
Leveraging Abstraction to Establish
Out-of-Nominal Safety Properties

Jackson R. Mayo(B), Robert C. Armstrong, and Geoffrey C. Hulette

Sandia National Laboratories, P.O. Box 969, Livermore, CA 94551-0969, USA
{jmayo,rob,ghulett}@sandia.gov

Abstract. Digital systems in an out-of-nominal environment (e.g., one
causing hardware bit flips) may not be expected to function correctly in
all respects but may be required to fail safely. We present an approach
for understanding and verifying a system’s out-of-nominal behavior as an
abstraction of nominal behavior that preserves designated critical safety
requirements. Because abstraction and refinement are already widely
used for improved tractability in formal design and proof techniques,
this additional way of viewing an abstraction can potentially verify a
system’s out-of-nominal safety with little additional work. We illustrate
the approach with a simple model of a turnstile controller with possible
logic faults (formalized in the temporal logic of actions and NuSMV),
noting how design choices can be guided by the desired out-of-nominal
abstraction. Principles of robustness in complex systems (specifically,
Boolean networks) are found to be compatible with the formal abstrac-
tion approach. This work indicates a direction for broader use of formal
methods in safety-critical systems.

Keywords: Abstraction · Refinement · Model checking · Fault toler-
ance · Soft errors · Temporal logic of actions · NuSMV

1 Introduction

Due to the combinatorial complexity of digital systems, not only is exhaustive
testing infeasible as a means to ensure safety, but even the reasoning techniques
used by formal methods face scalability challenges in verifying large designs and
complex safety requirements. A widely used technique to improve the tractabil-
ity of formal verification is to work with abstractions (or overapproximations),
which can be simpler to analyze and are conservative in the sense that their
verified safety properties are guaranteed to hold also in the actual implementa-
tion. This guarantee applies because a valid abstraction permits all behaviors
that occur in the implementation and possibly additional behaviors. In current
formal methods, abstractions are used in two main contexts:

1. Proof techniques that search for a post-hoc abstraction suitable for verifying
desired properties of a given implementation, as in counterexample-guided
abstraction refinement (CEGAR) [3].

c© Springer International Publishing Switzerland 2016
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2015, CCIS 596, pp. 172–186, 2016.
DOI: 10.1007/978-3-319-29510-7 10

Leveraging Abstraction to Establish Out-of-Nominal Safety Properties 173

2. Design techniques that start from an abstraction in which desired properties
can be proven and then create an implementation by refinement, as in the
Event-B method [1].

In both cases, the abstraction is a means to an end: either generating a proof of
an existing design, or generating a provable design. The abstraction is of value
because it can be tractably verified for safety and because it has an overapprox-
imation relationship to the implementation, but serves little purpose beyond
these points. If the implementation could be verified directly, the need for the
abstraction would be obviated.

Here we present a different perspective on abstraction – useful when, under
some conditions, a system is physically capable of additional behaviors beyond
its “nominal” operation. In this approach, we note that a typical formal model
of the implementation makes certain assumptions about the environment that
are not universally valid. Thus, the requirements that are verified on this imple-
mentation model, which may include not only safety but also reliability, etc.,
are proven to hold in this nominal environment. This is practically sufficient
for some requirements, given that the nominal environment can be maintained
often enough for the system to be useful. But critical safety properties may need
to be guaranteed under a less restrictive model that permits particular “out-
of-nominal” behaviors, if such behaviors may physically occur often enough to
be of concern for the risk of catastrophic failure. Our observation is that the
abstraction concept, already commonly used in formal methods as a mathemat-
ical technique, can be reinterpreted as defining a space of possible “real-world”
out-of-nominal behaviors for which the abstraction-verified safety properties are
still guaranteed to hold. Thus, by leveraging suitable abstractions, we can gain
out-of-nominal safety verification for free.

A primary example of out-of-nominal behavior is the response of digital hard-
ware to electrical or other physical stimuli that produce states not accounted for
in the logic design – with the abnormal physical dynamics generating a nominally
disallowed digital state transition such as a bit flip. A variety of formal techniques
have been investigated for modeling and verifying such behavior [4,7,8]; recog-
nizing that out-of-nominal behavior may overlap with other formal abstractions
can increase the applicability of these techniques, particularly in earlier stages
of the design process. More generally, other types of unexpected but not totally
unforeseeable inputs from the environment can be treated as out-of-nominal
behavior. For example, in modular verification of a system where each compo-
nent is verified subject to assumptions on the behavior of other components
with which it interacts, a conservative approach that verifies safety for a suit-
able overapproximation can create a “firebreak” around each component that
mitigates the possibility of catastrophic cascading failure in the event of isolated
malfunctions. A complex systems theory of such firebreaks has been developed
previously [15].

In the remainder of this paper we present the formal abstraction framework
for understanding out-of-nominal behavior (Sect. 2), the definition of a simple
example model of a turnstile (Sect. 3), an illustration of the framework using the

174 J.R. Mayo et al.

example (Sect. 4), a conclusion (Sect. 5), and the formalization of aspects of the
example in the temporal logic of actions or TLA (AppendixA) and in NuSMV
(AppendixB).

2 Modeling Out-of-Nominal Safety Properties

The safety properties of a given model are required to hold at all times over
all possible behavioral paths. Such properties, when imposed on an abstraction,
require that every path in the abstraction conforms to the properties, and thus
every refinement will as well. The use of abstraction in verifying safety require-
ments is well established.

Here we distinguish “critical” safety requirements that must hold even in out-
of-nominal environments (Fig. 1). These out-of-nominal fail-safe requirements
are less strict (allow more behaviors) than the requirements for nominal oper-
ation and thus constitute an abstraction of the nominal requirements. Safety-
critical devices where failure modes can be anticipated are likely candidates for
this technique. Nominal requirements can be relaxed to admit acceptable modes
of failure. The resulting out-of-nominal safety requirements reflect an engineering
decision that certain properties must be preserved even in exceptional circum-
stances that may be considered unlikely to occur.

Fig. 1. Refinement/abstraction conceptual diagram for treating out-of-nominal and
nominal models in a unified way. The arrows point in the direction of abstraction.

The safety requirements must ultimately be verified on formal models that
reflect the actual nominal and out-of-nominal behavior of the system being
designed. Such models are typically tied to the requirements via one or more

Leveraging Abstraction to Establish Out-of-Nominal Safety Properties 175

abstraction/refinement steps ultimately leading to a model of a practical imple-
mentation. In our approach, upon refinement, the out-of-nominal model remains
an abstraction of the nominal one (Fig. 1). By stipulating that the out-of-nominal
refinement has a superset of the behaviors of the nominal refinement, we ensure
that the safety properties verified for out-of-nominal operation also hold for
nominal operation. These critical safety properties take the form of a fail-safe
mode where nominal function is no longer guaranteed but essential safety invari-
ants still hold. Of course, the approach is limited to those out-of-nominal failure
modes that can be foreseen and modeled.

Not all foreseeable failure modes may manifest an abstraction or overapprox-
imation of the system’s nominal behavior. A particular failure mode may render
the system incapable of performing some nominal behaviors. The removal of pos-
sible behavioral paths, by itself, does not invalidate any of the nominal safety
properties, but can affect functional requirements that are outside the scope of
the formal refinement methodology applied in this work. Out-of-nominal sce-
narios of concern for safety would involve adding at least some new behaviors.
In typical cases, failures can occur to varying degrees or not at all depending
on practically unpredictable events. Thus, it is often natural for out-of-nominal
behavior to be represented in a way that includes nominal behavior as a possibil-
ity. Regardless, an out-of-nominal model can be made an overapproximation by
simply adding the nominal behavior to it as an allowed nondeterministic branch.

If we are to apply critical safety requirements globally across all failure modes,
then the high-level out-of-nominal refinement will represent the union of all
failure modes together with the nominal behavior. In this way, all models of
particular failure modes are refinements of the global failure refinement and
inherit any safety property proven for this global refinement. The nominal model
is also a refinement and inherits the same safety properties (Fig. 1). Not admitted
in this work is a case where a safety property is required to hold only for out-
of-nominal operation and is not present in the nominal model. Though such
cases exist, it is considered rare for a nominal implementation to lack a safety
requirement present in a failure mode for that system.

Viewing behaviors of anticipated malfunctions as an abstraction of the nom-
inal behavior has some advantages. For complex safety-critical systems that are
prone to failure, it is important to “design-in” anticipated failures with their own
fail-safe requirements. Recasting such requirements into the familiar abstrac-
tion/refinement design practice means that the same tools can be brought to
bear on these designed-in benign failure requirements as part of the normal
design process. Another advantage is that anticipated failure modes are incor-
porated into the design process up-front rather than as an afterthought.

3 Example Turnstile Model

For an illustration, we use the familiar turnstile model [6] in simplified form.
A turnstile requires a coin to permit the patron admission by pushing on the
bar. In a simplified description, we can identify three Boolean state variables

176 J.R. Mayo et al.

for the device: C, P , and L, indicating whether a coin is present, whether the
bar is being pushed, and whether the bar is locked. We idealize the operation
of the turnstile as a sequence of discrete instants at which C and P can be set
arbitrarily from the outside and L updates at the next instant in response. If
the coin is present and the bar is locked, the bar should become unlocked and
remain so until the patron pushes through, after which it should become locked
again. If the coin is absent, the bar should remain locked. We can synthesize the
desired nominal properties into a TLA+ [11] formula:

S1 � (¬C ∧ L ⇒ L′) critical safety property
S2 � (C ∧ L ⇒ ¬L′)
S3 � (¬P ∧ ¬L ⇒ ¬L′)
S4 � (P ∧ ¬L ⇒ L′)
Safety � �[S1 ∧ S2 ∧ S3 ∧ S4]〈C,P,L〉.

(1)

Here, each Sn defines a safety property in terms of a TLA action, which
relates the variables C, P , and L in the “current” instant to L′, representing
the value of L in the “next” instant. TLA formulas describe behaviors, infinite
sequences of states over a set of named variables, and so we have to lift the
description of individual steps into a predicate on behaviors. To combine the
safety properties into the requirement Safety , we require that each step must
satisfy the conjunction of the safety properties, or else be a “skip” step where
the next state is identical to the current one. In TLA+ this is expressed as
�[S1 ∧ S2 ∧ S3 ∧ S4]〈C,P,L〉.

While all of the implications in (1) can be thought of as safety properties,
the “critical safety property” S1 is one that we wish to preserve in a design for
anticipated out-of-nominal conditions. We could have designated another one
(or more) of the safety conditions as “critical” – there is nothing special about
the property S1 other than our choice of it for this example. We can interpret
S1 as “the turnstile will remain locked unless a coin is present” (¬C ∧L ⇒ L′).
Out-of-nominal designs will be discussed further in Sect. 4.

The nominal requirements in (1) can be used as an abstraction suitable for
refinement. If the refinement is valid, all of S1 through S4 will be true of the
implementation. One initial refinement of the requirements is described by the
action

L′ = (¬C ∧ L) ∨ (P ∧ ¬L), (2)

and this can be elaborated into a full TLA+ model, shown in Fig. 4 in Appen-
dix A. The TLC model checker can prove that the behaviors of this model,
encoded in a TLA formula Spec, refine Safety , i.e., satisfy the safety conditions
S1 through S4. Since the model is finite, TLC readily verifies that Spec ⇒ Safety .

The refinement (2) would need to be “compiled” (i.e., further refined) into a
program running on a processor, or in the ensuing example for this paper, syn-
thesized into logic gates. It is the specifics of the implementation that determine
whether this circuit is robust to the anticipated failure modes.

Leveraging Abstraction to Establish Out-of-Nominal Safety Properties 177

4 Design and Out-of-Nominal Verification via
Abstraction

4.1 Refinement (High Level)

We now consider a method by which abstraction and refinement can be used
in a formal design process in order to account for out-of-nominal conditions.
The process starts, as any design process should, with the requirements. These
are gathered in the usual ways and must be formalized. These are the nominal
requirements.

Next, certain of these requirements are designated as “critical” – these are
the out-of-nominal requirements, i.e., those that must hold even under some
(predicted) mode of system failure or inconsistency. Our methodology dictates
that now the designer must prove that the nominal requirements refine the out-
of-nominal requirements. If the out-of-nominal requirements are a subset of the
nominal requirements then this proof is trivial, since any system behavior satis-
fying a set of requirements will also satisfy any subset of those requirements.

Next, we refine the nominal requirements. The refined model is closer to
an implementation, although it may still be quite abstract. Refinement of the
nominal model is done in the usual way [1,11], ensuring that the level above
simulates the level below.

Finally, we must construct the out-of-nominal refinement such that it both
refines the out-of-nominal requirements and abstracts the nominal refinement,
completing the commuting square diagram (shown for the turnstile example in
Fig. 2). This step might be quite difficult, and we know of no general approach
to construct this model. However the turnstile example may be typical of certain
cases. In this case, our out-of-nominal requirement is only that ¬C ∧L ⇒ L′. In
the nominal refinement, L evolves based on the action

L′ = (¬C ∧ L) ∨ (P ∧ ¬L).

Since the first disjunct alone already satisfies the out-of-nominal requirement
that ¬C ∧ L ⇒ L′, we can consider the second disjunct to behave “randomly”
and, at any step, draw its value from either the nominal behavior P ∧ ¬L or its
negation ¬(P ∧ ¬L). In the model, we denote by X a value from this set, and
the out-of-nominal refinement is derived by replacing the action above with

L′ = (¬C ∧ L) ∨ X.

This model is shown in Fig. 5 in Appendix A. We have verified with TLC that it
both refines the out-of-nominal requirements and abstracts the nominal refine-
ment, thus completing the commuting diagram.

By contrast, if we had used the logically equivalent nominal refinement

L′ = (¬C ∨ ¬L) ∧ (P ∨ L),

it would not have been straightforward to obtain an out-of-nominal abstraction
preserving the critical safety requirement S1. That is, while the disjunctive and

178 J.R. Mayo et al.

Fig. 2. Refinement/abstraction diagram for the turnstile example. The arrows point
in the direction of abstraction. Existing formal abstractions can be reinterpreted in
this framework; a technique like CEGAR might already prove that the nominal design
(lower right) satisfies a safety property (upper left) by finding an abstraction (lower
left) that satisfies the safety property.

conjunctive normal forms are of course equivalent in their nominal behavior,
in this example one particular choice of design offers the ability to tolerate a
faulty out-of-nominal operation. This interpretation gives abstraction an even
more central role in driving the design process.

It is useful to ask: How generalizable and automatable is the use of abstrac-
tion techniques to understand out-of-nominal behavior? While we present only
a preliminary exploration of this type of approach, we suggest that there are
likely insights to be gained on many specific digital system models by viewing
already-used abstraction techniques through the out-of-nominal lens. In tradi-
tional nominal verification, discovering a useful abstraction in which given safety
properties can be proven is typically an iterative process, either automated or
manual. The goal of capturing some realistic out-of-nominal behavior in the
abstraction can be an additional criterion guiding this process.

For example, in design by refinement, a high-level model satisfying critical
safety properties could be constrained to be assembled from abstracted compo-
nent models that are known to represent the behavior of implementable devices
including both nominal and out-of-nominal environments of interest. This would
ensure that subsequent refinement can match a physically realizable implemen-
tation while preserving the out-of-nominal requirements. Moreover, the choice
of physical implementation itself could be directly informed by abstractions that
are found in other ways. If CEGAR is applied to a critical safety property and
discovers a suitable abstraction of the nominal model automatically, the system
design could be adjusted to ensure that its out-of-nominal behavior falls within
this abstraction. In the turnstile model, CEGAR might produce the abstrac-
tion L′ = (¬C ∧ L) ∨ X in the course of proving ¬C ∧ L ⇒ L′. More realistic
applications of CEGAR [10] result in other abstractions that may correspond to
out-of-nominal behavior, such as allowing the values of variables to be corrupted

Leveraging Abstraction to Establish Out-of-Nominal Safety Properties 179

as long as certain predicates are not altered. This could define the strength of
error correction needed in an implementation.

4.2 Implementation (Low Level)

We now discuss how the refined logic design for the turnstile (on both the out-
of-nominal and nominal sides) can be related to a notional implementation in
hardware gates. This corresponds to adding another level of detail to the model
that could be reified in raw gates, moving from the second to the third row in
Fig. 3. We could initially interpret the nominal logic L′ = (¬C ∧ L) ∨ (P ∧ ¬L)
directly in terms of AND and OR gates. Then the out-of-nominal logic L′ =
(¬C ∧ L) ∨ X implies that the P ∧ ¬L term can be computed by an unreliable
gate, but the remaining gates must remain reliable even under out-of-nominal
conditions. Often this is achieved using some physically more robust but more
expensive type of gate, and is ineluctably tied to the physical failure mode(s)
that the designer has in mind. To illustrate an alternative technique, we discuss
an intrinsically robust implementation using Boolean networks (BNs) informed
by principles of digital error damping. Such BNs have several advantages:

1. The analysis draws on the rich body of science developed for BNs [9] as
previously applied to discrete system robustness, including digital and bio-
logical applications; error creation, propagation, and extinction in BNs are
well characterized.

2. The statistics of error damping in BNs have been previously evaluated [12]
for a digital half-adder. Because of this, the example implementations used
here are known to be representative of the class of BNs from which they are
chosen.

3. The dynamical systems principles illustrated by BNs are applicable to much
more complex designs than the turnstile example and to broader types of
faults, offering a means of assessment even for systems beyond the reach of
exhaustive formal verification.

We draw on previous work [12] in which example BNs were constructed
to compute a half-adder function and their robustness was analyzed with the
NuSMV [2] model checker. For present purposes, we ignore the “sum” output and
use only the “carry” output, which corresponds directly to an AND operation.
Conventionally, a BN is interpreted as a sequential logic circuit. To implement
combinational logic, we replicate the gates in “tiers”, with each tier providing
its results as input to the next, and with the final output being read at the
end of a specified number of tiers (here, 20). This corresponds to “unrolling”
the conventional BN steps and can analyzed identically using model checkers,
etc. The BNs are used here as a notional means of implementing the turnstile’s
combinational logic in a way that is systematic (rather than idiosyncratic) and
representative of more complex designs.

Two BNs were constructed, differing in the design parameter k, the average
number of inputs per node [12]. In accordance with complex systems analysis [9],

180 J.R. Mayo et al.

Fig. 3. Continuation of Fig. 2 where we add an implementation in gate-level Boolean
networks. It is at this lowest implementation level that the failure mode will evidence
itself and must be anticipated and accounted for in the out-of-nominal design.

the BN with k = 1.5 shows “quiescent” behavior (perturbations are damped)
and the BN with k = 2.5 shows “chaotic” behavior (perturbations are ampli-
fied). Typical real-world digital implementations are found empirically to be
chaotic [13]; such implementations are cheaper to create because they impose
fewer restrictions on programmability. Quiescent implementations that damp
bit-flip errors are more constrained and generally more difficult to create. Our
strategy here is to use the cheaper chaotic implementation for parts of the design
that do not impact the critical safety property, and to use the more expensive
quiescent implementation for parts that need robustness to preserve the critical
safety property.

In using the BNs for the turnstile, we take advantage of the higher-level
abstraction properties already established. Specifically, we implement each of
the two AND operations in L′ = (¬C ∧ L) ∨ (P ∧ ¬L) with a BN. This means
that the two values ¬C and L are wired to the inputs of a BN and the carry
output is used for the result ¬C ∧ L, and similarly for P ∧ ¬L. We assume that
the other operations, such as the NOT initially applied to some inputs and the
OR performed at the end, are fully reliable for this example.

Each of the two AND operations in L′ = (¬C ∧ L) ∨ (P ∧ ¬L) can be
implemented with either of the BNs as far as nominal behavior is concerned. This
is verified by exhaustive testing as well as model checking with NuSMV [12], and
is as expected because the BNs were chosen to compute their function correctly
when operating with their nominal logic. Thus, the abstraction arrow leading
upward from the bottom right of Fig. 3 is valid.

Leveraging Abstraction to Establish Out-of-Nominal Safety Properties 181

For out-of-nominal behavior, as before [12], we consider the possibility of
any single bit flip (incorrect gate output) within some range of tiers in the BN,
again using a nondeterministic formal model of the kind used in other work
on soft errors [14]. We have adapted the NuSMV analysis in this case to check
the correctness of the carry bit specifically. A portion of our NuSMV model
is shown in Fig. 6 in Appendix B. In these BNs, because bit flips occurring at
or shortly before the output stage may not have a chance to self-correct, the
bit flip is restricted to the first nmax tiers, where we consider 1 ≤ nmax ≤ 20.
The NuSMV analysis finds that for no such value of nmax does the chaotic BN
reliably implement the AND operation, while the quiescent BN does so for any
nmax ≤ 15. That is, most of the computations performed by the quiescent BN
can be susceptible to a bit flip, and relatively few of them (the last 5 tiers)
need to be protected. Thus, if we can arrange that the effect of the out-of-
nominal environment is not felt in the last 5 tiers, then the quiescent BN can
be used to implement the “critical” term ¬C ∧ L and correctly refines it on
the out-of-nominal side – the abstraction arrow leading upward from the lower
left in Fig. 3. Meanwhile, either BN (or for that matter, any nominally correct
implementation) can be used for P ∧¬L because the out-of-nominal side imposes
no constraint on this term.

Hence, we have shown that for a suitable out-of-nominal environment, a BN-
based implementation of the turnstile logic with quiescent ¬C ∧L and arbitrary
P ∧ ¬L can complete the bottom row in Fig. 3, conforming to the previous
abstractions on both the out-of-nominal and nominal sides. As mentioned, qui-
escent implementations are harder to design, and so limiting the need for them
(here to one half of the turnstile logic) is useful.

In accordance with the remarks at the end of Sect. 4.1, the relation between
the higher-level models and the BN implementations illustrates the potential for
two-way interaction in the design process. The robustness that is designed-in at
the gate level can be targeted at the goal of making the out-of-nominal behavior
conform to a chosen abstraction; resources need not be spent on correcting errors
that are allowed by the abstraction. Conversely, the availability and efficiency
of robust implementations can motivate the use of particular abstractions in a
formal design methodology.

5 Conclusion

We have presented an approach for modeling out-of-nominal behavior in dig-
ital systems so that critical safety properties can be established, in a way
that leverages existing formal design and verification techniques. Our approach
takes advantage of a key observation: The relation between nominal and out-
of-nominal behavior can be viewed as an instance of the same kind of for-
mal abstraction that is used for other purposes, and so analysis techniques
and specific abstractions can be shared. Nominal and out-of-nominal require-
ments and implementations are connected by an interlocking set of abstraction
relationships.

182 J.R. Mayo et al.

This work can contribute to new digital design and verification techniques
that ensure safety in out-of-nominal environments as an inherent property rather
than addressing it after the fact. This will likely benefit from an iterative design
process in which the nominal and out-of-nominal requirements and implementa-
tions can be adjusted until the network of abstractions is complete and consis-
tent. For a design already created with only nominal analysis, abstractions can
reveal what properties are preserved in what out-of-nominal environments, and
thus may enlarge the usefulness of the design or suggest ways of improving it.

Possible extensions of this work include:

1. Generalizing the dichotomy of nominal and out-of-nominal to a larger fam-
ily of different environments, each of which may have its own set of safety
requirements based on likelihood of occurrence and consequences of failure.

2. Enabling statistical reasoning with probabilistic (rather than merely nonde-
terministic) models of out-of-nominal behavior, probabilistic safety require-
ments, and probabilistic model checkers [5], using suitable notions of
abstraction and refinement.

3. Further integrating robust-design principles from formal methods and com-
plex systems theory to enable out-of-nominal verification with as much con-
fidence as possible for systems beyond the reach of exhaustive analysis.

Acknowledgments. Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration (NNSA) under contract DE-AC04-94AL85000. This work was funded
by NNSA’s Advanced Simulation and Computing (ASC) Program.

A High-Level Model for Turnstile in TLA

As discussed in Sect. 3 and Sect. 4.1, TLA+ is used to specify and verify both
nominal and out-of-nominal models for the turnstile example. The nominal
model is shown in Fig. 4 and the out-of-nominal model in Fig. 5. Both mod-
els have three variables lock , coin, and push, corresponding to the variables
L, C, and P described in Sect. 3. The specifications are given in the idiomatic
TLA+ style: Init constrains the initial conditions, Next describes the “next step”
relation, and Spec expresses the complete temporal logic specification [11].

The relation Next is defined by existential quantification over parameters
c and p, representing new values of coin and push in the relation Step. This
somewhat contorted idiom is used because a step must completely describe the
evolution of each variable. The existential expresses that coin and push may
each evolve nondeterministically at each step.

The property TypeInvariant states that each variable is limited to Boolean
values, while Safety expresses the set of safety properties drawn from S1 through
S4 that apply to each model. In the nominal model, OutOfNominalSpec imports
the out-of-nominal specification for use in proving refinement (see Sect. 4.1). The
type invariant, safety, and refinement properties were checked for correctness
using the TLC model checker.

Leveraging Abstraction to Establish Out-of-Nominal Safety Properties 183

Fig. 4. TLA+ specification for the nominal turnstile.

184 J.R. Mayo et al.

Fig. 5. TLA+ specification for the out-of-nominal turnstile.

B Boolean Network Model for Turnstile in NuSMV

As described in Sect. 4.2, the NuSMV model checker is used to verify the robust-
ness of the tiered combinational logic implementing the safety-critical term
¬C ∧ L, along the lines of previous work [12]. The inputs are taken as node
0 (¬C) and node 1 (L), and the output is taken as node 18. The Boolean net-
work (BN) is checked for conformance to the abstraction in the presence of any
single internal bit flip in one of the first nmax tiers, where nmax ∈ {1, . . . , 20}.
Figure 6 shows an extract from the model in the case where node 2 can be flipped

Leveraging Abstraction to Establish Out-of-Nominal Safety Properties 185

Fig. 6. Extract from a NuSMV model that is programmatically generated so that all
tiers and all nodes can be checked for susceptibility to bit flips. The linear temporal
logic (LTL) property at the end expresses conformance of the out-of-nominal output
to the abstraction ¬C ∧ L.

and nmax = 14. It is found that the quiescent BN is immune to any single bit
flip up to nmax = 15, whereas the chaotic BN can be corrupted by a single bit
flip for any value of nmax.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering, 1st edn.
Cambridge University Press, Cambridge (2010)

2. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002)

3. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50, 752–794 (2003)

4. Fey, G.: Assessing system vulnerability using formal verification techniques. In:
Kotásek, Z., Bouda, J., Černá, I., Sekanina, L., Vojnar, T., Antoš, D. (eds.)
MEMICS 2011. LNCS, vol. 7119, pp. 47–56. Springer, Heidelberg (2012)

5. Güdemann, M., Ortmeier, F.: Probabilistic model-based safety analysis. In: Pro-
ceedings of the 8th Workshop on Quantitative Aspects of Programming Languages,
pp. 114–128, March 2010

186 J.R. Mayo et al.

6. Jackson, M., Zave, P.: Deriving specifications from requirements: an example. In:
Proceedings of the 17th International Conference on Software Engineering, pp.
15–24 (1995)

7. Joshi, A., Heimdahl, M.P.E., Miller, S.P., Whalen, M.W.: Model-based safety
analysis. NASA Contractor Report CR-2006-213953, February 2006

8. Joshi, A., Miller, S.P., Whalen, M., Heimdahl, M.P.: A proposal for model-based
safety analysis. In: Proceedings of the 24th Digital Avionics Systems Conference,
October 2005

9. Kauffman, S.A.: The Origins of Order: Self-Organization and Selection in Evolu-
tion. Oxford University Press, Oxford (1993)

10. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-
order model checking. In: Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 222–233, June 2011

11. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, Boston (2002)

12. Mayo, J.R., Armstrong, R.C., Hulette, G.C.: Digital system robustness via design
constraints: the lesson of formal methods. In: Proceedings of the 9th Annual IEEE
International Systems Conference, pp. 109–114, April 2015

13. Mytkowicz, T., Diwan, A., Bradley, E.: Computer systems are dynamical systems.
Chaos 19, 033124 (2009)

14. Seshia, S.A., Li, W., Mitra, S.: Verification-guided soft error resilience. In: Proceed-
ings of the Conference on Design, Automation and Test in Europe, pp. 1442–1447,
April 2007

15. Vorobeychik, Y., Mayo, J.R., Armstrong, R.C., Ruthruff, J.R.: Noncooperatively
optimized tolerance: decentralized strategic optimization in complex systems. Phys.
Rev. Lett. 107, 108702 (2011)

	Leveraging Abstraction to Establish Out-of-Nominal Safety Properties
	1 Introduction
	2 Modeling Out-of-Nominal Safety Properties
	3 Example Turnstile Model
	4 Design and Out-of-Nominal Verification via Abstraction
	4.1 Refinement (High Level)
	4.2 Implementation (Low Level)

	5 Conclusion
	A High-Level Model for Turnstile in TLA
	B Boolean Network Model for Turnstile in NuSMV
	References

