

Obtaining the Socorro code

1. Follow the links from the home page to download socorro.tgz (a
 gzipped tar file).

2. On a unix file system, execute "gunzip socorro.tgz" to convert
 socorro.tgz to socorro.tar and then execute "tar -xvf socorro.tar"
 to unpack this file.

3. Read /socorro/LICENSE, which explains the conditions for copying
 and using Socorro (GNU General Public License). If you agree with
 these conditions, proceed to install the software.

Installation
1. Required Software

Socorro requires both a Fortran 90/95 compiler and a C compiler.
Several other software packages are also required:
 - FFTW 2.1.5 (http://www.fftw.org). Newer versions
 won't work. We're in the process of switching
 the interface to support 3.0 and above. There
 also support for SGI FFT routines.
 - BLAS library
 - LAPACK library
 - MPI library
 - Gnu make or equivalent
 - Perl

2. Obtain a make.conf file

You will need to manually copy a make.conf from
the makefiles directory to the socorro root directory
(here). After that edit it to your hearts content.

Most of the variables are pretty obvious, but two
critical variables are not. The

first, MPLIBS (Multi-Processor Libraries), should contain all
the libraries needed for socorro including MPI. The other,
UPLIBS (UniProcessor Libraries), should NOT contain anything
related to MPI.

Once you've made a stab at configuring make.conf
you are ready to continue.

3. Run configure

Currently configure creates the files cpointer_mod.f90 and
ctof_io.h. These file take into account the endian-ness
of your machine and provide the C <-> Fortran interface
passing data. It also creates all the local Makefiles.

To skip making the C <-> F90 interface add the option

 --no-interface

when invoking configure. You will need to manually create
or copy cpointer_mod.f90 and ctof_io.h in the src directory
before running configure.

Configure is run by typing:

 ./configure

with the optional option mentioned above.

If this works fine you can skip to step 3.

Cross-compiling or C<->F90 problems
--
If you are cross-compiling or mci doesn't work you will
need to manually run the "mci" program to generate the
2 files mentioned above. You can do this by first
changing to the tools/config directory and typing

 cc -o mci make_c_interface.c

on the compile machine. Replace "cc" with your C
compiler and any other misc options you need.

Next run the executable "mci" on the destination

machine. The machine you are going to be running
socorro on. This will create the 2 files
cpointer_mod.f90 and ctof_io.h. These files
should then be copied to the socorro source
directory "src".

After you've done this re-run configure skipping the
interface part:

 ./configure --no-interface

This will create the appropriate file links in the
different directories.

4. Build Socorro

Just type

 make

and hope for the best. This will build socorro and
also the routine taginfo located in tools/taginfo.

Socorro input and output files

 Socorro requires a set of input files, with the exact number depending on the
type of calculation being performed, and a unix directory system. The input file
names and the directories where the input files are located can be customized by
editing /socorro/src/path_mod.f90. The only exception is the control file, which
must be located in the run directory. The names of the output files can likewise
be customized by editing /socorro/src/path_mod.f90, however their locations can
only be the run directory. Descriptions of the various input and output files are
given below using the default directories and names set in path_mod.f90.

 Input files:

 argvf: Parameters used to specify and control a run. The parameters are
denoted with the tags
 described further below.

 data/crystal: Lattice vectors, atom types, and atom positions. The format is:
 <identifier_string>

 <lattice constant>
 <lattice vector 1>
 <lattice vector 2>
 <lattice vector 3>
 one of ["cartesian", "lattice", or specific variations of these]
 <number_of_atoms>
 ATOM_TAG <position in cartesian or lattice coordinates>
 ATOM_TAG <position in cartesian or lattice coordinates>

 (EOF)

 data/NCP.ATOM_TAG: Data for the ATOM_TAG norm-conserving
pseudopotential.

 data/PAW.ATOM_TAG: Data for the ATOM_TAG projector-augmented-wave
functions.

 data/kpoints: (optional) Sampling points in the Brillouin zone. The format is:
 <number of sampling points>
 one of ["cartesian", "lattice", or specific variations of these]
 <point in cartesian or lattice coordinates> <degeneracy>

 (EOF)

 data/initial_velocity: (optional) Initial velocities for an MD run. The format is:
 <velocity components for atom 1>
 <velocity components for atom 2>

 (EOF)

 data/lgroup: (optional) Lattice point-group operations. The format is:
 <number of point operators> <number of translations per point
operation>
 <space>
 <3x3 matrix denoting a point-group operator in lattice representation>

 (EOF)

 data/restartf: (optional) Restart file.

 data/stopf: (optional) File containing commands to halt a running program.
 <stop> causes a program to halt gracefully
 <abort> causes a program to halt as soon as possible

 Output files:

 errorf_xxx: Error and warning messages for process xxx.

 diaryf: Diary of the run.

 new_crystal: New crystal file after an update of the atom positions.

 new velocity: New atom velocities after an MD update.

 new_kpoints: (optional) Brillouin zone sampling points generated using the
Monkhorst-Pack scheme.

 new_lgroup: (optional) Lattice point-group operations.

 new_pgroup: (optional) Point-group operations of the space group.

 new sgroup: (optional) Space-group operations.

 new_restartf: (optional) Restart file.

 md_trajectory: Atom positions during an MD run.

Running test calculations

 To run the test in /socorro/testdata/si_ncp:
 # cd run
 # .linktest si_ncp
 # ./socorro

 To run the test in /socorro/testdata/paw_si:
 # cd run
 # ./linktest paw_si
 # ./socorro

Control tags

tag formats

 The lines below explain tags and their associated values which can be used to
control a socorro calculation. To

 use a tag, simply give it on a separate line in argvf followed by the tag value or
values. For example, to specify
 a wavefunction cutoff of 20 Ryd add the following line to argvf:

 wf_cutoff 20.0d0

 Note that: Character parameters are generally accepted with three levels of
capitalization, for example, NONE, None, none.
 Logical parameters can be capitalized or not.
 Energies should be given in Rydberg units.
 Distances should be given in atomic units (Bohr radii).

 Tag descriptions are grouped according to code areas, and the format for the
descriptions is as follows:

 tag: Meaning
 type; valid values or range of numerical values; default value
 modules where tag is sought; object where value is stored; name of variable
holding the value
 first option if tag is not found, second option if tag is not found, ...
 Note #1
 Note #2
 .
 .
 .

Wavefunction related tags:

 wf_cutoff: Determines the number of plane waves in the wavefunction
expansion.
 real number; >= 0.0; no default
 multibasis_mod, layout_mod (optional); protobasis_obj; pb%cutoff
 run aborts
 Expansion includes plane waves for which (G + k)^2 < wf_cutoff, where G
is a wave vector and k is a sampling point

 nbands: Number of bands (wavefunctions at a Brillouin zone sampling point).
 integer; >= total charge/2; no default
 multibasis_mod; protobasis_obj; pb%nbands
 run aborts

 kpoints: Method of obtaining sampling points (k-points) in the Brillouin zone.
 character; GMP, GBP, USP; GMP
 kpoints_mod; kpoints_obj; kp%o%mode

 default is used
 For GMP (Generate Monkhorst Pack), a mesh is generated from mpparams
(see below). These points are closed using the
 lattice group and then reduced using the point group of the space group
(augmented with inversion if it is not
 already present in the space group).
 For GBP (Generate Baldereschi Point), the point at (0.25,0.25,0.25) is used
for sampling. This mode is meant to be
 used only in molecular dynamics calculations and only with a cubic cell
and the C_1 space group.
 For USP (Read Special Points), sampling points are read from file
/data/kpoints. The format is
 --
 n
 rep
 k1(1) k1(2) k1(3) d(1)
 k2(1) k2(2) k2(3) d(2)
 .
 .
 .
 kn(1) kn(2) kn(3) d(n)
 --
 where n is the number of sampling points, rep is the representation (lattice
or cartesian), ki(j) is the j'th coordinate of the i'th sampling point, and d(i) is the
degeneracy. The points are assumed to consistent with the lattice group and
space group.

 mpparams: Numbers of Brillouin zone sampling points along the three
reciprocal lattice vectors.
 3 integers; -inf < i < +inf; no defaults
 kpoints_mod; kpoints_obj; kp%o%mpp
 run aborts
 Basically Monkhorst-Pack parameters with shifts of the mesh accomplished
by giving one or more negative parameters. Values along two reciprocal lattice
vectors related by a point group operation must be the same.
 The point at zero for a reciprocal lattice vector is included if the value for
that vector is < 0.
 Values 0 and -1 yield the same sampling points as the value 1.
 For a hexagonal lattice, sampling points fall on the line through the origin
and parallel to the c-axis.

 save_kpoints; .true., .false.; .false.
 kpoints_mod; NA; NA
 default is used
 The file is saved in the run directory with the name "new_kpoints". The
format is as given above with rep =

 "lattice".
 Saves are performed only when the kpoints_mode is GMP (the default
setting).

 kt: Determines band occupations.
 real number; > 0.0; no default
 electrons_mod; electrons_obj; el%o%kt
 run aborts
 Fermi function is used to determine band occupations with kt defining the
energy broadening

 wf_init: Determines how the Kohn-Sham functions are initialized
 character; > RANDOM, DIAGNOSTIC; RANDOM
 multivector_mod; NA; NA
 default is used
 RANDOM: Fourier coefficients are set to random numbers between -0.5 and
+0.5
 DIAGNOSTIC: Fourier coefficients are set to Ross Lippert's diagnostic
values

Mesh related tags:

 den_cutoff: Determines the number of plane waves in the fields (e.g. electron
density) expansions.
 real number; >= 0.0; no default
 layout_mod; layout_obj; lay%o%cutoff
 derived from dims, taken as 4*wf_cutoff
 Expansion includes plane waves for which G^2 < den_cutoff where G is a
wave vector

 dims: Numbers of real-space mesh points along the three lattice vectors.
 3 integers; > 0; no defaults
 layout_mod; layout_obj; lay%o%dims
 derived from den_cutoff (derived values are used if they are larger than
dims)
 Values along two lattice vectors related by a space-group operation must be
the same
 Values may be increased to accomodate radix set of the FFT routine

Iterative solver related tags:

 max_cycles: Maximum number of iterations used to converge the electronic
structure.
 integer; >= 0; 40
 config_mod; config_obj; cfg%o%max_cycles
 default value used

 cvg_mode: Measure used to determine if the electronic structure is converged.
 character; NONE, ENERGY, DENSITY; DENSITY
 config_mod; config_obj; cfg%o%cvg_mode
 default value used
 NONE causes iteration to continue up to max_cycles
 ENERGY causes iteration to continue until the total energy is below a
tolerance set by cfg%o%energy_tol
 DENSITY causes iteration to continue until the electron density residual is
below a tolerance set by cfg%o%dens_tol

 energy_tol: Tolerance for determining convergence when cfg%o%cvg_mode =
ENERGY.
 real number; > 0.0; 1.0e-6
 config_mod; config_obj; cfg%o%energy_tol
 default value used
 The electronic structure is converged when the total energy is below
cfg%o%energy_tol

 dens_tol: Tolerance for determining convergence when cfg%o%cvg_mode =
DENSITY.
 real number; > 0.0; 1.0e-8
 config_mod; config_obj; cfg%o%dens_tol
 default value used
 The electronic structure is converged when the electron density residual is
below cfg%o%dens_tol

Eigensolver related tags:

 solver_method: Type of eigensolver to use.
 character; CG, GCG, BD; CG
 eigensolver_mod; eigensolver_obj; es%o%method
 default is used
 CG invokes a conjugate gradients solver
 GCG invokes a Grassman conjugate gradients solver
 BD invokes a block Davidson solver

 solver_dir: Number of wavefunction updates per call to the eigensolver.

 integer; > 0; 2 (es%o%method = CG), 10 (es%o%method = GCG), 10
(es%o%method = BD)
 eigensolver_mod; eigensolver_obj; es%o%max_dir
 default is used

 solver_tol: Tolerance used to determine convergence of the eigenfunctions.
 real number; > 0.0; 1.0e-4 (es%o%method = CG), 1.0e-5 (es%o%method =
GCG), 1.0e-4 (es%o%method = BD)
 eigensolver_mod; eigensolver_obj; es%o%res_tol
 default is used
 Tolerance refers to the largest wavefunction residual

 remap_type: Type of routine used to remap wavefunctions.
 character; MPI, CUSTOM; CUSTOM
 multibasis_mod; multibasis_obj; mb%o%remap_type
 default is used
 MPI invokes the MPI_ALLTOALLV routine
 CUSTOM invokes the C remap_2d routine written by Steve Plimpton

Projector related tags:

 projector_type: Type of non-local projectors to use.
 character; RECIPROCAL, REAL; RECIPROCAL
 hamiltonian_mod; h_common_obj; hc%o%projector_type
 default value used
 RECIPROCAL invokes reciprocal-spaced projectors
 REAL invokes real-space projectors constructed using the scheme
proposed by King-Smith et al.

 projector_radius_xxx: Radius used to optimize real-space projectors for atom
type xxx.
 real number; < radius of sphere which will fit inside the supercell; 4.0
 ncp_data_mod; ncp_data_obj; pd%o%r_opt
 run aborts

 optimization_points: Number of points used to optimize the real-space
projectors.
 integer; > 0; 171
 ncp_data_mod; NA; NA
 default is used
 RESET THIS VALUE ONLY IF YOU UNDERSTAND THE OPTIMIZATION
ROUTINE!

Mixer related tags:

 mix_field: Field to be mixed.
 character; DENSITY, POTENTIAL; DENSITY
 fields_mod; fields_obj; f%o%mix_field
 default is used

 mix_type: Type of mixing scheme to use.
 character; NONE, SIMPLE, PULAY, ANDERSON; PULAY
 mixer_mod; mixer_obj; mx%o%mix_type
 default is used

 mix_weight_pf: Global proportion of the new field to mix with the old field.
 real number; 0 < mix_weight_pf <= 1; 0.8 (SIMPLE), 0.8 (PULAY), 0.8
(ANDERSON)
 mixer_mod; mixer_obj; mx%o%weight_pf
 default is used
 Used only with mix_type = SIMPLE, PULAY, or ANDERSON.

 mix_weight: Determines the distribution of mixing weights for different wave
vector coefficients.
 character; CONSTANT, KERKER; CONSTANT
 mixer_mod; mixer_obj; mx%o%weight_type
 default is used
 Used only with mix_type = SIMPLE, PULAY, or ANDERSON.
 For mix_weight = CONSTANT, weight is mix_weight_pf independent of
wave vector.
 For mix_weight = KERKER, weight depends on wave vector according to
mix_weight_q.

 mix_weight_q: Wave-vector magnitude at which mixing weight makes a
transition from low to high.
 real number; >= 0.0; 0.8 (SIMPLE), 0.8 (PULAY), 0.8 (ANDERSON)
 mixer_mod; mixer_obj; mx%o%weight_q
 default is used
 Used only with mix_weight = KERKER.
 For wave vector G, weight is mix_weight_pf/(1.0 + q^2/G^2)

 mix_metric: Weighting for the mixing residuals.
 character; UNITY, KERKER; UNITY
 mixer_mod; mixer_obj; mx%o%metric_type
 default is used
 Used only with mix_type = PULAY or ANDERSON
 For mix_metric = UNITY, weight is 1.0 independent of wave vector.
 For mix_weight = KERKER, weight depends on wave vector according to
mix_metric_q.

 mix_metric_q: Wave-vector magnitude at which metric weight makes a
transition from high to low.
 real number; >= 0.0; 0.8 (PULAY), 0.8 (ANDERSON)
 mixer_mod; mixer_obj; mx%o%weight_q
 default is used
 Used only with mix_metric = KERKER.
 For wave vector G, weight is (1.0 + q^2/G^2)

 mix_saves: Maximum number of mixing residuals to save.
 integer; 1 <= mix_saves <= 20; 5
 mixer_mod; mixer_obj; mx%o%max_saves
 default is used
 Used only with mix_type = PULAY or ANDERSON

Symmetry related tags:

 lattice_symmetry: Determines how the lattice group is obtained.
 character; AUTO, USER; AUTO
 symmetry_mod; point_group_obj; pg%o%mode (AUTO or USER)
 default is used
 For AUTO, the lattice group is generated from the lattice.
 For USER, the lattice group is read from file lgroup with format given below.
 The lattice group is used to close the Monkhorst-Pack k-point mesh.

 symmetry: Determines whether or not space-group symmetry is used.
 character; FULL, AUTO, OFF; AUTO
 symmetry_mod; space_group_obj; sg%o%mode
 default is used
 For FULL, the space group is generated from the lattice group and atom
positions. A new space group is generated
 when the lattice group or atom positions change.
 For AUTO, the space group is generated from the lattice group and atom
positions. A new space group is generated
 when the lattice group changes and when the old space group is not
compatible with new atom positions.
 For OFF, the trivial space group (C_1) is generated.
 The space group (augmented by inversion if it is not already present) is
used to reduce the closed Monkhorst-Pack points.

 symmetrize_atoms: Symmetrizes the starting atom positions.
 character; ON, OFF; OFF
 external_mod; NA; NA

 default is used

 list_lattice_group: Prints the lattice-group operations to diaryf.
 logical; .TRUE., .FALSE.; .FALSE.
 symmetry_mod; NA; NA
 default is used

 list_space_group: Prints the space-group operations to diaryf.
 logical; .TRUE., .FALSE.; .FALSE.
 symmetry_mod; NA; NA
 default is used

 save_lattice_group; .true., .false.; .false.
 symmetry_mod; NA; NA
 default is used
 The file is saved in the run directory with the name "new_lgroup". The
format is as follows:
 number_of_point_operators number_of_translations_per_point_operation
 <space>
 3x3 matrix denoting the first point operator (in lattice representation)
 <space>
 3x3 matrix denoting the next point operator (in lattice representation)
 <space>
 .
 .
 save_space_group; .true., .false.; .false.
 symmetry_mod; NA; NA
 default is used
 The file is saved in the run directory with the name "new_sgroup". The
format is as follows:
 # of point operators # of translations per point operation
 <space>
 3x3 matrix denoting the first point operator (in lattice representation)
 first translation for the first point operator
 second translation for the first point operator
 .
 .
 last translation for the first point operator
 <space>
 3x3 matrix denoting the next point operator (in lattice representation)
 first translation for the next point operator
 second translation for the next point operator
 .
 .
 last translation for the next point operator
 <space>

Functional related tags:

 functional: Type of exchange-correlation functional to use.
 character; LDA, PW91, PBE, BLYP, YLDA1, YLDA2; LDA
 exc_mod; xc_obj; xc%o%method
 default is used
 YLDA's are LDA type functionals by Armiento and Mattsson with an
alternative separation of exchange and correlation.
 YLDA's should give approximately the same results as LDA. Please notify
Ann E. Mattsson if not.

 correlation: Which LDA correlation to use.
 character; PZ, PW, VWN, LYP; depending on functional (see below)
 exc_mod; xc_obj; xc%o%ctype
 default is used (see below)

 functional default
 LDA -> PZ (PRB 23, 5048 (1981))
 PW91 and PBE -> PW (PRB 45, 13244 (1992))
 BLYP -> LYP (PRB 37, 785 (1988))

 VWN (Can. J. Phys. 58, 1200 (1980)) not used as default.
 Note that YLDA's don't have separate correlation.

 functional_method: Method to calculate the xc potential for non-LDA.
 character; WB, TRAD (see below); WB
 exc_mod; xc_obj; xc%o%method
 default is used
 TRAD is not implemented yet.
 This tag is ignored if used with LDA type functionals.

 derivatives: Method to calculate derivatives of the functional.
 character; NUM, ANALYT; depending on functional (see below)
 exc_mod; xc_obj; xc%o%dermethod
 default is used (see below)
 ANALYT is only available for LDA with PZ or PW correlation where it is
also default.
 NUM is default for other functionals.

Atomic-representation related tags:

 atomic_representation: Method for representing atoms.
 character; NCP, PAW; NCP
 atomic_operators_mod; atomic_operators_obj; ao%type
 default is used

 mix_atomic_density: Switch to invoke mixing of the PAW atomic density.
 logical; .TRUE., .FALSE.; .FALSE.
 atomic_operators_paw_mod; atomic_operators_paw_obj;
aops%o%mix_adens
 default is used

 mix_atomic_density_weight: Proportion of the new adens to mix with the old
adens.
 real number; 0 < mix_atomic_density_weight <= 1; 0.5
 atomic_operators_paw_mod; atomic_operators_paw_obj;
aops%o%adens_mix_weight
 default is used

Post-processing related tags:

 forces: Controls whether or not the forces are computed automatically
 character; ON, OFF, .TRUE., .FALSE.; OFF
 config_mod; NA; NA
 default is used
 Note: Even when the forces tag = OFF, the forces will be computed when
x_forces(cfg)
 or diary_forces(cfg) is called.

 pressure: Controls whether or not the pressure is computed automatically
 character; ON, OFF, .TRUE., .FALSE.; OFF
 config_mod; NA; NA
 default is used
 Note: Even when the pressure tag = OFF, the pressure will be computed
when x_pressure(cfg)
 or diary_pressure(cfg) is called.

 stress_tensor: Controls whether or not the stress tensor is computed
automatically
 character; ON, OFF, .TRUE., .FALSE.; ON

 config_mod; NA; NA
 default is used
 Note: Even when the stress_tensor tag = OFF, the stress_tensor will be
computed when x_stress_tensor(cfg)
 or diary_stress_tensor(cfg) is called.

Restart related tags:

 restart: Determines whether or not to restart and how much information to read
 character; OFF, F, FE; OFF
 config_mod; NA; NA
 default is used
 OFF: restart information will not be read
 F: fields information (atomic and grid densities) will be read
 FE: fields and electrons (Kohn-Sham functions) information will be read
 EFE: fields, electrons, and external (crystal) information will be read (not
currently implemented)

 write_restart: Determines whether or not to write a restart file and how much
information to write
 character; OFF, F, FE, EFE; OFF
 config_mod; NA; NA
 default is used
 OFF: restart information will not be written
 F: fields information (atomic and grid densities) will be written
 FE: fields and electrons (Kohn-Sham functions) information will be written
 EFE: fields, electrons, and external (crystal) information will be written (not
currently implemented)
 Note: The restart file is written at the end of the cfg constructor. To write a
restart file after a
 cfg update (from the socorro level), call the public write_restart(cfg,tag)
routine with tag set
 to F, FE, or EFE.

Structural Optimization related tags:

 relax_method
 character; NONE, STEEPEST_DESCENTS, SD,
CONJUGATE_GRADIENT, CG, QUENCHED_MINIMIZATION, QM; NONE

 relax_force_tol
 real number; ; 1.d-3

 relax_max_steps
 integer; 0 < relax_max_steps ; 100

 relax_prefactor
 real number; 0 < relax_prefactor; 1.0

 relax_time_step
 real number; 0 < relax_time_step; 1.0

ENERGY MINIMIZATION:

Fixed volume optimization of the atomic positions. All atoms are moved
- there is currently no method for constraining specific atoms.
This is called by the statement "if (optimize_lattice(cfg)) call
diary(cfg)" in socorro.f90.
optimize_lattice returns a logical that indicates whether any
modifications to cfg have occurred. The cfg that is returned
corresponds to the optimized positions.

The relevant options in argvf are as follows

relax_method: Specify the relaxation method to be used.

 NONE default Do not perform a structural optimization

 STEEPEST_DESCENTS, SD 'steepest descents' (I have seen
 different definitions of 'steepest descents'.) What is implemented
 here is the simple approach of changing the coordinates by
 F*relax_prefactor where F is the current force and relax_prefactor
 is a parameter that you can set (see below). This is usually NOT
 the best way to get to a minimum. It was included because it was the
 obvious first thing to code and is a standard 'brute force' approach to
 optimization.

 CONJUGATE_GRADIENT, CG 'conjugate gradients'
 Implements a conjugate gradient search for the minimum
 energy structure. (See Press, et.al, 'Numerical Recipes' for
 a description of this algorithm.) This is typically the best
 way to go when the initial positions are close to the minimum.

 QUENCHED_MINIMIZATION, QM 'quenched MD'
 This implements an algorithm described in Della Valle and Andersen,
 J. Chem. Phys. 97, 2682 (1992). It performs a molecular dynamics
 simulation using the 'velocity Verlet' algorithm with the following
 modifications. At each time step and for each particle, the velocity

 is reset as follows. If the projection of the force along the velocity
 is positive, the velocity is replaced by the projection of the velocity
 along the direction of the force. If the projection is negative, the
 velocity is set to zero. This will quench the dynamics to the minimum.
 This approach seems to be best suited for getting close to the minimum
 when the initial guess may be poor.

relax_force_tol: This is the stopping criteria for all methods.
 The code stops when the root mean square value of the force components is
 less than this value. default: 1.d-3.

relax_steps: This sets a maximum number of force calls that can be made to
 attempt to find the minimum. Note that in some cases, the actual
 number of calls may exceed this slightly since it will always try
 to finish the line minimizations in the conjugate gradient
 approach. default: 100

relax_prefactor: This is the constant used in relax_method=SD (see above)
 Note that the efficiency and stability of this method depends on this
 choice. If the value is too large, the optimization will become
 unstable. If it is too small, a large number of force calls is
 required to get to the minimum. default: 1.0

relax_time_step: This is used in relax_method=QM. It sets the fixed time
 step for the MD simulation. default: 1.0 (probably too small for most
 cases.)

atom_mass_xxx This is the mass of the atom in amu used for
 quench_minimization. Here xxx is replaced by the tag used in the
 crystal file. There should be one line like this for each type.
 The default is to assume a mass of 1 amu.

Molecular Dynamics related tags:

 md_method
 character; NONE, NVE, NVT_RESCALE, NVT_ANDERSON,
NVT_HOOVER; NONE

 md_time_step
 real number; 0 < md_time_step; 100.

 md_steps
 integer; 0 <= md_steps; 0

 md_skip_steps
 integer; 0 <= md_skip_steps <= md_steps; 0

 md_init_temp
 real number; 0 <= md_init_temp; 0.

 md_desired_temp
 real number; 0 <= md_desired_temp; md_init_temp

 md_temp_freq
 integer; 0 < md_temp_freq; 1

 md_hoover_mass
 real number; 0 < md_hoover_mass; 1000.

 md_gen_velocities
 character; YES, NO; YES

The code can currently perform either a NVE (constant number,
volume and energy) micro-canonical simulation or a NVT (constant
number, volume and temperature) simulation. For the later case, a
variety of standard thermostat methods are implemented. The
initial velocities can be either read from the file
"data/initial_velocity" or are set randomly based on an input
temperature. The integration is performed via the 'velocity
Verlet' algorithm (see any book on MD simulations) with a fixed
time step. Intermediate atomic positions are output to the file
'md_output' at every time step. The masses are set with the arg
parameter atom_mass_xxx (see below).

This is called by the statement "if (run_moldyn(cfg)) call
diary(cfg)" in socorro.f90. run_moldyn returns a logical that
indicates whether any modifications to cfg have occurred. If an
MD simulation is performed, the cfg returned is that for the final
time step.

The relevant parameters are

md_method: Specify the molecular dynamics method to be used.

 NONE (default) - do no MD.

 NVE perform a NVE simulation using a fixed time-step velocity
 Verlet algorithm.

 NVT_RESCALE perform a NVT (isochoric,isothermal) simulation using a

 fixed time-step. The temperature control is through periodic
 rescaling of the velocities to achieve the desired temperature.

 NVT_ANDERSON perform a NVT (isochoric, isothermal) simulation using
 a fixed time-step. The temperature is controlled via a stochastic
 method due to Anderson (see H C Anderson, J. Chem. Phys. 72, 2384
 (1980)). At each time step and for each atom, a random velocity
 from a Maxwell-Boltzman distribution replaces the velocity with a
 probability give by 1/temp_freq.

 NVT_HOOVER perform a NVT (isochoric, isothermal) simulation using a
 fixed time-step. The temperature is controlled using the Hoover
 implementation of the NosÈ thermostat. (See, for example,
 "Understanding Molecular Simulations" by Frenkel and Smit). The
 rate of energy flow between the ions and the heat bath is controlled
 by md_hoover_mass.

md_time_step Time step used for the MD. See note below regarding units.
 default: 100.

md_steps Number of time steps to integrate the equation of motion.
 default: 0

md_skip_steps Number of time steps to ignore before starting to
 compute averages - in other words (skip_steps)*(time_step) is an
 equilibration time. default: 0

md_init_temp Temperature used to define the initial velocity
 distributions. The velocities are selected from a Maxwell-Boltzman
 distribution. Then they are adjusted to give zero total momentum
 and rescaled to give the exact temperature requested. default: 0

md_desired_temp Target temperature for the isothermal simulation methods.
 default: md_init_temp

md_temp_freq Parameter that determines the frequency of velocity
 modifications for the isothermal simulation methods. For NVT_RESCALE,
 the velocity is rescaled every md_temp_freq time steps. For
 NVT_ANDERSON, it give the inverse of the probability that an
 atom will get a random velocity in a given time step.

atom_mass_xxx This is the mass of the atom in amu. Here xxx is
 replaced by the tag used in the crystal file. There should be
 one line like this for each type. The default is to assume a
 mass of 1 amu.

md_hoover_mass Used by NVT_HOOVER. It is the effective mass
 associated with the additional coordinate added to control the
 temperature. It may need to be adjusted by trial and error.
 default: 1000.

md_gen_velocities Specify the method for initializing velocities

 YES Determine the initial velocities based on md_init_temp.
 (default)

 NO Read the initial velocities from the file 'initial_velocity' in the
 run directory. This file contains a line with the x, y, and z
 velocity for each atom on a separate line. The order of the atoms
 is assumed to be the same as in the crystal file.

Transition State Finding related tags:

 ts_method
 character; 0, 1; 0

 dimer_separation
 real number; 0 < dimer_separation; 0.1

 dimer_force_tol
 real number; 0 < dimer_force_tol; 0.001

 dimer_max_steps
 integer; 0 < dimer_max_steps; 100

Currently, there is only one transition state finding method implemented,
the 'dimer method'. This is described in detail in Henkelman and JÛnsson,
J. Chem. Phys. 111, 7010 (1999). This method attempts to find saddle
points with one unstable mode (ie a single negative value of the Hessian
matrix.) The trick is to avoid computing the second derivatives of the
energy. To do this, two configurations that differ by a fixed distance are
considered. (This is the 'dimer'.) The dimer is alternately rotated such
that the separation is along the direction of minimum curvature and then
translated in the direction of the saddle point. The current
implementation does not incorporate all of the sophisticated algorithms for
optimization discussed in the paper. Also, there is currently no way to
initialize the first orientation of the dimer other than choosing a
direction at random. (Waiting on the new I/O routines before implementing
this.) This takes a large number of forces calls, especially to get the

first estimate of the dimer orientation.

This is called by the statement
"if (transition_state(cfg)) call diary(cfg)" in socorro.f90.
transition_state returns a logical that indicates whether any
modifications to cfg have occurred. On return after a transition state
search, cfg corresponds to the transition state.

The relevant parameters are the following

ts_method Specify the transition state method

 0 (default) do nothing

 1 implement the dimer method

dimer_separation The magnitude of the real space separation between the
 two configurations of the dimer. The algorithms are based on the
 assumption that this is small. Of course, if it is too small,
 numerical errors can become unacceptable because many of the
 calculations are based on differences between the calculations for
 each of the two configurations. default: 0.10

dimer_force_tol Stopping criteria which is based on the rms forces
 on the 'dimer'. Ideally, this will correspond to the net forces
 at the saddle point. default: 1.d-3

dimer_max_steps Maximum number of calculations of the dimer properties
 before the algorithm stops. Note that each calculation of a dimer
 property requires 2 electronic structure calculations. In some cases,
 it may make somewhat more calculations in order to stop at a sensible
 place. default: 100

NOTE ON UNITS:

The convention in the code is that energies are in Rydbergs and that
distances are in Bohrs. I have made the choice to have the code work
with the nuclear masses in units of the electron mass - keep in the spirit
of atomic units. For convenience, when masses are entered, they are assumed
to be in amu (atomic mass units) and are converted in the code
to electron masses. Having made this choice for the mass unit, the choice
of the time unit is now fixed. The unit of time is 3.421E-17 sec. Since
a typical MD time step is on the order of a few femtoseconds (fs),
the typical time steps will be on the order of 100 in the units used here.

There is a subtlety in the determination of the temperature. In classical
thermodynamics (MD is classical in the treatment of the ionic motion),
each degree of freedom has a kinetic energy of kT/2. The issue is related to
the number of degrees of freedom. If the MD method used conserves
the total momentum, then the number of degrees of freedom is 3(N-1).
If the total momentum is not conserved, the number of degrees of freedom
is 3N. The NVE and NVT_RESCALE methods conserve the total momentum.
(Actually, for NVT_RESCALE the total momentum remains zero if it starts
out zero. The initial velocities are generated in the code to have
zero total momentum.) For these methods, the code uses 3(N-1) degrees of
freedom to determine the temperature. For NVT_ANDERSON, the total
momentum is not conserved, so the code uses 3N degrees of freedom to
compute the temperature.

	Obtaining the Socorro code
	Installation
	1. Required Software
	2. Obtain a make.conf file
	3. Run configure
	4. Build Socorro

	Socorro input and output files
	Running test calculations
	Control tags
	tag formats
	Wavefunction related tags:
	Mesh related tags:
	Iterative solver related tags:
	Projector related tags:
	Mixer related tags:
	Symmetry related tags:
	Functional related tags:
	Atomic-representation related tags:
	Post-processing related tags:
	Restart related tags:
	Structural Optimization related tags:
	Molecular Dynamics related tags:
	Transition State Finding related tags:

	Back to top

