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Abstract—Current programming languages and programming
models make it easy to create software and hardware systems
that fulfill an intended function but also leave such systems open
to unintended function and vulnerabilities. Software engineering
and code hygiene may make systems incrementally safer, but do
not produce the wholesale change necessary for secure systems
from the outset. Yet there exists an approach with impressive
results: We cite recent examples showing that formal methods,
coupled with formally informed digital design, have produced
objectively more robust code even beyond the properties directly
proven. Though discovery of zero-day vulnerabilities is almost
always a surprise and powerful tools like semantic fuzzers can
cover a larger search space of vulnerabilities than a developer
can conceive of, formal models seem to produce robustness of
a higher qualitative order than traditionally developed digital
systems. Because the claim is necessarily a qualitative one, we
illustrate similar results with an idealized programming language
in the form of Boolean networks where we have control of
parameters related to stability and adaptability. We argue that
verifiability with formal methods is an instance of broader
design constraints that promote robustness. We draw analogies
to real-world programming models and languages that can be
mathematically reasoned about in contrast to ones that are
essentially undecidable.

Index Terms—Digital design; programming models; robust-
ness; security; formal methods; complex systems

I. INTRODUCTION

Digital hardware and software are effectively undecidable in
the general case due to their complexity [1], [2]. That is, there
exists no practical means for exhaustively answering questions
about the behavior space of an arbitrary circuit or program to
ensure that its design meets requirements. Because the positive
function of a digital system originates from human intent,
functional behaviors are of relatively low complexity and are
testable. However, the safety and security requirements for
what a digital system must not do are notoriously difficult to
verify. Indeed, “zero-day” (freshly discovered) vulnerabilities
triggering unanticipated behavior are routinely found in hard-
ware and software after deployment, despite strong efforts at
testing and code hygiene during development.

The digital design and verification approach with the great-
est empirical success in preventing unanticipated behavior is
the use of formal methods [3] – applying automated logical
reasoning to exhaustively analyze a mathematical model of the
design. Consistent with the general principle of undecidability,
the design must be suitably constrained to be analyzable

by this approach. However, the mathematical guarantees pro-
vided by formal methods tools are limited to the specific
requirements or assertions that are encoded by the developer
in the formal modeling language and that are tractable for
the tools to verify. While these formal assertions can be
expansive in covering vast combinatorial behavior spaces that
would be infeasible to cover by testing, the assertions directly
encode only those characteristics of undesired behavior that
the developer can foresee and express mathematically. Yet,
it is observed that some complex systems show robustness
against a wide range of unanticipated behaviors well beyond
those for which formal guarantees were obtained.

Arguably the greatest feat of the 20th century is the devel-
opment of digital electronics, computing the mathematics of
intricate logic reliably. Since all mathematics is self-evident,
one would expect that if the computation is rendered perfectly
there could be no surprises in what a digital system is capable
of. Because of the complexity of digital systems, this is not so.
In most cases digital systems, like complex systems more gen-
erally, have only limited mathematical basis for their modeling
and design. Complex systems are typically modeled as a large
set of entities evolving in time and a network of connecting
bonds that transmit information between entities, affecting
their evolution. Abstract networks of this sort are commonly
used to simulate power distribution grids, computers and net-
works of computers, and economic and social systems. Though
they have increasing application in industry and the military,
complex system models differ from those traditionally studied
in science. Complex systems are generally not amenable to the
conventional divide-and-conquer reductionist approach, i.e.,
they are neither reducible to a tractable phenomenological
equation, nor reducible to a traditional statistical-mechanics
treatment. Complex systems are the result of a scalably large
number of nonlinear interactions that, acting together, produce
“emergent” behaviors that cannot be easily deduced from
the constituent parts. Very large-scale systems in everyday
use, such as the electric power grid and the Internet, have
emergent behavior that is usually beneficial, but in some cases
detrimental (growth of a botnet on the Internet) or catastrophic
(a widespread blackout of the electric grid). Both robustness
to common failure modes and brittleness to rare unexpected
events are characteristic of complex systems.

Here we argue that formally informed design of complex
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digital systems, ostensibly for the verification of safety, live-
ness, etc., has an ancillary effect of conferring general robust-
ness beyond what is mathematically guaranteed. We maintain
that verifiability with formal methods is an instance of broader
design constraints that promote robustness. Thus, a formal
methods approach is useful beyond the specific assertions
that are exhaustively verified, and is complementary with
more general principles of stability and information damping
drawn from, e.g., biological and social complex systems. This
suggests that the insights of formal methods can be extended
in power and scalability as part of designed-in robustness of
the system as a whole.

II. LIMITATIONS OF FORMAL METHODS: SEMANTICS AND
TRACTABILITY

Formally proven software and hardware are only “proven”
for explicit assertions made ahead of time, during the devel-
opment process. The most surprising and arguably damaging
vulnerabilities are so-called zero-day vulnerabilities, unrelated
to previous faults and largely unguessable. At first blush, it
would be surprising that a formal approach would be effective
in making digital systems robust to unforeseen types of faults.
Safety, security, liveness, etc., requirements can be expressed
and proven broadly, but the inventiveness of exploits and the
unpredictability of faults are notorious. High-consequence vul-
nerabilities can lie dormant in even ubiquitously used code [4]
for decades before being “discovered”. It seems unreasonable
to expect that design of hardware and software, even formally
proven design, would be able to anticipate vulnerabilities of
such byzantine complexity.

Formal analysis tools are generally available in two forms:
1) Theorem provers provide an environment in which the

designer can prove requirements manually with general
logical reasoning. Automation is limited and the process
is labor intensive, but the format is general, admit-
ting virtually any level of semantics. When analysis is
complete, an independently checkable “proof term” is
produced.

2) Model checkers seek to exhaustively check design re-
quirements against all of the states in the design that
are accessible, given the initial conditions. Partial order
reduction [5] and other tricks are used to make the com-
putation tractable. In general, no proof term is produced
and the designer has to take the tool’s word for it that
a proof of the requirements has been accomplished.

Model checkers are more automated and require less train-
ing to use effectively, but theorem provers are considered to be
more powerful. Crucially, in both theorem provers and model
checkers, programs are constrained to be written in a modeling
language that expresses the logic and semantic constraints of
what the tools can analyze. Some commercial model checkers
use a native programming language as the modeling language
but are limited in the requirements they can prove (e.g.,
Cadence [6] uses Verilog). Usually, to be able to reason about
program requirements effectively, these modeling languages
are necessarily more restrictive than a general programming

language like C or Python. In many cases, code in a general
programming language can be synthesized from the model
code. As a general rule, more powerful requirements can be
proven with modeling languages that are more constrained,
but which are necessarily more difficult to program.

Another limitation of the formal approach is that require-
ments are valid only in the semantics in which they were
proven. The modeling language defines those semantics, and if
the program expressed in the modeling language is translated
into an implementation, then it falls heir to any vulnerabilities
in the new semantics. For example, timing vulnerabilities in
hardware rely on the particular layout in silicon that, in effect,
change the logic of the original design.

Despite these limitations, there is experimental evidence
(see Section III) that the process of formal verification incorpo-
rated into the design process not only ensures that known and
specified requirements are met, but also enhances the design’s
robustness against unknown vulnerabilities.

III. THE SURPRISING POWER OF A FORMAL DESIGN
APPROACH

As mentioned previously, systems that are designed to be
amenable to formal verification appear to exhibit enhanced
robustness, even beyond the properties for which they are ver-
ified. We speculate that this “robustness for free” is attributable
to the restricted set of possible behaviors that result from
using programming languages, models, and design idioms that
are crafted specifically to be analyzed. To simplify potential
analyses, these tools restrict the programming model. The
Ivory [7] embedded domain-specific programming language,
for example, does not allow potentially unsafe type casts and
ensures that pointers are not nullable, among other safeguards.
In the SMACCMPilot project, an unmanned aerial vehicle
(UAV, i.e., a drone) was designed with its embedded control
software written in Ivory, and was dubbed “unhackable” after
being subjected to extensive red team exercises [8]. This was
in spite of the fact that very little of the UAV code was verified
beyond the type safety properties enforced by Ivory itself. By
comparison, commercial drones designed with conventional
languages are notoriously susceptible to cyber attack [9].

The Compcert C compiler [10] also seems to exhibit this
kind of robustness. Compcert is written in Coq, a programming
language restricted in such a way that it can also serve as
a sound proof theory. When researchers subjected a set of
C compilers (including Compcert and mainstream compilers
like GCC and Clang) to a large battery of randomly generated
correctness tests, Compcert exhibited only a few errors in
the parser and back-end code generation, and no errors at all
in its verified core. The other, unverified compilers exhibited
hundreds of errors in these “fuzzing” tests [11]. It seems likely
that the randomized tests would eventually exercise unverified
properties of Compcert’s core, and yet empirically, the tests
still failed to expose any errors.

It is important to note that our hypothesis does not predict
increased robustness in systems where formal verification was
done after the fact. The key is that design for analysis yields
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increased robustness as a by-product, independent of when
or even whether the analysis is performed. It should not and
does not appear to apply to systems that were not designed
for analysis but that were subjected to it after the fact. The
LLVM compiler, for example, has undergone formal analysis
for certain transformations [12], but was not designed to
accommodate formal analysis. Therefore, we would not expect
that analysis to translate to increased overall robustness, and
indeed the fuzzing results [11] suggest that LLVM is no more
robust than other mainstream compilers.

While we have concentrated on the unexpected benefits
that formally analyzable languages and constructs confer,
evidence [3] suggests that just high-level formal modeling
of the requirements without any automated connection to the
implementation code helps guide the programmer or put the
programmer in a proper “frame of mind” to create a robust
implementation. There is empirical evidence to suggest that
application of formal modeling early in the planning stages
of the development process yields outsize benefits later on,
even absent any further formalization or verification [13], [14].
This evidence supports our hypothesis that even some limited
consideration of analysis up front increases the robustness of
the system.

IV. DESIGN CONSTRAINTS PROMOTING ANALYZABILITY
AND ROBUSTNESS

The complexity of modern computer systems makes them
difficult to design and analyze, and leads to pervasive reli-
ability and security problems. A framework for understand-
ing this behavior is to view computers in their most basic
representation: as dynamical systems. For example, the low-
level behavior of typical computer software and hardware has
been found empirically to exhibit chaotic dynamical system
features [15]. The use of formal methods, by contrast, enforces
a tractable design semantics in which behavior spaces can be
bounded and pruned in an exact manner.

Highly engineered and highly evolved complex systems in
diverse domains, resulting from selection-driven adaptation,
exhibit characteristic “edge of chaos” dynamics in which the
response to perturbations is bounded probabilistically [16],
[17]. Indeed, for a dynamical system to be a good computa-
tional device, it cannot be strongly overdamped and thus inert
to any input, nor can it be so profoundly chaotic that the output
is random to any input. To be useful, a computer must be
close to the edge of chaos, also known as the critical manifold.
The associated adaptation process is responsible for the robust
functionality of biological organisms – even in the absence of
any direct imposition of formal methods. While the adaptation
process itself is optimized on the edge of chaos, there are
reasons to seek a result that is somewhat subcritical, i.e.,
damps perturbations to some degree. Subcriticality generalizes
the constraints imposed by formal analyzability – reducing
the dimension of the effective design space, making some
perturbations irrelevant, and making the system more likely
to maintain desired behavior even for untested inputs. Sub-
criticality has the additional pragmatic benefit of mitigating

physical breakdowns in logic execution (e.g., hardware bit
flips) that may be of concern for some systems in addition
to logic design flaws.

Formal methods and complex systems theory can also
increase the power of other development practices such as
fuzzing (automated randomized testing). Previous work [2]
has developed an analysis to systematize the role of semantic
understanding in the selection of test inputs. The essential
concept is that testing is best focused on inputs that can be
constructed in a simple way from information that is already
known about the system – because (1) these simpler spaces
are smaller and easier to cover, (2) an attacker seeking exploits
will likely also start with such spaces for the same reason, and
(3) evidence suggests that inadvertent design faults are more
common in such spaces. Undirected, purely random inputs
deserve a relatively small amount of testing, while inputs close
to the nominal semantics (e.g., modifications and rearrange-
ments of expected input) deserve strongly focused testing. As
an example, weak passwords are frequent vulnerabilities that
can be found by searching inputs constructed in a simple way
from known information – e.g., from dictionary words.

We believe that future work can leverage these concepts
to develop new programming models, seeking to reduce the
dispersion of faults over the input space so that tests can
become more narrowly targeted and more effective. This
would draw on insights from computational complexity and
machine learning. A close relationship between testability
and learnability has been noted [18], [19]. Constraints that
reduce information propagation and confer “smoothness” have
been shown to improve learnability of digital circuit behavior.
Low-depth circuits [20] that compute their output from a
limited number of logic steps, and monotone circuits [21] that
cannot perform logical inversion operations, both have efficient
learning algorithms with bounded error. This corresponds to
a greater ability for testing to provide confidence in the
correctness of an implemented circuit, if the desired function
can be programmed within such a constraint. It would be
useful to generalize from these initial examples of improved
learnability and testability to create a more broadly useful
programming model for hardware and software, in which
realistic applications could be implemented. There appears to
be ample objective evidence [22], [23] that the programming
language for an implementation makes a measurable difference
in the type and quantity of vulnerabilities. This would be
another example of extending some of the benefits of formal
methods to systems of a scale beyond exhaustive verification.

V. BOOLEAN NETWORK EXAMPLE

To illustrate the ideas discussed, we use Boolean networks
(BNs) as a flexible representation of digital logic. BNs are
effectively a simple programming language that corresponds
closely to hardware sequential logic gates but also can serve
as a representation of software. BNs are directed graphs in
which each node has two possible states, 0 and 1. A node’s
state transition at each discrete time step is determined by a
truth-table function of its input connections, called a transfer
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function. BNs were developed as models of genetic regulatory
networks and biological evolution, and have been shown
to capture the essential features of more general nonlinear
dynamics in complex networks [24]. BNs suit our purpose
by providing a programming model with adjustable critical
properties allowing the exploration of criticality effects on the
propagation and damping of errors.

BNs are an example of what are known as non-uniform
models of computation [25], where a digital system is finite
and self-contained, takes inputs of a bounded size, and has to
be made more complex in order to handle a more complex
input. By contrast, conventional software and even high-level
hardware design is based on a uniform model of computation,
the Turing machine, which idealizes part of the digital system
as unbounded storage in order to reduce the complexity of
the problem-specific part of the system – the “algorithm”
or “head” of the Turing machine – while handling input of
arbitrary size. This idealization has been very powerful in
enabling digital system development to date – yet it belies both
the physical reality of finite-size computers and the common
character of adaptive systems in other domains, such as biol-
ogy, which are non-uniform. Formal methods, moreover, show
increased tractability for bounded digital designs such as state
machines, compared to general-purpose (uniform) processors
and software. Results from automata theory indicate that
more powerful reasoning about behavior becomes possible as
models are restricted, e.g., from Turing machines to pushdown
automata to finite-state machines [26]. Similarly, analyzability
has been improved in practice by the use of restricted, domain-
specific programming and modeling languages [27].

Though further research is needed, it is plausible that non-
uniform computation is a more fruitful representation for
improving both efficiency and robustness as computers become
increasingly complex. As pointed out previously (Section IV),
typical (uniform) computer software is found to be chaotic.
With its adaptable stability properties, a BN-like model of
computation may be better suited to applications where ro-
bustness is needed, such as embedded control systems. While
a conventional programming model tends to exhibit instability
to perturbations, a conventional Turing-complete computer can
still simulate non-uniform computation and, by adopting a
criticality-adjustable programming model, can benefit from its
possible advantages.

As a simple example, we present here a comparison of
BNs created to compute a half-adder function, adding two
1-bit numbers and producing a carry and sum bit. While it
would be easy to correctly implement and exhaustively test
such a simple function, we here “induce” a relatively complex
implementation in a more generic fashion constrained only
by the structural properties of the BN that confer its stabil-
ity characteristics. This is meant to exemplify the behavior
of potentially imperfect implementations of more complex
requirements. A broad advantage of implementing computer
systems via a formal methods/dynamical systems approach is
the ability to create circuits and programs in an automated
and systematic (rather than humanly idiosyncratic) manner,

enabling a more objective characterization of their reliability
and security.

There are many ways of composing logic gates to im-
plement the half-adder function, and we note that in more
realistic cases any actual implementation is likely to be far
from “minimal”. Here we randomly sample 20-node BNs, with
uniformly random transfer functions, and with connectivity
that is biased to propagate information from the 2 input nodes
to the 2 output nodes but is otherwise random. We select
those BNs that compute the correct half-adder result (for
all combinations of input values) when the input nodes are
clamped, the other nodes are initialized to 0, the circuit is
advanced for 20 time steps, and then the output nodes are read
off. This random sampling is a degenerate case of adaptive
techniques such as genetic programming that could search the
implementation space more efficiently.

We have generated the BNs from different ensembles that
vary in the amount of connectivity, described by k, the average
number of inputs per node. Though the BNs all, by construc-
tion, compute the half-adder function correctly when operating
with their nominal logic, they differ in their response when bit
errors are imposed. Such bit errors can represent a breakdown
of the digital model, as for physical upsets in hardware, or
alternatively the effect of untested states or unanticipated input
within the digital space of a complex design.

In general, the response of a dynamical system to pertur-
bations is described by a “Lyapunov exponent” measuring
how perturbations are damped or amplified by the dynamics.
Damping indicates a subcritical, stable, quiescent system;
amplification indicates a supercritical, unstable, chaotic sys-
tem; and the borderline is the “edge of chaos” mentioned
in Section IV. Mathematical work on generic BN ensembles
has shown how the connectivity and transfer functions control
the transition from quiescent to chaotic behavior [17], [28].
Here we show evidence that similar relations hold for BNs
programmed (via selection) to perform a particular task.

Figure 1 shows the structure and final output state of two
typical half-adder BNs, one from the ensemble with k = 1.5
and one from the ensemble with k = 2.5, with a 1% bit error
rate per node update in both cases. The correct output for
the inputs shown (1+ 1) would be a carry of 1 and a sum
of 0. All nodes that differ at the last time step from their
states in an error-free run are outlined in red. In this case, the
k = 1.5 network shows damping of perturbations and gets the
correct answer, while the k = 2.5 network shows amplification
of perturbations and gets the wrong answer.

As indicated, over the ensemble of such BNs, the k = 1.5
circuits have a significantly lower expected error in the final
output than the k = 2.5 circuits. This is in accordance with the
simplest dynamical systems characterization of purely random
BNs, which show quiescence for k < 2 and chaos for k >
2 [17]. Indeed, as shown by the ensemble simulation results
in Figure 2, the parameter k describes a systematic relation
between the local occurrence of unexpected erroneous states
and the resulting loss of system-level correctness. Requiring
subcriticality is a constraint that makes generally makes a
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Fig. 1. Final state of two Boolean networks that nominally compute the half-adder function, each drawn from a different ensemble based on k, the average
number of inputs per node (k = 1.5 is quiescent and k = 2.5 is chaotic). A 1% bit error rate per node update is imposed. All nodes that differ at the last time
step from their states in an error-free run are outlined in red.

digital design more difficult to create but confers valuable
predictability on behavior – aspects shared with the more
specific approach of formal methods. Design parameters such
as k enable probabilistically assessing potential catastrophic
failures too rare to be found through testing, and remain
relevant even when the full system scale is beyond the reach
of exhaustive verification.

The present example is, however, simple enough to illustrate
formal methods as a base case for assessing and enhanc-
ing robustness. We have analyzed the two example BNs in
Figure 1 using the NuSMV model checker [29]. Our initial
formal analysis allows the possibility of any single bit error
during some range of time steps, via a nondeterministic model
similar to one previously used for upsets in hardware [30].
We seek to exhaustively prove or disprove correct function of
the half-adder circuits under this error model. For instance,
the correctness requirement for the carry bit is represented
symbolically in NuSMV as

LTLSPEC F ((clock=20) & (n18 = (n00&n01)))

which asserts that once the circuit has advanced through 20
time steps, the carry bit n18 equals the logical AND of the
two input bits n00 and n01.

NuSMV finds that the output of the chaotic circuit is
susceptible to corruption from a bit error occurring at any time
step of the run. By contrast, NuSMV proves that the output

Fig. 2. Simulations of half-adder Boolean networks: Average number of
output bits that are incorrect as a function of the bit error rate, for different
values of k, the average number of inputs per node. The points correspond to
the Boolean networks shown in Figure 1. Note that when the bit error rate
is 0.5, all logic gates (including the outputs) act as uniform random number
generators, so on average 1 out of the 2 output bits is incorrect.

Authorized licensed use limited to: Sandia National Laboratories. Downloaded on March 31,2023 at 07:11:08 UTC from IEEE Xplore.  Restrictions apply. 



of the quiescent circuit can be corrupted only if the bit error
occurs in the last 5 of the 20 time steps, and is self-healing
otherwise. Thus, the exhaustive formal verification results for
these example circuits confirm the insights from dynamical
systems theory.

VI. CONCLUSION

Evidence has been provided that design of digital systems
from a formal model yields a qualitatively more robust result
than would be expected otherwise – in many cases for fairly
complex applications. A case is made that the measure of
this robustness is well beyond that which could be expected
as a result of satisfying the proof obligations alone, but
rather that a broader principle is at work. We argue that
formal modeling languages and tools along with imposed
proof obligations constrain the program design process in ways
that, by themselves, increase the robustness of the resulting
implementation.

We offer an analogy through programming Boolean net-
works where these principles can be explored more directly
and quantitatively. By selecting the network to be subcritical,
the resulting implementation becomes more robust to faults
and vulnerabilities, but also becomes harder to program. How-
ever, as the network becomes critical, and then supercritical,
it is easier to program but also considerably less robust. Sub-
critical, overdamped Boolean networks are easier to analyze in
the sense that they are more predictable. Supercritical, chaotic
Boolean networks are harder to analyze in the sense that they
are random. In analogy, we suggest that the more constraining
formally informed design process, which is more concerned
with transparency to analysis and less with programmability,
yields a more robust result for similar reasons. More data
regarding real-world results of formally informed design of
complex digital systems will likely be available as time goes
on and will help confirm or contradict this hypothesis, but for
the present this analogy seems warranted.
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