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Abstract

We present formulas and background information aiming at facilitating the implementation of

AM05[1] into Density Functional Theory[2] (DFT) codes of various types. We specifically consider

three different schemes for calculating the exchange-correlation potential: The White and Bird

scheme[3] used in many plane wave codes; the Pople, Gill, and Johnson scheme[4] used in many

Quantum Chemistry codes; and the ’traditional’ scheme used in many all-electron codes. Fortran

subroutines that can be modified to fit a specific code are available.[5]

PACS numbers:
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The exchange-correlation energy is

Exc =

∫

drn(r) εxc(n(r),∇n(r)) , (1)

where n(r) is the density at r, dr = drxdrydrz the volume element, and εxc = εx + εc is the

exchange-correlation energy per particle, which for AM05 is given by Eq. (12) in Ref. 1. εxc

is generally a functional of the density, εxc = εxc[n(r)]. We here restrict ourselves to the case

where the functional dependency is only through the density and gradients of the density

since this is the case for AM05 (and for most generalized gradient approximation (GGA)

type functionals).

It is straightforward to implement the AM05 exchange-correlation energy directly from

the article (Ref. [1]), the only minor obstacle being the need for a subroutine for calculating

the Lambert W function. At the AM05 web site [5] a subroutine for calculating the AM05

exchange-correlation energy is provided (including subroutines for the required Lambert W

function and the LDA correlation in the parametrization of Perdew and Wang[6, 7]).

The exchange-correlation potential, the functional derivative of the exchange-correlation

energy with respect to density,

Vxc =
δExc

δn
, (2)

is needed in self-consistent DFT calculations and we will now describe the most common

schemes for obtaining this potential.

To simplify the equations we use the quantity fxc = n εxc thus having

Exc =

∫

dr fxc(n(r),∇n(r)) , (3)

The exchange-correlation potential for the exchange-correlation energy in Eq. (3) is

Vxc(r) =
∂fxc(n(r),∇n(r))

∂n(r)
−∇ ·

∂fxc(n(r),∇n(r))

∂∇n(r)
. (4)

The first term in this potential is straightforward to obtain but the second term can be

treated in several ways. In the traditional scheme this term is expanded until derivatives of

the density and derivatives of fxc are separated. This means that for a given density the

full Vxc can be calculated within the functional routine. In contrast, the White and Bird,

and Pople, Gill, and Johnson schemes only partially expand this term and Vxc needs to be

assembled in a routine outside of the functional subroutine.
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Let us focus on the second term in Eq. (4) for the moment. It is a scalar product between

two vector quantities, ∇ and ∂fxc(n(r),∇n(r))
∂∇n(r)

. In a plane wave basis the second term is readily

Fourier transformed:

∇ ·
∂fxc(n(r),∇n(r))

∂∇n(r)
=

1

N

∑

G,r′

iG ·
∂fxc(n(r′),∇n(r′))

∂∇n(r′)
eiG·(r−r′) , (5)

this is the White and Bird scheme[3].

In Quantum Chemistry codes using finite basis sets φµ (µ = 1, . . . , N), the Fock matrices

are the needed objects and via integration by parts one obtains:

−

∫

∇ ·
∂fxc(n(r),∇n(r))

∂∇n(r)
φµφνdr =

∫

∂fxc(n(r),∇n(r))

∂∇n(r)
· ∇(φµφν)dr , (6)

this is the Pople, Gill, and Johnson scheme[4].

It is obvious that since the two terms in Eq. (4) are not treated in the same way in

the White and Bird, and the Pople, Gill, and Johnson schemes, the exchange-correlation

potential (or Fock matrices) needs to be assembled outside of a functional subroutine and

that the functional subroutine instead of the full Vxc needs to output ∂fxc(n(r),∇n(r))
∂n(r)

and

∂fxc(n(r),∇n(r))
∂∇n(r)

.

However, ∂fxc(n(r),∇n(r))
∂∇n(r)

is a vector which implies that three scalar quantities need to be

calculated. Due to the fact that GGA type functionals for symmetry reasons only depend

on the gradient of the density through its absolute value, |∇n(r)|, it is customary to instead

only output a scalar obtained from further manipulation of this term. One can show that

∂fxc(n(r),∇n(r))

∂∇n(r)
= 2

∂fxc(n(r), |∇n(r)|2)

∂|∇n(r)|2
∇n(r) (7)

=
∂fxc(n(r), |∇n(r)|)

∂|∇n(r)|

∇n(r)

|∇n(r)|
, (8)

where the first equality (Eq. (7)) gives the quantity that is usually seen in the Pople, Gill,

and Johnson scheme and the second equality (Eq. (8)) is seen in the White and Bird scheme.

∇n(r)
|∇n(r)|

is a unit vector that is well defined even when |∇n(r)| → 0, and this factor can easily

be handled elsewhere in the code and the scalar quantity ∂fxc(n(r),∇n(r))
∂|∇n(r)|

be given out from

the functional subroutine. However, apart from that the vector ∇n(r) is handled outside

of the functional routine there is no consensus between different codes about exactly which

quantity is needed and care needs to taken in order to make sure that the right quantity is

given out from the functional subroutine.
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This same output can also be used in calculations of the stress tensor:

σαβ = δαβExc[n(r)] +

∫

dr Vxc(r)
∂n(ε̂, r)

∂εαβ

∣

∣

∣

∣

ε̂=0

−

∫

dr
∂fxc(n(r),∇n(r))

∂(∂n(r)
∂rβ

)

∂n(r)

∂rα

. (9)

The first two terms in this expression are handled as in any LDA calculation, only replacing

Exc and Vxc with the the corresponding GGA quantities. They will not be further discussed

here. The third term is a GGA correction and it can easily be shown that

∂fxc(n(r),∇n(r))

∂(∂n(r)
∂rβ

)

∂n(r)

∂rα

=
∂fxc(n(r), |∇n(r)|)

∂|∇n(r)|

1

|∇n(r)|

∂n(r)

∂rβ

∂n(r)

∂rα

, (10)

and we recognize the same derivative of fxc as appears in Eq. (8).

In the traditional scheme the second term in Eq. (4) is further expanded using Eq. (8):

∇ ·
∂fxc(n,∇n)

∂∇n
= ∇ ·

(

∇n

|∇n|

∂fxc(n, |∇n|)

∂|∇n|

)

(11)

=

(

∇ ·
∇n

|∇n|

)

∂fxc(n, |∇n|)

∂|∇n|
+

∇n

|∇n|
·

(

∇
∂fxc(n, |∇n|)

∂|∇n|

)

(12)

=

(

∇2n

|∇n|
−

∇n · ∇|∇n|

|∇n|2

)

∂fxc(n, |∇n|)

∂|∇n|
+

+
∇n

|∇n|
·

(

∇n
∂2fxc(n, |∇n|)

∂n ∂|∇n|
+ ∇|∇n|

∂2fxc(n, |∇n|)

∂|∇n|2

)

(13)

= ∇2n

(

1

|∇n|

∂fxc(n, |∇n|)

∂|∇n|

)

+ |∇n|
∂2fxc(n, |∇n|)

∂n ∂|∇n|
+

+ ∇n · ∇|∇n|
∂

∂|∇n|

(

1

|∇n|

∂fxc(n, |∇n|)

∂|∇n|

)

(14)

where n = n(r) for clarity. We notice that derivatives of the functional and derivatives

of the density are no longer intermingled but separated and if the density derivatives ∇2n

and ∇n · ∇|∇n| are handed in to a functional routine in addition to the already required n

and |∇n|, the full exchange-correlation potential can be assembled. Note that even if the

quantity ∇n · ∇|∇n| looks complicated it is easily shown that

∇n · ∇|∇n| =
1

|∇n|

3
∑

i=1

3
∑

j=1

∂n

∂ri

∂n

∂rj

∂2n

∂ri ∂rj

, (15)

where r1 = rx, r2 = ry, and r3 = rz.

Everything we have been discussing so far in this text is general for all functionals de-

pending on the density only via n(r) and |∇n(r)|. We will now go into more details specific

to the AM05 functional.
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It follows from Eq. (12) in Ref. 1 that the AM05 functional can be writtten as

fxc(n(r),∇n(r)) = fLDA
x (n(r)) Hx(s(n(r), |∇n(r)|)) + fLDA

c (n(r)) Hc(s((n(r), |∇n(r)|)) ,

(16)

where s is the dimensionless scaled gradient

s(n(r), |∇n(r)|) =
|∇n(r)|

2 kF (n(r)) n(r)
kF (n(r)) = (3 π2 n(r))

1

3 . (17)

We see that fxc(n,∇n) = fx(n, s) + fc(n, s) and that the separate exchange and cor-

relation both have the form f(n, s) = fLDA(n)H(s). Using that for an arbitrary function

g(s)

∂g(s)

∂n
=

∂s

∂n

∂g(s)

∂s
= −

4

3

s

n

∂g(s)

∂s
(18)

∂g(s)

∂|∇n|
=

∂s

∂|∇n|

∂g(s)

∂s
=

1

2 kF n

∂g(s)

∂s
(19)

we obtain

∂f(n, s)

∂n
=

∂fLDA(n)

∂n
H(s) − fLDA(n)

4

3

s

n

∂H(s)

∂s

= vLDA(n) H(s) −
4

3
εLDA(n) s

∂H(s)

∂s
(20)

and

∂f(n, s)

∂|∇n|
= fLDA(n)

1

2 kF n

∂H(s)

∂s

=
εLDA(n)

2 kF

∂H(s)

∂s
, (21)

where vLDA(n) is the LDA exchange or correlation potential and εLDA(n) is the LDA exchange

or correlation energy per particle. These are the two quantities needed for each of correlation

and exchange, ∂fxc(n(r),∇n(r))
∂n

= ∂fx(n,s)
∂n

+ ∂fc(n,s)
∂n

and ∂fxc(n(r),∇n(r))
∂|∇n|

= ∂fx(n,s)
∂|∇n|

+ ∂fc(n,s)
∂|∇n|

, in the

White and Bird and the Pople, Gill, and Johnson schemes for constructing the exchange-

correlation potential outside of the functional subroutine (see, however, the note below

Eqns (7) and (8)).

In the traditional scheme it is customary to use, in addition to s, two other dimensionless

derivatives of the density:

t =
∇2n

(2 kF )2 n
and u =

∇n · ∇|∇n|

(2 kF )3 n2
. (22)
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Using these quantities and Eqns (20) and (21), we obtain from Eq. (14):

∇ ·
∂f(n, s)

∂∇n
= t εLDA(n)

1

s

∂H(s)

∂s
+ vLDA(n) s

∂H(s)

∂s
−

4

3
εLDA(n) s

∂

∂s

(

s
∂H(s)

∂s

)

+

+ u εLDA(n)
∂

∂s

(

1

s

∂H(s)

∂s

)

(23)

In order to reduce the number of different derivatives of H(s), we use that

s
∂

∂s

(

s
∂H(s)

∂s

)

− s
∂H(s)

∂s
= s2 ∂2H(s)

∂s2

= s3 ∂

∂s

(

1

s

∂H(s)

∂s

)

+ s
∂H(s)

∂s
(24)

and arrive at the final form of the separate exchange and correlation parts of the exchange-

correlation potential, Vxc = Vx + Vc:

V = vLDA(n)

(

H(s) − s
∂H(s)

∂s

)

+

+ εLDA(n)

((

4

3
s2 − t

)

1

s

∂H(s)

∂s
+

(

4

3
s3 − u

)

∂

∂s

(

1

s

∂H(s)

∂s

))

. (25)

The Fortran routine available at the AM05 web page [5] consists of several subroutines.

The goal has been to provide a stand-alone AM05 subroutine that does not need to be

manipulated at all, but all necessary modifications for adaptation to a specific code should

be done in one of several provided template subroutines. The template routines assembles

the required input to, and modifies the obtained output from, the AM05 subroutine. The

three template routines provided are examples of adaptations to codes using the White and

Bird scheme, the Pople, Gill, and Johnson scheme, and the traditional scheme, respectively.

Once AM05 has been implemented and tested in this way, subroutines used inside the AM05

subroutine, such as the LDA exchange and correlation routines, can be replaced with routines

already in the code.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin

Company, for the United States Department of Energy’s National Nuclear Security Admin-

istration under contract DE-AC04-94AL85000.
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