

Exceptional service in the national interest

Dakota Software Training

Characterizing Your Model: Performing Initial Dakota Studies

http://dakota.sandia.gov

Module Learning Goals

- See how Dakota can automate what you are already doing
- Know what model characteristics will affect how you use Dakota
- Be able to run a basic study to characterize a model

Module Outline

- Introduce cantilever beam example
- Explore the cantilever beam model
 - What does it mean to explore a model?
 - How would you do it now? (discussion and example)
 - How can it be done with Dakota? (including exercise)
- Model characteristics relevant for Dakota use
 - Definitions and illustrations
 - Exercises: Use Dakota to identify characteristics of multiple example problems

Model Characterization

THE CANTILEVER BEAM MODEL

Your first week on the job...

• Scenario: Your company believes the latest version (12.1.4) of Cantilever Physics, an advanced cantilever beam simulation tool developed by Sandia National Laboratories, may be useful in performing mission-relevant simulation based analyses. You are asked to evaluate the tool, so you download the software and put together a simple cantilever beam model that is representative of many of your problems.

Cantilever Physics

Parameters:

L: length (in)

w: width (in)

t: thickness (in.)

 ρ : density (lb/ft³)

E: Young's modulus (lb/in²)

X: horizontal load (lb)

Y: vertical load (lb)

Responses:

M: mass (lb)

S: stress (lb/in²)

D: displacement (in)

$$M = \rho * wt * \frac{L}{12^3}$$

$$S = \frac{600}{wt^2}Y + \frac{600}{w^2t}X$$

$$D = \frac{4L^3}{Ewt} \sqrt{\left(\frac{Y}{t^2}\right)^2 + \left(\frac{X}{w^2}\right)^2}$$

Cantilever Physics

SNL's *Cantilever Physics* simulator has several characteristics typical of engineering and science codes:

- Text-based input file/deck and text-based output
- Each run of Cantilever Physics simulator "maps" one set of inputs to one set of outputs
- Command-line driven

cantilever cantilever.i

Demo materials are in ~/exercises/characterization/1

Model Characterization

EXPLORE THE MODEL

Characterizing model behavior enables model and software assessment

- Is the model behaving as you would expect based on your physics knowledge?
- Is the model/software robust across the range of model parameters you might expect to see?
- What tools or methods would you be able to use to perform more sophisticated design/reliability/safety analyses? (I.e., what methods in Dakota would be applicable?)
- Discussion: What are other motivations for model characterization?

How would you go about exploring Cantilever Physics?

- Basic Idea: Vary model inputs (parameters/variables) and observe how model outputs (responses/quantities of interest) are affected
- Discussion: What are some approaches to varying model parameters you might use?

Demo: Exploring Cantilever Physics

- See how responses vary as we change parameter values
- Demo (Exercise 1) materials are in ~/exercises/characterization/1
- Discussion: What are some shortcomings of this approach?

Model exploration using Dakota

Centered Parameter Study

- Vary parameters along coordinate axes
- Least computationally expensive
- Only get univariate effects

Multi-Dimensional (Grid) Parameter Study

- Vary parameters according to a grid pattern
- High computational cost
- Multi-purpose use (e.g., multivariate effects, sensitivities, surrogates)

Latin Hypercube Sampling (LHS)

- Vary parameters according to a space filling statistical design
- Low cost for univariate effects; moderate to high for multivariate
- Multi-purpose use

Exercise 2: Explore the cantilever model using Dakota

- Exercise materials are in ~/exercises/characterization/2
- Along with the cantilever files, you will find three Dakota input files
 - dakota_cantilever_centered.in Centered parameter study
 - dakota_cantilever_grid.in Grid parameter study (long run time)
 - dakota_cantilever_lhs.in Latin hypercube sampling
- Run the Dakota studies

```
dakota -i <dakota_input_file> -o <dakota_output_file>
```

- A .dat file will be produced for each
- Plot the results
 - Use plot_dakota_centered for the centered parameter study and plot_dakota_scatter for the grid and LHS studies

plot_dakota_scatter cantilever_grid_tabular.dat L,p,E mass,stress,displacement

Let's take a quick look at the Dakota output...

Model Characterization

RELEVANT MODEL CHARACTERISTICS

Model characteristics relevant for Dakota use (1)

not exist

Non-smooth: has "kinks" in it

Model characteristics relevant for Dakota use (2)

- Discontinuous: cannot be drawn without lifting your pencil
 - i.e., has "gaps" in the response
- Note that robustness of simulation can be a factor here
 - i.e., crashes or fails for particular parameter value combinations

Model characteristics relevant for Dakota use (3)

 Multi-modal: having multiple local minima

- Noisy: multi-modal "on steroids"
 - Often has some underlying trend

Model characteristics relevant for Dakota use (4)

 Range with multiple "regimes": response behavior is notably different over different intervals of parameters

Exercise 3: Explore additional examples and identify characteristics and identify characteristics

- Discussion: But first, what relevant characteristics just discussed did the cantilever model exhibit?
- Exercise materials are in ~/exercises/characterization/3
- For any or all of the following, run Dakota and plotting tools
 - dakota_herbie_grid.in, dakota_quasi-sine_centered.in, dakota_shubert_centered.in, dakota_genz_grid.in
 - Note: use plot_dakota_centered for the centered studies and plot_dakota_scatter for the grid studies
 - For herbie, quasi-sine, and genz: parameters are x1, x2.
 - For shubert: parameters are x1, x2, x3, x4.
 - For all: response is f1.
- Discussion: Which examples exhibit which characteristics? Are there any for which it is not entirely clear?