
Inferring Environment Assumptions in Model
Refinement

Srinivas Nedunuri

Sandia National Laboratories

Livermore, CA, USA

Douglas R. Smith

Kestrel Institute

Palo Alto, CA, USA

Abstract
Model Refinement is a novel approach to reactive program

synthesis that iteratively refines an over-approximatingmodel

of a desired system behavior by eliminating undesired behav-

iors. In contrast to many current automata based approaches

to reactive synthesis, it does not require a finite state space

or user supplied templates. Instead it symbolically computes

the required invariant by solving a system of definite con-

straints.. The original work on model refinement, however,

assumed that both the assumptions on the environment (in

an Assume-Guarantee setting) and the constraints on the

system variables necessary to guarantee the required behav-

ior were fixed and known. Sometimes, though, the designer

of a system has some intended behavior and wishes to know

what the minimal assumptions are on the environment un-

der which the system can guarantee the required behavior;

or to know what the constraints are on the system variables

under known environment assumptions. In other words, we

wish to solve a parametric model refinement problem. Our

contribution in this paper is to show how such a problem

can be solved when the constraints are assumed to be an

interval of the form𝑚 . . . 𝑛.

ACM Reference Format:
Srinivas Nedunuri and Douglas R. Smith. 2022. Inferring Environ-

ment Assumptions in Model Refinement. In Proceedings of ACM
Conference (Conference’17). ACM, New York, NY, USA, 7 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Model Refinement [12] is a novel approach to reactive pro-

gram synthesis that iteratively refines an over-approximating

model of a desired system behavior by eliminating undesired

behaviors, as defined by some safety requirement. In con-

trast to many current automata based approaches to reactive

synthesis [1, 3, 9], it does not require a finite state space or

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

user supplied templates. Instead it symbolically computes

the required invariant by solving a system of definite con-

straints. The original work on model refinement, however,

assumed that both the assumptions on the environment (in

an Assume-Guarantee setting [8]) and the constraints on

the system variables necessary to guarantee the required

behavior were fixed and fully defined. Sometimes, though,

the designer of a system has some intended system behavior

in mind and wishes to know what the minimal assumptions

are on the environment under which the system can guar-

antee the required behavior; or to know what the necessary

constraints on the system variables are under known en-

vironment assumptions. In other words, we wish to solve

a parametric model refinement problem. Our contribution

in this paper is to show how such a problem can be solved

when the constraints are assumed to be an interval of the

form𝑚 . . . 𝑛.

After covering the preliminaries, Section 3 briefly reviews

the theory and background for model refinement. Our work

starts in Section 4.

2 Preliminaries
2.1 Required Properties
We focus on safety properties formulated in a simple linear

temporal logic of actions, similar to Lamport’s TLA [7]. A

state is a map from variables to (type-consistent) values. State
formulas are boolean-valued expressions formed over the

variables of a state and the constants (including functions)

relevant to an application domain. A state formula 𝑝 denotes

a predicate ⟦𝑝⟧ over states, so 𝑝 (𝑠) denotes the truth value

⟦𝑝⟧(𝑠) for state 𝑠 . Actions are boolean-valued expressions

formed over variables, primed variables, and the constants

(including functions) relevant to an application domain. An

action 𝑎 specifies a state transition and it denotes a predicate

⟦𝑎⟧ over a pair of states, and 𝑎(𝑠, 𝑡) denotes the truth value

⟦𝑎⟧(𝑠, 𝑡) for states 𝑠 and 𝑡 . The expression 𝑥 = 𝑥 ′ + 1 + 𝑦 is

a typical action where the unprimed variables refer to the

first state and primed variables refer to the second state.

A basic safety property (or simply a safety property) has

the form 𝜑 where 𝜑 is a state formula or an action. The

truth of a safety formula 𝜑 at position 𝑛 of a trace 𝜎 (an

infinite sequence of states) is denoted 𝜎, 𝑛 ⊨ 𝜑 and defined,

by induction on the structure of 𝜑 , as follows:

• 𝜎, 𝑛 ⊨ 𝑝 , for 𝑝 a state formula, if 𝑝 holds at state 𝜎 [𝑛],
i.e. ⟦𝑝⟧(𝜎 [𝑛]);

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA S. Nedunuri and D.R. Smith

• 𝜎, 𝑛 ⊨ 𝑎, for 𝑎 an action, if 𝑎 holds over the states

𝜎 [𝑛], 𝜎 [𝑛 + 1], i.e. ⟦𝑎⟧(𝜎 [𝑛], 𝜎 [𝑛 + 1]);
• 𝜎, 𝑛 ⊨ ¬𝜑 if 𝜎, 𝑛 ⊭ 𝜑 ;
• 𝜎, 𝑛 ⊨ 𝜑 ∧𝜓 if both 𝜎, 𝑛 ⊨ 𝜑 and 𝜎, 𝑛 ⊨ 𝜓 ;
• 𝜎, 𝑛 ⊨ 𝜑 ⇒ 𝜓 if either 𝜎, 𝑛 ⊨ ¬𝜑 or 𝜎, 𝑛 ⊨ 𝜓 , or both;
• 𝜎, 𝑛 ⊨ 𝜑 if 𝜎, 𝑖 ⊨ 𝜑 for all 𝑖 ≥ 𝑛.

𝑠𝑡𝑎𝑡𝑒𝑃 (𝜑) holds if 𝜑 is a state formula. 𝑎𝑐𝑡𝑖𝑜𝑛𝑃 (𝜑) holds if
𝜑 is an action.

2.2 Behavioral Models
Formally, a model is a labeled control flow graph1 (LCFG)
M = ⟨V, 𝑁 ,𝐴,L⟩ where
• V: a countable set of variables; implicitly each variable

has a type with a finite (typically first-order) specifi-

cation of the predicates and functions that provides

vocabulary for expressions and constrains their mean-

ing via axioms. The aggregation of these variable spec-

ifications is called the application domain theory (or

simply domain theory) of the problem at hand.

• 𝑁 : is a finite set of nodes. Associated with each node

𝑚 ∈ 𝑁 , we have a finite subset of observable/local

variables 𝑉 (𝑚) ⊆ V . 𝑁 has a distinguished node𝑚0

that is the initial node. An LCFG is arc-like if it also
has a designated final node 𝑚𝑓 . Multi-node LCFGs

are useful for modeling the behavior of multi-player

games with differing invariants for the players.

• 𝐴: a finite set of directed arcs, 𝐴 ⊆ 𝑁 × 𝑁 . Each node

𝑚 may have an identity self-transition 𝑖𝑑𝑚 = ⟨𝑚,𝑚⟩,
called stutter that changes the values of no observable

variables.

• L: a set of labels. For each node𝑚 ∈ 𝑁 , we have a label

𝐿𝑚 ∈ L that is a state formula over𝑉 (𝑚) representing
a node invariant.When there is only one node, we drop

the subscript. For each arc 𝑎 = ⟨𝑚,𝑛⟩, label 𝐿𝑎 ∈ L is

an action over 𝑉 (𝑚) ×𝑉 (𝑛).
In reactive system design, it is commonly the case that

the variables at all nodes are the same, so 𝑉 (𝑚) = 𝑉 (𝑛) for
all nodes𝑚,𝑛 ∈ 𝑁 and all variables are global. In functional

algorithm design it is typical that the variables at each node

are disjoint, effectively treating all variables as local to a

unique node. Most programming languages support models

that have both global and local variables. Here we consider

only single node systems, but our work generalizes to the

multi-node case [12].

Generally, a state 𝑠𝑡𝑚 is a type-consistent map of values to

the observable variables of node𝑚 ∈ 𝑁 . A node𝑚 denotes

the set of states ⟦𝑚⟧ = {𝑠𝑡 | ⟦𝐿𝑚⟧(𝑠𝑡)}. The label 𝐿𝑚0
is the

initial condition of the model and denotes the set of initial

states.

Arc label 𝐿𝑎 generally specifies a non-deterministic action,

whose non-determinism may be reduced under refinement.

1
An LCFG differs from a Labeled Transition System by supporting multiple

nodes and multiple arcs between nodes

In reactive systems, which have a game-like character, some

of the non determinism is due to the uncontrollable behavior

of the environment or an adversarial agent. For refinement

purposes, it is necessary to specify which parts of the non

determinism are refinable/controllable and which are unre-

finable/uncontrollable. Accordingly, the label 𝐿𝑎 of an action

has the general form:

𝐿𝑎 (𝑠𝑡𝑚, 𝑒,𝑢, 𝑠𝑡𝑛) ≡ 𝑒 ∈ 𝐸𝑎 (𝑠𝑡𝑚)∧𝑈𝑎 (𝑠𝑡𝑚, 𝑢)∧𝑠𝑡𝑛 = 𝑓𝑎 (𝑠𝑡𝑚, 𝑢, 𝑒)

where

1. input 𝑒 is treated as an uncontrollable environment or

adversary input, and ranges over the unrefinable set

𝐸𝑎 (𝑠𝑡𝑚);
2. input𝑢 is treated as a controllable input, which satisfies

the refineable constraint𝑈𝑎 (𝑠𝑡𝑚, 𝑢);
3. function 𝑓𝑎 gives the deterministic response of the

action.

The variability of the control input specifies the refinable

part of 𝐿𝑎 (𝑠𝑡𝑚, 𝑒,𝑢, 𝑠𝑡𝑛). This kind of formulation of actions

is common in modeling discrete and continuous control sys-

tems [13]. We have

⟦𝑎⟧ = {⟨𝑠𝑡𝑚, 𝑠𝑡𝑛⟩ | ∃𝑒,𝑢. 𝐿𝑎 (𝑠𝑡𝑚, 𝑒,𝑢, 𝑠𝑡𝑛)}.

Note that 𝑒 and 𝑢 are independent of each other. Alternative

formulations are easily made in which one depends on the

other.

Semantics. A trace is an infinite sequence of states. An

LCFGM = ⟨V, 𝑁 ,𝐴,L⟩ generates a trace 𝑡𝑟 = 𝑠𝑡0, 𝑠𝑡1, . . . if

1. Initially, 𝑠𝑡0 is a legal state of the initial node𝑚0, i.e.

𝑠𝑡0 ∈ ⟦𝑚0⟧;
2. Inductively, if 𝑖 ≥ 0 and 𝑠𝑡𝑖 is a legal state of node𝑚,

i.e. 𝑠𝑡𝑖 ∈ ⟦𝑚⟧, then there exists arc 𝑎 = ⟨𝑚,𝑛⟩ where
⟨𝑠𝑡𝑖 , 𝑠𝑡𝑖+1⟩ ∈ ⟦𝑎⟧ and where 𝑠𝑡𝑖+1 is a legal state of node
𝑛; i.e. 𝑠𝑡𝑖+1 ∈ ⟦𝑛⟧.

M denotes the set of all traces that can be generated byM,

written ⟦M⟧.
A node𝑚 and a legal state 𝑠𝑡𝑚 is nonblocking if there is an

arc 𝑎 = ⟨𝑚,𝑛⟩ and control choice𝑢 such that𝑈𝑎 (𝑠𝑡𝑚, 𝑢) and 𝑎
transitions to a legal state of 𝑛 regardless of the environment

input. In game-theoretic terms, if all reachable nodes and

states of the model are nonblocking, then the system has

a winning strategy. A key part of model refinement is the

elimination of blocking states in the model.

3 Model Refinement
This section briefly reviews the model refinement approach,

see [12] for details.

3.1 Specification and Refinement.
A system specification S = ⟨M,Φ⟩ is comprised of a LCFG

M and a set of required properties Φ. A system specification

denotes the set of traces generable byM that also satisfy all

Inferring Assumptions Conference’17, July 2017, Washington, DC, USA

properties in Φ:

⟦S⟧ = {𝑡𝑟 | 𝑡𝑟 ∈ ⟦M⟧ ∧ 𝑡𝑟 ⊨ Φ}.

We introduce a preorder relation on system specifications

called refinement:S1 ⊑ S2 if ⟦S1⟧ ⊇ ⟦S2⟧. We sayS1 refines
to S2 or S2 is a refinement of S1. 2

Given system specification S = ⟨M,Φ⟩, the goal of model

refinement is to transform S to a new system specification

S′ = ⟨M′, {}⟩ that refines S. The intent is thatM′ is the
least refinement ofM that satisfies all properties in Φ. Here
we only look at refinements that strengthen the node and

variable part of arc labels. Refinements that refine nodes and

arcs themselves into sub LCFGs are examined in [12].

3.2 Model Refinement as Constraint Solving
Model refinement transforms a modelM and required prop-

erties Φ into a modelM′ such thatM ⊑ M′ ∧ M′ ⊨ Φ.
We define now a constraint system whose solutions corre-

spond to refinements ofM that satisfy Φ. The intent is to
find the greatest solution of the constraint system, which

corresponds to the minimal refinement ofM that satisfies Φ.
In some cases, we may need to settle for a near-greatest solu-

tion instead. In formulating model refinement as a constraint

satisfaction problem, we treat the node labels 𝐿𝑚 and arc

labels 𝐿𝑎 as variables, whose assigned values are state and

action predicates, respectively. We can view the constraint

system as taking place in the Boolean lattice of formulas with

implication as the partial order (i.e. a Tarski-Lindenbaum al-

gebra). Each constraint provides an upper bound on feasible

values of one variable. A feasible solution to the constraint

system is an assignment of formulas to each variable that

satisfies all the constraints of the system. We discuss below

how to assure finite convergence of the constraint solving

process as the lattice may be of infinite height. To simplify

the presentation, in this paper we consider only a single

node (but multiple state) systems and assume LIA as the

underlying theory. The work generalizes to the multi-node

case.

First define a formulaweakest controllable predecessor (WCP)

denoted𝑤𝑐𝑝 is a predicate transformer:

𝑤𝑐𝑝 (𝐿) ≡ ∀𝑒. 𝑒 ∈ 𝐸 (𝑠𝑡) =⇒ 𝐿(𝑓𝑎 (𝑠𝑡, 𝑒,𝑢)) (1)

That is,𝑤𝑐𝑝 is theweakest formula over𝑉 (𝑚)⋃{𝑢}characterizing
those states from which there is some control value such

that for any environment input 𝑒 the transition 𝑎 is assured

to reach a state 𝑠𝑡𝑛 satisfying the post-state predicate 𝐿. The

formula ensures that the system transitions to a legal state

regardless of the environment input.We characterize the

model refinement transformation by a two-stage constraint

system. The first stage enforces initial state constraints and

the second stage enforces general behavioral constraints.

Stage 0. (Initialization).

2
generally, there is a map from ⟦S2⟧ to ⟦S1⟧

Let𝑚0 be a solution to the constraint-satisfaction problem

posed by the conjunction Θ of required properties that are

state properties (not temporal properties). For each variable

𝑣 ∈ 𝑉𝑚0
, set the initial value of 𝑣 to𝑚0 (𝑣).

Stage 1. Generate the following constraints for each re-

quired temporal property □𝜑 :

1. Node Localization: 𝐿 =⇒ 𝜑 if 𝜑 is a state

predicate expressed over the variables at𝑚;

2. Arc Localization: 𝐿𝑎 =⇒ 𝜑 for the arc 𝑎 =

⟨𝑚,𝑚⟩ ∈ 𝐴 if 𝜑 is an action expressed over the vari-

ables at𝑚;

3. Control Constraint:𝑈 =⇒ 𝑤𝑐𝑝 (𝐿) ,
4. Node Invariant: 𝐿 =⇒ ∃𝑢. 𝑈
Given a specification S = ⟨𝑀,Φ⟩, the model refinement

transformation first refines S by solving the stage 0 con-

straint problem to initialize state variables, then further re-

fines the specification by solving the stage 1 constraints.

The Initialization constraints (1) and (2) provide upper

bounds on the node labels. The Control constraints (3) are

the essentially synthetic aspect of model refinement as they

serve to eliminate any blocking states at a node with respect

to an outgoing arc. The Node Invariant constraints (4) serve

to eliminate blocking states at a node with respect to all of

its outgoing arcs.

ALGORITHM 1: Model Refinement Algorithm

if 𝑠𝑡𝑎𝑡𝑒𝑃 (𝜑)
then: 𝐿 ← 𝐿 ∧ 𝜑
else 𝐿𝑎 ← 𝐿𝑎 ∧ 𝜑

do

𝑈 ← 𝑈 ∧𝑤𝑐𝑝 (𝐿)
𝐿 ← 𝐿 ∧ ∃𝑢. 𝑈

until 𝐿 =⇒ 𝑈 ∧ 𝐿.

A straightforward algorithm for solving the constraint

system over the labels on a model is presented in Figure 1.

The iteration converges to a fixpoint when the labels do not

change in an iteration. An efficient control strategy for this

algorithm is presented in [10], which maintains a queue of

constraints that are possibly violated, resulting in an opti-

mal algorithm for solving definite constraints. Assuming the

algorithm in Figure 1 converges to a greatest fixpoint, then

(1) the result is a weakest refinement of S that satisfies the

required properties Φ, and (2) the derived initial condition
is the final refined invariant 𝐿′

0
(which may be the same as

the initial invariant 𝐿0). The derived input condition defines

the set of nonblocking initial states from which the system

can ensure that all behaviors stay within the specified safety

conditions. In a model-checking scenario where the model

doesn’t check, the derived initial condition may provide a

useful characterization of the model’s failure, complement-

ing any derived counterexamples.

Conference’17, July 2017, Washington, DC, USA S. Nedunuri and D.R. Smith

Several key problems arise in solving the constraint sys-

tem: (1) eliminating the quantifiers in𝑤𝑐𝑝 instances, (2) sim-

plifying intermediate formulas, and (3) ensuring termination.

For (1) we make use of Z3’s built in QE procedure for LIA. For

(2) we have developed a custom simplifier which aggressively

carries out context-dependent simplification. For (3), forcing

termination in a fixpoint iteration algorithm is addressed by

widening mechanisms from abstract interpretation [5].

3.3 Example: Packet Flow Control
In this example, based on [11], a buffer is used to control

and smooth the flow of packets. We model this problem

as in discrete control theory with a plant (buffer), environ-

ment/disturbance input 𝑒 , and control input 𝑢. This plant is

modeled by a single linear transition that updates the state

of the plant. The goal is to assure that the system keeps no

more than 20 packets in the buffer 𝑏𝑢𝑓 and keeps the out-

flow rate 𝑜𝑢𝑡 at no more than 4 packets per time unit. The

environment supplies a stream of packets that varies up to 4

packets per time unit. The system can change the outflow

rate by ±1 per time unit, that is −1 ≤ 𝑢 ≤ 1.

We specify this system using the following TLA-like nota-

tion, which lists the (global) state variables and their initial

invariant, the one transition and its initial action, and the

required safety properties. This is a classical discrete control

problem with a single global state and single transition.

Module FC
State

𝑏𝑢𝑓 , 𝑜𝑢𝑡 : 𝐼𝑛𝑡𝑒𝑔𝑒𝑟

State Invariant
0 ≤ 𝑏𝑢𝑓 ∧ 0 ≤ 𝑜𝑢𝑡

Transitions
𝑈𝑝𝑑𝑎𝑡𝑒 ([𝑢], [𝑒]) ≜
−1≤𝑢≤1 ∧ 0≤𝑒≤4∧
𝑏𝑢𝑓 ′ = 𝑏𝑢𝑓 + 𝑒 − 𝑜𝑢𝑡 ∧ 𝑜𝑢𝑡 ′ = 𝑜𝑢𝑡 + 𝑢

Required Properties
𝑏𝑢𝑓 = 0

𝑜𝑢𝑡 = 0

□ 0≤𝑏𝑢𝑓 ∧ 𝑏𝑢𝑓 ≤20 ∧ 0≤𝑜𝑢𝑡 ∧ 𝑜𝑢𝑡 + 𝑢≤4
End Module

Alg. 1 applied to this problem converges after 4 iterations

(~5s on a 3GHz i7 laptop) with an invariant (i.e. node label,

𝐿) of 0 ≤ 𝑜𝑢𝑡≤4 ∧ 0≤𝑏𝑢𝑓 −𝑜𝑢𝑡≤16 ∧ −3≤𝑏𝑢𝑓 −3 ∗ 𝑜𝑢𝑡≤11 ∧
−6≤𝑏𝑢𝑓 −4∗𝑜𝑢𝑡≤10. With the invariant in hand, it is straight-

forward to calculate the guard 𝑈 using the Node Invariant

constraint above:

−1≤𝑢≤1 ∧ 0≤𝑜𝑢𝑡 + 𝑢≤4 ∧ −6≤𝑏𝑢𝑓 − 4 ∗ 𝑢 − 5 ∗ 𝑜𝑢𝑡≤6
∧ − 1≤𝑏𝑢𝑓 − 2 ∗ 𝑢 − 3 ∗ 𝑜𝑢𝑡≤9.
A control function (satisfying 𝑈) can then be extracted from

this space [12].

4 Inferring Environment Assumptions
[12] uses an Assume-Guarantee style of reasoning [8]. Both

the assumption 𝐸 and the system properties required to guar-

antee the component’s behavior have to be provided by the

designer. However, often the designer of a system has some

intended system behavior in mind and wishes to know what

the minimal assumptions are on the environment under

which the system can guarantee the required behavior. In

the case of the packet buffer example, this might be to know

what the largest amount of incoming packets the buffer can

handle and still maintain the invariant. Another question

that often arises is, under some given environment assump-

tions, what does the system require in order to provide the

required guarantee of behavior? Again in the packet buffer

example, this might be needing to know the smallest size of

buffer that wold prevent overflow. In this paper, we look at

both of these problems. Consider again the WCP formula

(eqn 1):

𝑤𝑐𝑝 (𝐿) ≡ ∀𝑒. 𝑒 ∈ 𝐸 (𝑠𝑡) → 𝐿(𝑓 (𝑠𝑡, 𝑒,𝑢))
As we are dealing with linear systems we will consider 𝐸

of the form𝑚𝑒 ≦ 𝑒 ≦ 𝑛𝑒
3
. Our goal is to infer the values of

𝑚𝑒 and 𝑛𝑒 which impose the least restrictions on 𝑒 , namely

an interval which is at least as large as any other interval

which still satisfies the invariant. To achieve this we retain

the variables 𝑚𝑒 and 𝑛𝑒 from the WCP above in the itera-

tive algorithm 1 while applying Z3’s quantifier elimination

and our own custom simplification at every step. When Alg.

1 converges with an inductive state invariant, 𝐿(𝑠,𝑚𝑒 , 𝑛𝑒),
we simply ask the SMT solver to solve for the following

constraint:

𝐿(𝑠,𝑚𝑒 , 𝑛𝑒) ∧ ∀𝑠′,𝑚′𝑒 , 𝑛′𝑒 � 𝐿(𝑠′,𝑚′𝑒 , 𝑛′𝑒) → 𝑛′𝑒 −𝑚′𝑒 ≤ 𝑛𝑒 −𝑚𝑒

(2)

That is determine the largest interval [𝑚𝑒 , 𝑛𝑒] for which
the invariant 𝐿 holds. This step is carried out once Alg. 1

terminates with an inductive invariant 𝐿.

Example 4.1. If we replace the fixed upper bound of 4 on

𝑒 in Example 3.3 above with 𝑛𝑒 resp. and solve using our

approach, Alg. 1 terminates after 9 iterations, and the SMT

solver returns 4 as a solution to constraint 2. That is, the

largest possible range for 𝑒 is 0 ≤ 𝑒 ≤ 4. Doubling the buffer

size to 40, the solver returns 0 ≤ 𝑒 ≤ 6.

As an example of where we can apply the same idea to

discovering system parameters, we may also wish to know

the smallest buffer size possible for the a given bound on 𝑒 .

Given 0 ≤ 𝑏𝑢𝑓 ≤ 𝑛𝑏 , and assuming 0 ≤ 𝑒 ≤ 4, using a

variant of Eqn. 2 above, namely

𝐿(𝑠, 𝑛𝑏) ∧ ∀𝑠′, 𝑛′𝑏 � 𝐿(𝑠
′, 𝑛′

𝑏
) → 𝑛𝑏 ≤ 𝑛′

𝑏
(3)

, the solver returns 𝑛𝑏 ≥ 20.

3
More general linear constraints that are composed of conjunctions and

negations are possible, but will require some kind of template from the

designer.

Inferring Assumptions Conference’17, July 2017, Washington, DC, USA

There are also situations in which the lower bound𝑚𝑒 is

not necessarily 0, as the following example illustrates

Example 4.2. Suppose the packet buffer is supplying pack-

ets to a video or audio processor. It is required to maintain

the outflow in the range 2 . . . 4. Alg. 1 converges after 22

iterations with an invariant from which we extract the re-

quirement that 𝑒 must also lie between 2 and 4.

4.1 Composition
We have shown how to infer the environment assumptions

on a single component. However, a component is rarely

used in isolation. In this case, even if the most lenient en-

vironment assumptions on a component were known (e.g.

a predesigned component) there is still the problem of de-

termining the environment assumption for the composition.

In this section we provide some examples that illustrate our

approach applied to such situations.

Example 4.3. Consider two of the packet buffers from Ex-

ample 4.1 in series as in Fig. 1 (ignore pd for now). The

buffers might represent nodes in a packed switched network,

being used to buffer incoming packets and are required to

maintain the outflow rate below some maximum (4) so as

to prevent network congestion. Assume outA is limited to 3

and outB to 4 packets/time unit. . We wish to know what the

maximum possible range is for the rate of incoming packets.

Instead of 𝑒 we use the more meaningful name pi. Applying
our approach to this problem returns a maximum range of

0..3 for 𝑝𝑖 . When the buffer sizes are increased from 20 to 40,

the maximum value of pi is 6.

Example 4.4. Consider two of the packet buffers in Example

4.2 connected in series as in Fig. 1 Assume a lossy connection

with packets possibly being dropped (pd) in the connection

between A and B. For simplicity, we assume we assume pd
is 0 or 1, The specification for this problem is as follows:

Module FC2Lossy
State

𝑏𝑢𝑓 𝐴,𝑏𝑢𝑓 𝐵, 𝑜𝑢𝑡𝐴, 𝑜𝑢𝑡𝐵 : 𝐼𝑛𝑡𝑒𝑔𝑒𝑟

State Invariant
0 ≤ 𝑏𝑢𝑓 𝐴 ∧ 0 ≤ 𝑜𝑢𝑡𝐴 ∧ 0 ≤ 𝑏𝑢𝑓 𝐵 ∧ 0 ≤ 𝑜𝑢𝑡𝐵

Transitions
𝑈𝑝𝑑𝑎𝑡𝑒 ([𝑢𝐴,𝑢𝐵], [𝑝𝑖]) ≜
−1≤𝑢𝐴≤1 ∧ −1≤𝑢𝐵≤1 ∧𝑚≤𝑝𝑖≤𝑛 ∧ 0≤𝑝𝑑≤1∧
𝑏𝑢𝑓 𝐴′ = 𝑏𝑢𝑓 𝐴 + 𝑝𝑖 − 𝑜𝑢𝑡𝐴∧
𝑜𝑢𝑡𝐴′ = 𝑜𝑢𝑡𝐴 + 𝑢𝐴∧
𝑏𝑢𝑓 𝐵′ = 𝑏𝑢𝑓 𝐵 + 𝑜𝑢𝑡𝐴 − 𝑜𝑢𝑡𝐵 − 𝑝𝑑∧
𝑜𝑢𝑡𝐵′ = 𝑜𝑢𝑡𝐵 + 𝑢𝐵

Required Properties
𝑏𝑢𝑓 𝐴 = 0∧
𝑜𝑢𝑡𝐴 = 0∧
𝑏𝑢𝑓 𝐵 = 0∧
𝑜𝑢𝑡𝐵 = 0∧

□ 0≤𝑏𝑢𝑓 𝐴 ∧ 𝑏𝑢𝑓 𝐴≤20 ∧ 0≤𝑜𝑢𝑡𝐴 ∧ 𝑜𝑢𝑡𝐴 + 𝑢𝐴≤4∧
0≤𝑏𝑢𝑓 𝐵 ∧ 𝑏𝑢𝑓 𝐵≤20 ∧ 0≤𝑜𝑢𝑡𝐵 ∧ 𝑜𝑢𝑡𝐵 + 𝑢𝐵≤4

End Module

(Note that bufA and bufB need separate controls uA and

uB). Unfortunately, on this example, our implementation

times out.

4.2 Handling many variables
The reason for the timeout in Example 4.4 is that Z3’s quan-

tifier elimination procedure struggles on large expressions

containing many variables. For example Fig. 2 shows part

of the symbolic expression for WCP on the 6th iteration

To address this, we have modified our approach as follows.

Instead of asking the SMT solver for a solution to formula

2 once Alg. 1 converges, we ask the solver to supply a so-

lution at the beginning. We now use these concrete values

of 𝑚 and 𝑛 in Alg 1 to compute the new invariant. These

represent the widest range of possible values for 𝑒 under the

current (weak) invariant. if Alg. 1 converges with a non false

invariant using these values then we are done. Typically,

however, the algorithm will produce an invariant that is too

strong (False). Intuitively, this is because the initial values

of𝑚 and 𝑛 allow the environment too much latitude, and

there is no starting state from which the invariant can be

satisfied. In this case, we reduce the size of the interval𝑚..𝑛

and repeat the process until either convergence or there is

no solution even with the smallest possible interval (1 ele-

ment). In the case that one of the bounds𝑚 or 𝑛 is known

(e.g.𝑚 = 0) we can use standard binary search to find the

largest possible value of 𝑛. However, when both bounds are

variable, we resort to a modified form of binary search to

find the largest bound. This is shown in the pseudo Python

code outline in Alg. 2. A brief description of Alg. 2 is as fol-

lows: getBounds() first asks the SMT solver for a solution

to constraint 2 using the initial invariant (see initial 𝐿 in Alg.

1). This produces the most lenient bounds possible (since

the initial node label is the weakest). (In the packet buffer

example this is 0..20). The environment constraint (ePred
i.e.𝑚 ≤ 𝑒 ≤ 𝑛) is instantiated with these bounds and Alg.

1 is run as normal with these initial bounds. If the bounds

are feasible then Alg.1 terminates with success and a new

invariant which is used to infer the bounds . If not, cal-

cBounds is called with the current initial interval bisected.

calcBounds calls 1 to see if a node label can be determined

with these bounds and if so, now tries to grow it, if possible,

towards the end of the original bound (the new upper bound

is (𝑢 +𝑈) 𝑑𝑖𝑣 2). If the current interval is already as large as

possible, then it exits with the current bounds. Otherwise,

what happens next depends on what phase the algorithm is

in. There are two phases: a “growing” phase and “shrinking”

(non-growing) phase. Initially calcBounds starts out in the

shrinking phase and stays there as it as long as it is reducing

the interval to find one that is satisfiable. This is the first

Conference’17, July 2017, Washington, DC, USA S. Nedunuri and D.R. Smith

Figure 1. Two packet buffers in series

ForAll([pi, pd], Implies(And(m <= pi, pi <= n,
pd >= 0, pd <= 1), ForAll([bufAX, bufBX, outAX,
outBX], Implies(And(bufAX == bufA + pi - outA,
outAX == outA + u, bufBX == bufB + outA - outB -
pd, outBX == outB + u), And(Or(Not(-1*n + m <=
0), Not(-6*outBX + 6*outAX + bufBX <= 5)), 2*n +
-2*m <= 11, Or(Not(-1*n + m <= 0), 6*n + -6*outAX
+ bufAX + 2*outBX <= 34),...(26 more disjuncts)

Figure 2. Small part of the symbolic expression for WCP in

Packet Flow Control

case in the code (that checks for ¬growing), hence the new
upper bound is (𝑙 + 𝑢) 𝑑𝑖𝑣 2. The growing phase begins as

soon as a feasible range has been found. Once in the growing

phase, calcBounds remains in that phase, and even when

the current bounds fail it only reduces the interval size back

towards the last known good upper bound (ie the new up-

per bound is (𝑜𝑙𝑑_𝑢 + 𝑢) 𝑑𝑖𝑣 2). Using this approach we are

now able to solve the problem presented in Example 4.4. The

result is that pi must lie between 2 and 4.

5 Related Work
There has been a significant amount of work on inferring

the environment assumptions on a system that is composed

of smaller components going back to Pnueli [8] and more

recently the work of Cobleigh et al. [4]. Cobleigh et al. in

particular propose a framework in which component based

validation can be carried out automatically. To show that a

system composition meets its requirement, they first infer

an assumption required on the main (or one of the) compo-

nent(s) for it to meet the requirement (Step 1) and then verify

that that assumption is also satisfied by the other compo-

nents (Step 2). By representing the assumption as a labeled

transition system, it can be incrementally constructed by an

iterative DFA learning algorithm, L*. We plan to investigate

whether we can use our approach to infer the assumption

on the component in Step 1.

Regarding the construction of the 𝐸 predicate, one pos-

sibility we considered was inferring 𝐸 along with the state

ALGORITHM 2: Interval Refinement Algorithm

def getBounds():
#ask SMT solver for soln to (2) using initial 𝐿

(M,N) = findInitialBounds()
ePred = substitute(ePred, [(m,M), (n,N)])
(success?,L’) = findInvariant(ePred) #call Alg. 1
if success?:

(M,N) = inferBoundsFinal(L’)
else:

(M,N) = calcBounds(M, (M+N) div 2, N, -maxint,
False)
return (M,N)

#get the widest possible bounds wrt given inv.
def inferBoundsFinal(L):
exp = L(m,n) ∧ ∀s,m2,n2: L(s,m2,n2)→n2-m2 ≤n-m
s = SolverFor(“LIA”)
s.add(exp)
if s.check() == sat:

model = s.model()
return (model[m], model[n])

else:
raise exception(“Unable to infer bounds for

invariant”)

def calcBounds(l, u, U, old_u, growing):
ePred = substitute(ePred, [(m,l), (n,u)])
(success?,L’) = findInvariant(ePred)
if success: #soln exists with curr bounds, try to
extend

if u < U-1:
u_mid = (u+U) div 2
calcBounds(l, u_mid, U, u)

else:
return (l,u)

else if u > l: #no soln, need to reduce interval
size

if ¬growing:
u_mid = (l + u) div 2
calcBounds(l, u_mid, u, -maxint, False)

else:
u_mid = (old_u + u) div 2
calcBounds(l, u_mid, u, old_u, True)

else print(“no valid bounds from “, l)

Inferring Assumptions Conference’17, July 2017, Washington, DC, USA

invariant 𝐿. In this regard, Dillig et al [6] use abductive rea-

soning to infer loop invariants. Their approach is quite pow-

erful and seems appealing but will lead to an 𝐸 that depends

on the current state. This will not work for us as the envi-

ronment represents the uncontrollable aspect so it cannot

be made dependent on the current state. One question that

arises is whether we can synthesize the 𝐸 predicate as some

Boolean combination of linear constraints, as opposed to the

fixed linear range that is currently supported. Horn Clause

solvers [2] are a potential solution. We plan to experiment

with such solvers in future work.

Acknowledgments
This work has been sponsored in part by the Laboratory

Directed Research and Development program at Sandia Na-

tional Laboratories, a multimission laboratory managed and

operated by National Technology & Engineering Solutions of

Sandia, LLC, a wholly owned subsidiary of Honeywell Inter-

national Inc., for the U.S. Department of Energy’s National

Nuclear Security Administration, by the NSF under contract

, and ONR under contract. This paper describes objective

technical results and analysis. Any subjective views or opin-

ions that might be expressed in the paper do not necessarily

represent the views of the U.S. Department of Energy or the

United States Government.

References
[1] T. Beyene, S. Chaudhuri, C. Popeea, and A. Rybalchenko. 2014. A

Constraint-Based Approach to Solving Games on Infinite Graphs. In

Symp. on Principles of Programming Languages (POPL).
[2] Nikolaj BjÃžrner, Arie Gurfinkel, Ken McMillan, and Andrey Ry-

balchenko. 2015. Horn Clause Solvers for Program Verification. 24–51.
[3] Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and

Yaniv Saar. 2012. Synthesis of Reactive(1) designs. J. Comput. System
Sci. 78, 3 (2012), 911–938. https://www.sciencedirect.com/science/
article/pii/S0022000011000869 In Commemoration of Amir Pnueli.

[4] Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Pasare-

anu. 2003. Learning Assumptions for Compositional Verification. In

Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). Springer Berlin Heidelberg, 331–346.

[5] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: a

unified lattice model for static analysis of programs by construction

or approximation of fixpoints. In POPL. ACM, 238–252.

[6] Isil Dillig, Thomas Dillig, Boyang Li, and KenMcMillan. 2013. Inductive

Invariant Generation via Abductive Inference. SIGPLAN Not. 48, 10
(oct 2013), 14 pages. https://doi.org/10.1145/2544173.2509511

[7] Leslie Lamport. 2002. Specifying Systems, The TLA+ Language and
Tools for Hardware and Software Engineers. Addison-Wesley.

[8] Amir Pnueli. 1985. In Transition From Global to Modular Temporal

Reasoning about Programs. In Logics and Models of Concurrent Systems,
Krzysztof R. Apt (Ed.). Springer Berlin Heidelberg, 123–144.

[9] Amir Pnueli and Roni Rosner. 1989. On the Synthesis of an Asyn-

chronous Reactive Module. In Proceedings of the 16th International
Colloquium on Automata, Languages and Programming (ICALP ’89).
Springer-Verlag, 652–671.

[10] Jakob Rehof and Torben Mogensen. 1999. Tractable Constraints in

Finite Semilattices. Science of Computer Programming 35 (1999), 191–

221.

[11] Matteo Slanina, S. Sankaranarayanan, Henny Sipma, and ZoharManna.

2007. Controller Synthesis of Discrete Linear Plants Using Polyhedra.
Technical Report. Technical Report REACT-TR-2007-01, Stanford Uni-

versity.

[12] D.R. Smith and S. Nedunuri. 2021. Model Refinement. Tech. Rep.

21.0. Kestrel Institute. https://www.kestrel.edu/people/smith/pub/mr-
tr.pdf

[13] Eduardo Sontag. 1998. Mathematical Control Theory. Springer.

https://www.sciencedirect.com/science/article/pii/S0022000011000869
https://www.sciencedirect.com/science/article/pii/S0022000011000869
https://doi.org/10.1145/2544173.2509511
https://www.kestrel.edu/people/smith/pub/mr-tr.pdf
https://www.kestrel.edu/people/smith/pub/mr-tr.pdf

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Required Properties
	2.2 Behavioral Models

	3 Model Refinement
	3.1 Specification and Refinement.
	3.2 Model Refinement as Constraint Solving
	3.3 Example: Packet Flow Control

	4 Inferring Environment Assumptions
	4.1 Composition
	4.2 Handling many variables

	5 Related Work
	Acknowledgments
	References

