
Theorem-Proving Analysis of Digital Control
Logic Interacting with Continuous Dynamics

Geoffrey C. Hulette1, Robert C. Armstrong, Jackson R. Mayo,
Joseph R. Ruthruff

Sandia National Laboratories, P.O. Box 969, Livermore, California 94551-0969, USA

Abstract

This work outlines an equation-based formulation of a digital control program and transducer interact-
ing with a continuous physical process, and an approach using the Coq theorem prover for verifying the
performance of the combined hybrid system. Considering thermal dynamics with linear dissipation for sim-
plicity, we focus on a generalizable, physically consistent description of the interaction of the real-valued
temperature and the digital program acting as a thermostat. Of interest in this work is the discovery and
formal proof of bounds on the temperature, the degree of variation, and other performance characteristics.
Our approach explicitly addresses the need to mathematically represent the decision problem inherent in
an analog-to-digital converter, which for rare values can take an arbitrarily long time to produce a digital
answer (the so-called Buridan’s Principle); this constraint ineluctably manifests itself in the verification of
thermostat performance. Furthermore, the temporal causality constraints in the thermal physics must be
made explicit to obtain a consistent model for analysis. We discuss the significance of these findings toward
the verification of digital control for more complex physical variables and fields.

Keywords: formal methods, theorem proving, hybrid systems, cyber-physical systems

1 Introduction

Formal verification of hybrid or cyber-physical systems [2] can be viewed as a broader
extension of numerical software verification – one in which real-valued variables and
functions are modeled not merely for purposes of understanding their representation
in a digital computation, but as actual physical phenomena with which a digital
computation interacts. This viewpoint indicates a need both (1) to extend formal
verification techniques for reasoning about digital computation to include continuous
dynamics, and (2) to ensure the consistency of such hybrid models with physics,
including the physics of digital computation itself. That is, since all extant systems
are believed to be ultimately physically continuous, it is important to understand

1 Email: ghulett@sandia.gov

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 317 (2015) 71–83

1571-0661/© 2015 Sandia Corporation. Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2015.10.008

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:ghulett@sandia.gov
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2015.10.008
http://dx.doi.org/10.1016/j.entcs.2015.10.008
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/

under what circumstances parts of a system can be modeled as digital, and how to
reason formally about the entire system.

Much research and development work has targeted enabling formal verification
of hybrid systems, typically in the form of model checking for so-called hybrid au-
tomata [3,9]. We argue that this existing work is in different ways too broad and
too narrow: Modeling approaches that freely combine discrete and continuous dy-
namics can readily introduce ill-posed and unphysical behavior due to the delicate
interaction between the two types of dynamics [7]. And reasoning about hybrid
systems via model checking is limited to properties that can be verified conserva-
tively by enumeration of discrete regions within the continuous state space; even
approaches using theorem proving have implemented model-checking strategies [14]
or have relied on restrictive logics to formally model hybrid systems [12]. Work ex-
ists on formally analyzing continuous differential equations via theorem proving, but
without modeling a coupling to digital logic [13]. We propose an approach that can
leverage the full power of higher-order logic in the Coq theorem prover [5] to reason
about physically consistent hybrid digital-physical models. Unlike model-checking
approaches, our goal is not to completely automate the verification, but rather to
provide maximum power and scalability for reasoning rigorously about properties of
interest, leveraging understanding of system design for both the digital and physical
elements.

In the remainder of this paper we present the physical modeling considerations
that motivate this work (Sec. 2); a simple hybrid thermostat model used to illustrate
our approach (Sec. 3); an analysis of that model using informal mathematics to
convey the key ideas (Sec. 4); a corresponding formal analysis in the Coq theorem
prover (Sec. 5); and a conclusion (Sec. 6).

Excerpts of the formal analysis are shown in this paper, and the full Coq imple-
mentation is available online [1].

2 Physics of Hybrid Modeling

The novelty of this work lies in a formal proof for an almost trivial cyber-physical
system but with faithful modeling of continuous physical variables as real numbers
coupled consistently to the digital control program. A noted limitation [13] of typical
approaches to cyber-physical problems is that continuous physics is first “digitized”
and the resulting, completely digital model is then analyzed [3]. We observe that this
common strategy can obscure important physical constraints. One such constraint
is causality, the requirement that a physical effect cannot precede its cause in time.
Another is the Arbiter’s Problem [4], also known as Buridan’s Principle [10], a fun-
damental property of physics stating that a discrete decision based on a continuous
variable (i.e., an analog-to-digital conversion) cannot be guaranteed to complete in
bounded time; this property must be accounted for in any analysis seeking formal
guarantees about discrete decisions on real numbers. Interestingly, both of these
physical constraints are also closely related to considerations of computability, as is
natural if the viewpoint is taken that the physical universe itself may arise from an

G.C. Hulette et al. / Electronic Notes in Theoretical Computer Science 317 (2015) 71–8372

underlying computational process [15].

2.1 Causality

Causality means that the value of a physical variable depends only on its beginning
state and what happens to it subsequently, i.e., an event in the future cannot affect
any variable in the present or past, and any system failing to satisfy this constraint
is considered unphysical. Computationally, causality manifests as a requirement
that for recursively defined programs describing causal systems, the recursion must
always be well-founded, i.e., must eventually terminate for any input.

For our application (described in detail in Sec. 3), we wish to evaluate a real-
valued physical variable T at discrete time instants that form a potentially un-
bounded, ordered set {. . . , tn, tn−1, . . . , t0} (listed from future to past). We will rely
on the physics concept of a “propagator” that directly composes the solution, rather
than the usual differential-equation representation of the continuous physics. Of the
several kinds of propagator that can apply to such physics, we start with the “macro”
propagator, the time evolution operator U:

Ti ≡ T (ti) = U(ti, tj , Tj ,F) with ti > tj (1)
= U(ti, tm,U(tm, tj , Tj ,F),F) with ti > tm > tj , (2)

where U advances to a final time from an initial time for an initial value of T , under
the influence of a corresponding temporal sequence of events (external forcings)
F = {. . . , fn, fn−1, . . . , f0}. The equivalence of the time evolution done all at once
in Eq. (1) or in stages in Eq. (2) is a necessary consistency property that holds for
allowed physical dynamics. F is chosen as a discrete set but could easily be extended
to continuous time. Given that the transducer we will consider interacts with T only
at discrete times (Sec. 3), discrete events are most relevant to this work.

In a formal analysis of Eq. (2), it is in effect necessary to show that the time
evolution computation terminates or has a solution. This is physically ensured by
the causality property:

U(ti, tj , Tj ,F) = U(ti, tj , Tj ,Fij), (3)

where Fij is the subset {fi−1, . . . , fj+1, fj} in Eq. (1). That is, the time evolution
operator actually depends only on events that occur between the initial time and
the final time. (As will be made clear subsequently, our convention is that Ti is the
state existing just before the event fi.) In Sec. 5, we will show how this is reflected
in a proof of termination within the Coq theorem prover – as opposed to the self-
referential inconsistency of a non-causal time evolution operator that depends on
events occurring in the future.

The specific form of causality invoked here is based on the Markov property of
physical dynamics, which asserts that for a suitable variable such as T (satisfying a
well-posed differential equation), the evolution also does not depend on events prior
to fj once Tj is given. That is, the effects of prior events are captured in the initial

G.C. Hulette et al. / Electronic Notes in Theoretical Computer Science 317 (2015) 71–83 73

condition Tj and can subsequently be “forgotten”. This property helpfully bounds
the information needed to causally propagate the physical state.

2.2 Buridan’s Principle

Formal verification is often undertaken in order to identify rare but potentially catas-
trophic corner-case behaviors. Buridan’s Principle describes an often-overlooked is-
sue in cyber-physical modeling, where discrete decisions about continuous variables
are often required, in spite of the fact that such decisions cannot be guaranteed
to complete in bounded time. Buridan’s Principle manifests in the system as the
decision potentially taking an arbitrarily long time to complete, or equivalently, re-
maining incomplete (with an intermediate, non-digital result) if it is examined after
a fixed time. Many cyber-physical analyses digitize the physics prior to analysis, an
approach that is convenient but fails to preserve the fundamental continuity prop-
erties that can lead to unexpected indecision in the real system – exactly the sort
of corner-case behavior that formal verification seeks to uncover.

In our approach, we account for Buridan’s Principle by representing a decision
on a continuous variable (temperature) with a continuous function that returns a
0 or 1 decision outside of an arbitrarily small interval but a value between 0 and
1 inside of it. As with causality, we also observe a close connection of Buridan’s
Principle to terminating computations or decidability. When continuous real values
are represented computationally (e.g., using arbitrary-precision arithmetic), Boolean
comparison of a real value to a threshold (or more generally, evaluation of any
discontinuous function) is a computationally undecidable problem. This problem is
often referred to as the Table Maker’s Dilemma [8].

It is important to note that Buridan’s Principle does not conflict with the physical
propagation of discrete states by actual computers. Given a discontinuous set of
initial states (e.g., voltages representing 0 or 1), an appropriate continuous nonlinear
electrical circuit can implement logic perfectly by computing resulting discrete states
at subsequent clock cycles [10]. Thus purely digital models, and traditional formal
analyses thereof, are valid and valuable for a computational component that is set up
in this way, but are not sufficient for understanding cyber-physical system behavior
comprehensively including continuous inputs and outputs. The latter consideration
calls for understanding, e.g., potential non-digital behaviors from indecision in a
nominally digital device – either pragmatically bounding them in probability or,
as in this paper, incorporating them as far as possible in a consistent model for
exhaustive formal analysis.

3 Definition of the Thermostat Model

In physical terms, this model describes an idealized, thermally homogeneous object
that gains heat from time to time via a rapid heat pulse (idealized as instanta-
neous) from a transducer, and loses heat to the environment via a linear cooling
law. The transducer is designed to maintain the object’s temperature T in a desired
range above the ambient temperature by, at uniform time intervals, measuring T

G.C. Hulette et al. / Electronic Notes in Theoretical Computer Science 317 (2015) 71–8374

and applying a heat pulse if T is below a threshold. While this is a relatively sim-
ple thermostat behavior, we view it as an instance of digital control logic coupled
to physical dynamics, which could be generalized to more complex scenarios. In
particular, even this simple thermostat embodies the challenges noted previously:
modeling the cyber-physical system in a well-posed causal form, and accounting for
indecision in analog-to-digital conversion.

For convenience, we take the unit of time to be the interval between sensor
measurements, and take the zero point of the temperature scale to be the ambient
temperature. Our model has four positive real parameters: the cooling coefficient
α, the temperature rise H due to a heat pulse, the nominal threshold temperature
T∗, and the temperature margin ε for indecision. The constraint T∗ > ε is imposed
(see below). An additional parameter is an “arbiter” function θ̃ : R → R that ap-
proximates the unit step function but allows for indecision rather than requiring an
unrealistic discontinuity. For all Δ ∈ R, the arbiter must satisfy

θ̃(Δ) ∈ [0, 1], (4)

Δ > ε =⇒ θ̃(Δ) = 1, (5)

Δ < −ε =⇒ θ̃(Δ) = 0. (6)

The behavior of the physical system is described by the temperature as a func-
tion of time, T : R≥0 → R, assuming that the system starts running at time t = 0.
Instead of the traditional differential-equation formulation, we use an integral equa-
tion that corresponds to the time evolution operator U discussed in Sec. 2. Moreover,
following standard techniques in physics, we exploit the linearity of the thermal dy-
namics to express U via superposition in terms of “micro” propagators. The latter
propagators represent individual, linearly combining contributions to the solution,
and in general include a kernel that propagates initial or boundary conditions and
a Green’s function that propagates external forcing events.

In our thermal case, the kernel and the Green’s function reduce to the same
propagator

G(t, t′) = e−α(t−t
′) θ(t− t′). (7)

The (exact) unit step function θ here is not an arbiter but a means for continuous-
time dynamics to enforce causality – that an effect at time t cannot precede its
cause at time t′. We take θ(0) = 0, which amounts to the convention that T (t′)
itself is not affected by a possible discrete event occurring at time t′; this permits us
to more conveniently model “instantaneous” interaction with a transducer, because
then defining a discrete event at time t′ as a control response in terms of T (t′) does
not lead to causality-violating circular dependence.

The time evolution operator (1) for our thermal system, then, advances the state
from tj to ti by linearly superposing the effects of the initial condition T (tj) and the

G.C. Hulette et al. / Electronic Notes in Theoretical Computer Science 317 (2015) 71–83 75

subsequent heating events:

T (ti) = U(ti, tj , T (tj),F)

= T (tj)G(ti, tj) +

∫ ∞

tj

dt′ q(t′)G(ti, t
′)

= T (tj) e
−α(ti−tj) +

∫ ti

tj

dt′ q(t′) e−α(ti−t
′) for ti > tj ≥ 0.

(8)

Here, the part of the integral for t′ > ti vanishes due to the causality-enforcing step
function in G; and the function q is the thermal forcing term, which in our case
is a sum over heat pulses. In accordance with our convention, any discrete forcing
event at exactly time tj is to be included in the integral because it is not already
reflected in T (tj). Thus far we have exploited the linearity of the thermal dynamics
with respect to q considered as an external forcing.

We now introduce the feedback from the transducer, which makes the fully cou-
pled cyber-physical system nonlinear. Namely,

q(t) =
∞∑
l=0

H θ̃
(
T∗ − T (l)

)
δ(t− l). (9)

The discrete sum over l reflects the fact that the digital control logic only interacts
with the physics periodically at integral times. The control logic design seeks to
provide a heat pulse of magnitude H if and only if the current temperature is below
T∗. The constraint T∗ > ε is imposed to ensure that θ̃(T∗−0) = 1, i.e., the transducer
operates non-trivially and does not allow the object to simply remain at the (zero)
ambient temperature. Buridan’s Principle requires the use here of a continuous
arbiter function θ̃ rather than the exact step function θ, since the transducer cannot
be guaranteed to provide a discrete response in bounded time. The fact that θ̃ is
a nonlinear function makes the time evolution operator (8) likewise nonlinear in T

once the dependence of the forcing on T is included.

4 Informal Analysis of the Thermostat Model

A key characterization of the performance of this cyber-physical system is its ability
to maintain the temperature in a desired range above the (zero) ambient tempera-
ture. Thus, we wish to prove the following as a theorem for some particular bounds
0 < A < B < ∞:

If T (0) ∈ [A,B], then T (t) ∈ [A,B] for all t ∈ R≥0. (10)

The utility of a specific thermostat would be judged by whether this result holds for
values of A and B that reflect the system requirements.

The theorem (10) can be derived straightforwardly from the following lemma:

For all n ∈ N, if T (n) ∈ [A,B], then T (t) ∈ [A,B] for all t ∈ (n, n+ 1]. (11)

G.C. Hulette et al. / Electronic Notes in Theoretical Computer Science 317 (2015) 71–8376

The derivation is as follows: By first specializing t = n+1 in the lemma, and recalling
the hypothesis that T (0) ∈ [A,B], we obtain by induction that T (n) ∈ [A,B] for
all n ∈ N. Now, whereas for t = 0 the theorem (10) is trivially valid, for t > 0 we
specialize n = �t	 − 1 in the lemma and obtain the required result. This establishes
the temperature bounds for all t ∈ R≥0.

We now argue that the lemma (11) holds for any A and B that satisfy

0 < A ≤ min

(
H

eα − 1
, (T∗ − ε)e−α

)
and B ≥ T∗ + ε+H. (12)

Under the constraints of our model, this means that suitable bounds can be found
with 0 < A < B < ∞.

As a starting point, from the governing equations (8) and (9), if we assume
t ∈ (n, n+ 1] and substitute {ti, tj} = {t, n}, we compute

T (t) =
(
T (n) +H θ̃

(
T∗ − T (n)

))
e−α(t−n). (13)

We are given that T (n) ∈ [A,B]. We note that t− n ≤ 1 and thus e−α(t−n) ≥ e−α.
The proof of the lemma (11) is now by case analysis.

4.1 Proof of T (t) ≥ A

4.1.1 Low T (n) Range
If T (n) ∈ [A, T∗ − ε), then T∗ − T (n) > ε and so θ̃

(
T∗ − T (n)

)
= 1. Thus,

T (t) =
(
T (n) +H

)
e−α(t−n) ≥ (A+H)e−α. (14)

The imposed condition (12),

A ≤ H

eα − 1
, (15)

upon multiplying both sides by 1− e−α and then adding Ae−α, gives

A ≤ (A+H)e−α. (16)

Accordingly, T (t) ≥ A. Interpretation: If the temperature T (n) is low enough, then
a heat pulse occurs at time n and is sufficient, even with subsequent cooling, to keep
the temperature at or above A.

4.1.2 High T (n) Range
If T (n) ∈ [T∗ − ε, B], then because θ̃ is non-negative throughout its domain,

T (t) ≥ T (n) e−α(t−n) ≥ (T∗ − ε)e−α ≥ A, (17)

where the final inequality is from the condition (12) on A. Interpretation: If the
temperature T (n) is high enough, then even without a heat pulse, subsequent cooling
does not take the temperature below A.

G.C. Hulette et al. / Electronic Notes in Theoretical Computer Science 317 (2015) 71–83 77

4.2 Proof of T (t) ≤ B

4.2.1 Low T (n) Range
If T (n) ∈ [A, T∗ + ε], then because θ̃ always returns a value ≤ 1, we have

T (t) ≤ (
T (n) +H

)
e−α(t−n) ≤ T∗ + ε+H ≤ B, (18)

where the final inequality is the condition (12) imposed on B. Interpretation: If
the temperature T (n) is low enough, then even with a heat pulse, the temperature
remains ≤ B.

4.2.2 High T (n) Range
If T (n) ∈ (T∗ + ε, B], then T∗ − T (n) < −ε and so θ̃

(
T∗ − T (n)

)
= 0. Thus,

T (t) = T (n) e−α(t−n) ≤ T (n) ≤ B. (19)

Interpretation: If the temperature T (n) is high enough, then no heat pulse occurs
at time n and subsequently the temperature merely cools further below B.

Having covered all cases, we conclude that T (t) ∈ [A,B], Q.E.D.

5 Formal Implementation

We have formalized our analysis within the Coq interactive theorem prover [5],
which allows us to precisely define the various terms of our model and then state
and prove theorems about those terms. To model continuous variables, we use the
Reals module provided as part of Coq’s standard library [11].

5.1 Accounting for Buridan’s Principle

For our analysis, the arbiter function θ̃, as discussed in Sec. 2, need not be defined
explicitly but must have essential properties asserted corresponding to Eqs. (4)–(6):

Parameter eps : R.
Hypothesis eps pos : 0 < eps.

Parameter theta tilde : R → R.
Hypothesis theta tilde bound : ∀ d, 0 ≤ theta tilde d ≤ 1.
Hypothesis theta tilde 1 : ∀ d, d > eps → theta tilde d = 1.
Hypothesis theta tilde 0 : ∀ d, d < -eps → theta tilde d = 0.

In accordance with Buridan’s Principle, this formulation avoids the need to com-
pare exact real numbers, side-stepping the associated undecidability problem while
retaining enough structure to support our analysis. Verification of a discrete im-
plementation (e.g., using floating-point comparison) would require proof that the
implementation approximates the abstract definition.

G.C. Hulette et al. / Electronic Notes in Theoretical Computer Science 317 (2015) 71–8378

5.2 Causal Definition of Temperature

To express the temperature as a computation (i.e., a simulation of the cyber-physical
system), it is most natural to define the temperature function recursively. As per
Sec. 2, a principle of causality must be available to the theorem prover to demon-
strate that the function terminates; otherwise it is both unphysical and unsound in
Coq’s logic.

First, we provide a function G (essentially the propagator introduced in Sec. 4,
with some multipliers included) to factor out the non-recursive part of the calcula-
tion:

Definition G (t n : nat) (Tn : R) : R :=
H × theta tilde (Tstar - Tn) × exp (-a × INR (t - n)).

We then define a function sum 0 to taking two arguments: m, the upper bound
of summation, and f , the function to be summed over. The lower bound of summa-
tion is implicitly zero. The definition is as follows:

Definition sum 0 to (m : nat) (f : ∀ x, x ≤ m → R) : R :=
sum inner m f m (le n m).

This definition relies on a “helper” function, called sum inner, which is defined as:

Fixpoint sum inner (m : nat) (f : ∀ x, x ≤ m → R) (n : nat) : n ≤ m → R :=
match n with
| O ⇒ fun (pf : O ≤ m) ⇒ f O pf
| S n’ ⇒ fun (pf : S n’ ≤ m) ⇒

((f (S n’) pf) + sum inner m f n’ (le Sn le n’ m pf))%R
end.

The implementation of sum 0 to is unremarkable except in one respect: The func-
tion parameter f requires, in addition to the usual value parameter x, an extra
parameter giving evidence (i.e., a proof) that x is less than or equal to the upper
summation bound m. The sum inner helper function can always construct this
evidence (for any value of m), because it only invokes f with values ranging from 0
to m.

Now we define the temperature function, temp f. This function computes the
propagation of earlier events to the present through the function G defined previ-
ously:

Definition temp f (t : nat) : R :=
temp f inner t t (le n t).

Once again, the hard work of temp f is performed mostly within a helper function:

Definition temp f inner : ∀ (m t : nat), (t ≤ m) → R.
refine (fix temp f inner m t :=
match m,t with
| ,O ⇒ fun ⇒ T0
| O,S t’ ⇒ fun (pf : S t’ ≤ O) ⇒ except

G.C. Hulette et al. / Electronic Notes in Theoretical Computer Science 317 (2015) 71–83 79

| S m’,S t’ ⇒ fun (pf : S t’ ≤ S m’) ⇒
let f := fun n pf’ ⇒ G (INR t) n (temp f inner m’ n) in
sum 0 to t’ f

end).
try (match goal with H : S ≤ O � ⇒ inversion H end).
apply le trans with t’ ; auto using le S n.

Defined.

As part of the construction, an assertion that an event at a future time cannot
contribute to the computation of the temperature at the current time must be made.
To the theorem prover this requirement manifests itself as a termination condition
for temp f inner and reflects the fact that a non-causal function that depends on
both the future and the past is self-referential and inconsistent in the general case.
Computationally, this is understood as an obligation to demonstrate that the recur-
sively defined function is well-founded. Here, temp f inner and subsidiary functions
are constructed such that they expect a parameter establishing proof that only times
less than the current time will be evaluated and contribute to the result of the com-
putation.

Coq is able to realize that temp f inner terminates (and equivalently, is causal)
because:

(i) At t = 0, the result is a constant;

(ii) We explicitly prove that invoking the function with a time (parameter t) greater
than the “present” (parameter m) is impossible – the proof parameter (t ≤ m)

provides the evidence we need to rule this case out;

(iii) The recursive call to temp f inner is parametrized by m′, which is smaller than
m; thus the function is strictly decreasing in its parameter m;

(iv) sum 0 to only invokes temp f inner for times up to t′, which is proven by
transitivity to be less than or equal to m′, and thus fulfills requirement (ii) that
(t ≤ m) in the recursive call.

Implementing temp f inner, with its relatively complicated propagation of proof
terms through recursive calls, was greatly eased by our use of the refine tactic,
which allows “proof holes” in definitions. The holes then appear as obligations to be
proven after the definition is complete. Crucially, the proofs can be discharged in
Coq’s interactive proof mode using tactics, which is much easier than providing the
proof terms directly in the definition. This facility allowed us to combine program-
ming and proving in a way that otherwise would have been quite challenging.

We have not yet completed the proof that this computational definition corre-
sponds to the original integrated temperature equation (8). The proof is straight-
forward in principle but depends upon an extension to Coq’s Reals standard library
of theorems, which is the subject of ongoing work [6].

G.C. Hulette et al. / Electronic Notes in Theoretical Computer Science 317 (2015) 71–8380

5.3 Proof of Temperature Bounds

Formalizing the proof of lemma (11) in Sec. 4 is straightforward. Here we present
the interesting parts of the development, eliding the more tedious details. First, we
define Eq. (13) as T, using theta tilde from above, along with the other relevant
parameters:

Definition T Tn tau (tau bnd : 0 < tau ≤ 1) :=
(Tn + H × theta tilde (Tstar - Tn)) × exp (-a×tau).

The definition takes three parameters. The first, Tn, is the temperature at time
n where n ∈ N. The parameter tau represents the time increment relative to n

at which we want to evaluate the temperature. The final parameter, tau bnd, is a
proof that tau lies in the interval (0, 1]. The definition above corresponds to Eq. (13),
with t = n+ tau. Using this definition, the statement and proof of lemma (11) are
expressed as follows:

Theorem T in interval (Tn tau : R) (tau bnd : 0 < tau ≤ 1) :
A ≤ Tn ≤ B → A ≤ T Tn tau tau bnd ≤ B.

Proof.
intros HAB. decompose record HAB. split.

destruct (Rlt le dec Tn (Tstar - eps)).
apply Tn heat keeps above; auto.
apply Tn no heat keeps above; auto.

destruct (Rle lt dec Tn (Tstar + eps)).
apply Tn heat keeps below ; auto.
apply Tn no heat keeps below ; auto.

Qed.

The proof is structured as a four-way case analysis as described in Sec. 4, with each
case discharged by applying a subsidiary lemma (e.g., Tn heat keeps above). The
statements of the four lemmas (shown below, with proof bodies elided) match the
conditions described in the informal proof.

Lemma Tn heat keeps above (Tn tau : R) (tau bnd : 0 < tau ≤ 1) :
A ≤ Tn < Tstar - eps → A ≤ T Tn tau tau bnd.

Proof. . . . Qed.

Lemma Tn no heat keeps above (Tn tau : R) (tau bnd : 0 < tau ≤ 1) :
Tstar - eps ≤ Tn ≤ B → A ≤ T Tn tau tau bnd.

Proof. . . . Qed.

Lemma Tn heat keeps below (Tn tau : R) (tau bnd : 0 < tau ≤ 1) :
A ≤ Tn ≤ Tstar + eps → T Tn tau tau bnd ≤ B.

Proof. . . . Qed.

Lemma Tn no heat keeps below (Tn tau : R) (tau bnd : 0 < tau ≤ 1) :
Tstar + eps < Tn ≤ B → T Tn tau tau bnd ≤ B.

Proof. . . . Qed.

G.C. Hulette et al. / Electronic Notes in Theoretical Computer Science 317 (2015) 71–83 81

The rather lengthy proofs for these lemmas, along with the detailed analysis of the
entire thermostat system, are provided online [1].

6 Conclusion

We have presented an analysis for a simple but representative cyber-physical system,
formalized within the Coq interactive theorem prover. Our method mixes discrete
and continuous logic and shows how their interaction requires accounting for causal-
ity and Buridan’s Principle. We make a case that these two constraints are universal
to all cyber-physical systems combining discrete and continuous elements and that
both constraints are essential to establishing confidence in the formal analysis.

It is likely that any analysis that involves discrete decisions on continuous vari-
ables, endemic to cyber-physical systems, needs to consider Buridan’s Principle.
Real-world digital systems are constructed from continuous physical processes, but
exploit those processes’ intrinsic timescales to synchronize periodically with a clock,
making their purely digital function immune from this concern: for example a Bab-
bage engine or a solid-state electronic processor [10]. However, external physical
processes sampled by a digital system will lack this synchronization and thus a deci-
sion problem subject to Buridan’s Principle will be necessary: no matter how much
digital processing is performed, the possibility of indecision will remain. The simple
example given here shows how the principle arises in a formal proof of thermostat
performance (see Sec. 5.1).

Although Buridan’s Principle is rather subtle and may be a hazard for cyber-
physical models where the representation of physics is pre-digitized [13], the causal
property of physical systems is less subtle, arising mostly as a consistency condition
in the formal analysis. Human analysts generally are aware that future events cannot
affect the past. Theorem provers do not have this knowledge built-in and need this
constraint manifested concretely to complete the analysis (see Sec. 5.2).

Future work will focus on more complex and realistic digital control logic and
multi-dimensional physical systems that have many transducers interacting through
space and time. Interactions between transducers may be mediated by digital com-
munication only or physical processes only, or a combination of both. Besides being
more realistic, multiple interacting transducers will introduce richer manifestations
of the causality and Buridan’s Principle constraints discussed here.

Acknowledgement

Sandia National Laboratories is a multi-program laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corpora-
tion, for the U.S. Department of Energy’s National Nuclear Security Administration
(NNSA) under contract DE-AC04-94AL85000. This document is SAND2014-2587C.

G.C. Hulette et al. / Electronic Notes in Theoretical Computer Science 317 (2015) 71–8382

References

[1] http://dancer.ca.sandia.gov/NSV/.

[2] Alur, R., Formal verification of hybrid systems, in: Proceedings of the Ninth ACM International
Conference on Embedded Software, EMSOFT ’11 (2011), pp. 273–278.

[3] Alur, R., C. Courcoubetis, T. A. Henzinger and P.-H. Ho, Hybrid automata: An algorithmic approach
to the specification and verification of hybrid systems, in: Hybrid Systems (1993), pp. 209–229.

[4] Barros, J. C. and B. W. Johnson, Equivalence of the arbiter, the synchronizer, the latch, and the
inertial delay, IEEE Trans. Comput. 32 (1983), pp. 603–614.

[5] Bertot, Y. and P. Castéran, “Interactive Theorem Proving and Program Development,” Springer, 2004.

[6] Boldo, S., C. Lelay and G. Melquiond, Improving Real Analysis in Coq: a User-Friendly Approach to
Integrals and Derivatives, in: CPP’12, Lecture Notes in Computer Science 7679 (2012), pp. 289–304.

[7] Derler, P., E. A. Lee and A. Sangiovanni-Vincentelli, Modeling cyber-physical systems, Proceedings of
the IEEE (special issue on CPS) 100 (2012), pp. 13–28.

[8] Érik Martin-Dorel, “Contributions to the Formal Verification of Arithmetic Algorithms,” Ph.D. thesis,
École Normale Normale Supérieure de Lyon (2012).

[9] Henzinger, T. A., The theory of hybrid automata, in: Proceedings of the 11th Annual IEEE Symposium
on Logic in Computer Science, LICS ’96 (1996), pp. 278–292.

[10] Lamport, L., Buridan’s Principle, Found. Phys. 42 (2012), pp. 1056–1066.

[11] The Coq development team, “The Coq proof assistant reference manual,” (2004).
URL http://coq.inria.fr

[12] Platzer, A. and J.-D. Quesel, KeYmaera: A hybrid theorem prover for hybrid systems, in: Automated
Reasoning, Lecture Notes in Computer Science 5195, Springer, 2008 pp. 171–178.

[13] Sanwal, M. U. and O. Hasan, Formal verification of cyber-physical systems: Coping with continuous
elements, ICCSA’13 (2013), pp. 358–371.

[14] Tveretina, O., Towards the safety verification of real-time systems with the Coq proof assistant, CSIT
’07 2, Wisla, Poland, 2007.

[15] Zenil, H., editor, “A Computable Universe: Understanding and Exploring Nature as Computation,”
World Scientific Publishing Company, 2012.

G.C. Hulette et al. / Electronic Notes in Theoretical Computer Science 317 (2015) 71–83 83

http://dancer.ca.sandia.gov/NSV/
http://coq.inria.fr

	Introduction
	Physics of Hybrid Modeling
	Causality
	Buridan's Principle

	Definition of the Thermostat Model
	Informal Analysis of the Thermostat Model
	Proof of T(t) A
	Proof of T(t) B

	Formal Implementation
	Accounting for Buridan's Principle
	Causal Definition of Temperature
	Proof of Temperature Bounds

	Conclusion
	Acknowledgement
	References

