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Abstract
We present Q Framework: a verification framework used at
Sandia National Laboratories. Q is a collection of tools used to
verify safety and correctness properties of high-consequence
embedded systems and captures the structure and compo-
sitionality of system specifications written with state ma-
chines in order to prove system-level properties about their
implementations. Q consists of two main workflows: 1) com-
pilation of temporal properties and state machine models
(such as those made with Stateflow) into SMV models and 2)
generation of ACSL specifications for the C code implemen-
tation of the state machine models. These together prove a
refinement relation between the state machine model and its
C code implementation, with proofs of properties checked
by NuSMV (for SMV models) and Frama-C (for ACSL speci-
fications).

CCS Concepts: • Theory of computation → Program
verification;Verification bymodel checking; • Software
and its engineering → Formal software verification;
State based definitions.

Keywords: formal methods, state machines, C, specification
languages, temporal logic, model checking
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1 Introduction
Sandia National Laboratories develops software for high-
consequence digital control systems. With embedded control
systems, bugs can have disastrous consequences [26]. And
so, the high-consequence nature of our work means that
it is worthwhile to spend significant effort to develop rela-
tively complex formal statements about required behavior
and verify an implementation against them.
Our approach to verifying implementations is subject

to two main design constraints. First, our models are con-
structed from interacting subsystems with different clock do-
mains, but requirements must apply to the system as a whole.
Therefore, we require reasoning about the asynchronous
composition of many interacting subsystems via system-level
temporal properties. Note that here we do not focus on the
details of the clock domains, such as those modeled with
CCSL [2], only that our systems may be asynchronous.
Second, our approach must integrate into existing code

bases and workflows. At Sandia, system designers already
write specifications in an informal, but hierarchical, state
machine-like graphical language along with English lan-
guage requirements documents. These specifications are
then written in Stateflow [28] and implemented in C. We
(the formal methods team or “analysts”) have the fortune
of close communication with the system designers and soft-
ware engineers, which allows us to enforce a clear separation
for hardware interfacing (via API) and enforce coding stan-
dards (such as restricting how functions modify state, or
the structure of state machines). We later explain how these
restrictions enable our goal of automated verification.
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Existing work does not satisfy the full constraints of our
problem space. Verifying state machine abstractions of sys-
tems in modeling languages such as TLA+ [22] have shown
success in academia and industry. However, modeling lan-
guages do not establish whether an implementation matches
the model. This is not a strong enough correctness argu-
ment for our problem domain, especially considering the
complexities of C.
Separately, there has been extensive work to check tem-

poral properties directly against implementations [5], but
these approaches do not support sound compositional rea-
soning beyond abstract specifications of external behavior.
Lastly, significant work has been done to enable manual
proofs of labeled transition system specifications against
an implementation [4, 19] but the time-intensive nature of
these approaches and their sensitivity to code changes would
require more time and resources than we have to dedicate.

To address these gaps in the field we developed Q Frame-
work (Q for short), which compiles Stateflow diagrams cor-
responding to a static, parallel composition of one or more
transition systems into an intermediate representation. From
this IR, Q then compiles both to SMV for model checking [14]
and Frama-C ANSI C Specification language (ACSL) specifi-
cations [16] for static analysis of the C code implementation.
If the temporal properties hold for the model and the ACSL
proof obligations can be proven by Frama-C, Q provides
strong, automated evidence that the C implementation re-
fines the model’s behavior and thus satisfies the desired
temporal properties.
Our paper is structured as follows. In Section 2, we de-

scribe the architecture of Q by way of modeling a coffee
maker. We then precisely describe our notion of a refinement
relation between themodel (state machines) and implementa-
tion (C code), the composition of state machines, and provide
an argument for why these definitions of compositionality
and refinement are sound (Section 3), and last conclude with
a discussion on related and future work (Sections 4, 5).

Q Framework is not currently open source, however some
examples as well as the formal semantics of QSpec are avail-
able here: https://github.com/sampollard/q-supplement.

2 Architecture
We now describe Q Framework at a high level. Figure 1
describes the overall architecture of Q. The workflow of Fig-
ure 1 roughly flows from the top-left downwards, where
the C source code and Stateflow models are built based on
requirements documents (written in English and informal
diagrams). From these, we manually write the desired linear
temporal logic (LTL) and computation tree logic (CTL) prop-
erties. Then, these are passed as input into the various parts
of Q (described in this section). The final outputs of Q are
then: the C source with ACSL specifications, the proofs that
the C code matches the specifications (via the back-ends of
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LTL, CTL
Properties

C Source

QSpeckler

Stateflow
Test Case

QSpec

QLang

Counter-
example

ACSL

SMV

QFact

Annot.
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Proof? Proof?Proof? SAT?
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specify UB

Figure 1. Architectural overview of Q, managed in general
by QWorkflow. Ellipses are inputs, rectangles are tools, blue
text are developed by Sandia, and double-struck shapes re-
quire manual specification or checking. UB refers to both
unspecified behavior and implementation-defined behavior.

Frama-C), and the proofs the state machine models obey the
LTL/CTL properties (via NuSMV).
This process is iterative, since the system designers de-

scribe the requirements in English and Stateflow, then pass
the designs to the software engineers, whomay find inconsis-
tencies or underspecifications. And further, system analysts
(users of Q) may find errors or further inconsistencies. This
is aided by a feedback loop in Q: for if the SMV model does
not obey the desired properties, NuSMV emits a counterex-
ample from which we can then generate a Stateflow test
case, in order to further refine our LTL/CTL properties or
the Stateflow model itself.
Throughout this section, we use an example of a “secure

coffee maker,” shown in Figure 2. At first glance, this example
seems somewhat contrived. However, the compositionality
of state machines allows systems of similar complexity to be
used in realistic designs. The structure of this section follows
the design of the coffee maker, showcasing the relevant parts
of Q. In brief,
§ 2.1 Modeling systems using Stateflow.
§ 2.2 QSpec: a statechart language which evolved from SC-

XML.
§ 2.3 QSpeckler: A tool to convert Stateflow models into

QSpec statecharts compatible for QLang.

https://github.com/sampollard/q-supplement
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Figure 2.Model of a coffee machine with a coin slot and con-
firm (confirmed) and cancel (!confirmed) buttons, along
with a payment system.

§ 2.4 LTL and CTL properties.
§ 2.5 QLang: the compiler from QSpec statecharts into an

SMV model, which also generates ACSL function con-
tracts.

§ 2.6 QFact: a clang plugin to add ACSL annotations to C
code and perform code transformations to enable veri-
fication.

§ 2.7 QWorkflow: scripts used to orchestrate the interaction
of the different parts of Q.

§ 2.8 Our use of external tools and languages.

2.1 State Machines and Stateflow
Currently, state machine models are designed in Stateflow
from the requirements documents provided by system de-
signers along with the C source code and domain knowledge
of the system. While the Stateflow models and LTL/CTL
properties require some expertise to formalize and prove
system requirements, in our experience, analysts need not
be formal methods experts to use Q. We now describe the
state machines in Figure 2. The top machine begins in the
Ready state, inserting a coin puts the machine in the Confirm
state, and a toggle button (confirm/cancel) begins or ends
the brew process, which takes two ticks of time; coffee is
dispensed when the machine transitions from Brewing to
Ready. The bottom machine models a payment system (or
infinitely thirsty coffee drinker), which continuously pays
coins and presses the confirm button and is composed (in
parallel) with the top machine, where the transitions coin
and confirmed are matched.

Most realistic Stateflow models consist of interacting sub-
systems; for any verification framework of state machine-
like designs to be useful, it must support a notion of paral-
lel compositionality between state machines. For example,
our systems require parallel composition to account for the
different clock domains of the corresponding systems. To
accomplish this, we also include stutter steps [9], which are
self-transitions that do nothing (we elide these in our figures).
We explain the intricacies further in Section 3.

1 <?xml version="1.0" encoding="UTF -8"?>

2 <qspec>

3 <datamodel >

4 <data id="brew" type="int" range="(range 1 20)"/>

5 <data id="coin" type="bool" intent="input"/>

6 <data id="confirmed" type="bool" intent="input"/>

7 </datamodel >

8 <state id="System">

9 <parallel >

10 <sequential > <!-- brewer system -->

11 <initial > <!-- Ready --> ... </initial >

12 <state id="Brewing">

13 <transition label="Brewing_Brewing"

14 target="Brewing">

15 <guard name="check_brewing"

16 predicate="(< brew 2)"/>

17 <assign location="brew"

18 expr="(+ brew 1)"/>

19 </transition >

20 <transition label="Brewing_Done"

21 target="Ready">

22 <guard name="check_done"

23 predicate="(= brew 2)"/>

24 <assign location="brew" expr="0"/>

25 </transition >

26 <transition label="Brewing_Confirm"

27 target="Confirm">

28 <guard name="check_confirmed"

29 predicate="(/\ (~ confirmed)

30 (< brew 2))"/>

31 </transition >

32 </state>

33 ...

34 </sequential >

35 <sequential > <!-- payment system -->

36 ...

37 </sequential >

38 </parallel >

39 </state>

40 <xi:include href="assertions.qi"/>

41 </qspec>

Figure 3. The coffee maker state machine modeled in SC-
XML, with most state transitions elided.

2.2 QSpec
We developed QSpec because of our need for an extensible
language to model our particular flavor of state machines.
QSpec was inspired by SCXML [6], but has evolved so it is no
longer completely compatible. We show an abridged version
of the coffee maker SCXML in Figure 3, but remark that in
general, QSpec files are not written by hand.

We also use namespaces and file inclusions to manage the
complexity of state machines, as shown in Line 40. We do
not show the contents of assertions.qi (qi short for “Q in-
clude”), but they are essentially SCXML representations of
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LTL/CTL properties. These properties are described further
in Section 2.4. Additionally, the sequential portion here
simply means a “normal” state machine, which is also known
as a region or container within the parallel composition con-
struct.

In a QSpec, transitions are simply relations on states and
model variables with syntactic sugar to express operations
like assignment and transition guards. Relations are expressed
in a simple first-order logic as predicates over model vari-
ables. The logic supports a minimal set of data types includ-
ing booleans, integers, and sets of symbolic constants (we
plan to add support for user-defined types like sums and
products). Because the logic of QSpec is so simple, it is easy
to translate to both SMV and ACSL using QLang.

2.3 QSpeckler
We mentioned that QSpec models are not written by hand:
QSpeckler is the tool that generates QSpec from a particular
Stateflow model and LTL/CTL properties about it (which
both are typically hand-written). The challenge of this trans-
lation lies in intricacies of Stateflow; for example, one trans-
formation we must perform is from the MATLAB expression
language in Stateflow into the S-expressions required for
QLang. In actuality, we use a separate tool, but conceptually
this occurs alongside QSpeckler.
Another feature of QSpecker is its test case generation:

since it understands Stateflow models, provided a counterex-
ample (that is, an execution where the LTL or CTL properties
do not hold for a given SMV model), QSpeckler can generate
the corresponding Stateflow test case, which allows feed-
back to system designers of incorrect behavior, or to system
analysts to indicate potential specification bugs.

2.4 LTL and CTL Properties
There are many different safety and liveness properties we
may want to state for a given system. We state one safety
and one liveness property below in English and CTL. We do
not describe the translation from CTL into QSpec, but it is
straightforward, only requiring an intermediate conversion
to an S-expression. For example,

1. Safety: the coffee maker should never go back to the
confirm state when coffee is done brewing. In CTL:
AG !(state = confirm & brew = 2).

2. Liveness: provided a coinwas inserted, the coffeemaker
should eventually dispense coffee. In CTL:
coin -> EF (state = ready).

We next briefly explain these CTL properties. CTL is a
branching-time temporal logic that combines temporal op-
erators with path quantifiers; a temporal operator describes
an execution path in terms of the states along that path,
and a path quantifier describes a state in terms of the paths
that begin in that state. The path operator G means “in each
state (Globally)” and F means “in some Future state”. The

path quantifier A means “for All paths” and E means “there
Exists a path”. Thus, in the preceding examples, AG represents
invariance—a safety property—and EF represents reachabil-
ity—a liveness property. We do not focus on the details of
model checking, other than we delegate the model checking
to NuSMV, which supports both LTL and CTL properties.
More information is available from Clarke et al [14].

2.5 QLang
QLang is a tool that transforms a QSpec specification into
1) an SMV model with temporal properties, 2) a C include
file with an ACSL-encoded transition system to validate a
C implementation, and 3) a set of first-order proof obligations
that must hold for the model to be self-consistent and also
for the SMV and ACSL outputs to be consistent with each
other—that is, the ACSL model is a refinement of the SMV
model (See Section 3.2). The proof obligations are checked
via direct calls to NuSMV or to Frama-C’s back-ends (which
are typically SMT solvers) and no other output is generated
if they cannot be discharged.
Conceptually and in practice, QLang reduces a QSpec’s

structured statemachines to amore universal “flat” transition
system representation according to Q’s semantics for those
operators. This process yields a (much) larger but semanti-
cally equivalent state machine that is easy to output directly
as an SMV model and ACSL predicates (see Section 3.2).
In QLang, a “flat” state machine (a set of labeled states

and transitions without nesting or parallel composition) is
called a Machine. The model part of a QSpec (the structured
state machine) is called a Chart and is an inductively-defined
structure that is either the parallel composition of two or
more Charts or else a nested composition consisting of a
parent Machine with a map from each state to zero or one
Chart (the child). We provide the formal semantics of QSpec
in the supplementary repository, but informally, parallel
composition is (recursively) defined as the product of its child
transition systems, while nesting is defined as a (recursive)
embedding of the mapped child transition systems into the
parent state. In an embedding, transitions into the parent
state are composed with the child’s initial transitions, self-
transitions on the parent are composed with each of the
child’s inner transitions, and transitions out of the parent are
composed with the child’s terminal transitions. In addition
we support abort transitions, which are composed with every
transition and can exit the child machine from any of its
states.

The “flattening” process used in QLang grows the size of
the state machine exponentially and this is often a practical
issue, even for relatively small models with more than two
or three parallel states. An SMV input file may, for example,
be many gigabytes in size. The advantage of this approach
is in its simplicity and resulting clarity of QLang’s imple-
mentation; we are thus confident that transformed models
are correct with respect to QSpec’s semantics. Conversely,



Q: A Sound Verification Framework for Statecharts & Their Implementations FTSCS ’22, December 07, 2022, Auckland, New Zealand

int foo(void){

printf("foo");

return 40;

}

int bar(void){

printf("bar");

return 2;

}

int sum(int a, int b){

return a + b;

}

int main (...){

return sum(foo(),

bar ());

}

int main (...){

register int $69;

register int $68;

register int $67;

$67 = foo();

$68 = bar();

$69 = sum($67 ,$68);

return $69;

return 0;

}

Figure 4. C (left) has unspecified behavior for the order of
evaluation of function arguments; Clight (right) specifies
this.

the exponential size increase poses an issue with respect to
the scalability of our analysis. One solution we employ is
to define composition in QSpec as SMV invariants. In effect,
this passes the problem onto NuSMV. In theory, this would
make no difference, but in practice this sometimes improves
performance. More comprehensively addressing the scalabil-
ity of our approach via, e.g., assume-guarantee reasoning, is
future work (Section 5).

2.6 QFact
QFact is a clang tool which annotates a given C programwith
its ACSL specification. QFact also generates frame conditions,
which are additional constraints on the transition between
two system states and provide further ACSL specifications.
One other issue which complicates verification of C code is
its large amount of implementation-defined or unspecified
behavior (for example, the size of machine integers). Many
discrepancies in C are not interesting from a theoretical and
optimization sense, and merely complicate the verification
process. To address this, we leverage a simplified C language
used in the CompCert C compiler, called Clight. A benefit of
Clight is it has a formal semantics [7]. And so, we employ a
“trick” to more easily analyze C code without requiring extra
effort from the software engineers: we convert from C into
Clight, and then back into C again, via a modified branch of
CompCert.
There are several differences between C and Clight: un-

specified or implementation-defined behavior is made ex-
plicit. For example, assignments only exist as statements (and
not expressions) and integers are fixed sizes (such as the type
int is always 32 bits). We show an example in Figure 4. Fur-
ther, the benefit of a clang plugin is our control over the AST
of a C program; this is the perfect place to annotate the C

program with the ACSL we need to build a correspondence
to QSpec. However, the structure of the C source provided
to QFact is somewhat restricted; we discuss this further in
Sections 3 and 2.8.3.

2.7 QWorkflow
Now that we have outlined the individual parts of Q, we dis-
cuss its usage as a tool. QWorkflow is a collection of scripts
used to coordinate the interaction between the different veri-
fication approaches (e.g. model checking of the state machine
models and Frama-C static analysis of the C implementation).
The input to QWorkflow is a configuration file with path
information for all the different artifacts needed to run the
workflow: requirements documents (Microsoft Word and Vi-
sio files), QSpec file(s) for the corresponding Stateflow model
under analysis, the CTL and LTL properties file(s), and the C
code implementation of the design. These are subsequently
used to run NuSMV on the model generated by QLang and
Frama-C on the C code with ACSL annotations. Each require-
ment in the Word documents has a unique identifier and a
specified labeling convention is used to reference each of the
LTL/CTL properties (which are manually generated). The
Stateflow models are also annotated with similar labels. Both
of these labels are used by QWorkflow to collect the results
obtained with NuSMV and Frama-C and report the status
of each requirement in the original Word document. This
makes coordinating with the many designers feasible and
allows cross-referencing all of the parts of Q.

2.8 Tool Usage
We now describe our usage of existing tools and program-
ming languages.

2.8.1 NuSMV. NuSMV [13] is an open source model check-
ing solver that applies symbolic algorithms [11] based on
binary decision diagrams (BDDs) [10]. It supports both LTL
and CTL model checking. The key limitations with NuSMV
(and with BDD-based model checking in general) are that
the model must have a finite state space and that the so-
called “state-explosion problem” [14] can lead to intractable
model checking problems. This is a well-established problem
with model checking, and we discuss ways to address this in
Sections 2.5 and 5.

2.8.2 Frama-C. Frama-C is a tool for the analysis of C pro-
grams. There are many different plugins for Frama-C, which
range from simple callgraph visualizations, to abstract inter-
pretation, to deductive provers. We focus on the deductive
provers, which are realized with the Weakest Precondition
(WP) plugin. WithWP, the ACSL specifications essentially
consist of pre-conditions to be verified (requires clauses) and
post-conditions to be checked (ensures clauses).

One powerful feature of Frama-C is its support formultiple
provers: all proof obligations are converted to an intermedi-
ate language WhyML and are passed into Why3 [8] (elided
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in Figure 1 for simplicity). Why3 then attempts to prove the
given goal using one or several different provers.
For our use of Frama-C, we treat API contracts as ax-

iomatic. While this is an opportunity for specification bugs,
it allows us the necessary separation between the state ma-
chine semantics and the low-level C and hardware interfac-
ing that does not map nicely to statecharts.

One feature of Frama-C that Q uses heavily is the notion
of ghost states. These allow Frama-C to store variables which
are not used in the C code, but are updated along with some
C function call or statement. Through this, QSpec statecharts
can be aligned with their C implementation. QLang automat-
ically adds these ghost states to the C code, matching them
with the correct QSpec variables.

2.8.3 C Coding Standards and Considerations. It is
worth mentioning the less interesting, but still equally im-
portant, coding considerations to achieve the automatic veri-
fication provided by Q. For one, we must describe a mapping
from Stateflow into C variables. As mentioned previously,
any hardware access (via registers or memory-mapped I/O,
for example), must be separated into separate API function
calls and axiomatized with ACSL. Additionally, each func-
tion may have at most one external observable behavior (i.e.,
a single volatile variable access). Further restrictions with
our tool are that pure functions in these APIs must also be
annotated with Frama-C annotations. However, for our state
machines we only desire the observable behavior, so relaxing
this restriction is feasible and part of our future work.

3 Design
Q decomposes the goal of proving system-level temporal
properties into two steps. The first is to prove that the tem-
poral safety properties hold for system specifications given
as QSpecs. The second is to prove that a given C program
implements (refines) a given component of the QSpec, such
that temporal safety properties of the system as a whole are
preserved.
As described in Section 2, the first step is completed by

generating a transition relation over the states and variables
of the system-level QSpec, along with initial conditions and
other constraints, and encoding this system as an SMVmodel.
We use NuSMV’s unbounded model checking to show the
model has the desired system-level temporal properties.

In this section we describe how we accomplish the second
step. At a high level, we proceed by automatically gener-
ating ACSL function contracts from the C code, and then
use Frama-C to prove that the C code implements those
contracts. The function contracts are carefully constructed
so as to witness the desired refinement (Section 3.1). Cru-
cially, we choose our notions of refinement and composition
between the implementation and the state machine model
to preserve the temporal properties established in the first
step (see Section 3.2). Taken together, these steps ensure

that temporal safety properties which are shown to hold
for a QSpec system-level specification will also hold for an
implementation of that specification.

3.1 Refinement to C
Q Framework is designed to allow compositional reasoning
about the observable temporal properties of asynchronously
communicating software and hardware components. This
entails unifying two very different sorts of compositionality.
To reason effectively about asynchronously communicating
components, we require a proof relating abstract source and
concrete target states; we call this a refinement, and require
these proofs of refinement themselves to be compositional
over asynchronous parallel composition. At the same time,
to reason effectively about software components, we need
a logic which is compositional over the sequential compo-
sition of functions and statements for C implementations.
In this section we outline some of the key arguments for
soundness of our refinement, which is somewhat similar to
CompCert’s proof of semantics preservation [25] in that it is
a weak simulation proof designed to capture refinement of
observable behaviors. However the notion of event for state
machines is quite different from C, so our refinement must
be structured differently.

3.1.1 Hoare Logic from Transition System Specifica-
tions. Consider a C program fragment 𝑓 . The behavior of
this fragment is defined by its sequence of observable be-
haviors, and 𝑓 acts on a program state ProgState, which
we define as the state of a C program (stack, heap, variable
bindings, etc.). Some of these variables may be unbound;
these (open) variables in C are realized as volatile, which
we describe in more detail in this section.

We first provide a definition of partial correctness of a
program fragment 𝑓 . Provided a predicate 𝑝 , we say 𝑠 |= 𝑝

if, provided state 𝑠 , 𝑝 holds on that state. And now, given
fragment 𝑓 and predicates 𝑝, 𝑞 we define a partial correctness
assertion over all program states as:

{𝑝}𝑓 {𝑞} := ∀𝑠 ∈ ProgState. (1)
𝑠 |= 𝑝 =⇒ (∀𝑠′ ∈ ProgState. 𝑠⟦𝑓 ⟧𝑠′ =⇒ 𝑠′ |= 𝑞) ,

where ⟦·⟧ is the predicate transformer semantics for 𝑓 , or
its nontermination (hence the partial correctness).
Put another way, a proof of {𝑝}𝑓 {𝑞} witnesses that any

execution of 𝑓 , should it terminate, maps the set of states
supporting precondition 𝑝 , supp(𝑝), to the set of states sup-
porting postcondition 𝑞, where

supp(𝑝) := {𝑠 ∈ ProgState | 𝑠 |= 𝑝} ∈ P(ProgState). (2)

Specifically, Frama-C’s WP plugin tries to prove whether
partial correctness assertions {𝑝}𝑓 {𝑞} are entailed by their
weakest precondition {WP(𝑞)}𝑓 {𝑞}. This Hoare logic is com-
positional only over sequential composition of program frag-
ments.
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On the other hand, the abstract specifications of our sys-
tems are labeled transition systems (LTS). We use the typical
definition of LTS as triples 𝑃 := (𝑆𝑃 ,𝑂𝑃 ,→𝑃 ) where 𝑆𝑃 is
the set of states,𝑂𝑃 the set of labels, and→𝑃 ⊆ 𝑆𝑃 ×𝑂𝑃 ×𝑆𝑃
the transition relation with the label written above the ar-
row. We use the letter 𝑂 for labels to indicate they are the
observables of the system. A trace of 𝑃 is a sequence of 𝑂𝑃

allowed by→𝑃 . Given an LTS 𝑃 , we might be interested in a
simpler LTS 𝑄 = (𝑆𝑄 ,𝑂𝑄 ,→𝑄 ) (not short for Q Framework)
whose behavior subsumes 𝑃 ; in this case, any LTL temporal
property satisfied by 𝑃 is also satisfied by 𝑄 .1

If 𝑃 subsumes 𝑄 , then 𝑃 is a strict refinement of 𝑄 , which
we write as 𝑃 ⪯strict 𝑄 . The motivation here is it is sometimes
easier to prove a temporal property on the simpler model
𝑄 and then prove strict refinement. However, a proof of
strict refinement requires constructing a simulation relation
𝑅 ⊆ 𝑆𝑃 × 𝑆𝑄 such that any transition in 𝑃 corresponds to at
least one transition in𝑄 , with the same label. The simulation
𝑅 corresponds to a multifunction—post-composing with

∨
(join), we obtain a function which we call a simulation map
from states in the LTS to predicates over states in 𝑃 , which
we denote

𝜑 [𝑅 ] : 𝑆𝑃 → (ProgState → Prop).
In Q Framework, 𝜑 is a JSON file describing the relation of
Stateflow variables to predicates over C variables.

It is also convenient to define the support of the simulation
map from (2), which are the states that model the predicate
𝑓[𝑅 ] :

𝜑 [𝑅 ] := supp ◦ 𝑓[𝑅 ] : 𝑆𝑃 → P(ProgState).
By using Frama-C, strict refinement is too strong of a

condition: the Frama-C WP plugin cannot prove partial cor-
rectness for arbitrary program fragments 𝑓 , but instead only
for functions (this is required for Frama-C’s modularity). But
our simulation relation 𝑅, as defined above, only relates the
pre and postconditions and not the intermediate steps the C
program (and in turn, the compiled binary) may take.
More precisely, given a transition 𝑝 →𝛼

𝑃
𝑝′, there may

be any number of intermediate program states which have
been visited by the program fragment 𝑓 : that is, we must
prove {𝜑 [𝑅 ] (𝑝)}𝑓 {𝜑 [𝑅 ] (𝑝′)}. These program states do not
have a corresponding LTS label, so any refinement must also
include the silent transition 𝜏 .
Thus, we can only hope to obtain weak refinements wit-

nessed by weak simulation relations, i.e., some 𝑅 ⊆ 𝑆𝑃 × 𝑆𝑄
such that

𝑃 ⪯𝑤𝑒𝑎𝑘 𝑄 := ∀(𝑝, 𝑞) ∈ 𝑅, 𝛼 ∈ 𝑂𝑃 , 𝑝
′ ∈ 𝑆𝑃 . (3)

𝑝
𝛼→𝑃 𝑝′ =⇒ ∃𝑞′ ∈ 𝑆𝑄 .

(
𝑞

𝜏★→ 𝛼→𝑄

𝜏★→ 𝑞′ ∧ (𝑝′, 𝑞′) ∈ 𝑅

)
,

1𝑄 subsumes 𝑃 here means any acceptable trace in 𝑃 can also be a trace in
𝑄 , provided a correspondence between observables in 𝑃 (such as volatile
variable reads and writes) and observables in𝑄 (the𝑂𝑄 ).

where we concatenate the silent observations 𝜏 to our collec-
tion of observations, and 𝜏★ is a composition of an arbitrary
number of transitions under the silent transition.

3.1.2 Observables in Hoare Logic Using Ghost State.
At this point, we cannot yet prove aweak simulation between
LTS and C using Q Framework, since the Hoare logic we
defined in (1) does not capture any notion of observations.
Suppose our program interacts with its environment through
some memory-mapped input/output (I/O) port or a value
accessed by an asynchronously interrupting function—by the
C standard, such interactions should be through variables
declared volatile. The C standard specifies that volatile
variable accesses are observable events, or side effects, and as
such, like termination (or lack thereof), must be preserved
for any semantics-preserving transformation.
However, at every sequence point, (semicolon in C) the

value of a volatile variable may be modified by unknown
factors, so the value of a volatile variable upon exit of a func-
tion tells us nothing about the value observed at the time of
the volatile variable access—this is observable behavior of
the function not reflected in program states. The underly-
ing problem is that volatile variables in embedded systems
correspond to open variables and so refinement proofs must
take place in a context.
The solution to this problem is accomplished through

ghost state, whose evolution can be specified through Hoare
logic annotations of functions thanks to how CompCert
renders observable side effects into events [24]. Specifically,
the event type in CompCert is constructed from system
calls, variable loads, variable stores, and annotations. When
compiling C into CompCert’s Clight, volatile accesses are
compiled into system calls.
For example, suppose we have declared a global variable

volatile uint8_t fgetCVal which our program accesses
through the global pointer volatile uint8_t *fgetC. Then
the assignment uint8_t c = *fgetC; gets compiled into
Clight as

$1 = volatile_load_uint8_t_(fgetC);

We give an axiomatic model of the sequence of obser-
vations (obs) at volatile memory location fgetC. Frama-C
annotations are indicated with a comment beginning with
the @ symbol.

/* @ghost int obs_t;

axiomatic model {

type obs;

logic obs obs_at(integer t);

logic uint8_t fgetCObs(obs o); } */

We then axiomatize the sequence of observations through
a Hoare triple for volatile_load_uint8_t with obs_at
representing a sequence of values read from fgetC:



FTSCS ’22, December 07, 2022, Auckland, New Zealand Pollard, Armstrong, Bender, Hulette, Mahmood, Morris, Rawlings, Aytac

/*@

requires \valid(unsigned char volatile *v);

requires fgetC == v;

ensures obs_t == \old(obs_t) + 1;

ensures \result \in (0 .. 255);

ensures \result <==>

fgetCObs(obs_at (\old(obs_t ))); */

uint8_t *volatile_load_uint8_t_(uint8_t *v);

And so, the predicates from propositions over fgetCObs
are no longer strictly over ProgState, but are now over
ProgState × GhostState.

So far, we have have equipped our LTS𝑄 = (𝑆𝑄 ,𝑂𝑄 ,→𝑄 )
with a simulation map from LTS states to predicates over the
ProgState of a C program. That is, 𝑄 has support 𝜑 [𝑅𝑆𝑄

] :
𝑆𝑄 → P(ProgState). Henceforth, we refer to the C progrm
as 𝑃C and the LTS derived from the QSpec as 𝑄 . Suppose
we are given, in addition, such a map from specification
observations 𝑂𝑄 to predicates over GhostState, i.e., taking
support, 𝜑 [𝑅𝑂𝑄

] : 𝑂𝑄 → P(GhostState).
With these, we can now generate from →𝑄 the partial

correctness assertions which could prove 𝑃C ⪯weak 𝑄 . Let
EnvProp be propositions over ProgState×GhostState. Then(

→𝑄

)
→ (EnvProp, EnvProp)

(𝑠, 𝑜, 𝑠′) ↦→
(
𝜑 [𝑅𝑆𝑄

] (𝑠), 𝜑 [𝑅𝑂𝑄
] ∧ 𝜑 [𝑅𝑆𝑄

] (𝑠′)
)
.

We call the product of a predicate (EnvProp) and a program
location (a PLoc matching clang’s notion of program loca-
tion) an execution context: ExecCtxt = EnvProp × PLoc. We
ask of the user, alongside their specification of the abstract
model 𝑄 , the relations 𝑅𝑆𝑄 and 𝑅𝑂𝑄

to relate observables in
𝑄 and observables in ExecCtxt. From our simulation map
𝜑 [𝑅𝑂𝑄

] , we select the EnvProp and PLoc from them, which
we denote via a superscript. Then the partial correctness
assertion associated with (𝑠, 𝑜, 𝑠′) ∈→𝑄 , is

(𝑠, 𝑜, 𝑠′) ↦→ (4){
𝜑
EnvProp
[𝑅𝑆𝑄

] (𝑠)
} (

𝜑PLoc
[𝑅𝑆𝑄

] (𝑠)
) {

𝜑
EnvProp
[𝑅𝑂𝑄

] (𝑜) ∧ 𝜑
EnvProp
[𝑅𝑆𝑄

] (𝑠′)
}
.

In this way, we compile from the simulationmap, for every
function, the Frama-C annotations. Since wemoreover assert
that these are the only behaviors (using the Frama-C anno-
tation complete behaviors) for each function, if Frama-C
succeeds in proving all these Hoare triples, we have obtained
a proof that

𝑂𝑄 P(𝑆𝑄 × 𝑆𝑄 )

P(GhostState) P(ProgState × ProgState)

�̂� [𝑅𝑂𝑄
]

→𝑄

�̂� [𝑅𝑆𝑄 ]⊆

→𝑃𝐶

That is, the proofs of all the Hoare triples in (4) shows the
ghost state-indexed program state transformer semantics
→𝑃𝐶 defined by the Hoare triples given by (𝜑 [𝑅𝑂𝑄

], 𝜑 [𝑅𝑆𝑄
]),

thought of, itself, as a transition system, witnesses a simu-
lation, as (𝜑 [𝑅𝑂𝑄

]◦ →𝑃𝐶 ) ⊆ (→𝑄 ◦𝜑 [𝑅𝑆𝑄
]). This amounts

to (3), if we can think of →𝑃𝐶 as a transition system. But
the labels in a transition system are discrete sets, whereas
already in Figure 3 Line 23, (= brew 2), is atomic, while
the check_brewing predicate (< brew 2) is not atomic, as
(< brew 1) =⇒ (< brew 2).

So how can we think of →𝑃𝐶 as a transition system? At
this point, we should remind ourselves that the observations
specified in Figure 3 are predicates, so our map 𝜑 [𝑅𝑂𝑄

] isn’t
a map amogst discrete sets of labels, but amongst lattices
of predicates. This extra structure puts some constraints on
→𝑄 , namely

𝛽 =⇒ 𝛼 𝑝
𝛼→ 𝑝′

𝑝
𝛽
→ 𝑝′

𝑝
𝛼→ 𝑝′ 𝑝

𝛽
→ 𝑝′

𝑝
𝛼∨𝛽
→ 𝑝′ 𝑝

⊥→ 𝑝′
.

Thus→𝑄 must be a Galois connection from the lattice 𝑂𝑄

to the lattice P(𝑆𝑄 ×𝑆𝑄 ), and 𝜑 [𝑅𝑂𝑄
] must be monotonic for

→𝑃𝐶 to inherit this property.
And so, we encourage the user to give 𝑅𝑂𝑄

as a relation
between atomic predicates in the specification and arbitrary
predicates over C program and ghost state. In Q Framework,
we first do a syntactic check on the given simulation rela-
tions to detect whether any specification predicates are not
atomic. When they fail to be atomic, we test for implications
amongst predicates via Z3, and generate ACSL side obliga-
tions which, if discharged by Frama-C, show implication of
their images along 𝜑 [𝑅𝑂𝑄

] , i.e. ∀𝛼, 𝛽 ∈ 𝑂𝑃 . (𝛽 =⇒ 𝛼) =⇒
(𝜑 [𝑅𝑂𝑄

] (𝛽) =⇒ 𝜑 [𝑅𝑂𝑄
] (𝛼)).

We therefore ask the user to specify the simulation relation
with the following data:

1. A mapping between the states of the model and states
of the implementation, called the simulation relation,
𝑅 ⊆ 𝑆𝑄 × ProgState;

2. the behaviors that the state machine performs which
are considered observable, Obs ⊆ 𝑂𝑄 ; and

3. a mapping between observables and terms in the C
implementation, Obs → EnvProp.

If Frama-C can discharge these side obligations along with
the Hoare logic obligations synthesized from the abstract
specification are true and complete, then we have a simula-
tion map with the requisite structure.

Now, we have this simulation map for the two implemen-
tation details, the EnvProp and PLoc. Provided

∀(𝑠, 𝑜, 𝑠′) ∈ 𝑆𝑄 ×𝑂𝑄 × 𝑆𝑂 .

(𝑠, 𝑠′) ∈ 𝑜→𝑄 =⇒{
𝜑
EnvProp
[𝑅𝑆𝑄

] (𝑠)
} (

𝜑PLoc
[𝑅𝑆𝑄

] (𝑠)
) {

𝜑
EnvProp
[𝑅𝑂𝑄

] (𝑜) ∧ 𝜑
EnvProp
[𝑅𝑆𝑄

] (𝑠′)
}
,

we have shown that the specification weakly simulates the
implementation, i.e. 𝑃𝐶 ⪯weak 𝑄 . We obtain inclusion of
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observable traces, although up to the relation amongst ob-
servations given by 𝑅𝑂𝑄

.

3.2 Refinement and Composition
In the preceding section, we saw that the Hoare logic for
simulation cannot be synthesized without first building the
accompanying ghost state which axiomatizes the behavior of
EnvProp. We therefore axiomatize the behavior of volatiles
to reflect their external non-determinism.

Moreover, volatile reads in C lack any guarantee of fresh-
ness. This means it is possible for the C program to ob-
serve stale values. Such behavior is modeled by the asynchro-
nous composition of components. Given 𝑃 = (𝑆𝑃 ,𝑂𝑃 ,→𝑃 )
and 𝑄 =

(
𝑆𝑄 ,𝑂𝑄 ,→𝑄

)
, 𝑃 ∥𝑄 =

(
𝑂𝑃 ∪𝑂𝑄 , 𝑆𝑃 × 𝑆𝑄 ,→𝑃 ∥𝑄

)
,

→𝑃 ∥𝑄 is the smallest closure of

𝑝
𝛼→𝑃 𝑝′

(𝑝, 𝑞) 𝛼→𝑃 ∥async𝑄 (𝑝′, 𝑞)

𝑞
𝛼→𝑄 𝑞′

(𝑝, 𝑞) 𝛼→𝑃 ∥async𝑄 (𝑝, 𝑞′).
For ∥async, we are interested in an even weaker notion of
refinement. The relations given by the graphs of the pro-
jections 𝑅𝜋𝑃,𝑄 = graph(𝜋𝑃,𝑄 ) ⊆ ((𝑅𝑃 × 𝑅𝑄 ) × 𝑅𝑄 ) witness
neither strict nor weak simulation relations, unless we have
the necessary self-transitions:

∀𝛼 ∈ 𝑂𝑃 ∪𝑂𝑄 , 𝑝 ∈ 𝑆𝑃 , 𝑞 ∈ 𝑆𝑄 . 𝑝
𝛼→𝑃 𝑝 and 𝑞

𝛼→𝑄 𝑞.

The most natural of these, which we sketch out the proof
of here, is the refinement of TLA specifications [21]. If SL
and SR are stuttering invariant properties of LTSs 𝐿 and 𝑅

stipulating, at a given state, which actions are enabled, then
the property applied to SL∥asyncSR is simply the conjunction
SL ∧ SR. Moreover, this means refinements are implications,
up to the existence of traces of hidden variables and refine-
ment mappings. Put more precisely, given abstraction 𝑄 ,
refinement 𝑃 , and hidden variables 𝐻 , we say 𝑃 =⇒ ∃∃𝐻. 𝑄

when 𝑃 ⪯TLA 𝑄 .2 Then the compositionality of refinement
results from the universal property of conjunction, (namely,
SL∧SR is the most abstract common refinement of SL and SR).
Fortunately, ⪯weak =⇒ ⪯TLA, so we can use the refinement
proof from the preceding section to reason compositionally
about system-level properties of implementations.

The key insight here is we model all external observables
in C as a sort of “external” transition system, with a single
state and (potentially) many actions, which we denote 1;
from this, we can prove (via Frama-C) that 1𝑂𝑄

is a refine-
ment of the external observables in the C (e.g., volatile reads
and writes), which we illustrate in Figure 5. Equipped with
refinements of 1𝑂𝑃𝐶

⪯weak 1𝑂𝑄
and 𝑃𝐶 ⪯weak 𝑄 , all that

remains is to prove their composition is also a refinement.
The proof relies on the universal property of ∥, the universal
property of 1, and a Galois connection of the lattices of ob-
servables 𝑂𝑃𝐶 and 𝑂𝑄 which gives 1𝑂𝑃𝐶

∼ 1𝑂𝑄
. It is simple

to extend this refinement proof to, e.g., the SMV back-end, by
2The ∃∃ refers to the temporal existential operator.

1𝑂𝑄𝑄

𝑃𝐶
volatile

environment

async

async

⪯we
ak

obs1 ...
obs𝑛

Figure 5. Asynchronous composition of an LTS 𝑄 with 1 to
show an abstraction of the C implementation.

equipping all basic transition systems with self-transitions
under all of the other transition system’s labels.
This refinement allows us to prove safety properties of

the C program and its interaction with the (volatile) en-
vironment. Though we can use NuSMV to prove liveness
properties of the model, to prove liveness in the implemen-
tation we need some notion of fairness with asynchronous
composition. Proving systems without an assumption of
fairness, or proving that asynchronous systems are fair is
future work. For a more complete discussion, we refer to the
supplementary material linked in Section 1.

4 Related Work
Model checking has a long history in formal verification of
software systems [1, 11, 12, 18]. Well-known industrial uses
of model checking gain value with models that are divorced
from implementation [27]. These use-cases helpwrite correct
code, but in our setting we aim to go one step further and
take invariant properties proven for the model and ensure
they apply to their implementation.

Tools like SLAM [5] have had significant impact in indus-
trial uses by checking for proper integration of device drivers
with the Windows kernel. More broadly, model checking
programs directly is a well studied technique [23]. These
approaches assume the behavior of the larger system is en-
coded soundly in assumptions of their specifications. For
example, in the case of SLAM’s driver verification tool SDV,
they specify a set of API usage rules that can be seen as
approximating environmental behavior and constraints. By
contrast in our approach we use our theory of refinement
(Section 3.1) make no assumptions in the behavior of the
environment. In practice this means that our state machine
model uses variables that are unbound and conceptually act
as the interface between the specification and its environ-
ment. In C, these are volatile variables which are used as a
communicationmedium by other system components and do
not have unbounded behavior. From the perspective of state
machines, there has been recent work verifying properties
about only the Simulink models via SMT [20]. Conversely,
our models exist separately from their implementations, so
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an important feature of Q Framework is the link between
models and implementation.
The work most similar to Q Framework is Trillium [29],

which permits refinement proofs between a higher-order
distributed separation logic (TLA) and an concrete imple-
mentation language (AnerisLang). Trillium has the benefit
of having a fully mechanized proof of correctness in Coq,
but its implementation language is not a general purpose.
Therefore, the tradeoff of Q Framework is less formalization
(using NuSMV and Frama-C) in exchange for the flexibility
of C as the concrete implementation language.
Several works have explicitly aimed to bridge the gap

between state-machine-like specifications and real imple-
mentations. Broadly they have focused on generality, where
it is up to the user to build a simulation proof between the
program and its specification. As a consequence they re-
quire a large amount of user intervention. In the case of
Ironfleet [19] a separate intermediate refinement in the form
of a protocol must be designed and proved. In the case of
DeepSpec, [30] a “linear” specification is designed along with
an intermediate “implementation” specification. The coin-
ductive ITree specifications are infinite state while ours are
infinite-state with finite representation as practical matter
for checking temporal properties against our model. Similar
to Ironfleet, refinement is demonstrated through the inter-
mediate specification but here the proof takes place in the
Coq proof assistant and the final refinement to C is demon-
strated using the Hoare logic at the heart of the Verified
Software Toolchain [3]. The foundational nature of proofs
in DeepSpec are notable because semantics underlying VST
for C come from the CompCert compiler and are verified in
Coq. As a result, the proofs are carried all the way down to
assembly generation.
By contrast, we have aimed to facilitate automation of

refinement proofs for programs fitting a particular form.
With respect to DeepSpec, the key ideas and the architecture
of our tool are such that we can produce VST obligations to
provide similar foundational guarantees via a new back-end
and this is planned as future work.

5 Future Work
Q Framework is a mature enough project that it sees indus-
trial use-cases at Sandia today. However, it is just one part
in our ultimate goal (similar to the DeepSpec project), to
have “One Q.E.D.”—a single proof of correctness, from the
functional (or state-machine) specifications, to the high-level
programming language implementation, to the generated
binary, all the way down to the hardware being executed. To
this end, we wish to extend the Q Framework for hardware
verification, instead of treating access to the hardware (or
ISA) as axiomatic in ACSL.
As mentioned in Section 2.5, flattening models can grow

QSpec (and their corresponding SMV) to be too large to

check. We are currently working on adding support within
QLang for more efficient ways of encoding the state machine
operators within SMV and ACSL, while preserving their se-
mantics. Beyond this, one manual part of Q Framework is
the decomposing and tracking the assumptions of each inter-
acting component. For large models, we have manually de-
constructed the systems to be able to use assume-guarantee
reasoning [15]. To automate this process, we are investigat-
ing circular assume-guarantee [17] reasoning for Q, which
would automatically build a set of assumptions required for
compositional model checking.

As mentioned in Section 3, one limitation of Q is its strict
requirements on the structure of the C implementation and
the ACSL annotations Q expects. However, we are inter-
ested in using the Verified Software Toolchain’s (VST) [3]
symbolic executor to automatically generate the ACSL spec-
ifications to allow more complex functions to be annotated
automatically with ACSL. Lastly, we plan to extend our no-
tion of modularity one step futher: we plan to extend Q to
allow verification of both nested and parallel composition of
state machines. This would further expand the class of state
machines, and corresponding C code, that can be verified.

6 Conclusion
We presented Q Framework, a verification framework to
verify the correctness of digital control systems. Q was de-
signed around the idea that high-consequence embedded
control software has complex requirements, and that it is
worth significant effort to ensure the software upholds these
requirements.
Q works by linking together state machines (expressed

in Stateflow) with a source code implementation (in C), and
proving an implementation is a refinement of the model and
that it obeys some set of requirements expressed as temporal
properties. This allow us to verify deep temporal properties
about systems and their concrete implementations, provided
that these implementations are written in a restrictive coding
style that matches very closely the Stateflow model. Q is
used at Sandia by our team of approximately 10 people, who
work with several small groups of system designers and
software developers for several embedded system. We found
that state machines elicit modularity from digital designers;
this modularity, combined with our formal analysis, can
often be translated into opportunities for refinement proofs,
and in turn, better scalability of analysis.
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