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Abstract—Leading neuromorphic computer (NMC) platforms
achieve energy efficiency and extreme scalability by implementing
simplified models of biological neurons. Future NMCs that rely
on complex neuron models for complex calculations will require
labor-intensive design processes that are currently performed by
highly-trained professionals. In this work, we develop AI-enhanced
tools for automating NMC design, demonstrating that such tools
can design next-generation circuits.

Index Terms—reinforcement learning, evolutionary algorithms,
electronic design automation, neuromorphic computers, Al-
enhanced codesign

I. INTRODUCTION

Neuromorphic computers (NMCs) are energy-efficient com-
puting systems, inspired by the biological brain, [1] that can
efficiently implement spiking neural networks. These include
analog, digital, mixed-signal, and beyond-CMOS implementa-
tions. Due to their energy efficiency and small footprint, NMCs
are useful in applications where size, weight and power (SWaP)
are constrained. NMCs have been successfully utilized in em-
bedded systems, scientific computing, and artificial intelligence
[2]-[4].

Currently, most NMCs implement simplified spiking dynam-
ics, such as the leaky integrate-and-fire (LIF) model [5]. Simple
NMC LIF neurons capture the quintessential spiking activity
of biological neurons. However, they fail to capture important
and complex computational functions present in biological
neurons such as dendritic processing, and learning synapses.
For instance, neuronal dendrites perform non-linear filtering,
coincidence detection, and other sub-threshold computations
that are sensitive to spatio-temporal patterns of inputs [6].

NMCs that support dendrite-like computations could perform
more complex functions with fewer computing elements [7]—
[10]. Thus, dendritic NMC elements could be highly useful for
SWaP constrained applications, such as remote signal detection.
However, the design of NMCs is highly non-trivial, requiring
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the use of expert knowledge. To accelerate the design of
advanced NMCs, we propose to use design automation methods
that rely on artificial intelligence (AI).

Al has previously been used for many electronic design au-
tomation (EDA) tasks, including: device placement, connection
routing, component sizing, digital logic design, software to
hardware mapping, SPICE simulation, lithography, device mod-
eling, runtime management, high-level synthesis, and transistor
sizing [11]-[19]. AI has also been used to optimize photonic
machine learning accelerators [20]. Additionally, evolutionary
algorithms (EAs) have been used to optimize NMC circuits
[21]. However, because EAs do not perform inference, they
may have difficulty in scaling to large problems. In contrast,
reinforcement learning (RL) agents can perform inference, and
techniques such as curriculum learning and transfer learning
can allow RL to efficiently scale to more difficult problems.

Here, we demonstrate RL agents that are able to learn to
design dendrite-like analog NMC circuits [8], [22] that can
perform signal discrimination. During training, the RL agents
place NMC components into a circuit and tune component
parameters to successfully complete signal discrimination tasks.
Once trained, the RL agents can rapidly design signal discrim-
ination circuits. We compare the results of RL circuit design
to EA circuit optimization and demonstrate that both RL and
EA methods can be used to rapidly improve computational
devices. To the best of our knowledge, this is the first instance
of using RL to design circuits for NMCs from scratch, rather
than optimizing an existing circuit.

II. CIRcUIT CONSTRUCTION TASK

RL and EA methods were evaluated on a task that involved
designing low-SWaP circuits from dendrite-inspired compo-
nents in order to discriminate between signal and noise. The
signal (Target) and noise (Non-Target) could be thought of
as currents or voltages produced by a sensor. Target and
Non-Target samples were drawn from distributions that were
not always distinct. This task required the choice of signal
detection components or delay components. Detect components
attempted to discriminate between Target and Non-Target sig-
nals; Delay components only propagated their input forward.
The dendrite-inspired series circuits were based on the passive
dendrite cable model using CMOS transistors as described in
[8], [22]; the dendrite components (Figure 1B) abstracted the
dendrite sub-circuits [8]. This CMOS-based dendritic circuit
models the classical resistor-capacitor (RC) delay line circuit
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Component Name
Delay

Properties & Parameters
The output of this component is the output of the
previous component.

Simple Detect | G € [-10,10], B=0,L=0
Leaky Detect | G € [—10,10], B=0, L =0.1
Tunable Leaky Detect | G € [-10,10], B=0, L € [-10,10]
Leaky Biased Detect | G € [-10,10], B € [-10,10], L = 0.1

TABLE I
DENDRITIC COMPONENTS. GG = GAIN. B = BIAS. L = LEAK.

for a passive linear dendrite cable as described by [23]. The
CMOS transistor-based model of the dendrite cable models the
resistors using transistors that operate in a linear sub-threshold
region. The RC behavior is captured using Delay and Leak in
our abstracted model. We also model a tunable Bias parameter
that offsets the signal value. Dendrites have been shown to have
similar multiplicative/gain effects using NMDA (N-methyl-D-
aspartate) channels [24] and shunting inhibition [9], and we
specify this as the Gain term in our abstracted model.
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Fig. 1. (A) The agent uses an observation X at each time step to choose
a Detect or a Delay component as well as the component parameters. Delay
components do not process the signal. Successful circuits detect the Target, but
not Non-Target, signals. (B) Diagram of the abstracted dendritic component
model.

Output

We created four different models of Detect components based
on the dendrite model (see Table I). Each model had a tunable
or fixed bias B, gain G, and leakage L. These four models
were chosen based on signal detection accuracy results while
using the RL circuit design methods (see Section III-B). The
agents had to construct a circuit using only Delay components
and one type of tunable Detect component.

EA and RL circuit design methods were both provided with
signals that contained 10-100 samples from both the Target
and the Non-Target distributions (see Figure 2). For six of
the samples, the Target distribution was different than the
Non-Target distribution. For all remaining samples, the Target
distribution was equal to the Non-Target distribution. For those
samples where the Target distribution differed, the mean p was
drawn uniformly from (—0.9,—0.5) U (0.5,0.9). Once p was

drawn, the Target signal was drawn uniformly from p £ 0.1
The Non-Target distribution was always uniform on (—1,1).
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Fig. 2. (A) The RL and EA agents receive 10-100 samples of Target and Non-
Target data (in this illustration, 10). (B) The signals are drawn from Target
and Non-Target distributions. For six of the samples, the Target distribution
is distinct from the Non-Target distribution. Bold lines and shaded regions
represent the mean and range of the distributions, respectively. Dotted lines
represent lower limit (0.5) for Target signal means. a.u. = arbitrary units.

We chose these Target and Non-Target distributions for
two reasons. First, overlapping distributions prevent agents
from relying on simple thresholding, instead requiring them
to place both Detect and Delay components. Second, as simple
thresholding cannot solve this problem, it would be difficult
for a human to design such circuits on the first try. Indeed, due
to NMC component interaction, a human would likely need to
make an initial guess and then tune component parameters. As
described in the next section, the RL agent must complete this
task by using inference alone, with no additional optimization.

For all experiments, software was implemented in Python
3.6. RL was implemented using stable-baselines version 1.3.0
[25]. Timing experiments were performed on a workstation
with an Intel Xeon ES-1650 CPU running at 3.60 GHz and an
NVIDIA Quadro P5000 GPU. For RL, 5 agents were trained
and then tested on 100 design tasks. For EA, 5 EA optimization
processes were performed.

III. REINFORCEMENT LEARNING

We begin with a basic overview of reinforcement learning
as it applies to this task (Section III-A) and then present the
results of the RL circuit design (Section III-B).

A. Reinforcement Learning Overview

A cartoon of RL is provided in Figure 3A. In RL [26], an
agent observes an environment and uses the observation to
choose actions. The actions are applied to the environment,
causing the environment to transition to a new state and emit
a new observation, as well as a scalar reward. The rewards,
observations, and actions are used by a parameter update
function to update the parameters of the agent.
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Fig. 3. (A) Overview of RL. (B) Overview of EAs.

1) Proximal policy optimization: We used a deep RL algo-
rithm known as Proximal Policy Optimization (PPO) [27]. In
PPO, the agent and the parameter update function both rely on
deep neural networks.

2) Observation: At each time step, the RL agent observed
16 samples from the time-varying Target distribution and 16
samples from the time-invariant Non-Target distribution (Figure
2).

3) Action: At each time step, the agent chose a component
from the available library. The library consisted of a Delay
component and a single type of tunable Detect component (see
Table I).

4) Reward: At the terminal time step, the RL agent re-
ceiveed a reward that was proportional to the number of
correctly classified Target and Non-Target signals:

# correct — # incorrect
total #

At all non-terminal time steps, the RL agent received a reward
of 0. This strategy is referred to as “sparse” because it results
in rewards of 0 for most time steps. ”Dense” reward strategies
provide non-zero rewards at most time steps.

5) Curriculum and Transfer Learning: Dense reward strate-
gies tell RL agents why low-performing designs are “incorrect.”
However, dense strategies require the investigator to supply
information about why a low-performing design is “incorrect,”
and such information may not be available. Sparse reward
strategies can be expected to generalize across circuit design
tasks. However, because sparse rewards contain relatively little
information, they may cause RL agents to learn slowly.

In order to accelerate RL, we used curriculum learning, pro-
gressively increasing the difficulty of the task as the RL agents
learned. During learning, signal lengths were progressively
increased from 10 samples to 20 samples. At the conclusion of
learning, RL agents were tested on circuits that were as long as
100 samples, without retraining (a form of transfer learning).

B. RL Agent Results

1) Accuracy: For the initial task with signal lengths of
10, baseline performance was established using the Simple
Detect component. Using the Simple Detect component, the RL
agent was able to discriminate Target and Non-Target signals
with 91% accuracy. Using the Leaky Detect component and
training from scratch, signal discrimination accuracy remained
at approximately 91%, suggesting that a small leakage current
did not degrade performance. To determine if a tunable leakage
current could improve the computational ability of dendrite-like
NMC components, the RL agent was trained to use the Tunable
Leaky Detect component. Unfortunately, signal discrimination
accuracy remained at 91%.

After analyzing the initial results, we determined that signal
discrimination was most successful when Target and Non-
Target signals had, on average, opposite signs. Thus, we created
the Leaky Biased Detect component, which had a tunable
bias. After implementing a tunable bias, signal discrimination
accuracy improved to 97%.

2) Curriculum and Transfer Learning Results: As described
above, we employed curriculum and transfer learning as we
increased the number of samples in the signal. As shown in
Figure 4A, signal discrimination accuracy was nearly identical
for signals with lengths of 10 and 20. However, signal discrim-
ination accuracy decreased slowly from 97% to 90% as signal
length increased from 20 to 100 samples (without retraining).
We compare the curriculum learning results with EA in the
next section.
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Fig. 4. RL agents were trained to build signal discrimination circuits for signal
lengths of 10 samples. Then, signal length was increased to 20 samples using
curriculum learning. RL agents were then tested on signal lengths of 20 to 100
samples without retraining. (A) RL signal discrimination accuracy decreased
as signal length increased. EA signal discrimination accuracy was unaffected
by signal length. (B) Inference time increased linearly with signal length. For
RL, inference took only approximately 80 ms for circuits that contained up
to 100 elements; EA required more than a minute to optimize similar circuits.
Lines and shaded regions represent median + interquartile range.

IV. EVOLUTIONARY ALGORITHMS COMPARISON

EAs (Figure 3B) are optimization algorithms inspired by
evolution. Briefly, EAs begin with a set of randomly selected
parents, which are collections of parameters to be optimized.
The parents are evaluated using a so-called fitness function,



which produces a scalar fitness score. The parents with the
highest fitness scores are combined in a process called crossover
to produce offspring. The offspring parameters are then mu-
tated, and the offspring become the parents of a new generation.
This cycle is repeated until the fitness score is maximized.

We designed an EA where the parameter space contained
the identities of circuit components, limited to the Delay and
the Leaky Biased Detect components, along with their tunable
parameters. The initial population contained 50 individuals.
The top 50 individuals in each generation were selected and
recombined to produce 50 offspring. Mutations occurred at
a rate of 1/N, where N was the number of samples in
the signal. Mutations either caused the type of component to
switch from Delay to Detect or caused tunable parameters
to be resampled uniformly from (v — 0.5,v + 0.5), where
~ represented the existing parameter value. Unlike [21], we
assumed a constant circuit topology; only the identities and
parameters of components were optimized.

To compare EAs to RL, we considered the time required
for finding solutions, as well as the accuracy of the final
solution (see Figure 4). The median RL training time was
353 seconds, with an interquartile range of [352, 386] seconds.
After training, RL agents could choose 1,301 components per
second (median), with a range of [672, 1,325] components
per second (Figure 4B). Unlike RL, which uses inference to
create designs for a family of problems, EAs are problem
specific. Thus, EAs do not have distinct training and inference
phases. EAs were able to design circuits at a median rate of
1.39 components per second, with an interquartile range of
[0.24, 11.1] components per second. This rate is 2-3 orders
of magnitude slower than RL inference, not including the RL
training time. However, EAs were able to optimize circuit
performance, regardless of signal length, with an accurracy of
100%.

V. DISCUSSION

A. Timing

Advances in NMCs are limited by the availability of human
experts, who take years to train. In contrast, Al-enhanced tools,
like the one developed here, take relatively little time to train,
even when training is performed with inexpensive computing
resources. We demonstrated that RL agents can perform simple
NMC design tasks in as little as 6 minutes. This rapid training
time can be expected to aid in rapidly prototyping novel NMC
components. As an example, the RL agent was able to quickly
learn that 1) a fixed leakage current does not affect signal
discrimination accuracy, 2) a tunable leakage current does not
improve signal discrimination accuracy, and 3) a tunable bias
does improve signal discrimination accuracy. These 3 facts
were determined in less than 24 minutes using widely-available
computing resources. Furthermore, after training, RL agents
could design NMC circuits for new signal discrimination tasks
at a rate of approximately 1,300 components per second, or
approximately 0.77 ms per component. Given that humans have
reaction times that are on the order of hundreds of milliseconds
[28], the current RL agent can design many NMC circuits

before a human expert is even aware that there is a design
problem. Given that there are no other Al-enhanced tools
for designing dendrite-like NMCs, the methods presented here
represent the current state-of-the-art.

B. Accuracy

We chose to test the RL agents on an NMC circuit design task
that involved discriminating between Target and Non-Target
signals that were drawn from overlapping distributions. This
task is not only similar to real-world signal discrimination tasks
in SWaP-constrained applications, but also very difficult for
humans to solve as these problems cannot be solved with simple
thresholding. To solve such a problem, a human would likely
create an initial design and then optimize the design by tuning
parameters — a time-intensive process that would become nearly
impossible as the number of NMC components and the number
of parameters per component are increased.

We trained an RL agent that was able to successfully com-
plete the task with up to 97% accuracy by using inference alone,
without an additional optimization step. Curriculum learning
was used to rapidly train the agent to design circuits with
up to 20 components without degraded performance. When
tested on longer circuits, accuracy degraded slowly from 97%
to 90%. It is possible that training the RL agents on the
longer circuits could rescue performance back to 97%. Or,
alternatively, the NMC design process could be improved by
including an explicit optimization step after the initial inference
(design) step. Nonetheless, given that the Target and Non-Target
signal distributions overlapped, signal discrimination accuracies
of 90-97% are quite high, suggesting that these novel RL
methods will generalize to many real-world problems.

C. Method Generalizability

We made several important decisions that we expect will
allow these methods to generalize to real-world problems.
As discussed above, we chose a task that mimics real-world
signal discrimination tasks that are difficult for humans to
solve. Additionally, we chose to use sparse rewards that did
not directly inform RL agents about how designs could be
improved. Sparse reward signals contain relatively little infor-
mation, which can be expected to impede learning. However,
sparse reward signals can always be generated, assuming that
circuit performance specifications are known. Thus, we expect
that these RL methods will generalize to many interesting real-
world tasks. In order to improve the learning rate when using
sparse rewards, we chose to use curriculum learning, which
allowed us to design fairly complicated NMC circuits.

VI. CONCLUSIONS

We developed EA and RL algorithms to automatically con-
struct next-generation, dendrite-like neuromorphic signal dis-
crimination circuits from scratch. This work utilized abstracted
models of electrical components for fast circuit design. The
RL-designed NMC circuits presented here had simple serial
structures. In the future, we will enable RL agents to design
NMC circuits with parallel structures and then leverage circuit
simulators for further verification and validation.
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