-variables has a joint multivariate Gaussian 
distribution.  That is, the joint probability distribution for 
every finite subset of variables y(x1), ..y(xk) is multi-variate 
normal. 

 A GP is fully specified by its mean function µ(x) = E[y(x)] 
and its covariance function C(x, x′).  



What does this mean?  

 Start with a set of runs of a computer code:  at each sample xi 
we have output yi(xi).  

 The output at a new input value, xnew, is uncertain.  
 This is what a GP will predict.  
 Related to regression.  
 Related to random functions.   From our set of samples, we 

have a “deterministic” function that is a set of points {x, y(x)} 
or {x, f(x)}.  Instead of f(x), if we use the outcome of a random 
draw from some joint distribution of random variables {Z(x1), 
… Z(xn)}, we get a realization of a random function.  

 This is a stochastic process (e.g. generate many draws and get 
many functions).  



How do we simulate realizations  
of a random function?  
 Start with {Z(x1), … Z(xn)} from a multivariate normal distribution 

with mean 0 and covariance matrix C=Cov[Z(xi), Z(xj)].  
 To simulate a random draw:  
 Generate n standard normal(0,1) random variables, S. 
 Perform a Cholesky decomposition C= LLt.  
 Define Z = LS.  
 Plot the points {xi, Zi = Z(xi)}  
 Connect the dots 



Example covariance function in 1-D 

 Cov[Z(xi), Z(xj)] = exp(-θ|xi - xj|2) 
 



Gaussian Process 
 We have the capability to generate random functions  
 We can add a mean function (typically a constant or a simple 

polynomial regression)  
 We can multiply the covariance by a constant to scale the 

vertical axis. 
 Now, we can vary θ to get a certain amount of “wiggle” in the 

random function (smaller θ leads to less wiggle). 
 NOW:  we want to constrain these random functions to be 

consistent with the data points we have 
 We can either take a Bayesian approach or a maximum 

likelihood (MLE) approach to estimate the parameters 
governing the Gaussian process 

 Start with a MLE approach 



Gaussian Process 
 Typical formulation: a Gaussian process is defined by its mean 

and covariance function.  We assume:  

E 𝑦𝑦 𝒙𝒙 = 𝑓𝑓 𝒙𝒙 𝑇𝑇𝜷𝜷             Mean 
Cov 𝑦𝑦 𝒙𝒙 ,𝑦𝑦 𝒙𝒙′ = σ2𝑆𝑆(𝒙𝒙,𝒙𝒙′)  Covariance 
𝒀𝒀~𝑁𝑁(𝑓𝑓 𝑿𝑿 𝑇𝑇𝜷𝜷, σ2𝑹𝑹)          Multivariate Normal 

 A few notes:  
 𝒙𝒙 is one set of inputs of dimension d.  We have N samples, 𝒙𝒙i, for 

i=1…N.  Each 𝒙𝒙i = {𝑥𝑥i1 , 𝑥𝑥i2, …. ,𝑥𝑥id}.  X denotes the (d*N) set of all 
samples, and 𝜷𝜷 is the d*1 vector of regression coefficients. It may just 
be a constant 𝛽𝛽.   

 It is more typical to write the covariance as the product of a scaling 
factor σ2 times the correlation 𝑆𝑆 𝒙𝒙,𝒙𝒙′ .   

 The full N ∗ N correlation matrix between all points is 𝑹𝑹 
 𝒀𝒀 is the (N*1) vector of response values. 

 



Gaussian Process 
 NOW:   what is the prediction for a new point?  
 

E 𝑦𝑦 𝒙𝒙∗ |𝒀𝒀 = 𝑓𝑓 𝒙𝒙∗ 𝑇𝑇𝜷𝜷 + 𝑆𝑆 𝒙𝒙∗ 𝑇𝑇𝐑𝐑−1[𝐘𝐘 − 𝐅𝐅𝜷𝜷] 
Var[𝑦𝑦 𝒙𝒙∗ 𝒀𝒀 = σ2(1 − 𝑆𝑆 𝒙𝒙∗ 𝑇𝑇𝐑𝐑−1𝑆𝑆 𝒙𝒙∗ )

 
   

 
 The correlation matrix for the training points is 𝑹𝑹. 
 𝑆𝑆 𝒙𝒙∗  is the vector of correlations between the new point 𝒙𝒙∗ 

and the existing N points.  It is of size N*1.   
 F is the set of basis functions for the original full data set X.  
 These are the conditional predictions (conditional on the 

data).  
 



What does this look like?  
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staffwww.dcs.shef.ac.uk 

Note the reduction in variance as you have more data  

http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/gp/


What does this look like?  

42 
https://pythonhosted.org/infpy/gps.html 

This plot 
shows mean 
and variance 
plus random 
realizations 



Properties of the GP approximation 
 The mean prediction interpolates the data. 

 
E 𝑦𝑦 𝒙𝒙∗ |𝒀𝒀 = 𝑓𝑓 𝒙𝒙∗ 𝑇𝑇𝜷𝜷 + 𝑆𝑆 𝒙𝒙∗ 𝑇𝑇𝐑𝐑−1[𝐘𝐘 − 𝐅𝐅𝜷𝜷] 

 

 The mean prediction is a linear combination of basis 
functions 

 The predicted variance increases the further away the 
new point is from existing points. 
 
Var[𝑦𝑦 𝒙𝒙∗ 𝒀𝒀 = σ2(1 − 𝑆𝑆 𝒙𝒙∗ 𝑇𝑇𝐑𝐑−1𝑆𝑆 𝒙𝒙∗ )

 
 



Correlation Function 
 Want to capture the idea that nearby inputs have highly correlated 

outputs. 
 The correlation in some dimensions may be more important than 

others…different “length-scales” in each dimension 
 Common correlation functions include 
Power-exponential (or squared exponential):   
 Typically the exponent pj is 2, which gives smooth realizations. If pj is 

1, you get much rougher realizations.  
 Larger values of θj mean smaller correlation in the xj direction. 
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Correlation Function 
Matern 
 
 
 
 
 
 Is equal to the exponential covariance function when ν = ½.  

 
 Is equal to the squared exponential when ν  ∞ 

 
 Typically, ν = ½, 3/2, or 5/2, going a process that looks rough to a 

process that is fairly smooth.  
   
 Other covariances are possible:  Cauchy, polynomial functions, etc. 
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Putting it all together 
 Start with N runs of a computer code, with points {xi, yi}.  

Ideally, the N points will be a well-spaced design such as Latin 
Hypercube. 

 Define the mean function for the Gaussian process. 
 Often, zero mean or constant mean is used.  

 Define the covariance function for the Gaussian process.  
 Typically, the power-exponential function is used.   

 Estimate the parameters governing the Gaussian process, 
including β, σ, and any parameters of the correlation 
function R such as θj. 
 Can use maximum likelihood or Bayesian methods  

 Substitute the parameters in the prediction equations and 
obtain mean and variance estimates for new points x*   
 
 

 



Parameter Estimation (MLE) 
 The observed training values represent a realization of a multivariate 

normal distribution.  

𝑓𝑓 𝒀𝒀 = (2𝜋𝜋)−
𝑁𝑁
2 |Σ|−

1
2𝑅𝑅𝑥𝑥𝑅𝑅 −

1
2

(𝒀𝒀 − µ)𝑇𝑇Σ−1(𝒀𝒀 − µ)   

 The basic idea of MLE is to find the particular mean vector and 
covariance matrix that define the most likely multivariate normal 
distribution to result in the observed data. 

 Take the Log Likelihood and maximize it: 

 log(𝑓𝑓 𝒀𝒀) = −𝑁𝑁
2

log 2𝜋𝜋 − 1
2

(𝜎𝜎2𝑁𝑁|𝑹𝑹|) − 1
2𝜎𝜎2

(𝒀𝒀 − F𝛃𝛃)𝑇𝑇 𝑹𝑹−1(𝒀𝒀 − F𝛃𝛃) 
 Drop the -1/2 term, and the first constant term and minimize the 

negative log-likelihood:  

 𝑁𝑁𝑁𝑁𝑁𝑁 = Nlog 𝜎𝜎2 + log 𝑅𝑅 + 1
𝜎𝜎2

(𝒀𝒀 − F𝛃𝛃)𝑇𝑇 𝑹𝑹−1(𝒀𝒀 − F𝛃𝛃) 

  



Parameter Estimation (MLE) 
 Use global optimization methods to optimize the NLL  
 OR 
 Use gradient-based optimization to optimize the NLL.  The derivations have 

been worked out with respect to β, σ, and correlation parameters of R.  
 Conditional on fixed values of the correlation parameters, the optimal 

values for β and σ are given by the generalized least squares formulation: 
𝜷𝜷� = (𝑭𝑭𝑻𝑻𝑹𝑹−𝟏𝟏𝑭𝑭)−𝟏𝟏(𝑭𝑭𝑻𝑻𝑹𝑹−𝟏𝟏𝒀𝒀)  

𝜎𝜎2� =
1
𝑁𝑁

(𝒀𝒀 − F𝛃𝛃)𝑇𝑇 𝑹𝑹−1(𝒀𝒀 − F𝛃𝛃) 

 One can use an iterative method, and obtain optimal correlation 
parameters θ, then calculate R and substitute it into above expressions 
above for β and σ. 

 This optimization has been studied fairly thoroughly.  A good reference is:  
Jay Martin.  “Computational Improvements to Estimating Kriging Metamodel 
Parameters.” Journal of Mechanical Design.  Aug. 2009, Vol. 131, p. 084501:1-7. 
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