Structural and Vibrational Properties of Clay Minerals from Classical and *ab initio* Molecular Dynamics Simulations

Jeffery A. Greathouse and Randall T. Cygan, Pls James P. Larentzos, Postdoc

Geochemistry Department, Sandia National Laboratories Albuquerque, New Mexico, USA

Acknowledgements

U.S. Department of Energy, Basic Energy Sciences

Summary of recent BES research

Montmorillonite UO₂²⁺/Na⁺ sorption 42 Å x 36 Å x 72 Å 10k atoms, 0.027 M

Sorption

Greathouse and Gygen, *PCCP* **2005** Greathouse and Cygan, *ES&T* **2006**

aboratories.

Andrey Kalinichev and James Kirkpatrick, University of Illinois Spectroscopic and simulation studies of clays, LDH's

Jeffrey Post, Smithsonian Institution

Diffraction and spectroscopic studies of birnessite

Cliff Johnston, Purdue University

Vibrational spectroscopy of clays and clay interlayer species

Melissa Denecke, FZK Karlsruhe

Synchrotron X-ray absorption studies of radionuclide sorption EXAFS studies of Hf adsorption onto mica edge sites

Reductionism

- •Simplify a complex problem
- •Compare quantum calculations with classical
- •Increment the level of complexity in the classical force field
- •Accuracy (quantum) vs. system size (classical)

Computational Resources

BES Capital Equipment

- 34 CPU cluster + 34 CPU cluster + 32 CPU = 100 CPU
 Greathouse/Cygan
 Criscenti
 Shared
- 14 terabytes data storage

Classical (force field) molecular dynamics

- LAMMPS software
- > 1M atoms possible
- > 1 ns time scale

ab initio molecular dynamics

- VASP software
- SNL institutional cluster (Thunderbird) for 256-CPU jobs
- 160 atoms, 2 clay layers
- 25 ps time scales (< 10 ps times in the literature)</p>

Molecular Dynamics

ab initio Molecular Dynamics

- PAW pseudopotentials with planewave basis set
- Exchange-correlation treated through GGA
- Gamma point calculations
- Constant pressure optimizations
- 2 x1x2 supercell (160 168 atoms)
- 25 ps NVT production simulations
- 0.5 fs timestep
- 256 processors 8 days

Classical Molecular Dynamics

- CLAYFF force field
- 8x4x3 supercell (3840 4032 atoms)
- 1.0 ns NVT production simulations
- 0.5 fs timestep
- 4 processors 1.5 days

Perdikatsis, Z. Kristallogr., 1981

Lee and Guggenheim, Am. Mineral., 1981

Initial Results (Larentzos et al, J. Phys. Chem. C, submitted)

	DFT	CLAYFF	Expt.
<i>d</i> -spacing	9.128 Å	9.13 Å	9.351 Å
O-H bond	0.96 Å	1.03 Å	
O-H stretch	3669 cm⁻¹	3750 cm⁻¹	3677 cm⁻¹

	DFT	CLAYFF	Expt.
d-spacing	8.900 Å	9.31 Å	9.190 Å
O-H bond	0.97 Å	1.03 Å	
O-H stretch	3658 cm⁻¹	3750 cm⁻¹	3675 cm⁻¹

Angle Distributions

Angle Distributions

Hydroxyl orientation

Hydroxyl orientation

Density / Arbitrary Units

Vibrational Spectra - Pyrophyllite

Pyrophyllite Si-O(ob) stretch at 1085 cm⁻¹

Blue = CLAYFF Red = AIMD

Talc Si-O(obss) stretch at 1044 cm⁻¹

Blue = CLAYFF Red = AIMD

Pyrophyllite O-H Libration at 745 cm⁻¹

Blue = CLAYFF Red = AIMD

Considerations for CLAYFF

- >O-H bond: harmonic ----> Morse
 - tune O-H stretch frequency
 - O-H bond length
 - O-H libration mode
 - O-H angle orientation
- >Add Si-O-Si angle bend term
- >Add M-O-H angle bend term
 - O-H angle orientation
 - Possibly needed for edge sites

Future Directions

- Charged dioctahedral and trioctahedral clays (M1 and M2 sites)
- Cations and water
- Edge sites

