
The First Tri-Lab Workshop on

Formal Verification
Capabilities, Challenges, Research

Opportunities, and Exemplars

SAND2024-02142
Printed 26 February 2024

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology &
Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its
use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: https://classic.ntis.gov/help/order-methods

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

The First Tri-Lab Workshop on Formal Verification
Capabilities, Challenges, Research Opportunities, and Exemplars

Workshop Organizer

Samuel D. Pollard1

Report Authors

Samuel D. Pollard1, Jon M. Aytac1, Ariel Kellison1,6, Ignacio Laguna3,
Srinivas Nedunuri1, Sabrina Reis3, Matthew J. Sottile3, Heidi K. Thornquist2

Workshop Attendees

Jon M. Aytac1, Lauren L. Beghini1, Gregory Davis5, Joseph Donato4, Noah Evans1,
Sandra L. Frost4, Thuc Hoang7, Ignacio Laguna3, Kirk T. Landin2, Randy R. Lober1,

Jackson Mayo1, Karla Vanessa Morris Wright1, James Peltz7 Alessandro Pinto5,
Tarun Prabhu4, Blake C. Rawlings1, Sabrina Reis3, Daniel W. Shevitz4,

Sina Sontowski4, Matthew J. Sottile3 George Stelle4, Heidi K. Thornquist2

1 Sandia National Laboratories, Livermore, CA
2 Sandia National Laboratories, Albuquerque, NM

3 Lawrence Livermore National Laboratory, Livermore, CA
4 Los Alamos National Laboratory, Los Alamos, NM

5 NASA Jet Propulsion Laboratory, Pasadena, CA
6 Cornell University, Ithaca, NY

7 National Nuclear Security Administration, Washington, D.C.

SAND2024-02142

3

ABSTRACT
The First Tri-Lab Workshop on Formal Verification was held in Santa Fe, New Mexico, on December
5th, 2023. This workshop gathered staff from Sandia, Los Alamos, and Lawrence Livermore National
Laboratories and NASA’s Jet Propulsion Laboratory. This report summarizes and expands on the
presentations given and discussion had at this workshop.
In this report, we describe the current capabilities and research needs related to formal methods at the
NNSA labs. In particular, we identify medium-term and long-term research gaps in programming
languages, formalization efforts of complex systems, embedded systems verification, hardware
verification, cybersecurity, formal methods usability, workflows, numerical methods, the use of formal
methods for artificial intelligence (and its converse, artificial intelligence for formal methods), and
collaboration opportunities and considerations on these topics. We conclude with a small number of
exemplar research problems related to these topics.

4

Acknowledgments

We acknowledge the Advanced Simulation and Computing program at the National Nuclear Security
Administration for funding the workshop and the preparation of this report.

This report was written by the tri-lab workshop attendees based on notes, presentations, and discussions
from the workshop as well as correspondence with workshop attendees before and after the workshop.

Sandia National Laboratories is a multimission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA-0003525.

5

This page intentionally left blank.

6

CONTENTS

Glossary of Terms and Acronyms . 10

1. Introduction . 13
1.1. Background . 13
1.2. Overview of Formal Methods . 13

1.2.1. What Formal Methods Provide . 14
1.2.2. Formal Methods Development . 14
1.2.3. Trusting Formal Methods . 14
1.2.4. Formal Methods at NNSA . 15

1.3. Structure of this Report . 15

2. Current Capabilities . 17
2.1. Sandia National Laboratories . 17

2.1.1. Low-Level Systems Verification . 17
2.1.2. Formally-Verified Secure Cryptographic Root-of-Trust . 17
2.1.3. Constructive Proofs of C Code Verification . 18
2.1.4. Formally Verified Compilers . 19
2.1.5. Q Framework . 19
2.1.6. Probabilistic Programming Languages . 21
2.1.7. Concurrency and Distributed Systems . 22
2.1.8. Program and Reactive Synthesis . 22
2.1.9. Formalized Numerics . 23
2.1.10. Hardware Design and Verification . 23
2.1.11. HPC Correctness . 23
2.1.12. Cybersecurity . 23
2.1.13. Static and Binary Analysis . 23
2.1.14. User-Centered Formal Methods . 24

2.2. Lawrence Livermore National Laboratory . 24
2.2.1. The ROSE Compiler . 24
2.2.2. HPC Correctness . 24
2.2.3. Embedded Systems and Usability . 25

2.3. Los Alamos National Laboratory . 25
2.4. NASA Jet Propulsion Laboratory . 25
2.5. Other FFRDCs . 26

3. Future Needs and Research Opportunities . 27
3.1. Abstraction and Refinement . 28
3.2. Concurrency and Distributed Systems . 29

7

3.3. High-Performance Computing . 29
3.4. Programming Languages . 30

3.4.1. Languages . 30
3.4.2. Compilers and language tooling . 33
3.4.3. Assembly and architectures . 34

3.5. New Programming Paradigms . 34
3.5.1. Model-Based System Design . 35
3.5.2. Domain-Specific Languages . 35

3.6. Maturing Open-Source Hardware Design and Verification . 35
3.7. Cybersecurity and Cryptography . 36
3.8. Collaborations . 37
3.9. Tool Usability . 38

3.9.1. Usability as a Formal Methods Issue . 38
3.9.2. Practical Concerns . 39
3.9.3. Tool Choice . 40
3.9.4. Interpretability . 41
3.9.5. Scalability . 41
3.9.6. DARPA PROVERS . 42

3.10. Formalized Numerics and Floating-Point . 42
3.11. Artificial Intelligence . 43

4. Exemplars . 45
4.1. Further Formalization of C Compiler Toolchains . 45
4.2. Formal Programming Language Specifications . 45
4.3. Numerical Analysis on Next-Generation Accelerators . 46
4.4. Formally-Verified Compiler Optimizations . 46
4.5. Formal Verification of a Kalman Filter in C . 47
4.6. CAN Bus . 47

5. Conclusion . 49

Bibliography . 51

8

LIST OF FIGURES

Figure 2-1. Two steps of One Q.E.D.: from C code to assembly language. 18
Figure 2-2. Architecture of CompCert. 20
Figure 2-3. Overview of Q Framework. 20
Figure 2-4. Synchronous composition of two state machines. 21

Figure 3-1. Analysis stack for a MBSD embedded controller. 28
Figure 3-2. The landscape of formal verification. 39
Figure 3-3. An Emacs interface to the Coq proof assistant. 40

9

Glossary of Terms and Acronyms

AI/ML Artificial intelligence/machine learning

API Application programming interface

ASC Advanced Simulation and Computing

AST Abstract syntax tree

CAN Bus Controller area network bus

CEA-List French Alternative Energies and Atomic Energy Commission - Laboratory for Integration
of Systems and Technology

Coq/Rocq The Coq proof assistant [119]. Coq is planned to be renamed Rocq sometime in 2024.

CRADA Cooperative Research and Development Agreement

CUDA NVIDIA’s parallel computing API and language; no longer an acronym

DARPA Defense Advanced Research Projects Agency

DOE Department of Energy

DSL Domain-specific language

GCC GNU Compiler Collection

GPU Graphics Processing Unit

HPC High-performance computing

ISA Instruction set architecture

I/O Input/output

IT Information technology

FFRDC Federally-funded research and development center

FM Formal methods

FPGA Field-programmable gate array

JOWOG Joint working group

JPL National Aeronautics and Space Administration Jet Propulsion Laboratory

LANL Los Alamos National Laboratory

LLM Large language models

LLVM Compiler and toolchain for multiple programming languages; no longer an acronym

LLNL Lawrence Livermore National Laboratory

MBSD Model-based system design

10

MPI Message Passing Interface

NNSA National Nuclear Security Administration

OpenMP Open Multiprocessing; an API for shared-memory parallel programming

OS Operating system

OT Operational technology

PPL Probabilistic programming language

PQC Post-quantum cryptography

PROVERS Pipelined Reasoning of Verifiers Enabling Robust Systems; DARPA project [81]

PSAAP Predictive Science Academic Alliance Program

RISC-V An open standard ISA

RTL Register transfer language

SMT Satisfiability modulo theories

SNL Sandia National Laboratories

TCB Trusted computing base

TCP/IP Transmission Control Protocol/Internet Protocol; also known as the Internet protocol suite

TLA Temporal Logic of Actions; TLA+ is its corresponding specification language

VST Verified Software Toolchain

11

This page intentionally left blank.

12

1. INTRODUCTION

This report describes the current state of formal methods research at the three National Nuclear
Security Administration (NNSA) labs: Sandia National Laboratories, Lawrence Livermore National
Laboratory, and Los Alamos National Laboratory, referred to as the tri-labs. In 2023, researchers at the
tri-labs, with motivation from leadership at the Advanced Simulation and Computing (ASC) program
office of the NNSA, identified the need to build a community around formal methods. In December,
ASC funded a workshop where tri-labs researchers came together and shared their experiences at their
respective labs, then discussed future research and collaboration opportunities. This report is a result of
a compilation of the key ideas outlined in that workshop.

1.1. Background

Since this report is meant for a general formal methods audience that may not be familiar with the
various government organizations, we provide some context. The tri-labs are Federally-Funded
Research and Development Centers (FFRDCs) that are primarily funded by the NNSA. The NNSA is
a semi-autonomous agency under the Department of Energy (DOE), which is responsible for the
development and management of the United States nuclear weapons stockpile. What would later
become the ASC program was founded in 1994 to address the need for nuclear stockpile stewardship
after the United States’ moratorium on live nuclear tests. 30 years later, ASC is responsible for many
high-performance computing and predictive science capabilities and achieves this through modeling,
simulation, verification & validation, computing infrastructure research, and industry and academic
collaborations [36].

The position of this report is that formal methods can provide a multifaceted benefit for predictive
sciences. Using formal methods, digital systems can—with proper rigor and effort—be completely
predicted with respect to a formal specification. But even for systems whose scale is sufficiently large
such that full specification and verification are not currently tractable, formal methods can improve
developer productivity by eliminating classes of errors that can consume large amounts of developer
time. We use the analogy of formal methods as “guard rails” to suggest that formal methods can add
additional safety to software systems by preventing developers from making costly, albeit common,
errors.

1.2. Overview of Formal Methods

Formal methods (also known as formal verification) as a field relates to the development of
mathematical reasoning about computer systems. In general, formal methods can be partitioned into
two broad categories: formal specification and formal verification. The first refers to generating precise,

13

unambiguous, and machine-checkable properties about systems and the second refers to verifying that
these properties hold for a given system.

1.2.1. What Formal Methods Provide

Formal methods can provide the strongest possible mathematical guarantees about the behavior of a
digital system. However, the caveats of using formal methods are important yet subtle. Properties
proved about the behavior of a system are only with respect to a specification. Formal methods facilitate
making claims in absolute terms such as “a digital system has been proven free of memory errors,” but
we stress that, like any mathematical proof, these claims only hold provided the required assumptions
are met. For example, a claim about a digital system’s correctness may not make any statement about
timing, leaving systems vulnerable to race conditions. This was the case for the infamous Spectre and
Meltdown vulnerabilities, which arose on CPU hardware that had deployed extensive formal
verification efforts [46], and bugs in deployed hardware have motivated further industrial investments
in formal methods [127]. We mention these caveats here to emphasize that formal methods can only
effectively eliminate larger classes of errors if the systems they are modeling both accurately reflect reality
and are designed such that proofs are tractable.

1.2.2. Formal Methods Development

To achieve these guarantees about digital systems, formal verification efforts generally require more
up-front development. As practitioners and researchers in formal methods, it has been our experience
that this up-front development effort pays dividends: formal methods can not only provide increased
assurance of digital systems but can also provide guard-rails that allow developers to feel safe in making
various design decisions knowing a given tool disallows certain classes of bugs. The cost of this up-front
development is one of several reasons why formal methods have, historically, not been as widely adopted
as other techniques for ensuring the correctness of computer software, such as testing, version control,
and reproducibility through virtualization or containerization. Despite these limitations, applications
where the cost of errors is dramatically high (e.g., mission-critical systems) have driven investments in
formal methods, and as the field has advanced alongside computer science, its concepts have spread to
other fields such as compilers and hardware design. There remain challenges and barriers to broader
adoption, which we also discuss in this report.

1.2.3. Trusting Formal Methods

One natural question that arises when using computers to reason about computers themselves is: how
can we trust a machine-checked proof? This issue is of great importance in the field of formal methods,
and any good computer system for generating proofs will make an argument for its correctness. One
solution is to have the core logic of a proof system be so simple it can be manually verified. This is called
the de Bruijn criterion [47].

Formal methods tools also consider their own trusted computing bases (TCBs). In tools which make this
distinction, bugs outside of the TCB do not affect the overall trust in system itself. However,
developing the trusted/untrusted distinction is a design decision which not all formal methods tools
develop. There is not consensus across the entire verification community regarding the acceptable size

14

of the trusted code base or trusted kernel of a prover, but trends appear to favor the smaller kernel
approach as found in tools like Coq, Lean, and relatives. A detailed analysis of the degree to which
formal methods techniques address the de Bruijn criterion or limit their TCBs is beyond the scope of
this report but is discussed in detail by Pollack [96] and Ringer et al. [103].

1.2.4. Formal Methods at NNSA

The NNSA tri-labs are uniquely positioned to deploy formal methods in the design, development, and
maintenance of digital systems. Sandia National Laboratories has two departments (Digital
Foundations & Mathematics 1 and 2) specializing in formal methods, Lawrence Livermore National
Lab (LLNL) has formal methods capabilities through its ROSE compiler team, and Los Alamos
National Laboratory (LANL) has research scientists who specialize in compilers and cybersecurity who
have exposure to formal methods techniques.

1.3. Structure of this Report

This report aims to outline the state of formal methods research within the tri-labs. We begin by
broadly describing the current capabilities at each lab and the research areas unique to each lab. We then
describe future research needs, potential research opportunities, and challenges we anticipate in these
domains. The report concludes with a collection of exemplar problems and research topics that are
either directly relevant to tri-labs needs or are prove problems that effectively model lab needs.

While this report focuses on the three NNSA labs (Sandia, LLNL, and LANL), the tri-labs collaborate
with universities and other FFRDCs. The positions expressed here are those of the tri-labs, but may
apply generally to formal methods researchers in other fields.

15

This page intentionally left blank.

16

2. CURRENT CAPABILITIES

2.1. Sandia National Laboratories

Sandia has two departments consisting of about 20 research scientists who work on formal methods [31]
and contribute to other verification-focused projects throughout the labs. Sandia focuses on embedded
system verification but also supports various verification efforts which we outline in this section.

Much of the formal methods effort at Sandia works towards the notion of “One Q.E.D.” This refers to
the goal of having a proof of correctness for each stage of the system design stack and that each proof
feeds into the next level of fidelity. For example, a proof about full system correctness may consist of a
proof of high-level properties, (such as safety or liveness, or a description of expected behavior), a proof
that a C program implements those high-level properties, a proof that the compiled binary has the same
behavior as the C program, and a proof that the hardware executing the binary correctly implements its
assembly language. For this to become a reality, the reasoning techniques at each level of abstraction
must link with each other.

While One Q.E.D. as a term was coined at Sandia, other researchers have worked towards this goal,
notably the DeepSpec project [5]. Figure 2-1 shows some of the steps the tri-labs take towards full
proofs of correctness.

2.1.1. Low-Level Systems Verification

To date, one of the largest-scale formal verification efforts at Sandia has been the full verification of a
bootloader used in a high-consequence system. Verification of the bootloader demonstrated Sandia’s
proof engineering capabilities; the project involved developing verified compilation techniques, and
used the Coq proof assistant [119] and the Verified Software Toolchain (VST) [3] to develop formal
proofs of correctness of real C programs.

This bootloader demonstrates significant steps towards the goal of One Q.E.D. Beyond the actual proof
development required for the verification, verifying the bootloader required advances in several areas;
namely: cryptography, proof assistants, compilers, and low-level assembly verification, which we
describe below.

2.1.2. Formally-Verified Secure Cryptographic Root-of-Trust

To fulfill the always/never requirements at the core of the NNSA mission, high-consequence systems
must have some means of establishing the authenticity of their software and hardware; without such
guarantees, any proofs about system behavior are meaningless. Cryptographic systems can implement
such authentication, but may themselves be the source of vulnerabilities. To that end, Sandia has
developed what is possibly the world’s only secure boot with an end-to-end proof of security against

17

Figure 2-1.: Two steps of One Q.E.D.: from C code to assembly language. Left
figure from Pierce [94].

adversaries equipped with probabilistic Turing machines. Here, by end-to-end, we mean the assembly is
soundly approximated by a specification of the root of trust as a temporal protocol, including its elliptic
curve operations, expressed in a formalization of elliptic curves over arbitrary fields developed in-house
expressly for this purpose. However, security of these elliptic curve operations do not hold for
sufficiently powerful quantum computers. We describe this future research direction further in
Section 3.7.

2.1.3. Constructive Proofs of C Code Verification

Some programs are well-specified as pure (side-effect-free) functional programs. However, the programs
embedded in high consequence systems are often reactive systems, specified in terms of their observable
side-effects—specifically, their allowed I/O behavior. Existing tooling leaves a gap, either in soundness,
expressivity, ergonomics, or all of the above, for such reactive systems.

One challenge for Sandia regarded specifications of the mathematics of cryptographic primitives for a
high-consequence bootloader. Desired properties could not be expressed in the specification languages
of automated program logics like Frama-C [61]. Moreover, Frama-C comes without any proof of
soundness. For these reasons, Sandia used Appel’s Verified Software Toolchain (VST) [3] to provide
fully-constructive, sound guarantees of this bootloader.

VST implements a separation logic for C programs in Coq, and is proven sound with respect to the
CompCert C semantics. However, separation logics are designed for proving the equivalence of
imperative programs with respect to pure functional specifications.

18

To express specifications of the allowed I/O behaviors of embedded software controllers, SNL scientists
wrote specifications in an extension of VST using recently-developed interaction trees [126], a Coq
library for formalizing the trees of allowed observable behaviors of effectful programs. Here, SNL again
faced limitations, both in expressivity of the specification language, in its accompanying proof theory,
and in the ergonomics of proof engineering.

To give some context to this difficulty and how Sandia scientists overcame it, we first remark on the
design process for high-consequence systems at Sandia. Because of the complexity of these systems,
designers coordinate by producing and sharing intermediate specifications which deliberately include
nondeterminism; this permits a separation of concerns between overall system-level design (such as how
systems interact) and implementation details (such as hardware interaction and embedded system
programming). However, interaction trees do not handle nondeterminism, nor does VST; to support
this design paradigm while maintaining full-system verification, Sandia scientists modified existing
utilities to match Sandia’s design process, a process which was bespoke and required a deep
understanding of both the systems being verified and the utilities themselves. The result of this effort
was an end-to-end, fully-constructive proof of correctness of the high-consequence system, but this
work also demonstrated the extensive effort currently required for such assurance.

2.1.4. Formally Verified Compilers

Sandia maintains an internal branch of CompCert, the formally verified compiler for C [72].
CompCert is written in Coq, and its proof of semantic preservation between source language (C) and
target (several different architectures) is fully mechanized. Sandia develops formally-proven
improvements to this internal version of CompCert and different back-ends to address mission needs.
CompCert is structured as a collection of transformations between C and assembly, with proofs of
correctness between each intermediate language in addition to proofs for every transformation or
optimization. We show the overall architecture of CompCert and Sandia’s extensions to it in Figure 2-2.

2.1.5. Q Framework: Formal MBSD, State Machine Verification, and Refinement of C
Code Implementations

The Q framework is another large verification effort developed and maintained by formal methods
researchers at Sandia. The Q Framework is an internal tool used by the labs for two main purposes: to
provide model-based system design (MBSD) verification via model checking of temporal properties,
and to prove that C implementations refine a given state machine model [98]. Q framework can be used
to verify system designs at multiple levels of abstraction, and has been used to analyze systems with
hundreds of states. An overview of the Q Framework is shown in Figure 2-3. Q Framework is used for
several projects at Sandia and provides a language and compiler with which to carry out various
temporal, state machine, and embedded system verification tasks.

Figure 2-4 illustrates a simple parallel composition of state machines along with the environment and
properties of the overall system. For example, the statement in Linear Temporal Logic, AG (= n m),
asserts the two counters n and m are always equal.

19

CompCert
C

Clight C#minor Cminor

CminorSelRTLLTLLinear

Basic

Mach MachBlock

Other ISA
AsmBlock

AsmBlock

Asm x86
Asm
ARM

Asm PPC
Other
ISAs

Asm
MIPS

side-effects out

of expressions

type elimination

loop simplifications

stack allocation of

“&” variables

instruction
selection

CFG constructions

expr. decomp.

optimizations: constant
prop., CSE, inlining,
tail calls, dead code

exit merging, en-
riched inlining

reg. allocation (IRC)

calling conventions

linearization

of CFG

layout of stack
frames

single instructions

to basic blocks

optim
izations

scheduling, dead
code/reduce

Asm Blockgen

Asm
Blockgen

A
sm

cod
e
gen

eration

fill delay slot

Asm code generation

deBlockify

MachBlockify

Figure 2-2.: Architecture of CompCert. The uncolored boxes represent existing
transformations and the blue boxes indicate Sandia development and

improvement. Each arrow consists of a transformation along with a proof of
correctness in Coq.

QSpeckler

QLang
NuSMV
Model

Checker

MATLAB
Simulink
Model

Schema

SMV
Model

QWrang Modified
schema

Verified
model

Frama-CACSL proof
obligations

Verified
code

.qspec .qwrang

.smv proof

proof

C program

Specification

Implementation
Simulation

Map

Figure 2-3.: Overview of Q Framework. More details available from Pollard et
al [98].

20

TOP_LEVEL

(qontext
(variable
(id flg)
(domain boolean)
(intent parameter))

(variable
(id m)
(domain
(range 0 10))

(intent input))
(variable
(id n)
(domain
(range 0 10))

(intent input)))

(assertions
(assert
(type ctl)
(ex
(@AG
(= n m)))

(name _)))

Component1

A

B

(actions
(= n' 0))

(guards
flg
(< n 10))

(actions
(=
n' (+ n 1)))

(guards
(~ flg))

Component2

C

D

(actions
(= m' 0))

(guards
flg
(< m 10))

(actions
(=
m' (+ m 1)))

(guards
(~ flg))

Figure 2-4.: Synchronous composition of two state machines. The leftmost note
indicates the context of the system, the middle note indicates a temporal property,

stated as an assertion to be checked in Linear Temporal Logic [13] and the
rightmost boxes indicate the two state machines.

2.1.6. Probabilistic Programming Languages

Sandia also supports efforts toward probabilistic programming language research, which has
applications in embedded system verification, AI/ML, threat modeling, and cybersecurity.

2.1.6.1. Embedded Inference

Inference of embedded systems is motivated by a need for extreme robustness in the face of uncertainty,
for example from faults in a communication bus. Probabilistic programming languages (PPLs) serve as
an intuitive language for specifying programs with random variables. Sandia scientists are investigating
applications of PPLs to build better techniques for sampling and inference—which are at their core
algorithmic processes—while providing useful abstractions for construction of stochastic models to
domain experts.

Using PPLs, deployed systems with known uncertainties can be more completely modeled and queried.
For example, in Figure 2-4, flg could be made a random variable. Sandia scientists are developing these
classes of analysis, begun by first extending the PPL Dice [48] to work over arbitrary semirings. This
extension allowed scientists to use Dice to perform a sensitivity analysis providing insight into those
physical upsets to which our temporal surety properties are most sensitive.

Using an analogy between the drawing of fresh samples and the dynamic allocation of fresh mutable
state, Sandia scientists and their academic partners have additionally developed first-order [77] and
higher-order [78] modal separation logics for probabilistic programs over continuous random variables.

21

2.1.6.2. Game-based Security Proofs and Cryptography

By presidential mandate, future high consequence systems must be quantum resistant [120]. But
quantum-resistant algorithms are still in flux; in the past years, new cryptographic attacks were
discovered for every NIST-approved PQC algorithm family, dramatically reducing their security
guarantees. Even the security proof for Sphincs+, whose security was thought to be well understood,
was shown to suffer from flawed reasoning about conditional probability [51].

Security properties of quantum cryptosystems differ from traditional safety and liveness properties
which can be proved using the techniques mentioned in the previous subsections. Instead,systems must
have a game-theoretic property called indistinguishability under chosen plain-text attacks (written
IND-CPA). Sandia scientists are researching how to verify such systems by formulating IND-CPA as an
observational equivalence of parameterized probabilistic programs, which requires higher-order
program logics for PPLs.

2.1.7. Concurrency and Distributed Systems

Reasoning about concurrency can be challenging: concurrent systems are difficult for humans to
understand and verify and automated reasoning techniques such as symbolic execution have scalability
limitations for concurrent systems. In general, the underlying reason is that every operation causes an
additional potential interleaving between concurrent execution threads, making the state space of
behaviors exponential in the number of operations. While this state explosion problem is not unique to
concurrency, traditional techniques from formal methods that are used to manage the problem tend to
not work well on concurrent systems. To this end, Sandia scientists are researching ways to formalize
concurrency semantics and memory models to better analyze concurrent systems.

Distributed systems are different from concurrent systems in that they lack synchronicity: fewer
assumptions can be made on the timeliness or integrity of messages sent between distributed systems
(for example the property that m and n are always equal fails in Figure 2-4 with asynchronicity). At
Sandia, tools such as Q Framework (Section 2.1.5) are being extended to better support more types of
distributed systems and more classes of composition between interacting systems.

2.1.8. Program and Reactive Synthesis

Reactive synthesis [41, 95] is an approach to automatically construct transition system models that are
guaranteed to meet formal requirements. As opposed to other verification approaches such as model
checking, synthesis aims to produce an artifact that provably embodies required properties without the
need for subsequent verification, thus eliminating the edit-check-debug cycle common in model
checking approaches. Reactive synthesis shares similar aims to correct-by-construction, but instead of
proving each step in a refinement chain or derivation, program synthesis relies on proofs of the
refinement transformations [91], which need only be proven once. The correctness of the synthesis then
follows from the chaining together of such transformations.

Several challenging problems have been synthesized at Sandia, such as flow control [112], multi-buffer
flow control modeled as two-player games [115], synchronization and concurrency problems [88], and
as well as nesting and concurrent composition, modeled as Q Framework nested state charts [88].

22

2.1.9. Formalized Numerics

Floating-point computations on computers are ubiquitous, so much so that computers are measured by
their FLOPS, or floating-point operations per second. Members of Sandia’s formal methods team are
researching ways to provide formal proofs bounding the floating-point round-off error of numerical
programs used in high-consequence settings.

Scientists at Sandia have identified applications that require formally verified numerical kernels and are
investigating techniques to automate the verification. One example program is a C implementation of a
Kalman Filter, which requires verifying a diverse code base . This example is described in more detail in
Section 4.5.

Recent work done in collaboration with research groups at Princeton and Cornell has resulted in
advances in formal proofs of error bounds for numerical kernels [58, 59, 60]. Ongoing research involves
integrating these formal proofs into verified system design stacks.

2.1.10. Hardware Design and Verification

SNL uses Yosys [125] and Kôika for its hardware verification tasks. Kôika is a hardware description
language developed at MIT [19], which provides formal guarantees at the SystemVerilog level (similar to
BlueSpec SystemVerilog [89]), while Yosys provides synthesis and model checking capabilities for RTL.
These together bring the tri-labs one step closer to the goal of One Q.E.D.

Sandia also maintains Xyce [57], a large-scale analog circuit simulator that models hardware under
various conditions. Xyce models are used at Sandia for hardware verification and validation. Further
work has been done relating out-of-nominal hardware verification with abstraction, for example in cases
with unexpected hardware bit flips [83].

2.1.11. HPC Correctness

Several of the formal methods researchers at Sandia started with the verification and validation of
large-scale HPC codes, for example resiliency for large parallel systems [43, 64]. Recent work supports
the correctness of HPC libraries such as Kokkos through automated test generation, symbolic execution
using KLEE [21], and building formal models of parallel programming environments [54, 118].

2.1.12. Cybersecurity

Sandia scientists have developed formal theories for cryptographic operations along the path for
verification of high-consequence systems, for example with root-of-trust. Sandia has also started using
Cryptol [74] for the verification of cryptographic primitives. More cybersecurity-relevant work at
Sandia was also mentioned in Section 2.1.6.2.

2.1.13. Static and Binary Analysis

Mission needs at SNL sometimes require the analysis of old hardware architectures not well-supported
on other symbolic execution tools such as angr [110]. For example, systems using non-IEEE-754

23

floating-point arithmetic or systems without 8-bit bytes. Sandia has invested in capability for binary
lifting and symbolic analysis for a wide variety of architectures, both with purpose-built capabilities and
a more general tool called Quameleon [99]. Other work on symbolic execution with KLEE and Kokkos
was previously mentioned in Section 2.1.11.

In cases where fully-formal models are infeasible (for example, large codebases or programming
languages without fully-formal specifications), scientists at SNL have developed internal tools to
perform static analysis at both the binary and source-level [29].

2.1.14. User-Centered Formal Methods

For formal methods to make a broad impact, there needs to be an additional focus on adoption. This
requires consideration of and research on the usability and usefulness of these tools in the context of
system designers instead of formal methods experts. Drawing from research in human factors, cognitive
science, and user experience, Sandia is now pursuing tasks to investigate different users’ needs,
expectations, and limitations. These insights are being used to drive requirements and to design
implementations of formal methods tooling. Additionally, telemetry-based metrics that improve design
based on real-time usage data and can built into software tools are being developed by Sandia scientists.

2.2. Lawrence Livermore National Laboratory

Lawrence Livermore lab supports various formal methods research, focusing primarily on static analysis
using the ROSE compiler [100] and HPC correctness.

2.2.1. The ROSE Compiler

The ROSE compiler is a source-to-source compiler written in C++ [100]. The main benefit of ROSE
over traditional compiler analysis tools, such as LLVM-based tools, is that the abstract syntax tree
(AST) is mutable. This allows more robust analysis and from whence the source-to-source
characterization arises. This allows not only program analysis, but opportunities for optimization and
parallelization. ROSE has been used to perform static and dynamic analysis on C++ codebases as well as
other programming languages such as Fortran, OpenMP, Java, Python, and binary analysis.

2.2.2. HPC Correctness

Livermore Computing has some of the world’s largest supercomputers and a large workforce devoted to
the research, development, and effective use of these systems. Work by LLNL scientists focuses on
various aspects of correctness for these large HPC codebases executing on these world-class
supercomputers.

Two widely used programming paradigms in HPC are the Message Passing Interface (MPI) and
OpenMP. LLNL scientists support a combination of static and dynamic analysis to analyze OpenMP
programs [7]. Beyond the parallelism libraries, whole-code HPC debugging techniques have been
investigated at LLNL [2].

24

HPC correctness is closely tied to numerics, and in particular, floating point. In theory, compilers
should faithfully translate source semantics (e.g., C++) into target semantics (e.g., x86-64 executables),
however, compilers can have bugs, or in the quest for ultimate performance, compilers may introduce
numerical inconsistencies, especially for heterogeneous code such as those using both CPUs and GPUs.
In particular, floating-point numerical exceptions and accuracy issues have also been
investigated [85, 66], automated detection of sources for large numerical error [107], including for
accelerator architectures like GPUs and heterogeneous architectures [79, 65].

2.2.3. Embedded Systems and Usability

LLNL researchers in have recently begun investigating embedded system verification, formal modeling,
Automated Systems Understanding (ASU), and formal methods usability.

2.3. Los Alamos National Laboratory

Los Alamos National Laboratory scientists maintain a fork of the LLVM compiler called Kitsune [68]
focused on optimization and code generation for large parallel codes. This, along with other compiler
efforts require reasoning about software correctness and could effectively leverage formal methods
techniques.

As developers and maintainers of large HPC codebases, LANL scientists research ways to improve
scalability and code generation of HPC codes. Oftentimes, HPC codes require manual rewriting and
porting to new architectures. Programming paradigms such as fork-join with OpenMP or task-based
parallelism have the opportunity to improve performance while also making code more
performance-portable Performance portable refers to programs to not just execute on next-generation
hardware, but can make effective use of new hardware capabilities. However, there are challenges in
getting these libraries to achieve the same performance and feature set of hand-written C++ and
accelerator languages (such as OpenMP or CUDA). To address this, LANL scientists have developed
LLVM Intermediate Representations (IRs) which can be linked with OpenMP and provide more
opportunities for analysis and optimization [117]. LANL scientists have also worked towards
developing implicit parallel task-based programming models [116] as well as better task-based parallel
programming models [69]. These techniques could benefit from investment in more programming
language research to more effectively mechanize and verify transformations and optimizations and
multiple levels of abstraction.

LANL scientists also work in the cybersecurity space, with research into the formally verified
microkernel, Sel4 [63], drivers, usability, and interoperability with other operating systems (OS) and
devices, and how security guarantees are ensured across these interfaces.

2.4. NASA Jet Propulsion Laboratory

NASA mission applications undergo extensive testing and formal verification. In particular, the
Autonomy Assurance program at JPL requires a higher level of safety and assurance compared to other
autonomous systems such as automobiles.

25

JPL has historically developed state space abstraction, test generation, rule-based plan validation, model
transformation, and test case generation [37]. Other research areas include fault diagnosis [90],
System-Theoretic Process Analysis (STPA) [114], and assurance for AI/ML [104], and collaboration
with Caltech and the University of Southern California in the areas of test synthesis, model-based
design, and requirement modeling.

Overall, JPL scientists focus on full life-cycle assurance and towards developing high-assurance
autonomous systems. JPL research, along with tri-labs, would benefit from improvements in FM
tooling, in particular with requirements specification, usability, and scalability.

2.5. Other FFRDCs

This workshop focused on the tri-lab workshop and the interest of the NNSA in developing further
connections amongst themselves. However, we note other Department of Energy labs, including Oak
Ridge National Laboratory, Lawrence Berkeley National Laboratory and Pacific Northwest National
Laboratory are investigating how to integrate formal methods into their work, such as applications of
formal methods to ensure the cybersecurity of microcontroller and FPGA-based devices [122].
However, beyond these broad overviews, the work of other FFRDCs is beyond the scope of this report
and we do not claim to know all other governmental efforts in formal verification.

26

3. FUTURE NEEDS AND RESEARCH OPPORTUNITIES

The NNSA is gathering information related to the deployment of formal methods at the tri-labs. This
information includes research gaps and opportunities, with a particular emphasis on potential
applications in the areas of artificial intelligence and machine learning. This chapter identifies research
gaps and opportunities that scientists at the tri-labs believe will be important to NNSA mission needs in
the next several years.

The tri-labs require diverse formal methods capabilities, including fully-formal proofs for the
highest-consequence applications, deductive proofs for high-consequence but ancillary routines (e.g.,
for external libraries), and semi-formal methods that provide added assurance in cases where full formal
verification is infeasible (e.g., in codebases that use languages with limited support for formal reasoning,
as discussed in Section 3.4.1.3).

The credibility of tools used for formal verification is an important consideration. Put another way, if a
proof is generated using a particular tool, trusting this proof in a high-consequence environment
requires some thought. When using tools like the Coq proof assistant, trusting a proof can be reduced
to trusting the implementation of the tool’s proof checker1 However, specifications may be incorrect or
unrealistic (see Section 1.2.3), which limits the practicality of the proofs about them. The tri-labs are
therefore interested in working towards enhancing the credibility of formal methods tools. This work
includes counterexample generation, and developing explanations of formal results and specifications
through principled documentation or publication.

The key challenge in getting formal methods adopted at the labs is usability; without consistent
investment in documentation and usability, formal methods tools have the danger of remaining arcane
tools used by only a few experts. This may be acceptable to meet mission assurance in some cases, but
usability is critical for wider adoption throughout the labs and in the industry in general. Usability can
be addressed with more involvement in human factors engineering, publications and documentation,
and maintenance of software, as well as research into lightweight formal methods tools.

Tri-lab scientists are aware of many different research areas important to NNSA mission needs where
formal methods can have a significant impact. While Sandia already has a robust formal methods
department, LLNL and LANL are interested in expanding and collaborating in the formal methods
space. We list some of the topics here and further expand on them later in this chapter.

Particularly relevant research areas are: provable cyber assurance, formal numerical methods, certified
cryptography, static analysis for multiple languages, scalability of automated analysis, certification of
formal methods results, challenges of formal specification and what language verification results are
proved against, for example, how general-purpose specification languages such as Coq compare to
domain-specific languages with respect to their usability and scalability, correctness error analysis of

1This is the de Bruijn criterion mentioned in Section 1.2.

27

numerical codes, especially in HPC systems, compiler verification, cyber-physical systems, security,
operating systems, co-design of hardware accelerators and automatic verification, and improvements
towards hardware verification tooling, AI/LLM code generation and correctness arguments for the
code generated, programming languages tools and how the scale of these tools must be different for
different codebases (e.g., how systems with thousands of lines of code versus systems with millions are
managed), numerical reasoning and floating-point analysis, and in general lowering the barrier of entry
to using formal methods tools.

3.1. Abstraction and Refinement

Many systems the NNSA labs are tasked with verifying are sufficiently complex so that verifying even a
single component is intractable. Thus we rely on the notion of refinement. Using abstraction and
refinement has the added benefit of mapping developer intent and compartmentalization of concerns
into a formal model (put more concretely, engineers reason and design at various levels of abstraction,
and verification analysts can leverage these structures to build better models of the systems). For
example, Figure 3-1 shows a high-level overview of a model-based system design (MBSD) used for an
example embedded controller.

Figure 3-1.: Analysis stack for a MBSD embedded controller.

Between each layer, from statechart specification down to hardware netlist, a full verification workflow
would build a refinement relation between each abstraction level. Note this figure looks similar to
Figure 2-1, and is similar in spirit, however a refinement relation is slightly different; with refinement,
properties proved about the abstract model hold in its refinement. Our current workflow (using Q
Framework) accomplishes some of these refinement arguments, however the story is not complete.

Future work with abstraction/refinement would benefit from models of hardware, netlists, bus
protocols, and processors, compatible with state chart models.

28

Beyond this, the notion of refinement is not a single concept: state charts have different notions of
refinement and composition. Some models of composition do not generalize to all types of properties
proved. In particular, we are interested in better formal models of contextual refinement, parallel
asynchronous composition, and nested composition.

3.2. Concurrency and Distributed Systems

Verification of commonly-used protocols has the potential for high-impact because of their potentially
wide-ranging use. Furthermore, distributed or concurrent systems are difficult to reason about; security
bugs can remain latent for years in even well-tested and trusted protocols [32]. Example distributed
systems (and their respective implementations) that would benefit from both high-level modeling as
well as implementation verification include communication protocols such as SSH. State-machine
based analysis has been used to analyze chat protocols such as WebRTC [111].

In addition, protocols used for embedded systems are of particular interest to the labs. Examples
include Universal Asynchronous Receiver-Transmitter (UART), Inter-Integrated Circuit (I2C), and
the CAN bus protocol. We use the latter as an exemplar for formal modeling in Section 4.6.

In addition to communication protocols, in the field of operating systems (OSes) real-time operating
systems (RTOS) schedulers are used in many mission-critical applications. Beyond this, device drivers
and other network protocols can be difficult to analyze because of their complexity and temporal
requirements.

3.3. High-Performance Computing

The tri-labs maintain HPC software libraries and codebases too numerous to list here. These codebases
have diverse use cases and needs. One challenge with HPC is porting these codebases to new
supercomputers. In particular, the shift towards accelerators like GPUs often require significant
rewrites, so much so that re-framing problems in a data-parallel paradigm is its own area of research.
While the labs maintain libraries such as Kokkos and RAJA for more easily writing
performance-portable code, there remain correctness concerns when such large refactoring is done.

One example of this challenge are the subtle differences between memory models and synchronization
primitives for different GPU architectures. These differences may not arise until code is ported. Not
only this, but these bugs can cause nondeterministic errors and thus hard to detect and debug. One way
to address this is to better formalize memory models for different GPU ISAs, such as OneAPI and PTX.
Challenges with proprietary architectures could stymie progress for an individual architecture.
However, even without vendor buy-in, the development of sufficiently weak memory models (e.g., for
Kokkos, which targets many different parallel programming libraries) could result in better assurance
for many different architectures. The drawback is potential unnecessary synchronization, but whether
this causes significant performance degradation remains to be seen.

Beyond memory models, many parallel programming systems could benefit from better formalization.
There have been efforts towards writing semantics of the Message Passing Interface (MPI) [75], but
models of different parallel-programming paradigms [108] would also be useful to have formal models.
One important caveat here is what we mean by formalization. For example, some formalization efforts

29

consist of building a model in a language such as TLA+ [67]. This can be used to reason about
high-level properties such as the correctness of a distributed protocol. While this still permits
implementation bugs (unlike, for example, a Coq proof of correctness, from which a verified
implementation can be automatically extracted). However, a larger problem is the usability of high-level
formalizations: it is not generally possible to modularize TLA+ models and use them for anything else.
Therefore, any formalization efforts, especially for HPC codebases, should consider their ability to be
connected with compilers and codebases directly. This is a challenging and unsolved problem.

For HPC codes, it is hard to overstate the importance of compilers. Tuning code to a particular
architecture and compiler combination can sometimes result in orders of magnitude better
performance, and other times compiler flags (in particular fast-math optimizations) can change the
solution. Not only this, but modern compilers contain hundreds of optimizations, and the majority of
compiler bugs reported relate to mis-optimization [131]. Not only do the labs need better optimization,
but they also need better, provably correct optimization for parallel codes. There has been some work in
this space [130, 80], but the labs would benefit from further research. Recent work with formalizing
LLVM [129] in Coq using interaction trees, if used on tri-lab codebases, could permit much stronger
correctness efforts while still allowing the flexibility of LLVM.

Another characteristic of HPC codebases at the tri-labs is their large size and long history: many
codebases have been maintained and developed for decades. For these codebases, debugging can be
challenging as they get ported to new architectures while maintaining rigorous performance and
correctness criteria. Further investigation into root-cause analysis of numerical errors and exceptions, as
mentioned in Section 2.2.2, could accelerate scientific code development while also increasing surety.

Formalized numerics and domain-specific languages are relevant to HPC applications; we describe
them in more detail in Sections 3.10 and 3.5.2, respectively.

3.4. Programming Languages

Verification of software requires many connections between programming languages, their
implementation, and formal reasoning tools. These include but are not limited to: formal definitions
for the semantics of a language as defined by the language standard; formal definitions of the semantics
as implemented by specific compilers; parsing and static analysis of program code; generation of models
for code in formal reasoning tools; and compilation toolchains. Our observation is that the degree to
which any of these are addressed varies widely by programming language both in terms of availability
and robustness. In this section we discuss specific languages and our current assessment of their state
with respect to verification activities.

3.4.1. Languages

3.4.1.1. Well-Supported Languages

The C programming language is the best supported in this context thanks in large part to the efforts in
the CompCert [72] and Verified Software Toolchain (VST) [3, 4] projects. These projects focused on
the needs of high assurance software development aimed at systems-level software, often in the context

30

of embedded safety critical systems. The key components that lead us to conclude that C is well
supported are:

• The existence of a formal, machine-checkable language semantics encoded in a proof assistant.

• The existence of a formally verified compiler.

• The availability of supporting tooling and literature necessary to define and discharge proof
obligations needed to establish safety and security verification conditions.

While the C language is one of the best supported with respect to verification methods, there remain
gaps to fill to raise the assurance level even higher. We identified the following research directions to
address this:

• Establishing assurance cases for the front- and back-ends of the compiler. Much of the current
effort has focused on the core IR and algorithms within the compiler, leaving trusted but
unverified components at the front-end (lexing and parsing) as well as the back-end (linking,
semantics of generated machine code as executed by the CPU).

• Formal models of target hardware. Even with a formal definition of an assembly language we
require a formal model of how the assembly is actually executed. Many aspects of processor
design are not visible at the assembly level, but have a potentially large impact on the semantics of
the program execution (such as out of order and speculative execution).

3.4.1.2. Moderately-Supported Languages

A larger set of languages we classify as moderately supported: some formalization efforts have occurred
that can be applied to high assurance software development but there are significant gaps to connect
them to a realistic application.

The Why3 tool along with its language for writing specifications and first-order logic reasoning is a key
component in many verification processes [40]. The WhyML language can be used directly for
specification and reasoning, with some mechanisms to extract executable code for languages like Ocaml.
Why3 is used as an intermediate representation by verification tools for other languages like
Frama-C [61], SPARK Ada, and others. In those cases, terms in the Why3 language are instantiated
directly in the Why3 engine from specifications written in a language closer to the code to verify. For
example, the ANSI-C Specification Language (ACSL) [11] is used by Frama-C to define properties of C
programs that are then translated to Why3 for subsequent proofs by a back-end SMT solver or proof
assistant.

The primary advantage of Why3 is that it provides a bridge between a specification language and
different solvers. Recent work between Sandia and Princeton has built a formalization of the core Why3
language [23]. The largest gap that exists for making use of Why3 is connecting code written in a
conventional language to Why3. Frama-C and SPARK provide this for C and Ada respectively,
although in both cases users are limited to subsets of the language. Less mature but promising efforts are
under way to provide a similar approach to Ocaml via Cameleer [92] and Rust via Creusot [30]: neither
of these are ready for production application, but have matured beyond handling basic academic test
cases.

31

There has also been work in industry building similar tools to Why3, the most well known being the
Dafny [71] system atop the Boogie intermediate verification language [10]. Dafny presents a similar
language for expressing specifications and proofs as Why3, but adopts a programming model closer to
C# versus the ML-style language used by Why3. It also has more limited prover support, primarily
targeting the Z3 SMT solver. Industrial use of Dafny has risen in the last decade: Dafny and Boogie
originated as research tools at Microsoft Research, but have been recently seeing active development at
Amazon in the Amazon Web Services (AWS) division with applications to production AWS systems.

3.4.1.3. Languages with limited support

Many other programming languages have much more limited support for verification activities. Few
programming languages have no formalization efforts at all, but in most cases these efforts have been
either academic exercises, restricted to a very specific part of the language, or are out-of-date and no
longer track current language standards or implementations. Based on our understanding of use cases
within the tri-labs and broader DOE complex, we identified the following languages as needing
substantial work to raise the level of formalization and tooling for verification activities.

C++ : C++ is unique in that it is one of the most widely used languages yet has the least robust
ecosystem of tools and techniques for formalization and analysis. This is in part due to the complexity
of C++: it is a common misconception that C++ is simply a superset of C, where existing C work will
map directly to C++. C++ presents a much more complex type system (especially with respect to
templated code) and differences in everything from the memory model to how software is modularized
and organized. To the knowledge of the authors of this report there does not exist a formalization of
C++ that includes features common to production applications such as templates and classes. At best,
there exist static analysis tools that are used to check code for properties known to be sources of bugs:
but these tools often have not been shown to be sound nor complete. There is substantial work
necessary across the board to raise the assurance level possible for C++. Fortunately, such work will have
substantial impact due to the sheer volume of C++ that is core to the mission across the DOE/NNSA
complex.

Rust : Rust is a recently invented language that aims to provide memory safety features at the
language level that are compatible with the needs and constraints of systems level developers. Rust is
appealing because the type checking performed by the compiler allows memory safety issues to be
caught before compilation: in other languages these would often require runtime assertions or
third-party static analysis tools to identify. While the type checking performed by the compiler has
proven useful and has improved the quality of systems relative to C and C++ code, Rust lacks a stable
language standard, formal language semantics, and other necessary details like a memory model
definition [106]. These gaps limit the degree that we can make and prove formal statements about Rust
programs. A number of efforts are under way to remedy this. Efforts have been undertaken to define a
formal semantics of either subsets of the Rust language, such as RustBelt and Creusot [55, 30], or basic
executable semantics, such as KRust [121]. The Ferrocene project [39], attempts to stabilize the Rust
language to a particular version, but is not true formalization or standardization effort like ISO C.

32

Python : Outside the realm of embedded, systems, and high-performance computing, the Python
language has a substantial level of adoption for data science, machine learning, and general application
development. Python also lacks a robust formal specification that is accepted in the community. A
number of academic efforts have occurred to provide a formal semantics for Python, but few have been
adopted for any large-scale verification efforts. Recent changes to the language have moved closer to
techniques amenable to formalization (such as the introduction of type hints and corresponding type
checkers). Formalization for Python is not only necessary for asserting evidence of correctness for
Python code, but is also necessary to validate that code transformations and just-in-time compilation
schemes produce code that preserves the semantics of the original program. To the knowledge of the
report authors, existing Python compilation schemes do not provide strong evidence to support any
statements about the correspondence between the original Python and the resulting compiled code.

GPU programming : While not a single language, there are a handful of programming models
(CUDA, OpenCL, etc.) that are used to program accelerators common in HPC platforms and
increasingly in embedded applications. Little work has been performed in establishing a formalization
of these systems. These systems are notable as they require a formalization of the parallel runtime model
that the accelerators provide: correctness of a GPU-based program requires reasoning about shared
memory concurrency, threading, and data parallel operations. Furthermore, these programming models
often co-exist with traditional programming models for the host processor that the accelerator
cooperates with. To make matters even worse, trends driven by the needs of machine learning are
leading to accelerators that provide features like non-standard or reduced precision floating point,
leading to a formalization gap when reasoning about numerical algorithms. Substantial work is
required to raise the level of formalization with respect to accelerator programming models.

MATLAB : The final language in heavy use in science and engineering is MATLAB. A number of
static analysis and formal reasoning projects have focused on MATLAB in the past, but they are often
incomplete. This is in large part due to the opacity of the MATLAB implementation itself: MathWorks
does not provide a formal semantics for MATLAB, so third-party tools that require a formal semantic
model for MATLAB code are limited. Some tools (such as the Grackle symbolic execution engine from
Galois [42]) exist to support verification activities but they are not widely used in the community at this
time.

3.4.2. Compilers and language tooling

In addition to language-specific formalization, it is useful to consider the tooling that support
compilation and static analysis. LLVM has become a standard tool across the computing community
for languages work. Unfortunately, LLVM has limited existing formal semantics for the LLVM IR that
all LLVM-based compilers, compiler optimizations, and back-ends must speak. Some efforts have been
made to formalize optimizations (e.g., the Alive project [80]) but are currently limited with respect to
proofs of correctness when considering composed optimizations and the overall compilation process.
LLVM bitcode has been used in some formal verification contexts (e.g., the Galois Crucible symbolic
execution engine [8]), so the level of production-level tooling is slowly rising. Additional research effort
should be supported to provide a more holistic formalization of the entire LLVM project. This will
allow stronger assurance statements to be made about compilers and tools based on LLVM.

33

3.4.3. Assembly and architectures

The lowest level of abstraction commonly used in computing before hardware is assembly languages.
These encompass traditional assembly languages (X86, ARM, etc) as well as bytecode-based assemblies
for virtual machines (JVM, .NET). Current CPUs in widespread use unfortunately provide limited (if
any) formal semantics for the actual execution of assembly code. For example, while the semantics of an
individual X86 instruction may be established for an abstract X86 processor, the actual semantics with
respect to details like speculative execution, executed microcode instructions, interactions with caches
and cache coherence protocols, and so on, are all opaque to end users. This has spurred significant
interest in open architectures like RISC-V where the semantics can be defined all the way down to the
hardware implementation. There has been promising work on building a machine interpretable formal
semantics for RISC-V [45] (mentioned further in Section 4.1), but we still have a gap when it comes to
semantics for other architectures in widespread use. There have been efforts to formalize x86 as early as
2004 with VeryPCC [123], as well as more recent work [28, 49, 38] in both the Coq and Isabelle/HOL
proof assistants in support of proof-carrying code research, but these have limited usability in any
production setting.

The microprocessor industry has a longer history than most areas of computing in the application of
formal verification tools to hardware design. This was motivated by the extreme cost of hardware
defects, the most commonly cited example being the floating point defect that shipped in the Pentium
processor in the mid 1990s [34]. A substantial amount of formalization work has been performed by
hardware vendors including AMD and Motorola using the ACL2 system [105]. This work in ACL2
has been applied to a number of hardware designs that have shipped in commercial processors by these
vendors, many of which are acknowledged publicly by the vendors (even if the corresponding
verification artifacts are not available). The largest issue with these formalizations is the style by which
the formalization was performed. Approaches common in formal verification (such as those used by
CompCert and VST) adopt a minimal kernel model (the de Bruijn criterion described in Section 1.2.3)
to reduce the trusted code base and the scale of the logic that must be manually verified. ACL2 and
related systems instead adopt a much larger kernel—in some cases, all of ANSI Common Lisp.

Interestingly, the bytecode-based languages have had some levels of formalization and verification.
Bytecode verification is established as part of the Java language specification and is used to ensure that
bytecode meets specific security and safety constraints prior to execution [18]. This is intended to
capture defects or malicious intent in the compilation process or in the intervening path from compiler
to execution environment. Much of this work has focuses on a limited degree of formalization of
bytecode at the level of datatypes and stack usage. Given the prevalence of these bytecode-based
languages in commercial software used across the DOE/NNSA complex, additional formalization is
important for raising the assurance bar for this software.

3.5. New Programming Paradigms

In this section, we describe future research directions in the area of programming languages. Better
assurance could be provided by research into subsets of existing modern programming languages, and
also by the development of new domain-specific languages.

34

3.5.1. Model-Based System Design

While maintaining existing codebases is a large part of the tri-labs work, there is also a need for
future-looking, more flexible programs. Especially in embedded applications, the MBSD artifact as an
executable formal model (such as a state chart) could be the primary artifact, from which code and other
properties are generated. Research into better MBSD-based approaches could introduce higher levels of
abstraction, thus making implementation details such as the embedded programming language (such as
C or Rust) mostly automated, akin to how hand-written assembly is rare in modern codebases.

3.5.2. Domain-Specific Languages

Domain-specific languages (DSLs) offer the potential to limit the scope of supported features, which
can make a language both more expressive in its domain as well as simplify verification tasks. DSLs or
embedded DSLs have seen success in some fields (e.g., Cryptol or Halide [101]), but have problems with
expressivity and maintenance. The expressivity problem often arises when DSLs are used outside of
their original intent. In particular, practical considerations such as foreign function interfaces or
nonstandard data structures become either awkward or impossible to express in these DSLs; moreover,
these problems tend to get worse as a project evolves unless scoping is deliberate and already
well-established. For example, Q Framework uses MathWorks Simulink/Stateflow as its state chart
front-end, but the limitations of Matlab’s APIs and programming language semantics have caused extra
developer time to be spent developing circuitous workarounds. Maintenance problems arise since DSLs
typically do not have the same institutional investment as mature, general-purpose languages.

Potential research directions for DSLs include: development of annotation languages for verification
(such as ANSI/ISO C Specification Language (ACSL) used by Frama-C, or Prusti [6] for Rust) and
better formalizations for commonly-used DSLs such as OpenMP, CUDA, Kokkos, or RAJA [12].

3.6. Maturing Open-Source Hardware Design and Verification

Verification of hardware is a priority at the tri-labs; Sandia owns and operates its own semiconductor
fabrication facility called MESA, but this does not mean the labs have perfect control over the hardware
stack: often, hardware vendors have proprietary tooling or deliverables which are either closed-source or
even purposely obfuscated. And so, the tri-labs leverage open-source hardware design and verification
tooling.

One of the main research gaps with respect to verified hardware is the maturity of its tools: in recent
years, (spurred perhaps by the development of the open architecture RISC-V), there has been more
development of open hardware verification tooling. The main issue is that these tools are not yet at the
software maturity necessary for the scale the labs needs; they need to be developed beyond a
research-level software into an industrial focus.

With respect to hardware architectures, RISC-V, the open-source instruction set architecture, is the
only reasonable path for full-stack verification. From a verification perspective, the tri-labs are interested
in developing open-source and formal languages into more mature tools. The tri-labs already use Kôika,
but desire improved scalability, both with the number of gates handled. For example, we can support
about 100,000 gates, but have systems of interest larger than that. Beyond this, SMT solvers are

35

typically optimized for hardware-motivated problems and so often scale poorly. YICES [33] is the only
SMT solver well-suited for hardware. Other considerations include developing better support of out of
nominal behavior. Furthermore, developing Kôika to support clock domains, buses, and other modern
features could help bring its feature set on par with proprietary solutions.

Hardware design presents challenging issues with trace-and-route. One open-source project which
begins to solve this problem is Triton Route [56]. The labs are interested in developing into a more
mature environment.

Another challenging issues in hardware verification is the hardware provenance and supply chain issues:
physical hardware is less inspectable, but may still be possible to tear down. NNSA labs are thus
interested in chain of trust for fabrications, hardware masks, bills of materials, and other supply-chain
concerns. One of the later steps of hardware fabrication converting from a netlist into a mask, which are
still made using commercial tools. One potential solution to this issue which would still allow the use of
commercial tools would be development of proof-carrying code with netlists.

Beyond the facilities at MESA, Skywater [44] is an open-source process design kit and has been used
with Xyce [57]. Further research into the Skywater workflow could establish better chain-of-trust for all
stages of hardware development.

Lastly, there may be situations where there is no feasible path other than untrusted hardware. Research
into verifiable computing (e.g., a trusted co-processor with an untrusted component) could help
improve assurance.

3.7. Cybersecurity and Cryptography

Developing cryptography that is secure even in the presence of potential quantum computers, called
Post Quantum Cryptography (PQC), is an active area of research [1, 9, 25, 26]. But just because a PQC
algorithm is secure against quantum computers in theory, it may not be secure against classical
computers. Proving absence of these types of vulnerabilities (without even counting implementation
bugs) is also rapidly developing [93, 22, 82, 14], motivated in part by the National Institute of
Standards and Technology (NIST) PQC standardization efforts, which began in 2016. As of early
2024, the competition is in its third (of four) rounds of algorithm selection [87], wherein algorithms
are being carefully evaluated for their robustness and correctness. All the proposed PQC algorithms are
probabilistic in nature, and so investment into probabilistic programming languages could improve
reasoning techniques.

Another interest of the tri-labs is security of Operational Technology (OT). Many traditional
cybersecurity contexts assume some properties about a computer system such as their ability to be
updated, or are networked with modern (i.e., TCP/IP) protocols. Even if these do not hold for many
systems in use today, OT still often lags behind other computer systems by decades.

In addition to OT, other infrastructure-related devices such as protocol gateways, routers, and switches,
are increasingly relied upon for critical infrastructure systems. These have similar concerns with OT in
that they have high reliability requirements and may not be easily to replace or update. Incorporating
formal methods, and in particular cybersecurity requirements, early in the development lifecycle would
benefit OT assurance and cybersecurity.

36

Two themes of infrastructure and other cybersecurity-related concerns are of early-adoption of formal
methods techniques and improved modeling. Because these infrastructure-related systems are not easily
updated, the cost for errors is much higher. One of the key benefits that formal methods has established
in the tri-labs portfolio is its ability to catch more errors earlier-on in the development lifecycle. While
adversarial behaviors may not be reducible to a simple mathematical model, better modeling (such as
threat models or informed algorithmic input generation) can further produce guidelines of where to
focus cybersecurity testing and hardening efforts [35].

These concerns cannot be mentioned without issues of scoping and responsibility: the sheer amount of
IT/OT systems in deployment for the tri-labs (and the United States in general) produces a challenging
problem of how to identify the needs and responsibilities of interested parties. Thus, more effort at the
policy and procurement level could be effective, for example, ensuring standardizations for Software
Bills of Material (SBOMs) in procurement, semantic matching of software packages (e.g., between
trusted source code and binary distributions), and secure root-of-trust.

Other research gaps in the cybersecurity space are those of formal threat modeling. For example,
cybersecurity properties may look different from traditional safety or liveness properties. Work in the
areas of hyperproperties, observational equivalences between protocols, and composable proofs of
security have been investigated, but these techniques do not have adequate tooling investment to be
used in situations other than bespoke, labor-intensive solutions. Because of this, proprietary
cybersecurity solutions are often advertised without any assurance guarantees, but instead charge for
services akin to software linters, which prove merely syntactic guarantees about software which do not
correlate with a lack of cybersecurity vulnerabilities.

Some potential strategies these gaps in cybersecurity threat modeling could be addressed are with
automata learning (such as building state machine-based adversarial models), sound state compression
to handle scalability limitations of threat modeling, and abstract interpretation from binaries.

3.8. Collaborations

The NNSA labs already have established university connections, such as university partnership
programs and the Predictive Science Academic Alliance Program, but we have identified several
opportunities to improve these collaborations.

One consideration which consistently requires revisiting is selection of research topics. For example, as
mentioned in Section 3.4.1.3, better formalization of Rust could include a formally-verified Rust
compiler. However, this would require a huge undertaking with many person-years of development.
While some of this is relevant to universities and could result in publications or dissertations, much of it
requires development work not well-suited towards PhDs. However, funding this work through
NNSA-lab scientist time may be prohibitively expensive. Investigating the best paths forward, or
pursuing other avenues for progress would be valuable to the community as a whole.

Other scientists have appreciated transfer of ideas, for example through regular discussions with
vendors, such as US-based technology companies or international institutions such as CEA-List in
France, are valuable and help connect the tri-labs with the broader formal methods community.
Likewise, potential partnerships with European agencies are incredibly valuable because of the large
formal methods community in Europe (In particular, French organizations maintain many FM and

37

FM-adjacent tools, including Why3, Coq, Frama-C, CompCert, and OCaml, just to name a few. The
United States has Cooperative Research and Development Agreement (CRADAs) with both the
United Kingdom and France; US and UK host Joint Working Groups (JOWOGs) to share information
across the DOE and Atomic Weapons Establishment. We believe the already-established CRADAs with
France and the UK could be better-utilized in the formal methods space.

Beyond existing CRADAs with governmental organizations, the tri-labs sees opportunities for better
open university collaborations, which could facilitate work with with US citizens and foreign nationals
in US universities, as well as foreign universities. At times the open/closed information delineation
requires extra effort up-front to ensure all materials can be publicly released; this overhead can stymie
good science. Motivations to assuage this process are twofold: for one, academics are increasingly
expected to make their results publicly accessible, and so a sensitive/nonsensitive distinction is already
being required even for domestic students, and second, programs where this has been done, such as
ASC’s Predictive Science Academic Alliance Program (PSAAP), have demonstrated the value of this
up-front effort. Another benefit of these university collaborations is to encourage a robust recruitment
program, especially considering companies such as Amazon have a large demand for formal methods
researchers.

Beyond well-established allies, modern open-source software comes from worldwide sources. Tri-labs
are interested in establishing better protocols for software provenance. We have identified challenges
with using software whose maintainers have emails ending in .ru, for example, and processes for
sharing code between labs, within labs, and externally could be simplified while improving security.

Open examples and benchmark suites are common in HPC codebases [24] and formal methods could
benefit from similar investment. For example, many binary analysis problems at the scale which the labs
must deal with are not tackled by academics because of their complexity, and the challenge of
publishing these results (which can be seen as “experience reports” or “engineering effort” and not
publishable research), especially for C or C++ codebases.

Concrete steps to achieve these collaborations include building open surrogate models and
benchmarks, cutting red tape for university collaborations, and using CRADAs which exist in theory,
but are underused in practice.

3.9. Tool Usability

The usability of formal methods tools underpins every research opportunity mentioned above. Other
sections reference specific usability concerns; here, we highlight general considerations, including
practical concerns, tool choice, interpretability, and scalability. Addressing barriers to tool usability is
essential to the tri-lab mission of enabling further formal methods research.

3.9.1. Usability as a Formal Methods Issue

The problem of tool usability may at first seem to fall squarely within the domain of software
development. While not altogether incorrect, this distinction belies the relevance of usability to formal
methods. The usability of tools is a complex problem that must take into account various aspects of

38

formal methods, including programming language design, human-computer interaction, logical
constraints like the decidability of a proof obligation, and more.

Due to these factors, the formal methods tools that tri-lab scientists use are often tailored to a specific
software system or problem domain. One example at Sandia is Q Framework (Section 2.1.5), which uses
Frama-C to specify and verify properties of programs. To fulfill mission deliverables, Sandia scientists
have restricted their focus to C programs that closely match common MBSD design paradigms, namely
the event loop design pattern. Their need to restrict the problem domain to match the capabilities of
the tools at hand illustrates the critical relationship between usability and formal methods research.
However, some restriction is always necessary: one theorem from the foundations of computing, Rice’s
Theorem, states that in general it is undecidable to prove “nontrivial2” properties about a given
computer program [102].

While usability is a formal methods problem, there is no universal solution that fits all needs at the
tri-labs. Some codebases are best suited for lightweight formal methods to detect common classes of
mistakes, others can leverage domain-specific tooling, and the most high-consequence applications
demand more rigorous, in-depth verification, such as full proofs of correctness in Coq. Ultimately, the
usability of formal methods tools will be highly dependent on the context in which they are applied.

Strength of Claims

A
ut
om

at
io
n

Proof Assistants

Deductive Program Provers

Model Checkers

Static Analyzers

Property-Based Testing

Domain-Specific Provers

Holy Grail

Figure 3-2.: The landscape of formal verification, as described by Leroy [73]
(recreated in Pollard [97]). The Holy Grail point represents verification that takes
no manual effort without decreasing the strength of claims, which is desirable but

unattainable.

3.9.2. Practical Concerns

Formal verification efforts often take upwards of fifteen times the person-hours as the original
development [62]. The tri-labs is interested in vastly decreasing the time expended on verification. One
possible way of achieving this outcome is integrating verification into an earlier part of the development

2Put slightly more technically, Rice’s theorem is extensional. Properties such as “What is the size of the computer program”
or “does a given program typecheck” can be decided; what precisely makes a property nontrivial is beyond the scope of
this report.

39

lifecycle through model-based system design, more powerful type systems, design-by-contract, better
specification generation, and lightweight formal methods tools like Alloy [53]. In addition to
integration, the verification feedback loop must be made more “pleasant” so that formal verification
tools get more use. This shift will likely require increasing the interpretability of tool output,
mentioned below.

The changes proposed above would prove helpful to both formal methods experts and non-experts. For
non-experts, a critical barrier is lack of familiarity with formal methods-specific tools. A workaround
may be domain-specific languages (DSLs), discussed in Section 3.5.2.

3.9.3. Tool Choice

A key aspect of usability is choosing the right tool for the right problem. One primary way that
verification tools differ is in their degree of automation. Automation enables a tool to automatically
check programs for the preservation of certain (potentially automatically-discovered) properties with
little guidance from the user. This enhanced usability typically comes at a cost of decreased expressivity
of guarantees that can be made about the program. In comparison, manual approaches require users to
not just specify properties but write proofs that the properties hold. This is the approach taken by VST,
for example, 3 and manual approaches allow for developers to use the full power of mathematics and
expert reasoning. The variety of projects at the tri-labs necessitates the use of verification tools with
varying degrees of automation and expressivity.

Figure 3-3.: An Emacs interface to The Coq proof assistant. The interface is
similar to a debugger, with the proof script on the left and the current proof state
after the highlighted section on the right. This particular theorem is an auxiliary

lemma about verifying a C code implementation of matrix algebra.

Proof assistants are a commonly used verification tool that typically have few automated capabilities but
allow for high degrees of expressivity. For example, Coq is known as an interactive theorem prover; its

3VST has some limited automation but generally requires a large amount of developer time and expertise.

40

interface is shown in Figure 3-3. This particular tradeoff introduces the challenge of proof repair: small
changes in the implementation often require large rewrites to the structure of proofs [103]. Better proof
automation and search could help this, as well as using AI/ML to have more powerful proof search and
heuristics. Provided the trusted computing base is small, 4 sophisticated proof search could be safely
performed without affecting the trust of the system.

On the other side of the automation spectrum are program logics like Frama-C, which achieve greater
automation through powerful and interoperable abstract interpretation capabilities but do not offer the
same assurance and soundness arguments provided by more manual tools like VST. Future investment
in developing better soundness arguments for automated tools such as Frama-C, or better automation
capabilities for tools like VST, would vastly improve developer productivity while also making proofs
more robust to change.

3.9.4. Interpretability

A common obstacle to working with formal methods tools is the interpretability of their output, which
often consists of low-level logical statements or errors that are difficult to connect to their
corresponding high-level specification language or code. The lack of interpretability leads to increased
time and effort invested in understanding and debugging these tools, diminishing usability. We provide
an example with Frama-C, but this challenge remains in many other tools.

Frama-C takes C code and a specification as input. These properties get translated into an intermediate
language, optimized to achieve better scalability, and dispatched to external solvers as verification
conditions. These solvers can return one of three verdicts: unsatisfiable (which, because of the way
propositions are formulated, typically represents valid conditions), satisfiable (with a counterexample),
or a timeout. Regardless of the verdict reached by Frama-C, the default output offers little insight into
how or why it reached a certain conclusion, limiting the tool’s interpretability. Frama C’s opaque nature
is especially challenging when proof goals fail, as the user has to check both the specification and the
implementation for a bug. A possible solution that could increase interpretability is counterexample
generation, which analysts could understand more easily than the output of complex FM tools.

3.9.5. Scalability

As mentioned in Section 2.1.2, the challenges encountered in large-scale proof efforts push the limits of
existing proof tools, which increases the level of effort required to achieve scalability. As an example,
consider the limitations encountered by the Sandia team when verifying the cryptographic root-of-trust
in the proof theory of interaction trees. Interaction trees are coinductive specifications of possibly
infinite streams of behaviors. Using Coq and the Verified Software Toolchain (VST), the Sandia team
demonstrated that the interaction trees produced by their embedded software was observably
equivalent to the acceptable, specified collection of interaction trees. To prove this equivalence,
researchers had to substantially extend existing proof rules for interaction trees and custom-build
libraries for VST and Coq, illustrating the scalability limitations of existing verification tools.
Developing more robust proof tactics and modular libraries could decrease the effort needed to make
existing verification approaches scalable.

4It is generally accepted in the proof assistant community that Coq and HOL4 satisfy the de Bruijn criterion [113].

41

3.9.6. DARPA PROVERS

The concerns mentioned above provide support for the idea of validation workflows, wherein the
usability, scalability, and trustworthiness of tools are evaluated together. DARPA PROVERS is a
project to address the scalability concerns with formal methods [81]. Sandia is involved with scaling
formal methods tools, developing metrics, and evaluating new approaches for formal methods. This
project is currently in its first year but aims to improve upon existing formal methods tools as well as
develop new tools. The success of this project would produce tools that are widely used and
well-maintained while also lowering the barrier to entry for formal methods.

3.10. Formalized Numerics and Floating-Point

Researchers at Sandia and LLNL have identified the need for tools that verify the numerical behavior of
floating-point computations in several domains. As mentioned in Sections 2.1.9 and 2.1.11, developing
better tools for formally verifying numerical programs could have a large impact on the trustworthiness
of both embedded systems and large HPC codebases. Furthermore, the increasing heterogeneity of
hardware accelerators and FPGAs has created an increased need for tools that provide parameterized,
generic analyses (i.e., analyses that do not assume a single floating-point representation or numeric
library interface). Extending existing formalizations of floating-point arithmetic [16, 17, 59, 60] for
increased scalability, usability, and support for heterogeneous computing would have broad impact at
the labs, both in embedded system verification and in assurance for HPC modeling and simulation.

The primary formalization of the IEEE-754 standard in the Coq proof assistant is the Flocq library [17].
While this library has been used successfully by experts in numerical analysis [86, 15, 20, 70], it can be
hard to use for non-experts. And, while the design of Flocq is sufficiently generic to apply to a wide
variety of floating-point formats beyond those in the IEEE-754 standard, work should be done to
develop particular formalizations for nonstandard formats, such as those used on GPUs and
low-precision (16-bit or 8-bit) floats used for AI/ML applications. Beyond this, developing tools or
proof libraries that interface with Flocq and can guide non-expert users would encourage further
development.

Formally verifying numerical programs requires the presence of suitable specifications, which don’t
always exist in practice. One example that could benefit from improved specification is Intel’s OneAPI;
by default, it improves performance by using imprecise options for certain floating-point operations. If
a program requires precise models, porting to OneAPI may change the result of a computation, and it
can be time-consuming to determine the provenance of the discrepancy. Automated analysis, or at least
tools for better error tracking, could improve the reliability of porting efforts in the presence of
improved specifications.

Finally, the main challenge of floating-point arithmetic is that the mathematical abstraction—infinitely
precise real number arithmetic—is mapped into a finite precision approximation. There is no good
language support for managing this abstraction, so the onus lies on programmers to understand how
error propagates. The tri-labs would benefit both from automated static analysis of numerical codes
which could identify potentially high-error operations, as well as more feature-rich tools that could, for
example, track real-number semantics alongside floating-point approximations. While there has been
some work in this space related to precision tuning [84, 109], we emphasize the need for tools that

42

generate rigorous guarantees and proof certificates.

3.11. Artificial Intelligence

With the explosion of AI—especially Large Language Models (LLM)—in the past 7 years, we again
emphasize the analogy of formal methods providing “guard rails” for AI. The idea of guard rails around
AI is simple to conceptualize, but difficult to implement. Difficulties with formal reasoning around
modern AI techniques occur because of the size of the models, their complex, high-dimensional input
data, and their problem domains. For example, it is not clear how to formally specify to a autonomous
vehicle when it is safe to continue through an intersection. We claim formal verification around these
topics is worth investment.

There are two ways to think of combining FM and AI: FM for AI and AI for FM. We discuss both in
this section. Successful research in the first direction would result in increasing safety and trust of AI
systems. For example, developing formal models for the input and output space of a large language
model using programming language or FM techniques could ensure classes of output are not generated.
The simplest example of this would be to assign a type checker to the output of an LLM, but more
sophisticated models of output could be developed.

For the second (AI for FM), we note a complementary nature between the rigorous and less flexible
(formal methods) versus the less rigorous and flexible (AI). Our position is that combining AI and FM
can be gestalt, provided the roles are clearly demarcated. In particular, if powerful AI techniques can be
used in situations where users do not need to know from where the solution arose, but only that it is
correct. In particular, situations (such as NP-complete problems) where the solution can be checked
quickly using a trusted verifier provide the best opportunities. One example relevant to the FM
community is proof search [128]: formal proof requires a large development effort that can benefit
from better tools.

Another example of using AI for FM are in the heuristics for SMT solvers. To give some context,
modern SMT solvers work in practice for large-scale problems because many heuristics have been
implemented which can drastically reduce a problem search space. As a counter-point, machine-learned
models can produce shockingly bad models for Xyce [57] circuit simulations, which cannot meet
requirements. And so, there remains future research to identify when ML models can be effective and
when they cannot.

Another area for improvement for generative AI are the lack of good specifications. AI/ML systems are
often tasked with generating input based on poor specifications, and even when specifications are
clarified (using in-depth prompt generation or pre-trained models tuned to particular domains), these
are probabilistic in nature and provide no guarantees. Addressing this challenge could improve the
accuracy of models for domains where there are good specifications (i.e., where notions of “correctness”
are well-posed).

Because the tri-labs has a responsibility to safeguard national security, researchers here are concerned
with adversarial issues related to AI. Modern AI systems often have limitations in accurately reporting
their capabilities (for example, adversarial input generation can trick algorithms into providing incorrect
answers they predict with high probability). We propose research into smaller examples that can address
these challenges, such as developing polyhedral abstract domains that can constrain output spaces.

43

There remains challenges to scale these up to larger problems, but research in this area could be a start
towards verifying larger and more complex AI systems.

We mention here the hallucination problem of AI, and in particular, LLMs. This refers to the tendency
of LLMs to generate incorrect or nonsense outputs without any understanding of whether these
statements are correct. A primary issue of the hallucination problem is LLMs, unlike a human, cannot
provide a chain of reasoning to explain an output. In some applications, constraining input to a
particular domain at first may seem like a potential solution. For example, suppose an LLM is
constrained to only generate valid Rust programs, and this is confirmed with a compiler. However, this
constraint is merely syntactical: semantic (behavioral) correctness is a much a harder—in fact, it is an
undecidable—problem. It is not possible to solve this problem in the general case, but research into
particular domains could be valuable.

Other solutions to this hallucination problem could be sandboxing, wherein the “sandbox” refers to
constraining output into a known, formally-verified domain. This is used in autonomous control
systems (a list of projects is maintained by DARPA [27]) and could be extended to other domains.

Other areas that LLMs have historically shown to be effective are in knowledge acquisition search [76],
such as compiling and formalizing the results of a large quantity of technical documentation. These
classes of problems are more limited in scope, but there remains research in both requirement
specification and modeling, as well as usability. In the space of knowledge acquisition, it remains to be
seen whether automated tools actually accelerate developer effort, or if the hallucination problem of AI
systems could have the opposite effect of the guard rails we have previously mentioned. To be more
specific, it is unknown whether solutions provided by LLMs in a technical space may cast more doubt
on an analysts’ understanding, and if this doubt is productive (in the case that the analyst had a
misunderstanding of the system under scrutiny) or a waste of time (in the case the LLM is wrong).

Commonly-used datasets for model training could also be better-scrutinized. Because these are so
common in AI/ML systems, they could potentially be exploited for adversarial uses. Because AI/ML
systems cannot produce anything new but only model data from training sets, analysis of these training
sets could provide insight into potential gaps or underrepresented samples.

44

4. EXEMPLARS

While much of the work the tri-labs performs cannot be released to the public for national security
reasons, we outline a few exemplar problems that capture some key features of tri-labs interests. We note
that many of these problems are open-ended to motivate several potential research directions for
medium and long-term projects relevant to tri-lab needs. Compared with Chapter 3, which outlines
broad, high-impact research areas, these exemplars provide more specific problems collaborators can
refer to.

4.1. Further Formalization of C Compiler Toolchains

As mentioned in Section 3.4.1.1, we have identified several opportunities for research in formalizing C
Compilers:

• CompCert’s semantic preservation theorem is not modular. In the presence of libraries compiled
with compilers other than CompCert, and the semantics of linkers is difficult. Extending and
modularizing CompCert’s theorems would be valuable to scale semantic preservation to larger
codebases.

• CompCert has limited optimizations. Further work on CompCert and its model of memory cells
could allow large classes of verified optimizations and, within this formally-verified environment,
permit aggressive optimization search.

• Sail [45] has been used to specify instruction set architectures (ISAs) and is the canonical
representation for RISC-V as well as newer versions of ARM. While Sail can be used to generate
Coq, the code is not usable with existing tools (such as CompCert) without further
development. Linking Sail semantics of ISAs could provide better models of ISAs to CompCert.
However, CompCert’s assembly model is based off an infinite memory model, which means
there is no refinement to a real, finite-memory machine.

4.2. Formal Programming Language Specifications

As mentioned in Section 3.4, machine-checkable language semantics can be useful for improving trust
in computer systems. However, beyond just rubber-stamping “formalization,” useful language
specification efforts require interoperability with existing tools. Therefore, when we mention “formal
language semantics” integration, we refer the reader to our discussion in Section 3.4.1.3 about the
differences between the use-cases and challenges of C versus C++ from a verification perspective.

In any case, these are programming languages and models used at the labs where formalization efforts
would have high-impact:

45

• Rust (see discussion about this in Section 3.4.1.3)

• Python

• .NET

• Java

• High-performance computing (HPC) libraries such as Kokkos, OpenMP, CUDA.

4.3. Numerical Analysis on Next-Generation Accelerators

As HPC demands in modeling, simulation, and AI/ML progress, the tri-labs need faster, more efficient
computational capabilities. Extending assurance arguments for HPC applications into the next decade
requires support for the increasingly heterogeneous hardware of future architectures, such as
domain-specific accelerators, GPUs, neuromorphic architectures, and Field-programmable gate arrays
(FPGAs).

The IEEE-754 standard for floating-point arithmetic [50] has vastly improved reproducibility of
numerical computations since its original release in 1985. However, hardware is moving ahead of the
standard, in particular with GPUs using non-conforming IEEE 754 arithmetic and datatypes.

Applications of formalized numerics could include:

• automation of formal proofs of numerical software

• numerical precision and numerics-aware compilers

• exception detection for massively-parallel applications.

4.4. Formally-Verified Compiler Optimizations

Work with equality saturation or tools such as Halide and Exo [101, 52] can make writing optimizations
easier and simpler. While both have found success in their application-specific domains, (image
processing and accelerator programming, respectively) neither are designed to handle the massive
feature set required by C++. One research direction would be to develop a limited formal semantics,
not (at first) of the entirety of C++, but relevant subsets such as high-performance or parallel libraries.
Once these semantics have been written down, semantics-preserving translations could more easily be
discovered using new data structures such as equality saturation [124] and verified using formal
techniques. This could open an avenue of “superoptimizers” which can make more aggressive
optimizations that are not obvious without a deep knowledge of the subtleties of a language and target
architecture’s semantics.

Moreover, three lab-relevant optimization directions for research include:

1. Runtime.

2. Binary size.

46

3. Ease of analysis. Techniques such as aggressive constant folding and function inlining may result
in larger or slower programs but make binary analysis more tractable.

Direction 2 and 3 typically see less focus in compiler research compared to runtime, but are more
important for embedded or resource-constrained high-consequence applications.

4.5. Formal Verification of a Kalman Filter in C

A Kalman filter is an algorithm that produces and updates estimations of the state of a physical system
using a statistical model of the underlying system including noise and dynamics. Kalman filters have
wide-ranging applications in sensing, navigation, and signal processing. Kalman filters are optimal
estimators, provided their assumptions on the distributions of noise are correct. However, they require
detailed knowledge of the underlying physical system (for example, an understanding how wind
resistance on a moving object has a known physical effect).

Implemented in C, a Kalman filter exemplifies many challenges of verification:

• Linking real-world properties and specifications (such as properties of sensors, noise, and physical
systems) to their C code implementation;

• Formal specification of real-number properties, and their floating-point approximation;

• Mixing of computational kernels within larger control software.

Developing a formally-verified Kalman filter, from its physical representation and the techniques
learned throughout, would benefit the labs in many facets.

4.6. CAN Bus

A CAN, or Controller Area Network, is a vehicle bus standard which allows microcontrollers to
communicate with each other. In particular, there are several interesting research directions regarding a
CAN bus:

• CAN bus as a distributed system; it is important to verify safety and liveness properties of the
many interacting components, as well as ensure noninterference between sub-components.

• How should a CAN bus be formally specified? One can build models of systems using, e.g.,
TLA+, however, it is necessary to model both the components interacting on the CAN bus, the
hardware interface, and the computer programs executing on these components. Permitting
theorems to be stated and mechanically or manually proved for multiple levels of abstraction is
challenging.

47

This page intentionally left blank.

48

5. CONCLUSION

In this report, we have outlined the formal methods research done at SNL, LLNL, LANL, and NASA
JPL, and identified many research areas and some of the challenges. We then provided a list of example
research questions that are highly-relevant to lab interests. Broadly speaking, the research interests at the
labs related to a better formal understanding of digital systems in the areas of hardware, compilers,
cybersecurity, AI/ML, HPC, programming languages, embedded system verifications, and other formal
methods techniques.

We identified areas where there are already strong verification efforts which can be improved even
further, such as using the VST and CompCert, as well as areas where there remain significant barriers
making verification more difficult, in particular with large HPC codebases and C++. We also identified
areas where AI/ML can help FM, or that FM can help AI/ML, and potential pitfalls for relying on
newer AI systems such as large language models.

Throughout, a running theme of this report is the challenge with tooling and usability of formal
methods. Partly by design, partly by resource constraints, formal methods tools are often sophisticated
and difficult to use. By design, because the intricacies of digital systems results in many complex cases to
consider. By resource constraints, because it is time consuming to encode the large amount of human
expertise and intuition used to reason about software. We hypothesize that investment in tooling and
usability will have large impacts in software assurance, both from proving useful correctness statements
about software, but also in programmer productivity: formal methods can provide “guard rails” to
eliminate large classes of errors and free up developer effort towards solving higher-level problems. We
hope this report provides a roadmap for future researchers in government, academia, and industry to
develop correct, robust, secure software.

49

This page intentionally left blank.

50

BIBLIOGRAPHY

[1] Aguirre, A., Barthe, G., Gaboardi, M., Garg, D., Katsumata, S.-y., and Sato, T.
Higher-order probabilistic adversarial computations: categorical semantics and program logics.
Proceedings of the ACM on Programming Languages 5, ICFP (2021), 1–30.

[2] Ahn, D. H., Baker, A. H., Bentley, M., Briggs, I., Gopalakrishnan, G., Hammerling,
D. M., Laguna, I., Lee, G. L., Milroy, D. J., and Vertenstein, M. Keeping science on keel
when software moves. Communications of the ACM 64, 2 (2021), 66–74.

[3] Appel, A. W. Verified software toolchain. In Programming Languages and Systems (Berlin,
Heidelberg, 2011), G. Barthe, Ed., Springer Berlin Heidelberg, pp. 1–17.

[4] Appel, A. W. Verified software toolchain: (invited talk). In European Symposium on
Programming (2011), Springer, pp. 1–17.

[5] Appel, A. W., Beringer, L., Chlipala, A., Pierce, B. C., Shao, Z., Weirich, S., and
Zdancewic, S. Position paper: The science of deep specification. Philosophical Transactions of
the Royal Society A (2017).

[6] Astrauskas, V., Bílý, A., Fiala, J., Grannan, Z., Matheja, C., Müller, P., Poli, F., and
Summers, A. J. The prusti project: Formal verification for rust. In NASA Formal Methods: 14th
International Symposium (Berlin, Heidelberg, May 2022), NFM, Springer-Verlag, p. 88–108.

[7] Atzeni, S., Gopalakrishnan, G., Rakamaric, Z., Ahn, D. H., Laguna, I., Schulz, M.,
Lee, G. L., Protze, J., andMüller, M. S. ARCHER: Effectively spotting data races in large
OpenMP applications. In IEEE International Parallel and Distributed Processing Symposium
(IPDPS) (2016), pp. 53–62.

[8] Bakst, A., and Dodds, M. Building a concurrency verifier using crucible. Tech. rep., Galois,
Inc., June 2021.
https://galois.com/blog/2021/06/building-a-concurrency-verifier-using-crucible/.

[9] Barbosa, M., Barthe, G., Fan, X., Grégoire, B., Hung, S.-H., Katz, J., Strub, P.-Y., Wu,
X., and Zhou, L. Easypqc: Verifying post-quantum cryptography. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security (2021), pp. 2564–2586.

[10] Barnett, M., Chang, B.-Y. E., DeLIne, R., Jacobs, B., and Leino, R. Boogie: A modular
reusable verifier for object-oriented programs. In FMCO 2005 (Nov. 2005), Springer Berlin
Heidelberg.

[11] Baudin, P., Filliâtre, J.-C., Marché, C., Monate, B., Moy, Y., and Prevosto, V.
ACSL: ANSI/ISO C specification. Tech. rep., CEA-List, Laboratory for Integration of Systems
and Technology, 2021.

51

https://galois.com/blog/2021/06/building-a-concurrency-verifier-using-crucible/

[12] Beckingsale, D., Hornung, R., Scogland, T., and Vargas, A. Performance portable
c++ programming with RAJA. In Proceedings of the 24th Symposium on Principles and Practice
of Parallel Programming (New York, NY, USA, 2019), PPoPP ’19, Association for Computing
Machinery, p. 455–456.

[13] Ben-Ari, M., Pnueli, A., andManna, Z. The temporal logic of branching time. Acta
Informatica 20 (1983), 207–226.

[14] Beullens, W. Breaking rainbow takes a weekend on a laptop. In Annual International
Cryptology Conference (2022), Springer, pp. 464–479.

[15] Boldo, S., Joldes, M., Muller, J.-M., and Popescu, V. Formal verification of a
floating-point expansion renormalization algorithm. In Interactive Theorem Proving: 8th
International Conference, ITP 2017, Brasília, Brazil, September 26–29, 2017, Proceedings 8
(2017), Springer, pp. 98–113.

[16] Boldo, S., Jourdan, J.-H., Leroy, X., andMelquiond, G. Verified compilation of
floating-point computations. Journal of Automated Reasoning 54 (2015), 135–163.

[17] Boldo, S., andMelquiond, G. Computer Arithmetic and Formal Proofs: Verifying
Floating-Point Algorithms with the Coq System, 1st ed. ISTE Press - Elsevier, United Kingdom,
Nov. 2017.

[18] Börger, E., and Schulte, W. A Programmer Friendly Modular Definition of the Semantics of
Java. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999, pp. 353–404.

[19] Bourgeat, T., Pit-Claudel, C., Chlipala, A., and Arvind. The essence of bluespec: A
core language for rule-based hardware design. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation (New York, NY, USA,
2020), PLDI ’20, Association for Computing Machinery, p. 243–257.

[20] Brisebarre, N., Joldeş, M., Martin-Dorel, É., Mayero, M., Muller, J.-M., Paşca, I.,
Rideau, L., and Théry, L. Rigorous polynomial approximation using taylor models in co q.
In NASA Formal Methods: 4th International Symposium, NFM 2012, Norfolk, VA, USA, April
3-5, 2012. Proceedings 4 (2012), Springer, pp. 85–99.

[21] Cadar, C., Dunbar, D., and Engler, D. KLEE: unassisted and automatic generation of
high-coverage tests for complex systems programs. In Proceedings of the 8th USENIX Conference
on Operating Systems Design and Implementation (Berkeley, CA, 2008), OSDI’08, USENIX
Association, p. 209–224.

[22] Castryck, W., and Decru, T. An efficient key recovery attack on sidh. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques (2023),
Springer, pp. 423–447.

[23] Cohen, J. M., and Johnson-Freyd, P. A formalization of core why3 in coq. Proceedings of
the ACM on Programming Languages 8, POPL (Jan. 2024).

[24] Cook, J., Aaziz, O., Alexeev, Y., Balakrishnan, R., Fletcher, G., Junghans, C., Kim,
Y., Liber, N., Liu, G., Lund, A., Mayagoitia, A., McCorquodale, P., Pavel, R.,
Ramakrishnaiah, V., Vaughan, C., and The ECP Proxy App Team. Fy22 proxy app

52

suite release: Report for ecp proxy app project milestone adcd504-14. Tech. rep., Department of
Energy, Dec. 2022.
https://proxyapps.exascaleproject.org/wp-content/uploads/2023/03/ADCD504-14.pdf .

[25] Cremers, C., Fontaine, C., and Jacomme, C. A logic and an interactive prover for the
computational post-quantum security of protocols. In 2022 IEEE Symposium on Security and
Privacy (SP) (2022), IEEE, pp. 125–141.

[26] Cremers, C., Jacomme, C., and Lukert, P. Subterm-based proof techniques for improving
the automation and scope of security protocol analysis. In 2023 IEEE 36th Computer Security
Foundations Symposium (CSF) (2023), IEEE, pp. 200–213.

[27] DARPAAssured Autonomy Program. Assured autonomy tools portal continual assurance
of learning-enabled, cyber-physical systems (le-cps), 2024. https://assured-autonomy.org/tools.

[28] Dasgupta, S., Park, D., Kasampalis, T., Adve, V. S., and Roşu, G. A complete formal
semantics of x86-64 user-level instruction set architecture. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation (New York, NY,
USA, 2019), PLDI 2019, Association for Computing Machinery, p. 1133–1148.

[29] Davis, N. A., Berger, T. E., McDonald, A., Ingram, J. B., Foster, J. D., and Sanchez,
K. Software verification toolkit (svt): Survey on available software verification tools and future
direction. Tech. rep., Sandia National Laboratories, United States, Sept. 2022.

[30] Denis, X., Jourdan, J.-H., andMarché, C. Creusot: A foundry for the deductive
verification of rust programs. In Formal Methods and Software Engineering (Cham, 2022),
A. Riesco and M. Zhang, Eds., ICFEM, Springer International Publishing, pp. 90–105.

[31] Digital Foundations &Mathematics. https://proof.sandia.gov. Accessed 22 Dec 2023.

[32] Durumeric, Z., Li, F., Kasten, J., Amann, J., Beekman, J., Payer, M., Weaver, N.,
Adrian, D., Paxson, V., Bailey, M., andHalderman, J. A. The matter of heartbleed. In
Proceedings of the 2014 Conference on Internet Measurement Conference (New York, NY, USA,
2014), IMC ’14, Association for Computing Machinery, p. 475–488.

[33] Dutertre, B. Yices 2.2. In Computer Aided Verification (Cham, 2014), A. Biere and R. Bloem,
Eds., CAV, Springer International Publishing, pp. 737–744.

[34] Edelman, A. The mathematics of the pentium division bug. SIAM Review 39, 1 (1997), 54–67.

[35] Epifanovskaya, L., Meeson, R., McCormack, C., Lee, J. R., Armstrong, R. C., and
Mayo, J. R. Algorithmic input generation for more effective software testing. In IEEE 46th
Annual Computers, Software, and Applications Conference (2022), COMPSAC, pp. 1708–1715.

[36] Etim, D. N. Introduction to PSAAP IV.
https://psaap.llnl.gov/sites/psaap/files/2023-09/01_etim_introduction_to_psaap_iv.pdf ,
2023.

[37] Feather, M. S., and Pinto, A. Assurance for autonomy – JPL’s past research, lessons learned,
and future directions. https://arxiv.org/abs/2305.11902, 2023.

53

https://proxyapps.exascaleproject.org/wp-content/uploads/2023/03/ADCD504-14.pdf
https://assured-autonomy.org/tools
https://proof.sandia.gov
https://psaap.llnl.gov/sites/psaap/files/2023-09/01_etim_introduction_to_psaap_iv.pdf
https://arxiv.org/abs/2305.11902

[38] Fernandez, M., Ed. Workshop on Instruction Set Architecture Specification (Sept. 2019), SpISA.
https://www.cl.cam.ac.uk/~jrh13/spisa19.html.

[39] Ferrous Systems. Ferrocene: An open source qualified rust compiler for functional safety.
https://github.com/ferrocene, 2024.

[40] Filliâtre, J.-C., and Paskevich, A. Why3 – where programs meet provers. In European
Symmposium on Programming (Berlin, Heidelberg, 2013), M. Felleisen and P. Gardner, Eds.,
ESOP, Springer, pp. 125–128.

[41] Finkbeiner, B. Synthesis of reactive systems. In Dependable Software Systems Engineering,
J. Esparza, O. Grumberg, and S. Sickert, Eds., vol. 45 of NATO Science for Peace and Security
Series - D: Information and Communication Security. IOS Press, 2016, pp. 72–98.

[42] Galois, Inc. Grackle: A symbolic simulator for engineering code. https://grackle.galois.com.

[43] Gamell, M., Teranishi, K., Heroux, M. A., Mayo, J., Kolla, H., Chen, J., and
Parashar, M. Local recovery and failure masking for stencil-based applications at extreme
scales. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (New York, NY, USA, 2015), SC ’15, Association for
Computing Machinery.

[44] Google and Skywater Technology. Skywater sky130 process design kit documentation.
Tech. rep., 2021. https://skywater-pdk.readthedocs.io/en/main/.

[45] Gray, K. E., Kerneis, G., Mulligan, D. P., Pulte, C., Sarkar, S., and Sewell, P. An
integrated concurrency and core-ISA architectural envelope definition, and test oracle, for IBM
POWER multiprocessors. In Proceedings of the 48th International Symposium on
Microarchitecture (Waikiki) (Dec. 2015), pp. 635–646.

[46] Harrison, J. Formal verification at intel. In 18th Annual IEEE Symposium of Logic in
Computer Science. Proceedings. (June 2003), LICS, pp. 45–54.

[47] Henk, B., and Freek, W. The challenge of computer mathematics. Philophical Transactions of
the Royal Scoiety A 363, 1835 (2005).

[48] Holtzen, S., Van den Broeck, G., andMillstein, T. Scaling exact inference for discrete
probabilistic programs. Proceedings of the ACM on Programming Languages 4, OOPSLA (Nov.
2020).

[49] Hóu, Z., Sanan, D., Tiu, A., Liu, Y., Hoa, K. C., and Dong, J. S. An isabelle/HOL
formalisation of the SPARC instruction set architecture and the TSO memory model. Journal of
Automated Reasoning 65 (2021), 569–598.

[50] Hough, D. G. The IEEE standard 754: One for the history books. Computer 52, 12 (Dec.
2019), 109–112.

[51] H ulsing, A., and Kudinov, M. Security of WOTS-TW scheme with a weak adversary, July
2023. Official comments at:
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/round-
3/official-comments/Sphincs-Plus-round3-official-comment.pdf .

54

https://www.cl.cam.ac.uk/~jrh13/spisa19.html
https://github.com/ferrocene
https://grackle.galois.com
https://skywater-pdk.readthedocs.io/en/main/
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/round-3/official-comments/Sphincs-Plus-round3-official-comment.pdf
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/round-3/official-comments/Sphincs-Plus-round3-official-comment.pdf

[52] Ikarashi, Y., Bernstein, G. L., Reinking, A., Genc, H., and Ragan-Kelley, J.
Exocompilation for productive programming of hardware accelerators. In Proceedings of the
43rd ACM SIGPLAN International Conference on Programming Language Design and
Implementation (New York, NY, USA, 2022), PLDI ’22, Association for Computing
Machinery, p. 703–718.

[53] Jackson, D. Software Abstractions: Logic, Language, and Analysis. The MIT Press, Cambridge,
MA, 2012.

[54] Jin, F., Jacobson, J., Pollard, S. D., and Sarkar, V. Minikokkos: A calculus of portable
parallelism. In 2022 IEEE/ACM Sixth International Workshop on Software Correctness for HPC
Applications (Correctness) (2022), pp. 37–44.

[55] Jung, R., Jourdan, J.-H., Krebbers, R., and Dreyer, D. RustBelt: securing the
foundations of the rust programming language. Proceedings of the ACM on Programming
Languages 2, POPL (Dec. 2017), 66:1–66:34.

[56] Kahng, A. B., Wang, L., and Xu, B. Tritonroute: The open-source detailed router. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 40, 3 (2021),
547–559.

[57] Keiter, E. R., Verley, J. C., and Thornquist, H. K. Xyce: Open source simulation for
large-scale circuits. Tech. rep., Sandia National Laboratories, 2019.

[58] Kellison, A., Tekriwal, M., Jeannin, J.-B., andHulette, G. Towards verified rounding
error analysis for stationary iterative methods. In 2022 IEEE/ACM Sixth International
Workshop on Software Correctness for HPC Applications (Correctness) (2022), IEEE, pp. 10–17.

[59] Kellison, A. E., and Appel, A. W. Vcfloat2: Floating-point error analysis in coq. In
Proceedings of the 13th ACM SIGPLAN International Conference on Certified Programs and
Proofs (CPP 2024) (Jan. 2024). To appear.

[60] Kellison, A. E., Appel, A. W., Tekriwal, M., and Bindel, D. LAProof: a library of formal
proofs of accuracy and correctness for linear algebra programs. In 30th IEEE International
Symposium on Computer Arithmetic (ARITH) (Sept. 2023).

[61] Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., and Yakobowski, B. Frama-c:
A software analysis perspective. Formal aspects of computing 27 (2015), 573–609.

[62] Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H.,
andWinwood, S. Sel4: Formal verification of an operating-system kernel. Communications of
the ACM 53, 6 (June 2010), 107–115.

[63] Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H.,
andWinwood, S. SeL4: Formal verification of an OS kernel. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles (New York, NY, USA, 2009), SOSP
’09, Association for Computing Machinery, p. 207–220.

55

[64] Kolla, H., Mayo, J. R., Teranishi, K., and Armstrong, R. C. Improving scalability of
silent-error resilience for message-passing solvers via local recovery and asynchrony. In
IEEE/ACM 10th Workshop on Fault Tolerance for HPC at eXtreme Scale (FTXS) (2020),
pp. 1–10.

[65] Laguna, I. Fpchecker: Detecting floating-point exceptions in gpu applications. In 34th
IEEE/ACM International Conference on Automated Software Engineering (2019), ASE, IEEE,
pp. 1126–1129.

[66] Laguna, I., Tran, A., and Gopalakrishnan, G. Finding inputs that trigger floating-point
exceptions in heterogeneous computing via bayesian optimization. Parallel Computing 117
(2023), 103042.

[67] Lamport, L. Specifying Systems: The TLA+ Language and Tools for Hardware and Software
Engineers. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[68] Lang, M. LANL NNSA software technology. Tech. rep., Los Alamos National Laboratory,
Nov. 2019.

[69] Lee, W., Stelle, G., McCormick, P., and Aiken, A. Correctness of dynamic dependence
analysis for implicitly parallel tasking systems. In 2018 IEEE/ACM 2nd International Workshop
on Software Correctness for HPC Applications (Correctness) (2018), IEEE, pp. 17–24.

[70] Lefèvre, V., Louvet, N., Muller, J.-M., Picot, J., and Rideau, L. Accurate calculation of
euclidean norms using double-word arithmetic. ACM Transactions on Mathematical Software
49, 1 (2023), 1–34.

[71] Leino, R. M. Dafny: An automatic program verifier for functional correctness. In Logic for
Programming, Artificial Intelligence, and Reasoning - 16th International Conference, LPAR-16,
Dakar, Senegal, April 25-May 1, 2010, Revised Selected Papers (2010), E. M. Clarke and
A. Voronkov, Eds., vol. 6355 of Lecture Notes in Computer Science, Springer, pp. 348–370.

[72] Leroy, X. Formal verification of a realistic compiler. Communications of the ACM 52, 7 (July
2009), 107–115.

[73] Leroy, X. In search of software perfection. https://youtu.be/lAU5hx_3xRc, Nov. 2016.

[74] Lewis, J. R., andMartin, B. Cryptol: high assurance, retargetable crypto development and
validation. In IEEE Military Communications Conference, 2003. MILCOM 2003. (2003),
vol. 2, pp. 820–825.

[75] Li, G., Palmer, R., DeLisi, M., Gopalakrishnan, G., and Kirby, R. M. Formal
specification of mpi 2.0: Case study in specifying a practical concurrent programming api.
Science of Computer Programming 76, 2 (2011), 65–81. Selected papers from the workshops on
Formal Methods for Industrial Critical Systems.

[76] Li, H., Su, Y., Cai, D., Wang, Y., and Liu, L. A survey on retrieval-augmented text generation,
2022. https://arxiv.org/abs/2202.01110.

[77] Li, J. M., Ahmed, A., andHoltzen, S. Lilac: a modal separation logic for conditional
probability. Proceedings of the ACM on Programming Languages 7, PLDI (2023), 148–171.

56

https://youtu.be/lAU5hx_3xRc
https://arxiv.org/abs/2202.01110

[78] Li, J. M., Aytac, J., Johnson-Freyd, P., Holtzen, S., and Ahmed, A. Towards a
categorical model of the lilac separation logic. Presented at LAFI, POPL 2024, London, UK,
2024. To appear.

[79] Li, X., Laguna, I., Fang, B., Swirydowicz, K., Li, A., and Gopalakrishnan, G. Design
and evaluation of gpu-fpx: A low-overhead tool for floating-point exception detection in nvidia
gpus. In Proceedings of the 32nd International Symposium on High-Performance Parallel and
Distributed Computing (2023), HPDC, pp. 59–71.

[80] Lopes, N. P., Lee, J., Hur, C.-K., Liu, Z., and Regehr, J. Alive2: bounded translation
validation for llvm. In Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation (New York, NY, USA, 2021), PLDI ’21,
Association for Computing Machinery, p. 65–79.

[81] Martin, W. Broad Agency Announcement: Pipelined Reasoning Of Verifiers Enabling Robust
Systems (PROVERS), Mar. 2023. https://sam.gov/api/prod/opps/v3/opportunities/
resources/files/f54d93b9d6c54f16adc4561a454b0465/download.

[82] MATZOV. Report on the security of lwe: Improved dual lattice attack, Apr. 2022.

[83] Mayo, J. R., Armstrong, R. C., andHulette, G. C. Leveraging abstraction to establish
out-of-nominal safety properties. Tech. rep., Sandia National Laboratories, 2015.
https://www.osti.gov/servlets/purl/1331958.

[84] Menon, H., Lam, M. O., Osei-Kuffuor, D., Schordan, M., Lloyd, S., Mohror, K., and
Hittinger, J. Adapt: Algorithmic differentiation applied to floating-point precision tuning. In
SC18: International Conference for High Performance Computing, Networking, Storage and
Analysis (2018), pp. 614–626.

[85] Miao, D., Laguna, I., and Rubio-González, C. Expression isolation of compiler-induced
numerical inconsistencies in heterogeneous code. In International Conference on High
Performance Computing (2023), Springer, pp. 381–401.

[86] Muller, J.-M., and Rideau, L. Formalization of double-word arithmetic, and comments on
“tight and rigorous error bounds for basic building blocks of double-word arithmetic”. ACM
Transactions on Mathematical Software 48, 1 (Feb. 2022), 9:1–9:24.

[87] National Institue of Standards and Technology. Post-quantum cryptography.
http://web.archive.org/web/20240121220052/https://csrc.nist.gov/projects/post-quantum-
cryptography, Jan. 2024.

[88] Nedunuri, S., and Smith, D. R. Synthesis of correct digital controller models from
specifications by model transformation. Tech. Rep. SAND2023-10239, Sandia National
Laboratories, 2023.

[89] Nikhil, R. S., and Czeck, K. R. BSV by example: The next-generation language for electronic
system design. Tech. rep., Bluespec, Inc., 2010.

[90] Nikora, A., Srivastava, P., Fesq, L., Chung, S., and Kolcio, K. Assurance of
model-based fault diagnosis. In IEEE Aerospace Conference (Mar. 2018), pp. 1–14.

57

https://sam.gov/api/prod/opps/v3/opportunities/resources/files/f54d93b9d6c54f16adc4561a454b0465/download
https://sam.gov/api/prod/opps/v3/opportunities/resources/files/f54d93b9d6c54f16adc4561a454b0465/download
https://www.osti.gov/servlets/purl/1331958
http://web.archive.org/web/20240121220052/https://csrc.nist.gov/projects/post-quantum-cryptography
http://web.archive.org/web/20240121220052/https://csrc.nist.gov/projects/post-quantum-cryptography

[91] Pavlovic, D., and Smith, D. R. Software development by refinement. In Formal Methods at
the Crossroads. From Panacea to Foundational Support, 10th Anniversary Colloquium of
UNU/IIST, the International Institute for Software Technology of The United Nations University,
Lisbon, Portugal, March 18-20, 2002, Revised Papers (2002), B. K. Aichernig and T. S. E.
Maibaum, Eds., vol. 2757, Springer, pp. 267–286.

[92] Pereira, M., and Ravara, A. Cameleer: A deductive verification tool for ocaml. In Computer
Aided Verification: 33rd International Conference, CAV 2021, Virtual Event, July 20–23, 2021,
Proceedings, Part II (Berlin, Heidelberg, 2021), Springer-Verlag, p. 677–689.

[93] Perlner, R., Kelsey, J., and Cooper, D. Breaking category five sphincs+ with sha-256. In
International Conference on Post-Quantum Cryptography (2022), Springer, pp. 501–522.

[94] Pierce, B. C. The science of deep specification.
http://www.cis.upenn.edu/~bcpierce/papers/DeepSpec-workshop-2019-Intro.pdf , June 2019.
Opening talk at DeepSpec workshop.

[95] Pnueli, A., and Rosner, R. On the synthesis of a reactive module. In Proceedings of the 16th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (New York, NY,
USA, 1989), POPL ’89, Association for Computing Machinery, p. 179–190.

[96] Pollack, R. How to believe a machine-checked proof. Twenty Five Years of Constructive Type
Theory 36 (1998), 205.

[97] Pollard, S. D. When Does a Bit Matter? Techniques for Verifying the Correctness of Assembly
Languages and Floating-Point Programs. PhD thesis, University of Oregon, Eugene, OR, USA,
June 2021.

[98] Pollard, S. D., Armstrong, R. C., Bender, J., Hulette, G. C., Mahmood, R. S.,
Morris, K., Rawlings, B. C., and Aytac, J. M. Q: A sound verification framework for
statecharts and their implementations. In 8th International Workshop on Formal Techniques for
Safety-Critical Systems (FTSCS) (New York, USA, Dec. 2022), ACM, pp. 16–26.

[99] Pollard, S. D., Johnson-Freyd, P., Aytac, J., Duckworth, T., Carson, M. J.,
Hulette, G. C., andHarrison, C. B. Quameleon: A lifter and intermediate language for
binary analysis. In Workshop on Instruction Set Architecture Specification (Portland, OR, USA,
Sept. 2019), SpISA ’19, pp. 1–4.

[100] Quinlan, D., and Liao, C. The ROSE source-to-source compiler infrastructure. In Cetus
users and compiler infrastructure workshop, in conjunction with Parallel Architectures and
Compilation Techniques (Oct. 2011), PACT, Citeseer, pp. 1–3.

[101] Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., and Amarasinghe, S.
Halide: A language and compiler for optimizing parallelism, locality, and recomputation in
image processing pipelines. In Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation (New York, NY, USA, 2013), PLDI ’13,
Association for Computing Machinery, p. 519–530.

[102] Rice, H. G. Classes of recursively enumerable sets and their decision problems. Transactions of
the American Mathematical Society 74 (1953).

58

http://www.cis.upenn.edu/~bcpierce/papers/DeepSpec-workshop-2019-Intro.pdf

[103] Ringer, T., Palmskog, K., Sergey, I., Gligoric, M., and Tatlock, Z. Qed at large: A
survey of engineering of formally verified software. Foundations and Trends in Programming
Languages 5, 2–3 (Sept. 2019), 102–281.

[104] Rothrock, B., Kennedy, R., Cunningham, C., Papon, J., Heverly, M., and Ono, M.
Spoc: Deep learning-based terrain classification for mars rover missions. In AIAA SPACE 2016
(Sept. 2016).

[105] Russinoff, D. M. Formal verification of floating-point hardware design. Springer, doi 10
(2022), 978–3.

[106] Rust Foundation. Memory model. https://web.archive.org/web/20231205185143/https:
//doc.rust-lang.org/reference/memory-model.html, Dec. 2023.

[107] Sawaya, G., Bentley, M., Briggs, I., Gopalakrishnan, G., and Ahn, D. H. Flit:
Cross-platform floating-point result-consistency tester and workload. In IEEE International
Symposium on Workload Characterization (2017), IISWC, pp. 229–238.

[108] Schardl, T. B., Moses, W. S., and Leiserson, C. E. Tapir: Embedding recursive fork-join
parallelism into llvm’s intermediate representation. ACM Transactions on Parallel Computing
(TOPC) 6, 4 (2019), 1–33.

[109] Schkufza, E., Sharma, R., and Aiken, A. Stochastic optimization of floating-point
programs with tunable precision. ACM SIGPLAN Notices 49, 6 (2014), 53–64.

[110] Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M., Dutcher, A.,
Grosen, J., Feng, S., Hauser, C., Kruegel, C., and Vigna, G. SoK: (State of) The Art of
War: Offensive Techniques in Binary Analysis. In IEEE Symposium on Security and Privacy (SP)
(May 2016), pp. 138–157.

[111] Silvanovich, N. The state of state machines. Tech. rep., Google Project Zero, Jan. 2021.

[112] Slanina, M., Sankaranarayanan, S., Sipma, H., andManna, Z. Controller synthesis of
discrete linear plants using polyhedra. REACT Technical Report (Stanford University) 1 (Jan.
2007).

[113] Slind, K., andNorrish, M. A brief overview of hol4. In Theorem Proving in Higher Order
Logics (Berlin, Heidelberg, 2008), TPHOLs, Springer Berlin Heidelberg, pp. 28–32.

[114] Smith, B., Feather, M. S., Huntsberger, T., and Bocchino, R. Software assurance of
autonomous spacecraft control. In 2020 Annual Reliability and Maintainability Symposium
(RAMS) (Jan. 2020), pp. 1–7.

[115] Smith, D. R., andNedunuri, S. Model refinement. In 16th NASA Formal Methods
Symposium (2024), NFM. To appear. Sand No. SAND2021-12895C.

[116] Soi, R., Bauer, M., Treichler, S., Papadakis, M., Lee, W., McCormick, P., Aiken, A.,
and Slaughter, E. Index launches: Scalable, flexible representation of parallel task groups. In
Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis (New York, NY, USA, 2021), SC ’21, Association for Computing
Machinery.

59

https://web.archive.org/web/20231205185143/https://doc.rust-lang.org/reference/memory-model.html
https://web.archive.org/web/20231205185143/https://doc.rust-lang.org/reference/memory-model.html

[117] Stelle, G., Moses, W. S., Olivier, S. L., andMcCormick, P. Openmpir: Implementing
openmp tasks with tapir. In Proceedings of the Fourth Workshop on the LLVM Compiler
Infrastructure in HPC (2017), pp. 1–12.

[118] Teranishi, K., Mukherjee, S., Rutledge, R., Pollard, S. D., Morales, N., Evans, N.,
Orso, A., and Sarkar, V. Toward automatic test synthesis for performance portable
programs. In 3rd International KLEE Workshop on Symbolic Execution (Sept. 2022).

[119] The CoqDevelopment Team. The Coq reference manual – release 8.19.0.
https://coq.inria.fr/doc/V8.18.0/refman, Jan. 2024.

[120] TheWhite House. National security memorandum on promoting united states leadership in
quantum computing while mitigating risks to vulnerable cryptographic systems (nsm-10).
https://www.govinfo.gov/app/details/DCPD-202200355, May 2022.

[121] Wang, F., Song, F., Zhang, M., Zhu, X., and Zhang, J. Krust: A formal executable
semantics of rust. In 2018 International Symposium on Theoretical Aspects of Software
Engineering (2018), TASE, pp. 44–51.

[122] Whyatt, M., Feb. 2024. Pacific Northwest National Laboratory, private communication.

[123] Wildmoser, M., Nipkow, T., Klein, G., andNanz, S. Prototyping proof carrying code. In
Exploring New Frontiers of Theoretical Informatics, IFIP 18th World Computer Congress, TC1,
3rd International Conference on Theoretical Computer Science (Aug. 2004), J.-J. Levy, E. W.
Mayr, and J. C. Mitchell, Eds., TCS, Kluwer Academic Publishers, pp. 333–347.

[124] Willsey, M., Nandi, C., Wang, Y. R., Flatt, O., Tatlock, Z., and Panchekha, P. egg:
Fast and extensible equality saturation. Proceedings of the ACM on Programming Languages 5,
POPL (Jan. 2021).

[125] Wolf, C., Glaser, J., and Kepler, J. Yosys-a free verilog synthesis suite. In 21st Austrian
Workshop on Microelectronics (2013). http://yosyshq.net/yosys/files/yosys-austrochip2013.pdf .

[126] Xia, L.-y., Zakowski, Y., He, P., Hur, C.-K., Malecha, G., Pierce, B. C., and
Zdancewic, S. Interaction trees. Proceedings of the ACM on Programming Languages 4 (2020).

[127] Yang, J., Yang, Z., J., C., and Ray, S. Correct-by-construction design of custom accelerator
microarchitectures. IEEE Transactions on Computers 73, 01 (Jan. 2024), 278–291.

[128] Yang, K., Swope, A., Gu, A., Chalamala, R., Song, P., Yu, S., Godil, S., Prenger, R.,
and Anandkumar, A. LeanDojo: Theorem proving with retrieval-augmented language
models. In Neural Information Processing Systems (2023), NeurIPS.

[129] Zakowski, Y., Beck, C., Yoon, I., Zaichuk, I., Zaliva, V., and Zdancewic, S. Modular,
compositional, and executable formal semantics for llvm ir. Proceedings of the ACM on
Programming Languages 5, ICFP (2021), 1–30.

[130] Zhao, J., Nagarakatte, S., Martin, M.M., and Zdancewic, S. Formal verification of
ssa-based optimizations for llvm. SIGPLAN Not. 48, 6 (June 2013), 175–186.

[131] Zhou, Z., Ren, Z., Gao, G., and Jiang, H. An empirical study of optimization bugs in GCC
and LLVM. Journal of Systems and Software 174 (2021), 110884:1–110884:13.

60

https://coq.inria.fr/doc/V8.18.0/refman
https://www.govinfo.gov/app/details/DCPD-202200355
http://yosyshq.net/yosys/files/yosys-austrochip2013.pdf

	Glossary of Terms and Acronyms
	Introduction
	Background
	Overview of Formal Methods
	What Formal Methods Provide
	Formal Methods Development
	Trusting Formal Methods
	Formal Methods at NNSA

	Structure of this Report

	Current Capabilities
	Sandia National Laboratories
	Low-Level Systems Verification
	Formally-Verified Secure Cryptographic Root-of-Trust
	Constructive Proofs of C Code Verification
	Formally Verified Compilers
	Q Framework
	Probabilistic Programming Languages
	Concurrency and Distributed Systems
	Program and Reactive Synthesis
	Formalized Numerics
	Hardware Design and Verification
	HPC Correctness
	Cybersecurity
	Static and Binary Analysis
	User-Centered Formal Methods

	Lawrence Livermore National Laboratory
	The ROSE Compiler
	HPC Correctness
	Embedded Systems and Usability

	Los Alamos National Laboratory
	NASA Jet Propulsion Laboratory
	Other FFRDCs

	Future Needs and Research Opportunities
	Abstraction and Refinement
	Concurrency and Distributed Systems
	High-Performance Computing
	Programming Languages
	Languages
	Compilers and language tooling
	Assembly and architectures

	New Programming Paradigms
	Model-Based System Design
	Domain-Specific Languages

	Maturing Open-Source Hardware Design and Verification
	Cybersecurity and Cryptography
	Collaborations
	Tool Usability
	Usability as a Formal Methods Issue
	Practical Concerns
	Tool Choice
	Interpretability
	Scalability
	DARPA PROVERS

	Formalized Numerics and Floating-Point
	Artificial Intelligence

	Exemplars
	Further Formalization of C Compiler Toolchains
	Formal Programming Language Specifications
	Numerical Analysis on Next-Generation Accelerators
	Formally-Verified Compiler Optimizations
	Formal Verification of a Kalman Filter in C
	CAN Bus

	Conclusion
	Bibliography

